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Oscillation:  

Repetitive 

Physical 

phenomenon 

 

 

Ganga 

 radiation oscillators, 

molecular vibrations,  

atomic, molecular, solid 

state, …….. 

Dynamics of  

  spring–mass systems,  

  pendulum,  

  oscillatory electromagnetic circuits,  

  bio rhythms,  

  share market fluctuations  
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Oscillations.  

Small oscillations. 

SHM.  

Driven and 

damped  

 oscillator. 

Resonance, 

Quality factor. 

Waves. 

Flip-Flop Square  

Wave oscillator 

Unit 2:  

Oscillators  

Resonances  

Waves 
Yamuna 
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•  Recognize stable, unstable, neutral 

equilibrium points and saddle points.  

  

•  Learn that in a region close enough to any 

point of stable equilibrium, motion can be 

described by the simple harmonic oscillator.  

 

•  Discover electro-mechanical analogies 

and how they can be exploited in solving 

problems in different branches of Physics.  

Learn about effects of damping, and effects 

of a periodic driving force.  

Learning Goals 

PCD_STiCM 
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•  Get introduced to resonances in 

physical systems and the primary 

indicators of the quality of 

measurement techniques, such as 

the ‘Quality Factor’.  

 

•  We shall also become familiar 

with the ‘wave motion’ which is of 

ubiquitous application in both 

‘classical’ and ‘quantum 

mechanics’. 

Learning Goals 
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Galileo Newton 

( , )

 

Linear Response.

Principle of causality.

q q

F ma
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Galileo Newton 

Lagrange 
Hamilton 

( , )

 

Linear Response.

Principle of causality.

Principle of

    Variation

( , )

( , )

q q

F ma

L q q

H q p



 0
L d L

q dt q

  
  

  

,
k

H H
q p

p q

 
  

 PCD_STiCM 
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Galileo 

Newton 

( , )

 

Linear Response.

Principle of causality.

q q

F ma
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Kinds of equilibrium 

unstable 

neutral 

stable 

stable 

stable 

unstable 
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Saddle point 

Un/stable 

equilibrium? 

U 

N 

S 

T 

A 

B 

L 

E 

STABLE 
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0

0

0

0 0

2
2

02

3
3

03

( ) ( )  ( )  

1
                       +  ( )  + 

2!

1
                       +  ( ) ...

3!


   









 



x

x

x

U
U x U x x x

x

U
x x

x

U
x x

x

meaning of small oscillations 

Approximations, close to x0 

0

2
2 2

0 0

0

2

0

1 1
( )   ( )+ ( )   = 

2! 2

 choosin    and 0.( ) 0
x

U
U x U x x x kx

x

b xU xy g


 







Potential for a  

Linear harmonic oscillator 

x 

U(x) 

‘Zero’, at equilibrium 

 
dU

F kx
dx

   

k
x x

m
 

U(x) 

  x 
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2 

Intrinsic natural frequency 

‘reference circle’  

for  

Simple Harmonic Oscillations 

Shadow of the red dot in uniform 

circular motion constitutes SHM PCD_STiCM 
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Unlike what happens in 

a resistor, the current 

and voltage in an 

inductance L, and in a 

capacitor C, does not 

peak together. 

CV

LV

I

Voltage lags the current in a 

capacitor by 900,  

but  

leads the current in an inductor by 

the same amount. 

 is proportional to , 

not to V, as in the case of a resistor.

dV
I

dt

L C 

PCD_STiCM 
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C

Q
V

C


CV

LV

I
Voltage lags the current in a capacitor by 900,  

but leads the current in an inductor by the same amount. 

( )
d d dV

I Q Q CV C
dt dt dt

   

2

2L

dI d Q
V L L LQ

dt dt
     

 is proportional to , 

not to V, as in the case of a resistor.

dV
I

dt

PCD_STiCM 
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Electro-mechanical analogues: 

 

Inductance          mass, inertia 

Capacitance       1/k, compliance 

Question: 

 

Could we have 

associated L with 

1/k and C with m? 

A & B: determined by 

INITIAL CONDITIONS 

11

x x
k

C

m

Q
L

Q

 

 
  

 

0 0

0

(1)    

(2)   Most general solution: 

Substitute (2) in (1) 

i t i t

q q

q Ae Be
 



 



 

 

 

PCD_STiCM 
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Any wonder that Feynman calls the above 

relation as Newton’s law of  electricity’ ? 
 

Two initial conditions provide solutions to the 

‘equation of  motion’ in a linear response 

formalism. PCD_STiCM 
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0 0

0

the frequen

( )

The 

cy is 

most general

governed by  ;

A and B are determined by initial  

 solution is 

( ) +B  where =  

conditions

i t i t

q q t

q t Ae e
 





 

 



0

the solution at time  0 is 

( 0) ;   also,  ( 0) ( ) 

t

q t A B q t i A B


     

0

*

solving for  an  from the two equations,  

1 ( 0)
 ( 0)  ;  

2

  (complex conjugate)  

A B

q t
A q t i

B A



 
   

 



PCD_STiCM 
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2

2

Mean kinetic energy 

1
=  

2

Mean potential energy 

1

2

KE mx

PE kx

0

0

             spring-mass system

sin( )

k
x x

m
x A t

k

m

 



 

 


0

0

( )

Mean: ( ) =   

T

t

T

t

f t dt

f t

dt









2 2 21 1 1 1

2 2 2 4
PE kx kA kA   

2 2 2 2

0 0

1 1 1 1
= ( )

2 2 2 4
KE m x m A A m   

2

0 : ,  since 
k

Note PE KE
m

   

2 21
<cos ( t)dt> <sin ( t)dt>

2
  

PCD_STiCM 
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a) plot  and  as functions of 

b) sketch instantaneous V and I as functions of 

c) what is the phase difference between  and  ?

d) what is the phase difference between I and V ?

q q t

t

q q

0 0

0

1

(1)    

(2)   Most general solution: 

Substitute (2) in (1) 

i t i t

Q Q
LC

q q

q Ae Be
 



 



 
  

 
 

 

 

Graph plotting exercises 

PCD_STiCM 
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0 0

0

(1)    

(2)   Most general solution: 
i t i t

q q

q Ae Be
 



 



 

 



SUPERPOSITION 
 
Coupled oscillators 

PCD_STiCM 
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1 2 

Frictionless support 

Frictionless support 

Principle of superposition 

Frequency of oscillations?  

Longitudinal oscillations Reference: Berkeley’s Mechanics 

Longitudinal Displacement, to the 
left or right, both make BOTH 
THE SPRINGS apply a restoring 
force on the mass in essentially 
THE SAME DIRECTION. 
 

‘effective spring constant’ = ? 

Longitudinal Oscillations 

Coupled Oscillators 

1 

2 

PCD_STiCM 
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The total restoring force along  

 is 2 sin

2 sin )2 (

x

x
lx

T

T k a
l

m









   

23 

View in the plane of vibration 

a a 

x 

0

Tension exerted by each string

AT  EQUILIBRIUM

 ( )kT a a 

ao: relaxed length of  the springs 

a: instantaneous stretched length 

l 

θ 

Transverse oscillations 

PCD_STiCM 
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0

0

0

0 0

2
2

02

3
3

03

( ) ( )  ( )  

1
                       +  ( )  + 

2!

1
                       +  ( ) ...

3!


   









 



x

x

x

U
U x U x x x

x

U
x x

x

U
x x

x

meaning of small oscillations 

Approximations, close to x0 

0

2
2 2

0 0

0

2

0

1 1
( )   ( )+ ( )   = 

2! 2

 choosin    and 0.( ) 0
x

U
U x U x x x kx

x

b xU xy g


 







Potential for a  

Linear harmonic oscillator 

x 

U(x) 

 
dU

F kx
dx

   

k
x x

m
 

U(x) 

  x 

PCD_STiCM 



25 

View in the plane of vibration 

a a 

x 

ao: relaxed length of  the springs 

a: instantaneous stretched length 
T0=k(a-a0) 

T=k(l-a0) l 

θ 02 sin 2 ( )
x

mx T k l a
l

    

SLINKY ~ SHO with effective spring constant (2k),  

 - for very large values of  l without losing linear elasticity! 

Ref.: Berkeley, Vol.1/Mechanics 

0
0

0( )
if     i.e.  ;        1;           1  2a

a l
l

l a

l

k
x x

m
 


  

SLINKY approximation 

A typical slinky with a0 of  only 3” can be stretched to 

as much as ~15’ without loosing the linear elasticity!           PCD_STiCM 
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 
0

0

Displacement ( , ) cos

However, cos    ( )  

is also a solution

q q x t q t

q t x



 

 



What is the functional form of ( )?x

0 0

0

(1)    

(2)   Gen. solution: 

Substitute (2) in (1) 

i t i t

q q

q Ae Be
 



 



 

 

 
0

         

( 0)

Displacement ( 0)

( 0

  (

) ( )

0)

We can find A and B in terms of

q t A B

q

q t and q

t

t

i A B



  

  



over one wavelength,  must change through 2 

2 2
 and =

where  is some constant angle.

x kx
x

  


 


     



 PCD_STiCM 
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 0( ) cos ( )q t q t x  
2

=





    x kx

 0 0( ) cos ( )  = q cos{ t kx } 

:  

q t q t kx

phase t kx

 

 

      

   

dx
0

dt

a wave travelling to the left





when

                                

dx
                               0

dt

a wave travelling to the right





when

    constant :  0 On a surface of phase d  . .    0

. .      

          

i e dt kdx

i e kdx dt

dx

dt k







 





PCD_STiCM 
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The wave covers one 

wavelength  



The traveling speed of the wave is  v=  

in one period T, 




T

f(x-vt) represents a pulse traveling to the right   

 g(x+vt) represents a pulse traveling to the left  

dx dx
0,  i.e.  as a negative quantity

dt dt

a wave travelling to the left





dx dx
0,  i.e.  as a positive quantity

dt dt

a wave travelling to the right





PCD_STiCM 
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 
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 We will take a break….  

 

…… Any  questions ? 
        pcd@physics.iitm.ac.in 

Next: DAMPED oscillations 

PCD_STiCM 
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Total energy E is constant: conservative forces 

<KE> = <PE> : not true when friction is present 

Damped harmonic oscillator 

Is there only a restoring force in real situations? 

Energy dissipation 

Breaking, damping in automobiles,  

galvanometer 

PCD_STiCM 
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Damped 

Oscillator: 

mx kx cx  
2

02 0x x x    

2

0where 
k

m
 

2

c

m
 

If EM & Gravitational forces are conservative, 

 and all forces are made up of fundamental forces, 
 

Then,  why is friction dissipative? 

           Just what is ‘lost’, and why? 

vfrictionF c cx   

mx kx S.H.O. 

PCD_STiCM 
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All ‘net’ interactions in nature:  

 

superpositions of fundamental interactions,   

 - nuclear (‘strong’ interaction),  

 - electro-weak  

  (electromagnetic/nuclear ‘weak’),  

 -and gravity. 
 

So, what is the origin of dissipation? 

PCD_STiCM 
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Cause of ‘Friction’: Often, we track the evolution of 

the state of some pre-specified mechanical system 

without keeping track of everything else that this 

system interacts with.  
 

There are thus unspecified degrees of freedom ! 
 

Dissipation: result of our neglect of these 

unspecified degrees of freedom,  

even as the component interactions individually 

conserve energy. 

PCD_STiCM 
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The equation of motion: mx kx bx  

2

02 0x x x    

2

0where 
k

m
 

2

c

m
 

We seek a solution in the form: ( ) qtx t Ae

and inquire what conditions would result on q if 

Eq.[b] is to be admitted as a solution of Eq.[a] 

Eq.[b] 

Eq.[a] 

Substitute [b] in [a]: 2( ) ,    ( )qt qtx t Aqe x t Aq e 

Why seek this 

form? 

2 2

2 2

0

02

2 0

0qt qt qtAq e Aqe A

q q

e









 

 





PCD_STiCM 
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2 2c
 + q + 0

m
q  

2 + c    = 0.mq q k

2 4
 = .

2

c c mk
q

m

  

2 2

1  =  +  ,q    
2 2

2  =   q     

 quadratic equation

2

0 m k

2

c

m
 

1 2

1 2

1 2

( )    ;   

 and  are constants 

determined by initial conditions, 

at 0, on ( ), ( )

q qt tx t Ae A e

A A

t x t x t

 

 PCD_STiCM 
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CASE 1:  
 

 

  

2 2

1  =  +  ,q    

2 2

2  =   q     

2

0

k

m
 

2

c

m
 

1 2

1 2:    ( )    ;   

both the terms approach zero as t ,  

 

 

q qt tSince x t Ae A e

asymptotically

0

1 2

2 2

 ,

  is a real number whose value/magnitude is

 both q  and q  become 'real' and essentially 'negative

,

'

When

so



 

  



 

OVERDAMPED  OSCILLATOR 

PCD_STiCM 
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2 2

1,2  =    ,    q 2

0

k

m
 

2

c

m
 

1 2

1 2( )     
q qt tx t Ae A e

1 2

1 2

1 2

1 1 2 2

( )    

( )   

 

 

q qt t

q qt t

x t Ae A e

x t q Ae q A e 1
2

1 2

1
1

1 2

( 0) ( 0)

( 0) ( 0)
( 0)

  




  
  



hence

q x t x t
A

q q

q x t x t
x t A

q q
1 2

1 1 2 2

1 1 1 1 2

1 1 2 2

,

( 0)   

( 0)   

( 0)   

( 0)   

Hence

x t A A

x t q A q A

q x t q A q A

x t q A q A

  

  

  

  

‘Overshoot’ : not possible. Oscillations 

being completely killed, this oscillator 

is called ‘OVERDAMPED’. 

0

2 2

1 2

 ,

  is a real number whose value is ,

 both q  and q  become 'real' and essentially 'negative'

When

so



 

  



 

PCD_STiCM 
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CASE 2 

 

 

                                                                                                 

2

0

k

m
 

2

c

m
 

2 2

0     is an imaginary number     

UNDERDAMPED OSCILLATOR 

2 2 2 2

1 0 0

2 2

2 0 0

 =  + i           

 =  - i           . .,  

                                                            by an amount determined by 

q i where

q i i e

       

    



 

      

     

   

1 2( )    
i ti tx t Ae A e

     
 

2 2

1,2  =    ,    q

 
 

1 2

1 2 1 2

( )   

( ) ( )cos( ) ( )sin( ) 

i tt i t

t

x t e Ae A e

x t e A A t i A A t

 

  

 



 

   
PCD_STiCM 
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CASE 2 
                                                                                                                

 
 

  

2

0

k

m
 

2

c

m
 

2 2

0 ,   is an imaginary numberWhen     

UNDERDAMPED OSCILLATOR 

 
 

1 2

1 2 1 2

  

( )cos( ) ( )sin( ) 

 

  

 



 

   

i tt i t

t

x e Ae A e

x e A A t i A A t

1 2

1 2

sin

( ) cos

A A B

i A A B





 

 
1 2,    

2 2

i iiBe iBe
A A

  

   

 ( ) sin cos( ) cos sin( ) 

( ) sin( )

t

t

x t Be t t

x t Be t





   

 





 

 

Introduce two new parameters B & θ instead of A1 and A2. 

→ insight in the nature of the solutions 

PCD_STiCM 
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2

0

k

m
 

2

c

m
 

2 2

0 ,   :imaginary     
UNDERDAMPED OSCILLATOR 

 ( ) sin cos( ) cos sin( ) 

( ) sin( )

t

t

x t Be t t

x t Be t





   

 





 

 

•   Solution: sinusoidal, at circular frequency ω 

determined by the two parameters              
 

•  Frequency ω < ω0 

 

•  Amplitude decreases exponentially with time 
 

•  Oscillation is phase shifted by θ 

2 2

0

0

 

. .,  by an amount determined by i e

  

  

 



0  and . 
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2

0

k

m
 

2

c

m
 

2 2

0 ,   is an imaginary numberWhen     

UNDERDAMPED OSCILLATOR 

( ) sin( )tx t Be t   

This solution is *NOT* “periodic”; *NOT* repetitive. 

