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Preface

This textbook grew out of lecture notes for the thermodynamics courses
offered in the Department of Mechanical Engineering at the University of
Victoria. Writing my own notes forced me to thoroughly consider how, in
my subjective view, engineering thermodynamics should be taught. At the
same time I aimed for a concise presentation, with the material of three
courses delivered on about 600 pages.1 My hope in publishing this book is
that students of thermodynamics might find the chosen approach accessible,
and maybe illuminating, and discover thermodynamics and its interesting
applications for themselves.

Probably the biggest difference to standard texts is when and how the
second law of thermodynamics and its central quantity, the entropy, are in-
troduced. The second law describes irreversible processes like friction and
heat transfer, which are related to a loss in work. For instance, work that
is needed to overcome friction in a generator cannot be converted into elec-
tricity, hence there is a loss. Accordingly, it should be one of the main goals
of a thermal engineer to reduce irreversibility as much as possible. Indeed,
the desire to understand and quantify irreversible losses is one of the central
themes of the present treatment, it is touched upon in almost all chapters.

The emphasis on irreversibilities requires the introduction of the second law
as early as possible. The classical treatment, which is still used in most texts
on engineering thermodynamics, is to derive the second law from discussion
on thermal engines with and without losses. Obviously, this requires an exten-
sive discussion of thermodynamic processes and thermal engines by means of
the first law of thermodynamics—the law of conservation of energy—before
the second law can even be mentioned. In the present treatment, entropy and

1 The courses (13 weeks à 3 hours), and the relevant book chapters, as currently
taught at the University of Victoria, are:
Thermodynamics (UVic Mech 240): Chapters 1-10
Energy Conversion (UVic Mech 390): Chapters 11-14, 18.1-18.9, 19,
23.1-23.5, 24
Advanced Thermodynamics (UVic Mech 443): Chapters 16-18, 20-26
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the second law are introduced directly after the first law, based on observa-
tions of rather simple processes, in particular the trend of unmanipulated
systems to approach a unique equilibrium state. With this, the complete set
of thermodynamic laws is available almost immediately, and the discussion of
all thermodynamic processes and engines relies on both laws from the start.
All considerations on engines which are typically used to derive the second
law, are now a result of the analysis of the engines by means of the first and
second law.

As soon as the thermodynamic laws are stated we are in calmer waters.
The discussion of property relations, processes in closed and open systems,
thermodynamic cycles, mixtures and so on follows established practice, only,
perhaps, with the additional emphasis on irreversibility and loss. Some el-
ements that might not be found in other books on engineering thermody-
namics concern the microscopic definition of entropy, the afore mentioned
emphasis on thermodynamic losses, and the detailed discussion of a number
of advanced energy conversion systems such as Atkinson engine, solar tower
(updraft power plant), turbo-fan air engine, ramjet and scramjet, compressed
air energy storage, osmotic power plants, carbon sequestration, phase and
chemical equilibrium, or fuel cells. The principles of non-equilibrium thermo-
dynamics are used to derive transport laws such as Newton’s law of cooling,
Darcy’s law for flow through porous media, and activation losses in fuel cells.

There are about 300 end-of-chapter problems for homework assignments
and exams. The problems were chosen in order to emphasize all important
concepts and processes. They are accompanied by detailed solved examples
in all chapters, and it is recommended to first study the examples and then
tackle the problems. Many problems require the use of thermodynamic prop-
erty tables, which are widely available in print and online.

Any presentation of a large topic such as thermodynamics can never be
complete. The choice of topics in this book is a personal one, but I am
confident that after studying this book the reader will find easy access to
most other thermodynamics texts, be they written for mechanical engineers,
chemical engineers, or scientists. Thermodynamics and Energy Conversion
processes will remain an important part of modern civilization. High energy
efficiency can only be obtained from a deep understanding of the Laws of
Thermodynamics, which describe the interplay of Energy, Entropy, and Ef-
ficiency. It is my sincere hope that this book will contribute to this end.

Victoria, BC Henning Struchtrup
Spring 2014 (struchtr@uvic.ca)
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Chapter 1

Introduction: Why Thermodynamics?

1.1 Energy and Work in Our World

Mechanical and electrical work is what drives our daily lives: cars, trucks,
planes, trains, ships—in short, all transport—require motors which are ei-
ther based on combustion of fuel or on electric energy. Our home and work
environments are unthinkable without the many devices that are powered
by electricity: light, microwave and stove, freezer and refrigerator, television
and radio, DVD and bluray, CD and MP3 player, smartphone and telephone
landline, computer and printer, washer and dryer, air conditioning and (some-
times) heat, power drill and lawn mower; the list goes on. Hospitals and fac-
tories are filled to the rim with mechanical and electronic devices and robots
that are driven by electrical energy.

Electricity, however, is mainly obtained by converting mechanical work
into electrical work in a generator: our lifestyle requires an endless supply of
mechanical work.

For most of its history, humankind was only able to harvest mechanical
work as nature provided it. Wind and water wheels were used not only to mill
grain, but also for other purposes, most importantly for pumping irrigation
water.1 But else, there was little, and an abundance of tasks had to be done
by human labor: farming, e.g., harvesting with a scythe, and weaving with a
loom come to mind immediately.

Heat, as obtained from combustion of wood, fat, oil or coal, however, was
used for cooking, lighting and heating, and other tasks unrelated to mechan-
ical work, most importantly probably the smelting of metals.

The industrial revolution was triggered in the 18th century by the invention
of heat engines, that is engines that convert heat into work. In particular the
development of the steam engine by engineers like James Watt led to the
lifestyle we enjoy. Now a wide array of heat engines is available. The original

1 Today, wind turbines and large hydropower dams harvest the same natural powers
to directly produce electricity.

H. Struchtrup, Thermodynamics and Energy Conversion, 1
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piston steam engines are replaced by steam turbines, while piston engines
such as the Diesel and Otto engines are omnipresent on our streets and in
ships, gas turbines drive aircraft and run in power plants.

For all engines, the heat is typically created by the burning of a fuel, such
as coal, natural gas, oil, etc., or from nuclear power. The fuel is costly, and
scarce, and therefore one will aim to make heat engines as efficient as possible.
Moreover, combustion of fuels releases carbon dioxide into the atmosphere,
which impacts global climate. More efficient use of fuels can at least slow down
the rate at which carbon dioxide is added to the atmosphere, and hence high
efficiencies have more than pecuniary value.

Thermodynamics was developed out of the desire to understand the limits
of heat engine efficiency. Modern power plants run on intricate improvements
on the original steam engine process that result from the deeper understand-
ing of thermodynamic processes. Early steam engines had efficiencies of heat
to work conversion of only a few percent, while modern combined cycle gas
turbine/steam power plants exhibit efficiencies of up to 60%. Moreover, ther-
modynamic consideration can establish absolute upper bounds on efficiencies
for processes, answering questions such as: how much work can be obtained
at best from a heat source at a given temperature? or: what is the maximum
work that could be obtained from a given amount of fuel? Only comparing ac-
tual performance against these theoretical limits can give adequate measures
of efficiency. Of course, these questions and the answers will be discussed
throughout this book.

Since its beginnings with the industrial revolution, thermodynamics has
developed into a science that explains a wide array of natural and technical
phenomena. Thermodynamic laws govern a host of processes: heat to work
conversion in heat engines, and the inverse, i.e., the work to heat conversion
in freezers, refrigerators and air conditioning systems; mixing and separation;
transport through membranes (osmosis); chemical reactions and combustion,
and so on. All of these will be discussed in this text.

In short, a good understanding of thermodynamics is indispensable in a
wide range of fields, in particular mechanical and chemical engineering, chem-
istry, physics, and life sciences.

1.2 Mechanical and Thermodynamical Forces

Newton’s laws of motion describe how a system reacts to an applied force:
it moves. For instance, a weight on a coiled-up thread can be used to bring
a shaft to rotation. When the shaft is connected to a generator, electricity
is produced: the potential energy of the weight is transformed into electrical
work. We see that a force, here gravity acting on the weight, can be used to
generate mechanical work, here the rotation of the shaft, which then can be
transformed again, here into electrical work. As long as the mechanical and
electrical systems used are frictionless and resistance free, there is no loss,
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that is the electrical work produced is equal to the mechanical work done by
the weight.

But, of course, there is friction and ohmic resistance, and some of the in-
put work is required to overcome these. Hence, in a system with friction, the
amount of electrical work provided is less than the work done by the weight.
So where has that work gone? Thermodynamics gives the answer: due to
friction and resistance, the system becomes warmer than its environment,
and then heat flows into the environment: some of the work is converted to
heat. While mechanics can describe friction losses, and electrodynamics can
describe ohmic resistance, a full account of the system requires a thermody-
namic description, entailing quantities like temperature and heat, which do
not appear in mechanics and electrodynamics.

We all have some idea of what temperature is, since we have a sense for
hot and cold. Also, we have the experience that when we put a cold and a hot
body in contact, the cold body will become warmer and the warm body will
become colder, until they have the same temperature. Just think of a soft
drink originally at room temperature and ice: the ice will warm and melt,
and the drink will become cooler . . . and a bit watery. Or think of a hot cup
of coffee left on a table: After sufficiently long time the coffee assumes the
temperature of the room around—it has cooled down—while the air in the
room has become just a tiny bit warmer. Our iced soft drink, when forgotten
on the table, will eventually warm up to the room temperature. In both cases,
thermal energy is redistributed between the subsystems we looked at—soft
drink, ice, coffee, air in the room. The associated temperature change is also
linked to the size of the system: soft drink and ice both experience sensible
changes in temperature and state; also the coffee’s temperature changes no-
ticeably, while it would require a rather sensitive thermometer to measure
the temperature change of the air in the room.

Hot and cold drinks are just an example for a fundamental observation:
heat goes from hot to cold in the desire to equilibrate temperature. In analogy
to mechanics, where a force causes movement of its point of application, we
can say that the temperature difference is a thermodynamic force that causes
heat to flow. And just as a mechanical force can drive a generator to produce
electricity, the thermodynamic force can be used to generate mechanical work,
and electricity. This, in fact, is what a heat engine does.

The tendency to equilibrate into a homogeneous state is not observed
only for temperature but also for other quantities. For instance, a droplet of
ink added to a glass of water will distribute until, after some time, the ink
concentration is homogeneous. This desire to mix evenly is driven by another
thermodynamic force, which is related to the difference in concentration.
Careful analysis will show that the driving force is the difference in a quantity
known as the chemical potential. Also this force can be harvested for work,
e.g. using osmosis, where freshwater is drawn into saltwater through semi-
permeable membranes that allow only water, but not salt, to pass.
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There are other examples for nature’s desire to equilibrate, for instance
in chemical reactions. The amounts of reactants and reaction products will
assume an equilibrium state that depends on the actual conditions in the
reactor, such as pressure and temperature. Any equilibration process can be
described by a thermodynamic force, and can be used—at least in principle—
to provide work.

Processes opposite to equilibration move against the thermodynamic forces,
and hence work must be provided to force these processes to happen. A re-
frigerator cools only a small part of the kitchen, by forcing heat from the
inside to the outside: (electrical) work is required to drive the compressor in
the refrigerator. Separation processes require work, or other forms of energy,
as well. Using the same semi-permeable membrane as above, one can produce
freshwater from saltwater by pressing the latter against the membrane. This
requires high pressures, and consumes work.

Chemically fabricated materials are everywhere in our lives from clothing—
fleece has replaced wool—to medication. About one percent of the world’s
energy consumption is used to produce ammonia (NH3) which is the base
product for nitrogen fertilizers and explosives. Widespread availability of
fertilizer, together with modern machines—driven by heat engines—for the
year-round farm work have increased yield from fields largely, while at the
same time the relative number of people working in farming has—in the first
world—declined dramatically. For all chemical processes the goal is to run the
reactors such that the yield is high. This requires perfect understanding of
the thermodynamic forces and equilibria, so that one can set the conditions,
e.g., pressure and temperature, accordingly.

1.3 Systems, Balance Laws, Property Relations

In order to describe thermal processes accurately, we require a number of
equations and relations to describe the behavior of the thermal system under
consideration, and the details of the materials contained in the system.

The previous paragraph in fact points to the first requirement of any ther-
modynamic analysis, which is to chose a well defined system to be described,
e.g., the system could be an entire power plant, or just the steam turbine
within. In any case, the system boundary must be well defined so that all
transport of material, energy etc. across the system boundary is well under-
stood.

The processes within a system are described by balance laws, equations
that account for all changes within the system as well as the transport across
the system boundary. Balance laws are often written as rate equations, where
the change of the amount of the balanced quantity over time is equated to
causes for change, such as flow over the boundary, or creation/destruction
inside the system.
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The simplest balance law is the conservation law for mass, which states
that mass cannot be created or destroyed. Hence, the mass inside the sys-
tem boundaries can change only due to transfer of mass in or out over the
boundaries. A closed system is defined as having no mass transfer over the
boundaries, accordingly the mass in a closed system is constant. In an open
system mass can enter or leave; this can lead to changing amount of mass
within the system, for instance when a container is filled, or, when the inflow
is balanced by the outflow, to an exchange of the material in the system,
while the mass in the system is constant.

The conservation laws for energy states that energy cannot be created or
destroyed. To emphasize its central importance, it is known as the First Law
of Thermodynamics. Energy exists in different forms; familiar from mechanics
are kinetic and potential energy, and thermodynamics adds internal (also
called thermal) energy. The first law describes the conversion between the
different forms of energy, and the transport of energy in form of heat and
work. While the first law describes conversion from work to heat and vice
versa, it cannot distinguish between possible and impossible processes.

Indeed, thermodynamic processes are restricted in many ways, e.g., heat
will by itself go from hot to cold and not vice versa, or a mixture will not
spontaneously separate. These restrictions are formulated in the Second Law
of Thermodynamics. The second law introduces a new quantity, the entropy,
which can only be created, but not destroyed. Accordingly, the second law is a
balance law for entropy that describes the change of entropy in the system due
to transport across the boundary, and creation inside the system. Since we
have no sense for entropy, this quantity is somewhat non-intuitive, however,
the second law is seen at work quite easily, for instance in all equilibration
processes such as those discussed above. Processes in which entropy is created
are called irreversible, and any creation of entropy can be related to a loss in
work. The second law has far ranging consequences, including the restriction
of the efficiency of heat engines to values below unity, that is, heat cannot be
fully converted into work.

As just stated, we have no sense for entropy. But then, we have no sense
for energy as well, and our sense for temperature is rather inexact. To fill
the thermodynamic laws with life, the quantities appearing in them, most
importantly energy and entropy, must be related to measurable quantities.

With temperature playing a prominent role in thermodynamics, temper-
ature and its measurement must be clearly defined, which is done by means
of the Zeroth Law of Thermodynamics, which states that two bodies in equi-
librium have the same temperature. The assigned number (zero) indicates
that this law now is introduced before the first and second laws, but histori-
cally its importance for a sound development of thermodynamic theory was
recognized only after these were named.

Measurable quantities are length (and thus area and volume), time (and
thus velocity and acceleration), mass, pressure (or force), temperature, and
concentration. For specific systems the thermodynamic lawsmust be furnished
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with property relations that describe the physical behavior of the materials
contained in the system, by relating measurable quantities to each other as
well as to those that cannot be measured directly (energy, entropy . . . ). Prop-
erty relations are laid down in equations or in tables, they result from careful
measurements and evaluation of these by means of the thermodynamic laws.

1.4 Thermodynamics as Engineering Science

Typically, scientists and engineers ask different questions. With some sim-
plification, one might say that a scientist asks Why does this happen?, while
an engineer asks How can I use it? But then, the boundaries between sci-
ence and engineering are rather fluent, and there is significant overlap. For
instance, both disciplines will be interested in the basic laws—in form of
equations—that describe the observed phenomena. For the scientist this is
part of understanding and describing nature, while for the engineer the basic
laws are tools to model and improve engineering devices. It is probably fair
to say that the deeper an engineer understands the laws of nature, the more
use she/he can make of them. Deeper understanding will lead to new ideas
that might not be obvious at the first look.

As stated earlier, thermodynamics was developed out of an engineering
desire, namely to improve the efficiencies of heat engines. This need resulted
in the thermodynamic laws, which were found on purely phenomenological
grounds, that is by observation and conclusion. As will be seen, thermal
energy and entropy arise as necessary, and rather helpful, quantities, which
appear in their respective laws (1st and 2nd). The laws describe work and heat
exchange, and the trend to equilibrium, but they do not answer the questions
What is energy? What is entropy? Indeed, for engineering applications the
answer to these questions is not relevant, as long as property relations for
energy and entropy can be found from measurements, as is the case.

Nevertheless, a deeper understanding of these quantities can be obtained
by looking at the microscopic description of matter, that is on the atomic
or molecular level. Thermal energy can be related to microscopic kinetic and
potential energies, so that concepts from mechanics can be transferred to
some degree.

Entropy can be related to the number of microscopic realizations of the
same macroscopic state, as will be discussed for rather simple model exam-
ples. The trend to equilibrium as expressed in the second law is then simply a
motion of the system towards macroscopic states that have a larger number of
microscopic realizations. The final equilibrium state has the largest number
of realizations, and thus is—by far—most likely. Often one finds explanations
of entropy as a measure for “disorder”, but this might be misleading wording,
unless a careful definition of “disorder” is provided.

Even somewhat superficial arguments on microscopic behavior can yield
deeper insight into entropy, and thermodynamic processes. Hence, the
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introductory chapter on entropy and the chapters on reacting and non-reacting
mixtures contain some descriptions on the microscopic level. Naturally, we
can just scratch the surface. The reader might study these sections for some
insight—for deeper understanding, we must refer to the relevant scientific
literature.

As might become clear from the above, the microscopic description of
entropy relies on ideas of statistics. The proper understanding of matter on
the microscopic level is subject of Statistical Mechanics, a branch of physics
which for instance can be used to find property relations.

1.5 Thermodynamic Analysis

After the introduction and general discussion of the basic laws of thermody-
namics and the property relations, the study of thermodynamics turns to the
thermodynamic analysis of a wide variety of systems.

The system considered, and the goal of the analysis, depends on the field
of study. This text focuses on engineering applications of thermodynamics,
where the aim is to understand the working principles, and to evaluate the
performance of thermodynamic systems such as power plants, refrigerators,
chemical reactors and so on. Deep understanding of system behavior from
thermodynamic analysis will lead to performance enhancement by proper
setting of available parameters, redesign for improved efficiency, replacement
by more efficient alternatives, and, possibly, to development of completely
new system configurations.

Thermodynamic analysis of a system entails some or all of the following:

• Introductory discussion of the system under consideration. What is the
purpose of the system, how is it achieved?

• General discussion of the working principles of the system.
• Clear identification of the system. Decomposition into subsystems for eas-

ier evaluation.
• Material considerations. Are there limiting values for system parameters,

e.g. maximum temperatures and pressures, that cannot be exceeded?
• Determination of all relevant physical data (pressure, temperature, en-

ergy, entropy and so on) at all relevant locations in the system, and its
subsystems.

• Computation of all heat and work exchanges for the system, and its sub-
systems.

• Evaluation of system performance, as expressed through meaningfully de-
fined efficiency measures, both for subsystems and the overall system.

• Analysis of system configuration and performance. Which controllable pa-
rameters must be changed, and how, to improve or optimize the system?

• Second law analysis: Identification of irreversible processes in the system.
Determination of entropy generation and associated work loss, both within
the system and in the exchange between system and its surroundings.
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Which processes have the largest losses? Can the system be modified to
reduce the loss?

• General analysis. Is the system as evaluated suitable for the chosen pur-
pose? What are the alternative systems, or system configurations? Which
system/configuration should be preferred?

1.6 Applications

Before we enter the technical part of our studies of thermodynamics, for a
quick overview, we present a list of the engineering applications that will be
discussed in the following chapters:

• Hydrostatic and barometric pressure laws.
• Efficiency limits for heat engines, refrigerators and heat pumps.
• Perpetual motion engines.
• Internal combustion engines: Otto, Diesel, Atkinson.
• Simple open systems: compressor, pump, turbine, throttle, nozzle, diffuser.
• Heat exchangers: co- and counter-flow closed heat exchangers, open heat

exchangers
• Steam power plants: standard and reheat cycles, advanced cycles with

open and closed feedwater heaters.
• Vapor refrigeration systems and heat pumps: standard cycles, advanced

multi-stage cycles.
• Linde gas liquefaction process.
• Stirling and Ericsson engines.
• Multi-stage compressors.
• Gas turbine systems for power generation: standard cycle and multi-stage

cycles.
• Combined cycle: gas turbine and steam cycle for high efficiency.
• Solar tower: updraft power plant.
• Air engines: standard air turbine and turbo-fan engines.
• Supersonic flows: rockets, ramjet and scramjet.
• Filling and discharge.
• Compressed air energy storage (CEAS): storing energy by compressing air

into large caverns.
• Temperature change in throttling (Joule-Thomson coefficient).
• Thermodynamic equilibrium and phase equilibrium.
• Ice skating.
• Mixtures, heat and entropy of mixing.
• Psychrometrics: humidifying and de-humidifying for air conditioning, cool-

ing towers.
• Mixing and separation.
• Osmosis.
• Desalination by reverse osmosis.
• Pressure retarded osmosis: power from mixing freshwater and saltwater.
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• Gas separation and CO2 removal: work requirement for carbon capture
and storage.

• Two-phase mixtures: ideal and non-ideal mixtures, activity and fugacity,
Raoult’s law, phase diagrams.

• Distillation columns.
• Gas solubility: Henry’s law, carbonized and nitrogenated drinks.
• Reacting mixtures: law of mass action and Le Chatelier principle.
• Haber-Bosch process for ammonia (NH3) production.
• Combustion.
• Work potential of a fuel.
• Work losses in a steam power plant.
• Fuel cells: potential and power, losses caused by mass transfer, resistance,

activation and crossover.
• Electrolyzers.



Chapter 2

Systems, States, and Processes

2.1 The Closed System

The first step in any thermodynamic consideration is to identify the system
that one wishes to describe. Any complex system, e.g., a power plant, can be
seen as a compound of some—or many—smaller and simpler systems that
interact with each other. For the basic understanding of the thermodynamic
laws it is best to begin with the simplest system, and study more complex
systems later as assemblies of these simple systems.

The simplest system of interest is the closed system where a substance
is enclosed by walls, and no mass flows over the system boundaries. The
prototype of the closed system is a piston-cylinder device, as depicted in
Fig. 2.1. We shall assume that the device contains a fixed amount of a simple
substance, that is a substance that does not undergo chemical changes.

Fig. 2.1 The piston-cylinder device with heat and work exchange is the standard
example for closed systems

There is only a small number of manipulations possible to change the
state of a closed system, which are indicated in the figure: the volume of

H. Struchtrup, Thermodynamics and Energy Conversion, 11
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the system can be changed by moving the piston, the system can be stirred
with a propeller, and the system can be heated or cooled by changing the
temperature of the system boundary, as indicated by the heating coil.1 These
actions lead to exchange of energy between the system and its surroundings,
either by work in case of piston movement and stirring, or by the exchange
of heat. The transfer of energy by work and heat will be formulated in the
First Law of Thermodynamics.

The change of energy and volume of the system will lead to changes in
other properties of the enclosed substance, in particular pressure and tem-
perature. Thermodynamic laws and property relations are required to predict
the changes of the different properties, and the exchange of heat and work.

Most processes have a direction in time. For instance, we can do work to
move the propeller and stir a liquid, which increases the liquid temperature
due to friction, but we will never observe that a liquid at rest suddenly begins
to move a propeller and does work (e.g. the lifting of a weight), see Fig. 2.2.
The direction of processes is formulated in the Second Law of Thermody-
namics, which has, as will be seen, far ranging consequences for technical
applications.

possible impossible

Fig. 2.2 A possible and an impossible process

We shall first consider the complete set of thermodynamic equations for
closed systems. In open systems mass crosses the system boundaries, and this
leads to additional terms in the thermodynamic laws. These will be discussed
in Chapter 9.

2.2 Micro and Macro

A macroscopic amount of matter filling the volume V , say a steel rod or a
gas in a box, consists of an extremely large number—to the order of 1023—
of atoms or molecules. These are in constant interaction which each other

1 Another possibility to heat or cool the system is through absorption and emission
of radiation, and transfer of radiation across the system boundary.
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and exchange energy and momentum, e.g., a gas particle in air at standard
conditions undergoes about 109 collisions per second.

From the viewpoint of mechanics, one would have to describe each particle
by its own (quantummechanical) equation of motion, in which the interactions
with all other particles would have to be taken into account. Obviously, due to
the huge number of particles, this is not feasible. Fortunately, the constant in-
teraction between particles leads to a collective behavior of the matter already
in very small volume elements dV , in which the state of the matter can be de-
scribed by fewmacroscopic properties like pressure, mass density, temperature
and others. This allows us to describe the matter not as an assembly of atoms,
but as a continuum where the state in each volume element dV is described by
these few macroscopic properties.

Note that the underlying assumption is that the volume element contains
a sufficiently large number of particles. Indeed, the continuum hypothesis
breaks down under certain circumstances, in particular for highly rarefied
gases. In all what follows, however, we shall only consider systems in which
the assumption is well justified.

2.3 Mechanical State Properties

Of the many state properties that we shall meet, we first introduce those
properties that can be easily measured, and are familiar from mechanics.

We consider a system of volume V which is filled by a massm of substance.
To describe variation of properties in space, it is useful to divide the system
into infinitesimal elements of size dV and mass dm, as sketched in Fig. 2.3.

V =

Z
dV

dV
dm

m=

Z
dm

Fig. 2.3 A system of volume V and mass m is divided into infinitesimal elements
of size dV and mass dm

The volume V =
∫
dV filled by the substance can, in principle, be mea-

sured by means of a ruler. The SI unit for volume is the cubic meter [m3],
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for smaller volumes one might use the litre, 1 litre = 10−3m3, or the cubic
centimetre, 1 cm3 = 10−3 litre = 10−6m3.

The mass m =
∫
dm of the substance can be measured using a scale. The

SI unit of mass is kilogram [ kg]. For small masses it is convenient to use the
gram, 1 g = 10−3 kg, and for large masses it is convenient to use the metric
ton, 1 t = 1000 kg.

The pressure p of the substance can be measured as the force required to
keep a piston in place, divided by the surface area of the piston. The SI unit
for pressure is the Pascal: 1 Pa = 1 N

m2 = 1 kg
m s2 ; one often uses the kilo-Pascal,

1 kPa = 1000Pa, or the mega-Pascal, 1MPa = 106Pa. Two common non-SI
units for pressure are the bar, 1 bar = 105Pa = 0.1MPa, and the atmosphere
(the standard air pressure at sea level), 1 atm = 1.01325 bar.

Many pressure measuring devices (manometers) do not measure absolute
pressure, but the difference to the local atmospheric pressure patm (which
is normally not 1 atm!), the so-called gauge pressure pgauge = p − patm. For
pressures below the local atmospheric pressure the gauge pressure would be
negative, and it is common to use the vacuum pressure pvac = patm − p.

The velocity vector of a mass element is defined as its directed displacement
per unit time. Mostly we shall be interested only in the absolute velocity V ,
the SI unit is meters per second

[
m
s

]
.

2.4 Extensive and Intensive Properties

It is useful to distinguish between extensive properties, which are related to
the size of the system, and intensive properties, which are independent of
the size of the system. Mass m and volume V are extensive quantities, e.g.,
they double when the system is doubled; pressure p and temperature T are
intensive properties, they remain unchanged when the system is doubled.
As an example Fig. 2.4 shows the combination (or splitting) of a system at
pressure p and temperature T , with total mass m1+m2 and volume V1+V2.

2.5 Specific Properties

A particular class of intensive properties are the specific properties, which
are defined as the ratio between an extensive property and the correspond-
ing mass. In general notation, the specific property φ corresponding to the
extensive property Φ is defined as

φ =
Φ

m
. (2.1)

For instance, the specific volume is

v =
1

ρ
=

V

m
. (2.2)
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m1

V1
p, T

m2

V2
p, T

m1 +m2

V1 + V2
p, T

Fig. 2.4 When two systems at same pressure p and temperature T are combined,
the intensive properties pressure and temperature remain unchanged, while the
extensive properties mass m and volume V add

Here ρ = m
V is the mass density, i.e., the mass per volume.

2.6 Molar Properties

For the thermodynamic discussion of mixtures, reacting or not, it is advan-
tageous to consider the number of particles involved rather than mass. The
number of atoms or molecules is rather large and thus it is customary to
count the number of particles in moles, with the unit [mol] or [ kmol]. One
mole is the number of atoms in 12 g of the carbon isotope 12C, which is given
by the Avogadro constant (Amedeo Avogadro, 1776-1856)

NA = 6.022× 1023
1

mol
. (2.3)

The mass of one mole of particles is the molar mass M with the unit 1 g
mol =

1 kg
kmol . By definition, the molar mass of 12C is MC = 12 kg

kmol , the molar mass
for other substances can be found in tables.

The number of moles of substance is related to mass by

n =
m

M
.

Mole specific properties will be labeled with an overbar, they are related to
extensive and mass specific properties as, e.g.,

φ̄ =
Φ

n
=

m

n

Φ

m
= Mφ . (2.4)
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2.7 Inhomogeneous States

In inhomogeneous states intensive and specific properties vary locally, that
is they have different values in different volume elements dV . In this case,
the local specific properties are defined through the values of the extensive
property dΦ and the mass dm in the volume element,

φ =
dΦ

dm
. (2.5)

For example, the local specific volume v and the local mass density ρ are
defined as

v =
1

ρ
=

dV

dm
. (2.6)

The values of the extensive properties for the full system are determined
by integration of the specific properties over the mass elements,

Φ =

∫
φdm , (2.7)

or, by means of the relation dm = ρdV , by integration over the volume
elements,

Φ =

∫
ρφdV . (2.8)

As an example, Fig. 2.5 shows the inhomogeneous distribution of mass density
ρ in a system. Note that due to inhomogeneity, the density is a function of
location −→r = {x, y, z} of the element dV , hence ρ = ρ (−→r ).

�rρ ( )x

y

z

m =
∫

dV

ρ (�r)

dV,dm

�r

Fig. 2.5 Inhomogeneous distribution of mass density ρ (−→r ) in a system
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2.8 Processes and Equilibrium States

A process is any change in one or more properties occurring within a system.
The system depicted in Fig. 2.1 can be manipulated by moving the piston
or propeller, and by exchanging heat. Any manipulation changes the state of
the system locally and globally: a process occurs.

After all manipulation stops, the states in the volume elements will keep
changing for a while—that is the process continues—until a stable final state
is assumed. This stable final state is called the equilibrium state. The system
will remain in the equilibrium state until a new manipulation commences.

Simple examples from daily life are: (a) A cup of coffee is stirred with a
spoon. After the spoon is removed, the coffee will keep moving for a while
until it comes to rest. It will stay at rest indefinitely, unless stirring is recom-
menced or the cup is moved. (b) Milk is poured into coffee. Initially, there
are light-brown regions of large milk content and dark-brown regions of low
milk content. After a while, however, coffee and milk are well-mixed, at mid-
brown color, and remain in that state. Stirring speeds the process up, but
the mixing occurs also when no stirring takes place. (c) A spoon used to
stir hot coffee becomes hot at the end immersed in the coffee. A while after
it is removed from the cup, it will have assumed a homogeneous tempera-
ture. (d) Oil mixed with vinegar by stirring will separate after a while, with
oil on top of the vinegar. The last example shows that not all equilibrium
states are homogeneous; however, temperature will always be homogeneous
in equilibrium.

In short, observation of daily processes, and experiments in the laboratory,
show that a system that is left to itself for a sufficiently long time will ap-
proach a stable equilibrium state, and will remain in this state as long as the
system is not subjected to further action.

