Prof. Millind D. Atrey

Department of Mechanical Engineering, **IIT Bombay**

Lecture No - 35

Earlier Lecture

- In the earlier lecture, we have seen that radiation is dominant mode of heat transfer in vacuum.
- Evacuated powders are superior in performance than vacuum alone, in **300 K – 77 K**, as radiation heat transfer is comparatively less.
- In an opacified powder, radiation heat transfer is minimized by addition of reflective flakes.
- A tutorial problem is solved to compare the different types of insulations, so far discussed.

Outline of the Lecture

Topic : Cryogenic Insulation (contd)

- Multilayer Insulation
- Tutorial
- Conclusion

Introduction

In the earlier lecture, we have solved the following tutorial.

77 K $1.2m$ 1.6m **300 K**

0.25m

• A spherical **LN2** vessel (**e**=0.8) is as shown. The inner and outer radii are 1.2m and 1.6m respectively. Compare and comment on the heat in leak for the following cases.

• Perlite, Less Vacuum (1.5mPa), Vacuum alone, Vacuum $+$ 10 shields, Evacuated Fine Perlite, 50/50 Cu – Santocel.

- It is clear that opacified powder is the best insulation.
- A heat in leak of 4.41 W to **LN2** would vaporize 2.36 Lit/day as shown in the next slide.

Introduction

- Latent heat of $LN2 = 200$ kJ/Kg, Density of $LN2 =$ 807 kg/m3.
- $1m^3 = 1000$ Lit and a day has 24 hours.
- 1 Lit/hr boil off of LN2 is equivalent to

- Hence, 4.41 W of heat vaporizes 0.098 Lit/hr.
- Therefore, the total boil off in 1 day is 2.36 Lit.

⁶ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

Introduction

- Different types of insulations discussed in the earlier lectures are applicable only to **300 K** to **77 K** temperature range.
- Given that, latent heat of LHe $= 20.2$ kJ/Kg and density of LHe = 124.8 kg/m^3 , 1 Lit/hr boil off of LHe is equivalent to 0.7 W.
- The same amount of heat in leak, that is 4.41 W, would vaporize 151.1 Lit of LHe in one day.
- ⁷ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay** • Therefore, there is a need to develop better insulations for **77 K** to **4 K** temperature range.

Types of Insulation

- Expanded Foam Mass
- Gas Filled Powders & Fibrous Materials Mass
- Vacuum alone Vacuum
- Evacuated Powders Mass + Vacuum
- Opacified Powders Mass + Vacuum + Reflective
- Multilayer Insulation Vacuum + Reflective

⁸ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

Multilayer Insulation

• Multilayer Insulation (MLI) was first developed by Petersen of Sweden in the year 1951.

- It consists of alternate layers of
	- High reflecting shields or foils

Shield Spacer

- Separated by low conductivity spacers
- And a very good vacuum.

Multilayer Insulation

The high reflecting shields are generally made of either Al, Cu or Aluminized Mylar.

• Aluminum sheet of 6µm thickness is commonly used at low temperatures.

• In order to improve mechanical strength and ease of application, plastic materials like Mylar and Kapton are coated with aluminum.

Multilayer Insulation

• Low conductivity spacers are made of coarse silk or nylon net.

• Very often, substances like glass fiber, silica fiber, low density foam or fiber glass mat are also used.

Shield Spacer

- Most common materials among fibers are Dexiglas and Tissuglas.
- One layer of MLI is defined as one sheet of reflective shield + one sheet of spacer material.

¹¹ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

Multilayer Insulation

• Each component of this insulation is designed for a particular function.

- Radiation shields Foils with high reflectivity reduce radiant heat transfer.
- Spacers Nylon spacers with very low thermal conductivity reduce conduction.
- Vacuum Residual gas conduction, convection are minimized using vacuum.

Types of MLI

• MLIs are classified according to the type of spacers used.

- \rightarrow Multiple Resistance Spacers: Fibers are arranged in a parallel fashion to minimize contact area.
- → Point Contact Spacers: A grid of nylon spheres is used to separate adjacent radiation shields.

Types of MLI

• Continuing further, we have

- → Single Component MLI: Reflective shields are crinkled or embossed to minimize contact area. These MLI do not use any spacer material.
- \rightarrow Composite Spacers: Few spacers consist of two or more materials. Each material has a specific function to perform.

- Typically, thickness of each layer is 6 μm.
- Residual gas conduction inside an insulation depends on residual pressure of the gas.
- For an optimum performance, the usual levels of vacuum, that is maintained around an MLI, are in the range of **7.5x10-5** torr.

Applications

• For an optimum performance, MLI is placed perpendicular to direction of heat flow.

