Tutorial

Consider a rectification column for N₂ and O₂ separation operating at 1 atm. Determine the number of theoretical plates required to yield 97% N₂ at top and 95% O₂ at bottom. Feed stream is 50% N₂ and 50% O₂. Molar fraction of liquid in feed stream is 0.7 mole liquid/mole mixture. The desired flow rate at the bottom product is 20 mole/sec and the heat removed in the condenser at top of the column is 500 kW.

Tutorial

Given

Working Pressure: 1 atm

Mixture : $N_2 + O_2$

Feed stream: $50\% N_2 + 50\% O_2$

Bottom flow rate: 20 mole/sec = B

Feed liq. : $0.7 = \mathbf{q}$

For above mixture

Reqt. of N_2 (top) : 97% = x_D

Reqt. of O_2 (bottom) : $95\% = x_B = 0.05$

Total number of theoretical plates

Tutorial

$$F = B + D$$

Mole balance

$$x_F F = x_B B + x_D D$$

Mole balance for N₂

Data		
X_F	0.5	
X_B	0.05	
X_D	0.97	
В	20	

$$F = 20 + D$$

$$0.5F = (0.05)(20) + (0.97)D$$

- Solving, we have
- F=39.14 mole/sec, D=19.14 mole/sec.

Tutorial

Enthalpy balance

$$\dot{Q}_B = \dot{Q}_D + h_D D + h_B B - h_F F$$

• Fraction of stream in feed

$$q = \frac{H - h_F}{H - h}$$

Rearranging, we have

$$h_F = qh + (1 - q)H$$

- For 50% N_2 + 50% O_2
- h=1084 J/mol, H=6992 J/mol

Tutorial

$$h_F = qh + (1 - q)H$$

Data	
h	1084 J/m
Н	6992 J/m
q	0.7

$$h_F = (0.7)1084 + (1-0.7)6992$$

 $h_{\rm F} = 2856.4 \, J \, / \, mol$

Tutorial

$$\dot{Q}_B = \dot{Q}_D + h_D D + h_B B - h_F F$$

Data	
Q_{D}	500 kW
h_D	1084 J/m
h_{B}	1084 J/m
h_{F}	2856.4 J/m

Data	
F	39.14
В	20
D	19.14

$$\dot{Q}_B = (500)10^3 + (1084)(19.14)$$
$$+ (1084)(20) - (2856.4)(39.14)$$

$$\dot{Q}_B = 430.6kW$$

Tutorial

Operating line for Enriching Section

$$\frac{D}{V_{n}} = \frac{H_{n} - h_{n+1}}{\frac{\dot{Q}_{D}}{D} + h_{D} - h_{n+1}}$$

Data	
Q_{D}	500kW
H_n	6992 J/m
h_{n+1}	1084 J/m
h_D	1084 J/m
D	19.14 mol/s

$$\frac{D}{V_n} = \frac{6992 - 1084}{\frac{500000}{19.14} + 1084 - 1084}$$

$$\frac{D}{V_n} = 0.226$$

$$\frac{L_{n+1}}{V_n} = 1 - \frac{D}{V_n}$$

$$\frac{L_{n+1}}{V_n} = 1 - 0.226$$

$$\frac{L_{n+1}}{V_n} = 0.773$$

Tutorial

Operating line for Enriching Section

$$y_n = \left(\frac{L_{n+1}}{V_n}\right) x_{n+1} + \left(\frac{D}{V_n}\right) x_D$$
 $\frac{D}{V_n} = 0.226$ $\frac{L_{n+1}}{V_n} = 0.773$

$$\frac{D}{V_n} = 0.226$$

$$\frac{L_{n+1}}{V_n} = 0.773$$

Data

 X_D

$$y_n = (0.773)x_{n+1} + (0.226)(0.97)$$

$$y_n = 0.773x_{n+1} + 0.22$$

Tutorial

Operating line for Stripping Section

$$\frac{B}{V_{m}} = \frac{H_{m} - h_{m+1}}{\frac{\dot{Q}_{B}}{B} - h_{B} + h_{m+1}}$$

Data	
Q_{B}	430.6 kW
$H_{\rm m}$	6992 J/m
h_{m+1}	1084 J/m
h_B	1084 J/m
В	20 mol/s

$$\frac{B}{V_m} = \frac{6992 - 1084}{\frac{(430.6)10^3}{20} - 1084 + 1084}$$

$$\frac{B}{V_m} = 0.274$$

$$\frac{L_{m+1}}{V_m} = 1 + \frac{B}{V_m}$$

$$\frac{L_{m+1}}{V_m} = 1 + 0.274$$

$$\frac{L_{m+1}}{V_m} = 1.274$$

Tutorial

Operating line for **Stripping Section**

$$y_m = \left(\frac{L_{m+1}}{V_m}\right) x_{m+1} - \left(\frac{B}{V_m}\right) x_B$$
 $\frac{B}{V_m} = 0.274$ $\frac{L_{m+1}}{V_m} = 1.274$

$$\frac{B}{V_m} = 0.274$$

$$\frac{L_{m+1}}{V_m} = 1.274$$

$$y_m = (1.274) x_{m+1} - (0.274)(0.05)$$

$$x_{B} = 0.05$$

$$y_m = 1.274x_{m+1} - 0.013$$

Tutorial

Equation of Feed Line

$$q = \frac{H - h_f}{H - h}$$

$$y = \frac{q}{q-1}x + \frac{x_F}{1-q}$$

$$y = \frac{0.7}{0.7 - 1}x + \frac{0.5}{1 - 0.7}$$

$$y = -2.34x + 1.67$$

Data	
Н	6992 J/m
h_f	2856.4 J/m
h	1084 J/m
X_F	0.5

Tutorial

- Summarizing, we have the following.
- OP line for enriching section : $y_n = 0.773x_{n+1} + 0.22$

$$y_n = 0.773x_{n+1} + 0.22$$

OP line for stripping section :

$$y_m = 1.274x_{m+1} - 0.013$$

• q line :

$$y = -2.34x + 1.67$$

 The stair casing procedure is shown on an excel sheet to have a better understanding of the method.

Tutorial

- From the excel sheet, it is clear that the total number of vertical lines are 9.
- Therefore, the total number of theoretical plates for this column can be tabulated as shown below.

McCabe - Thiele Method

Enriching Section 3 + 1 (Condenser)

Stripping Section 6 + 1 (Boiler)