Tutorial

Determine y, W/m_f, FOM for a Collins System with Helium as working fluid. The system operates between 1.013 bar (1 atm) and 15.19 bar (15 atm). The expander flow ratios are x₁=0.6, x₂=0.2 respectively. The expander inlet conditions are as mentioned below.

Exp. Inlet Cond.					
	60 K, 15 atm				
П	15 K, 15 atm				

Tutorial

Given

Cycle: Collins System

Working Pressure: 1 atm → 15 atm

Working Fluid: Helium

Expander 1: 15 atm, 60 K, $x_1 = 0.4$

Expander 2: 15 atm, 15 K, $x_2 = 0.2$

For above System, Calculate

- 1 Work/unit mass of gas liquefied
- **2** FOM

Tutorial

	1	2	3
p (bar)	1.013	15.19	15.19
T (K)	300	300	60
h (J/g)	1587	1570	328
s (J/gK)	31.5	25.6	17.5

	5	e_1	e_2	f
p (bar)	15.19	1.013	1.013	1.01
T (K)	15	22	4.8	4.2
h (J/g)	81	130.0	38	9.5
s (J/gK)	9.25	17.5	9.25	3.4

* Points **e**₁ and **e**₂ are located on p=1bar line by drawing vertical lines from point **3** and **5**.

Tutorial

- The T s diagram 302 for a Collins

 System is as 60 shown (not to scale).
- The expander inlet conditions are
 - 60 K
 - 15 K

Tutorial

Liquid yield

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x_1 \left(\frac{h_3 - h_{e1}}{h_1 - h_f}\right) + x_2 \left(\frac{h_5 - h_{e2}}{h_1 - h_f}\right)$$

	1	2	3	5	e_1	e_2	f
p	1.013	15.19	15.19	15.19	1.013	1.013	1.01
Τ	300	300	60	15	22	4.8	4.2
h	1587	1570	328	81	130.0	38	9.5
S	31.5	25.6	17.5	9.25	17.5	9.25	3.4

$$y = \frac{(1587 - 1570)}{(1587 - 9.5)} + 0.4 \frac{(328 - 130.0)}{(1587 - 9.5)} + 0.2 \frac{(81 - 38)}{(1587 - 9.5)} = 0.066$$

Tutorial

Work/unit mass of He compressed

$$\frac{-W_{net}}{\dot{m}} = \left(T_1\left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right) - x_1\left(h_3 - h_{e1}\right) - x_2\left(h_5 - h_{e2}\right)$$

	1	2	3	5	e ₁	e_2	f
p	1.013	15.19	15.19	15.19	1.013	1.013	1.01
T	300	300	60	15	22	4.8	4.2
h	1587	1570	328	81	130.0	38	9.5
S	31.5	25.6	17.5	9.25	17.5	9.25	3.4

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} 300(31.5 - 25.6) - (1587 - 1570) \\ -0.4(328 - 130.0) - 0.2(81 - 38) \end{cases} = 1665.2 J / g$$

Tutorial

Work/unit mass of He liquefied

$$-\frac{W_{net}}{\dot{m}} = 1665.2$$

$$y = 0.066$$

$$-\frac{W_{net}}{\dot{m}_f} = -\frac{W_{net}}{y\dot{m}} = \frac{1665.2}{0.066} = 25230.3J / g$$

Figure of Merit (FOM)

$$-\frac{W_{net}}{\dot{m}_f} = 25230.3$$

$$-\frac{W_i}{\dot{m}_f} = 6837$$

$$FOM = \frac{W_i}{\dot{m}_f} / \frac{W_{net}}{\dot{m}_f} = \frac{6837}{25230.3} = 0.271$$