# Conduction And Radiation - Video course

## **COURSE OUTLINE**

#### Radiation:

Introduction, radiation from a black body, radiation properties of non-black opaque surfaces, shape factors for uniform diffuse radiation, radiation exchange in gray diffuse enclosures, fundamentals of gas radiation, the engineering treatment of gas radiation in enclosures, multimode heat transfer.

### Conduction:

Introduction – energy equation in heat conduction and common types of boundary conditions, extended surface heat transfer – variable area fins, multidimensional steady conduction – 2D Cartesian, cylindrical, superposition principle, transient conduction – 1D Cartesian, cylindrical, spherical, integral method, conduction with change of phase, numerical solution of conduction problems.

### **COURSE DETAIL**

| Module<br>No | Topics                                                                                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.           | Introduction, radiation from a black body:                                                                                                                          |
|              | Introduction to three modes of heat transfer- conduction, convection<br>and radiation. Importance of radiation, Mechanism of<br>radiation,Electromagnetic spectrum. |
|              | Concept of black body, derivation of black body radiation laws from first principles – Planck's law, Stefan Boltzmann law, Wien's displacement law.                 |
|              | Universal black body function, F function charts.                                                                                                                   |
| 2.           | Radiative properties of non-black surfaces:                                                                                                                         |
|              | Spectral directional emissivity, defintion of total and hemispherical quantities, hemispherical total emissivity.                                                   |
|              | Spectral directional absorptivity, Kirchoff law, directional and hemispherical absorptivity, hemispherical total absorptivity.                                      |
|              | Concept of bi-directional reflectivity, bi-hemispherical spectral reflectivity, hemispherical total reflectivity.                                                   |
|              | Particiating media and concept of transmissivity, total transmissivity.                                                                                             |
| 3.           | View factors:                                                                                                                                                       |
|              | Need for view factors, concept of view factors, mathematical definition.                                                                                            |
|              | View factor Algebra, Hottel's crossed string method, view factors for 2D surfaces using algebra.                                                                    |
|              | View factors from 2D surfaces using charts.                                                                                                                         |



# NPTEL http://nptel.iitm.ac.in

# Mechanical Engineering

### **Pre-requisites:**

- 1. Thermodynamics
- 2. Fluid Mechanics
- 3. Heat Transfer

### **Coordinators:**

**Prof. C. Balaji** Department of Mechanical EngineeringIIT Madras

| 4.                                                                                                                                                                                                                                                                               | Enclosure analysis:<br>Radiosity Irradiation method for gray diffuse enclosures – Problems<br>for 2 and 3 surface enclosures – parallel plate formula, radiation<br>shields, concept of re-radiating surface.                                                                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5.                                                                                                                                                                                                                                                                               | Gas Radiation:<br>Introduction to gas radiation – The equation of transfer – derivation<br>Simple solutions to the equation of transfer.<br>Concept of mean beam length – Calculation of mean beam length                                                                                                          |  |
|                                                                                                                                                                                                                                                                                  | Engineering treatment of gas radiation in enclosures – modified enclosure theory – problems to illustrate the modified enclosure theory.                                                                                                                                                                           |  |
| 6.                                                                                                                                                                                                                                                                               | Introduction to conduction:                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                  | Initial and boundary conditions.<br>Solution of simple problems in steady state conduction with<br>analytical solutions – Concept of electrical analogy – fin heat<br>transfer and concept of fin efficiency and fin effectiveness.                                                                                |  |
| 7.                                                                                                                                                                                                                                                                               | Unsteady conduction:<br>Concept of Biot number – Lumped capacitance formulation –<br>simple problems – unsteady conduction from a semi-infinite solid-<br>solution by similarity transformation method.<br>Solution of the general 1D unsteady problem by separation of<br>variables and charts- example problems. |  |
| 8.                                                                                                                                                                                                                                                                               | 2D steady conduction and phase change problems:<br>Laplace equation – solution by variable separable method –<br>concept of superposition and homogeneous boundary conditions.<br>Phase change problems – The Stefan and Neumann problems –<br>analytical solutions.                                               |  |
| 9.                                                                                                                                                                                                                                                                               | Numerical solution of conduction problems:<br>Basic ideas of finite difference method – forward, backward and<br>central differences – Discretization for the unsteady heat equation –<br>simple problems.<br>Basis ideas of the finite volume method – application to Laplace                                     |  |
| References:                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |  |
| <ol> <li>Conduction:</li> <li>1. Conduction Heat Transfer, D. Poulikakos, Prentice Hall, 1994.</li> <li>2. Heat Conduction, S. Kakac and Y. Yener, Taylor and Francis, 1994.</li> <li>3. Analytical methods in Conduction Heat Transfer, G.E.Myers, McGraw Hill, 1971</li> </ol> |                                                                                                                                                                                                                                                                                                                    |  |

- 1971.4. Conduction Heat Transfer, V.S. Arpaci, Addison Wesley, 1996 (Abridged edition Ginn press 1998)
- 5. Heat Transfer, A.J.Chapman, Macmillan, 1984.

## Radiation:

1. Thermal Radiation Heat Transfer, R. Siegel and J.R.Howell, Taylor &

- Radiation Heat Transfer, E.M.Sparrow and R.D.Cess, Wadsworth, 1966.
   Radiative Transfer, H.C.Hottel and A.F.Saroffim, McGraw hill, 1967.
   Radiative Heat Transfer, M.F.Modest, McGraw Hill, 2003.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in