STiCM: Special/Select Topics in Classical Mechanics

NPTEL (Phase II) Course given by:

Dr. P.C.Deshmukh, Professor, Department of Physics, IIT Madras

Unit No.	Lecture No.	Торіс	Key Words
0	L01	Introduction to STiCM	Course Overview
1	L02-L06	Equations of Motion	Principles of Newtonian, Lagrangian & Hamiltonian Mechanics; Principle of Causality and Determinism, Linear Response, Principle of Variation, Symmetry and Conservation Laws
2	L07-L10	Oscillators, Resonances, Waves	Linear harmonic Oscillator, Small Oscillations, Damped, Driven Oscillator, Resonances, Electro- mechanical analogoues, Fourier analysis of waves, Dispersion
3	L11-L12	Polar Coordinate Systems	Plane polar, cylindrical polar and spherical polar coordinate systems.
4	L13-L14	Dynamical Symmetry in the Kepler Problem	Symmetry and Conservation Laws, Dynamical Symmetry, Laplace Runge Lenz vector, Kepler problem, 1/r potential.
5	L15-L18	Real Effects of Pseudo Forces	Cause-Effect relationship in Newtonian Dynamics, Principle of causality, Pseudo forces, Centrifugal force, Coriolis force
6	L19-L22	Special Theory of Relativity	Speed of Light, Galilean and Lorentz transformations, Time Dilation, Length Contraction, Twin Paradox

Table of Contents and Key words

7	L23-L25	Potentials, Gradients, Fields	Directional derivative,
			Potentials, Gradients, Fields,
			del/nabla/gradient operator in
			Cartesian & Polar coordinate
			systems.
8	L26-L28	Gauss' Law, Equation of	Fluid Mechanics, Gauss
		Continuity	Divergence Theorem/Law,
			Equation of Continuity,
			Conservation of mass/charge,
			Expression for divergence in
			Cartesian and Polar coordinate
			systems.
9	L29-L30	Fluid Flow, Bernoulli Principle	Equation of Motion for a fluid,
			convective derivative, curl of
			a vector, Vorticity, Stokes'
			theorem, Expressions for curl
			of a vector in Cartesian and
			Polar coordinate systems,
			Bernoulli's principle,
10	L31-L34	Introduction to Classical	Divergence & Curl of the
		Electrodynamics	electric and magnetic fields,
			Maxwell's equations, speed of
			light, special theory of
			relativity
11	L35-L39	Introduction to Chaotic Dynamical	Non-linear dynamics, Logistic
		Systems	map, Bifurcations, Chaos,
			Feigenbaum constant,
			Attractor, Strange Attractor,
			Fractal, Mandelbrot set.
12	L40	Scope and Limitations of Classical	Description of the state of a
		Mechanics	mechanical system, position
			and momentum, Applications
			of Classical Mechanics,
			Limitations of Classical
			Mechanics, uncertainty
			principle, state vector,
			complete set of commuting
			operators.