
Convection-diffusion problems 
 
Q1. 
For a 1-D convection – diffusion problem, fluid density = 1000kg/m3, flow velocity = 
1m/s, diffusion coefficient = 10 -9 m2/s, and domain length = 1m. Will a central difference 
scheme work, for a numerical solution of this problem (Given that dimension of the 
solution vector for the TDMA should not exceed 1000)? Give reasons for your answer? 
Solution 
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Central difference scheme (CDS) will not work because CDS is suitable for Cell 2Pe <  

Q2. 

The temperature variation in condenser tube is given by ( )0

dT UA
mC T T

dx L
= −& , where 

m& is the mass flow rate, C is the specific heat, T is the temperature of cooling water, 0T is 

the constant temperature of the condensing steam, U  is the overall heat transfer 
coefficient, A  and is the total heat transfer area. Define a non-dimensional 
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Solution 
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Governing differential equation becomes 
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Integrating for an elemental control volume as shown, we get 
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Assuming piecewise constant profile for θ  
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Using upwind scheme  

( )2 1P W P yθ θ θ− = − ∆  

Comparing with the equation  P P E E W Wa a a bθ θ θ= + + , we get 

1 2 1.5Pa y= + ∆ = , 0Ea = , 1Wa = , 2 0.5b y= ∆ =  

 
 
 
 
 
From the definition of θ ,  1 0θ =  

2 11.5 0.5θ θ= +  

3 21.5 0.5θ θ= +  

4 31.5 0.5θ θ= +  

5 41.5 0.5θ θ= +  

After solving above equations 

2 0.333θ =  

3 0.555θ =  

4 0.703θ =  

5 0.802θ =  

Exact solution can be found as follows: 

2 2
d

dy

θ + θ =  

or,  2 2 22 2y y yd
e e e

dy

θ + θ =  

or,  ( )2 22y yd
e e

dy
θ =  

or,  2 2y ye e Cθ = +  
At 0y = , 0θ =  

0 1 C= +  
1C⇒ = −  
21 ye−θ = −  

From the definition of θ , 1 0θ =  

Putting the values of y, we get 

2 0.393θ = , 3 0.632θ = , 4 0.777θ =  , 5 0.865θ =      
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Comparison of numerical solution with analytical solution 

 
Q3. 
Consider a 1-D steady state convection – diffusion problem without any source term. 
Derive a profile assumption for variation of the dependent variable in the advection term, 
following the QUICK scheme. ased on that, derive the complete disctretization equation 
for the convection-diffusion problem. Assess your discretization in perspective of the 
basic rule regarding the sign of coefficients of the discretized equation. 
(b) Extend your derivations made in part (a) to a 1 – D unsteady state convection-
diffusion problem with fully explicit time discretization. 
 
Solution 
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Subtracting Eq, (14) from Eq. (12) , we get  
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Adding Eq, (12) and Eq. (14), we have 
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One-dimensional steady state convection – diffusion problem without any source term 
can be expressed as 

 ( )d d d
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Integrating with respect to control volume as shown below, we get 
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Assuming piecewise linear φ  profiles for the diffusion term, and  substituting the same in 
Eq. (15), we get 
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Comparing this equation with the standard template equation 

P P E E W W WW WWa a a aφ φ φ φ= + + , we get 
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Since WWa  is negative , the scheme becomes unconditionally unstable. 

 
(b)  
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Integrating with respect to t and x with piecewise constant φ  profile within a control 
volume at a given t for the temporal form 
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 Comparing this equation with the standard template equation 
0 0
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