 

One may regard the oscillatory sinusoidal term to 

have an exponentially diminishing amplitude. 

But the *ZEROES* are repetitive; strictly 

periodic; occur at a time period of T=2π/ω, 

called “period of the damped oscillator”. 
PCD_STiCM 
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2

0  & 
2

  
k c

m m

2 2

0 ,   :imaginary    UNDERDAMPED OSCILLATOR 

( ) sin( )tx t Be t   

*ZEROES* are repetitive; strictly periodic; occur at a time 

period of T=2π/ω, called “period of the damped oscillator”. 

The number of oscillations in 

a small time interval t

(in t)= = t=
2

1
; frequency

t t
N

T

T



 
 



 

( )
   1

t T
Tn

t
n

B Be
e e

B Be


 



 
 

  

In two successive periods ‘T’,  

the amplitude falls according to  

the following ratio: 

Logarithmic decrement factor 
PCD_STiCM 
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UNDERDAMPED OSCILLATOR 

( ) sin( )tx t Be t   

( )

2

1

  2

1





 

 



 



 

t T

t

T

B Be

B Be

B
e e

B

In two successive periods ‘T’, the  

amplitude falls according to the following ratio: 

Logarithmic  

decrement factor 

Question: By what amount does the amplitude 

diminish over a time                        ? t NT 

1

1

, =  ,  

1
hence, when  = ,  

1the 'amplitude decrease factor' would be .
e

 



  NT NNB
Now e e

B

NT

2 2

0 ,   :imaginary    

PCD_STiCM 
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2 2

0 ,     is an imaginary number    

UNDERDAMPED OSCILLATOR 

( ) sin( )tx t Be t   

Unlike the ‘overdamped oscillator’ (no oscillations),  

we do have oscillations that are ‘damped’, not 

‘killed’; hence called UNDERDAMPED   

     OSCILLATIONS 

PCD_STiCM 
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Case 3:  

0 1 2= ,   : the two roots are equalq q q   

( )  qtx t Ae

( )  tx t Bte

( )   ( )t t tx t Ae Bte A Bt e       

‘CRITICAL DAMPING’ 

At ,  the system reaches the equilibium position,

and then, after the overshoot, 

the next attainment of equilibrium can be 

only after infinite time.

 
A

t
B

Can we get the 2nd linearly independent 

solution by considering the following 

simplest departure from the previous one? 

2 2

1,2  =        q

PCD_STiCM 
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2

0

2 2

1 2

 ,   i.e. 4 ,

  is a real number whose value is ,

 both q  and q  become 'real' and essentially 'negative'

When c mk

so



 

  

 

 

Overdamped Oscillator 

Amplitude versus time No oscillation ! 

No overshoot off  

equilibrium 

Let us recapitulate main results! 

PCD_STiCM 
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Underdamped Oscillator 

 
  

( ) sin cos( ) cos sin( ) 

( ) sin(   )

t

t

x t Be t t

x t Be t





   

 





 

 

2 2

1 2 0

0

 = ;    = ;     

. .,  by an amount determined by 

q i q i where

i e

      

  

     



2 2 2

0 ,     is an imaginary number; 4 ,When c mk     

1 2

1 2    
q qt tx Ae A e 

 1 2 1 2( )cos( ) ( )sin( ) tx e A A t i A A t     

Amplitude versus time 

Exponential fall of amplitude 

‘zero/equilibrium crossings’ do occur 

Oscillations damped, not killed ! 

Amplitude diminishes more rapidly for larger values of c 

2

c

m
 

PCD_STiCM 
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Critically damped oscillator 

2

0 1 2= ,  4 ,   : the two roots are equalc mk q q q    

( )   ( )t t tx t Ae Bte A Bt e       

The equilibrium position =0 is reached

in 'finite' time interval,  . 

After the overshoot, the next attainment 

of equilibrium can be only after 'infinite' time.

x

A
t

B
 

Amplitude versus time PCD_STiCM 
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Amplitude versus time: all the three cases 

Overdamped: oscillations 

are `killed’   

Underdamped:  

oscillations are damped  

critically damped:  

overshoots equilibrium 

in finite time 
PCD_STiCM 
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…… Any  questions ? 
 

pcd@physics.iitm.ac.in 

Next: 

Forced oscillations  
Restoring force, damping force  

and driving force….. 

                    RESONANCES….. Waves…… 

We will take a break …… 

PCD_STiCM 
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Forced oscillations  
Restoring force, damping force and driving force 

"The Hand That Rocks The 

Cradle,  

Is The Hand That Rules The 

World"  

 

-William Ross Wallace  

 

This poem was first published in 

1865 under the title "What Rules 

The World".  

PCD_STiCM 
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Forced oscillations  
 

Restoring force, damping force and driving force 

 

i.e.,

dr

dr

F mx kx cx F

Fc k
x x x

m m m

    

  

For a simple pendulum with damping ,

drFc g

ml l ml
    

For an LCR oscillator,   

1
 

1
or, 

dr

dr

VR
Q Q Q

L LC L

LQ RQ Q V
C

  

  
PCD_STiCM 
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 or  dr
dr

Fc k
F mx kx cx F x x x

m m m
       

Actual form of the solution depends on the functional form of Fdr 

( )

0Let = e ,   a periodic force, with frequency 

 is a phase angle - depends on 'when' we 'start' the driving force

i t

drF F 



  

2 ( )0
0  2 e  i tF

x x x
m

     

Special case: No damping 

2 ( ) .i tF
x x e

m




   
   

 

   =   

where 

dr

i t i t

i

iF e Fe

F F e

F e







 



Complex amplitude which 

includes time-independent  

phase eiθ 

2

0  & 
2

  
k c

m m
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( ) ,  (where  includes the phase factor) is a solution

 of the differential equation  for damped, forced vibrations

i tx t xe x

2

,  

 ( )

x i x

x i x

 

 

The exponential form allows us to 

interpret the effect of differentiation 

with respect to time through the 

operator (d/dt)  to be equivalent to  

multiplication by  (iΩ ) 

 

2

2 2

0

2 2

Using above relations in  

( )
 [ ] / ,

we get  ( ) / ,

( )

 








 
 

  


 o

i t
x x F e m

x F m

F
x

m

0

!

, the driving frequency becomes 

equal to , the natural frequency,

the amplitude blows up to infinity.





Note

    where dr

i t iF Fe F F e

 
2 ( ) .i tF

x x e
m




   
   

 
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2 0
0

General case, including damping: 

2 exp  ( )
F

x x x i t
m

      

0

2 2

( )

Try a solution ( )

with   

( )

( )

i t

i

i t

i t

x t Ae

A A e

x A i e i x

x A i e x

 















  

  

2 2

0

2 2

0

Substituting for  and :

[ (2 ) ] ( ) ( / )

. .[( )  2  ] A    ( / )

 

 



 

    

    

i t

i t i t

x x

i x t F m e

i e i e F m e

Note! There are two angles  

                                   to keep track of! 

:
‘Timing’  

– when 

exactly do 

you start 

applying the 

driving force 

:   phase lag of 

oscillation . . . 

the driving force



w r t

   =   

where 

dr

i i t i t

i

F F e e Fe

F F e









 


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2 0
0

General case, including damping: 

2 exp  ( )
F

x x x i t
m

      

0

( )

( )

with   
 









i t

i

x t Ae

A A e

 
  

2 2

0

2 2

0

[( )  2  ] A   ( / )

/
 

2

i t i ti e F m e

F m
A

i

 

 

     


   

   =   

where 

dr

i i t i t

i

F F e e Fe

F F e









 



 
  

0

0 2 2

0

0

/
( )

 
2

                             as 

i

i

i

F e m
A e

i

F F e



 



 




   


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 
 

 

 
0

0

0 02 2 2 2

0 0

/ /( )
   ;   

2 2

i

i i
F e m F m

A e A e
i i



  

   

 


       

Separate now the real and imaginary parts 

by multiplying both numerator and denominator 

 by the complex conjugate of the denominator  

   

 

  

 

2 2

0 0 0 0 0

2 2
2 2 2 2 2 2 2 2

0 0

/ / 2
cos  and  sin 

4 4

F mA F mA 
 

   

  
 

       

 

 
0 0

2 2

0

/( )
   

2

i F mA
e

i



 




   

cancel 
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1

2 2 2 2

0 0

2 2
  tan  ;   tan =and

 
 

 

   
  

    

Squaring and adding  

  
0

2
2 2 2 2

0

( )  

4

F
A

m


 

 

   

0

( )

  Recall that our solution is: 

( )

with   

i t

i

x t Ae

A A e
 









   

 

  

 

2 2

0 0 0 0 0

2 2
2 2 2 2 2 2 2 2

0 0

/ / 2
cos  and  sin 

4 4

F mA F mA 
 

   

  
 

       

2 2sin  & cos 

Phase factor   changes 

markedly with the frequency 

 of the driving force.





0

2 2 2 2 2

0

( )( / )
( ) .

( ) 4

 

 

  


   

i tF m
x t e
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2 0
0

0

2 2 2 2 2

0

( )

( )

  Thus the solution for  2   becomes

( / )
( ) .

( ) 4



 

 

 

 

  

  


   

i t

i t

F
x x x e

m

F m
x t e

Physical features of the steady state solution: 
 

The oscillation is out of step with             through the angle 
 

The amplitude of the oscillation is governed by the amplitude  

of the driving force, modulated further by the factor  

                                    ,   and also by the inertia m 

drivingF .

2 2 2 2 2

0

1
( ) 4    

Nature of the solution depends on         

and on the proximity of                . 


0 to 

Fascinating 

applications in 

mechanical, electrical 

and many other  

physical systems.  PCD_STiCM 
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 
0

2
2 2 2 2

0

( )  

4

F
A

m


 

 

   

0

2 2 2 2 2

0

( )( / )
( ) .

( ) 4

 

 

  


   

i tF m
x t e

0

( )

( )

with   
 









i t

i

x t Ae

A A e

0 0 ( ) A A

As a function of the frequency of the driving 

force, when will the amplitude of oscillation 

be a maximum? 
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Condition for Resonance  

0

In the absence of damping, the condition 

that the amplitude is maximum is 

that    

0



Two frequencies 

are of interest Intrinsic, natural frequency. 
 

External, under our control!  

Reference: Fowles ‘Analytical Mechanics’; Our notation is slightly different! 

 
0

2
2 2 2 2

0

( )  

4

F
A

m


 

 

   

0when is 0?


dA

d

….. but what when damping is   

               present? 
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 

 

2 2 20
0

0

3/ 2
2 2 2 2 2

0

1
2( )(-2 )+ 8 

2when is 0?
( ) 4

 

 

    

 
    

F

dA m

d

Condition for Resonance  

r 2 2 2 2 2

0 0

2

0 0

The N  is zero when   = 2  i.e. 2

( / ) ,   resonance frequency

condition for resonance for a damped driven pendulum 

   

  

    

    

r

r

0



Intrinsic, natural frequency. 
 

External, under our control!  

 
0

2
2 2 2 2

0

( )  

4

F
A

m


 

 

   0when is 0?


dA

d
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2 2

0

Recall that the frequency of the 

unforced (underdamped) oscillator is:

    

2 2

0 2

:  resonance frequency

r

r

   



1/2
2

2 2 2

2

1/2
2

2

2

2

 1

1

1
2

r


  













   
      

   

 
  

 

 
  

 

 2 2 22r      

2
2

0 2

0

2

0 2

0

2

0 2

0

2

0

0

2
1

2
1

1

r





















 
   

 

 
  

 

 
  

 

 

2 2 2 2 2 2

0 0;          
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Amplitude at Resonance  

0



Intrinsic, natural frequency. 
 

External, under our control!  

 
0

2
2 2 2 2

0

( )  

4

F
A

m


 

 

   

    

0

2
2 2 2 2 2 2

0 0 0

( )  

2 4 2


     

 

   
MAXIMUM

F
mA

2 2

0 2

:  resonance frequency

r

r

   



0

0
2

0

2
( )

2  
 


MAXIMUM

F
mA 20

0 0

2

. .

2 ( )    MAXIMUM

i e

F
A

m
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 

2

0

2
2 2 2 2

0

0

22 ( )
( )  

4

MAXIMUM
A

A


 







 
 

   

20
0 0

22 (Using: )MAXIMUM

F
A

m
    

we get:  

 
2

2 2 2 2

0

0( )  

4

A
F

m


 

 

   
in 
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 

2

0 0

2
2 2 2 2

0

22 ( )
( )  

4


  

 

 
 

   

MAXIMUMA
A

   

0 0

2 2 2

0 0 0

( ) 2
( )  

2 4




   


 

  

MAXIMUMA
A

  

  

2 2

0 0 0

0 02

  

 

      

  

Approximation

 

0

2 2

0

( )
( )  



 


 

  

MAXIMUMA
A

02
Cancelling 

in Numerator  

& Denominator 

0

0  r

 





 
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2 0
0

0

2 2 2 2 2

0

( )

( )

  Thus the solution for  2   becomes

( / )
( ) .

( ) 4

i t

i t

F
x x x e

m

F m
x t e



 

 

 

 

  

  


   

We must add the solution of the corresponding 

homogeneous equation (that of ‘unforced’ damped 

oscillator) as well.  

‘particular’ solution 

This part is a transient solution consisting of 

oscillations of decreasing amplitude for  

under-damped oscillator.  
PCD_STiCM 
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The GENERAL  solution for the 

damped driven oscillator will be  

0

2 2

0

( )

( ) sin( )

( / )
          

( )

i t

t
x t Be t

F m
e

 


 



  


  

 

Damping ignored in the  

steady state part , but not in the transient. 

 

 

 

                                            Why? 

0

2 2 2 2 2

0

( )( / )
  .

( ) 4

 

 

  

   

i tF m
e
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0

The three circular frequencies involved : 

, the natural frequency; 

,  the frequnecy of the damped oscillator 

and , the driving frequency







0

2 2Remember! ,  where /   for mass-spring oscillator,

1
and  ,  for -circuit

k m

LC
LC





   



  


0

for simple pendulum

g

l
 

0

2 2

0

( )( / )
( ) sin( )   

( )

 
 



  
  

 

i tF mt
x t Be t e
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0

0,max 0,max

2 2

2 2

0 max

when   ,

( )  =
2

1
( )

2

A A
A

A A



 



 

  

 


 

Energy is proportional to 

the square of the 

amplitude, 

and for frequencies 

separated by 

about the resonance 

frequency, the energy 

reduces by a factor of 2.  

2

2 “RESONANCE WIDTH” 

0Define:       (for the case of weak damping)
2 2



 
 Q

Quality Factor 

 

0

2 2

0

( )
( )  



 


 

  

MAXIMUMA
A

0 
0  0


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Less Damping 

More Damping 

0 ( )A

r


Frequency of the Driving Force 74 PCD_STiCM 
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…… Any  questions ? 
 

pcd@physics.iitm.ac.in 

Next: 

 
….. Waves…… 

We will take a break …… 

PCD_STiCM 
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77 http://www.math.harvard.edu/archive/21b_fall_03/tacoma/index.html 

The Tacoma Narrows Bridge in Washington state, was with 

1.9 km length one of the largest suspended bridges built at 

the time. The bridge connecting the Tacoma Narrows 

channel collapsed in a dramatic way on Thursday 

November 7, 1940. Winds at about 50-70 km/hr produced 

an oscillation which eventually broke the construction.  

See video of this `Disaster 

at Resonance’ at the 

internet link given below! 

