Tutorial - 1

- Consider a mixture of N₂ and O₂ at 5 atm and temperature of 100 K.
- Calculate the distribution coefficients for N₂ and O₂. Also, calculate the vapor and liquid compositions using the obtained K values.
- Use the data from the tables given in the earlier slides.

Tutorial - 1

Given

Working Pressure: 5 atm

Temperature: 100 K

Mixture : $N_2 + O_2$

For above mixture, Calculate

K_{N2} Distribution coefficient of **N₂**

K₀₂ Distribution coefficient of O₂

 $\mathbf{x_{N2}}$ Mole fraction of $\mathbf{N_2}$ in liquid phase

 $\mathbf{x_{02}}$ Mole fraction of $\mathbf{O_2}$ in liquid phase

 y_{N2} Mole fraction of N_2 in vapor phase

 y_{02} Mole fraction of O_2 in vapor phase

Tutorial - 1

• K_{N2}

$$\ln\left(\frac{Kp_{mix}}{p_0}\right)\Big|_{N2} = 2.004$$

$$K_{N2} = \frac{p_0}{p_{mix}} e^{2.004}$$

Data

$$p_{mix} = 5 atm$$

$$T = 100 K$$

$$p_0 = 1 atm$$

$$K_{N2} = \left(\frac{1}{5}\right)e^{2.004} = 1.483$$

	N_2		
Т	5 atm		
94	1.550		
96	1.702		
98	1.853		
100	2.004		
102	2.156		
104	2.307		
106	2.459		
108	2.610		

Tutorial - 1

• K_{O2}

$$\ln\left(\frac{Kp_{mix}}{p_0}\right)\Big|_{O2} = 1.042$$

$$K_{O2} = \frac{p_0}{p_{mix}} e^{1.042}$$

Data

$$p_{mix} = 5 atm$$

$$T = 100 K$$

$$p_0 = 1 atm$$

$$K_{O2} = \left(\frac{1}{5}\right)e^{1.042} = 0.567$$

	0,		
Т	5 atm		
94	0.661		
96	0.788		
98	0.915		
100	1.042		
102	1.169		
104	1.296		
106	1.423		
108	1.551		

Tutorial - 1

X_{N2}

$$x_{N2} = \frac{1 - K_{O2}}{K_{N2} - K_{O2}}$$

$$K_{N2} = 1.483$$
 $K_{O2} = 0.567$

$$K_{O2} = 0.567$$

$$x_{N2} = \frac{1 - 0.567}{1.483 - 0.567} = 0.472$$

Tutorial - 1

X_{O2}

$$x_{N2} + x_{O2} = 1$$

$$x_{O2} = 1 - x_{N2}$$
$$x_{N2} = 0.472$$

$$x_{N2} = 0.472$$

$$x_{02} = 1 - 0.472 = 0.528$$

Tutorial - 1

• **y**_{N2}

$$y_{N2} = K_{N2} x_{N2}$$

$$K_{N2} = 1.483$$

$$x_{N2} = 0.472$$

$$y_{N2} = (1.483)(0.472) = 0.699$$

Tutorial - 1

• **y**₀₂

$$y_{N2} + y_{O2} = 1$$

$$y_{O2} = 1 - y_{N2}$$

$$y_{N2} = 0.699$$

$$y_{02} = 1 - 0.699 = 0.301$$

Tutorial – 2

- Consider a two phase mixture of N₂ and O₂ at a pressure of 2 atm. Use the T s diagrams for the vapor pressures of N₂ and O₂ at 86 K.
- Determine the liquid and vapor composition of the mixture if the temperature of the mixture is 86 K.
- Also, calculate K_{N2} and K_{O2} and compare them with the experimental data.

