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Unit 9 : Fluid Flow, Bernoulli’s Principle 
 

Curl of a vector, Fluid Mechanics / Electrodynamics, etc. 
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Unit 9:  Fluid Flow, Bernoulli’s Principle 

 Definition of circulation, curl, vorticity,  

 irrotational flow.  
  

 Steady flow.  

 Bernoulli’s equation/principle, some illustrations. 
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Unit 10: Fluid Flow, Bernoulli’s Principle. 

Equation of motion for fluid flow.  Definition of 

curl, vorticity, Irrotational flow and circulation. 

Steady flow. Bernoulli’s principle, some 

illustrations. Introduction to applications of Gauss’ 

law and Stokes’ theorem in Electrodynamics. 

Learning goals: Learn that both the divergence and 

the curl of a vector field are involved (along with the 

boundary conditions) in determining its properties.  

Learn how a rigorous treatment of the velocity field is 

necessary to explain quantitatively the observed 

phenomena in fluid dynamics.  

Get ready for a theory of electrodynamics.  PCD_STiCM 
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Recall the discussion on directional derivative 

s 0

ˆ

ˆ lim  

,  tiny 

                   increament

,  differential

                   increament

d
u

ds

r dr
u

s ds

s r

ds dr










 



 

 





Gradient: direction in 

which the function varies 

fastest / most rapidly. 

F  

Force: Negative gradient of 

the potential 

 

‘negative’ sign is the result 

of our choice of natural 

motion as one occurring 

from a point of ‘higher’ 

potential to one at a ‘lower’ 

potential. PCD_STiCM 
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Compatibility of the two expressions  

holds if, and only if,  

the potential        is defined in such way  

that the work done by the force given by              

           in displacing the object on which this  

force acts, is independent of the path  

along which the displacement occurred. 

F ma F  Is it obvious that the ‘force’ defined by these 

two equations is essentially the same? 





     0

    

  

    

   

b

a

F dr

F dr is

INDEPENDENT

of the path

a to b

 







Consistency in 

these relations 

exists only for 

‘conservative’ 

forces. 

PATH INTEGRAL 

“CIRCULATION” 
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This alternative expression employs what is known as CURL of a 

VECTOR FIELD       , denoted as                 . 

  0

    

  

    

   

b

a

F dr

F dr is

INDEPENDENT

of the path

a to b

 







It is only when the line integral of the work done is 

path independent that the force is conservative 

and accounts for the acceleration it generates 

when it acts on a particle of mass m through the 

‘linear response’ mechanism expressed in the 

principle of causality of  

Newtonian mechanics: F ma

The path-independence of the above line integral is 

completely equivalent to an alternative expression which 

can be used to define a conservative force.  

F F

PCD_STiCM 
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F is a vector point function Definition of Curl of a vector: 

0

where the path integral is taken over a closed path C, taken 

over a tiny closed loop C which bounds an elem

( )
ˆ ( ) ( ) lim ,

ental vector

ˆ   ( ).i

i
S

F

surface ar

r dr
u r

e

F

S

r
s

a S u r

 








 





( )F r

 ˆ ( ), 1,2,3 ,iu r i 

of the vector field           such that,  

for an orthonormal basis  

set of unit vectors  
Mean (average) ‘circulation’ 

per unit area taken at the 

point when the elemental 

area becomes infinitesimally 

small. 

ˆ direction of the unit vector ( ) is such that a right-hand 

screw would propagate forward along it when it is turned 

along the sense in which the path integral is determined.

iThe u r

PCD_STiCM 



8 

C traversed 

one way 

C traversed 

the other  way 

right-hand-screw 

convention. 

0

( )
ˆ ( ) ( ) lim ,

where the path integral is taken over 

a closed path C, taken over a tiny 

closed loop C which bounds an 

elemental vector   

ˆ ( ).

i
S

i

F r dr
u r F r

s

surface area

S S u r

 


 



  



8 PCD_STiCM 
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The above definition of CURL of a VECTOR is independent of 

any coordinate frame of reference; it holds good for any 

complete orthonormal set of basis set of unit vectors. 

0

( )
ˆ ( ) ( ) limi

S

F r dr
u r F r

s 


 





 ˆ ( ), 1,2,3iu r i 

 general, the unit 

vectors may depend 

on the particular point 

under discussion, and 

hence written as 

ˆfunctions ( ) of .i

In

u r r

Cartesian unit vectors, of course,  

do not change from point to point.  

 

They are constant vectors. 

Mean (average) ‘circulation’ per unit area taken at the point 

when the elemental area becomes infinitesimally small. 
PCD_STiCM 
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( )
C

circulation A r dl circulation and curl 

0

( ).

lim   =

ˆ( )

C

S

A r dl

S

A n

 

 



‘Limiting’ circulation  

per unit area 

Consider an open surface S, bounded  by a closed 

curve C.  
 

Circulation depends on the value of the vector at all  

the points on C; it is not a scalar field even if it is a 

scalar quantity. It is not a scalar point function. 

Shrink the closed path C; in the limit, 

the circulation would vanish;  

 and so would the area S 

bounded by C.  

However, the ratio itself is finite in 

the limit;  

it is a local quantity at that point. 

C 

10 PCD_STiCM 
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( )
C

circulation A r dl circulation and curl 

0

( ).

ˆlim   ( )C

S

A r dl

A n
S 

 


‘Limiting’ circulation  

per unit area 

This limiting ratio defines a component of the curl 

of the vector field; the curl itself is defined through 

three orthonormal components in the basis  1 2 3
ˆ ˆ ˆ, ,n n n

C 

PCD_STiCM 
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Curl measures how much 

the vector  

“curls” around at a point 

0

( ).

ˆlim   ( )C

S

A r dl

A n
S 

 


PCD_STiCM 
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F


 If        in a region then there would be no 

curliness/rotation, and the field is called irrotational. 

0 F 

curl of a vector field at a  point represents the net 

circulation of the field around that point. 

the direction of the curl vector is  normal to the 

surface on which the circulation (determined as 

per the right-hand-rule) is the greatest. 
  

the magnitude of curl at a given point represents  

the maximum circulation at that point. 

PCD_STiCM 
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F


 If              in a region, then there would be no 

curliness (rotation), and the field is called irrotational. 

0 F 

Conservative force fields: IRROTATIONAL  

Examples for irrotational fields: electrostatic,  

      gravitational 

Remember!  

The criterion that a force field is conservative is that its 

path integral over a closed loop (i.e. “circulation”) is 

zero. This is equivalent to the condition that   0 F 

0

( ).

ˆlim   ( )C

S

A r dl

A n
S 

 

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( ).

add up

A r dl

Curl in Cartesian Co-ordinate 

0 0 0           Consider a point ( , , ).

Consider a vector field ( ) in some region of space.

P x y z

A r

Z 

X 

Y 

x

x

yy

1st leg 

2nd  

leg 

3rd leg 

( ).
yx

C

AA
A r dl y x x y

y x
   


  

 

ˆ(  ) ( )
yx

z z

AA
curl A e curlA

y x


    

 

4th 

leg 

ˆ
ze

Closed path C 

which bounds 

an elemental 

surface 

1st leg 

2nd  

leg 

3rd leg 

4th 

leg 

Make sure that you 

understand the signs      

x 0 0 0 x 0 0 0

y 0 0 0 y 0 0 0

Circulation over the peremeter of an elemental surface 

ˆto which the normal is  is

A , , A , ,
2 2

A , , A , ,
2 2

ze

y y
x y z x y z x

x x
x y z x y z y

 


 


    
       

    

    
      

    

PCD_STiCM 
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Similarly if we get circulation per unit area along other two 

orthogonal closed paths and add up, we get: 

ˆ ˆ ˆy yx xz z
x y z

A AA AA A
Curl A e e e

y z z x x y

       
         

         

( )
yx

C

AA
A r dl y x x y

y x
   


   

 

Determining now the net circulation per unit area:

ˆ(  ) ( )
yx

z z

AA
curl A e A

y x


     

 

Color coded arrows are unit vectors 

orthogonal to the three mutually 

orthogonal surface elements bounded 

by their perimeters. 

PCD_STiCM 
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The Cartesian expression for curl of a vector 

field can be expressed as a determinant; but it 

is, of course, not a determinant! 

ˆ ˆ ˆy yx xz z
x y z

A AA AA A
curl A e e e

y z z x x y

       
         

         

ˆ ˆ ˆ
x y z

x y z

e e e

A
x y z

A A A

  
 

  
 curl A 

Can you interchange the 2nd and the  

3rd row and change the sign of this  

‘determinant’? The curl is not a cross product of 

two vectors; the gradient is a vector operator! PCD_STiCM 
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examples of rotational fields, nonzero curl  

z 

yx exeyyxV ˆˆ),( 


zeV ˆ2


x
ˆ ˆA(x,y)=(x-y)e ( ) yx y e 

z
ˆA 2e 

curl : along the positive z-axis PCD_STiCM 
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x 

y 

z 

yexˆv 

zêv 


rotational fields, nonzero curl  

PCD_STiCM 



20 Reference: Berkeley Physics Course, Volume I 

What is the DIVERGENCE and the CURL of the following 

vector field? 

As much flux 

leaves a 

volume 

element as that 

enters, 

 

hence the 

divergence is 

zero 

X 

Y 

0 and 0x

F
F

y


 



0

0

F

F

 

 

PCD_STiCM 
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Reference: Berkeley Physics Course, Volume I 

What is the DIVERGENCE and the CURL of the following 

vector field? 

,

0

Clearly

F 

0F 

PCD_STiCM 
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ˆ ˆ ˆ
x y ze e e

x y z

  


  
   

  

zyx

zyx

eee zyx






























ˆˆˆ

2 2 2 2 2 2

ˆ ˆ ˆ
x y ze e e

y z z y z x x z x y y x



     

 

          
          

                

0




curl of a gradient is zero 

The final result will be 

independent of the 

coordinate system. 

PCD_STiCM 
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Recall: from Unit 5 

 

 

Motion in a rotating coordinate 

system of reference. 

PCD_STiCM 
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( si
ˆˆ

ˆˆ
n )( )b d

n b
db

n b
 






ˆ( ) ( ) | |db b t dt b t db u   

( )b t

( )b t dt

n̂

These two terms are equal and hence cancel. 

ˆdb d n b 

  
I

d
b b

dt


 
   

 

db

sinb

b

ˆ
.

ˆ

ˆˆ
 ˆ

n
where

b
u

n b






( sin )( )db b d  



ˆˆ( , )n b  d

d

sinb

    

ˆsince 

db dt b

d
n

dt






 



db
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  
 

  
 I

d
b b

dt

     
   

     
   I R

d d

dt dt

Remember! The vector     itself did 

not have any time-dependence in 

the rotating frame.  

If      has a time dependence in the rotating frame, 

the following operator equivalence would follow: 

    
I R

d d
b b b

dt dt


   
     

   

Operator 

Equivalence: 

b

b

25 PCD_STiCM 
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    x 
I R

d d

dt dt


   
    

   

    x  
I R

d d
r r r

dt dt


   
    

   

Recall: from Unit 5 

When  =0,
R

d
r

dt

 
 
 

I
v  =   x  

I

d
r r

dt


 
 

 

 x  
I

d
r r

dt


 
 

 

PCD_STiCM 
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v r 

v ( )   r

ˆ ˆ ˆ

  

x y z

x y z

e e e

x y z

ˆ ˆ ˆ( ) ( ) ( )            y z x z x y x y zz y e x z e y x e

ˆ ˆ ˆ

( ) ( ) ( )

x y z

y z z x x y

e e e

x y z

z y x z y x     

  


  

  

ˆ ˆ ˆ2( ) 2x x y y z ze e e     v 

I
v  =   x  

I

d
r r

dt


 
 

 

The ‘curl’ of the 

linear velocity 

gives a 

measure of 

(twice) the 

angular 

velocity; thus 

justifying the 

term ‘curl’. PCD_STiCM 
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Remember: 

The component of the curl of a vector field in the 

direction          is the circulation about the axis  

of the vector field per unit area. 

 

It measures the extent to which a particle being 

carried by the vector field is being rotated about       . 

0

( )
ˆ ( ) ( ) limi

S

F r dr
u r F r

s 


 





ˆ ( )iu r

ˆ ( )iu r

PCD_STiCM 
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This theorem is named after George Gabriel Stokes 

(1819–1903), although the first known statement of 

the theorem is by William Thomson (Lord Kelvin) and 

appears in a letter of his to Stokes in July 1850. 

Reference: http://www.123exp-math.com/t/01704066342/ 

William Thomson,  

1st Baron Kelvin  

(1824-1907) 

George Gabriel 

Stokes  

(1819–1903)  

We shall see in the next class that we are now 

automatically led to the STOKES THEOREM: 

Note!  

It is STOKES’ 
THEOREM  

not STOKE’S THEOREM 

0K temperature 

( ) ( )A r dl A dS    

PCD_STiCM 
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http://www.physics.iitm.ac.in/~labs/amp/ 

….. but which Bernoulli ? 

pcd@physics.iitm.ac.in 

 

pcdeshmukh@iitmandi.ac.in 

We shall take a break here……. 
 

Questions ?                    Comments ? 

Next: L30 

Unit 9 – Fluid Flow / Bernoulli’s principle 

30 PCD_STiCM 
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   STiCM Lecture 30 

 

Unit 9 : Fluid Flow, Bernoulli’s Principle 
 

Curl of a vector, Fluid Mechanics / Electrodynamics, etc. 
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The component of the curl of a vector field in the 

direction          is the circulation about the axis  

of the vector field per unit area. 

0

( )
ˆ ( ) ( ) limi

S

F r dr
u r F r

s 


 





ˆ ( )iu r

 ˆ ( );  1,2,3   iu r i orthonormal basis

ABOVE RELATION: provides complete  

     DEFINITION  

    of CURL of a VECTOR. 

32 PCD_STiCM 
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0

( )

ˆ ˆ:   (  ) lim ( )C

S

A r dl

Definition curl A n A n
S 



    


For a tiny path δC, which binds a tiny area δS,   

ˆ(  )
C

A dl S curl A n curlA S


     

1 1

( ) ( )

( )

( )

( )

i

n n

i i

C

C C

A r dl A r dl c

A r dl curl A r dS

url A r dS
 

   

  



 

 



 

We can split up a finite area S into infinitesimal 

bits δSi bound by tiny curves δCi 

Stokes’ theorem 

Proof of Stokes’ theorem follows from the very definition of the curl: 

PCD_STiCM 
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Stokes’ theorem consider a surface S enclosed by a curve C 

Any surface bound by the closed curve will work; you 

can pinch the butterfly net and distort the shape of the 

net any which way – it won’t matter! 

( ) ( ) ˆ
c

A r dl curl A dSnr   

The Stokes theorem relates 

the line integral of a vector 

about a closed curve  

to  the surface integral of its 

curl over the enclosed area 

that the closed curve binds. 

PCD_STiCM 
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Stokes’ theorem consider a surface S enclosed by a curve C 

( ) ( ) ˆ
c

A r dl curl A dSnr   
The direction of the vector 

surface element that appears in 

the right hand side of the above 

equation must be defined in a 

manner that is consistent 

with the sense in which the 

closed path integral in the left 

hand side is evaluated. 

 

The right-hand-screw 

convention must be followed. 

C traversed one 

way 

C traversed 

the other  way PCD_STiCM 
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The surface under 

consideration, however, better 

be a ‘well-behaved’ surface! 

A cylinder open at both ends is 

not a ‘well-behaved’ surface! 

A cylinder open at only one end 

is ‘well-behaved’; isn’t it already 

like the butterfly net? 

Non-orientable surfaces  

PCD_STiCM 
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Consider a rectangular 

strip of paper, spread flat at 

first, and given two colors 

on opposite sides. 

Now, flip it and paste the 

short edges on each other 

as shown. 

Is the resulting object 

three-dimensional? 
 

 

How many ‘edges’ does 

it have? 

The surface under 

consideration, however, better 

be a ‘well-behaved’ surface! 

How many ‘sides’ does it have? 
PCD_STiCM 
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1
ˆ ˆ ˆ ˆ ˆ ˆe e e e ( , , ) e ( , , ) e ( , , )z z z

A

A z A z A z
z

          
  

 

   
           

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
        

 
        

 
      

A 

Expression for ‘curl’ in cylindrical polar coordinate system  ˆ ˆ ˆ, , ze e e 
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1
ˆ ˆ ˆ ˆ ˆ ˆe e e e ( , , ) e ( , , ) e ( , , )z z z

A

A z A z A z
z

          
  

 

   
           

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

z z

z z

z z z

A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     

 
        

 
        

 
      

A 

 ˆ ˆ ˆ, , ze e e 

 

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆ            e e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆ             e e ( , , ) e ( , , ) e ( , , )

    

    

   

     


     
 

     


           

 
           


    

z z

z z

z z z

A A z A z A z

A z A z A z

A z A z A z
z
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Expression for ‘curl’ in cylindrical polar coordinate system  ˆ ˆ ˆ, , ze e e 

 

ˆ ˆ ˆ ˆe e ( , , ) e ( , , ) e ( , , )

1
ˆ ˆ ˆ ˆ            e e ( , , ) e ( , , ) e ( , , )

ˆ ˆ ˆ ˆ             e e ( , , ) e ( , , ) e ( , , )

    

z z

z z

z z z

A A z A z A z

A z A z A z

A z A z A z
z

    

    

   

     


     
 

     


           

 
           


    

 1 1
ˆ ˆ ˆ   = e e ez z

z

AA A AA A

z z

  

 



     

       
         

           
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 

=

1 1
ˆ ˆ ˆ ˆ ˆ ˆ= e e e e ( , , ) e ( , , ) e ( , , )

sin
r r r

A

A r A r A r
r r r

          
  



   
     

   
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Expression for ‘curl’ in spherical polar coordinate system  ˆ ˆ ˆ, ,re e e 

 

 

 

1
ˆ=e sin

sin

1 1
ˆ              +e

sin

1
ˆ                   e

r

r

r

A
A A

r

A
rA

r r

A
rA

r r




 

 


  

 



 
  

  

  
 

  

 
  

  PCD_STiCM 
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c2 

Gauss’ divergence theorem  ( )
V S

A d A dS    

Volume 

Surface enclosing a volume 
S1 

S2 

c1 

Applying Stoke’s theorem 

2211

21

ˆ)(ˆ)()( dSnAdSnASdA
SSS

 


0

1 2

  
C C

ldAldA


An important identity: divergence of a curl is zero 

0)(  A

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To understand the term ‘ideal’ fluid, we first define 

(i) ‘tension’, (ii) ‘compressions’ and (iii) ‘shear’. 

A

A
uN




ˆP 

F AConsider the force         on a tiny elemental area         passing 

through point P in the liquid. 

Stress at the point P is     . S

SuS

uS

SuS

N

N

N







ˆ

0ˆ

ˆ

 :S

 :S

 :S Tension 

 

Shear 

 

Compression 
NûThe unit normal          can take any 

orientation. 

An ideal fluid is one in which stress at any point is 

essentially one of COMPRESSION. 

some definitions….. 
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The curl of a vector is an important quantity. 

 

A very important theorem in vector calculus is the 

Helmholtz theorem which states that given the 

divergence and the curl of a vector field, and 

appropriate boundary conditions, the vector field is 

completely specified. You will use this to study 

Maxwell’s equations which provide the curl and the 

divergence of the electromagnetic field. 

Besides, the ‘curl’ finds direct application also in the 

derivation of the Bernoulli’s principle, as shown below. 
PCD_STiCM 
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Bernoulli’s 

Principle 

Posed the 

brachistrocrone  

problem 

Bernoulli 

brothers 

Johann’s work was assembled by the 

Marquis de I;Hospital (1661-1704) under a 

strange financial agreement with Johann in 

1696 into the first calculus textbook. The 

famous method of evaluating the 

indeterminate form 0/0 got to be known as 

I'Hospital's rule. 
Reference: 

http://www.york.ac.uk/depts/maths/histstat/people/bernoulli_tree.htm 

2 sons of 

Nicolaus 

Bernoulli’s 

Bernoulli 

Family 

Math/Phys Tree 
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References to read more about the Bernoulli Family: 

 
http://www.york.ac.uk/depts/maths/histstat/people/bernoulli_tree.htm 

 

http://library.thinkquest.org/22584/temh3007.htm 

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Bernoulli_Daniel.html 

Daniel Bernoulli 

1700 - 1782 

“...it would be better for the true physics 

if there were no mathematicians on 

earth”. 

 

Quoted in The Mathematical 

Intelligencer 13 (1991).  
http://www-groups.dcs.st-and.ac.uk/~history/Quotations/Bernoulli_Daniel.html 
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 (  ( )  ,   ( ),
v

v v ( ), ,) ( )
d d d

dt dt dt
x tr t z t tt y t

   
    
   

“CONVECTIVE  DERIVATIVE OPERATOR”     The term ‘convection’ 

                                                              is a reminder of the fact that in the 

                                                              convection process, the transport 

                                                              of a material particle is involved. 

v v v v v
 

d dx dy dz

dt dt x dt y dt z t

   
   

   















tdt

d
ei v    ..

v v v v
        

dx dy dz

x dt y dt z dt t

   
   
   

        v v
t

 
   
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v v( , ) v( , )

( )

d p
r t r t

t dt r




  
     

Use now the 

following  

vector  

identity: 

 
       ABBAABBA

BA





              

                

 
       
     vvvvvv

2

1
  ..

vvvvvvvv              

vv                







ei

    











)(

v
vvvv

2

1

r

p

t

Result of the previous unit, Unit 8: 
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    











)(

v
vvvv

2

1

r

p

t

   

   











































)(v
vvvv

2

1

.,.

)(v
vvvv

2

1

rp

t

ei

rp

t


















)(

)(

)(
  ,

rp

r

rp
Now
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 

IRI

RI

Recall that :     x 

  , where v  is just the 

 velocity that is employed in the equation 

of motion f

v v     x 

v v  

or the

   x

 fl

 

uid.

 

R

R

I R

d d
r r r

dt dt

r

r







   
 

 

  

   
 



 



To determine                           we now use another vector 

Identity, for the curl of cross-product of two vectors: 

      ( ) ( )A B B A A B A B B A         

 R
 x r

   
















 



)(v
vvvv

2

1 rp

t
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     
   

( ) ( )

( ) 2

v v 2
I R

R R R R R

R R R

r r r r r

r r r

    

   



         

       

   

      )()( ABBABAABBA 

 RI
v v     x    

R
r

 2v VORTICITY,  the,

,0v,frame rotating In the





I

R

hence
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
























































2

v)(
v

v

v
2

1)(
v

v

)(v
vv

2

1

2

2

2
















rp

t

rp

t

rp

t


















2

v)(
v

2





rp

0
v






t

For ‘STEADY STATE’ 


















2

v)(
v0  ,

2




rp
Hence

   
















 



)(v
vvvv

2

1 rp

t
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
















2

v)(
v0

2




rp

SSTREAMLINE
rp

ei

rp

  toORTHOGONAL bemust  
2

v)(
.,.

,v  toORTHOGONAL bemust  
2

v)(

2

2











































.
2

v)(
  

,  toORTHOGONAL bemust  

2








rp
where

sstreamline

2

v( )
constant along a given streamline

2

p r



    

Daniel Bernoulli’s Theorem 
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2

v)(

2

 


rp

streamlinegiven  afor constant 
2

v)(

2

 


rp

is constant for the entire velocity field in the liquid. 


















2

v)(
v

2





rp

If the fluid flow is both ‘steady state’ and ‘irrotational’,  

We derived the above result for a ‘STEADY STATE’ and made use of the relation 

0v  

Daniel Bernoulli’s Theorem 

0
v






t
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WORK – ENERGY Theorem 

 

Conservation of Energy 
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P 

12:

),(v),(),(





TMLDimensions

trtrtrJ 

r A 

B 

C 

D 

E 

F 

G 

H 

Mass Current Density Vector 

 
volume surface
region enclosing

that
region

( ) ( ) 0,  for STEADY STATE as 0
t

d J r J r dS





    
 

since,

area sectional-cross:A

,constant vA

Flow, StateSteady For 



tApsAps

tApsAps





2222222

1111111

vFW

vFW





Work done by the fluid on Face 2 is: 

Work done on the fluid by the pressure  

that the fluid exerts on Face 1 is: 
Net work done on the fluid in the 

parallelepiped by the pressure  

that the fluid exerts on Faces 1 

& 2 is: 

tAptAp  22211121 vvWW 
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Net work done on the fluid in the 

parallelepiped by the pressure  

that the fluid exerts at Faces 1 & 2 : 

tAptAp  22211121 vvWW 

 
m

tApAp



222111
12

vv
EE




Energy gained per unit mass by the 

fluid as it traverses the x-axis of the 

parallelepiped across the Faces 1 & 2 : 

 1 1 1 2 2 2

2 1

2 2

internal internal

2 1

v v
E E

1 1
              v v

2 2

p A p A t

m

U U





 


 

   
        

   

 
 

1 1 1 2 2 2 2 2

internal internal

2 1

v v 1 1
v v

2 2

p A p A t
U U

sA


 

 

    
        
   
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   
2 21 1 1 2 2 2

internal internal

2 11 1 2 2

v v 1 1
v v

v v 2 2

p A p A
t U U

t A t A
  

   

     
           

    

 
 

1 1 1 2 2 2 2 2

internal internal

2 1

v v 1 1
v v

2 2

p A p A t
U U

sA


 

 

    
        
   

2 21 2
internal internal

2 1

1 1
v v

2 2

p p
U U 

 

     
           

    

is constant for the entire velocity field in the liquid. 

2

From slide 53:

v( )
 

2

p r



   

Daniel Bernoulli’s Theorem 

2 2

internal internal

2 1

2

internal

1 1
0 v v

2 2

1
. .   v constant

2

p p
U U

p
i e U

 
 




   
          
   

   
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A white ball has a thin lacquer that is applied to its surface to avoid discoloring 

the ball. During play, the shiny surface of the white ball remains shinier than 

that of a red ball, which has a rougher surface to begin with.  

  

The difference between the rough and shiny surface of a white ball is 

much more, and thus it swings more than the red ball. 

Ishant Sharma 

Inswing / Outswing 

bowler 

constant
2

v)(

2




rp

The swing of a ball is 

governed by Bernoulli's 

theorem.  
 

A swing bowler rubs only 

one side of the ball. The ball 

is then more rough on one 

side than on the other.  
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http://web.archive.org/web/20071018203238/http://www.geocities.com/k_ac

hutarao/MAGNUS/magnus.html#mehta 
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"Popular Mechanics" Magazine December 1911 
http://en.wikipedia.org/wiki/File:Hawke_-_Olympic_collision.JPG 

http://en.wikipedia.org/wiki/RMS_Olympic 

Olympic – HMS Hawke collision: 20 September 

1911, off the Isle of Wight. Large displacement of 

water by Olympic sucked in the Hawke into her 

side. One crew member of the Olympic, Violet Jessop, survived the 

collision with the Hawke, and also the later sinking of Titanic , and the 

1916 sinking of Britannic, the third ship of the class. 
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Classical Electrodynamics 

Next:  Unit 10 

Charles      Carl Freidrich              Andre Marie                 Michael  

Coulomb                Gauss                 Ampere                      Faraday 

1736-1806          1777-1855 1775-1836                 1791-1867 62 PCD_STiCM 

http://en.wikipedia.org/wiki/Image:Carl_Friedrich_Gauss.jpg


Electrodynamics & STR 
The special theory of relativity is intimately linked to the 

general field of electrodynamics. Both of these topics belong 
to ‘Classical Mechanics’. 

Albert Einstein 

1879 - 1955 

James Clerk Maxwell 

1831-1879 63 PCD_STiCM 
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Helmholtz Theorem 
 

Curl & Divergence; 

+ boundary conditions 

James Clerk Maxwell 
1831-1879 

Divergence 

and Curl of  

 BE,

We shall take a break here. 
 

Questions ?  Comments ? 

pcd@physics.iitm.ac.in 
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