Special Topics in Classical Mechanics -Video course

COURSE OUTLINE

This course has grown out of the first course in Physics taught to engineering students at IIT-Madras. However, the contents are expanded to include the interests of students of basic sciences and a strong emphasis on the foundations of classical mechanics is aimed at.

Essentially, foundations of 'classical mechanics' would include a comprehensive introduction to Newtonian, Lagrangian and Hamiltonian Mechaincs, and include an introduction to mechanics of a system of particles, fluid mechanics, introduction to 'chaos', to the special theory of relativity and also to electrodynamics.

The course is designed as the first course students would take after high school, and the scope of some of the advanced topics that are introduced is therefore restricted. A comfortable introduction, adequately rigorous but not overly involved, to advanced applications is attempted. In this course, we emphasize that 'observation' and 'measurements' play a fundamental role in Physics.

We introduce mathematical methods as and where needed, but keep the focus on physical principles. The course aims, even as it will provide a rigorous introduction to the foundations of classical mechanics, at discovering the romance in physics, beauty in its simplicity, and rigor in its formulation.

COURSE DETAIL

The curriculum will be covered in Eleven Units spread over about 40 lecture hours.

Unit No.	Topic/s	Lectures
Unit 1	Equations of Motion. Principle of Causality and Newton's I & II Laws. Interpretation of Newton's 3rd Law as 'conservation of momentum' and its determination from translational symmetry. Alternative formulation of Mechanics via 'Principle of Variation'. Determination of Physical Laws from Symmetry Principles, Symmetry and Conservation Laws. Lagrangian/Hamiltonain formulation. Application to SHO.	Unit 1: 1(Course Overview)+5 Lectures: L1 to L6
Unit 2	Oscillations. Small oscillations. SHM. Electromechanical analogues exhibiting SHM. Damped harmonic oscillator, types of damping. Driven and damped & driven harmonic oscillator. Resonance, Quality Factor. Waves.	Unit 2: 4 Lectures: L7 to L10

Additional Reading:

- P. Chaitanya Das, G. Srinivasa Murthy, Gopal Pandurangan and P. C. Deshmukh, The real effects of pseudo-forces <u>Resonance, Vol. 9,</u> <u>Number 6, 74 -85</u> (2004).
- 2. P. Chaitanya Das, G. Srinivasa Murty, K. Satish Kumar, T A. Venkatesh and P. C. Deshmukh , Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity <u>Resonance, Vol. 9,</u> <u>Number 7, 77-85</u> (2004).

Coordinators:

Prof. P.C. Deshmukh Department of PhysicsIIT

3 Lectures: L11.12 Unit 4 Kepler Problem. Laplace-Runge-Lenz vector, Dynamical'symmetry. Relationship between 'Conservation principle' and 'Symmetry'. Unit 4: 2 Lectures: L13.L14 Unit 5 Inertial and non-inertial reference frames. Pseudo forces. Unit 5: 4 Lectures: L15 to L18 Unit 6 Gallean & Lorentz transformations. Special Theory of Relativity. Unit 6: 4 Lectures: L15 to L22 Unit 7 Flysical examples of fields. Potential energy function. Cradient, Directional Derivative, Divergence of a vector field. Unit 7: 3 Lectures: L23 to L25 Unit 8 Gauss' Law; Equation of Continuity. Hydrodynamics and Electrodynamics illustrations. Unit 8: 3 Lectures: L26 to L28 Unit 9 Fluid Flow, Bernoulli's Principle. Equation of motion for fillustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics. Unit 9: 2 Lectures: L29,J30 Unit 10 Classical Electrodynamics and the special theory of fluit fox. Definition of curt, vorticity, froatalons. Unit 10: 4 Lectures: L31 to L34 Unit 10 'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets. Unit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical Mechanics Lustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.itm.ac.in/=labs/ampl/nomepage/courses.html Unit 11: 5 Lectures: L35 to L39	Unit	Polar coordinate systems.	Unit 3: 2	
Unit Kepler Problem. Laplace-Runge-Lenz vector, 'Dynamical' symmetry, Relationship between 'Conservation principle' and 'Symmetry'. Unit 4: 2 Lectures: L13,L14 Unit hertial and non-inertial reference frames. Pseudo forces. Unit 5: 4 Lectures: L15 to L18 Unit Galilean & Lorentz transformations. Special Theory of Relativity. Unit 6: 4 Lectures: L19 to L22 Unit Galilean & Lorentz transformations. Special Theory of Relativity. Unit 7: 3 Lectures: L23 to L25 Unit Gauss' Law: Equation of Continuity. Hydrodynamics and Electrodynamics illustrations. Unit 8: 3 Lectures: L26 to L28 Unit Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curt, vorticity, Krotational flow and circulation. Steady flow. Bernoulli's principle, some illustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics. Unit 9: 2 Lectures: L29,L30 Unit Classical Electrodynamics and the special theory of nelativity. Introduction to Maxwel's equations. Unit 10: 4 Lectures: L31 to L34 Unit 'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets. Unit 11: 5 Lectures: L33 to L39 L40: Scope and Limitations of Classical Mechanics Ilustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.itm.ac.in/-labs/amp/homepage/courses.html Imit 31: 5 Lectures: L39	3		Lectures: L11,L12	
Unit Inertial and non-inertial reference frames. Pseudo Unit 5: 4 Image: State of the state	Unit 4	Kepler Problem. Laplace-Runge-Lenz vector, 'Dynamical' symmetry. Relationship between 'Conservation principle' and 'Symmetry'.	Unit 4: 2 Lectures: L13,L14	
Unit 6Galilean & Lorentz transformations. Special Theory of Relativity.Unit 6: 4 Lectures: L19 to L22Unit 7Physical examples of fields. Potential energy function. Gradient, Directional Derivative, Divergence of a vector field.Unit 7: 3 Lectures: L23 to L25Unit 8Gauss' Law; Equation of Continuity. Hydrodynamics and Electrodynamics illustrations.Unit 8: 3 Lectures: L26 to L28Unit 9Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curl, vorticity, Irrotational flow and circulation. Steady flow. Bernoulli's principle, some illustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics.Unit 10: 4 Lectures: L31 to L34Unit 10Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations.Unit 11: 5 Lectures: L31 to L34Unit 11'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets.Unit 11: 5 Lectures: L35 to L39 L40. Scope and LawIlustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.ilm.ac.in/~labs/amp/homepage/courses.htmlUnit 11: 5 Lectures.html	Unit 5	Inertial and non-inertial reference frames. Pseudo forces.	Unit 5: 4 Lectures: L15 to L18	
Unit 7Physical examples of fields. Potential energy function. Gradient, Directional Derivative, Divergence of a vector field.Unit 7: 3 Lectures: L23 to L25Unit 8Gauss' Law; Equation of Continuity. Hydrodynamics and Electrodynamics illustrations.Unit 8: 3 Lectures: L26 to L28Unit 9Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curl, vorticity, Irrotational flow and circulation. Steady flow. Bernoulli's principle, some illustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics.Unit 10: 4 Lectures: L29,L30Unit 10Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations.Unit 10: 4 Lectures: L31 to L34Unit 11'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets.Unit 11: 5 Lectures: L35 to L39 L40: Scope and L40: Scope and Limitations of Classical HechanicsUnit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical MechanicsIlustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.itim.ac.in/~Labs/amp/homepage/courses.html	Unit 6	Galilean & Lorentz transformations. Special Theory of Relativity.	Unit 6: 4 Lectures: L19 to L22	
Unit 8Gauss' Law; Equation of Continuity. Hydrodynamics and Electrodynamics illustrations.Unit 8:3 Lectures: L26 to L28Unit 9Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curl, vorticity, Irrotational flow and circulation. Steady flow. Bernoulli's principle, some illustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics.Unit 10: 2 Lectures: L29,L30Unit 10Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations.Unit 10: 4 Lectures: L31 to L34Unit 11'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets.Unit 11: 5 Lectures: L35 to L39 L40: Scope and L40: Scope and Limitations of ClassicalUnit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of ClassicalIlustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.itm.ac.in/~labs/amp/homepage/courses.html	Unit 7	Physical examples of fields. Potential energy function. Gradient, Directional Derivative, Divergence of a vector field.	Unit 7: 3 Lectures: L23 to L25	
Unit 9Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curl, vorticity, Irrotational flow and circulation. Steady flow. Bernoulli's principle, some and Stokes' theorem in fluid dynamics.Unit 9: 2 Lectures: L29,L30Unit 10Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations.Unit 10: 4 Lectures: L31 to L34Unit 11'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets.Unit 11: 5 Lectures: L31 to L39 L40: Scope 	Unit 8	Gauss' Law; Equation of Continuity. Hydrodynamics and Electrodynamics illustrations.	Unit 8: 3 Lectures: L26 to L28	
Unit 10 Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations. Unit 10: 4 Lectures: L31 to L34 Unit 11 'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets. Unit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical Mechanics Ilustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.iitm.ac.in/~labs/amp/homepage/courses.html Imit 10: 4 Lectures: L35 to L34	Unit 9	Fluid Flow, Bernoulli's Principle. Equation of motion for fluid flow. Definition of curl, vorticity, Irrotational flow and circulation. Steady flow. Bernoulli's principle, some illustrations. Applications of Gauss' divergence theorem and Stokes' theorem in fluid dynamics.	Unit 9: 2 Lectures: L29,L30	
Unit 11 'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets. Unit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical Mechanics Ilustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.iitm.ac.in/~labs/amp/homepage/courses.html Imit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical Mechanics	Unit 10	Classical Electrodynamics and the special theory of relativity. Introduction to Maxwell's equations.	Unit 10: 4 Lectures: L31 to L34	
Ilustrative Problem Sets for Tutorials that can be used for this course are available at: http://www.physics.iitm.ac.in/~labs/amp/homepage/courses.html	Unit 11	'Chaos', bifurcation, strange attractors, fractals, self- similarity, Mandelbrot sets.	Unit 11: 5 Lectures: L35 to L39 L40: Scope and Limitations of Classical Mechanics	
	llust <u>http://</u>	rative Problem Sets for Tutorials that can be used for this course are available at: www.physics.iitm.ac.in/~labs/amp/homepage/courses.html		

References:

No single text covers the vast range of topics and the novel treatment of the subject material dealt with in this course. A very large number of books and original literature in Physics education journals (such American Journal of Physics) has been referred to develop the course contents. Useful sources include the following:

- 1. Fundamentals of Physics, Volume 1 David Halliday, Robert Resnick, and Jearl Walker. Hardcover, Wiley (2007).
- 2. The Feynman Lectures on Physics, Vol. I & II Richard P. Feynman, Robert B. Leighton, Matthew Sands. Hardcover, Addison Wesley; 2 edition (2005).
- 3. Mechanics (Berkeley Physics Course, Vol. I) Charles Kittel, Walter D. Knight, Malvin A. Ruderman, and A. Carl Helmholz. Hardcover, McGraw-Hill (1973).
- 4. 'Analytical Mechanics' Grant R. Fowles and George L. Cassiday (Brooks Cole; 7 edition, 2004).
- 5. John R. Taylor 'Classical Mechanics' University Science Books (January 1, 2005).
- 6. James Gleick: Chaos making a new science William Heinemann Ltd. (1988, Great Britain).
- 7. David R. Griffiths Introduction to Electrodynamics (3rd Edition) (Benjamin Cummings, 1999).

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in