Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 34

Earlier Lecture

- Cryogenic vessels use insulation to minimize all modes of heat transfer.
- Apparent thermal conductivity (k_A) is calculated based on all possible modes of heat transfer.
- Expanded foam is a low density, cellular structure.
 A gas filled powder or a fibrous insulation reduces the gas convection due to the small size of voids.
- Radiation heat transfer is reduced by using radiation shields.

Outline of the Lecture

Topic : Cryogenic Insulation (contd)

- Vacuum
- Evacuated Powders
- Opacified Powders
- Tutorial

Types of Insulation

- Expanded Foam Mass
- Gas Filled Powders & Fibrous Materials Mass
- Vacuum alone Vacuum
- Evacuated Powders Mass + Vacuum
- Opacified Powders Mass + Vacuum + Reflective
- Multilayer Insulation Vacuum + Reflective

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Introduction

- As seen earlier, the different modes of heat transfer are Conduction, Convection and Radiation.
- If the physical matter between the hot and the cold surfaces is removed, that is, by maintaining a perfect vacuum, Conduction and Convection are eliminated.
- However, Radiation heat transfer does not require any medium and in such cases, it is the only mode of heat transfer.

- It is important to note that even in vacuum, there is some residual gas.
- These gas molecules contribute to the heat transfer by gaseous conduction.
- As the vacuum improves, this gas conduction decreases.
- In an ordinary conduction, a linear temperature gradient is built up. The molecules exchange heat with each other and as well as with the surfaces.

Vacuum

- But in vacuum, the mean free path (λ) of the molecules is more than the distance between the surfaces; the molecules rarely collide with each other.
- The energy is exchanged only between the surface and the colliding molecules.
- This type of heat transfer is called as free molecular conduction or residual gas conduction.
- This exists only at very low pressures or at very good vacuum.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

- For the sake of understanding, consider two plates with temperatures T₁ and T₂, (T₂ > T₁) as shown.
- The gas pressure is very low in order to ensure that the mean free path (λ) of the molecules is greater than L.
- In such situations, the gas molecules collide only with the surfaces and exchange energy.

- Consider a molecule colliding with bottom plate and leaving towards upper plate.
- The gas molecule collides with this surface at T₁ and it transfers some energy to the surface.
- It leaves the cold surface with a kinetic energy corresponding to a temperature T'₁, higher than T₁.

- Again, consider a molecule colliding with upper plate and leaving towards bottom plate.
- This gas molecule collides with surface at T₂ and leaves at a temperature T'₂, lower than T₂.
- It is clear that, in both these impacts, thermal equilibrium is not attained. This process is repeated and contributes to free molecular conduction.

Vacuum

- In order to measure the degree of thermal equilibrium between the molecule and the surface, we define Accommodation Coefficient (a).
- It is a ratio of actual energy transfer to the maximum possible energy transfer.

• Its value depends on the gas – surface interaction and the temperature of the surface.

Vacuum

- From the figure, for the cold surface, the actual temperature change is (T'₂ T'₁).
- But, the maximum possible temperature change is
 (T'₂ T₁).
- By definition, the accommodation coefficient for cold plate is

cold plate is

Vacuum

- Similarly, for the hot surface, the actual temperature change is (T'₂ – T'₁).
- But, the maximum possible temperature change is
 (T₂ T'₁).
- Therefore, the accommodation coefficient for the hot surface is

given by

$$a_{2} = \frac{T_{2}' - T_{1}'}{T_{2} - T_{1}'}$$

Vacuum

From the earlier slides, the accommodation coefficients are

$$a_1 = \frac{T_2' - T_1'}{T_2' - T_1}$$
 $a_2 = \frac{T_2' - T_1'}{T_2 - T_1'}$

• Rearranging the above equations, we have

$$T_{1} = T_{2}' - \frac{T_{2}' - T_{1}'}{a_{1}} \qquad T_{2} = \frac{T_{2}' - T_{1}}{a_{2}} + T_{1}'$$
$$T_{2} - T_{1} = \left(T_{2}' - T_{1}'\right) \left(\frac{1}{a_{1}} + \frac{1}{a_{2}} - 1\right)$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

