Tutorial

- Consider a mixture of N₂ and O₂ at 1 atm. Calculate the Murphree efficiency for a plate with liquid at 80 K and the vapor below this plate is at 85 K. Also, it is given that the mole fraction of N₂ leaving this plate in vapor phase is 0.84.
- Use the temperature composition diagram given in the earlier lectures.

37

CRYOGENIC ENGINEERING

Tutorial

Given

Working Pressure : 1 atm

Mixture : $N_2 + O_2$

Liquid temperature : 80 K

Vapor temperature (below) : 85 K

y_{N2} : 0.84

For above mixture, Calculate

Murphree Efficiency

CRYOGENIC ENGINEERING

Tutorial

- Murphree Efficiency
- For the ease of understanding, the T – y diagram is enlarged and is not to scale.
- Draw isotherms at 80 and 85 K.
- **y**_{j-1}=0.5, **x**_j=0.6, **y**_{0,j-1}= 0.85.
- **y**_j=0.84 (given)

39

CRYOGENIC ENGINEERING

Tutorial

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay