W
-
i
a
=
N
72
”’@
@
[pmm
&
-
=]
-)
.-
pmmmq
@)
W
[pmm(
Z
@)
2
W
72
pmmq
@)
&
—
=
w3
aQ
=
s
Z
pmm
Q
W

P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras
Chennai 600036

STICM

pcd@physics.iitm.ac.in



Learning goals
‘'symmetry’

Learn to use an
appropriate
coordinate system
to simplify analysis.

Goals: Physical quantities

are tensors of various ranks.

B \We must examine how their
‘components’ transform under
@ the rotation of a coordinate

# Srame of reference. ?



Claudius
Ptolemaeus
(AD100-170)
(called Ptolemy).

worked in the
library of
Alexandria.

Sofere of e
e Aforer

The sun and the planets were
considered to move on a small
circle (called ‘epicycle’) whose
center would move on a large

circle (called ‘deferent’).
PCD_STiCM
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Contributions of Indian Astronomers to the
Understanding of Heliocentric Coordinate System

Aryabhata (b. 476A.D.) - ‘ARYABHATYA (499A.D.)

Bhaskara | (A.D. 600) - MAHABHASKARIYA’,
LAGHUBHASKARIYA’, ARYABHATIYA BHASHYA’

Brahmagupta (A.D. 591) - ‘BRAMA SIDDHANTA’

Vateshwa (A.D. 880) - ‘VATESHWARA

SIDDHANTA’

Manjulacharya-(A.D. 932) - ‘LAGHUMANASA

[ Dealt with Precession of equinoxes |

Aryabhata | | (A.D. 950) - MAHASIDDHANTA’

Bhaskaracharya | | (A.D. 1114) ‘'SIDDHANTA
SHIROMANTI’ [ This work contains many formulas from spherical
trigonometry J........ etc.

PCD_STICM




http://w. physics.iitm.ac.in/~labs/amp/kerala-astronomy.pdf

Modification of the earlier Indian planetary theory by the
Kerala astronomers (c. 1500 AD) and the implied heliocentric
picture of planetary motion

K. Ramasubramanian, M. D. Srinivas ard M. S. Sriram

HTATH G r|¢’|n.g_.5::|': PHEGREER i_-:] ATHT Tz | i astronomers to
' astronomer of the
ATAT AT TZT AT AFTHATH |1 & || plJor the interior

h h B r the first time in
f centre for these
pn. where the five

From Golapaada, by Aryabhata, ~500 AD

nlanets He also de
“ - |

Just as a man in a boat moving sees the
stationary objects (on either side of the river)
as moving backward, so are the stationary
a2 stars seen by the people at Lanka (i.e.
Ninicus reference coordinate on the equator) as
1473-1543 moving exacipystoward the west.




Rene Descartes (17% century, Holland)

French philosopher, mathematician,
scientist: "Father of Modern Philosophy,”

Heliocentric system vs Church’s views

Despifé admitting the advantages of the
heliocentric coordinate system,
Descartes was reluctant to promote the
“certain and evident proof” in favor of
the heliocentric system since it was
against the will of the church.

PCD_STiCM 6



The Trial of Galileo (for supporting Copernican model)

April 1633: Galileo is interrogated before the Inquisition.

June:
Galileo sentenced to prison for an indefinite term.

December: Galileo is allowed to return to his villa in
Florence, where he lived under house-arrest.

1992: Catholic Church formally admits that
Galileo's views on the solar system are correct.

http://www.law.umkc.edu/faculty/projects/ftrials/galileo/galileochronology.html

PCD_STiCM




Z
Definition of a vector: “magnitude” and “direction” I
>

Is rotation by 90 degrees a vector? v
) v4

-

PCD_STiCM




SN How do vectors

transform under rotation

FLATLAND
EDWIN A. ABBOTT (1884) of a coordinate system?

Same vector can also be wriiuen as

—_

V =V,6, +V,8,

This can be generalized into three (or N) dimensions

PCD_STiCM 9
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D DO D

PCD_STiCM
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X Rxx ny sz
V' = RyX Ryy Ryz
L sz Rzy RZZ _ -
Qxx :Qxy :sz
ny ?yy Qyz =71 r.R — Rr’ ‘R‘ =71
?zx :ezy ?zz
ROTATION: |R|=+1 PARITY/ IR| =-1
REFLECTION

JNVERSION .



C.N.YANG AND T.D.LEE

) %)

Y | < | Y
< <

CHIEN-SHIUNG WU

PCD



—1 O ON/( x) [((—x)
O 1 O YI=| Y
.0 0 1) z) Uz,
LEFT <e——— RIGHT

REFLECTION

?
TOP ———p BOTTOM
1 O O \/( x) (o )

O 1 O Y [=| Y
A e S




Too much Mathematics?

“IF YOU WANT TO READ THE BOOK OF THE
UNIVERSE ,

YOU MUST KNOW ITS LANGUAGE, WHICH IS
MATHEMATICS".

Who said that?

Grandpa of Engineering?

Father of experimental Physics!

PCD_STiCM 15



I right—hand —cross— product

= limage % pimage p

CD




I right—hand —cross— product

= limage % pimage p

CD




Polar vectors and pseudo- or axial-vectors

under inversion,

r—-r,
P—>—=P
but if I=rxp,

then, under inversion. I}é—l

Axial vector (pseudo vector) does not transform like a position
vector under reflection.

Its components are governed by a different transformation law
with respect to rotation of thePebsrdihate system. 18



Examples :
Some ‘real physical quantities’

Angular Momentum Vector r x p

Force on a charged particle moving
In an electromagnetic field

—

F=q{E+vxB| Lorentz Force

The Lorentz force, like any other force, Is a polar vector,
since it includes the cross-product of a polar vector y

with a pseudo-vector B . _._ <y

19



Algebra of Pseudo Vectors and
Examples

Dot and cross products: Examples for axial (pseudo) vectors:

Polar x Polar = Axial =
Torque T =T X f
Polar x Axial = Polar

—

Axial x Axial = Axial Angular Momentum | = x p

Axial . Polar = Pseudo- . — . =
M n fiel —

scalar agnetic field Fmag. qvx B

Important: An axial vector can never be
equated with a polar vector

PCD_STiCM 20



We have learned that physical
guantities are represented by

scalars, vectors, tensors etc.

Scalars: tensors of rank zero

Vectors: tensors of rank one

Scalars / pseudo-scalars
Vectors / pseudo-vectors

Polar vectors / Axial vectors

PCD_STiCM

21



WE WILL TAKE & BREAK...

eeeee ANY QUESTIONS ?
| e pcd@physics.iitm.ac.in

Next: vectors in Polar coordinates

PCD_STiCM
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Spherical Pclar Coordinates



MOTORCYCLE MANI&

THE TORRES BROTHERS!

FIRST 5, THEN 7 GUYS RACE
THEIR BIKES INSIDE & 16 FOOT
STEEL GLOBE.

UNBELIEVABLE!

http://myspace.vtap.com/video/Motor+Cycle+Mania/CL0177433717_7cf78882
VOILSTE1MTIXN35pbjozfnE6GYnJ-
YNc6VOILSTELIMTIXNyxDTDAwWNzI4AMDMzMDI-aW46Nn5x0OnJs

PCD_STiCM 24







X=pCOSP| [poiftsy? FLATLAND SPACE

y=psing g,):tanlm Yo, s S

—0 < X< X
p. 0<p<w

—0O<Y<®© . 0<p<2x

P/coordinates
(pi0)=(XY)

> X

€, =CoSpe, +singé,
8

—sin g€, +cos pé,

O

J ‘S‘Wé}o Position vector
. P=PE

PLANE POLAR COORDINATE SYSTEM

D>
||
D ()

onstitute ansapthagenal pair of base vectors



Position vector VELOCITY?
p = pe, ACCELERATION ?

Note that (€,,€,)
are not constant vectors.

d

— [ Product offunctions]

dt

To get acceleration, d d
we have to do that ——

twice! dt Q_l_STiCM



“Unit Circle”

(€,,€,) are not constant vectors,

whereas (€,,€,) are.

6, =6,(p70)
e, =¢€,(2 )

» X

= COS @€, +Sin e,

ep
eco

=—sin g€, +cos e,

PCD_STiCM
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How do
these unit
vectors
change with
the azimuth
angle?

Ya

€, =COos e, +SIn e,

o6, :
—2 =—sin @&, +cos g,

Ap
op

e, =Sin e  +Cosge,

@ep

o

:ego

—? —_sin gp(COSgpép —sin §0§¢)+COS§0(Sin P8, +COS §0§¢)

PCD_STiCM 29



Geometrical
determination

“Unit Circle”

Consider (€,,€,)
at two neighboring

points, infinitesimally

close to each other.

. X
p2_epl:5¢e¢
. € .,—¢ . o0e o0 |
lim 222 — |im—2=—2=8
op—0 PCD&DCM Sp—0 5¢ a O @




>

D>
I

»(7,9)
6, (P.9)

(€,,€,) are not constant vectors.

yo,
®

D>

€, =CoS@e, +sin pe,

“Unit Circle” €, =—SInge, +Cos e,

. X
% %,
op op 7
IO 5 o€ 0é
||m e(p2 ewlzllm&:a&:_é _? _ _¢:_ép
500 S 5p-0 5 rogmTem || Op op




If &=£&(u) and u = ¢(x), chain rule

dé .
then B will be a measure of the d_§ z(d—éj(d—uj
du /\ dx

sensitivity of & to changes in X: dx

If £=£&(u,v)

where u = u(x?,v = v(_x), de 02 \( du £ \( dv
the rate at which & will O (aj(&jﬂ{gj(&j
change with respect to x
will be given by:

If £=~&(u,v,Xx) where u=u(x),v=v(x), the rate at

which & will change with respect to x will be given by :

& ~ala ) lakis)

32




Elemental area Position vector & Velocity

In plane polar coordinates in plane polar coordinates
dA= pd pdg _
v 1 P = pE,

dp Q_*_d; d(pep)
_p_ —
dt dt
dp,\ dép
=—L8 1 p—2
t 0 P gt
R 2x R2 X @: %:é
] ¢’
| [ pdpde=-"r27=7R? v
PCD_STIiCM op o !




e, 8ép_é
50 WMo °
op ol 1

Motion of a particle
In plane polar coordinates

Time-dependence
of unit vectors

Radial velocity ana Azimuthal velocity

dép _ 8ép gb:
dt  Oop

and chain rule
dé 08
¢ _ 0 5= _8 ¢
dt Jo 7P

34



e

V=pPE + Pp@ € instantaneous velocity
dé, o€

9 % s g
dt 8(p¢ o?
and
dé oé o
dt 9?7
acceleration @
_dv_ ., oo.de, o d,
da=—=p +p——+pp € +pY € + PO ——
g C T v o PP

= a=(p—pg°)e, +(2pp + pP)e,

PCD_STiCM 35



Cylindrical Polar Coordinates

Spherical Polar Coornates

PCD_STiCM 36



N

r r=x2+y’+7°
Z=rCcosé € IR
A ' tanH:'O:\/X Y
g Z Z
0<r<ow —
X% +
0<O< 1 Q:tanl\/ Y
- Z
0<p<2rx
(p:tan_ll
. . X
=rsinégsine
[ - Y

X=rsin@cosy,
¥,

/

X =rsinfdcose

X

/pzrsiné?

y=rsinésinge
PCD_STiCM Z=rCcosd

37



TRANSFORMATIONS OF THE UNIT VECTORS

é | [sinfcosp sin@sing cosd | | €
€, |=|cosfdcosp cosdsing -—sind | | e

€,| | —sing COS @ 0 | |¢

GET THE INVERSE MATRIX,

AND WRITE THE INVERSE

TRANSFORMATIONS.

€ | [sinfcosep cosfcosp -sing| | €
€, |=|sindsing cosfsing Ccosy | | €,
€, | | cosd —siné 0 |1¢€,

PCD_STiCM
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N

he point ¢

@ is displaced

to a new point @
on the sphere
of same radius

and in the same plane

r=constant ¢ = constant

> Y

/ Recognize the distance
between the old position

o=r sin @ | and the new position to be
rdé

PCD_STiCM
39



“t 8 odp=rsinfdg
< The point ®

IS displaced

to a new point @

on the sphere r = constant
and on the surface of the

inverted cone @ = constant

pde
=rsinfdg

> Y

/ /a @ | Recognize the distance
between the old position

po=r sin & and the new position to be
pdp=rsin@de

PCD_STiCM
40




Volume spanned

by the

three
displacements
through

dr
rdé
rsinf@de

X

dVv =
(dr)(rd&)(rsin 6d )
=r’siné dr d@ do

PCD_STiCM




N

15t position

The pointe «

/A

~& is displaced 2}0' position

— 508,

In the limit »  to anew pointe
560 — 0 on the sphere
. of same radius
aer _ é I = constant
=€, |
aH and in the same plane
@ = constant
- Y
Distance between the 15t
position and 2"9 position
is rdd
X

PCD_STiCM
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Partial derivatives of the unit vectors with

respect to the coordinates:

r

or or or

0 8, 08,

8ér_é
o0 "’
00
%, _
0

D

If imagining complicated
geometrical three-dimensional
objects Is getting difficult, you
can use the ‘chain rule’ of taking
derivatives to get the partial
derivatives of the unit vectors
using these transformation rules,

as illustrated on the next page.

€, =singdcos e, +sindsingpe, +Ccos e,

€, =cosfdcospe, +cosdsingpe, —sinoe,
e¢

— —sin qpéx -+ COS(Déy PCD_STiCM
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Use of ‘chain rule’ to get the partial derivatives of the
unit vectors using the transformation rules for the unit vectors.
€, =sinfdcospeé, +sindsinpé  +cosbe,

D D

For example: %

ﬁé‘”— COS €. —Sin @é
6(0_ gpx gDy

p =COS@cospé, +cosdsinpe —sinoe,

singpé, +cosge,

o6
op

—% =—c0s ¢(sin 6 cos pé, +Cos cos pé, —sin pé )

—sin ¢(sin gsinpe, +cosfsin e, + COS(0é¢)

o€ o A
—~ =—sin @&, —cos He,
op

Other partial derivatives can be
obtained equally easily, and left for

your to do as an exercise!
PCD_STiCM
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MOTION IN IN SPHERICAL
POLAR:

VELOCITY AND A&CCELERATION
Infinitesimal displacement

Position vector r =ré,
df =dré +rdé.
dr =dre +rdoe, +rsinfddee,
08 08

=dr =drée, +r—L060+r —L ¢
00 o

PCD_STICM
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Motion in in spherical polar:
Velocity and acceleration

dr =dre, +rdée, +rsinfdee,

V="r€ +ro0é,+rsin Ok,

a= % = (F-r6*-rsin® 6p° )€,

+(2r@ —rsin @cos Gp” + ro)é,
+(2r@sin O+ 2rpH cos 6 + r sin 0p)é

PCD_STiCM
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General Reference on Vector analysis :

[1] Berkeley Physics Course, Vol.1. ‘Mechanics’
[2] Davis: ‘Classical Mechanics’

SUPPLEMENTARY OPTIONAL READING:
General Reference on Astronomy :

Patrik Moore: International Encyclopedia of Astronomy.
Carl Sagan: Cosmos ,@‘

)
Slightly advanced references: \ |:= f/
Arfken: Mathematical Methods for Physicists.
Boas: Mathematical methods in Physical Sciences.

WE WILL TAKE & BREAK...
eeeee ANY QUESTIONS ?
pcd@physics.iitm.ac.in
Next, Unit 4. Dynamical Symmetry
of thiéK&pler Problem “