Forced/Driven 

Damped 

Oscillator 

PCD_STiCM 

http://en.wikipedia.org/wiki/Image:Tacoma_Narrows_Bridge_Falling.png
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Enrico Caruso  

1873 - 1921 Enrico Caruso  - could shatter a 

crystal goblet by singing a note of 

just the right frequency.  

In 2005, Discovery TV 

Channel recruited 

rock singer and vocal 

coach Jamie Vendera 

to hit some crystal 

ware.  

Resonances 

http://www.youtube.com/watch?v=Jy8js2FmGiY PCD_STiCM 

http://en.wikipedia.org/wiki/Image:CarusoSmall.JPG
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Chalo,   

 

HAMMER  

se hi kaam 

chala lete 

hein! 

 

 

 

Our 

own 

BAIJU 

of 

MANDI  

PCD_STiCM 
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Google: MRI picture 

PCD_STiCM 
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Solutions of the 

oscillator problem play 

a fundamental, crucial 

role in DSP, information 

transmission, etc. 

PCD_STiCM 



Each 

component 

wave has a 

Wavelength  

82 

X 

Unit 2:  

Oscillators  

Resonances  

Waves 

                                    

                                                      

                         

 

                             

                                                      

              

( )y f x
( v ) y f x t

vtWave pulse at t=0 
 

Peak is at x=0 Wave pulse at t > 0 
 

Peak is at x=vt 

A wave packet, 

or a wave pulse, 

is made up by 

superposing a 

large number of 

sinusoidal 

waves.  



v 

Wave / Pulse propagation 

The component 

travels at its own 

phase velocity 

Shape: same 

Medium: Non-dispersive 
PCD_STiCM 

http://cnx.org/content/m17100/latest/graphics1.jpg
http://cnx.org/content/m17100/latest/graphics1.jpg
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Pulse shapes ---- Fourier Analysis 

Jean Baptiste Joseph 

Fourier  
 

March 21, 1768 

May 16, 1830 

Fourier :  

 

 

Any periodic function can be 

written as a sum of simple 

oscillating functions 

                             

- sine and cosine functions  

PCD_STiCM 

http://en.wikipedia.org/wiki/File:Fourier2.jpg
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Unit 2:  

Oscillators  

Resonances  

Waves 

(x) 0 for x<0

          1 for x>0





H Heaviside step function 

 

“Unit step function”  

L 

2L 

1 

-1 

0 

Square Wave:  ( ) 2 1 1
x x

f x H H
L L

    
       

    

 

 the function:  ( ) 2 1 1

when 0,2

    
       

    



x x
Plot f x H H

L L

x L

x 
X=0 

x 

PCD_STiCM 
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 
1,3,5,....

4 1
( ) sin 







 
n

f n
n

PCD_STiCM 
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2 2 2 2 2

8 1 1 1 1
( ) sin sin(3 ) sin(5 ) sin(7 ) sin(9 ) ......

3 5 7 9
     



 
      

 
f

Applications: 

 

 

Digital Signal Processing 

for example! 

PCD_STiCM 
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Unit 2:  

Oscillators  

Resonances  

Waves 

We worked with the function ( )

Square Wave:  ( ) 2 1 1

,  we examined the saw-tooth triangular waves



    
       

    

f f x

x x
f x H H

L L

also

In general, in wave/pulse propogations, we have

function of both space and time: ( , ),

              or, more generally, ( , )

often called the wavefunction ( , ).

f x t

f r t

r t

( , ) ( v )  x t f x t

PCD_STiCM 

http://www.falstad.com/ripple/
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If all the components of the wave-packet travel at 

the same speed, the ‘shape’ of the wave-packet 

propagates without distortion.  

This is the property of a non-dispersive medium. 

In a dispersive medium, the wave packet ‘spreads’. 

PCD_STiCM 
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Note:   

At fixed z,  this represents a harmonic oscillation in time. 

( , ) cos cos( )
v

z
z t A t A t kz



  
  

    
  

                                         
v

phase velocity 
2

v

wher

k T

e k

k





 




   



Important parameters: frequency, period, wavelength, 

  

                                                     amplitude, phase 

At fixed t,   this represents a harmonic oscillation in space. 

PCD_STiCM 
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The wavefunction ( , ) cos( ) 

where  ( ) ( , ),  the phase function

z t A t kz

t kz z t

 

 

 

 

At a given z,  the phase varies linearly with time 

 

At given t, the phase varies linearly with the space coordinate 

‘phase’ 

In a medium, surface of constant phase is given by:

0

v ,  phase velocity.

d dt kdz

dz

dt k


 



  

 

‘phase velocity’ is the speed at which a wave-front defined by a surface 

at a certain fixed phase ( e.g. a crest) advances with time. 

PCD_STiCM 
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 Phase velocity v  for a nondispersive group of waves.

NON-DISPERSIVEWAVES:  is constant.

k

k









Actually, it is the MEDIUM that is non-dispersive. 

 

Properties of the MEDIUM are central to the phenomenology of  

NON-DISPERSIVE WAVES. 



k
In general, for dispersive waves, 

v  has a much more 

complicated dependence on  (i.e. ).k





 is a function of ,  given as ( ),  v v ( ),

 the functional form is different for different systems

k k k   

PCD_STiCM 
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1 1 2 2

Superposition: 

( , ) cos( ) cos( ) z t A t k z A t k z     

mod (

Then

,

, we get 

( , ) cos( )) ave aveA z tt t zkz  

Superposition :AMPLITUDE-MODULATED TRAVELING WAVE 

   

   

mod mod mod

mod mod1 2 1 2

1 2 1 2

where 

1 1
;  

2 2

1 1
also

( , ) 2 c

, ;    

s )

2

(

2

o

ave ave

A z t A t k z

k k k

k k k 

 







  







 





Ref: Berkeley/  

Vol.3/  

Page270 PCD_STiCM 
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At what speed does 

the modulation 

propagate?  

mod

mod mod

To follow a given modulation wave crest of the 

modulation amplitude ( , ),

we need to maintain a constant value of ( )

A z t

t k z 

mod( , ) ( , )cos( )ave avez t A z t t k z  

   

   

mod 1 2 m

mod mod mod

1

od 1 2

2 1 2

1 1
;  

where ( , ) 2 cos( )

1 1
als

2

o, ;    
2

2

2
ave ave

A z t A t k z

k k k

k k k





  

   



 





 

mod mod mod mod

i.e., in time ,  must increase by  in such a way that 

( ) ( ) 0

dt z dz

d t k z dt k dz    
PCD_STiCM 
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At what speed does 

the modulation 

propagate?  

mod( , ) ( , )cos( )ave avez t A z t t k z  

mod 1 2
mod

mod 1 2

To satisfy this, the modulation must propogate at:

v

                           v 'group velocity'g

dz

dt k k k

d

k dk

  

 




  



   

mod mod mod mod

In time ,  must increase by  in such a way that 

( ) ( ) 0

dt z dz

d t k z dt k dz    

PCD_STiCM 
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If all the components of the wave-packet travel at 

the same speed, the ‘shape’ of the wave-packet 

propagates without distortion.  

 

 

This is the property of a non-dispersive medium. 

 

In a dispersive medium, the wave packet ‘spreads’. 

PCD_STiCM 
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   

   

   

1/ 2 1/ 2
2 2 2 2

1 2

1/ 2 1/ 2
2 2 2 2

1 2

1/ 2 1/ 2
2 2 2 2

1 2

( )

v v

1 1 1 1
(2 ) ( ) (2( ))

v 2 v 2

1 1 ( )

v v ( )

 

  
 

     


 

  

a x b d x
t

dt
a x x b d x d x

dx

dt x d x

dx a x b d x

Why does the light 

ray go along the path 

A       B       C, 

and not along 

 A       B’       C 

A 

B B’ 

C 

A       B       C: 

Time taken for light 

to travel the path 

Zero (Fermat’s principle) 

1 2

1 2

1 1
Refractive Index

2 2

sin sin
0

v v

sin v

sin v

 





 

  n

x 

d 

a 

b 

1

2

‘1’ 

‘2’ 

Refraction 
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Refractive index, n: 
 

Ratio of phase velocity of light in 

vacuum to that in the medium 

vac vac

v  

 

 
  

c
n

Different colors refract  

                         through  

                            different 

                                  angles 

 r rn n

Refractive Index 

depends on 

FREQUENCY in a 

dispersive medium 

Red 

Normal  

dispersion 

Blue 
PCD_STiCM 
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medium

medium medium medium

In the medium:

v 1 c
2 2 2 2

             Refractive Index depends 
( )

                    on frequency in a dispersive medium

    
  




   

 medium

c

n n

c
k

n

2 2  


  
c

ck

vacuum

medium medium

v c

v v




   vacuum medium

medium vacuum

k
n

k

 vs.  graph: 

constant slope, speed of light

 k

 vs.  graph: not linear  Dispersion relation k PCD_STiCM 
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Control speed of light !  Bring it to a halt ! 

REVIEWS OF MODERN PHYSICS, VOL. 77,  

APRIL 2005 

Electromagnetically Induced Transparency:  

Optics in coherent media 

Jan 18, 2001 

Playing stop and go with light 
http://physicsworld.com/cws/article/news/2729 

PRL 86:5 783 2001 

PCD_STiCM 



100 

Laser smashes light-speed record  

http://physicsworld.com/cws/article/news/2810 

In a recent (2000) experiment at Princeton, L.J.Wang et al. 

managed to get a laser pulse travels at more than 300 

times the speed of light ! 

L J Wang et al. 2000 Nature 406 277  
 

Laws of physics: intact! 
 

‘Normal dispersion’: group velocity < phase velocity. 
  

‘Anomalous dispersion’:  

R.I. decreases as frequency increases; vgr > vph.  

                                                                     > c 

 normal Red 

Normal dispersion 

Blue 

Blue 

Anomolous 

Red 

 
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 r rn n My heart leaps up when I behold  

A rainbow in the sky: 

So was it when my life began; 

So is it now I am a man; 

So be it when I shall grow old,  

Or let me die!… 

- William Wordsworth  

Rainbow, seen from the ‘Maid of the Mist’ ride at the 

Niagara Falls, U.S.A., 18th July, 2009.       - pcd 

Questions: 
 

1. Why is the red outside and blue inside? 

2. Which part of this picture is the brightest, 

and why? 

R.I. of 

water for 

red is 

~1.331 

 

R.I. of 

water for 

blue is 

~1.343 

vac

v 




 

c
n
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We Will tAke A breAk… 
 

…… Any  questions ? 
 

pcd@physics.iitm.ac.in 

Next: Unit 3                     Dynamical Symmetry 

                                        of the Kepler Problem 

Plane polar 

Cylindrical polar 

Spherical polar coordinate systems PCD_STiCM 


