Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 40

Earlier Lecture

- In the earlier lecture, we have seen the importance of instrumentation in Cryogenic Engineering.
- Various properties like pressure, temperature, liquid level, etc are monitored for safe operation.
- We discussed about the thermocouples and the metallic RTDs in the previous lecture.
- T, K, E are the different types of thermocouples.
 PT 100, PT 1000 are some of the commonly used RTDs in Cryogenics.

Outline of the Lecture

Topic : Instrumentation in Cryogenics

- Measurement of Thermo physical Properties
 - Temperature (continued)
- Measurement of Liquid level

Introduction

- In the earlier lecture, we have seen a metallic RTD, in which, the resistance of a conductor changes with temperature.
- Similarly, non metallic sensors like silicon diode, Cernox and Ruthenium Oxide exhibit this property.
- A diode is a two terminal electronic component, which is most commonly made of silicon.
- The i V variation of a diode can be changed by adding impurities or dopants like germanium, arsenic etc.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Introduction

- In these sensors, a constant current supply, typically in micro amps, is fed across the sensor.
- With the decrease in temperature, the resistance of the device increases.
- It is important to note that, this property is in reverse to the characteristic of a metallic RTD.
- This resistance change is calibrated against the temperature change.

Non – metallic Sensors

- Few of the commonly used non metallic sensors are
 - Silicon Diodes The sensor consists of a small silicon chip with a repeatable resistance – temperature property.

 Cernox – Cernox is a sputter deposited thin film resistor. Cernox is the trade name for zirconium oxynitride, manufactured by Lake Shore, USA.

Non – metallic Sensors

- Ruthenium Oxide It is a thick film resistor which is widely used in magnetic field applications.

Silicon Diodes

- The adjacent photograph shows a casing which houses the silicon diode.
- The packing is a ceramic, hermetically sealed casing with the lowest self heating errors.
- The casing is designed to withstand the mechanical fatigue, occurring due to the temperature change.

Silicon Diodes

- The four wire connection is recommended for accurate sensor readings.
- Very often, these sensors are provided with signal conditioner and display/temperature controller.

Silicon Diodes

- The adjacent figure shows the variation of voltage with temperature for a silicon diode.
- It is clear that the gradient of the curve is very steep for temperatures below 30 K.

Therefore, it is most preferred in this range for its good accuracy.

Silicon Diodes

- The figure shows the variation of sensitivity (**dV/dT**) with temperature for a silicon diode.
- The sensitivity remains constant up to **30 K**.
- It increases with the decrease in temperature, below **30 K**. Hence, it is most preferred for low temperatures.

Silicon Diodes

• The following table gives some of its properties.

Specifications		
Range	1.4 K to 475 K	
Excitation Current	10µA ±0.1 %	
Repeatability	10mK @ 4.2K	
	16mK @ 77K	
	75mK @ 273K	
Accuracy	±50mK or better	
Sensitivity	-33.6 mV/K @ 4.2 K	
	-1.91 mV/K @ 77 K	

Silicon Diodes

- The advantages of a silicon diode are
 - The activation current is in the order of µA. The i²R losses are negligibly small.
 - It exhibits a linear response over the entire operating range with repeatability and accuracy.
- The disadvantages of a silicon diode are
 - Errors are induced in magnetic fields and these diodes are very costly.
 Price (INR)

Calibrated 39,000 Non – calibrated 20,000

Cernox

- As mentioned earlier, Cernox is a thin film RTD. It is manufactured by Lake Shore, USA.
- It exhibits a good temperature sensitivity over a wide range of operating temperatures.
- One of the most important characteristics of this sensor is its accuracy in magnetic fields. Also, these sensors exhibit a fast response time at low temperatures.
- Cernox are packaged in a robust, hermetically sealed casing similar to silicon diodes.
 Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Cernox

• The following table gives some of its properties.

Specifications		
Range	0.3 K to 325 K	
Excitation	10 µA	
Accuracy	±5mK @ 10 K	
Repeatability	±3 mK at 4.2 K	

Cernox

- The advantages of a Cernox are
 - These RTDs offer excellent stability over the entire operating range.
 - Similar to silicon diodes, Cernox exhibits a linear response for temperatures.
 - Cernox diodes are not affected by the magnetic field.

