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Earlier LectureEarlier Lecture
• Basics of Refrigeration/Liquefaction, coefficient of 
performance and importance of Carnot COP.

• Throttling, heat exchanger, compression/expansion 
systems. Definition of a refrigerator, liquefier and a 
combination of these two systems.
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combination of these two systems.

• J – T expansion is an isenthalpic process and initial 
temperature of the gas should be less than TINV to 
have a cooling effect.

• For an ideal gas                  . Hence,         .0
h

T

p

 ∂
= ∂  0JTµ =



Outline of the LectureOutline of the Lecture
Topic : Gas Liquefaction and Refrigeration 
Systems (contd)

• J – T expansion of a real gas

• Adiabatic expansion
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• Adiabatic expansion

• Comparison of J – T and Adiabatic expansions

• Ideal Thermodynamic Cycle



IntroductionIntroduction
• We know that work input is needed to generate 
and maintain low temperatures.

• As TL decreases, Carnot COP decreases stating 
that more work input is required to maintain 
very low temperatures.
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very low temperatures.

• Hence, a knowledge of performance of various 
refrigeration/liquefaction cycles is necessary to 
design the system with maximum COP.



Joule Joule –– Thompson CoefficientThompson Coefficient

JT

ph T

T T h

p h p
µ

   ∂ ∂ ∂ = = −    ∂ ∂ ∂    

• Enthalpy (h) is the sum of the internal energy (u) 
and pv work.

• Substitution of Enthalpy (h) in above expression of 

h u pv= +
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( )1

T
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Tpc p

u

p
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µ

∂ 


 


∂ 

 
= − + 

 

∂
∂  
 

• Substitution of Enthalpy (h) in above expression of 
J – T coefficient, we get

• In order that the J – T expansion results in 
cooling, the bracket should be negative.



( )1

T

JT

Tpc p

u

p

pν
µ

∂ 


 


∂ 

 
= − + 

 

∂
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 

Joule Joule –– Thompson CoefficientThompson Coefficient

• The first term represents the departure from 
Joule’s law.
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• At low pressures, the molecules are pulled apart. 
This results in increase in the potential energy. As 
a result, the kinetic energy decreases to keep the 
total energy constant and hence the temperature.

• Therefore, the first term is always negative for a 
real gas.
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∂
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Joule Joule –– Thompson CoefficientThompson Coefficient

• The second term can either be 
positive, negative or zero. It 
represents the departure from 
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represents the departure from 
the Boyle's law.

• At high pressures, the 
molecules are squeezed 
together and hence, are less 
compressible than the Boyle's 
law prediction.
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Joule Joule –– Thompson CoefficientThompson Coefficient

• The second term is negative at 
low pressures and low 
temperatures, where the gases 
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temperatures, where the gases 
are more compressible than 
the Boyle’s law.

• For a real gas, J – T coefficient 
depends upon the relative 
magnitude of both the terms.



Equation of StateEquation of State

• van der Waals equation of state for a real gas is 
as given below.

• where, a and b are constants, which gives the 

( )2

a
p v b RT
v

 + − = 
 
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• where, a and b are constants, which gives the 
measure of intermolecular forces and size of the 
particles respectively. For an ideal gas both a and 
b are 0.

• Rearranging the terms, we get

( ) 2

RT a
p

v b v
= −

−



Equation of StateEquation of State
• Upon differentiating the following equation at 
constant pressure (only T and v are variables), 
we get

2
0

R T RT a∂ = − + 

( ) 2

RT a
p

v b v
= −

−
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• Rearranging the terms, we have

( ) ( )2 3

2
0

p

R T RT a

v b v vv b

∂ = − + − ∂  −

( )

( )2 3

2

−∂  = ∂  −
−

p

R

v bv

RT aT

vv b



Equation of StateEquation of State

• Substituting        in the J – T Coefficient 
equation, we have

1
JT

pp

v
T v

c T
µ

 ∂ = −  ∂   
( )

( )
2

−∂  = ∂  −p

R

v bv

RT aT

p

v

T

∂ 
 ∂ 
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• For real gas, we get

( )2 3

∂  −
−

pT

vv b

2

2

2
1

2
1 1

JT

p

a b
b

RT

a b
c
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ν ν
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    

,

1 2
JT

p

a b

a
b

c RT

ν

µ

>>>

 ∴ = − 
 

• For large specific volumes



Cond. T

Joule Joule –– Thompson CoefficientThompson Coefficient

1 2
JT

p

a
b

c RT
µ  = − 

 

• For a real gas with large specific volumes

JTµ

2a  2a
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>0

<0

=0

Ideal
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Isenthalpic lines on T Isenthalpic lines on T –– s Charts Chart
• Typical isenthalpic lines are 
as shown in T – s diagram.