14

Vacuum
$$T_2 - T_1 = \left(T_2' - T_1'\right) \left(\frac{1}{a_1} + \frac{1}{a_2} - 1\right)$$

Similar to an emissivity factor, we define a term accommodation factor F_a, which is given by

$$\frac{1}{F_a} = \left(\frac{1}{a_1} + \frac{1}{a_2} - 1\right)$$

$$T_{2} - T_{1} = \left(T_{2}' - T_{1}'\right) \frac{1}{F_{a}} \qquad F_{a} = \frac{T_{2}' - T_{1}'}{T_{2} - T_{1}}$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Vacuum

 The approximate accommodation coefficients for concentric sphere and concentric cylinder geometries are as tabulated below.

A_2					
	Temp (K)	He	H_2	Ne	Air
A	300	0.29	0.29	0.66	0.8-0.9
	78	0.42	0.53	0.83	1.0
Δ	20	0.59	0.97	1.0	1.0
A.					

• The subscript **1** denotes the enclosed surface and subscript **2** denotes the enclosure.

Vacuum

Temp (K)	He	H ₂	Ne	Air
300	0.29	0.29	0.66	0.8-0.9
78	0.42	0.53	0.83	1.0
20	0.59	0.97	1.0	1.0

- At a given temperature, the accommodation coefficient increases with the increase in the molecular weight of the gas.
- For a given gas, the accommodation coefficient increases with the decrease in the temperature, due to better heat transfer at lower temperatures.

17

Vacuum

- From the kinetic theory of gases, the total energy of a molecule is the sum of internal energy and kinetic energy.
- Mathematically,

$$e = U + KE$$

$$e = \left(c_v + \frac{R}{2}\right)T$$

 $\Delta e = \left(c_v + \frac{R}{2}\right)\Delta T$

- R Specific gas constant
- $c_v = R/(\gamma-1) Specific heat of gas$
- $\Delta T = (T'_2 T'_1) Change in temperature$

Vacuum
$$\Delta e = \left(c_v + \frac{R}{2}\right)\Delta T$$

• The definition of C_v and F_a are as given below.

$$c_{v} = \frac{R}{\gamma - 1}$$
 $T_{2}' - T_{1}' = F_{a}(T_{2} - T_{1})$

• Substituting, we have

$$\Delta e = \left(\frac{R}{\gamma - 1} + \frac{R}{2}\right) \left(T_2 - T_1\right) F_a$$

$$\Delta e = \frac{F_a R}{2} \left(T_2 - T_1\right) \left(\frac{\gamma + 1}{\gamma - 1}\right)$$

Vacuum

The mass flux per unit time is given by

- where,
 - ρ Density, $\overline{\upsilon}$ Average velocity
- From Kinetic theory, average velocity is $\overline{v} = \left(\frac{8RT}{T}\right)^{0.3}$

20

 Combining the above, together with equation of state, we have $\frac{\dot{m}}{A} = \frac{1}{4} \left(\frac{p}{RT}\right) \left(\frac{8RT}{\pi}\right)^{0.5} \quad \frac{\dot{m}}{A} = p \left(\frac{1}{2\pi RT}\right)^{0.5}$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Vacuum

 The total energy transfer per unit area owing to the molecular conduction is as given below.

$$\frac{\dot{Q}}{A} = \frac{\ddot{m}}{A} \Delta e \left[\frac{\dot{m}}{A} = p \left(\frac{1}{2\pi RT} \right)^{0.5} \right] \Delta e = \frac{F_a R}{2} (T_2 - T_1) \left(\frac{\gamma + 1}{\gamma - 1} \right)$$
$$\frac{\dot{Q}}{A} = p \left(\frac{1}{2\pi RT} \right)^{0.5} \left(\frac{F_a R}{2} (T_2 - T_1) \left(\frac{\gamma + 1}{\gamma - 1} \right) \right)$$
$$\frac{\dot{Q}}{A} = \left(\left(\frac{\gamma + 1}{\gamma - 1} \right) \left(\frac{R}{8\pi T} \right)^{0.5} F_a \right) p (T_2 - T_1)$$

