Vibrations of Structures

Module III: Vibrations of Beams

Exercises

Figure 1: Exercise 1

1. A uniform Euler-Bernoulli beam of length $a+b$, flexural stiffness $E I$ and linear density ρA is supported, as shown in Fig. 1. Plot the variation of the first few eigenfrequencies for variation of b in the range $(0, a)$.

Figure 2: Exercise 2
2. The frame shown in Fig. 2 is made by welding two uniform homogeneous Euler-Bernoulli beams infinitely stiff in tension. Determine the first few eigenfrequencies and the corresponding modes of vibration of the frame.

Figure 3: Exercise 3
3. A simply-supported uniform beam is loaded by a constant distributed force $q(x, t)=Q_{0}$, as shown in Fig. 3. Determine the motion of the beam when the force is suddenly removed at $t=0$.

Figure 4: Exercise 4
4. Determine the steady-state response of a uniform cantilever beam with end-mass when excited by a force $F(t)=F_{0} \cos \Omega t$, as shown in Fig. 4.

Figure 5: Exercise 5
5. A frame shown in Fig. 5 is made of three uniform beams each having flexural rigidity $E I$, linear density ρA. A constant force P acts at the center of the horizontal beam as shown. Estimate the first eigenfrequency of the frame $\omega_{1}(P)$ as a function of the force P. Re-calculate the first eigenfrequency if the frame is pinned at the support B.
6. A uniform beam, pinned at one end, is released from rest from a horizontal position, as shown in Fig. 6. The free-end A of the beam hits a rigid edge when the beam reaches a vertical position. Determine the reaction forces at the ends A and B as functions time.
7. A simply-supported beam of rectangular cross-section has a constant width b, while the height varies from $h / 2$ to h over its length l. The material has density ρ, and Young's modulus E. Estimate the first two modal frequencies and modes of vibration.
8. A uniform Euler-Bernoulli beam is fixed to a small hub rotating at a constant angular speed Ω in the vertical plane, as shown in Fig. 7, has a Lagrangian

$$
\mathcal{L}=\frac{1}{2} \int_{0}^{l}\left[\rho A\left[\left(\Omega x+w_{, t}\right)^{2}+\Omega^{2} w^{2}\right]-T w_{, x}^{2}-E I w_{, x x}^{2}\right] \mathrm{d} x,
$$

Figure 6: Exercise 6

Figure 7: Exercise 8
where $\mathrm{d} T / \mathrm{d} x=\rho A \Omega^{2} x$. Derive the equation of motion for transverse vibrations of the beam. Using the Ritz method, estimate the first few eigenfrequencies of the beam, and plot their variation with Ω.

