FAQs & their solutions for Module 6:
Hydrogen like atoms and other central potentials

Questionl: In spectroscopy the energy levels are usually written in wave number units which
are obtained by dividing E by hc:
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Using the expression for E_, show that the Rydberg constant R is given by
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where
2
a = g ~ 1
4 gy hc 137.036

(3)

represents the fine structure constant, 7z = 21 =1.05457266 x 10°>* Js and
V4

c = 2.9979258x 10 m/s represents the speed of light in free space.

Solution 1: The energy eigen-values for a hydrogen-like atom is given by:
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where
n =123,...
represents the total quantum number and
E| = S uzla’c’ (5)

represents the magnitude of the ground state energy. Thus we may write
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where
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is known as the Rydberg’s constant.

Q uestion2: In continuation of the previous problem, calculate the values of the Rydberg
constant for the hydrogen atom, the deuterium atom and the singly ionized Helium atom
(which are all hydrogen like atoms).You may assume

m, = 9.1093897x 10* kg ; m_ =1.6726231x 10" kg; m, =1.6749286x 107 kg ;

m, = 3.3435860x 10" kg and m, = 6.644656209x107" kg (7)

where m,, m;,m,, m; and m, represent the masses of the electron, proton, neutron,

deuteron and the alpha particle respectively.
Solution2: The reduced mass is given by

m.m
p=—— (8)
m, +my
Using m, = 9.1093897x 10 kg ; m, = 1.6726231x 10 kg; m, =1.6749286x 107" kg ;

m, = 3.3435860x 10% kg and m_ = 6.644656209x10% kg we readily get

R= 109677.58 cm™ (for the hydrogen atom)
109707.56 cm™ (for the deuterium atom)
109722.40 cm™ (for the He* - atom)

The slight difference in the values is because of the difference in the values of the reduced mass
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Q uestion3: Show that (for a hydrogen like atom) for the n = n; — n = n, transition, the

wavelength of the emitted radiation is given by
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When n, = 1, 2 and 3 we have what is known as Lyman series, the Balmer series and the
Paschen series respectively.

Solution3: Forthe n =n; — n = n, transition, the wavelength of the emitted radiation is
given by

A = —- (10)

or
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Q uestion4: In continuation of the previous problem, calculate the wavelength of the emitted
radiation for the n=3 — n=2 and for the n=4 — n =2 transitions in hydrogen and

deuterium.

Solution4: Forthe n=3 — n=2 transition, the wavelength of the emitted radiation is given
_2h 111
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mass to obtain the following values of the wavelength of the emitted radiation:

-1
by A= } . Using the data given in Problem 6.2, we can calculate the reduced

6565.2A and 6563.4A in hydrogen and deuterium respectively. Similarly for the

n=4 — n=2 transition, the wavelength of the emitted radiation is given by

-1
A :%{%—%} and using the data given in Problem 6.2, we can calculate the reduced
uZa‘c

mass to obtain the following values of the wavelength of the emitted radiation:

4863.1 A and 4861.7A in hydrogen and deuterium respectively.

Question5: Write the radial part of the Schrodinger equation for the hydrogen-like atom
problem for which

(12)

where



Z=1 forthe H-atom problem,
Z=2 forthe singly ionized He-atom problem (He"),
Z=3 forthe doubly ionized Li-atom problem (L")

Define a new radial function

u(r) = rR(r) (13)
and also a new variable p = y I and study the solutions of the radial part of the Schrodinger equation
as p—> 0 and as p— o.Using these limiting behaviors, write the solution as
u(p) = p" e’ y(p) (14)

and show that y(p) satisfies the confluent hypergeometric equation. Show that if the confluent

hypergeometric function is made into a polynomial, one obtains the energy eigenvalues of the problem.

Solution5: For the hydrogen-like atom problem, the radial part of the Schrodinger equation is

given by
2
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re dr dr) p 2ur
If we define a new radial function
u(r) = rR(r) (16)

we would get
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dr dr r
du
= r——u(r
5 u(r)
Thus
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and the radial part of the Schrédinger equation would become
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We introduce the variable p = yr to obtain
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where y° =— 8,uZE (20)
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and /1:2‘212 9 |z -4 (21)
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As p— 0,Eq.(11) becomes 47 2 u(p)= 0 the well-behaved solution of which is

2

2
u(p) =e”? As P —> ©, Eq.() becomes 3 li— |({04;1)

u(p)= 0 the well-behaved solution of

which is u(p) = p”l. This suggests we try out the solution u(p) = ,0I+1 e r? y(p) . Simple
manipulations would give
d

p——=+(c-p)

i dy
do
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which is the confluent hypergeometric equation. In the above equation
a=1+1-4 and c=21+2 (23)
The well behaved solution of the above equation is

a@+l) p*

c(c+1) 2! (24)

a
Y(P) = ,R(acp) = 1+E/0 +

represents the confluent hypergeometric function. If the series is not terminated, then as p— o0, it

will behave as €”.Thus the series must be made into a polynomial and for that to happen we must

have

a=-n; where n =0,12... (25)

r

which is known as the radial quantum number. Thus A =1 +1+ N, = N and we readily obtain
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En = _'uzz% (26)

Question6: For the hydrogen-like atom problem, the radial part of the wave function is given
by:

Ry(p) = Ne P2l (F+1-n2142,p) ; n=123,..

(27)
1=012,..n-1
where
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is the Bohr radius. Further
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represents the confluent hypergeometric function and N represents the normalization
constant. Obtain the normalized functions R, (r),R,,(r), Ry (r), Ry (r)and Ry, (r).

Solution 6: The normalization condition is given by
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For n=2, =0 we will have 1F1( -1,2,p ) :1—5. Thus the normalization condition becomes
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Simple integrations will give

(EJ (31)
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Thus



3/2
102 (1l1s) gen
Rzo(r)_ﬁ[aoJ (1 Zafj e (32)

r o .
where & =—_ Similarly, one can calculate other wave functions:
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Question7: Write the radial part of the Schrodinger equation for the 3-dimensional oscillator

problem for which

V(r) = %ya)zrz

Define a new variable

£= 2 y=,/”—;) (36)

and study the solutions of the radial part of the Schrodinger equationas & — 0 and as
& — . Using these limiting behaviors, write the solution as

R() =¢&" e y(p) (37)

and show that y(p) satisfies the confluent hypergeometric equation. Show that if the

confluent hypergeometric function is made into a polynomial, one obtains the energy
eigenvalues of the problem.

(35)



Solution7: For the 3-dimensional oscillator problem for which

V(r) = %,ua)zr2 , the radial part of the Schrodinger equation is given by

2
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We define a new variable

£=yr?; 7=~/”—;’ (39)

to obtain
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E ~ 2 R(£)= 0 the well-behaved solution of

whichis R(&) = e*'2 . As £ - o, the equation becomes

As &— 0, the above equation becomes

dR+3demym®:0 )
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the well-behaved solution of which is R(f) = 5”2 . This suggests we try out the

solutionR(&) = &% 7% y(¢&) . Simple manipulations would give
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which is the confluent hypergeometric equation. In the above equation



+§——E and C=|+§ (43)
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Once again, the well behaved solution of the above equation is

_ _ .8, a@+ &
y(&)= ,FR(ace) = I+-¢ + ccrn 21" (44)

which represents the confluent hyper geometric function. If the series is not terminated, then
as & — oo, it will behave as e°. Thus the series must be made into a polynomial and for that to

happen we must have
a=-n; where n =012... (45)

Thus the eigen values of the problem are

E= (Znr + 1 +gj ho (46)