Tutorial - 2

Given

Working Pressure: 2 atm

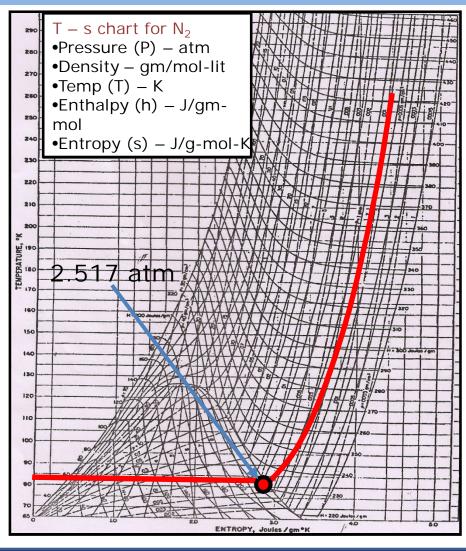
Temperature: 86 K

Mixture : $N_2 + O_2$

For above mixture, Calculate

 $\mathbf{x_{N2}}$ Mole fraction of $\mathbf{N_2}$ in liquid phase

 $\mathbf{x_{02}}$ Mole fraction of $\mathbf{O_2}$ in liquid phase


 y_{N2} Mole fraction of N_2 in vapor phase

 y_{02} Mole fraction of O_2 in vapor phase

K_{N2} Distribution coefficient of **N₂**

K₀₂ Distribution coefficient of **O**₂

Tutorial – 2

- Vapor pressures of N₂ is taken from the T – s diagram.
- Following the similar procedure for O₂, we have the vapor pressures as

Vapor Pr.

 $\Pi_{N2} = 2.517 \text{ atm}$

 $\Pi_{O2} = 0.640 \text{ atm}$

Tutorial – 2

X_{N2}

$$p_{tot} = \pi_{N2} x_{N2} + \pi_{O2} \left(1 - x_{N2} \right)$$

$$x_{N2} = \frac{p_{tot} - \pi_{O2}}{\pi_{N2} - \pi_{O2}}$$

Data

 $p_{tot} = 2 atm$

 $\Pi_{N2} = 2.517$ atm at 86 K

 $\Pi_{02} = 0.640$ atm at 86 K

$$x_{N2} = \frac{2 - 0.980}{3.550 - 0.980} = 0.724$$

Tutorial - 2

X_{O2}

$$x_{N2} + x_{O2} = 1$$

$$x_{O2} = 1 - x_{N2}$$
$$x_{N2} = 0.724$$

$$x_{N2} = 0.724$$

$$x_{02} = 1 - 0.724 = 0.276$$

Tutorial - 2

• **y**_{N2}

$$y_{N2} = \frac{\pi_{N2} x_{N2}}{p_{tot}}$$

Data

 $p_{tot} = 2 atm$

 $\Pi_{N2} = 2.517$ atm at 86 K

 $\Pi_{02} = 0.640$ atm at 86 K

$$x_{N2} = 0.724$$

$$y_{N2} = \frac{(2.517)(0.724)}{(2)} = 0.911$$

Tutorial - 2

• **y**₀₂

$$y_{N2} + y_{O2} = 1$$

$$y_{O2} = 1 - y_{N2}$$

$$y_{N2} = 0.911$$

$$y_{02} = 1 - 0.911 = 0.089$$

Tutorial - 2

• K_{N2}

$$K_{N2} = \frac{y_{N2}}{x_{N2}}$$

$$x_{N2} = 0.724$$

$$y_{N2} = 0.911$$

$$K_{N2} = \frac{0.911}{0.724} = 1.2583$$

Tutorial - 2

K_{02}

$$K_{O2} = \frac{y_{O2}}{x_{O2}}$$

$$x_{O2} = 0.276$$
 $y_{O2} = 0.089$

$$y_{02} = 0.089$$

$$K_{O2} = \frac{0.089}{0.276} = 0.3224$$

Tutorial – 2

 The calculated and experimental K values are as tabulated below.

Calculated		Experimental	
K_{N2}	1.2583	K _{N2}	1.2335
K _{O2}	0.3224	K _{O2}	0.3697

- The ideal (calculated) values differed from the experimental values by small amount.
- This is because, the effect of inter molecular forces is neglected in the ideal mixtures.