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STiCM Lecture 13: Unit 4 

   Symmetry and Conservation Laws  

Dynamical Symmetry in the Kepler Problem 
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Unit 1 : Equations of Motion (Newton / Lagrange / Hamilton ) 

 

Unit 2:  Oscillators (Free/damped/driven), Resonances, Waves 

 

Unit 3:   Polar Coordinate Systems 

Unit 4 : Dynamical Symmetry in the Kepler Problem 

Symmetry              Conservation laws (Noether) 
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Unit 4: Learning goals:                          Recapitulate:  

Conservation of energy that is well-known in the Kepler-Bohr 

problem stems from the symmetry with regard to temporal 

translations (displacements on the time axis).  

 

Conservation of angular momentum, likewise, stems from the 

central field symmetry in the Kepler problem. 
 

Neither of these accounts for the fact that the Kepler ellipse 

remains fixed;      that the ellipse does not undergo a ‘rosette’ 

motion.  

GETTING CONSERVATION LAWS FROM THE EQUATION OF MOTION 

3 PCD_STiCM 



This unit will discover the ‘dynamical’ 

symmetry of the Kepler problem and 

its relation with the constancy 

(conservation) of the LRL vector, 

which keeps the orbit ‘fixed’. 

Motivation: Connection between symmetry & 

conservation laws has important 

consequences on issues at the very frontiers 

of physics and technology. 

Mechanics of  

Flights into Space 4 PCD_STiCM 
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Mechanics of Flights into Space 

Konstantin Tsiolkovsky 

(1857-1935) 

Robert H. Goddard 

(1882-1945) 

Hermann 

Oberth  

(1894-1989)  

Dr. Vikram     

                Sarabhai 

 

Father of India’s 

Space Program 

PCD_STiCM 
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Indian Space Research Organisation (ISRO)  

 

[1] Indian National Satellites (INSAT)  

 - for communication services  

[2] Indian Remote Sensing (IRS) Satellites  

 - for management of natural resources 

[3] Polar Satellite Launch Vehicle (PSLV)  

 - for launching IRS type of satellites  

[4] Geostationary Satellite Launch Vehicle (GSLV)  

 - for launching INSAT type of satellites.  
PCD_STiCM 
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Gravity plays the most important role in 

designing satellite trajectories,  

             of course, 

and hence we study the Kepler TWO-BODY 

problem  

We must then adapt the formalism to 

understand the models, methods 

and applications of satellite orbits, 

etc. PCD_STiCM 
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Other than ‘energy’ and ‘angular momentum’, what else 

is conserved, and what is the associated symmetry? 

For given physical laws of nature, what 

quantities are conserved? 

Rather, if you can observe what physical quantities 

are conserved, can you discover the physical laws 

of nature? 

PCD_STiCM 
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How did Kepler deduce that planetary orbits are 

ellipses around the sun ? 

Kepler had no knowledge of : 

(a)  differential equations  

(b) inverse square force    

           (gravity). 

Johannes Kepler 

1571- 1630 

How would you solve this 

problem? 

PCD_STiCM 
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Kepler got his elliptic orbits not 

by solving differential 

equations for gravitational 

force, but by doing clever 

curve fitting of Tycho Brahe’s 

experimental data. 

How did Kepler deduce that planetary 

orbits are ellipses around the sun ? 

PCD_STiCM 
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Tycho Brahe (1546-1601):  

 

Danish astronomer appointed as the imperial astronomer under 

Rudolf II in Prague, which then came under the Roman empire.   

 

Brahe had his own “Tychonian” model of planetary motion: 

 

Brahe had planets revolve around the sun (like the Copernican 

system), and the sun and the moon going around the earth (like 

the system of Ptolemy).   

 

What was Brahe’s nose was made of ? 

 

PCD_STiCM 
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Tycho Brahe (1546-1601):  
 

He discovered the supernova in 1572, in 

“Cassiopeia’.   
 

Kepler and Brahe never could collaborate 

successfully.   
 

They quarreled, and Tycho did not provide Kepler 

any access to the high precision observational data 

he (Brahe) had complied.   

It was only on his deathbed, saying  

“……let me not seem to have lived in vain…….”  

that Brahe handed over his observational data to 

Kepler [Ref.:Sagan]. 
PCD_STiCM 
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Galileo Galilei 
1564 - 1642 

Isaac Newton 
(1642-1727) 

Causality, Determinism, Equation of Motion 

‘Dynamics’ came well AFTER KEPLER! 

Johannes Kepler 

1571- 1630 

PCD_STiCM 
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Two-body problem 
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Two-body problem: Centre of Mass 
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This equation of motion describes the 

‘relative motion’ of the smaller mass 

relative to the larger mass, assuming that 

the difference in the masses is huge. 
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We now take the dot product of the 

velocity with the ‘Eq. of motion’: 

 ˆ ˆ ˆ
d d

r r ru ru ru
dt dt

   

PCD_STiCM 



18 
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Constant of Motion. 

INVARIANCE, 
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3
0.

r
r

r
 

3
0r r r r

r


   

Equation of Motion 

We took the dot product of the ‘Eq. of motion’ with velocity: 

2v

2
E

r


 

…….. and discovered a CONSERVED QUANTITY! 

E: constant      

symmetry with respect to translations in time.    

(E,t): canonically conjugate pair of variables PCD_STiCM 
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We now take the cross product of the position vector with the 

‘Eq. of motion’: 

3
0.

r
r r r

r
   

:  0 Therefore r r

, ( ) 0
d

Now r r r r r r r r
dt

       

  = v is also a constant of motion.

SPECIFIC  ANGULAR   MOMENTUM

Therefore H r r r  

INVARIANCE, SYMMETRY 

Force: RADIAL 

central force symmetry 
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Homogeneity of time  

Homogeneity of space 

Translational Symmetry  

Conservation of energy 

Conservation of linear  

momentum 

Isotropy of space  

Rotational Symmetry 
Conservation of angular  

momentum 

Emmy Noether  

1882 to 1935 

 

SYMMETRY                       CONSERVATION  

    LAWS 

Her entry to the Senate of the University of Gottingen, 

Germany, was resisted. 

David Hilbert argued in favor of admitting her to the University 

Senate. 
21 PCD_STiCM 
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Time is homogeneous:  

Lagrangian of a closed system 

does not depend explicitly on time. 

Hamiltonian / Hamilton’s Principal Function 

q  -  is a CONSTANT.
 
 

 

L
L

q

Hamiltonian
Conservation of Energy is 

thus connected with the 

symmetry principle 

regarding invariance with 

respect to temporal 

translations. 

“ENERGY” 

0





L

t
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since  0,   this means . .  is conserved. 

. ., is independent of time, is a constant of motion 

L d L L
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q dt q q

i e

   
   
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Space is homogenous and isotropic 

Law of conservation of momentum, 

arises from the homogeneity of space. 

the condition for homogeneity of space : ( , , ) 0

. .,   0

which implies 0  where , ,

L x y z

L L L
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x y z
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

Symmetry                 Conservation Laws 
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  1

( )

  1

Displacement is arbitrary, hence,   0;

. . 0    = 

Thus P is conserved in the absence of external forces.
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The conservation of momentum was secured in ‘Unit 1’ on 

the basis of  ‘translational invariance in homegenous 

space’, and not on the basis of Newton’s III law.   
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Given the symmetry related to 

translation in homogenous 

space, could you have 

discovered Newton’s 3rd law? 

2 1

12 21

0

 

 

d P

dt

d p d p

dt dt

F F
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Are the conservation principles consequences of the laws of 

nature? Or, are the laws of nature the consequences of the 

symmetry principles that govern them?  

 

Until Einstein's special theory of relativity,  

it was believed that  

conservation principles are the result of the laws of nature.  

 

Since Einstein's work, however, physicists began to analyze 

the conservation principles as consequences of certain 

underlying symmetry considerations,  

enabling the laws of nature to be revealed from this analysis.  

PCD_STiCM 
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Instead of introducing Newton’s III law as a 

fundamental principle,  

we deduced it (in Unit 1) from symmetry / invariance.  

This approach places SYMMETRY ahead of  LAWS OF 

NATURE.  

It is this approach that is of greatest value to contemporary 

physics. This approach has its origins in the works of  

Albert Einstein,         Emmily Noether   and    Eugene Wigner. 

(1882 – 1935) (1902 – 1995) (1879 – 1955) 
PCD_STiCM 
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3
0.

r
r

r
  Equation of Motion for 

Kepler’s two-body problem 

We shall get yet another constant of motion, a 

conserved quantity, by taking the cross product of 

the ‘SPECIFIC ANGULAR MOMENTUM        with 

the equation of motion: 

3
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r
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 
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 

 
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                                 constant
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LAPLACE – RUNGE – LENZ  

VECTOR 

Observe how a 

constant of 

motion has 

emerged –  

- yet again  

-– by playing with 

the equation of 

motion! 
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     

Physical 

Dimensions 
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 We will take a Break…  

…… Any  questions ? 

        pcd@physics.iitm.ac.in 

Next Lecture: Dynamical Symmetry  

   of the Kepler Problem 

References: 

 

[1] Oliver Montenbruck and Eberhard Gill  

 ‘Satellite orbits – Models, Methods, Applications’.  

 (Springer, Berlin, 2000) 

 

[2] Francis J. Hale 

 ‘Introduction to Space Flight’ 

 (Prentice Hall, Englewood Cliffs, 1994) 
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Take dot product with       : 

 

Equation to the orbit / trajectory 

 

Without solving the differential equation of motion! 

r

LAPLACE –  RUNGE – LENZ      VECTOR 

  ˆv ,  constantH e A  

PCD_STiCM 
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Take dot product  with      : r

 

2

,

cosH r A r Ar

A r

       

 

  ˆv H e A   where vH r 

  :  vsign reversal H r r A r   

 vH r r A r   

 v H r r A r  

Interchange ‘dot’ and ‘cross’: 
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
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 ,A r 

X 


F
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2 2

2
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2
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p
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
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1 cos

    1:

 1:

0 1:

 0 :

p
r

 
















 



Hyperbola (open trajectory) 
 

Parabola (open trajectory) 
 

Ellipse (closed trajectory) 
 

Circle        degenerate ellipse 

For satellite 

and ballistic 

missile 

trajectories, 

ellipses 

(inclusive of 

the circle) are 

of primary 

interest. PCD_STiCM 
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1 cos

    1:

 1:

0 1:

 0 :

p
r

 
















 



Hyperbola (open trajectory) 
 

Parabola (open trajectory) 
 

Ellipse (closed trajectory) 
 

Circle        degenerate ellipse 

1 
1 

Deep space probes 

leave earth’s gravity 

on hyperbolic orbits 

Earth-orbiting 

satellites are in 

elliptic motion. 

0 1 
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b 

a 

Increasing eccentricity 

     e=0                            e=0.5                         e=0.75                       e=0.95        

              

2

2

semi-major axis

semi-minor axis

1





 

a

b

b
e

a
:e eccentricity

Focus 

b 
a 
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
X 
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  
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
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2 2
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24 GPS satellites   ---- Wikimedia Commons 

http://en.wikipedia.org/wiki/File:ConstellationGPS.gif PCD_STiCM 
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1̂e
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e

X 

Y 

O 



“Unit Circle” 

1 

ê 

ˆ ˆv e e   
 

2

v

ˆ ˆ ˆ

ˆ
z

H r

e e e

e

    

 

 

  



Plane/Cylindrical Polar Coordinate System 

 ˆ ˆ ˆ, , ze e e   ˆvA H e  
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The 

(specific) 

angular 

momentum 

vector is 

out of the 

plane of 

this figure, 

toward us. 

Laplace Runge Lenz Vector  

is constant for a strict  

potential. 

v

 H

ê

A

v H

ê

S

1
r



  ˆvA H e  
PCD_STiCM 
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l

H


 ê

v H

ê

S



ˆ - -  :  ,  

     

      

ˆv

p l
The Laplace Runge Lenz vector A e

or alternatively defined in terms

of the specific angular momentum H as

A H e











 
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  ˆvA H e  

ˆv
v

dedA d dH
H

dt dt dt dt




 
     
 

ˆv dedA d
H

dt dt dt




 
   
 

ˆ ˆ
ˆ  

de e
But e

dt

 

 



 


v
ˆ

dA d
H e

dt dt


 
   
 

Central Field Symmetry 

Angular Momentum  

is Conserved 
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  ˆvA H e  

v
ˆ

dA d
H e

dt dt


 
   
 

We must know the form of the interaction

v
What is the form of the force :  ?

    

per unit ma

!

s

  

s
d

dt

vd
F ma m

dt
 
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2v

2
E

r


 

2
per unit m : 

v
ˆThe for ace ss -

d
e

dt







v
ˆH

dA d
e

dt dt


 
   
 

 2

2
- ˆˆ ˆ

z

dA

dt
e e e   





 
   
 

0
dA

dt


 ˆ ˆ ˆ, , :    

ˆ ˆ ˆ

z

z

e e e right handed basis set

e e e

 

   
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For this potential and for the 

associated field:  

no  precession of orbit.  
 

The constancy of the orbit 

suggests a conserved quantity 

and one must look for an 

associated symmetry. 

Angular momentum is 

conserved,  

but major-axis not fixed. 

Rosette motion 

Two-body central field Kepler-Bohr 

problem,  

  Attractive force:  

  inverse-square-law.  

PCD_STiCM 
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Conclusion: 0
d A

dt



ˆvA H e  

0A H  LRL vector is in the plane of the orbit 

perigee 

A

Direction of the LRL vector is:    focus to perigee. 

         :  Must remain constant  

 – no matter where the planet is!  
A

This is precisely what FIXES the orbit! 

Find the direction of      at the perigee. A

 H

PCD_STiCM 
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Given the constancy related to the conservation of 

the LRL vector, could you have discovered the law of 

gravity?   
 

If you did that, wouldn’t you  

have discovered a law of nature? 

2

v
ˆForce (per unit mass):     

Newton told us (but first, to Halley)!

d
e

dt





 

Newton 

Halley 
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“It is now natural for us to try to derive the laws of nature 

and to test their validity by means of the laws of invariance, 

rather than to derive the laws of invariance from what we 

believe to be the laws of nature.”             - Eugene Wigner 

Symmetry & Conservation Principles!  

Emmily    

Noether  

(1882 – 1935) 

Eugene 

 Paul  

Wigner  

(1902-1995) 

PCD_STiCM 
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Pierre-Simon Laplace 

1749 - 1827  

Carl David Tolmé 

Runge 

1856 - 1927 

Wilhelm  

Lenz  

1888 -1957  

Symmetry of the H atom: ‘old’ 

quantum theory. En ~ n-2 

ˆv

Laplace Runge Lenz Vector :

1
constant for a strict  potential.

A H e

r

  
Conservation law associated 

with ‘dynamical / accidental ’ 

symmetry. 

PCD_STiCM 

http://en.wikipedia.org/wiki/Image:CarleRunge.jpg
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Further reading: 
• Symmetry & Conservation laws play an 

important role in understanding the very frontiers 

of Physics. 

• The implications go as far as testing the 

‘standard’ model of physics, and exploring if 

there is any physics beyond the standards 

model. 
Do visit: 

Feynman's Messenger Lectures Online 

AKA Project Tuva 

http://www.fotuva.org/news/project_tuva.html PCD_STiCM 
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P. C. Deshmukh and Shyamala Venkataraman 

Obtaining Conservation Principles from Laws of Nature -- and the 

other way around! 

                         

Bulletin of the Indian Association of Physics Teachers, Vol. 3, 143-

148 (2011) 

P. C. Deshmukh and J. Libby 

   (a) Symmetry Principles and Conservation Laws in Atomic 

and Subatomic Physics -1 

         Resonance, 15,  832  (2010) 

   b) Symmetry Principles and Conservation Laws in Atomic and 

Subatomic Physics -2 

         Resonance, 15,  926  (2010) 

Useful references on ‘Symmetry & Conservation Laws’ 
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Continuous Symmetries - Translation, Rotation 

 

Dynamical Symmetries - LRL, Fock Symmetry  

       SO(4) 

 

Discrete Symmetries  

    - P : Parity 

    - C : Charge Conjugation 

    - T : Time Reversal 

PCD_STiCM 
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Lorentz symmetry: associated with the PCT symmetry.  

 

PCT theorem (Wolfgang Pauli) 

No experiment has revealed any violation of PCT symmetry.  

 

This is predicted by the Standard Model of particle physics. 

PCD_STiCM 
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The ‘standard model’ unifies all the 

fundamental building blocks of matter,  

and three of the four fundamental forces. 

The Standard Model today 

To complete the Model a new particle is needed – the Higgs 

Boson – that the physics community hopes to find in the new 

built accelerator LHC at CERN in Geneva. 
PCD_STiCM 
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Yoichiro Nambu 

½ prize 

Enrico Fermi Institute, 

Chicago, USA 

Makoto Kobayashi 

¼ prize 

High Energy  

Accelerator  

Research Organization, 

Tsukuba, Japan 

Toshihide Maskawa 

¼ prize 

Kyoto Sangyo Univ,  

KyotoJapan 

"for the discovery of the 

mechanism of spontaneous 

broken symmetry in 

subatomic physics"  

"for the discovery of the origin of 

the broken symmetry which 

predicts the existence of at least 

three families of quarks in nature"  

2008 Nobel Prize in Physics 
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‘every symmetry in nature yields 

a conservation law  

and conversely,  

every conservation law reveals 

an underlying symmetry’.  

Noether’s theorem 

PCD_STiCM 
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“In the judgment of the most competent living 

mathematicians, Fräulein Noether was the most significant 

creative mathematical genius thus far produced since the 

higher education of women began.”  
 

“In the realm of algebra, … , she discovered methods which 

have proved of enormous importance …. ” 
 

“………. Her unselfish, significant work over a period of many 

years was rewarded by the new rulers of Germany with a 

dismissal, which cost her the means of maintaining her 

simple life and the opportunity to carry on her mathematical 

studies……” 
 

ALBERT EINSTEIN. Princeton University, May 1, 1935.  

New York Times May 5, 1935, Excerpts 
http://www-history.mcs.st-and.ac.uk/history/Obits2/Noether_Emmy_Einstein.html 
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 We will take a Break…  

…… Any  questions ? 

        

 

 

pcd@physics.iitm.ac.in 

Next: Unit 5:  Inertial and non-inertial reference frames.  
 

 Moving coordinate systems. Pseudo forces.  

  Inertial and non-inertial reference frames.  
 

 ‘Deterministic’ cause-effect relations in inertial frame,  

 and their modifications in a non-inertial frame. 
PCD_STiCM 


