
FAQs & their solutions for Module 7: 
Bra-Ket Algebra and LHO-II 

 

Question1:   If PA =α , show that αAP =   where α is the adjoint of the operator α . 

Solution1:               

A B B A B Pα α= =  

BP=  

Since the above equation is valid for arbitrary B  we have  

                                          P A α= =  conjugate of Aα                                     (1)          

 

Question2:  Show that αβαβ =   where α and β   are  the adjoints of the operators α  and β . 

Solution2:   We consider two linear operators α and β whose adjoints are denoted byα and β , 

respectively. Let  

                                     AP αβ=                                                          

then 

                                               αβAP =                                                            

Further, if AQ β= , then QP α=  and 

αβα AQP ==                                             

Thus 

αβαβ =                 (2)                                        

and, in general, 

αβγαβγ ""=         (3)         

 

Question3:  We consider the linear harmonic oscillator problem for which 
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We   introduce the operators 
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where we have assumed xxppHH === ,,  .   Show that  

[ . ]a H H a a H aω− = = =                          (7) 

and      

[ , ]aH Ha a H aω− = = −=            (8)                                

Solution3:                      

( )(1
2aa x ip x ipω μω μω
μ

= += )−  

          (2 2 2 21
2 )x p i xp pxμ ω μω
μ
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         ω=2
1+= H                                            (9)                              

where we have used the commutation relation 

[ ],x p xp px i= − = =                                                  (10) 

Similarly 

ωω == 2
1−= Haa     (11)                                                        

Thus 

( aaaaH += ω=2
1 )        (12)                                                     

and 

[ ] 1, ==− aaaaaa      (13)                                                         

From Eq. (4) 

1
2

a a a Ha aω ω= += =     (14)                                                     

and from Eq. (6) 

1
2a a a a H aω ω= −= =    (15)                                                       

Thus 

[ ] aHaHaaH ω===− ,    (16)                                                    

Similarly 

                                                       [ ] aHaaHHa ω=−==− ,                (17)       



 
Question4:  For the linear harmonic oscillator problem we have 
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The eigenkets n form a complete set of orthonormal kets 

mnnm δ=           (19) 

Further, 

1−= nnna     (20) 

and 

11 ++= nnna                                   (21) 

 Calculate  2 2 2 2; ; &x n x n x n x n p n p n p n p n= = = =   and also the 

uncertainty product xΔ pΔ , where 22x x xΔ = −    and 22p p pΔ = − . 

Solution4:         
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Similarly 

0=npn                                                    (26)            
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The minimum uncertainty product ⎟
⎠
⎞

⎜
⎝
⎛= =2

1 occurs for the ground state ( )0n = .  

 
 
Question5: Coherent states are the eigenkets of the operator a: 

ααα =a                            (30) 

where a  is the annihilation operator defined through Eq. (2). Expand α  in terms of the kets 

n  and normalize α  to obtain 
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1exp 2 ααα                          (31) 

The eigenvalue α can be an arbitrary complex number. 
 
Solution5:  We expand α  in terms of the kets n  
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Also 
nCa n∑== αααα                                                  (34) 

Thus 
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In general, 
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If we normalize α , we would get 
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within an arbitrary phase factor. Substituting in Eq. (24) we obtain 
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Notice that there is no restriction on the value of α ; i.e., α  can take any complex value.  
 
 
Question6:    α   and   β  are  normalized eigenkets  of a  belonging to  eigenvalues α   and  

. Evaluate   β
2

α β   and show that the eigenkets (belonging to different eigenvalues) are not 
orthogonal. 

  and   β  are  eigenkets  of a  belonging to  eigenvalues α   and  , then βSolution6: α
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Thus the eigenkets are not orthogonal (this is because a is not a real operator). 
 
 
Question7:  Assume that at , the oscillator is in the coherent state 0t =

( ) 210 exp 2 !

n
t n
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αα α⎛ ⎞Ψ = = = −⎜ ⎟

⎝ ⎠
∑       (40) 

What will be the time evolution of the state ( )tΨ ? 



Solution7: 

( ) 210 exp 2
n

t nαα α⎛ ⎞Ψ = = = −⎜ ⎟∑ !n⎝ ⎠
                        (41) 

Since n  are the eigenkets of the Hamiltonian, we will have 
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Question8:   
      

(a) In continuation of the previous problem, calculate 

( ) ( ) ( ) ( )andt x t t p tΨ Ψ Ψ Ψ  

(b) Compare the results with that of a classical oscillator. 

Solution8: 

We start with 
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where we have used the relation 11 ++= nnna .  Similarly, using 1−= nnna     (or, 

taking the complex conjugate of the above equation), we would get 

                                      ( ) ( ) i tt a t e ωα −Ψ Ψ =               (47) 
 
Assuming    α   to be real we get 
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Since 
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which represents the classical equation of motion. 