The details of the equilibrium state depend on the constraints on the sys-
tem, in particular material, size and energy. The time required for reaching
the equilibrium state depends on the initial deviation from the equilibrium
state, the material, and the geometry.2 A change of pressure at the system
boundary propagates with the speed of sound (sound is a pressure wave) into
the system, which will reach a new equilibrium pressure relatively fast. On
the other hand, a change of temperature at the system boundary diffuses
relatively slowly into the system: the spoon that is used to stir hot coffee
needs quite a while to feel hot at the side that is not immersed in the cup.

2.9 Quasi-static and Fast Processes

Whenone starts tomanipulate a system that is initially in equilibrium, the equi-
librium state is disturbed, and a new process occurs. When the manipulation

2 Some systems remain in metastable states for very long time, until a bigger
disturbance causes them to go into their stable equilibrium state.
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happens sufficiently slow, the system can adapt so that it is in an equilibrium
state at any time. Slow processes that lead the system through a series of equi-
librium states are called quasi-static, or quasi-equilibrium, processes.

If the manipulation that causes a quasi-static process stops, the system is
already in an equilibrium state, and no further change will be observed.

Equilibrium states are simple, quite often they are homogenous states, or
can be approximated as homogeneous states. The state of the system is fully
described by few extensive properties, such as mass, volume, energy, and the
corresponding pressure and temperature.

When the manipulation is fast, so that the system has no time to reach a
new equilibrium state, it will be in non-equilibrium states. If the manipulation
that causes a non-equilibrium process stops, the system will undergo changes
until it has reached its equilibrium state. The equilibration process takes
place while no manipulation occurs, i.e., the system is left to itself. Thus, the
equilibration is an uncontrolled process.

Non-equilibrium processes typically are inhomogeneous. Their proper de-
scription requires values of the properties at all locations−→r (i.e., in all volume
elements dV ) of the system. The detailed description of non-equilibrium pro-
cesses is more complex than the description of quasi-static processes.

All real-life applications of thermodynamics involve some degree of non-
equilibrium. Quasi-static processes are an idealization that serves to approx-
imate real-life—i.e., non-equilibrium—processes.

2.10 Reversible and Irreversible Processes

The approach to equilibrium introduces a timeline for processes: As time
progresses, an isolated system will always go towards its unique equilibrium
state. The opposite will not be observed, that is a system will never be seen
spontaneously leaving its equilibrium state when no manipulation occurs.

Indeed, we immediately detect whether a movie of a non-equilibrium pro-
cess is played forward or backwards: well mixed milk coffee will not separate
suddenly into milk and coffee; a spoon of constant temperature will not sud-
denly become hot at one end, and cold at the other; a propeller immersed in
a fluid at rest will not suddenly start to move and lift a weight (Fig. 2.2);
oil on top of water will not suddenly mix with the water; etc. We shall call
processes with a time-line irreversible.

Only for quasi-static processes, where the system is always in equilibrium
states, we cannot distinguish whether a movie is played forwards or back-
wards. We shall call these processes reversible. Since equilibration requires
time, quasi-static, or reversible, processes typically are slow processes, so
that the system always has sufficient time to adapt to an imposed change.

Equilibration processes can have quite different time scales. For instance,
pressure changes are transported with the speed of sound (∼ 350 m

s ), and
piston cylinder systems can be approximated as quasi-static if the piston
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velocity is significantly below the speed of sound. The mean piston speed in
a car engine, which depends on stroke and speed, is typically below 20 m

s ,
hence compression and expansion processes in a car engine can be considered
as quasi-static. Heat transfer, on the other hand, is a very slow process, with
a time scale determined by the heat conductivity. Accordingly, quasi-static
processes involving heating must be rather slow. For fast processes such as
the compression and expansion process in a car engine, there is no time at
all for significant heat transfer between the cylinder walls and the gas, and
the process can be approximated as quasi-static processes with no heating.

The second law of thermodynamics will be introduced as formalization of
the observation that an isolated system is moving towards a unique equi-
librium state, and will allow for a more formal definition of reversible and
irreversible processes.

2.11 Temperature and the Zeroth Law

So far we have discussed only properties known from mechanics, namely mass
m, volume V , pressure p, and velocity V . Temperature, as a measure of how
hot or cold a body is, is the first thermodynamic quantity that we introduce.

Indeed, through touching objects we can distinguish between hot and cold.
However, our sense for temperature is relatively inexact, just feel the metal
and the wood of your chair, which have the same temperature, but feel differ-
ent. Objective measurement of temperature requires (a) a proper definition,
and (b) a proper device for measurement—a thermometer.

Observation of nature and of processes towards equilibrium have estab-
lished the following definition of temperature:

Two bodies in thermal equilibrium have the same temperature.

This statement is so important that it is known as the Zeroth Law of
Thermodynamics. As example, consider two bodies, e.g., a cup of hot coffee
and a spoon, or two stones, at different temperatures T̄A > T̄B which are
brought into thermal contact, see Fig. 2.6 for a schematic representation.
An equilibration process occurs, and after a while the system comprised of
the two bodies reaches its equilibrium state, with a common temperature T .
While we shall need the first law—the conservation of energy—to compute
its actual value, we know from experience that the final temperature will lie
between the initial temperatures, T̄A > T > T̄B.

The zeroth law as stated above implies that if body A is in thermal equi-
librium with bodies B and C, than also bodies B and C will be in equilibrium.
All three will have the same temperature.

Thus, to measure the temperature of a body, all we have to do is to bring
a calibrated thermometer into contact with the body and wait until the equi-
librium state of the system (body and thermometer) is reached. When the
size of the thermometer is small compared to the size of the body, the final
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TA

Ttime
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Fig. 2.6 Two bodies of different temperatures T̄A, T̄B assume a common temper-
ature T a while after they are brought into thermal contact

temperature of body and thermometer will be almost equal to the initial
temperature of the body, see Sec. 3.12.

2.12 Thermometers and Temperature Scale

So what is a thermometer? Thermometers rely on the change of physical
properties with temperature. The volume of most liquids grows with temper-
ature, the volume change is employed in mercury or alcohol thermometers:
liquid thermometers rely on the measurement of length. Resistance ther-
mometers rely on the change of ohmic resistance of electric conductors with
temperature. Thermocouples use thermoelectric effects—voltage caused by
temperature difference—to measure temperatures.

Thermometers must be carefully calibrated, so that different thermome-
ters, and different types of thermometers, will agree in their measurements.
The calibration requires reference points that can be reproduced accurately,
and a proper definition of the scale between the reference points.

The temperature scale used in daily life is the Celsius scale which measures
temperature in degrees Celsius [ ◦C]. The Celsius scale was originally defined
based on the boiling and freezing points of water at p = 1 atm to define the
temperatures of 100 ◦C and 0 ◦C. The Fahrenheit scale, which is employed in
the USA, assigns these points the temperatures 212 ◦F and 32 ◦F. National
and international bureaus of standards now use a larger number of well-
defined fix points for the calibration of thermometers.

Just having reference points is not enough, theremust be a well-defined scale
for the temperatures between the reference points. As an example we consider
two liquid thermometers filled with different liquids A and B, which are build
such that their liquid columns have the same heights for the reference points
at 0 ◦C and 100 ◦C, see Fig. 2.7. However, the change of volume with temper-
ature might follow different non-linear functions V (T ) for the two liquids, so
that both thermometers show different heights for temperatures between the
reference points, as example the figure shows different readings for 50 ◦C.
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Fig. 2.7 Two liquid thermometers with liquids of different temperature-volume
characterisitics

2.13 Gas Temperature Scale

To define a proper temperature scale between the reference points, one has to
agree on a particular reference substance, and define the scale for that sub-
stance. Thermometers involving other substances, or other physical effects,
can then be calibrated based on the reference.

The reference substance used is the ideal gas. Any gas at sufficiently low
pressures and large enough temperatures (see Sec. 6.10), behaves as an ideal
gas. From experiments one observes that for an ideal gas confined to a fixed
volume the pressure increases with temperature. The temperature scale is
defined such that the relation between pressure and temperature is linear,
that is

T ( ◦C) = a+ bp (2.9)

where the two constants a and b can be found from two well-defined reference
points. With this, temperature is determined through measurement of pres-
sure, see Fig. 2.8. For the Celsius scale one finds a = −273.15 ◦C independent
of the ideal gas used. The constant b depends on the volume, mass and type
of the gas in the thermometer.

By shifting the temperature scale by a, one can define an alternative scale,
the ideal gas temperature scale, as

T (K) = bp . (2.10)

The ideal gas scale has the unit Kelvin [K, not ◦ K] and is related to the
Celsius scale as

T (K) = T ( ◦C)
K
◦C

+ 273.15K . (2.11)
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V = const
T , p

T = a + bp

Fig. 2.8 In a gas thermometer, temperature T is determined through measurement
of pressure p

For engineering problems one often uses T ( K) = T ( ◦C) K
◦C + 273K, that is

one ignores the difference of 0.15K to the exact value. Temperature differ-
ences have the same numerical value for both scales, ΔT (K) = ΔT ( ◦C) K

◦C .
Since pressure cannot be negative, the ideal gas temperature cannot as-

sume negative values, T ( K) ≥ 0. The ideal gas temperature scale fulfills all
requirements on the thermodynamic temperature scale that will follow from
the second law, and it coincides with the thermodynamic Kelvin scale. Much
later, in Sec. 23.6, we will learn about the 3rd law of thermodynamics which,
simply put, states that absolute zero ≡ 0K cannot be reached.

Some care must be taken in notation. For convenience temperatures are
quite often given on the Celsius scale, but many thermodynamic equations
require the thermodynamic temperature in Kelvin. Most often the same sym-
bol, T , is used for temperatures on either scale, one has to be careful to not
get confused.

2.14 Thermal Equation of State

Careful measurements on simple substances show that specific volume v (or
density ρ = 1/v), pressure p and temperature T cannot be controlled inde-
pendently. Indeed, they are linked through a relation of the form p = p (v, T ),
or p = p (ρ, T ), known as the thermal equation of state. For most substances,
this relation cannot be easily expressed as an actual equation, but is laid
down in property tables, see Chapter 6.

The thermal equation of state relates measurable properties. It suffices to
know the values of two properties to determine the values of others. This will
still be the case when we add energy and entropy to the list of thermodynamic
properties, which can be determined through measurement of any two of the
measurable properties, i.e., (p, T ) or (v, T ) or (p, v).

For inhomogeneous states, where the properties are space dependent, we
assume the validity of the thermal equation of state in the local volume
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element dV . This assumption reflects our understanding that the atoms and
molecules of the considered substance are interacting frequently, and thus
behave collectively, see Sec. 2.2.

To summarize: The complete knowledge of the macroscopic state of a sys-
tem requires the values of two intensive properties in each location (i.e., in
each infinitesimal volume element), and the local velocity. The state of a sys-
tem in equilibrium, where properties are homogeneous, is described by just
two intensive properties (plus the size of the system, that is either total vol-
ume, or total mass). In comparison, the knowledge of the microscopic state
would require the knowledge of location and velocity of each particle.

2.15 Ideal Gas Law

The ideal gas is one of the simplest substances to study, since it has simple
property relations. Ideal gases are employed in many engineering applications.
Arguably, the most important ideal gas is air, which is the working substance
in a large number of systems, including internal combustion engines.

Careful measurements have shown that for an ideal gas pressure p, total
volume V , thermodynamic temperature T , and mass m are related by an
explicit thermal equation of state, the ideal gas law

pV = mRT . (2.12)

Here, R is the gas constant that depends on the type of the gas. Alternative
forms of the equation result from introducing the specific volume v = V/m
or the mass density ρ = 1/v so that

pv = RT , p = ρRT. (2.13)

The ideal gas law is our first property relation. According to this equation,
the properties appearing in the equation cannot be changed independently:
the change of one property must necessarily lead to a change of at least
one other property. When the temperature is kept constant, an increase in
pressure leads to a reduction of volume; when pressure is kept constant, the
increase of temperature leads to increase of volume; when volume is kept
constant, reduction of temperature leads to lower pressure. Of course, there
can be processes where all three, pressure, volume, and temperature, change.

The gas constant R has the unit
[

kJ
kgK

]
, where 1 kJ = 103Nm is the

energy unit kilo-Joule. Further examination has shown that the gas constant
is related to the molar mass of the gas. One finds

R =
R̄

M
, (2.14)

where
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R̄ = 8.314
kJ

kmolK
(2.15)

is the universal gas constant. The following list shows the molar masses
of some important gases:3 air, hydrogen, helium, nitrogen, oxygen, carbon
dioxide,

Mair = 29
kg

kmol
, MH2 = 2

kg

kmol
, MHe = 4

kg

kmol
, (2.16)

MN2 = 28
kg

kmol
, MO2 = 32

kg

kmol
, MCO2

= 44
kg

kmol
.

Note that air is a mixture of nitrogen (∼78% by particle number), oxygen
(∼21%), and argon (∼1%) with traces of other substances including carbon
dioxide (∼0.04%).

The corresponding values of the gas constant are

Rair = 0.287
kJ

kgK
, RH2 = 4.157

kJ

kgK
, RHe = 2.077

kJ

kgK
,

RN2 = 0.297
kJ

kgK
, RO2 = 0.260

kJ

kgK
, RCO2 = 0.189

kJ

kgK
. (2.17)

More values can be found in property tables.
Mass m and mole number n are related as n = m/M , so that the ideal gas

equation can be written in yet another form, with the universal gas constant,

pV = nR̄T . (2.18)

This equation does not contain any quantities that depend on the type of
gas, accordingly the behavior of ideal gases is universal.

2.16 A Note on Problem Solving

Before we start solving our first problems, it might be worthwhile to briefly
list good practices for problem solving. Typically, any engineering problem
should be tackled by the following steps:

1. Understand the problem, i.e., read the question carefully. Nothing good
can come from a solution that is based on a misunderstanding.

2. Make a sketch of the relevant system, and proper diagrams. A good sketch
can summarize a complicatedly worded problem in a far more accessible
form.

3 The given values are rounded for easier memorization. Exact values are Mair =
28.97 kg

kmol
, MH2 = 2.01588 kg

kmol
, MHe = 4.002602 kg

kmol
, MN2 = 28.0134 kg

kmol
,

MO2 = 31.9988 kg
kmol

, MCO2 = 44.0095 kg
kmol

.
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3. Indicate all quantities that are known on the sketch, or in a list, so that
they are easy to find when needed. List all processes that occur in the
system

4. List the quantities that need to be determined.
5. List the relevant thermodynamic equations for their determination.
6. Simplify the equations based on what is known about the processes in

the system.
7. Solve the equations for the quantities of interest. Do not insert values

for quantities before all manipulation of equations is complete; in other
words, solve symbolically, and insert values as late as possible. This sim-
plifies double checking of computations, and makes it far easier to correct
errors that occur due to mistyping of values or wrong unit conversions.

8. Carefully consider and simplify all units. Before you have sufficient prac-
tice, never assume the outcome of a unit conversion, or the final unit for
a value in a computation. Wrong unit conversions are a rather frequent
source of major problems: always double-check. Note that each property
value must be accompanied by a unit, i.e., never just write a number but
[number value×unit].

9. Add comments throughout your treatment of the problem, so that you
have text and equations/values on your answer. Written out sentences
make the solution accessible, and you can explain assumptions, simplifi-
cations etc. This makes it far easier to follow through the line of argument
for any reader—including yourself at a later point in time; just equations
make for an unreadable submission.

10. Finally, use experience and common sense to scrutinize the final results.
Do they make sense, e.g., are the values for temperatures, pressures,
energies etc. realistic?

We shall as much as possible adhere to these steps in the examples through-
out this book. However, due to space restrictions, we will, e.g., not always
have a sketch, and will skip over algebraic reformulations of equations. More-
over, explicit unit conversions will be shown only in few early examples. It is
strongly recommended that the reader goes through the examples carefully,
including making a sketch, and double checking of all calculations, including
the units.

2.17 Example: Air in a Room

A room of dimension 5m × 10m × 3m is filled with air at 20 ◦C, 1 atm.
Compute the mass of air in the room, the number of moles and the number
of particles. If the temperature in the room increases to 25 ◦C for the same
pressure, what amount of air has left through doors and windows?

We use the ideal gas law (2.12) with the values V = 150m3, p =
101.325 kPa, T = 293K. Note that the ideal gas law requires the Kelvin
temperature! We find, with R = 0.287 kJ

kgK as the gas constant for air,
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m =
pV

RT
=

101.325× 150

0.287× 293

kPam3

kJ
kg K K

= 180.74
kPam3

kJ
kg = 180.74 kg .

For the unit conversion we have used that 1 kPa = 103 N
m2 and 1 kJ = 103Nm,

hence 1 kPa = 1 kJ
m3 . The corresponding mole number n and particle number

N are, with M = 29 kg
kmol and the Avogadro constant (2.3),

n =
m

M
= 6.23 kmol , N = nNA = 3.75× 1027 .

For a temperature of 25 ◦C ≡ 298K we find the mass m = 177.71 kg, that is
a mass of 3.03 kg has left the room.

2.18 Example: Air in a Refrigerator

A refrigerator of volume VR = 330 litre which maintains food at TR = 5 ◦C
is located in a kitchen at T0 = 22 ◦C, p0 = 1.02 atm. When the refrigerator
door is opened, warm air enters the cooling space, and when the door is closed
again, this warm air is cooled to TR. We ask for the amount of air inside, and
for the net force on the door after cooling is complete.

To simplify the problem, we assume that the air in the refrigerator is
completely exchanged, so that in the moment of closing all air in the interior
is at T0, p0. Then, the mass in the interior is, with p0 = 103.35 kPa, VR =
0.33m3, T0 = 295K and R = 0.287 kJ

kgK ,

m =
p0VR

RT0
= 0.403 kg .

As long as no air enters during the cooling process, the pressure in the
interior after cooling is complete is, with TR = 278K,

pR =
mRTR

VR
= p0

TR

T0
= 0.961 atm = 97.4 kPa .

When the door has an area of A = 0.6m2, the pressure difference between
inside and outside gives the net force

F = A (p0 − pR) = 3.57 kN .

This force must be overcome to open the door. Note that the calculation
assumes perfect sealing, and complete replacement of the cold air with warm
air. Actual kitchen refrigerators have imperfect seals, so that some air creeps
through during cooling, hence the observed forces are weaker. Nevertheless,
in particular not too long after closing, one can observe this effect. Try your
refrigerator at home!
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2.19 More on Pressure

Pressure p is defined as the force (F ) exerted by a fluid per unit area (A),
p = F/A, in the limit of infinitesimal area. Pressure is isotropic, that is the
force on a surface is independent of the orientation of that surface.

mg

p0

p

Fig. 2.9 A piston resting on a liquid

A piston of mass m and cross section A rests on a liquid in a cylinder,
as depicted in Fig. 2.9; the atmospheric pressure is p0. We determine the
pressure p of the liquid at the piston.

The piston is at rest, in mechanical equilibrium, which implies that all
forces Fi on the piston add up to zero,

∑
Fi = 0. The acting forces are the

weight mg of the piston, where g = 9.81 m
s2 is the gravitational acceleration,

and the pressure forces due to atmospheric and liquid pressure, p0A and pA,
respectively. With the proper signs for the forces we have

mg + p0A− pA = 0 =⇒ p = p0 +
mg

A
. (2.19)

The system pressure, p, balances the external pressure, p0, and the weight of
the piston.

Gravitation leads to variation of water pressure with depth, and of air
pressure with height. We compute both following Fig. 2.10. The water-air
interface is at the location z = 0 where the pressure is p0. The insert shows
a small layer of substance, air or water, of thickness dz and cross section A.
The mass of the layer, dm, follows from the mass density ρ and the layer
volume dV = Adz as dm = ρAdz.

The forces acting on the layer are the contributions of the pressures below,
p (z)A, and above, p (z + dz)A, and the weight g dm = ρgAdz . We assume
the fluid (air or water) is at rest, so that the forces balance,

p (z + dz)A+ ρgAdz − p (z)A = 0 . (2.20)

For infinitesimal dz we can use Taylor’s formula p (z + dz) = p (z) + dp(z)
dz dz

and find a differential equation for pressure,

dp (z)

dz
= −ρg . (2.21)
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Fig. 2.10 On the computation of pressure variation in the gravitational field

To proceed, we have to differentiate between water and air. First we con-
sider water: Water can be assumed in good approximation to be an incom-
pressible substance, that is the water density is constant, with the well-known
value of ρH2O � 1000 kg

m3 . Integration of (2.21) is straightforward, and gives,
together with the condition p (z = 0) = p0,

p (z) = p0 − ρgz . (2.22)

This is the hydrostatic pressure law, which is often written in terms of depth
h = −z as

p (h) = p0 + ρgh . (2.23)

This relation is valid for all incompressible liquids, where the appropriate
mass density ρ must be used. For water, depth increase by Δh = 10.33m
increases the pressure by about 1 atm. Hydrostatic pressure depends only on
depth, not on the actual weight of liquid above. This implies that hydrostatic
pressure is independent of the geometry of the container, see Fig. 2.11 for an
illustration.

Air, on the other hand, is compressible, it obeys the ideal gas law p = ρRT .
Using this to eliminate density from the differential equation for pressure
(2.21), we find

dp (z)

p
= − g

RT (z)
dz . (2.24)

Integration is only possible when we have additional information on the tem-
perature T (z) as a function of height z.
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p0

p(h)
h

Fig. 2.11 Hydrostatic pressure depends only on depth

When the atmospheric temperature is constant, T (z) = T0, integration
of (2.24) gives, together with the boundary condition p (z = 0) = p0, the
barometric formula

p = p0e
− gz

RT0 . (2.25)

This formula describes the exponential decrease of pressure with height in an
isothermal atmosphere.

In the actual atmosphere, however, the temperature is not constant, but
decreases with height approximately as T (z) = T0 − αz with α = 10 K

km .
Then, integration of (2.24) gives

p = p0

(

1− αz

T0

) g
αR

. (2.26)

Figure 2.12 compares both pressure functions for air and T0 = 293K. For
the non-isothermal atmosphere the pressure decreases slightly faster, but at
moderate heights the difference is almost not noticeable. The Canadian town
of Banff is located at an altitude of 1463m above sea level. When the sea level
pressure is p0 = 1 atm we compute from (2.25) and (2.26) local pressures of
0.843 atm and 0.839 atm, respectively. Note that most weather forecasts do
not present the actual local pressure p, but the normalized pressure, that is
the corresponding sea level pressure p0. For instance, when the forecast gives
the pressure for Banff as 990 kPa, based on (2.26) the actual pressure in town
will be 831 kPa.

The example shows a marked influence of gravitation on pressure for
heights on the kilometer scale. Most engineering devices are relatively small,
at most on the scale of several meters, and the variation of gas pressure can
be safely ignored. Therefore it is sufficient to assign just one value of pressure
to a gaseous system in equilibrium.

Gas pressure results from the momentum change of those gas particles
that hit the wall and bounce back, and thus exert a force. When a gas filled
container is put on a scale, the scale will show the total weight of container and
gas, although most of the gas particles are not in contact with the container
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Fig. 2.12 Atmospheric pressure over height for constant and variable temperature

walls. Indeed, it is the small variation with pressure between top and bottom
of a container which puts the weight of the gas on the scale.

Problems

2.1. Ideal Gas I
A 5 litre container holds helium at a temperature of 25 ◦C and a pressure of
2 atm. Determine the mass of gas in the container, the number of moles, and
the number of particles.

2.2. Ideal Gas II
A cylinder with radius 5 cm contains 5 g of pure oxygen at a temperature of
200 ◦C. The cylinder is closed with a freely moving piston, which in equilib-
rium rests at a height of 50 cm. Determine the mass of the piston.

2.3. Ideal Gas Thermometer
An ideal gas thermometer holds a fixed gas volume of 1000 cm3. For calibra-
tion, the thermometer is brought into contact with melting ice and boiling
water, both at 1 atm, where the pressures measured are p1 = 51.6 kPa and
p2 = 70.5 kPa.

1. For Celsius temperature, assume a linear relation of the form T ( ◦C) =
a+ bp and determine the constants a and b.

2. Determine the mole number of particles enclosed.
3. Careful measurement shows that the mass of gas enclosed is 1 g. Find the

molar mass—what gas is it most likely?

2.4. Ideal Gas and Spring
The following process is done in a room at a temperature of 20 ◦C and a
pressure of 100 kPa: A container with quadratic base of 10 cm side length is
closed by a piston of mass mp = 100 g. Initially, the piston is fixed at a height
of H0 = 10 cm, and the cylinder is filled with 2.5 g of carbondioxide. A spring
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is attached to the piston from above, so that at the initial state the spring is
at its rest length. When the fixing of the piston is removed, the piston moves
up, and the spring is compressed. The system comes to an equilibrium state
such that the piston has moved up by ΔH = 3 cm.

1. Determine the spring constant k.
2. The gas in the container is now heated to 120 ◦C. Determine the final

displacement of the piston.

2.5. Climbing a Mountain
In an atmosphere where the temperature depends on height z as T = T0−αz,
with T0 = T (z = 0) = 15 ◦C and α = 8.5 K

km , a climber located at height
z1 = 500m fills a piston-cylinder device with air, so that the device contains
2000 cm3 of air. At this height, the climber measures an atmospheric pressure
of p1 = 0.95 bar. The device is closed by a freely moving piston with mass
mp = 300 g and surface area of Ap = 40 cm2. The climber carries the system
to the top of the mountain, at z2 = 4810m.

1. Determine temperature and pressure of the atmosphere at z1, z2.
2. Determine the pressure inside the system at z1, and the mass of air in the

system.
3. The climber reaches the top of the mountain at z2. After the system has

established equilibrium with the surrounding air, determine the pressure
in the system, and the system volume.

2.6. Ascent of a Balloon
The volume of a closed balloon shell is Vf = 800m3, if completely filled.
The mass of the balloon, including basket, but without the gas filling, is
mB = 500 kg. The temperature of the environment and of the gas filling is
5 ◦C, and remains constant during the ascent. Initially, the balloon is filled
with V0 = 500m3 of helium at the ground level pressure of p0 = 0.98 bar. As
the balloon rises, its volume increases until it reaches Vf .

For the solution of the following questions, assume that the air pres-
sure depends on height z according to the barometric formula p (z) =

p0 exp
[
− gz

RairT0

]
where Rair is the specific gas constant for air, and z is

the height above ground.
Helium can be considered as an ideal gas with MHe = 4 kg

kmol .

1. Compute the mass of the helium filling.
2. As the balloon ascents, the volume of the filling increases. Compute the vol-

ume of the balloon as function of height. Above which height is the balloon
completely filled? (Hint: the pressures of helium filling and the surrounding
air are equal as long the balloon is not filled completely).

3. Compute the buoyancy for V < Vf , and show that it is independent of
height. The buoyancy force is given as FB = ρair(z)gV where V is the
actual balloon volume, and ρair (z) the density of the surrounding air at
height z.
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4. Set up an equation for the buoyancy for the case that the balloon is com-
pletely filled. How high will the balloon rise?

2.7. An Experiment
As you accelerate in a car, you are pressed in the seat—what happens to a
helium filled balloon? Think about it, or try it, then explain!



Chapter 3

The First Law of Thermodynamics

3.1 Conservation of Energy

It is our daily experience that heat can be converted to work, and that work
can be converted to heat. A propeller mounted over a burning candle will spin
when the heated air rises due to buoyancy: heat is converted to work. Rubbing
your hands makes them warmer: work is converted to heat. Humankind has
a long and rich history of making use of both conversions. Friction between a
fast spun stick and a resting piece of wood is used since millennia to create a
fire. Technical applications of heat to work conversions are abundant through
history, and our modern life is unthinkable without heat engines such as steam
and gas turbines for generation of electricity, or car and aircraft engines
for transport. In cooling engines work is used to withdraw heat, such as in
refrigerators or in air conditioning devices.

The evaporation of water to steam by heating provides a large change in
volume and/or pressure. Devices using this effect were known already more
than 2000 years ago, but they became prevalent with the development of the
steam engine. Thermodynamics was initially developed to better understand
the processes in steam engines and other conversion devices, so that the
understanding can be used to improve the engines.

While the heat-to-work and work-to-heat conversions are readily observ-
able in simple and more complex processes, the governing law is not at all
obvious from simple observation. It required groundbreaking thinking and
careful experiments to unveil the law of conservation of energy. Due to its
importance in thermodynamics, it is also known as the First Law of Ther-
modynamics.

Expressed in words, the First Law of Thermodynamics reads:

Energy cannot be produced nor destroyed, it can only be transferred, or
converted from one form to another. In short, energy is conserved.

It took quite some time to formulate the first law in this simple form, the
credit for finding and formulating it goes to Robert Meyer (1814-1878), James

H. Struchtrup, Thermodynamics and Energy Conversion, 33
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Prescott Joule (1818-1889), and Hermann Helmholtz (1821-1894). Through
careful measurements and analysis, they recognized that thermal energy, me-
chanical energy, and electrical energy can be transformed into each other,
which implies that energy can be transferred by doing work, as in mechanics,
and by heat transfer.

The first law is generally valid, no violation was ever observed. As knowl-
edge of physics has developed, other forms of energy had to be included,
such as radiative energy, nuclear energy, or the mass-energy equivalence of
the theory of relativity, but there is no doubt today that energy is conserved
under all circumstances.

Ẇpiston

Ẇpropeller

Q̇

E

Fig. 3.1 Closed system with energy E exchanging work Ẇ and heat Q̇ with its
surroundings

We formulate the first law for the simple closed system, depicted again
in Fig. 3.1, where all three possibilities to manipulate the system from the
outside are indicated. For this system, the conservation law for energy reads

dE

dt
= Q̇− Ẇ , (3.1)

where E is the total energy of the system, Q̇ is the heat transfer rate in or
out of the system, and Ẇ = Ẇpiston+Ẇpropeller is the total power—the work
per unit time—exchanged with the surroundings.

This equation states that the change of the system’s energy in time (dE/dt)
is equal to the energy transferred by heat and work per unit time (Q̇ − Ẇ ).
The sign convention used is such that heat transferred into the system is
positive, and work done by the system is positive.

The SI unit of energy, work, and heat is the Joule, 1 J = 1Nm = 1 kgm2

s2 ;

the SI unit of power and heat transfer rate is the Watt, 1W = 1 J
s .

All contributions to the first law (3.1), i.e., energy, work and heat, will be
discussed in detail in the following sections.
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3.2 Total Energy

The total energy E of the system is the sum of its kinetic energy Ekin,
potential energy Epot, and internal—or thermal—energy U ,

E = U + Ekin + Epot . (3.2)

Presently, these are the only forms of energy that we need for the description
of thermal processes; other forms of energy that can be relevant are chemical
energy, nuclear energy, radiative energy and electrical energy, which will be
introduced when required.

We address the different contributions to energy in the next sections.

3.3 Kinetic Energy

The kinetic energy is well-known from mechanics. For a homogeneous system
of mass m and velocity V , kinetic energy is given by

Ekin =
m

2
V2 . (3.3)

For inhomogeneous states the total kinetic energy of the system is obtained
by integration of the specific kinetic energy ekin over all mass elements dm =
ρdV ; we have

ekin =
1

2
V2 and Ekin =

∫
ρekindV =

∫
ρ

2
V2dV . (3.4)

3.4 Potential Energy

Also the potential energy in the gravitational field is well-known from me-
chanics. For a homogeneous system of mass m , potential energy is given by

Epot = mgz , (3.5)

where z is the elevation of the system’s center of mass over a reference height,
and g = 9.81 m

s2 is the gravitational acceleration on Earth.
For inhomogeneous states the total potential energy of the system is ob-

tained by integration of the specific potential energy epot over all mass ele-
ments dm = ρdV ; we have

epot = gz and Epot =

∫
ρepotdV =

∫
ρgzdV . (3.6)
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3.5 Internal Energy and the Caloric Equation of State

Even if a macroscopic element of matter is at rest, its atoms move (in a gas
or liquid) or vibrate (in a solid) fast, so that each atom has microscopic ki-
netic energy. Moreover, the atoms are subject to interatomic forces, which
contribute microscopic potential energies. These microscopic energies depend
on temperature, and the higher the temperature, the higher the average mi-
croscopic energy. Since the microscopic kinetic and potential energies cannot
be observed macroscopically, one speaks of the internal energy, or thermal
energy, of the material, denoted as U .

For inhomogeneous states the total internal energy of the system is ob-
tained by integration of the specific internal energy u over all mass elements
dm = ρdV . For homogeneous and inhomogeneous systems we have

U = mu and U =

∫
ρudV . (3.7)

Internal energy cannot be measured directly. The caloric equation of state
relates the specific internal energy u to measurable quantities, it is of the form
u = u (T, v), or u = u (T, p). Recall that pressure, volume and temperature
are related by the thermal equation of state, p (v, T ); therefore it suffices to
know two properties in order to determine the others.

The caloric equation of state must be determined by careful measurements,
where the response of the system to heat or work supply is evaluated by means
of the first law. For most materials the results cannot be easily expressed as
equations, and are tabulated in property tables, see Chapter 6. Some simple
caloric equations of state will be presented already in Sec. 3.10.

For inhomogeneous states, where the properties are space dependent, we
assume the validity of the caloric equation of state in the local volume element
dV . This assumption reflects our understanding that the atoms and molecules
of the considered substance are interacting frequently, and thus behave as a
collective, see Sec. 2.2.

3.6 Work and Power

Work, denoted by W , is the product of a force and the displacement of its
point of application. Power, denoted by Ẇ , is work done per unit time, that
is the force times the velocity of its point of application. The total work for
a process is the time integral of power over the duration Δt = t2 − t1 of the
process,

W =

∫ t2

t1

Ẇdt . (3.8)

For the closed system depicted in Fig. 2.1 there are two contributions to
work: moving boundary work, due to the motion of the piston, and rotating
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shaft work, which moves the propeller. Other forms of work, e.g., spring work
or electrical work will be discussed as required.

Work and power can be positive or negative. We follow the sign convention
that work done by the system is positive and work done to the system is
negative.

Moving boundary work is best computed from a piston-cylinder system,
as depicted in Fig. 3.2; however, the subsequent expressions are valid for
arbitrary system geometries. The force on the piston of cross section A
is pA and thus the work for an infinitesimal displacement ds is given by
δW = pAds = pdV , where dV = Ads is the volume change associated with
the displacement. As the piston is moved, the pressure within the system
might change. Thus, the work W12 for a finite displacement V2 − V1 must
be computed by summing over the infinitesimal contributions δW , that is by

integration, W12 =
∫
δW =

∫ 2
1 pdV .

ds

A

p

Fig. 3.2 Moving boundary work in a piston-cylinder system at pressure p, piston
area A, displacement ds. Work is δW = pdV = pAds.

The power Ẇ is obtained from multiplying the force pA with the velocity
ds
dt of the piston. Since the cross section does not change, we have Ads

dt = dV
dt ,

and Ẇ = pdV
dt .

Altogether we have the following expressions for moving boundary work
with finite and infinitesimal displacement, and for power,

W12 =

∫ 2

1

pdV , δW = pdV , Ẇ = p
dV

dt
. (3.9)

Here, p is the pressure at the piston; for simplicity we have ignored variations
of pressure along the piston surface.

Closed equilibrium systems are characterized by a single homogeneous
pressure1 p, a single homogeneous temperature T , and the volume V . In
quasi-static (or reversible) processes, the system passes through a series of
equilibrium states which can be indicated in suitable diagrams. Figure 3.3
shows a pressure-volume diagram (p-V-diagram) of two different reversible
processes connecting the points {p1, V1} and {p2, V2}. Due to the relation

1 Hydrostatic variation ignored, see Sec. 2.19.
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W12 =
∫ 2
1 pdV , the work is the area below the respective process curves as

indicated by hatching. Obviously, the amount of work depends on the process:
work is a path dependent function.

p

p1

p2

VV1 V2

W
(1)
12 =

∫

path 1

pdV

W
(2)
12 =

∫

path 2

pdV

pat  h 2 2

1

Fig. 3.3 Two reversible processes between points 1 and 2 in the p-V-diagram, and
the corresponding moving boundary work

The power transmitted by a rotating shaft is related to the torque T and
the revolutionary speed ṅ (revolutions per unit time) as Ẇ = 2πṅT, the

total work transmitted during a finite time interval is, again, W12 =
∫ 2
1
Ẇdt.

The transmission between the shaft and the working fluid is performed by a
propeller (turbines, compressors etc.).

In a closed system the propeller stirs the working fluid and creates in-
homogeneous states. Fluid friction transmits fluid motion (i.e., momentum
and kinetic energy) from the fluid close to the propeller to the fluid further
away. Due to the inherent inhomogeneity, stirring of a fluid in a closed system
cannot be a quasi-static process.

This is different in open systems, where fluid is entering and leaving the
system. The motion of the fluid can be used to drive the propeller, which de-
celerates the fluid and transmits work out of the system, or the propeller can
provide work to accelerate the fluid. These flow processes can be reversible.

In general, there might be several work interactions Ẇj of the system, then
the total work for the system is the sum over all contributions; e.g., for power

Ẇ =
∑

j

Ẇj . (3.10)

Finally we note that mechanical work can be transferred without restric-
tions between systems in mechanical contact:
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By using gears and levers, one can transfer work from slow moving to
fast moving systems and vice versa, and one can transmit work from
high pressure to low pressure systems and vice versa.

3.7 Exact and Inexact Differentials

Above we have seen that work depends on the process path. In the language
of mathematics this implies that the work for an infinitesimal step is not an
exact differential, and that is why a Greek delta (δ) is used to denote the
work for an infinitesimal change as δW . As will be seen in the next section,
heat is path dependent as well.

State properties like pressure, temperature, volume and energy describe
the momentary state of the system, or, for inhomogeneous states, the momen-
tary state in the local volume element. State properties have exact differen-

tials for which we write, e.g., dE and dV . The energy change E2−E1 =
∫ 2
1 dE

and the volume change V2 − V1 =
∫ 2
1
dV are independent of the path con-

necting the states.
It is important to remember that work and heat, as path functions, only

describe property changes, not states. A state is characterized by state prop-
erties (pressure, temperature, etc.), it does not possess work or heat.

Quasi-static (reversible) processes go through well defined equilibrium
states, so that the whole process path can be indicated in diagrams, e.g.,
the p-V-diagram.

Non-equilibrium (irreversible) processes, for which typically the states are
different in all volume elements, cannot be drawn into diagrams. Often irre-
versible processes connect homogeneous equilibrium states which can be in-
dicated in the diagram. We shall use dashed lines to indicate non-equilibrium
processes that connect equilibrium states. As an example, Fig. 3.4 shows a
p-V-diagram of two processes, one reversible, one irreversible, between the
same equilibrium states 1 and 2. We emphasize that the dashed line does
not refer to actual states of the system. The corresponding work for the non-
equilibrium process cannot be indicated as the area below the curve, since
its computation requires the knowledge of the—inhomogeneous!—pressures
at the piston surface at all times during the process.

3.8 Heat Transfer

Heat is the transfer of energy due to differences in temperature. Experience
shows that for systems in thermal contact the direction of heat transfer is
restricted:

Heat will always go from hot to cold by itself, but not vice versa.
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p

p1

p2

VV1 V2

2

1

reversible process

irreversible process

Fig. 3.4 A reversible (quasi-static) and an irreversible (non-equilibrium) process
between the equilibrium states 1 and 2

This restriction of direction is an important difference to energy transfer
by work between systems in mechanical contact, which is not restricted.

Since heat flows only in response to a temperature difference, a quasi-static
(reversible) heat transfer process can only be realized in the limit of infinites-
imal temperature differences between the system and the system boundary,
and for infinitesimal temperature gradients within the system.

The main heat transfer mechanisms are: (a) Heat conduction, where ther-
mal energy is transmitted by microscopic energy exchange between neighbor-
ing particles. (b) Convection, where fluid elements move to hotter or colder
parts of the system and then exchange energy with the new neighborhood.
(c) Radiative transfer, where electromagnetic radiation that crosses the sys-
tem boundaries is absorbed or emitted by the matter inside the system. In
the present context we do not need to discuss the details of these heat trans-
fer mechanisms, which ultimately describe the same thing: energy transfer
driven by temperature difference.

We use the following notation: Q̇ denotes the heat transfer rate, that is
the amount of energy transferred as heat per unit time. Heat depends on the
process path, so that the heat exchanged for an infinitesimal process step,
δQ = Q̇dt, is not an exact differential. The total heat transfer for a process
between states 1 and 2 is

Q12 =

∫ 2

1

δQ =

∫ t2

t1

Q̇dt . (3.11)

By convention, heat transferred into the system is positive, heat transferred
out of the system is negative.

A process in which no heat transfer takes place, Q̇ = 0, is called adiabatic
process.
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In general, there might be several heat interactions Q̇k of the system, then
the total heat for the system is the sum over all contributions; e.g., for the
heating rate

Q̇ =
∑

k

Q̇k . (3.12)

Confusion might result between the use of the word heat in everyday lan-
guage, and its use in thermodynamics. In thermodynamics, heat solely de-
scribes a means to transfer energy in response to temperature differences. In
particular we emphasize that heat is not a form of energy, and does not relate
to how hot it might be outside. To say “oh, what a heat” is common language,
a thermodynamicist will say “oh, it’s pretty hot outside”, or, even better, “oh,
the temperature is pretty high today.” A state is characterized by its energy
or temperature, a change of state is characterized by heat (transfer).

3.9 The First Law for Reversible Processes

The form (3.1) of the first law is valid for all closed systems. When only
reversible processes occur within the system, so that the system is in equi-
librium states at any time, the equation can be simplified as follows: From
our discussion of equilibrium states we know that for reversible processes
the system will be homogeneous, and that all changes must be very slow,
which implies very small velocities. Therefore, kinetic energy can be ignored,
Ekin = 0. Stirring, which transfers energy by moving the fluid and friction,
is irreversible, hence in a reversible process only moving boundary work can
be transferred. As long as the system location does not change, the potential
energy does not change, and we can set Epot = 0.

With all this, for reversible (quasi-static) processes the first law of ther-
modynamics reduces to

dU

dt
= Q̇− p

dV

dt
or U2 − U1 = Q12 −

∫ 2

1

pdV , (3.13)

where the second form results from integration over the process duration. We
shall later, in particular in Chapter 7, use this equation extensively to study
reversible processes in closed systems.

3.10 The Specific Heat at Constant Volume

We consider a closed system heated at constant volume (isochoric process),
where the first law (3.13) reduces to (recall that U = mu (T, v) and m =
const.)

m

(
∂u

∂T

)

v

dT

dt
= Q̇ . (3.14)
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Here,
(
∂u
∂T

)
v
= ∂u(T,v)

∂T denotes the partial derivative of internal energy with

temperature at constant specific volume2 v = V/m. This derivative is known
as the specific heat (or specific heat capacity) at constant volume,

cv =

(
∂u

∂T

)

v

. (3.15)

To understand this name for cv, we rewrite (3.14) as

cvdT =
Q̇dt

m
=

δQ

m
. (3.16)

From this equation we see that cv is the amount of heat required to increase
the temperature of 1 kg of substance by 1K at constant volume. The specific
heat can be measured by controlled heating of a fixed amount of substance
in a fixed volume system, and measurement of the ensuing temperature dif-

ference; its SI unit is
[

kJ
kgK

]
.

In general, cv (T, v) =
(
∂u
∂T

)
v
is a function of temperature and specific vol-

ume. For incompressible liquids and solids the specific volume is constant,
v = const, and the specific heat is a function of temperature alone. Inter-
estingly, also for ideal gases the specific heat turns out to be a function of
temperature alone, both experimentally and from theoretical considerations.
For these materials the internal energy depends only on temperature, and
integration gives the caloric equation of state as

u (T ) =

∫ T

T0

cv (T
′) dT ′ + u0 . (3.17)

Only energy differences can be measured, where the first law is used to eval-
uate careful experiments. The choice of the energy constant u0 = u (T0) fixes
the energy scale. The actual value of this constant will only become relevant
for the discussion of chemical reactions. Note that proper mathematical nota-
tion requires to distinguish between the actual temperature T of the system,
and the integration variable T ′.

For materials in which the specific heat varies only slightly with temper-
ature in the interval of interest, the specific heat can be approximated by a
suitable constant average cavgv , so that the caloric equation of state assumes
the particularly simple linear form

2 Due to the abundance of thermodynamic properties, and the freedom to choose
any two of them as variables, one needs to be careful with the notation. In the
present context, internal energy depends on two variables, and when a partial
derivative is taken with respect to one variable, it is customary to indicate the
second variable by a subscript, to condense notation. This notation, where, e.g.,(
∂u
∂T

)
v
= ∂u(T,v)

∂T
will be used throughout this text for partial derivatives of prop-

erties.
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u (T ) = cavgv (T − T0) + u0 . (3.18)

This relation for the caloric equation of state will serve us well in our first
examples.

For temperatures around the standard environmental temperature T0 =
298K (≡ 25 ◦C), the specific heat of air is cairv = 0.717 kJ

kgK , for liquid water

one finds cw = 4.18 kJ
kg K . The old unit for heat and thermal energy, the

calorie [ cal], is defined such that one calorie is the heat required to raise the
temperature of one gram of water by one degree Celsius (from 14.5 ◦C to
15.5 ◦C at p0 = 1 atm), thus 1 cal = 4.18 J, and 1 kcal = 4.18 kJ.

3.11 Enthalpy

In many thermodynamic calculations one encounters the combination U+pV ,
or the mass divided equivalent u+pv, and it is convenient to introduce a name
and a symbol for these. We define the total and the specific enthalpy as

H = U + pV , h = u+ pv , (3.19)

where H = mh.
Using enthalpy to replace internal energy, the first law for quasi-static

processes assumes the forms3

dH

dt
= Q̇+ V

dp

dt
and H2 −H1 = Q12 +

∫ 2

1

V dp . (3.20)

As an application we consider a closed system heated at constant pressure
(isobaric process), so that dp

dt = 0. In this case, the first law reduces to
dH
dt = Q̇, or, since H = mh (T, p),

m

(
∂h

∂T

)

p

dT

dt
= Q̇ . (3.21)

Here
(
∂h
∂T

)
p
= ∂h(T,p)

∂T denotes the partial derivative of specific enthalpy with

respect to temperature at constant pressure p. This derivative is known as
the specific heat at constant pressure

cp =

(
∂h

∂T

)

p

. (3.22)

To understand this name for cp, we rewrite the above equation as

3 From the defintion of enthalpy we have U = H − pV , hence dU
dt

= d(H−pV )
dt

=
dH
dt

− p dV
dt

− V dp
dt
; inserting this into the first law (3.13) gives the shown result.
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cpdT =
δQ

m
. (3.23)

We see that cp is the amount of heat required to increase the temperature of

1 kg of substance by 1K at constant pressure; its SI unit is
[

kJ
kgK

]
.

For an ideal gas the thermal equation of state gives pv = RT , and the
internal energy u (T ) is a function of temperature alone. It follows that for
the ideal gas also the enthalpy h (T ) = u + pv = u (T ) + RT is a function
of temperature alone. From the definitions of the specific heats (3.15, 3.22)
follows cp = cv + R; for air at T0 one finds cairp = 1.004 kJ

kgK . For ideal gases
enthalpy and specific heat are related as

h (T ) =

∫ T

T0

cp (T
′) dT ′ + h0 or h = cavgp (T − T0) + h0 , (3.24)

where the latter relation holds in case of constant specific heat.
For incompressible solids and liquids (v = const.), the specific heats at

constant pressure and constant volume agree, since
(

∂pv
∂T

)

p
= p
(
∂v
∂T

)
p
= 0

(also see Sec. 16.7 for a more detailed argument), and one writes the specific
heat without an index, c = cv = cp. The specific heat for water will be
denoted as cw.

While its internal energy depends only on temperature, the enthalpy of an
incompressible substance (constant specific volume v) depends on tempera-
ture and pressure. Indeed, by its definition h = u + pv, enthalpy depends
explicitly on pressure. With h0 as the enthalpy at a reference point (T0, p0),
the enthalpy for an incompressible solid or liquid with constant specific heat
becomes

h (T, p) = cavg (T − T0) + (p− p0) v + h0 . (3.25)

Note that no substance is truly incompressible, normally the specific volume
changes at least a little bit. This leads to small differences between specific
heats which can be ignored as long as the compressibility is sufficiently small.

3.12 Example: Equilibration of Temperature

We apply the first law to the situation depicted in Fig. 2.6. Two bodies A
and B that are initially at different temperatures T̄A and T̄B, respectively,
are brought into thermal contact. After a sufficiently long time, we find that
both bodies have assumed the common temperature T .

For this problem, kinetic energy is zero, and potential energy does not
change. When the system [A+B] is adiabatically enclosed (Q̇ = 0), and no
work is done (Ẇ = 0), the first law of thermodynamics simply states that
the energy of the system remains constant,
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dU

dt
= 0 .

Thus, the energy of the end state is equal to the initial energy, Uend = Uinit.
For simple incompressible solids the internal energy is given by4 U = mcT ,

where c denotes the average specific heat (assumed to be a constant) and m
is the mass. The internal energy of the system consisting of the two bodies
is initially

Uinit = UA + UB = mAcAT̄A +mBcBT̄B .

To emphasize that the first law does not automatically give equal final tem-
peratures for the two bodies, we write Uend = mAcATA + mBcBTB with
different final temperatures TA and TB. We solve for TA,

TA = T̄A +
mBcB
mAcA

(
T̄B − TB

)
, (3.26)

and see that there are infinitely many solutions for the final temperatures
(TA, TB) that fulfill the first law: conservation of energy alone is not sufficient
to determine the final equilibrium state.

However, our experience, laid down in the zeroth law, tells us that the
final temperatures agree: TA = TB = T . We find the final temperature as the
weighted average of the two initial temperatures,

T =
mAcAT̄A +mBcBT̄B

mAcA +mBcB
,

with the weights given by the thermal masses mAcA, mBcB. We shall later
employ the second law to find the same result.

As discussed, a thermometer utilizes the equilibration of temperature. The
act of measurement should not affect the result. To study the relevant con-
dition, let body B be the thermometer, used to measure the temperature of
body A. The final temperature T of body and thermometer can be written
in the alternative form

T = T̄A +
mBcB

(
T̄B − T̄A

)

mAcA +mBcB
.

The measured temperature T is close to the initial temperature T̄A of body
A when mBcB � mAcA. It follows that a thermometer should have consid-
erably smaller thermal mass mc than the body whose temperature is to be
measured.

4 With the energy constant u0 = cT0.
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3.13 Example: Uncontrolled Expansion of a Gas

Our next example concerns the uncontrolled expansion of an ideal gas. For
this, we consider an ideal gas in a container which is divided by a membrane,
see Fig. 3.5. Initially the gas is contained in one part of the container at
{T1, p1, V1}, while the other part is evacuated. The membrane is destroyed,
and the gas expands into the container. The fast motion of the gas is slowed
down by internal friction, and in the final homogeneous equilibrium state
{T2, p2, V2} the gas is at rest and distributed over the total volume of the
container. Note that we have no control over the flow after the membrane is
destroyed: this is an irreversible process.

ideal gas vacuum ideal gas
=)

T1, p1, V1 T2, p2, V2

Fig. 3.5 Irreversible adiabatic expansion of an ideal gas

The container is adiabatically enclosed to the exterior, and, since its walls
are rigid, no work is transmitted to the exterior. Thus, the first law for closed
systems (3.1) reduces to

d (U + Ekin + Epot)

dt
= 0 ,

or, after integration,

U2 + Ekin,2 + Epot,2 = U1 + Ekin,1 + Epot,1 .

Since the gas it at rest initially and in the end, Ekin,1 = Ekin,2 = 0, and
since potential energy has not changed Epot,1 = Epot,2, the above reduces to
U2 = U1. With U = mu, and m = const., the specific internal energy remains
unchanged,

u (T1, v1) = u (T2, v2) .

Measurements for ideal gases show that T1 = T2, that is the initial and
final temperatures of the gas are the same. With this, the previous condition
becomes

u (T1, v1) = u (T1, v2) ,

which can only hold if the internal energy of the ideal gas does not depend
on volume. This experiment verifies that the internal energy of the ideal gas
is independent of volume, and depends only on temperature, u = u (T ).
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3.14 Example: Friction Loss

One litre of water in an adiabatic container is stirred such that the initial
average velocity of the water is V1 = 5 m

s . Stirring stops, and due to internal
friction and friction between water and container walls the water will come
to rest after a while. The water still moves after the stirrer is removed, but
we have no control over the water motion: this is an irreversible process. We
compute the change of temperature in the equilibration process.

After stirring stops, the system is isolated, no heat and work are exchanged,
Q̇ = Ẇ = 0, potential energy remains constant,

dEpot

dt = 0. The energy

balance (3.1) reduces to d
dt (U + Ekin) = 0, so that the total energy U +Ekin

stays constant,
U2 + Ekin,2 = U1 + Ekin,1 .

From experience we know that in the final homogeneous equilibrium state
the water is at rest, Ekin,2 = 0, and we find

U2 − U1 = mcwΔT = Ekin,1 =
m

2
V2
1 .

Mass cancels and we find the temperature difference as

ΔT =
1

2

V2
1

cw
=

1

2

25 m2

s2

4.18 kJ
kg

= 0.003K .

For the unit conversion, we have used that 1 kJ
kg = 103 J

kg = 103 m2

s2 . Note
that this very small temperature change is due only to the destruction of the
initial kinetic energy. Constant stirring of a viscous liquid can increase its
temperature considerably; the relevant form for the first law is dU

dt = −Ẇ , or
dT
dt = − Ẇ

mc , where Ẇ is the work required for stirring. A good example from
daily life is the kneading of pizza dough, which can become quite warm.

3.15 Example: Heating Problems

3.15.1 Heating of Water

2 litre of water at T1 = 20 ◦C are heated in a well isolated 2 kW electric kettle.
We compute the time required to heat the water to T2 = 90 ◦C.

In this temperature range, liquid water can be well described as an incom-
pressible liquid with mass density ρ = 1000 kg

m3 and constant specific heat

cw = 4.18 kJ
kgK . The mass of water in the heater is m = ρV = 2kg. Since the

volume of the water remains unchanged, there is no work done, and with the
internal energy U = mcw (T − T0) + u0, the first law reduces to

mcw
dT

dt
= Q̇ ,
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with Q̇ = 2kW as given. Separation of variables and integration over the
duration of the process gives mcw (T2 − T1) = Q̇ (t2 − t1), or

Δt = t2 − t1 =
mcw

Q̇
(T2 − T1) = 292.6

kg kJ
kgK

kW
K = 292.6 s .

For the unit conversion we have used that 1 kW = 1 kJ
s .

3.15.2 Heating of Water with Heat Loss

We consider the same problem as above, only that now the water in the heater
loses heat to the environment at T0 = 20 ◦C at a rate of Q̇loss = α (T − T0)
with a transfer coefficient α = 25 W

K . The heat loss must be added to the heat
supplied by the kettle, so that the first law reads (careful with the sign, the
heat loss must be subtracted)

mcw
dT

dt
= Q̇− α (T − T0) .

Since T0, Q̇ and α are constant in time, this differential equation can be
written in the equivalent form

mcw
d
(
T − T0 − Q̇

α

)

dt
= −α

(

T − T0 − Q̇

α

)

.

Integration between {t1, T1} and {t2, T2} gives the solution

ln

(

T2 − T0 − Q̇

α

)

− ln

(

T1 − T0 − Q̇

α

)

= − α

mcw
Δt ,

or, solved for Δt

Δt =
mcw
α

ln
T1 − T0 − Q̇

α

T2 − T0 − Q̇
α

= 695.4 s .

The higher the water temperature becomes, the more heat is lost. With the
values given above, for Δt → ∞, we find a maximum temperature of T∞

2 =

T0 +
Q̇
α = 100 ◦C (note that Q̇

α = 2 kW
25 W

K

= 2000W
25 W

K

= 80K). The chosen value

for α is a bit high for a water heater, which normally can bring water to boil
and evaporate in finite time.

The heat transfer coefficient α depends on the material, and the system
configuration. Our sense of cold or hot is not a sense of temperature, but
rather a sense of heat transfer. When we touch an object with large heat
transfer coefficient, a large amount of heat is exchanged between our hand
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and the object, which feels hotter or colder as an object with smaller heat
transfer coefficient at the same temperature. The amount of energy available
plays a role as well. A larger amount of heat can be transferred to our hand
from an object with large thermal mass mc. Wood feels not as cold as metal
of the same temperature.

3.15.3 Isochoric Heating of an Ideal Gas

We consider the air-filled room from a previous example which contains
180.94 kg of air, initially at 20 ◦C, 1 atm. We now assume the room is per-
fectly sealed, so that the air volume remains constant, and ask for the total
amount of heat that must be supplied to heat the room to 25 ◦C.

We describe air as an ideal gas with constant specific heat, so its internal
energy is given by U = mcv (T − T0) + u0, with cv = 0.717 kJ

kgK . Since the

volume remains constant, no work is done, W12 =
∫ 2
1 pdV = 0, and the first

law reduces to

mcv
dT

dt
= Q̇ .

Integration gives

Q12 =

∫ 2

1

Q̇dt = mcvΔT = 648.7 kJ .

A 2 kW heater would need Δt = Q12/Q̇ = 324 s to heat the air in the room
by 5 ◦C. The heating of a real room takes longer, since a substantial amount
of heat is required to heat the walls, which have a large thermal mass mc,
moreover one will expect heat loss through the walls to the colder outside
environment.

The pressure after heating is completed, p2, follows from the ideal gas
law pV = mRT . Since mass and volume remain constant we have p/T =
mR/V = const, so that p2/T2 = p1/T1 or p2 = p1T2/T1 = 1.017 atm =
1.0305 bar (temperatures in Kelvin!).

3.15.4 Isobaric Heating of an Ideal Gas

Next we ask for the amount of heat required to heat the same amount of air
under constant pressure.

In this case, the heat is best computed from the alternative form (3.20)
which for constant pressure reduces to

dH

dt
= Q̇ ,

where H = mh is the enthalpy of the enclosed air, with h = cp (T − T0) + h0

and cp = 1.004 kJ
kgK . Integration gives
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Q12 =

∫ 2

1

Q̇dt = mcpΔT = 908.3 kJ .

A 2 kW heater would need Δt = Q12/Q̇ = 454 s to heat the air in the room,
provided that no heat loss occurs to and through the walls.

The initial volume is V1 = 150m3 and the volume after heating follows
from the ideal gas law pV = mRT . Since pressure and mass remain constant,
we have V2/T2 = V1/T1 and find V2 = V1T2/T1 = 152.6m3. The expansion
of the air requires moving boundary work. Since pressure is constant we find

W12 =

∫ 2

1

pdV = p

∫ 2

1

dV = p (V2 − V1) = 259.4 kJ .

In the isochoric case all heat supplied goes to increase the internal energy.
The heat required for isobaric heating is bigger since, while the increase
of internal energy is the same, additional energy is required to provide the
expansion work.

Problems

3.1. Tank and Contents
A well-insulated copper tank of mass 12 kg at 27 ◦C is filled with 4 litres
of water at 50 ◦C. The tank is heated with a 1 kW resistance heater for 2 1

2
minutes, and then left alone. Determine the temperature of the system after
equilibrium is established. Is the process reversible or irreversible? For copper:
ρ = 8.9 kg

litre , cp = 0.386 kJ
kgK .

3.2. Cooling Process
A 0.5m3 block of steel (ρ = 7.83 kg

litre , cp = 0.5 kJ
kgK ) initially at 250 ◦C is

heated with a constant rate of Q̇ = 50 kW. How long does it take until the
block’s temperature is 600 ◦C?

3.3. Equilibration of Temperature
To warm the water in your bathtub, you decide to heat it by throwing a
block of hot iron into the water. When your bathtub holds 150 litres of water
initially at 20 ◦C, and you can heat the iron to 400 ◦C, what mass should
the iron block have so that you can have a bath at 33 ◦C? Is the process
reversible or irreversible? Assume no heat loss to anywhere, and no boiling,
evaporation etc.

Specific heats: cw = 4.18 kJ
kgK , ciron = 0.450 kJ

kgK .

3.4. Irreversible Expansion
An ideal gas is confined to one side of a rigid, insulated (= no heat transfer,
adiabatic) container, divided by a partition. The other side is initially evac-
uated. The initial state of the gas is p1 = 2bar, T1 = 400K, V1 = 0.02m3.
When the partition is removed, the gas expands to fill the entire container
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and achieves a final equilibrium pressure of 1.5 bar. Determine the volume of
the container.

3.5. Stirring of a Liquid
A thermally insulated 2 litre tank is filled with mercury, which is stirred.
When the stirring power is 200W, how long does it take to raise the temper-
ature of the mercury by 10 ◦C? Is the process reversible or irreversible?

3.6. Kneading of a Pizza Dough
A high quality kitchen mixer has a 575W electric motor. Good pizza dough
should be kneaded for about 10 minutes. When 2 kg of dough is kneaded in
an adiabatically insulated container, and its initial temperature was 20 ◦C,
what temperature will the dough have after kneading?

Assume specific heat of dough as c = 2.73 kJ
kg K .

3.7. Measurement of Specific Heat
To measure the specific heat of light oil (incompressible liquid, mass density
0.91 kg

litre) two litres of oil are stirred in a well-insulated container for 12.5
minutes. The stirrer consumes a power of 75W, and it is observed that the
temperature rises from 23 ◦C to 40 ◦C. Ignore kinetic and potential energies.
and determine the specific heat of the oil.

3.8. Ice Cream Maker
An ice maker stirs 5 kg of a fruit-cream-air mixture (ρ = 570 kg

m3 , cp =

1.7 kJ
kg K). The electric motor of the stirrer consumes 575W of power. It is

observed that after 10 minutes the temperature of the ice cream has dropped
from T1 = −2 ◦C to T2 = −18 ◦C. Determine the cooling rate of the ice cream
maker.

3.9. Heating of a Room
A room of 300 sq.ft. area and 8 ft height is to be maintained at a constant
temperature of 68 ◦F while the outside temperature is 32 ◦F. The heat transfer
rate to the outside is given by Newton’s law of cooling, Q̇ = α (T − T0) with
α = 25 W

K .

1. Compute the heating power required to maintain the temperature con-
stant.

2. When the heating power is doubled, how long does it take to heat the
room from 68 ◦F to 77 ◦F?

Convert all results to SI units.

3.10. Isobaric Heating of an Ideal Gas
0.5 kg hydrogen gas (H2) are enclosed in a piston-cylinder system at 22 ◦C,
3 atm. In a reversible isobaric process (constant pressure), the hydrogen dou-
bles its volume.

Determine:
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1. The initial volume of the system, and the work done in the expansion.
2. The temperature at the end of the expansion, and the heat exchange with

the surroundings.

3.11. Isothermal Compression of an Ideal Gas
10 kg helium are enclosed in a piston-cylinder system at 20 ◦C, 10 bar. In a re-
versible isothermal process (constant temperature), the helium is compressed
to half the original volume. Compute:

1. The initial volume of the system.
2. The work required for compression.
3. The heat exchange with the surroundings.

3.12. Ideal Gas with Non-constant Specific Heat
In a series of experiments you have found that for temperatures in
(300K, 900K), the specific heat at constant volume of air is cv (T ) =(
0.695 + 0.0598T

1000K

)
kJ

kgK .

1. Make a table with the specific heats cv (T ) and cp (T ), specific internal
energy u (T ), and specific enthalpy h (T ) for temperatures in the range of
validity. As reference value chose u (300K) = 215 kJ

kg .
2. 2 kg of air are isobarically heated from 340K to 860K. By means of your

table, determine the heat supply Q12 and the work W12.
3. Redo the calculation under the assumption that the specific heat can be

approximated by its value at 300K (so that it is constant). Determine the
relative error for heat and work.

3.13. Work and Heat
A fixed mass m of carbon monoxide (CO) gas at T0 = 30 ◦C is confined in
a piston-cylinder system. The gas undergoes a reversible isothermal process
(constant temperature), that is the pressure changes according to the relation
p = mRT0/V . The initial and final volumes are V1 = 0.1m3 and V2 = 0.15m3

and the initial pressure is p1 = 500 kPa.
Consider CO as ideal gas with constant specific heat and molar mass M =

28 kg
kmol . Determine:

1. The mass of CO in the system.
2. The pressure p2 at the end of the process.
3. The total work required for the process. Show the process in a p-V-

diagram.
4. The total heat exchange.

3.14. Work and Heat
Nitrogen (ideal gas with constant specific heats) undergoes a reversible pro-
cess in a closed system, where the pressure changes according to the relation
p = aV 2 + b. The initial and final volumes are V1 = 0.3m3 and V2 = 0.1m3,
and the corresponding pressures are p1 = 100 kPa and p2 = 200 kPa; the
initial temperature is T1 = 30 ◦C. Determine:
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1. The mass of nitrogen in the system.
2. The temperature at the end of the process.
3. The total work required for the process. Show the process in a p-V-

diagram.
4. The total heat exchange.

3.15. Work and Heat
Helium, initially at temperature T1 = 0 ◦C undergoes a reversible process
in a closed system, where the pressure changes according to the relation
p = aV 3 + b. The initial and final volumes are V1 = 0.1m3 and V2 = 0.2m3,
and the corresponding pressures are p1 = 100 kPa and p2 = 40 kPa. For the
relevant temperature range helium behaves as an ideal gas. As for all noble
gases, its specific heat is constant, cv = 3

2R. Determine:

1. The mass of helium in the system.
2. The temperature at the end of the process.
3. The total work required for the process. Show the process in a p-V-

diagram.
4. The total heat exchange.



Chapter 4

The Second Law of Thermodynamics

4.1 The Second Law

In our qualitative description of processes we have already emphasized the
trend of any isolated system towards an unique and stable equilibrium state.
The Second Law of Thermodynamics is the quantitative formulation of this
observation. Its importance goes well beyond the computation of the unique
equilibrium states for isolated systems. In particular, as will be seen, it gives
strong restrictions for the efficiency of energy conversion systems, and thus
is of enormous importance for engineering applications.

The original derivation of the second law through Rudolf Clausius (1822–
1888) was based on the argument that the direction of heat transfer is re-
stricted and then relied heavily on statements on thermodynamic cycles. The
following derivation postulates an inequality to describe the trend to equi-
librium, and uses arguments on process direction for simple equilibration
processes to identify terms in the postulated equation. This approach allows
us to introduce the second law quite early, before any thermodynamic pro-
cesses and cycles are discussed. With this, entropy and the second law will
be available for the evaluation of processes and cycles from the start. All
equations and conclusions agree to the classical approach, as presented in
most textbooks on engineering thermodynamics, just the order of arguments
is different.

4.2 Entropy and the Trend to Equilibrium

To set the stage, we briefly summarize our earlier statements on processes
in closed systems: a closed system can be manipulated by exchange of work
and heat with its surroundings only. In non-equilibrium—i.e., irreversible—
processes, when all manipulation stops, the system will undergo further
changes until it reaches a final equilibrium state. This equilibrium state is
stable, that is the system will not leave the equilibrium state spontaneously.

H. Struchtrup, Thermodynamics and Energy Conversion, 55
DOI: 10.1007/978-3-662-43715-5_4, c© Springer-Verlag Berlin Heidelberg 2014
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It requires new action—exchange of work or heat with the surroundings—to
change the state of the system.

The following non-equilibrium processes are well-known from experience,
and will be used in the considerations below: (a) Heat goes from hot to
cold. When two bodies at different temperatures are brought into thermal
contact, heat will flow from the hotter to the colder body until both reach
their common equilibrium temperature. (b) Work can be transferred without
restriction, by means of gears and levers. However, in transfer some work
might be lost to friction.

The process from an initial non-equilibrium state to the final equilibrium
state requires some time. However, if the actions on the system (only work and
heat!) are sufficiently slow, the system has enough time to adapt and will be
in equilibrium states at all times. We speak of quasi-static—or, reversible—
processes. When the slow manipulation is stopped at any time, no further
changes occur.

The behavior of isolated systems described above—a change occurs until
a stable state is reached—can be described mathematically by an inequality.
The final stable state must be a maximum (alternatively, a minimum) of
a suitable extensive property describing the system. We call that extensive
property entropy, denoted S, and write an inequality for the isolated system,

dS

dt
= Ṡgen ≥ 0 . (4.1)

Ṡgen is called the entropy generation rate. The entropy generation rate is pos-

itive in non-equilibrium (Ṡgen > 0), and vanishes in equilibrium (Ṡgen = 0).
The new equation (4.1) states that in an isolated system the entropy will
grow in time (dSdt > 0) until the stable equilibrium state is reached (dSdt = 0).
Non-zero entropy generation describes the irreversible process towards equi-
librium, e.g., through internal heat transfer and friction. There is no entropy
generation in equilibrium. Since entropy only grows before the equilibrium
state is reached, the latter is a maximum of entropy.

The above postulation of an inequality is based on phenomenological ar-
guments. The discussion of irreversible processes has shown that all isolated
systems will in time evolve to a unique equilibrium state. The first law alone
does not suffice to describe this behavior. We have seen this in the description
of temperature equilibration in Sec. 3.12, where the first law has infinitely
many solutions for the final temperatures TA, TB, and additional input is
needed to state that TA = TB in equilibrium. Above, we relied on experience
as additional input, the second law is a formalization of that experience. Non-
equilibrium processes aim to reach equilibrium, and the inequality is required
to describe the clear direction in time.

In the next sections we will extend the second law to non-isolated system,
and identify entropy as a measurable property.
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4.3 Entropy Flux

In non-isolated systems, which exchange heat and work with the surround-
ings, we expect an exchange of entropy with the surroundings which must be
added to the entropy inequality. We write

dS

dt
= Ψ̇ + Ṡgen, with Ṡgen ≥ 0 , (4.2)

where Ψ̇ is the entropy flux. This equation states that the change of entropy in
time (dS/dt) is due to transport of entropy over the system boundary (Ψ̇) and
generation of entropy within the system boundaries (Ṡgen). This form of the
second law is valid for all processes in closed systems. The entropy generation
rate is positive, Ṡgen > 0, for irreversible processes, and it vanishes, Ṡgen = 0,
in equilibrium, and for reversible processes, where the system is in equilibrium
states at all times.

All real technical processes are somewhat irreversible, since friction and
heat transfer cannot be avoided. Reversible processes are idealizations that
can be used to study the principle behavior of processes, and best performance
limits.

Since a closed system can only be manipulated through the exchange of
heat and work with the surroundings, the transfer of any other property,
including the transfer of entropy, must be related to heat and work, and
must vanish when heat and work vanish. Therefore the entropy flux Ψ̇ can
only be of the form

Ψ̇ = βQ̇ − γẆ , (4.3)

with coefficients β, γ that must be related to system and process properties.
Equation (4.2) gives the mathematical formulation of the trend to equilib-

rium for a non-isolated closed system (exchange of heat and work, but not of
mass). The next step is to identify entropy S and the coefficients β, γ in the
entropy flux Ψ̇ in terms of quantities we can measure or control.

4.4 Entropy in Equilibrium

For quasi-static processes, which are in equilibrium states at all times, the
entropy generation vanishes, Ṡgen = 0, and the equation (4.2) for entropy
becomes

dS

dt
= Ψ̇ ; (4.4)

in quasi-static processes the entropy of a closed system changes by entropy
transfer only.

With this and (4.3), we have for reversible processes, where Ẇ = pdV
dt ,

dS

dt
= βQ̇− γp

dV

dt
. (4.5)
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Eliminating heat Q̇ between this, and the first law for quasi-static processes
(3.13), dU

dt = Q̇− pdV
dt , yields

dS

dt
= β

dU

dt
+ (β − γ) p

dV

dt
. (4.6)

This equation relates entropy S to the state properties U and V , and implies
that S (U, V ) is a state property as well. Since pressure p, volume V , temper-
ature T , and internal energy U are related through the thermal and caloric
equations of state, p = p (T, V ), U = U (T, V ), the knowledge of any two of
these determines the others. Thus, entropy, our new property, can be written
as a function of any two of the above properties, e.g., S (T, V ) or S (p, T ) or
S (U, p) or S (U, V ). From the last form, we compute the time derivative of
entropy with the chain rule,

dS

dt
=

(
∂S

∂U

)

V

dU

dt
+

(
∂S

∂V

)

U

dV

dt
. (4.7)

Comparison of the last two equations relates β and (β − γ) to the partial
derivatives of entropy,

(
∂S

∂U

)

V

= β ,

(
∂S

∂V

)

U

= (β − γ) p . (4.8)

So far, entropy and the coefficients β and γ in the entropy flux are not yet
fixed. Since entropy is a state property, also its derivatives

(
∂S
∂U

)
V
and
(
∂S
∂V

)
U

are state properties, and it follows that β and (β − γ) are state properties as
well.1 Since S, U and V are extensive, their quotients and derivatives must
be intensive quantities; therefore β and γ are intensive quantities. Obviously,
we are interested in non-trivial entropy functions, and therefore we must have
β 
= 0, (β − γ) 
= 0.

In anticipation of later discussion we introduce the thermodynamic tem-
perature as T = 1/β. At this point, this is a just a definition, however, it will
be shown soon that T has all the characteristics required for the definition of
a thermodynamic temperature. In particular, it will be seen that the entropy
flux term βQ̇ = Q̇/T is related to the restriction of the direction of heat
transfer: heat flows from warm to cold, not vice versa. No such restriction
applies for work, which, by means of gears and levers, can be transmitted
from slow to fast and vice versa, or from low force to high force and vice
versa. Because of this, γ must be a constant, which can be set to γ = 0—the
interested reader will find the full argument in Sec. 4.17.

With β = 1/T and γ = 0, we have the partial derivatives of entropy
expressed through measurable quantities,

1 Note that, when the entropy flux (4.3) was introduced, this was not clear: β and
(β − γ) could in principle depend on work and heat. The argument presented here
shows that this is not so, at least in equilibrium.
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(
∂S

∂U

)

V

=
1

T
,

(
∂S

∂V

)

U

=
p

T
. (4.9)

The entropy flux (4.3) is

Ψ̇ =
Q̇

T
. (4.10)

4.5 Entropy as Property: The Gibbs Equation

With the partial derivatives of entropy as above, the differential dS =(
∂S
∂U

)
V
dU +

(
∂S
∂V

)
U
dV becomes

TdS = dU + pdV . (4.11)

This relation is known as the Gibbs equation, named after Josiah Willard
Gibbs (1839 - 1903). The Gibbs equation is a differential relation between
properties and valid for all simple substances.

Since T and p are intensive, and U and V are extensive properties, entropy
is extensive. The specific entropy s = S/m can be computed from the Gibbs
equation for specific properties, which is obtained by division of (4.11) with
the constant mass m,

Tds = du+ pdv . (4.12)

Replacing internal energy by enthalpy, u = h− pv, gives an alternative form
of the Gibbs equation,

Tds = dh− vdp . (4.13)

The Gibbs equation gives a large number of relations and restrictions between
properties, in particular it allows to determine property relations for entropy.

Entropy, just as internal energy, cannot be measured directly. Property
relations for entropy are computed from the Gibbs equation, and the thermal
and caloric equations of state, p (T, v) and u (T, v). Here, we consider this for
incompressible substances and for ideal gases.

For incompressible liquids and solids, the specific volume is constant, hence
dv = 0. The caloric equation of state (3.18) implies du = cdT and the Gibbs
equation reduces to Tds = cdT . For constant specific heat, c = const., inte-
gration gives entropy as explicit function of temperature,

s (T ) = c ln
T

T0
+ s0 , (4.14)

where s0 is the entropy at the reference temperature T0. As long as no chem-
ical reactions are involved, the definition of the entropy scale, i.e., the value
of s0, can be freely chosen; the third law of thermodynamics will fix the scale
properly.

For an ideal gas we have du = cvdT and v = RT/p so that the Gibbs
equation (4.13) becomes
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ds = cp
dT

T
−R

dp

p
. (4.15)

For a gas with temperature dependent specific heat, integration yields

s (T, p) = s0 (T )−R ln
p

p0
, (4.16)

where

s0 (T ) =

∫ T

T0

cp (T
′)

T ′ dT ′ + s0 (4.17)

is the—temperature dependent—entropy at reference pressure p0, and s0 is
the reference entropy at {T0, p0}.

For a gas with constant specific heat, the integration can be performed to
give

s (T, p) = cp ln
T

T0
−R ln

p

p0
+ s0 . (4.18)

The entropy s (T, v) follows from this either by replacing the pressure with
the ideal gas equation (p = RT/v) or from integrating (4.12) as (for constant
specific heat)

s (T, v) = cv ln
T

T0
+R ln

v

v0
+ s0 (4.19)

Property relations for other substances will be presented in Chapter 6.

4.6 T-S-Diagram

Solving the first law for reversible processes (3.13) for heat and comparing
the result with the Gibbs equation we find, with Q̇dt = δQ,

dS =
1

T
(dU + pdV ) =

1

T
δQ . (4.20)

We recall that heat is a path function, i.e., δQ is an inexact differential, but
entropy is a state property, i.e., dS is an exact differential. In the language
of mathematics, the inverse thermodynamic temperature 1

T serves as an in-
tegrating factor for δQ, such that dS = 1

T δQ becomes an exact differential.
From the above, we see that for reversible processes δQ = TdS. Accord-

ingly, the total heat exchanged in a reversible process can be computed
from temperature and entropy as the area below the process curve in the
temperature-entropy diagram (T-S-diagram),

Q12 =

∫ 2

1

TdS . (4.21)
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T

T1

T2

SS1 S2

2

1

Q12 =
∫ 2

1
TdS

Fig. 4.1 Heat as the area below the reversible process curve in the T-S-diagram

T

S

2

1

Q12 = 0

Fig. 4.2 Isentropic (adiabatic reversible) process in the T-S-diagram

This is analog to the computation of the work as W12 =
∫ 2
1 pdV , Fig. 4.1

gives an illustration.
For a reversible adiabatic process δQ = TdS = 0, that is the entropy is

constant in the process. We say a reversible adiabatic process is isentropic.
The process curve in the T-S-diagram is a vertical line, see Fig. 4.2.

4.7 The Entropy Balance

In the previous sections, we considered homogeneous systems that undergo
equilibrium processes. To generalize for processes in inhomogeneous systems,
we consider the system as a compound of sufficiently small subsystems. The
key assumption is that each of the subsystems is in local equilibrium, so that
it can be characterized by the same state properties as a macroscopic equilib-
rium system. To simplify the proceedings somewhat, we consider numbered
subsystems of finite size, and summation. A more refined argument would
consider infinitesimal cells dV , and integration.
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Figure 4.3 indicates the splitting into subsystems, and highlights a sub-
system i inside the system and a subsystem k at the system boundary. Tem-
perature and pressure in the subsystems are given by Ti, pi and Tk, pk,
respectively. Generally, temperature and pressure are inhomogeneous, that
is adjacent subsystems have different temperatures and pressures. Accord-
ingly, each subsystem interacts with its neighborhood through heat and work
transfer as indicated by the arrows. Heat and work exchanged with the sur-
roundings of the system are indicated as Q̇k and Ẇk.