• The drop in temperature 
obtained after isenthalpic 

h
p
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obtained after isenthalpic 
expansion at lower 
temperatures is very high.

• This is because the gases 
are imperfect at very low 
temperatures.

s



Maximum Inversion Temp.Maximum Inversion Temp.

2

h=const
3

1

• The figure shows the J –
T expansion on a T – s 
diagram.

• When the fluid expands 
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s

• When the fluid expands 
from state 2 to state 3, 
the temperature rises.

• This occurs because the 
initial temperature at 
state 2 is above the 
inversion temperature.



Maximum Inversion Temp.Maximum Inversion Temp.

Gas
Tinv (K)

Helium 45

Hydrogen 205

Neon 250

Nitrogen 621

• For the gases like He, 
Hydrogen and Neon, in 
order to experience J – T 
effect, they have to be 
precooled below TINV.
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Nitrogen 621

Air 603

Argon 794

Oxygen 761

Methane 939

• While the other gases show 
J – T cooling when 
expanded at room 
temperature.



• Enthalpy (h) and Entropy (s) are the two 
thermodynamic state properties of matter which 
are functions of pressure and temperature.

• When the gases are expanded at constant 
enthalpy, as in a J – T expansion, it is called as  

Isentropic ExpansionIsentropic Expansion
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enthalpy, as in a J – T expansion, it is called as  
an Isenthalpic expansion.

• On the similar lines, when the high pressure 
gases are expanded at constant entropy, it is 
called as an Isentropic expansion or a 
Reversible Adiabatic expansion.



• The commonly used expansion devices are turbo 
expanders and reciprocating expanders.

• This is a work producing process as shown in the 
schematics.

W

Isentropic ExpansionIsentropic Expansion
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• The ratio               is called as an

Isentropic Expansion Coefficient.

eW

eW

s

T

p

 ∂
 ∂ 



• The enthalpy (s) is a function of both pressure 
(p) and temperature (T).

• Using the calculus, the following can be derived.

( ),s f p T=

Isentropic ExpansionIsentropic Expansion
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• Rearranging the terms, we have

1
s pT

s p T

p T s

 ∂ ∂ ∂    = −     ∂ ∂ ∂    

s

ps T

T T s

p s p
µ

   ∂ ∂ ∂ = = −    ∂ ∂ ∂    



• For the same variables, entropy (s), temperature 
(T) and pressure (p), using the calculus, we can 
arrive at the following.

p T

s s
ds dT dp

T p

 ∂ ∂ = +  ∂ ∂    p T

s s
Tds T dT T dp

T p

 ∂ ∂ = +   ∂ ∂   

Isentropic ExpansionIsentropic Expansion
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p T
T p∂ ∂    p T

T p∂ ∂   

pc

pT

ν∂ − ∂ 
Maxwell’s 
Equation

s

ps T

T T s

p s p
µ

   ∂ ∂ ∂ = = −    ∂ ∂ ∂    
s

pp

T v

c T
µ

∂ = +  ∂ 



RT

p
ν =

R

T p T

ν ν∂  = = ∂ 

• For an ideal gas, the equation of state is

• Differentiating w.r.t T at constant p, we get

• On substitution, we get

Isentropic ExpansionIsentropic Expansion
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pT p T
= = ∂ 

s

pp p p

T T

c T c T c

ν ν ν
µ

∂   = = =   ∂   

• On substitution, we get

• For an ideal gas         , unlike the case in the J –
T expansion          . It means that the ideal gas 
does exhibit a cooling effect, when it undergoes 
an isentropic expansion.

0sµ ≠
0JTµ =



• The derivative term represents the variation of 
volume with temperature at constant pressure.

s

pp

T v

c T
µ

∂ = +  ∂ 

Isentropic ExpansionIsentropic Expansion
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• This term is called as the volumetric coefficient 
and is always positive and hence the isentropic 
expansion coefficient.

• It is clear that the isentropic expansion results in 
cooling irrespective of its initial state, unlike the J 
– T expansion.