- The insulation performance is a function of following parameters.
	- Applied compressive load
	- Number of shields
	- Gas type and its pressure
	- Size and number of perforations
	- Operating temperature

Applications

Courtesy: TIFR, Mumbai

- The adjacent figure shows variation of k_A with residual gas pressure for a typical Multilayer Insulation.
- Insulation layer density is 24 layers/cm with boundary temperatures maintained at 300 K and 90 K.

- It is clear that, k_A is independent of residual gas pressure between atmospheric and 15 torr.
- With lowering of pressure, **k**^a is directly proportional to residual gas pressure.
	- The variation is almost linear on a logarithmic chart as shown in the figure.

- The mode of heat transfer in this regime is mainly due to free molecular conduction or residual gas conduction.
- With further lowering of pressures, that is less than 10⁻³ torr, k_A remains fairly constant.

Multilayer Insulation

- MLI bulk density (ρ_a) is an important parameter of the insulation. It depends on
	- Thickness of each reflective shield t_r
	- Density of each reflective shield **ρ^r**
	- Mass per unit area of the spacer $-S_s$
	- Layer density per unit thickness **N/Δx**
- The total mass per unit area is given by $(S_s + \rho_r t_r)$
- Density being mass per unit volume, for **N** layers, **ρ^a** is given by $\rho_a = \left(S_s + \rho_r t_r \right) \frac{N}{\Lambda}$ $\rho_a = (S_s + \rho_s)$

x

∆

Multilayer Insulation

• The apparent thermal conductivity (μW/mK) and layer density (layer/cm) of few commonly used MLI are as shown. Residual gas pressure is 10⁻⁵ torr with end temperatures as **77 K** and **300 K**.

Apparent Thermal Cond.

• For an evacuated MLI, heat is transferred by radiation and solid conduction. *c*

 T_{h} Λ T

• For 1 layer, net heat transferred (O_{net}) is

$$
Q_{net} = Q_{Rad} + Q_{Solid\,Cond}
$$

$$
Q_{net} = F_e F_{1\rightarrow 2} \sigma A \left(T_h^4 - T_c^4 \right) + \frac{k_c A \left(T_h - T_c \right)}{\Delta x}
$$

- F_a Effective emissivity of the Shields
- $F_{1\rightarrow 2}$ Shape factor
- **A, ∆x** Contact area and Width
- **k_c** Effective thermal conductivity

²³ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

 T_{h} Λ T

c

Apparent Thermal Cond.

$$
Q_{net} = F_e F_{1\rightarrow 2} \sigma A \left(T_h^4 - T_c^4 \right) + \frac{k_c A \left(T_h - T_c \right)}{\Delta x}
$$

Combining above equations, we have

$$
Q_{net} = \sigma \left(\frac{e}{2-e}\right) A \left(T_h^4 - T_c^4\right) + h_c A \left(T_h - T_c\right)
$$

- **e** Emissivity of the shield
- \cdot **h_c** Thermal conductance per unit area

Apparent Thermal Cond.

$$
Q_{net} = \sigma \left(\frac{e}{2-e}\right) A \left(T_h^4 - T_c^4\right) + h_c A \left(T_h - T_c\right)
$$

\n- Let
$$
k_A
$$
 be apparent thermal conductivity of insulation. Therefore, Q_{net} is
\n

$$
Q_{net} = \frac{k_A A (T_h - T_c)}{\Delta x}
$$

• Equating above two equations and rearranging, we have

$$
\frac{k_A A(T_h - T_c)}{\Delta x} = A(T_h - T_c) \bigg(\sigma \bigg(T_h^2 + T_c^2 \bigg) \bigg(T_h + T_c \bigg) \bigg(\frac{e}{2 - e} \bigg) + h_c \bigg)
$$

Apparent Thermal Cond.

The apparent thermal conductivity (k_A) is

c

$$
k_A = \Delta x \left(\sigma \left(T_h^2 + T_c^2 \right) \left(T_h + T_c \right) \left(\frac{e}{2 - e} \right) + h_c \right)
$$

For **N** layers, we have

$$
k_A = \frac{\Delta x}{N} \left(\sigma \left(T_h^2 + T_c^2 \right) \left(T_h + T_c \right) \left(\frac{e}{2 - e} \right) + h_c \right)
$$

- where,
	- T_h , T_c Boundary temperatures
	- **N/Δx** Layer density

Apparent Thermal Cond.

- With an initial increase in layer density, the decrease in radiation heat transfer is more than the increase in solid conduction.
- Hence, k_A of the insulation decreases.

Apparent Thermal Cond.

- With further increase in layer density, k_A increases due to an increase in solid conduction (**h**_c).
- Therefore, k_A goes through a minima and then rises as shown in the figure.

