
FAQs & their solutions for Module 2: 

Simple Solutions of the one-dimensional Schrodinger Equation 

 

 

Question1:  Determine the energy levels and the corresponding Eigen functions of  

                    a particle of mass  in a one dimensional infinitely deep potential well  

                    characterized by the following potential energy variation  
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Solution 1:  For 0 < x < a, the one dimensional Schrödinger equation becomes  
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The general solution of the Schrödinger equation is 

   kxBkxAx cossin   (4) 

Since the boundary condition at a surface at which there is an infinite potential step 

is that  is zero, we must have  

     00  axx   (5) 

The above condition also follows from the fact that since the particle is inside an 

infinitely deep potential well, it is always confined in the region 0 < x < a and 

therefore  must vanish for x < 0 and x > L; and for  to be continuous, we must 

have 

   00  Bx  (6) 

 

and 

   0sin  kaAax  (7) 

Thus, either 

 0A   

or  

 nka  ; ,2,1n  (8) 



The condition A = 0 leads to the trivial solution of   vanishing everywhere, the 

same is the case for n = 0. Thus the allowed energy levels are given by  
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The corresponding eigenfunctions are 
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where the factor   a/2    is such that the wave functions form an orthonormal set : 
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It may be noted that whereas n(x) is continuous everywhere, dn(x)/dx is 

discontinuous at x= 0 and at x = a. This is because of V(x) becoming infinite at x= 

0 and at x = a . 

 

Question2:   Consider the potential energy variation given by 
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Solution 2: 
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Continuity of d /dx at x = b will give us 

 22cot                    (13)  

where 
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Question3:  In continuation of the previous problem, assume 
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Calculate the number of bound states and also the corresponding values of    
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Solution3:   If we numerically solve the equation 

 
22cot                            (17) 

 

We will find that there are three bound states with 

  

8.33877and64146.5,83595.2  

 

Question4: Show that the function     exp ;x A x     0    satisfies the one-

dimensional Schrodinger equation corresponding to    V x S x   . Find the value 

of S and the corresponding value of the energy. 

Solution4: 
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The function  x has a discontinuity of     2A    at   x = 0. Thus 
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Question5:  Solve the one-dimensional Schrodinger equation for 
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and derive the transcendental equations which would determine the energy 

eigenvalues. 

 

(b) Show that if we let a  0 and V0   such that 

 SVa 0  (19) 

we would obtain only one bound state with energy as given in the previous 

problem. 

Solution 5: The transcendental equation determining the energy eigenvalues 

corresponding to symmetric states is given by 
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where 
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Notice that for bound states E is negative with |E| < V0. When V0    and a  0 

such that V0a S we obtain 
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which tends to zero. Thus the root of the equation 

 



22tan    

 will correspond to a very small value of   so that we may replace tan    by    to 

obtain 
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We neglect the minus sign and make a bionomial expansion to obtain 
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Question6: Determine the normalized  eigenfunctions of the momentum operator  
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and write the orthonormality and completeness conditions.  

Solution 6:    The eigen value equation for the operator 
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will be 
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where p  (on the RHS) is now a number. Thus  
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Simple integration will give us 
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where the factor  
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which is the ortho-normaility condition. Similarly, 
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                                x x    

is the completeness condition. 

 

 

Question7:  In continuation of the previous problem show that the eigenfunctions 

of the operator 
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are the same as that of the operator 
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Solution7: 
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It is easy to see that  

 

 
1

2

i
p x

pu x e


 


 

 

are eigenfunctions of   H.   Thus  the functions  pu x  are also simultaneous 

eigenfunctions 2 andx xp , p H . 

 