Equation of StateEquation of State
• As derived in the earlier slide, differentiating the 
van der Waals equation, we get

( )

( )2 3

2
p

RT

v bv

RT aT

vv b

−∂  = ∂  −
−

22Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

• Substituting in     , we get

( )2 3vv b
−

−

sµ

2

1

2
1 1

s

p

b

a b
c

RT

ν
νµ

ν ν

 − 
 =

   − −   
    



Equation of StateEquation of State
• For real gas

2

1

2
1 1

s

p

b

a b
c

RT

ν
νµ

ν ν

 − 
 =

   − −   
    
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RTν ν    

,

JT

p

a b

v

c

ν

µ

>>>

∴ =

• For large specific volumes



Comparative StudyComparative Study
J – T Expansion Adiabatic Expansion

It has a condition of TINV. No such condition exists.

It produces no work.
This is an Internal Work 
process.

It produces work. This is 
an External Work 
process.
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The device is simple in 
construction.

The device involve 
complex mechanisms.

Normally used for a 
phase change of fluids.

Normally used for a 
single phase fluids.

The clogging of 
constriction is a 
disadvantage.

Regular maintenance 
and periodic checks are 
required.



Gas Liquefaction SystemsGas Liquefaction Systems

System

Thermodynamically Ideal System

Linde Hampson System

Precooled Linde Hampson System

Linde Dual Pressure System

25Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Linde Dual Pressure System

Claude System

Kapitza System

Heylandt System

Collins System



Thermodynamic Ideal SystemThermodynamic Ideal System
• The salient features of this 
system are as follows.

• All the gas that is compressed, 
gets liquefied.

mɺ
RQ

1 2

cW
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• All the processes are ideal in 
nature and there are no 
irreversible pressure drops.

• Process of compression and 
expansion are isothermal and 
isentropic respectively.

eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System

mɺ
RQ

1 2

cW

2

T

1
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eW

f

f
mɺ

f

T

s

g

• The initial condition 1 of the gas 
determines the position of point f.



Thermodynamic Ideal SystemThermodynamic Ideal System
• It is an open thermodynamic 
system because the working fluid 
flows across the system.

• Consider a control volume for this 
system as shown in the figure.

mɺ
RQ

1 2

cW
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system as shown in the figure.

• 1st Law of Thermodynamics is 
applied to analyse the system.

• The changes in the velocities and 
datum levels are assumed to be 
negligible.

eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System

IN OUT
m1 @ 1 QR
Wc We

• The quantities entering and 
leaving the system are as given 
below.

mɺ
RQ

1 2

cW

29Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Wc We

m1 @ f

• Using 1st Law , we get

1 1 c R e f fm h W Q W m h+ = + +ɺ ɺ

in outE E=

eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System

1 1 c R e f fm h W Q W m h+ = + +ɺ ɺ

• The work We produced by the 
expander is negligible as 
compared to other terms.

• Rearranging the terms, we have

mɺ
RQ

1 2

cW
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• Rearranging the terms, we have

• The compression process is 
assumed to be isothermal.

( )1 1R c fQ W m h h− = −ɺ
eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System
• Hence, from the Second Law of 
Thermodynamics, we can write

• Also, the expansion process is an 
isentropic process. Therefore, 

( )1 1 2 1RQ mT s s= −ɺ

mɺ
RQ

1 2

cW
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isentropic process. Therefore, 
s2=sf.

• By substitution,

( ) ( )1 1 1 1 1c f fW mT s s m h h= − − −ɺ ɺ

eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System
• This work of compression is done 
on the system. Hence, the value 
is expressed as a negative 
quantity.

( ) ( )1 1 1 1 1c f fW mT s s m h h− = − − −ɺ ɺ

mɺ
RQ

1 2

cW
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• Work required per unit mass of 
the gas compressed is given by

( ) ( )1 1 1

1

c
f f

W
T s s h h

m
− = − − −
ɺ

( ) ( )1 1 1 1 1c f fW mT s s m h h− = − − −ɺ ɺ

eW

f

f
mɺ



Thermodynamic Ideal SystemThermodynamic Ideal System
• Since in an ideal system, mass of 
gas compressed is same as mass 
of gas liquefied, m1=mf.

• Work required per unit mass of 
the gas liquefied is given by

mɺ
RQ

1 2

cW
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the gas liquefied is given by

• Work required per unit mass of 
the gas is dependent on the initial 
condition of the gas.

( ) ( )1 1 1
c

f f

f

W
T s s h h

m
− = − − −
ɺ

eW

f

f
mɺ



Tutorial Tutorial –– 11
• Determine the ideal work requirement for 
liquefaction of nitrogen beginning at 1 bar 
pressure and 300 K.

• Step 1
2 1
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• The T – s diagram for 
an ideal 
thermodynamic cycle 
is as shown

1

f

T

s

g



• Step 2

• The state properties at 
different points are as 
given below.

p T h s 

Tutorial Tutorial –– 11

2 1

T
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p 
(bar)

T 
(K)

h 
(J/g)

s 
(J/gK)

1 1 300 462 4.42

f 1 77 29 0.42
f

s

g



• Step 3

• Substitution into the 
equation.

p T h s 

Tutorial Tutorial –– 11

2 1

T
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( ) ( )1 1 1
i

f f

f

W
T s s h h

m
− = − − −
ɺ

ɺ

300(4.42 0.42) (462 29)= − − − 767 /J g=

p 
(bar)

T 
(K)

h 
(J/g)

s 
(J/gK)

1 1 300 462 4.42

f 1 77 29 0.42
f

s

g



Tutorial Tutorial –– 22
• Calculate the ideal work requirement for 
liquefaction of Helium and Hydrogen beginning 
at 1 bar pressure and 300 K. Compare the 
results.

• Step 1
2 1
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• Step 1

• The T – s diagram for 
an ideal 
thermodynamic cycle 
is as shown

1

f

T

s

g



• Step 2

• The state properties for hydrogen and Helium at 
different points are as given below.

p 
(bar)

T 
(K)

h 
(J/g)

s 
(J/gK)

Hydrogen

Tutorial Tutorial –– 22
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Hydrogen

1 1 300 4190 65

f 1 20 -75 18

Helium

1 1 300 1575 31.5

f 1 4.2 9.5 3.45



• Step 3

• Substitution into the 
equation.

( ) ( )1 1 1
i

f f

f

W
T s s h h

m
− = − − −
ɺ

ɺ

300(65 18) (4190 75)= − − +

Tutorial Tutorial –– 22

p 
(bar)

T 
(K)

h 
(J/g)

s 
(J/gK)

Hydrogen

H2
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300(65 18) (4190 75)= − − +
9835 /J g=

Hydrogen

1 1 300 4190 65

f 1 20 -75 18

Helium

1 1 300 1575 31.5

f 1 4.2 9.5 3.4

300(31.5 3.4) (1575 9.5)= − − −
6864.5 /J g=

He



Ideal Work RequirementIdeal Work Requirement

Gas Normal Boiling 
Point (K)

Ideal Work 
(kJ/Kg)

Helium 4.21 6819

Hydrogen 20.27 12019

Nitrogen 77.36 768.1
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Nitrogen 77.36 768.1

Air 78.8 738.9

Argon 87.28 478.6

Oxygen 90.18 635.6

Ammonia 239.8 359.1



AssignmentAssignment

1. Calculate using the charts, ideal work of 
liquefaction for

• Air

• Oxygen
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• Helium

• Ammonia

2. Compare the values obtained with the values 
given in the table



SummarySummary
• For an ideal gas          , but for a real gas, J – T 
coefficient depends upon the relative magnitude 
of departure from Joule’s Law and Boyle’s Law.

• The gases like nitrogen, air show J – T cooling 
when expanded at room temperature because the 

0JTµ =
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when expanded at room temperature because the 
TINV is more than room temperature.

• While the gases like He, Hydrogen and Neon, are 
to be precooled in order to experience J – T 
effect.



SummarySummary
• In expansion devices like turbo-expanders and  
expansion engines, the expansion process is 
isentropic or reversible adiabatic.

• Coefficient of an isentropic expansion is given by

∂
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• The isentropic expansion is always positive for 
both real and ideal gases. It results in cooling for 
any initial state, unlike the J – T expansion which 
is dependent on TINV.

s

pp

T v

c T
µ

∂ = +  ∂ 



SummarySummary
• J – T expansion is normally used where phase 
changes are required, where as isentropic 
expansion is used for single phase fluids.

• In a thermodynamic ideal system, all the gas that 
is compressed gets liquefied. 
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is compressed gets liquefied. 

• The work required per unit mass of the gas 
compressed and gas liquefied are given by

( ) ( )1 1 1
c

f f

f

W
T s s h h

m
− = − − −
ɺ



Thank You!Thank You!
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Thank You!Thank You!


