Tutorial

- A. Determine W/m_f for a Claude Cycle with N₂ as working fluid. The system operates between 1.013 bar (1 atm) and 40.52 bar (40 atm). The expander inlet T_3 is at 225 K. The expander flow ratio is varied between 0.1 and 0.9.
- B. Repeat the above problem for T₃ = 300 K, 275 K, 250 K and 225 K. Plot the data y, W/m_f versus x graphically and comment on the results.

Tutorial

Given

Cycle : Claude System Working Pressure : 1 atm \rightarrow 40 atm Working Fluid : Nitrogen T₃ : 300 K, 275 K, 250 K, 225 K Mass flow ratio : x = 0.1 \rightarrow 0.9

For above System, Calculate

1 Work/unit mass of gas liquefied

N_2	Point 3
Ι	300 K
II	275 K
III	250 K
IV	225 K

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Methodology

- In the part **A**, the expander inlet condition under study is 225 K at 40.52 bar.
- The expander mass flow ratio varies between 0.1 and 0.9.
- In this tutorial, the y, W/m_f is calculated only for x = 0.2 and 225 K as inlet condition.

Tutorial

 The point e is located on p=1bar isobar by drawing a vertical line from point 3.

Tutorial

- The T s diagram for a Claude System is as shown.
- The expander inlet condition and its mass⁺ flow ratio are 225 K and 0.2 respectively.

Tutorial

Liquid yield

$$y = \frac{h_1 - h_2}{h_1 - h_f} + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

X	Point 3				
0.2	225 K, 40 atm				

	1	2	3	e	f
p (bar)	1.013	40.52	40.52	1.013	1.013
T (K)	300	300	225	80	77
h (J/g)	462	453	369	228	29
s (J/gK)	4.42	3.3	3.1	3.1	3.0

 $y = \frac{(462 - 453)}{(462 - 29)} + 0.2\frac{(369 - 228)}{(462 - 29)} = 0.021 + 0.065 = 0.086$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

Work/unit mass of N₂ compressed

$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_2) - (h_1 - h_2) - x(h_3 - h_e)$$

	1	2	3	е	f		
p (bar)	1.013	40.52	40.52	1.013	1.013		
T (K)	300	300	225	80	77		
h (J/g)	462	453	369	228	29		
s (J/gK)	4.42	3.3	3.1	3.1	3.0		
$-\frac{W_c}{\dot{m}} = 300(4.42 - 3.3) - (462 - 453) - 0.2(369 - 228)$							
	= 299 J / g						

Tutorial

Work/unit mass of N₂ liquefied

$$-\frac{W_c}{\dot{m}} = 299 \qquad y = 0.086$$
$$-\frac{W_c}{\dot{m}_f} = -\frac{W_c}{y\dot{m}} = \frac{299}{0.086} = 3476.7 J / g$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

- Extending the calculations for all other values of x and tabulating the results, we have
- In the adjacent table, the equation for y is used from x=0.1 to 0.73. Thereafter, y=0.99-x is used.
- Actual y may be less than this value.

225						
X	У	W/m _f				
0.10	0.05	5865.2				
0.20	0.09	3478.0				
0.30	0.12	2403.0				
0.40	0.15	1791.6				
0.50	0.18	1397.0				
0.60	0.22	1121.4				
0.70	0.25	917.9				
0.73	0.26	866.8				
0.80	0.19	1127.4				
0.90	0.09	2223.3				

Tutorial

Liquid yield v/s. x

- From the plot, it is clear that **y** crosses a maxima with the increasing **x**.
- Beyond this maxima, the y is estimated as limiting value of y=0.99-x.

Tutorial

• W/m_f v/s. x

- The trend shows that the
 W/m_f crosses a minima
 with the increasing x.
- Beyond this minima, the
 W/m_f is estimated based on limiting value of y.

Tutorial

- All the calculations pertaining to part B are left as an exercise.
- The results for these calculations are as shown.

	300		275		250	
0	X	У	X	У	X	У
	0.10	0.07	0.10	0.06	0.10	0.06
	0.20	0.11	0.20	0.10	0.20	0.09
	0.30	0.16	0.30	0.15	0.30	0.13
	0.40	0.20	0.40	0.19	0.40	0.16
	0.50	0.25	0.50	0.23	0.50	0.20
	0.60	0.29	0.60	0.27	0.60	0.24
	0.67	0.32	0.69	0.30	0.70	0.27
	0.70	0.29	0.70	0.29	0.72	0.27
	0.80	0.19	0.80	0.19	0.80	0.19
	0.90	0.09	0.90	0.09	0.90	0.09

Tutorial

- All the calculations pertaining to part **B** are left as an exercise.
- The results for these calculations are as shown.

5	300		275		250	
to	X	W/mf	X	W/m_{f}	X	W/m_{f}
	0.10	4671.8	0.10	4955.4	0.10	5505.3
	0.20	2598.0	0.20	2800.1	0.20	3204.2
	0.30	1722.4	0.30	1876.3	0.30	2188.4
	0.40	1239.3	0.40	1363.1	0.40	1616.1
5	0.50	933.1	0.50	1036.6	0.50	1248.9
	0.60	721.7	0.60	810.5	0.60	993.4
	0.67	608.8	0.69	659.3	0.70	805.2
	0.70	656.9	0.70	693.1	0.72	773.4
	0.80	900.0	0.80	963.2	0.80	1068.4
	0.90	1683.3	0.90	1833.3	0.90	2083.3

Tutorial

- **Liquid yield v/s. x** \cdot The plot for **y** versus **x** for all other values of T_3 is as shown.
 - As mentioned earlier, y crosses a maxima with the increase in the value of \mathbf{x} for each of the **T**₃.
 - Also, the position of this maxima shifts to the right with the decrease in the value of **T**₃.

Tutorial

- **Liquid yield v/s.x** This occurs because the expander work (**h₃-h_e**) decreases with the decrease in **T**₃.
 - Also at the lower values of T_{3} , more amount of the gas can be diverted to the expander engine.

34

 This is because the product **x(h₃-h_e)** is maximized.

Tutorial

 \bullet

Liquid yield v/s. x • However, T_3 is limited by the position of the point **e** on the T – s diagram.

Tutorial

• W/m_f v/s. x

- The plot for W/m_f versus
 x for all other values of
 T₃ is as shown.
- As stated earlier, the W/m_f crosses a minima with the increase in the x, for each of the T₃.
- Also, the position of this minima shifts to the right with the decrease in the value of T₃.

Tutorial

- $W/m_f v/s.x$ 6500 **Claude System** 5500 300 K 275 K 4500 W 250 K m_r 3500 225 K 2500 1500 500 0.3 X 0.5 0.7 0.1 0.9
- The minima shifts to the right because the expander work (h₃-h_e) decreases with the decrease in T₃.
- Also, at the lower values of T₃, more amount of the gas can be diverted so that the product x(h₃h_e) is maximized.