- Design an **α** type Stirling Nitrogen liquefier using the Schmidt's analysis. The working gas is Helium and the capacity of the plant is 10 liter per hour of LN₂. The maximum allowable pressure in the system is 40 bar. The speed of the prime mover is 1440 rpm.
- Use the standard $T s$ diagrams for entropy and enthalpy values.

Tutorial

• The schematic of an **α** – type Stirling cryocooler is as shown.

- Given parameters are
	- Evap. Temp. (T_F) : 77.2 K.
	- Cond. Temp. (T_c) : 300 K.
	- Max. Pressure (P_{max}): 40 bar.
	- $N = 1440$ rpm.
- Parameters to be calculated are
	- Volumes: (V_c) , (V_F) , (V_T) .
	- Phase angle **(α)**

Tutorial

- Consider the $T s$ diagram for Nitrogen as shown in the figure.
- It is important to note that, the energy required to condense Nitrogen involves
	- Sensible heat from 300 K to 77 .2 K.
	- Latent heat of vaporization at 77.2 K.

Tutorial

- From the standard $T s$ diagram for Nitrogen, the change in enthalpy for these processes are as shown below.
- Sensible heat (KJ/Kg-K) $\Delta h_{\rm s} = 231.7$
- Latent heat (KJ/Kg-K) $\Delta h_i = 199.1$
- The net change in enthalpy is $\Delta h_{net} = 430.8$

- The required capacity of the given liquefier is **10** liter per hour.
- The density of liquid nitrogen is 808 kg/m³. Hence, the required mass flow rate across the liquefier corresponding to 10 liter per hour is calculated as shown below.

• The net cooling power required to produce **10** liter per hour **LN**₂ is

$$
Q_{E,req} = \Delta h_{net} \dot{m} = (430.8)(0.00224) = 965W
$$

Tutorial

Therefore, $Q_{E, \text{Design}}$ at $T_E =$ **77.2 K** is given by

$$
Q_{E, Design} = 3(965) = 2895W
$$

- The RPM of the prime mover is given as 1440. Therefore, the **N(rps)** is **24**.
	- The $\mathbf{Q}_{E, \text{ Design}}$ per unit cycle is calculated as shown below.

 $= 120.6$

2895

²⁴ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

 $Q_{E,Design} = \frac{20}{24}$

Tutorial

• Choosing **X = 1** on **Walker's Optimization Chart**, we have the following values.

$$
k = 2.85
$$

\n $\alpha = 0.575^c = 32.9^o$
\n $Q_{\text{max}} = 0.07$

Tutorial

From the definition of Q_{max} we have the following.

• Assuming a stroke to bore ratio of **0.75**, for both compressor and expander – displacer pistons, we have the following dimensions.

$$
V_c = \frac{\pi}{4} D_c^2 S_c = 3.18 (10^{-4}) \qquad \frac{S_c}{D_c} = 0.75 \qquad \frac{D_c = 81.4 \text{mm}}{S_c = 60.8 \text{mm}}
$$

$$
V_E = \frac{\pi}{4} D_E^2 S_E = 1.12 (10^{-4}) \qquad \frac{S_E}{D_E} = 0.75 \qquad \frac{D_E = 57.5 \text{mm}}{S_E = 43.1 \text{mm}}
$$

Tutorial

 $D_{\rm C} = 81.4$ mm

 $S_c = 60.8$ *mm*

Operating Parameters

- T_F : 77.2 K
- T_c : 300 K
- \bullet **P**_{max}: 40 bar
- **N**: 1440

Design Parameters

\n
$$
V_c = 3.18(10^{-4})m^3
$$

\n $V_E = 1.12(10^{-4})m^3$

\n $\alpha = 0.575^c$

\n $= 32.9^o$

 $D_{\overline{E}} = 57.5$ mm

 $S_E = 43.1$ *mm*

- For a given $Q_{E, \text{Design}}$, if the dimensions of the piston and expander – displacer are very large, say more than 150mm, the system may be designed for two cylinders or more.
- This is an iterative process until the feasible dimensions are decided.