294 K

77 K

4 K 2.0 m

 $0.6 \, \text{m}$ 1.6m

2.4 m

MLI

Tutorial

• Consider a spherical **LHe** vessel shielded with **LN2** bath. The radii of the spherical shells are as shown in the figure. MLI (24 layers/cm) is applied at each stage. Calculate the boil off/day of LN2 and LHe.

Given that emissivity of shield is 0.05. Solid conductance of spacer is 0.0851 W/m2K (assumed constant). Also, neglect neck conduction.

Tutorial

Given

Multi Layer Insulation Operating LN2 boil off : 294 K to 77 K Temperature LHe boil off : 77 K to 4 K Emissivity of Shield : 0.05 Number of layers : 24/cm Solid conductance : 0.0851 W/m2K

Calculate

Boil off of LN2 and LHe on per day basis.

Tutorial

Calculation of k_A for LN2 (294 K to 77 K)

• $\Delta x/N = (1/2400)$, h_c=0.0851, e=0.05, T_h, T_c.

$$
k_A = \left(\frac{\Delta x}{N}\right) \left(h_c + \sigma e \left(T_h^2 + T_c^2\right) \left(\frac{T_h + T_c}{2 - e}\right)\right)
$$

$$
k_A = \left(\frac{1}{2400}\right) \left(0.0851 + \frac{(5.669)(10^{-8})(0.05)(92365)(371)}{(2 - 0.05)}\right)
$$

$$
k_{A} = 56.2 \,\mu W / mK
$$

77 K

4 K 2.0 m

 $0.6 \; \mathrm{h}$

2.4 m

MLI

Tutorial

Heat in leak for LN2 (294 K to 77 K) • T_{h} , T_{c} , $k_{A} = 56.2 \mu W/mK$, $R_{1} = 2.4 m$, 294 K R₂=2.0m, ∆T=(294-77)=217.

 $Q = 1.84W$

³² **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

Tutorial

Boil off of LN2 (294 K to 77 K)

- Latent heat of LN2 = 200 kJ/Kg, Density of LN2 = 807 kg/m3.
- 1 Lit/hr of LN2 is equivalent to 44.83 W.
- Hence, 1.84 W of heat vaporizes 0.041 Lit/hr.
- Therefore, the total boil off of LN2 in 1 day is 0.985 Lit.

Tutorial

Calculation of k_A for LHe (77 K to 4 K)

• $\Delta x/N = (1/2400)$, h_c=0.0851, e=0.05, T_h, T_c.

$$
k_A = \left(\frac{\Delta x}{N}\right) \left(h_c + \sigma e \left(T_h^2 + T_c^2\right) \left(\frac{T_h + T_c}{2 - e}\right)\right)
$$

$$
k_A = \left(\frac{1}{2400}\right) \left(0.0851 + \frac{(5.669)(10^{-8})(0.05)(5945)(81)}{(2 - 0.05)}\right)
$$

$$
k_{A} = 35.7 \,\mu W / mK
$$

³⁴ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

77 K

4 K 2.0 m

 $0.6 \; \mathrm{h}$

2.4 m

MLI

Tutorial

Heat in leak for LHe (77 K to 4 K)

• T_{h} , T_{c} , $k_{A} = 35.7 \mu W/mK$, $R_{1} = 1.6 m$, 294 **K** $R_2 = 0.6$ m, $\Delta T = (77-4) = 73$.

 $Q = 0.031W$

Tutorial

Boil off for LHe (77 K to 4 K)

- Latent heat of LHe $= 20.2$ kJ/Kg, Density of LHe $=$ 124.8 kg/m³.
- 1 Lit/hr of LHe is equivalent to 0.7W.
- Hence, 0.031 W of heat vaporizes 0.044 Lit/hr.
- Therefore, the total boil off of LHe in 1 day is 1.062 Lit.

Tutorial

Conclusion

- Cryogenic vessels need insulation to minimize all modes of heat transfer.
- **k**A is calculated based on all the possible modes of heat transfer.
- In an expanded foam, heat is transferred only by solid conduction. With decrease in mean cell diameter, k_A decreases. With an increase in bulk density, k_A increases.
- ³⁸ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay** In a gas filled powder or a fibrous insulation, heat is transferred by gas and solid conductions.

Conclusion

- In vacuum, radiation is the dominant mode of heat transfer. It is minimized by using radiation shields.
- In an evacuated powder, heat is transferred by free molecular conduction, solid conduction and radiation. At low pressures and temperatures, solid conduction dominates radiation.
- In an opacified powder, the radiation heat transfer is minimized by addition of reflective flakes.
- ³⁹ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay** • MLI consist of alternate layers of high reflecting shields and low conducting spacers.

Conclusion

- Multi Layer Insulations are more effective in **77 K** to **4 K** temperatures, when provided with a good vacuum.
- There is an optimum layer density, at which k_A of the insulation is minimum.

Thank You!

⁴¹ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**