Multiple choice questions QUANTUM ELECTRONICS by K Thyagarajan, Physics Department, IIT Delhi, New Delhi.

Module 1: Multiple choice questions:

1. 1. A plane wave propagates along a direction with the unit vector $\hat{\kappa} = \frac{\sqrt{3}}{2}\hat{y} + \frac{1}{2}\hat{z}$ in a uniaxial medium. The unit vector along the direction of the \vec{D} of the extraordinary wave is

a)
$$\hat{n} = -\frac{1}{2}\hat{y} + \frac{\sqrt{3}}{2}\hat{z}$$

b)
$$\hat{n} = \frac{1}{2}\hat{y} + \frac{\sqrt{3}}{2}\hat{z}$$

c)
$$\hat{n} = -\frac{1}{2}\hat{y} - \frac{\sqrt{3}}{2}\hat{z}$$

d) $\hat{n} = \hat{x}$

d)
$$\hat{n} = \hat{x}$$

- 2. When a light wave propagates in a uniaxial medium
 - a) SOP changes if the propagation direction is along the optic axis
 - b) SOP changes for any direction of propagation
 - c) SOP changes if the propagation direction is other than along the optic axis
 - d) SOP does not change for any propagation direction
- 3. In a biaxial medium with $n_x = 1.56$, $n_y = 1.59$ and $n_z = 1.60$ a circularly polarized wave at a wavelength of 600 nm propagates along the z-axis.
 - a) The state of polarization will not change.
 - b) The wave will become linearly polarized after travelling a distance of 15 μ m.
 - c) The wave will become linearly polarized after travelling a distance of 5 μm.
 - d) The wave will get depolarized

Answers of module 1 MCQs:

A1: [Ans (a)]

A2: [Ans (c)]

A3: [Ans (d)]