Non – metallic Sensors

- The three important differences between a non metal and a pure metal sensor are
 - **Sensitivity** : Sensitivity of a non metal sensor is more than pure metal at any temperature.
 - Temperature Coefficient : The coefficient of temperature resistivity of a non – metal sensor is negative, whereas that of pure metal is positive.
 - Resistivity of a non metal sensor is very high. As a result, a non – metal sensor has a small length and relatively a large area.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

R

A Comparison

Silicon Diode	
ange	1.4 K to 475 K
xcitation	10µA ±0.1 %
ccuracy	±50mK or better

Repeatability 10mK @ 4.2K

Cernox

Range	0.3 K to 325 K
Excitation	10 µA
Accuracy	±5mK @ 10 K
Repeatability	±3 mK at 4.2 K

Thermo physical Properties

- There are various thermo physical properties that are measured or monitored in Cryogenics. They are
 - Temperature
 - Liquid Level
 - Pressure
 - Mass Flow Rate
 - Viscosity and Density
 - Electrical and Thermal Conductivity
- In this topic, only the first three properties are covered, which are very important.

Liquid Level Measurement

- It is important to monitor the liquid level in a closed cryogenic container
 - To avoid the overflow of cryogen.
 - To know the amount of cryogen at any time.
- Various electronic measuring devices/techniques are available in order to monitor the liquid level.
- The level of liquid inside a container is often expressed as the percentage of the total volume.

Liquid Level Measurement

- The electronic measuring devices/techniques that are used in Cryogenics are
 - Dipstick (old technique)
 - Hydrostatic gauge
 - Electric Resistance gauge
 - Capacitance liquid gauge
 - Thermodynamic liquid level gauge
 - Superconducting LHe level gauge

Dip Stick Technique

- It is one of the oldest and a simplest way to check the liquid level.
- A bubbling sound or a boil off is the indication, when a thin open tube is dipped into the liquid.
- The following video demonstrates this technique for liquid nitrogen.

Hydrostatic Gauge

- Consider a closed cryogenic vessel as shown in the figure.
- Pr. L_g
 - Let L_f and L_g be the heights of liquid and gas columns respectively. We have, L = L_f + L_g.
 - Pressure tapings are provided at top and bottom of the vessel as shown.
 - The tapings are connected across a differential pressure measurement device.

Pr

Hydrostatic Gauge

- As the name suggests, the hydrostatic differential pressure is calibrated in terms of the liquid level.
 - Therefore, the pressure difference (Δp) can be written as

$$\Delta p = \rho_f L_f g + \rho_g L_g g$$

• Using $\mathbf{L} = \mathbf{L}_{f} + \mathbf{L}_{g}$ the above equation can be rearranged as

$$\Delta p = \left(\rho_f - \rho_g\right) L_f g + \rho_g L g$$

Hydrostatic Gauge

• The density of vapor is negligible as compared to that of liquid.

Therefore, we have

$$\Delta p = \left(\rho_f - \rho_g\right) L_f g + \rho_g Lg$$
$$\Delta p = \rho_f L_f g$$
$$L_f = \frac{\Delta p}{\rho_f g} \qquad L_f \propto \Delta p$$

 The pressure gauge is directly calibrated in terms of height of liquid.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Hydrostatic Gauge

 The sensitivity of this gauge is directly proportional to the difference in liquid and vapor densities.

Densities (kg/m³)

Nitrogen	$\rho_1 = 808, \rho_0 = 4.65$
Hydrogen	$\rho_{\rm L} = 70.8, \ \rho_{\rm q} = 1.33$
Helium	$\rho_{\rm L}^{-}=124.8$, $\rho_{\rm q}^{-}=16.7$

In the case of H_2 and He, ρ_g cannot be neglected in comparison to ρ_L . Hence, these gauges cannot be used.

Elec. Rest. Gauge (Movable)

- The schematic of a movable electrical resistance gauge is as shown in figure.
 - In this arrangement, a movable resistor is connected across a voltmeter.
 - This movable resistance element is heated by using a very small current.
 - It is clear that the wire temperature is high, when it is above the liquid level.

resistor

Elec. Rest. Gauge (Movable)

- The heat transfer coefficient of the liquid is nearly twice that of vapor.
 - As a result, when the wire is dipped into the liquid, the temperature of the wire drops momentarily.
 - The electrical resistance, thereby the voltmeter reading, undergoes a sudden change.
 - This sudden change is the indication of the liquid vapor interface.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Elec. Rest. Gauge (Immovable)

- This method was first devised by Wexler and Cox in the year 1956.
- Unlike in the earlier arrangement, this arrangement has a fixed resistor along the total height of the container.
 - The resistor is connected across a voltmeter as shown in the figure.
- The resistance element is fed by a very small current.

