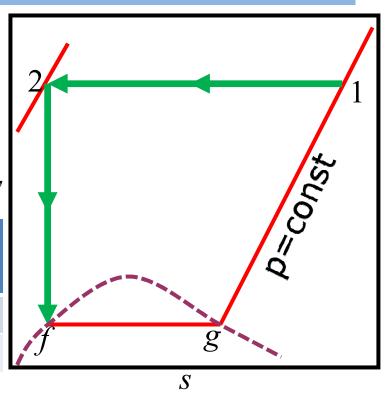

Tutorial - 1

 Determine the ideal work requirement for liquefaction of nitrogen beginning at 1 bar pressure and 300 K.

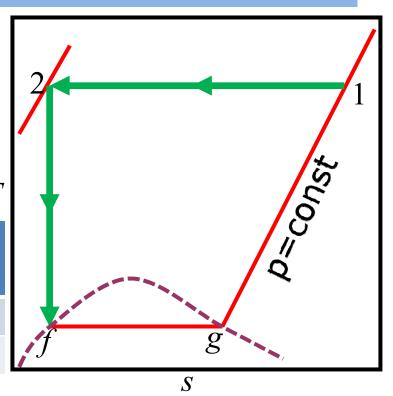
Step 1


 The T – s diagram for an ideal thermodynamic cycle is as shown

Tutorial - 1

- Step 2
- The state properties at different points are as given below.

	p (bar)	T (K)	h (J/g)	s (J/gK)
1	1	300	462	4.42
f	1	77	29	0.42

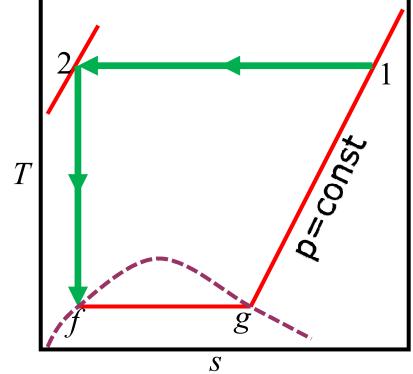

Tutorial - 1

- Step 3
- Substitution into the equation.

	p (bar)	T (K)	h (J/g)	s (J/gK)
1	1	300	462	4.42
f	1	77	29	0.42

$$-\frac{\dot{W_i}}{\dot{m}_f} = T_1 \left(s_1 - s_f \right) - \left(h_1 - h_f \right)$$

$$=300(4.42-0.42)-(462-29)=767 J/g$$



Tutorial - 2

 Calculate the ideal work requirement for liquefaction of Helium and Hydrogen beginning at 1 bar pressure and 300 K. Compare the results.

Step 1

 The T – s diagram for an ideal thermodynamic cycle is as shown

Tutorial - 2

- Step 2
- The state properties for hydrogen and Helium at different points are as given below.

	p (bar)	T (K)	h (J/g)	s (J/gK)
Hydrogen				
1	1	300	4190	65
f	1	20	-75	18
Helium				
1	1	300	1575	31.5
f	1	4.2	9.5	3.45

Tutorial - 2

- Step 3
- Substitution into the equation.

	р	T	h	S
	(bar)	(K)	(J/g)	(J/gK)
Hydrogen				
1	1	300	4190	65
f	1	20	-75	18
Helium				
1	1	300	1575	31.5
f	1	4.2	9.5	3.4

$$-\frac{\dot{W_i}}{\dot{m}_f} = T_1 \left(s_1 - s_f \right) - \left(h_1 - h_f \right)$$

H₂

$$=300(65-18)-(4190+75)$$

$$=9835 J/g$$

He

$$=300(31.5-3.4)-(1575-9.5)$$

$$=6864.5 J/g$$

Ideal Work Requirement

Gas	Normal Boiling Point (K)	Ideal Work (kJ/Kg)
Helium	4.21	6819
Hydrogen	20.27	12019
Nitrogen	77.36	768.1
Air	78.8	738.9
Argon	87.28	478.6
Oxygen	90.18	635.6
Ammonia	239.8	359.1