Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 36

Earlier Topics

- Introduction to Cryogenic Engineering
- Properties of Cryogenic Fluids
- Properties of Materials at Cryogenic Temperature
- Gas Liquefaction and Refrigeration Systems
- Gas Separation
- Cryocoolers
- Cryogenic Insulations

Current Topic

Topic : Vacuum Technology

- Need of Vacuum in Cryogenics
- Vacuum fundamentals
- Conductance and Electrical analogy
- Pumping Speed and Pump down time
- Vacuum Pumps
- The current topic will be covered in 3 lectures.
- Tutorials and assignments are also included.

Outline of the Lecture

Topic : Vacuum Technology

- Need of Vacuum in Cryogenics
- Vacuum Fundamentals
- Conductance and Electrical Analogy

Introduction

- The net heat in leak into a cryogenic vessel is
 - $Q_{Net} = Q_{Gas \ Cond.} + Q_{Conv.} + Q_{Solid \ Cond.} + Q_{Rad.}$
- Gas conduction and convection are minimized by having vacuum between two surfaces of different temperatures.
- Use of evacuated/opacified powders decreases k_A.
 Also, MLI functions only in good vacuum.
- Therefore, vacuum technology forms a very important aspect in Cryogenics.

Vacuum

- The word **Vacuum** comes from the Latin roots. It means the **Empty** or the **Void**.
- A perfect vacuum can be defined as a space with no particles of any state (solid, liquid, gas etc.).
- It is important to note that the above definition is a theoretical understanding, although it is practically impossible to achieve perfect vacuum.
- The pressures in vacuum are lower than atmospheric pressures. The degree of vacuum is decided by mean free path (λ).

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Mean Free Path

- Mean free path (λ) is defined as the average distance travelled by the molecules between the subsequent collisions.
- **λ** is given as

$$\lambda = \frac{\mu}{p} \left(\frac{\pi RT}{2}\right)^{0.5}$$

- Where,
 - µ Viscosity of gas
 - **p** Pressure of gas
 - **T** Temperature of gas
 - **R** Specific gas constant

Mean Free Path

- It is clear that λ,
 - Increases with decrease in pressure
 - Increases with increase in temperature
- The value of mean free path (λ) plays an important role in deciding the flow regimes in vacuum.

Flow Regimes

Consider a closed system as shown in the figure.

High Pressure

Low Pressure

- With the lowering of pressure
 - The number of molecules are reduced
 - The residual molecules are pulled apart.
- As a result, mean free path (λ) of residual molecules becomes larger than the dimensions of the system.

Flow Regimes

- In such systems, the molecules collide only with the walls of the container.
- Such a flow of fluid is called as Free Molecular Flow.

10

Low Pressure

Flow Regimes

- If λ is much smaller than the characteristic lengths, such flows are called as continuum flows.
- In fluid mechanics, Reynold's Number (**Re**) is used to categorize the pipe flow regimes as shown above.

- In these flows, molecules collide with each other as well as physical boundaries, if any.
- Pressures are in the range of atmospheric values.

Flow Regimes in Vacuum

- Knudsen Number (N_{Kn}) is used to categorize the flow regimes in vacuum.
- This concept is analogous to Reynold's Number (Re) in fluid mechanics.
- Knudsen Number (N_{Kn}) is given as

- Where,
 - **\lambda** Mean free path
 - **D** Characteristic diameter

0.01

~0 Continuum

Flow Regimes in Vacuum

Mixed Flow

^{0.3} Free Molecular

- Based on the Knudsen Number (N_{Kn}), the above figure characterizes the flow regimes in vacuum.
- Summarizing, we have
 - Continuum Flow for N_{Kn} less than 0.01.
 - Mixed Flow for N_{Kn} between 0.01 and 0.3.
 - Free Molecular Flow for N_{Kn} greater than 0.3.

Units of Pressure

- In an S. I. system, pressure is measured in Pascal or N/m². Very often, Bar is also used for pressure measurement.
- For example, the standard atmospheric pressure can be expressed as
 - 1.013x10⁵ **Pa**
 - 1.013x10⁵ N/m²
 - 1 bar
 - 760 mm of Hg column at standard sea level.

Units of Pressure

- In vacuum, normally unit for pressure is Torr or milli bar.
- This unit is named after Evangelista Torricelli, an Italian physicist, in the year 1644.
- **1 Torr** is defined as **1** mm of Hg column at standard sea level.
- Therefore, 1 Torr = 133.28 Pa = 133.28 N/m².

Units of Pressure

• The conversion table for pressure is as shown below.

Conversion Table					
	Pa	Bar	atm	Torr	
1 Pa	1	10 ⁻⁵	9.8×10^{-6}	7.5×10^{-3}	
1 Bar	10 ⁵	1	0.98	750.06	
1 atm	1.013×10^{5}	1.013	1	760	
1 Torr	133.3	1.33×10^{-3}	1.31×10^{-3}	1	

- 1 milli = 10^{-3} .
- 1 Kilo = 10^{+3} .