Elec. Rest. Gauge (Immovable)

- With the change in the level of the liquid, the resistance of the wire changes.
 - This change in resistance, thereby the change in voltmeter reading, is calibrated as a function of liquid level.

Elec. Rest. Gauge (Immovable)

- The advantages are
 - The system does not involve any moving components.
 - The gauge has a continuous indication of liquid level.
 - The disadvantage is
 - Continuous energy is dissipated leading to excess boil off.

Capacitance Liquid Gauge

- In this arrangement, the level probe consists of two concentric cylindrical electrodes, placed vertically as shown.
- Capacitor
 The dielectric constants of liquid and vapor are different. Let them be denoted by C_f and C_g respectively.
 - The net capacitance (C_{Net}) is a function of C_f and C_g, which, in turn are functions of liquid and vapor heights.

Capacitance Liquid Gauge

With the change in liquid level, the net capacitance (C_{Net}) changes.

Capacitor

Capacitor This property is used to calibrate the liquid level inside the vessel.

- The advantages are
 - The system does not involve any moving components.
 - The gauge has a continuous indication of liquid level.

Pr

Thermodynamic Liquid Gauge

- The schematic of a thermodynamic level gauge is as shown in the figure.
 - It works on a principle that liquid undergoes a large change in the volume, when it is evaporated.
 - The probe consists of a thin capillary tube and a pressure gauge via a buffer volume.

Pr

Thermodynamic Liquid Gauge

- The capillary is attached to a pressure gauge through a dead volume at an ambient temperature.
 - The gauge is charged with a measured amount of gas of the same type, as that in the storage vessel.
 - As the capillary tube is immersed into the liquid, the gas in the immersed portion of the tube is condensed.

Pr

Thermodynamic Liquid Gauge

- The change in the volume of the gas during condensation reduces the gas pressure within the capillary and the dead volume.
 - This drop in pressure is used as an indication of the liquid level inside the container.

SC

SC LHe level gauge

- The schematic of a SC LHe level gauge is as shown in figure.
- In this arrangement, an immovable SC element is dipped into the LHe.
 - The sensor is connected to a voltmeter and is fed with a small current.
 - These sensors measure the liquid level by measuring the resistance of the measuring filament.

SC

filament

SC LHe level gauge

- This superconducting filament is housed inside a Teflon protective tube.
 - The portion of filament in liquid remains in the superconducting state and exhibits zero resistance.
 - Therefore, the resulting voltage along the sensor filament is proportional to the length of filament above the liquid helium.

SC

SC LHe level gauge

- This sensor provides a continuous measure of the helium depth.
- Four wire technique is used to eliminate the errors resulting in variations in the length of the leads.
 - The small amount of heat generated in the probe is dissipated primarily in the helium gas rather than in the liquid helium.

Summary

- Some of the commonly used non metallic sensors are Silicon diode, Cernox and Ruthenium Oxide.
- Silicon diodes have negligible i²R losses, exhibit a linear response, good repeatability and accuracy.
- Cernox RTDs offer high response time and have low magnetic field induced errors.
- Sensors used to monitor liquid level are Dipstick, Hydrostatic gauge, Electric Resistance/Capacitance level gauge, Thermodynamic level gauge and Superconducting LHe level gauge.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- In a silicon diode, sensor consists of a _____ with resistance – temperature property.
- 2. Voltage in silicon diode ____ with decrease in temperature.
- 3. For a silicon diode, the sensitivity _____ 30 K.
- 4. _____ diodes are accurate in magnetic fields.
- 5. In hydrostatic gauge, pressure gauge is directly calibrated in terms of _____.
- 6. In hydrostatic gauge, sensitivity is dependent on densities.
- 7. The heat transfer coefficient of liquid is _____ that of vapor.
- 8. SC LHe level gauge has an immovable

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Answers

- 1. Silicon chip
- 2. Decreases
- 3. Increases
- 4. Cernox
- 5. Height
- 6. Liquid and vapor
- 7. Twice
- 8. SC element

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay