
 

FAQs & their solutions for Module 1: 
Introduction & Basic Mathematical Preliminaries 

 

 

Question1:  An electron of energy 200 eV is passed through a circular hole of radius  

                    10 
- 4

 cm.  What is the uncertainty introduced in the angle of emergence? 

Solution1:         cm/secg108~]102.3109.02[2 192/11027mEp   

Now 
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Question2: In continuation of the previous problem, what would be the  

                     corresponding uncertainty for a 0.1 g lead ball thrown with a velocity  

                     10
3
 cm/sec through a hole 1 cm in radius? 

Solution2:   

arc of sec10radians105~

cm/sec. g105g/sec, cm10

3430

282

x
p    p



 

 

Question3:  Prove the following representation of the Dirac delta function: 
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Solution3:   

Since  
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x      for all values of  g > 0. 
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The function 
sin g x a

x a
is plotted below for g = 5 and g =20. As the value of g 

increases, it becomes more and more sharply peaked at x=a=2.. Thus the function  

sin g x a

x a
   has all the properties of the delta function and hence 
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Question4:   Using Eq.(1), show that if we define 
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The function F (k) is the Fourier transform of the function f (x).  

Solution4:    Since   f ( x ) ( x x ) f ( x )dx   we may write 
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ik( x x )f ( x ) e f ( x )dx dk  which is known as the Fourier Integral theorem. 

Thus if we define 
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The function F(k) is the fourier transform of the function f(x). 

 

Question5:  We define          
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Show that 
0

limx a G x which is the Gaussian representation of the Dirac-

delta functions. 

Solution5:    We have the integral: 
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Now  
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G x  If we use the above integral we 

readily obtain: 

1G x dx . If we plot G x as a function of x for differenet values of  (see 

diagram below) we will find that in the limit of 0 , the function G x  has all the 

properties of the Dirac delta function and we have 
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Question6:  Consider a Gaussian pulse given by 
2 2

02 i ttf t A e e . Calculate its  

                     frequency spectrum and show that 1.   

Solution6:  
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If we use the  equation
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we would readily get 
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The duration of the pulse is     and the frequency spread  is  
1

 . 

   

 

Question7:  Show that x a H x a  where H x a  is the unit step function at   

                    x a  .  

Solution7:  
0

x a lim R x ;  where 

 
1

for
2

R x x a  

 

           0 for x a  

 

Consider the ramp function 
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It can easily be seen that   
d F x
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. In the limit of  0 ,  the function 

F x  becomes the unit step function (see Figure below) --- hence  

x a H x a . 
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