• **T** is the temperature of the pressure gauge measuring the gas pressure.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

21

$$\frac{\dot{Q}}{A} = \left[\left(\frac{\gamma+1}{\gamma-1} \right) \left(\frac{R}{8\pi T} \right)^{0.5} F_a \right] p(T_2 - T_1)$$

• In the above equation, let us denote the term in the parenthesis by **G**. We have,

$$\dot{Q} = G p A (T_2 - T_1)$$

Q is valid only when the distance (L) between the plates is less than the mean free path (λ).
 Mathematically,

$$L < \lambda = \frac{\mu}{p} \left(\frac{\pi RT}{2}\right)^{0.5}$$

$$\dot{Q} = GpA(T_2 - T_1) \qquad \lambda = \frac{\mu}{p} \left(\frac{\pi RT}{2}\right)^{0.5}$$

- From the above two equations, it is clear that the
 - The free molecular regime can be achieved by achieving very good vacuum.
 - The free molecular conduction heat transfer can be made negligible compared to other modes, by lowering the pressure, decreasing F_a, decreasing (T₂ - T₁).

23

- Gas conduction is the primary and the dominant mode of heat transfer in a gas filled powder and fibrous insulations.
- One of the obvious ways to reduce this heat transfer is to evacuate the powder and the fibrous insulations.
- Usually, the vacuum that is commonly maintained in these insulations is in the range of 10³ to 10⁻⁵ torr. 1 torr = 1 mm of Hg.

- The adjacent figure shows the variation of $\mathbf{k}_{\mathbf{A}}$ with the residual gas pressure inside an evacuated powder insulation.
- k_A is independent of residual gas pressures lying between atmospheric and 15 torr.

- With the lowering of pressure, 15 torr to 10⁻³ torr, **k**_A becomes directly proportional to the pressure.
- It varies almost linearly on a logarithmic chart as shown.
- Here, the modes of heat transfer are due to radiation, solid conduction and free molecular conduction (dominant).

- With the further lowering of pressure, below **10⁻³** torr, the variation of **k**_A is almost null.
- The mode of heat transfer is primarily due to solid conduction and radiation.
- Evacuated powders are superior in performance than vacuum alone in 300-77 K, as the radiation heat transfer is comparatively less.

- At low pressures and temperatures, the solid conduction in evacuated powder dominates the radiant heat transfer.
- Hence, it is more advantageous to use vacuum alone in **77 K** to **4 K**. From Fourier's Law, we have

$$\dot{Q} = \frac{k_A A_m (T_h - T_c)}{\Delta x}$$

Evacuated Powder $\dot{Q} = \frac{k_A A_m (T_h - T_c)}{\Delta x}$

- where,
 - k_A = Apparent thermal conductivity
 - $T_h T_c$ = Temperature difference
 - $\Delta x = Distance$
 - A_m = Mean area of insulation. A_m for concentric cylinders and concentric spheres is as given below.

$$A_{m,cyl} = \frac{A_2 - A_1}{\ln \frac{A_2}{A_1}}$$

$$A_{m,sph} = \left(A_1 A_2\right)^{\frac{1}{2}}$$

Evacuated Powder

- The apparent thermal conductivity and density of few commonly used evacuated powder insulations are as shown.
- The residual gas pressure is less than 10⁻³ torr for temperatures between 77 K to 300 K.

Powder	ρ (kg/m³)	k (mW/mK)
Fine Pertile	180	0.95
Coarse	64	1.90
Perlite		
Lampblack	200	1.20
Fiberglass	50	1.70

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Opacified Powder Insulation

- Radiation heat transfer still contributes to the heat in leak in 300 K to 77 K temperature range in case of evacuated powders.
- In the year 1960, Riede and Wang, Hunter et. al. minimized this radiant heat transfer by addition of reflective flakes made of AI or Cu to the evacuated powder.
- These flakes act like radiant shields in the tiny heat transfer paths that are formed in the interstices of the evacuated powder.