Degree of Vacuum

- As mentioned earlier, pressures are lower than atmospheric pressures in vacuum spaces.
- Depending upon the pressure in the system, the degree of the vacuum is categorized.
- The table on the next slide correlates the pressure and degree of the vacuum.

Degree of Vacuum

Degree of Vacuum	Pressure		
Rough Vacuum	25 torr < p <760 torr		
	3 kPa < p < 103 kPa		
Medium Vacuum	0.001 torr < p < 25 torr		
	0.1 Pa < p < 3000 Pa		
High Vacuum	10 ⁻⁶ torr < p < 10 ⁻³ torr		
	0.1 mPa < p < 100 mPa		
Very High Vacuum	10 ⁻⁹ Torr < p < 10 ⁻⁶ Torr		
	0.1 µPa < p < 100 µPa		
Ultra High Vacuum	p < 10 ⁻⁹ torr		

Pressure Drop

- Consider a fluid flowing across a pipe of constant cross sectional area as shown in the figure.
- For simplicity, let the flow regime be Continuum. As the fluid flows from point 1 to point 2, there is a pressure drop due to viscosity. That is, p₂<p₁.
- The difference between inlet and exit pressures, (p₁-p₂), is called as pressure drop. Let it be denoted by Δp. That is, Δp = p₁ - p₂.

Pressure Drop

• Pressure drop for a laminar continuum flow is

$$\Delta p = \frac{128 \mu L \dot{m}}{\pi D^4 \rho}$$

- It is called as Poisseuille's equation, which correlates pressure drop (Δp) and mass flow rate (m).
- Here,
 - μ , ρ Viscosity and Density of fluid
 - L, D Length and diameter of tube
 - m Mass flow rate

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Pressure Drop

- For a rough vacuum (N_{Kn}<0.01), as mentioned earlier, the operating pressures are in between 25 to 760 Torr.
- An ideal gas behaviour is assumed and hence, the corelation between average pressure and density is
- Here,

- ρ , T Density and Temperature of gas
- M Molecular weight of gas
- R Universal Gas constant
- **p** Average pressure

Pressure Drop

 Combining the above two equations, the pressure drop (Δp) for a continuum laminar flow is

$$\Delta p = \frac{128\,\mu L\dot{m}\Re T}{\pi D^4\,\overline{p}M} \longrightarrow \dot{m} = \frac{\pi D^4\,\overline{p}M\,\Delta p}{128\,\mu L\Re T}$$

- From the above equation, it is clear that the mass flow rate (m) is
 - Directly proportional to pressure drop (Δp).
 - Directly proportional to 4th power of diameter (D).

Pressure Drop

- With lowering of pressure in tube, (0.01 < N_{Kn} < 0.3), an intermediate flow regime between the continuum and the free molecular flows exists.
- This regime is called as Mixed Flow or Slip Flow.
- In such conditions, the gas molecules close to the wall appear to slip past the wall with a finite velocity parallel to axis of tube, and hence the name slip flow.

Pressure Drop

From the kinetic theory of gases, mass flow rate (m) and pressure drop (Δp) for slip flow in a circular tube is given by

- On comparison of above equation with mass flow rate (m) for a continuum laminar flow,
 - The first term accounts for the internal laminar flow (away from walls).
 - The second term accounts for the finite velocity correction near the tube walls.

$$\dot{m} = \frac{\pi D^4 \bar{p} \Delta p}{128 \mu L \Re T} \left(1 + \frac{8\mu}{\bar{p}D} \left(\frac{\pi \Re T}{2M} \right)^{0.5} \right)$$

- From the above equation, the mass flow rate (m) is directly proportional to the pressure drop (Δp).
- However, the dependence of diameter (D) of the tube is more complex, as compared to 4th power relationship in laminar continuum flow.

Pressure Drop

- With further lowering of pressure ($N_{\kappa n}$ >0.3), the number of molecules are reduced as well as the residual gas molecules are pulled apart.
- This flow regime is called as Free Molecular Flow.
- In such conditions, mean free path (λ) of the molecules is larger than the diameter of the tube. The flow is limited due to collisions of molecules with the walls.

Pressure Drop

The mass flow rate (m) and the pressure drop (Δp) in a free molecular flow are related by

$$\dot{m} = \frac{D^3 \Delta p}{L} \left(\frac{\pi M}{18\Re T}\right)^{0.5}$$

- From the above equation, it is clear that the mass flow rate (m) is
 - Directly proportional to pressure drop (Δp).
 - Directly proportional to 3rd power of diameter (D).

Throughput (Q)

- Apart from mass flow rate (m), the rate of fluid flow is often measured by a quantity called as Throughput (Q).
- Throughput is defined as a product of volumetric flow rate (V) and pressure (p), measured at the point where V is measured.
- Mathematically, we have $Q = p\dot{V}$
- The S. I. unit for Throughput is Pa-m³/s. Very often at low pressures, it is also expressed in Torr-Lit/s or bar-Lit/s.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Throughput (Q)

 Assuming an ideal gas behavior, the volumetric flow rate (V) is expressed using an ideal gas law as

• From the definition of Throughput, we have $Q = p \dot{V}$

Combining the above two equations, we get

- Here,
 - m Mass flow rate, M Molecular weight of gas
 - T Temperature, R Universal Gas constant

Electrical Analogy

- It is important to note that vacuum systems involve complex piping arrangements.
- In order to analyze these systems, a mathematical theory is developed based on an analogy between electrical circuits and piping systems.
- Linear transport laws like **Ohm's** law and **Fourier's** law are used in formulating the problem.

- Consider a small electric conductor as shown.
- When a current (i) flows across this conductor, there is a voltage drop (ΔV) due to the resistance (R) offered by the conductor.
- These quantities are mathematically related by Ohm's Law as given below.

- Similarly, consider a fluid flowing across a small pipe as shown above.
- For a throughput (**Q**), there is a pressure drop (**Δp**) due to conductance (**C**) offered by this pipe.
- Comparing the above figures, we have

ΔV analogues to Δp
i analogues to Q
R analogues to 1/C

$$\Delta V = iR \longrightarrow \Delta p = \frac{Q}{C}$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Conductance in Vacuum

$$\Delta p = \frac{Q}{C} \longrightarrow Q = C(\Delta p)$$

- It is clear that for a given pressure drop (Δp) across a pipe, Throughput (Q) is directly proportional to conductance (C).
- For an ideal gas, the following equations hold true.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Conductance in Vacuum

- Conductance for a pipe for different flow regimes can be derived by rearranging the pressure drop – mass flow rate equations derived earlier.
- Continuum Flow ($N_{\kappa n} < 0.01$) –

$$C = \frac{\pi D^4 \overline{p}}{128 \mu L}$$

- Mixed Flow –
 (0.01<N_{Kn}<0.3)
- Free Molecular Flow (N_{Kn}>0.3) –

$$C = \frac{\pi D^4 \overline{p}}{128\mu L} \left[1 + \frac{8\mu}{\overline{p}D} \left(\frac{\pi \Re T}{2M} \right)^{0.5} \right]$$

$$C = \frac{D^3}{L} \left(\frac{\pi \Re T}{18M}\right)^{0.5}$$

Conductance in Vacuum

• Consider a series combination of two pipes with C_1 and C_2 as individual conductances respectively as shown below. $C_1 \qquad Q \qquad C_2$

- Let Q be the Throughput for this system. It is clear that for a series combination, Q is same for each of the pipe.
- The pressure drops in each of the pipes are Δp_1 and Δp_2 respectively. That is, $\Delta p_1 = \frac{Q}{Q}$ $\Delta p_2 = \frac{Q}{Q}$

Conductance in Vacuum

- Let the overall conductance and the total pressure drop of the system be C_o and Δp respectively.
- Therefore, we have
- $\Delta p = \frac{Q}{C_o} \quad \Delta p_1 = \frac{Q}{C_1}$

 \overline{C}

- Using $\Delta p = \Delta p_1 + \Delta p_2$, we get
- Extending to **N** pipes in series, we have

Conductance in Vacuum

 C_1

 C_{2}

 $C_o = C_1 + C_2$

 Similarly, consider a parallel combination of two pipes with C₁, C₂ and Δp as conductance and pressure drop respectively.

 $Q = C_o(\Delta p)$ $Q_1 = C_1(\Delta p)$ $Q_2 = C_2(\Delta p)$

• Let $\mathbf{C_o}$ and \mathbf{Q} be given, we have

- Using $\mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2$, we get
- Extending to N pipes in parallel, we have

 C_{o}

Summary

- Heat in leak is minimized by having vacuum between two surfaces of different temperatures.
- $\mathbf{\lambda}$ is defined as the average distance travelled by the molecules between the subsequent collisions.
- Based on Knudsen Number (N_{κ_n}) , we have Continuum Flow ($N_{\kappa n} < 0.01$), Mixed Flow $(0.01 < N_{\kappa_n} < 0.3)$, Free Molecular Flow $(N_{\kappa_n} > 0.3)$.
- Conductance Series :

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- Gas conduction and convection are minimized by having _____.
- 2. The degree of vacuum is decided by _____.
- 3. In a _____ flow, mean free path (**λ**) is larger than the dimensions of the system.
- 4. _____ is used to categorize, pipe flow regimes in fluid mechanics.
- 5. ____ is used to categorize, flow regimes in vacuum.
- 6. 1 Torr = ____.
- 7. ____ equation correlates pressure drop and mass flow rate.
- 8. The intermediate flow regime between continuum and free molecular flows is .

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Answers

- 1. Vacuum
- 2. Mean free path
- 3. Free Molecular Flow
- 4. Reynold's Number
- 5. Knudsen Number
- 6. 133.28 Pa
- 7. Poisseuille's
- 8. Slip Flow

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay