Tutorials

- There are four tutorial problems in the forthcoming slides.
- 1. Thermal expansion/contraction 1 tutorial.
- 2. Estimation of C_v using the Debye Theory 2 tutorials.
- 3. Thermal conductivity of materials 1 tutorial.

Tutorial – 1

Calculate the overlap length of a brazed butt joint formed by SS 304 ($L_0=1m$) and Copper ($L_0=0.5m$). It is desired that the minimum overlap should be greater than 5mm. The joint is subjected to a low temperature of 80 K. Use the following data for the calculations.

This condition should be verified at 80 K.

Tutorial – 1

SS 304

 Mean linear expansion in SS 304 butt

$$\frac{\Delta L_{SS}}{L_0} = \left(\frac{L_{T1}}{L_0} - \frac{L_{T2}}{L_0}\right) \cdot 10^{-5}$$

$$\frac{\Delta L_{SS}}{L_0} = (304 - 13).10^{-5}$$

$$L_0 = 1m_I \Delta L_{SS} = 2.91mm$$

Cu

Mean linear expansion
 in Cu butt

$$\frac{\Delta L_{Cu}}{L_0} = \left(\frac{L_{T1}}{L_0} - \frac{L_{T2}}{L_0}\right) \cdot 10^{-5}$$

$$\frac{\Delta L_{Cu}}{L_0} = (337 - 26).10^{-5}$$

$$L_0 = 1m, \Delta L_{Cu} = 3.11mm$$

 $L_0 = 0.5m, \Delta L_{Cu} = 1.55mm$

Tutorial – 1

- The greater of the two expansions is dL_{SS}
- The safe Butt joint should be more than $dL_{SS} + 5 = 7.91$ mm.

- When this joint is cooled to 80 K, the butt width in Cu after shrinkage is 6.55mm. Similarly, the butt width in SS after shrinkage is 5.19mm.
- Hence, the overlap being more than 5mm is a good design.

Debye Theory

• The expression for C_v , given by Debye theory is

- θ_D is called as Debye Characteristic Temperature.
- At $(T > 2\theta_D)$, C_v approaches 3R. This is called as Dulong and Petit Value.
- At (T < θ_D /12), C_v is given by following equation.

$$c_{v} = \frac{12\pi^{4}R}{5} \left(\frac{T}{\theta_{D}}\right)^{3}$$

Also, D(0) is given a constant value of 4π⁴/5.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Specific Heat Curve

The variation of C_v/R with T/θ_D is as shown.

 $\theta_{\rm D}$ for few materials.

Material	θ
Aluminum	390
Lead	86
Nickel	375
Copper	310
Silver	220
α -Iron	430
Titanium	350

Tutorial – 2

Determine the lattice specific heat of copper at 100 K. Given that the molecular weight is 63.54 g/mol.

• Step 1:	Material	θ
	Aluminum	390
• Calculation of T/θ_D ratio.	Lead	86
T = 100 K	Nickel	375
$\theta_{\rm p} = 310 \text{ K}$	Copper	310
$\theta_{\rm D} = 310 \text{ K}$	Copper Silver	310 220
$\theta_{\rm D} = 310 \text{ K}$ $\frac{T}{O} = \frac{100}{210} = 0.3225$	Copper Silver Titanium	310 220 350

• The value of T/θ_D is greater than 1/12 (0.0833).

- The value of $T/\theta_D = 0.3225$.
- From the graph, C_v/R = 1.93.

$$R = \frac{8.314}{0.06354} = 130.85$$

$$C_v = 130.85X1.93$$

= 252.534 **J/kg-K**

Tutorial – 3

Determine the lattice specific heat of Aluminum at 25 K. Given that the molecular weight is 27 g/mol.

• Step 1:		Material	θ
		Aluminum	390
 Calculation of T/ 	$\theta_{\rm D}$ ratio.	Lead	86
T - 25 K		Nickel	375
$\theta_{\rm D} = 390 \text{ K}$	Copper	310	
	Silver	220	
$\frac{T}{2} = \frac{25}{222} = 0.0641$		Titanium	350
$\theta_D = 390$			

• The value of T/θ_D is less than 1/12 (0.0833).

Tutorial – 3

• Since, the T/θ_D ratio is less than 1/12, the equation to calculate the specific heat is as given below.

Thermal Conductivity Integrals

• The Fourier's Law of heat conduction is

 $Q = -k(T)A(x)\frac{dT}{dx}$

- To make calculations less difficult and to account for the variation of k_T with temperature, Q is expressed as $Q = -G(\theta_2 - \theta_1)$
- kdT is taken as an integral called as Thermal Conductivity Integral evaluated w.r.t a datum.

$$\theta_{1} = \int_{T_{d}}^{T_{1}} k(T) dT$$
For Example
$$T_{d} = 0 \text{ or } 4.2$$
If A_{cs} is constant, G is defined as

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

 $= A_{cs} / L$

Thermal Conductivity Integrals

The variation of kdT for few of the commonly used materials is as shown.

In the calculations, the actual temperature distribution is not required, but only the end point temperatures.

$$\int_{10}^{100} kdT = \int_{0}^{100} kdT - \int_{0}^{10} kdT$$

29

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial – 4

Determine the heat transferred in an copper slab of uniform cross section area 1cm^2 and length of 0.1 m, when the end faces are maintained at 300 K and 80 K respectively. Compare the heat transferred by k_{avg} and kdT methods. **300 K**

Given

- Area of cross section : 10⁻⁴ m²
- Length of specimen: 0.1 m

<u>ЗОО К</u> 80 К

- T₁ = 300 K
- $T_2 = 80 \text{ K}$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay