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Unit 11

Chaotic Dynamical Systems
Complex behavior of simple systems!

“I am convinced that chaos research will
bring about a revolution in natural sciences
similar to that produced by quantum

mechanics”. -Gerd Binnig,
-Nobel Prize (1986) for designing

Scanning Tunneling Microscope

Many others, who work in a wide variety of frontier

research fields have expressed. a similar view.



Physics addresses the temporal-evolution of the ‘state
of a system’.

That’s what an equation of motion
(Newton / Lagrange / Hamilton / Schrodinger)

IS about!

Growth of science:

Empirical knowledge, @ical @
predictions, testirD

Observations of natural phenomena — Galileo / Raman ......
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What‘ laws of nature ‘can we learn from Mathematics?

—From numbers,
forexample: 7, e, ....

or, from a sequence of numbers.....

Fibonnacci (1202): How many pairs of rabbits can
there be if they breed in “ideal” conditions and

never die?
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Our rabbits never die.

The female always
produces one new pair

every month.

New pair: always
one male and one female.

How many pairs will there be in one year?

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#rabeecow
21/10/2010
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Each pair will reproduce; none will die.
Each new born pair takes a month to
mature enough to mate.

The female then takes a month to

deliver the next pair — always a male

| and a female |



@start of \
1t month:
new born pair, 8

a male and a female | ‘ I
.

Each new born

pair would take 8

2 months to _________-—-""'l

deliver another i
pair: M+F. @ o 8

Each pair will reproduce, none will die.
Each new born pair takes a month to mature enough to

mate.

Iumber
of pairs

1

The female then takes a month to deliver the nexi: pair —
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What‘ laws of nature ‘can we learn from Mathematics?

—From numbers,
forexample: 7, e, ....

or, from a sequence of numbers.....

1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144,...
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1,2,3,5,8,13,21,34,55,89,144,.....

% — 1% ~1.625
¢

% ~15 2%3 ~1.615384... ‘——

5/3=1.66666... 34/21=1.61904...

8/ 16 274 _1617646.7 -1
$=1.6180339887....

PCD_STiCM



1,2,3,5,8,13,21,34,55,89,144,.....
the golden ratio = 1.6180339887 ...

Several shapes| in nature conform to the

shape of Fibonacci Spiral.
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1,2,3,5,8,13,21,34,55,89,144,.....

the golden ratio = 1.6180339887 ...

http://hynesva.com/blogs/character_and_excellence/archive/2009/11/15/the-
golden-ratio-a-wonder-of-god-s-creation.aspx
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D E Knuth "The Art of Computer Programming: Volume 1’
(errata to second edition): “Before Fibonacci wrote his work,
the sequence F(n) had already been discussed by Indian
scholars, who had long been interested in rhythmic patterns
that are formed from one-beat and two-beat notes.

The number of such rhythms having n beats altogether is
F(n+1); therefore both Gopala (before 1135) and Hemachandra
(c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ...
explicitly”.

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibBio.html

Fibunacci: Leonardo of Pisa, ‘Liber Abaci’ (1202)
-- but was this sequence. knon earlier? .



7, € $,0,a)

Feigenbaum constants
....bifurcation diagrams %

INITIAL ¢ 1
STATE ¢ _11

the golden ratio = 1.6180339887... rco sticv



small differences in the initial

very great ones in the fWomena.

..... it may happen t
conditions produ

¢« -

SUN(
" EARTH

>~ Is the solar
SYAIEI
stable?

evolution of a dynamical system
Kolmogorov, Arnold and Moser

MOON

Henri Poincareé (1854 -1912)



‘/\/number
Hrunching

6.87 10.66

+3.79 +9.89 +9.89

N -

(10.66) 2059 20.55
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“For want of a naill,

the shoe was lost;
For want of a shoe,
the horse was lost;
For want of the horse,

the rider was lost;
For want of a rider,

the battle was lost;
For want of a battle,

James Gleick’s book on ‘Chaos’

- the kingdom was lost!”
page 23 (1998 Edition) PCD_STICM 16



Laplace Runge Lenz
Earth's elliptic orbit precesses, at a
current rate of 0.3 degrees per
century due to perturbations by the v H
other planets, most notably Jupiter. ép

PCD_STiCM

The @ H
(specific)

angular

2, momentum

vector Is
out of the
plane of
this figure,

toward us.
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Jacques Laskar (1989, Paris) - numerical
Integration of the Solar System over 200 million
years.

-averaged eqguations, had some 150,000 terms.

Laskar's work: Earth's orbit =—>» chaotic.

(as well as the orbits of all the inner planets)
An error as small as 15 meters in measuring the
position of the Earth today would make it
Impossible to predict where the Earth would be In
over 100 million years' time.

See ‘Solar system dynamics’ by Murray & Dermott

18



Dynamical System: “dynamical” : changing....

study of temporal evolution of systems/processes.

Examples:

Weather — changes with time

Changes in Chemicals — as reactions take place....
Population changes....

Motion of simple pendulum
Stock market....

..... Physics / Chemistry / Engineering / Finance / Biology ....
Question:

Can we make accurate long-time predictions?
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Dynamical Systems

Newton/Lagrange/Hamilton
1890s: Poincare

1920-60: Borkhoff

Kolmogorov
e} KAM

Moser
1980s+
1963: Lorenz Cascading of
1970s: Ruelle & Takens interest and work
May in non-linear
Feigenbaum dynamics, chaos,

Mandelbrot .c .. fractals .



Our interest:
Is the evolution of a system/process predictable?
“Unpredictability”

Chaos: Even if number of variables is just one,
- and even if there is no qguantum phenomenon

For example: Add 2 to the previous number, beginning with O

0+2=2
242=4 examine the predictability of
442=6 the results of successive iterations......

6+2=8 ..... and so on

Put Rs 1000 in the bank at 10% annual interest.

A0=1000

A1=A0+0.1A0=1000+100=1100=1.1A0 N=10; Rs2593.74
A2=A1+0.1A1=1100+110=1210=1.1A1
A3=A2+0.1A2=1210+121=1331=1.1A2 N=50; Rs1,17,390.85

................ Ay=1.1A,,=(1.1)N(A0)

PCD_STiCM
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Thomas R. Malthus (1798):
mathematical model of population growth.

Exponential growth model:

Each member of a population reproduces at the same

per-capita rate, the growth rate is I ° fecundity

-ability to reproduce

dN

gt N -rate coefficient
-‘control’ parameter

dN

— =rdt

N

log.N =rt+c

At t=0, log,N(at t=0) =c; I1.e., c=log, N,
log.N =rt+log, N,
N (t) _ ert+|oge No _ erteloge No _ Noert

PCD_STiCM 22



We shall take a break here.......
Questions ? Comments ?

pcd@physics.iitm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

Next: L36

Unit 11 — CHAOTIC DYNAMICAL SYSTEMS
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pcdeshmukh@iitmandi.ac.in



STICM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics School of Basic Sciences

Indian Institute of Technology Madras Indian Institute of Technology Mandi

Chennai 600036 Mandi 175001

pcd@physics.iitm.ac.in pcdeshmukh@iitmandi.ac.in
STICM

Unit 11 : Chaotic Dynamical Systems

- bifurcations, ghaos!

24



Thomas R. Malthus (1798):
mathematical model of population growth.

Exponential growth model:

Each member of a population reproduces at the same

per-capita rate, the growth rate is I ° fecundity

-ability to reproduce

dN

gt N -rate coefficient
-‘control’ parameter

dN

— =rdt

N

log.N =rt+c

At t=0, log,N(at t=0) =c; I1.e., c=log, N,
log.N =rt+log, N,
N (t) _ ert+|oge No _ erteloge No _ Noert
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Malthus's population model predicts

| | N(t) = Ne"
population growth without bound for r > 0O, 0
or certain extinction for r<0.

‘Logistic’ Population Model

Two parameters:
. growth rate.
K: carrying capacity of the system.

Carrying Capacity: population level at which the birth and
death rates of a species precisely match, resulting in a stable
population over time.

PCD_STiCM 26



dN
P
Malthus

(exponential)

N

Logistic Model of Population
Growth Rate / incorporates a
‘feedback mechanism’

Pierre Verhulst (Belgian, 1838): the rate of population
increase may be limited, depending on ‘population’.

dN | N
— == r 1__
dt | K

K: “carrying capacity”;

N =rN

N

K

N: population size.

The growth rate decreases as population size increases.

PCD_STiCM
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dN N This non-linear equation is
at r(l_Ej N known as

- - LOGISTIC EQUATION.

when d—N:NZO
dt

and the growth rate coefficient r)0,

. we have: O0<N<K
N=0whenN =0o0or whenN =K

N =0 and N =K are the equilibrium values of N.

Over a passage of time, The LOGISTIC non-
N moves toward K. linear differential
Thus: N=0: Unstable state equation (continuous

N=K: Asymptotically Stable. |changes) does not
predict any chaos.

PCD_STiCM Z



Rapid growth till K/2,
) slower growth thereafter

d—N: r(l—ﬁj N
K

/Z
t >

K/2 is an inflection point N=0whenN=0o0or N =K
r1< r2 N =0and N =K are the
equilibrium values of N.

PCD_STiCM 29
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Reproduction: considered to be continuous in time.
N(t): continuous, analytical function of time.

Several organisms reproduce in discrete intervals.

“How Many Pairs of Rabbits Are Created by One
Pair in One Year?” - Fibonacci

d—N: r(l—ﬂj N
at K

N((n+1)ot) - N(not)
ot -

Note the correspondence,

I

considering the very definition

PCD_STiCM

1

LOGISTIC, non-linear
differential equation

is(not applicable for ‘discrete’ growth models
. N(nét)

N (not).
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dN
P
Malthus

(exponential)

N

Logistic Model of Population
Growth Rate / incorporates a
‘feedback mechanism’

Pierre Verhulst (Belgian, 1838): the rate of population
increase may be limited, depending on ‘population’.

dN | N
— == r 1__
dt | K

K: “carrying capacity”;

N =rN

N

K

N: population size.

The growth rate decreases as population size increases.

PCD_STiCM

31



dN N This non-linear equation is
at r(l_Ej N known as

- - LOGISTIC EQUATION.

when d—N:NZO
dt

and the growth rate coefficient r)0,

. we have: O0<N<K
N=0whenN =0o0or whenN =K

N =0 and N =K are the equilibrium values of N.

Over a passage of time, The LOGISTIC non-
N moves toward K. linear differential
Thus: N=0: Unstable state equation (continuous

N=K: Asymptotically Stable. |changes) does not
predict any chaos.
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Reproduction: considered to be continuous in time.
N(t): continuous, analytical function of time.

Several organisms reproduce in discrete intervals.

“How Many Pairs of Rabbits Are Created by One
Pair in One Year?” - Fibonacci

d—N: r(l—ﬂj N
at K

N((n+1)ot) - N(not)
ot -

Note the correspondence,

I

considering the very definition

PCD_STiCM
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LOGISTIC, non-linear
differential equation

is(not applicable for ‘discrete’ growth models
. N(nét)

N (not).
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N ((n+1)ot) — N(not)

ot

N((n+1)ot) — N(not) = rN(not)

N((n+1)ot) = N(not) + rN (not) _

=rN(not)

PCD_STiCM
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Pierre Francois Verhulst

(28/10/1804-15/2/1849
Belgium)

dN | N
—=r ]___
dt | K

Robert M. May
born 8 January 1936

“l urge that people
be introduced to the
logistic equation
early in their
mathematics
equation.”

— Robert M. May
‘Simple
mathematical
models with very
complicated
dynamics’
NATURE 261
(1976) p459-467

I:)n+1 = rI:)n (1_ Pn)

n:n"™ generation index
Logistic MAP, Difference Equation

PCD_STiCM
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http://en.wikipedia.org/wiki/File:Pierre_Francois_Verhulst.jpg
http://en.wikipedia.org/wiki/File:BobMayHarvard.jpg

The discrete model _ N (n5t) _
N((n+1)ot) = N(not)+r|1- <

gives results that are very different from those obtained
from the continuum model! gy { ( Nﬂ
=|r N

N (not)ot

e 1— —
dt K
The continuum model gives the rest state N = K as
asymptotically stable,

- regardless of the value of r,
whereas,
the discrete model is very sensitive to the growth rate as well
as the interval length between reproduction.

For large enough rot , predictions of the discrete model

can give rise to instabilities! Behavior: bizarre, chaotic!
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MAP: Time domain is discrete; discrete time intervals:
difference equations instead of differential equations

Pnext — F (P

current )

* Population: linear function

Pext = MPorent (Malthus) — linear
I:)n+1 — rI:)n (1_ Pn)
The modification through (1-P,)
checks the growth,

since (1- P,) decreases as P, increases.

The non-linear term plays havoc!

PCD_STiCM
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Let us see what the non-linear term

does -

— depending on the value of the

control parameter

PCD_STiCM
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Pnext = F (Pcurrent)

* Population: | _
linear function

P..=rP,(1-P) P..=TP, .. (Malthus) — linear
The modification through (1-P,)
checks the growth,

since (1- P,) decreases as P, increases.

Let r =2.7 (arbitrary value —example from
James Gleick's book: Chaos - making a new science)

Starting population: P,=0.02 next °

1-0.02=0.98 2.7x(0.0529 x (1- 0.0529 )
2.7x0.02x0.98 = =2.7x0.0529x0.94710.1353

population ) doubled!

PCD_STiCM 39



P..=rP (1-P,) Logistic MAP Difference Equation next :
Let r=2.7 _ 2.7x0.0529x (1-0.0529)
Starting population: F,=0.02 ~2.7x0.0529x0.9471=0.1353
1-0.02=0.98 N
2.7x0.02x0.95=0.0529 2.7x0.1353x (1-0.1353)=0.3159
Note: population has more than doubled.

1 0.02 Rate of increase slows down

2 0.0529 | |13 0.6273 \4

o omm i omz ) L] Mdedtd

g 8'2%22 16 0.6304 05 |Starvation overtakes

6 0:6562 17 0.6291 N l reproduction

- 06092 | |18 0.63 it

8 ooars | |19 06204 | |Fnlo ] P, stabilizes;

9 0.6199 | |20 0.6299 settles down to an

10 0.6362 | | =1 0-6295 “attractor”

11 0.6249 22 0.6297 - /-f | | i |

12 06328 23 06296 " 0 5 : 10 : 15 : 20 : 25 I
24 0.6296 P
2% 06296 | STicmn(generatlon Index) — }



An ‘attractor’ Is a region in the

configuration or phase space that is

Invariant under time evolution and
attracts nearby configurations -
— those that lie within the ‘basin of

attractors’.
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Period Two <
> Oscillations

——

r=3.1
The attractor
oscillates
between two
STEADY
STATE values

Number of iterations =2

PCD_STiCM

P =0.56 1
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Period Doubling / Bifurcation

— 2.1

P

n+1

=rP,(1—P)

P

n+1 —

rP(1-P)

Steady state

=3

Period Two
Oscillations

Number of iterations of the equation —,

PCD_STiCM
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Period Doubling / Bifurcation |R,,, =rB,(1—PR,)

n:-; | /5 EEER=S 27 rl — 3

Pn+1 =
/\/\“ rP(1-P)

/ Steady state

Period Two
Oscillations

Number of iterations of the equation —,
n(generation index) —

Period Four
Oscillations

Number of iterationsrof the equation ——



L8 E ;
0o n
0 3 10 15 2 2
n

/ Steady state

Period Doubling / Bifurcation

n+1

=rP,(1—P)

+1:

rP(1-P)

=3

Period Two
Oscillations

Number of iterations of the equation —,

rz ~ 345 n(generation index) — r > 357

Period Four
Oscillations

n+1l

rP.(1-P)

Chaos!
Non-equilibrium

Number of iterationstof the equation —— 5



An attractor is a set to which a dynamical system evolves
over a long enough time.

That is, points that get close enough to the attractor
remain close even if slightly disturbed.

An ‘attractor’ can be a point, a curve, a manifold, or
even a complicated set with a fractal structure known as
a strange attractor.

CHAOQOS theory: builds mathematically rigorous
formulations to describe the ‘attractors’ of chaotic
dynamical systems.
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fecundity

r -ability to reproduce
-control parameter
I:)next — rI:)(:urrent (1_ Pcurrent) 05

o
[

0 ( r ( 1:Population eventually
dies, no matter what the
Initial population.

PCD_STiCM
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We shall take a break here.......
Questions ? Comments ?

pcd@physics.iitm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

Next: L37

Unit 11 — CHAOTIC DYNAMICAL SYSTEMS
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—

.....butterfly
effect

PCD_STiCM
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L8 E ;
0o n
0 3 10 15 2 2
n

/ Steady state

Period Doubling / Bifurcation

n+1

=rP,(1—P)

+1:

rP(1-P)

=3

Period Two
Oscillations

Number of iterations of the equation —,

rz ~ 345 n(generation index) — r > 357

Period Four
Oscillations

n+1l

rP.(1-P)

Chaos!
Non-equilibrium

Number of iterationstof the equation —— 53
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Chaotic # Random

Random: same initial value may result in
unpredictable final state.

Chaotic: deterministic.
Same Iinitial value results in same final state, but
the final state Is very sensitive to small variations
In the Initial value.

Since Initial values cannot be known with infinite
accuracy, the outcome can be
chaotic/unpredictable: butterfly effect

PCD_STiCM 55



Mitchell Jay Feigenbaum's
Feigenbaum constant can be

used to predict when
(b. Dec. 19, 1944)  haos will occur.

When the value of the driving
parameter r equals 3.57, P, heither

converges nor oscillates — its value

l
becomes completely random! r, = 3564 .

For values of r larger than 3.57, the =&

behavior is mostly chaotic.
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I 1
3 SO S .

For most values of r>3.57 : chaotic behavior.
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For certain isolated values
of r, we see non-chaotic
behavior.

I

PCD_STiCM 58



In any one-dimensional system, Iif a
regular cycle of period three ever
appears, then the system will display
regular cycles of every other length,
as well as completely chaotic cycles.

“PERIOD THREE IMPLIES CHAQS”.
— James Yorke



P

next

— r-I:)current (1 o Pc

urrent )

We have an in-built non-linearity in the above relation

. K .
X=——X—>linear
m

0 = —%sin@ — non —linear

linearization:sin@ = @

For a non-linear system,
the principle of linear superposition will not hold. OF COURSE!

Linear systems are easier to treat since parts of the
system can be separated, solved independently, and
the solutions superposed to get the answer.

60

For a non-linear system, gne cannot do this!



5 The ‘orbit’

E kXZ n p_ — E IS an
2 2 ‘attractor’
Phase P

space of / \
a linear

oscillator w

IS a :

rectangle.

ATTRACTORS ‘live’ in PHASE SPACE.
An attractor can be a FIXED POINT (“steady state”)
in phase space, or a periodic orbit (“limit cycles”)
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Linear Oscillator: ellipse

The attractor is a repetitive
ORBIT (‘limit cycle’) in the
. . ® , , phase space.

X
= ~1-0.5[ 0.51
-1[ _1
-2

Animation courtesy of Dr. Dan Russell, Kettering University
http://paws.kettering.edu/~drussell/Demos/copyright.html

PCD_STiCM

62



Damped Oscillator: shrinking ellipse
that settles to the ‘steady state’ of no
motion.

N - The attractor is a SINGLE
FIXED POINT in the phase
space.

LS
=
¥ =

W_ By time “ros[0.51

Animation courtesy of Dr. Dan Russell, Kettering University
http://paws.kettering.edu/~drussell/Demos/copyright.html
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Traditional |
time
series [& ,L /\ J

Phase

space |
trajectory ‘/‘Cé—)

Steady Period

Cyclic
State .
orbit three

From Gleick’s ‘Chaos: Making of a new science’ page 50
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The Lorenz attractor:

dx

— =—0X+

a0

C—y:px—y—xz

at

dz

— =Xy — f7

R p
example:

Edward N. Lorenz :
"Deterministic nonperiodic flow"

Journal of the Atmospheric
Sciences (1963).

A dynamical system described by
these equations converges to a
‘strange attractor’ with fractal
properties.

8

c=10,p=28, f=—

3
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http [lwww.physics.emory. edu/~weeks/research/tserlesl html#lorenz

15 | ! | !

. ).( variable
Mo hewm o
.

1 l 1 l
10 20 30 40

time

The chaotic

dynamical
system’s

motion takes

place over a

L The solution neither convarges toa
STRANGE steady state nor does it dlverge
ATTRACTOR. — |/

http://www.tug.org/texshowcase/LorenzAttractor.pdf .



The motion of the particle described by a peculiar system
of non-linear differential equations such that the solution
will neither converge to a steady state in the phase
space, nor diverge to infinity, but will stay in a bounded
region. The trajectory in phase space is nevertheless

chaotic, and sensitive to initial conditions.

S The particle's location, is definitely in the
., attractor, but is randomly located within

the bounded space.

“Order within disorder”, since the particle

does not leave the “strange attractor”.
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100

A

Note the Lorenz System, time series

sensitivity

of the

solution
to initial

conditions

http://math’gmu.edu/~rsachs/tj/
25/10/2010
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50.

40.

10,

\

et \What Is the dimension of the Lorenz attractor?

. | FRACTAL dimension. \
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FRACTAL dimension Attach,

at the middle of
each side,

a new triangle

one-third the size

The KOCH  Area < area of the circle
snowflakes/  drawn around the original
curve triangle 70



The KOCH snowflakes e

or, KOCH CURVE 3 e,

The perimeter

~ <
encloses a finite area, ¢ & hb}n?“,

n,
but the length of the i} KOCH curve is 53
perimeter is infinite! L " I' F{':g

i ¥

Helge von Koch }'k more than a line, _g“”m-""‘

Swedish mathematician _j_,ﬂ‘f less than a %"ﬂ_r

described this first in 1904 & '

| | | N plane. {‘?

What is the dimensionality 5}

More than 1, less than 2.

of the Koch curve? W}ﬁf{‘d‘g ‘L I{;‘E’E
1{.,?,.,‘,“ :
i

Fractal dimension!
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The KOCH snowflakes e

or, KOCH CURVE 3 e,

The perimeter

~ <
encloses a finite area, ¢ & hb}n?“,

n,
but the length of the i} KOCH curve is 53
perimeter is infinite! L " I' F{':g

i ¥

Helge von Koch }'k more than a line, _g“”m-""‘

Swedish mathematician _j_,ﬂ‘f less than a %"ﬂ_r

described this first in 1904 & '

| | | N plane. {‘?

What is the dimensionality 5}

More than 1, less than 2.

of the Koch curve? W}ﬁf{‘d‘g ‘L I{;‘E’E
1{.,?,.,‘,“ :
i

Fractal dimension!



Hausdorff dimension is a mathematical
procedure to assign a fractional dimension
to a curve or shape.

i Hausdorff-Besicovitch dimension.

I‘ g ‘ Fractal: is a set for which the Hausdorff-

Besicovitch dimension exceeds the

Felix Hausdorff
(1868-1942)

topological dimension.
Topological dimension:

point : O-dimensional; line : 1-dimensional;

a plane : 2-dimensional; Euclidean space R" :n-dimensional.
Dimension of space = no. of real parameters needed to
describe different points in that space.

This idea breaks down!
Cantor’s work (also Peano’s): There is a one-to-one

correspondgngg, between R and R?. .y



i R

1 N=1
2 ; N=2
N=3

3 i I
Take an object in Euclidean one dimension.

Reduce this dimension by a factor of n.
Cut it in n pieces.

The number of individual units we then
have is N=n¢,

In this case, d=1 Is the dimension.
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N=22=4

1 Take an object in Euclidean

I}I\r:z dimension d.
N=3
Reduce each dimension by a
factor of n.
n=3 l.e.,
N=32=9 cut each side into n pieces.

The number of individual units
we then have is N=n¢.
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N=1 Take an object in Euclidean

-
11

=2 dimension d.

T
w

n=1 d

2

N=2°=4

Reduce each dimension
oy a factor of n. Cutitinn
n=3 nieces.

The number of individual units

we then have is N=n¢.

n=2 N=23=8 n=3 N=33=27
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Take an object in Euclidean logN =d logn
dimension d. i log N
Reduce each dimension by a - logn
factor of n. Cut it in n pieces. dimensionaility@
The number of individual units need *NOT™* be an
we then have is(N=n] integer, it can be

a fractional number

n=1 N=13 n=2 N=23=8 n=3 N=33=27

d=3
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Measurement of
length: Lay down lots
of straight-line
rulers/scales and
count the number of
scales, add them up

scaleS wm
If we use a scale of

half the previous
length, we need more
than twice the

number of scales.
Each successive

time we use smaller
scale to get more
accurate answer, we
get a longer length.

What is the length of the coast line of
Great Britain?

How would you measure |t’7
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Result for the 1 segment of unit

length of length
self-similar Length=1
contour

4 segments of one-
third unit:
Length=4/3

Increases on
using smaller

length-scales 16 segments of

one-ninth unit:
Length=16/9

64 segments of
one-twenty-
seventh unit:
Length=64/27



Iteration Segment Number of Curve Length
Number Length segments

1 1 1 1.00
2 1/3 4 1.33
3 1/9 16 1.77
4 1/27 64 2.37




Each side is broken into
4 smaller pieces, with a

Dimensionality of the
KOCH curve

magnification factor of 3. 100 N
2 d = 0gQ
“Fractal logn
dimension” IOg A
IS sometimes called = ﬁ
“Similarity dimension” 09
=1.261....

“Fractal dimension”
IS defined for those sets that
are affine “self-similar”

The KOCH
snowflakes/curve




Each successive time we use smaller scale to get more
accurate answer, we get a longer length for the coastline.

Wil successive measurements
with smaller scales give an
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Infinite SELF-SIMILARITY
of the KOCH CURVE
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Each side is broken into
4 smaller pieces, with a

Dimensionality of the
KOCH curve

magnification factor of 3. 100 N
2 d = 0gQ
“Fractal logn
dimension” IOg A
IS sometimes called = ﬁ
“Similarity dimension” 09
=1.261....

“Fractal dimension”
IS defined for those sets that
are affine “self-similar”

The KOCH
snowflakes/curve




(Waclaw) Slerplnskl carpet (1916): a plane fractal
Begin with a square. |

Divide it into 3x3=9
equal squares.

Remove the central
square.

Repeat (self-similar)
successively on
remaining squares by |
putting ‘square-holes’ |
In the center.

Dimensionality of
Sierpinski carpet:

Hausdorff ‘Pselfwmmllar’ ‘fractal dlmensmn
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Nature iIs discrete. Mathematics is not constrained by
nature.

One can have a mathematical shape that has an
Infinite perimeter but a finite area, or infinite area that
would enclose only a finite volume.

You will get a finite perimeter length if you use a rigid
ruler to measure the perimeter. A smaller ruler will
yield a bigger value for the length of the perimeter.
This growth continues without converging to any finite
value as you keep making the ruler smaller.
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“.... the universe .... Cannot be
understood unless one first learns
to comprehend the language in
which it is written. It is written in the
language of mathematics, and its
characters are triangles, circles and
other geomteric figures,....”

— Galileo Galilel (in 1623)

“....Clouds are not spheres,
mountains are not cones,
coastlines are not circles, and
bark is not smooth,....”
— Benoit Mandelbrot
(in 1984)
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http://en.wikipedia.org/wiki/Image:Galileo.arp.300pix.jpg

Iterations “Iteration” / “Orbit”

X, . seed value “To lterate” = to evaluate the

function over and over again

_ 1 _ ,
X =F"(X)=F(X) using the output of the

X, = F?(x,) = F(F(X,)) Ereex\tnous step as input for the
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Orbit of x* -2 for different seed values X,
n=0 |x,=0] x,=0.1
n=1| -2 -1.99

n=2 ’ +1.960 gets eventually
‘fixed’, but for

Orbit for seed 0

neighboring seed

n=3 2 1.842 point 0.1, the orbit
n=4 2 1.393 wanders between -
n=5 2 —0.597 2 and +2 randomly.

A fixed point orbit Is one for which F(X,) = xo.
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Each side is broken into
4 smaller pieces, with a

Dimensionality of the
KOCH curve

magnification factor of 3. 100 N
2 d = 0Q
“Fractal log n
dimension” log 4
“Similarity dimension” log 3
=1.261....

“Fractal dimension”

IS defined for those sets
that are affine “self-
similar’

The KOCH W
snowflakes/curve
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SELF-SIMILARITY:

Important aspect of
‘CHAOS

=
=]
T

1 1 1
2.6 2.8 3 3.2 34 3.6 3.8 4

Feigenbaum discovered the
exact scaling factor

(4.669.....) at which it was

self-similar.
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Iterations “Iteration” / “Orbit”

X, . seed value “To lterate” = to evaluate the

function over and over again

_ 1 _ ,
X =F"(X)=F(X) using the output of the

X, = F?(x,) = F(F(X,)) Ereex\tnous step as input for the
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Orbit of x* -2 for different seed values X,
n=0 |x,=0] x,=0.1
n=1| -2 -1.99

n=2 ’ +1.960 gets eventually
‘fixed’, but for

Orbit for seed 0

neighboring seed

n=3 2 1.842 point 0.1, the orbit
n=4 2 1.393 wanders between -
n=5 2 —0.597 2 and +2 randomly.

A fixed point orbit Is one for which F(X,) = xo.

PCD_STiCM



The subject of Also, It is
‘chaos’, ‘fractals’, computationally
‘non-linear G Intense.
dynamics’ is

Intensely
mathematical.

We aim here at \/
providing only a

cursory introduction Feedback
without using heavy
numerical/ computational, mathematical techniques.
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Mandelbrot set: set of all complex numbers z for
which sequence defined by the iteration

z(0) = ¢, z(n+1) = z(n)*z(n) + c, n=0,1,2,3,...
remains bounded.

If c=0, then z(n) = O for all n, so the limit of the
seqguence Is zero.

If z=I, the sequence oscillates between | and I-1, so

the sequence remains bounded without converging to
a limit.
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Mandelbrot set:

z=12°+4C
C . complex number

Do the same to the complex number that results from
the above operation.

.
c
t

e. ITERATE: If the functions g(z) = z? + ¢ are used to
o the iterations, then which values of ¢ give orbits
nat escape, and which values of ¢ give orbits that

C

0 hot escape?

If the result tends to infinity, exclude c; if the result of a
large number of iterations stays below a certain level,
include ‘c’ as part of ‘Mandelbrot set'.
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Magritude of £ for -1.0403% + 0.250%2544

10+
Magntude of £ for -0 1122985 + 0. 76284051
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Magnitde
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Tterations

Introduction to the Mandelbrot Set
A guide for people with little math experience.
By David Dewey
http://www.ddewey.net/mandelbrot/
2.60,463 PCD_STiCM

103



If |Z] > 2, it will escape to Infinity.

That Is, we don't have to check it for infinity,
just for 2.

How many times should we iterate Zn to
see If it goes farther away than 2 or not?

Luckily just a few times suffices.
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The Mandelbrot set Is a fractal.

Fractals: objects that display self-similarity at various
scales.

Magnifying a fractal reveals small-scale details
similar to the large-scale characteristics.

Although the Mandelbrot set is self-similar at magnified
scales, the small scale details are not identical to the
whole. In fact, the Mandelbrot set is infinitely complex.

The process of generating the Mandelbrot set is
simple, based on the simple equation involving
complex numbers.
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r =a(l—cosé)
Re(z) |

f
2


http://en.wikipedia.org/wiki/File:Mandelset_hires.png
http://math.bu.edu/cgi-bin/imagemap/mandmap

Logistic Map

Mandelbrot Set

Im]e

A

H.I.'II I

Is there any relationship
between these two?
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http://en.wikipedia.org/wiki/File:Mandelset_hires.png

Courtsey: Public domain image by Georg-Johann Lay
http://en.wikipedia.org/wiki/File:Verhulst-Mandelbrot-Bifurcation.jpg#file


http://en.wikipedia.org/wiki/File:Verhulst-Mandelbrot-Bifurcation.jpg

The first thing to do to draw the Mandelbrot set
IS to set the equivalence between pixel
coordinates and complex numbers.



The colors in the images are shown in regions OUTSIDE the
Mandelbrot set; the colors are chosen so that they have a
mathematical relationship with C and the iterative
mathematics.




SELFE-SIMILARITY 1Seahorse Valley
| -0.75, 0.1 u\ e L/;j_/

8. Mlnl \
Mandelbrot *2.-,..1,,,.*r Y 5 E{(;;rezi/nt
150 % 0.275, 0

J':.-___ i
:1%3.‘

9. Another Mandelbrot
-0.1592,-1.0317

2 Mandelbrot Set Zoom -
onyoutube ...................... Very Many!
For example:
(Jonathan Coulton’s song on Mandelbrot song)
http #wwvyoutube.com/watch?v=gEw8xpblaRA



http://www.knysna-holidays.com/knyimages/natparks/seahorse.jpg

Some properties of the Mandelbrot set
* M is connected; no disconnected "islands".
* Area of M: finite
- it fits inside a circle of radius 2;
the exact area has been approximated,

but the length of its border is infinite.

« If you take any part of the border of the set, the length of this
part will also be infinite. The border has “infinite details”.
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Fractal structures: Blood vessels
branching out further and further, the
branches of a tree, the internal
structure of the lungs, graphs of stock
market data, ..... all have something in
common: they are all self-similar.

R

https://www.fractalus.com/info/layman.htm
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Conclude by showing video:
http://video.google.com/videoplay?docid=646013035643262867 7#

John Hubbard's video

The Beauty and Complexity of the Mandelbrot Set

which can be purchased on DVD wiasdhttp://www.customflix.com/221873 114












http://www.youtube.com/watch?v=gEw8xpblaRA

Mandel brot-Zoom-Carr-song.fiv
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http://www.youtube.com/watch?v=gEw8xpb1aRA
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INTERNET ! Great source, but use it cautiously!!
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We shall take a break here.......
Questions ? Comments ?

pcd@physics.iitm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

Next: L40

Scope, and limitations of “Classical” Mechanics?

pcdeshmukh@iitmandi.ac.in
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