Opacified Powder Insulation

- The figure shows the variation of % opacifier with thermal conductivity for **Cu santocel** and **Al santocel**.
- There exists an optimum operating point for each of these insulations.
- It has been observed that, with these additions, k_A can be reduced by 5 times.

Opacified Powder Insulation

- Cu flakes are more preferred as compared to Al flakes.
- The **AI** flakes have large heat of combustion.
- These together with O₂ can lead to accidents when used on LOX containers.

33

Opacified Powder Insulation

- Another disadvantage of this insulation is that the vibrations tend to pack the flakes together.
- This, not only increases the thermal conductivity but also short circuits the conduction heat transfer.

Opacified Powder Insulation

- The apparent thermal conductivity (mW/mK) and density (kg/m³) of few commonly used opacified powder insulations are as shown.
- The residual gas pressure is less than 10⁻³ torr for temperatures between 77 K to 300 K.

Powder	ρ	k
	(kg/m³)	(mW/mK)
50/50 Cu – Santocel	180	0.33
40/60 AI – Santocel	160	0.35
50/50 Bronze – Santocel	179	0.58
Silica – Carbon	80	0.48

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

A spherical LN2 vessel (e=0.8) is as shown. The inner and outer radii are 1.2m and 1.6m respectively. Compare and comment on the heat in leak for the following cases.

- Perlite (26 mW/mK)
- Less Vacuum (1.5mPa)
- Vacuum alone
- Vacuum + 10 shields ($e_s = 0.05$)
- Evacuated Fine Perlite (0.95 mW/mK)
- 50/50 Cu Santocel (0.33 mW/mK)

Tutorial

Given

Apparatus : Spherical vessel (e=0.8)

Working Fluid : Liquid Nitrogen

Temperature : 77 K (inner), 300 K (outer)

Calculate heat in leak

- 1 Perlite (26 mW/mK)
- **2** Less Vacuum (1.5mPa)
- 3 Vacuum alone
- 4 Vacuum + 10 shields
- 5 Evacuated Fine Perlite (0.95 mW/mK)
- 6 50/50 Cu Santocel (0.33 mW/mK)
- The shape factor between the two containers is assumed to be 1.

Tutorial

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

Sphere -
$$R_1$$
=1.6m, R_2 =1.2m,
 e_1 = e_2 =0.8, T_1 =77 K, T_2 =300 K.

The net heat transfer is due to both radiation and residual gas conduction.

$$F_{e} = \left(\frac{1}{e_{1}} + \left(\frac{A_{1}}{A_{2}}\right)\left(\frac{1}{e_{2}} - 1\right)\right)^{-1}$$

$$F_e = \left(\frac{1}{0.8} + \left(\frac{1.2}{1.6}\right)^2 \left(\frac{1}{0.8} - 1\right)\right)^{-1} = 0.72$$

Tutorial

Tutorial

 It is clear that the mean free path (λ) is greater than distance between the surfaces (0.4m).

41

Tutorial

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

• $e_1, e_2 = 0.8, e_s = 0.05.$ $F_e = 0.003$

Q = 11.02W

Tutorial

• Sphere - $R_1 = 1.6m$, $R_2 = 1.2m$, k_A , $\Delta T = (300-77) = 223$.

$$Q = \frac{4\pi k_A R_1 R_2 \Delta T}{\left(R_2 - R_1\right)} \qquad Q = 4.41W$$

45

Tutorial

Heat in leak (Q)			
Perlite	349.7 W		
Less Vacuum (1.5mPa)	Q _r =2648 W		
	Q _{qc} =0.356 W		
Vacuum alone	2Ğ48 W		
Vacuum + 10 shields	11.02 W		
Evacuated Fine Perlite	12.7 W		
50/50 Cu – Santocel	4.41 W		

Summary

- In vacuum, the radiation is the dominant mode of heat transfer.
- Evacuated powders are superior in performance than vacuum alone in 300-77 K, as the radiation heat transfer is comparatively less.
- At low pressures and temperatures, the solid conduction in evacuated powder dominates the radiant heat transfer.
- In an opacified powder, the radiation heat transfer is minimized by addition of reflective flakes.
 Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

48