Ti; pi

T
k; p

k
Q̇k

Ẇk

Fig. 4.3 Non-equilibrium system split into small equilibrium subsystems. Arrows
indicate work and heat exchange between neighboring elements, and the surround-
ings.

Internal energy and entropy in a subsystem i are denoted as Ei and Si, and,
since both are extensive, the corresponding quantities for the complete system
are obtained by summation over all subsystems, E =

∑
iEi, S =

∑
i Si. Note

that in the limit of infinitesimal subsystems the sums become integrals, as in
Sec. 2.7. The balances of energy and entropy for a subsystem i read

dEi

dt
= Q̇i − Ẇi ,

dSi

dt
=

Q̇i

Ti
+ Ṡgen,i , (4.22)

where Q̇i =
∑

j Q̇i,j is the net heat exchange, and Ẇi =
∑

j Ẇi,j is the net
work exchange for the subsystem. Here, the summation over j indicates the
exchange of heat and work with the neighboring cells, such that, e.g., Q̇i,j is
the heat that i receives from the neighboring cell j.

To obtain first and second law for the compound system, we have to sum
the corresponding laws for the subsystems, which gives

dE

dt
= Q̇− Ẇ with Q̇ =

∑

k

Q̇k , Ẇ =
∑

k

Wk (4.23)

and
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dS

dt
=
∑

k

Q̇k

Tk
+ Ṡgen with Ṡgen ≥ 0 . (4.24)

In the above Q̇k is the heat transferred over a system boundary which has
temperature Tk. As will be explained next, the summation over k concerns
only heat and work exchange with the surroundings.

Since energy is conserved, the internal exchange of heat and work between
subsystems cancels in the conservation law for energy (4.23). For instance,
in the exchange between neighboring subsystems i and j, Qi,j is the heat
that i receives from j and Wi,j is the work that i does on j. Moreover, Qj,i

is the heat that j receives from i and Wj,i is the work that j does on i.
Since energy is conserved, no energy is added or lost in transfer between i
and j, that is Qi,j = −Qj,i and Wi,j = −Wj,i. Accordingly, the sums vanish,
Qi,j+Qj,i = 0 and Wi,j+Wj,i = 0. Extension of the argument shows that the
internal exchange of heat and work between subsystems adds up to zero, so
that only exchange with the surroundings, indicated by subscript k, appears
in (4.23).

Entropy, however, is not conserved, but may be produced. Exchange of
heat and work between subsystems, if irreversible, will contribute to the en-
tropy generation rate Ṡgen. Thus, the total entropy generation rate Ṡgen of
the compound system is the sum of the entropy generation rates in the sub-
systems Ṡgen,i plus additional terms related to the energy transfer between

subsystems, Ṡgen =
∑

i Ṡgen,i+
∑

i,j
Q̇i,j

Ti
. In simple substances, entropy gen-

eration occurs due to internal heat flow and internal friction. We repeat that
entropy generation is strictly positive, Ṡgen > 0, in irreversible processes, and

is zero, Ṡgen = 0, in reversible processes.
To fully quantify entropy generation, that is to compute its actual value,

requires the detailed local computation of all processes inside the system from
the conservation laws and the second law as partial differential equations.
The derivation and analysis of the local laws is a topic of Non-equilibrium
Thermodynamics.

The above derivation of the second law equation (4.24) relies on the
assumption that the equilibrium property relations for entropy are valid lo-
cally also for non-equilibrium systems. This local equilibrium hypothesis—
equilibrium in a subsystem, but not in the compound system—works well
for most systems in technical thermodynamics. It should be noted that the
assumption breaks down for extremely strong non-equilibria; this lies outside
the scope of our endeavours.

4.8 The Direction of Heat Transfer

A temperature reservoir is defined as a large body whose temperature does
not change when heat is removed or added. Figure 4.4 shows heat trans-
fer between two reservoirs of temperatures TH and TL, where TH is the
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Q̇L

TL

Q̇H

TH

Fig. 4.4 Heat transfer between two reservoirs at T1 and T2. In steady state the
heat conductor does not accumulate energy, therefore Q̇L = −Q̇H .

temperature of the hotter system. The heat is transferred through a heat
conductor, which is the thermodynamic system to be evaluated. A pure heat
transfer problem is studied, where the conductor receives the heat flows Q̇H

and Q̇L, and exchanges no work with the surroundings, Ẇ = 0. The first and
second law (4.23, 4.24) applied to the heat conductor read

dU

dt
= Q̇L + Q̇H ,

dS

dt
− Q̇L

TL
− Q̇H

TH
= Ṡgen ≥ 0 . (4.25)

For steady state conditions no changes over time are observed in the conduc-
tor, so that dU

dt = dS
dt = 0. The first law shows that the heat fluxes must be

equal in absolute value, but opposite in sign,

Q̇H = −Q̇L = Q̇ . (4.26)

With this, the second law reduces to the inequality

Q̇

(
1

TL
− 1

TH

)

= Ṡgen ≥ 0 . (4.27)

Clausius’ original derivation of the second law is based on the statement
that heat will go from hot to cold by itself, but not vice versa. We shall use
this statement to learn more on thermodynamic temperature T . Since we
declared TH as the temperature of the hotter reservoir, heat should go from
the reservoir at TH to the reservoir at TL. According to Fig. 4.4 the proper
direction of heat transfer in accordance to Clausius’ statement is for positive
Q̇H , that is for Q̇ > 0, which implies Q̇L < 0. With Q̇ > 0 the inequality

(4.27) holds for
(

1
TL

− 1
TH

)
> 0, which is fulfilled if (a) TH > TL, and (b)

TH and TL have the same sign, i.e., T is either always positive or always
negative. The discussion of friction in the next section will show that T must
be positive.
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TL

Q̇

TH

TH>TL ; Q̇ > 0

Q̇

allowed
TH>TL ; Q̇ < 0

forbidden

TH

TL

Fig. 4.5 Heat transfer between two reservoirs with TH > TL. Heat must go from
warm to cold.

Figure 4.5 gives an illustration of the allowed process, where heat goes
from hot to cold, and the forbidden process, where heat would go from cold
to hot by itself.

4.9 Internal Friction

The sign of temperature follows from the observation that a stirred substance
will come to rest due to friction with the container walls, and within the fluid.
When coffee, or any other liquid, is stirred, it will spin a while after the spoon
is removed. The motion will slow down because of internal friction, and finally
the coffee will be at rest in the cup. The second law should describe this well-
known behavior, which is observed in all viscous fluids.

With the fluid in motion, we have to account for the kinetic energy of
the swirling, which must be computed by summation (i.e., integration), of the

local kinetic energies
ρ(−→r )

2 V (−→r )2 in all volume elements; see Fig. 4.6. The
first and second law read

d (U + Ekin)

dt
= Q̇− Ẇ ,

dS

dt
−
∑ Q̇k

Tk
≥ 0 . (4.28)

We assume adiabatic systems (Q̇ = 0) without any work exchange (Ẇ = 0,
this implies constant volume), so that

d (U + Ekin)

dt
= 0 ,

dS

dt
≥ 0 . (4.29)

If we ignore local temperature differences within the stirred substance, we
have with (4.9)



66 4 The Second Law of Thermodynamics

Ekin=
∫

½

2
V2dV

½ (~r)
dV

V (~r)

Fig. 4.6 The kinetic energy Ekin of a stirred fluid is the sum of the kinetic energies
in all volume elements. Friction with the container wall, and within the fluid, will
slow down the fluid until it comes to rest in the final equilibrium state.

dS

dt
=

(
∂S

∂U

)

V

dU

dt
=

1

T

dU

dt
= − 1

T

dEkin

dt
≥ 0 . (4.30)

Experience shows that over time the fluid slows down, hence the kinetic
energy Ekin =

∫
ρ
2V2dV decreases over time, and will be zero in equilibrium,

where the stirred substance comes to rest, V = 0; this implies

dEkin

dt
� 0 . (4.31)

The latter inequality is compatible with the 2nd law in the form (4.30) only
if the thermodynamic temperature is non-negative, T ≥ 0.

An equivalent experience is that work in transmission can be lost to fric-
tion, but not gained. Figure 4.7 shows the work and heat flows for a gearbox
operating at constant temperature T , at steady state. The gearbox receives

the work −
∣
∣
∣Ẇin

∣
∣
∣, and delivers the work Ẇout > 0. Moreover, the gearbox is

in thermal contact with the environment from which it receives the heat Q̇.
The figure shows absolute values for work, the arrows indicate the direction
of the work flows. The first law is straightforward to evaluate: Since the gear
box operates at steady state, the energy supply must equal the energy loss.
The statement of the first law can be read straight from the figure: Energy
flow in (arrows pointing towards the gearbox) must be equal to energy flow
out (arrows out of the gearbox),

∣
∣
∣Ẇin

∣
∣
∣+ Q̇ = Ẇout . (4.32)

There is only a single heat flow contribution, therefore the second law becomes
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Fig. 4.7 Work and heat flow in a gearbox operating at constant temperature T .
The heat is expected to be negative, Q̇ < 0.

− Q̇

T
=

∣
∣
∣Ẇin

∣
∣
∣− Ẇout

T
= Ṡgen ≥ 0 . (4.33)

We consider it a general experience that some work is lost in the transmission
through a gearbox, and that the box sheds heat into the environment,2

Ẇout ≤
∣
∣
∣Ẇin

∣
∣
∣ , Q̇ < 0 . (4.34)

Comparison between the two last equations shows, again, that the thermo-
dynamic temperature must not be negative, T ≥ 0.

The lost work leaves the gearbox in form of heat
∣
∣
∣Q̇out

∣
∣
∣ = −Q̇ =

∣
∣
∣Ẇin

∣
∣
∣−

Ẇout > 0, which is transmitted into the environment. The reason for the loss
is friction within the gearbox.

4.10 Newton’s Law of Cooling

We return to the discussion of heat transfer. The inequality (4.27) requires

that Q̇ has the same sign as
(

1
TL

− 1
TH

)
, a requirement that is fulfilled for a

heat transfer rate
Q̇ = αA (TH − TL) (4.35)

with a positive heat transfer coefficient α > 0, and the heat exchange surface
area A. This relation, which we already used in an example, is known as New-
ton’s law of cooling, and is often used in heat transfer problems. The values of
the positive coefficient α must be found from the detailed configuration and

2 This is tantamount to the statement that a system exchanging heat with a single
reservoir cannot produce work (see Sec. 5.3 further below). Indeed, if the system

would receive the heat Q̇ > 0, the first law would require Ẇout >
∣∣
∣Ẇin

∣∣
∣: more

work would leave the system than enter, which means that the single incoming
heat Q̇ would be converted to work.
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conditions in the heat transfer system. The surface area A appears due to the
intuitive expectation that enlarging the transfer area leads to a proportional
increase in the amount of heat transferred.

Heat transfer was introduced as energy transfer due to temperature dif-
ference with heat going from hot to cold, Newton laws of cooling states that
as a result of the temperature difference one will observe a response, namely
the heat flux.

The procedure to derive Newton’s law of cooling can be described as fol-
lows: The entropy generation rate (4.27) is interpreted as the product of
a thermodynamic force—here, the temperature difference (TH − TL)—and a
corresponding flux—here, the heat flux Q̇. To ensure positivity of the entropy
generation rate, the flux must be proportional to the force, with a positive
factor αA that must be measured. The same strategy can be used for other
force-flux pairs.

With Newton’s law of cooling it is easy to see that heat transfer over
finite temperature differences is an irreversible process. Indeed, the second
law (4.27) gives with (4.35)

Ṡgen = Q̇

(
1

TL
− 1

TH

)

= αA
(TH − TL)

2

TLTH
> 0 . (4.36)

Only when the temperature difference is infinitesimal, i.e., TH = TL + dT ,
entropy generation can be ignored, and heat transfer can be considered as
a reversible process. This can be seen as follows: For infinitesimal dT the

entropy generation rate becomes Ṡgen = αA
(

dT
TL

)2
. Since quadratic terms in

infinitesimal differences can be ignored, this implies Ṡgen = 0 (dT → 0). In
this case, to have a finite amount of heat transferred, the heat exchange area
A must go to infinity.

4.11 Zeroth Law and Second Law

While above we considered heat transfer between reservoirs, the conclusion is
valid for heat conduction between arbitrary systems: As long as the systems
are in thermal contact through heat conductors, and their temperatures are
different, there will be heat transfer between the systems. Only when the
temperatures of the systems are equal, heat transfer will cease. This is the
case of thermal equilibrium, where no change in time occurs anymore. This
includes that the temperature of an isolated body in thermal equilibrium will
be homogeneous, where equilibration occurs through heat transfer within the
system.

The zeroth law states: In equilibrium systems in thermal contact assume
the same temperature. Thus, the zeroth law of thermodynamics might appear
as a special case of the second law. It stands in its own right, however, since
it defines temperature as a measurable quantity.
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4.12 Example: Equilibration of Temperature

We return to the problem considered in Sec. 3.12, the equilibration of tem-
perature between two bodies A and B, with initial temperatures T̄A and T̄B.
The first law alone was not sufficient to find the final common temperature,
which will now be obtained from the second law. The compound system A+B
is adiabatic to the outside, so that the second law becomes

dS

dt
=

d (SA + SB)

dt
≥ 0 .

Thus the total entropy S = SA + SB of the system will grow in time until it
will assume its maximum in equilibrium, when no further changes occur.

For the simple solids under consideration, by (4.14) the entropy is S =
mc ln T

T0
, so that

S = SA + SB = mAcA ln
TA

T0
+mBcB ln

TB

T0
.

The first law relates the actual temperatures TA and TB of the two bodies
and their initial temperatures T̄A, T̄B through (3.26). With this, the entropy
of the system becomes a function of TB only,

S = mAcA ln

(
T̄A

T0
+

mBcB
mAcA

T̄B − TB

T0

)

+mBcB ln
TB

T0
.

Since the entropy of the compound system A+B can only grow, in equilibrium
the entropy assumes the largest possible value, which is obtained from the
condition dS

dTB
= 0. The evaluation, left as an exercise for the reader, gives

the expected result for the common equilibrium temperature,

TB = TA = T =
mAcAT̄A +mBcBT̄B

mAcA +mBcB
.

4.13 Example: Uncontrolled Expansion of a Gas

We consider the entropy change for the uncontrolled expansion of an ideal
gas in Sec. 3.13, for which the first law gave T1 = T2. The second law for this
adiabatic process simply reads

dS

dt
= Ṡgen ≥ 0.

Integration over the process duration yields

S2 − S1 =

∫ t2

t1

Ṡgendt = Sgen ≥ 0 .
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The total change of entropy follows from the ideal gas entropy (with constant
specific heat), Eq. (4.19) as

S2 − S1 = m (s2 − s1) = mR ln
V2

V1
= mR ln

p1
p2

≥ 0 .

Since in this process the temperature of the ideal gas remains unchanged, the
growth of entropy is only attributed to the growth in volume: by filling the
larger volume V2, the gas assumes a state of larger entropy. Since the container

is adiabatic, there is no flux of entropy over the boundary (i.e.,
∑ Q̇k

Tk
= 0),

and all entropy generated stays within the system, Sgen = S2 − S1.

4.14 What Is Entropy?

The arguments that gave us the second law and entropy as a property cen-
tered around the trend to equilibrium observed in any system left to itself
(isolated system). Based on the derivation, the question What is entropy?
can be answered simply by saying It’s a quantity that arises when one con-
structs an inequality that describes the trend to equilibrium. Can there be a
deeper understanding of entropy?

Before we try to answer, we look at internal energy: When the first law of
thermodynamics was found, the concept of internal energy was new, and
it was difficult to understand what it might describe. At that time, the
atomic structure of matter was not known, and internal energy could not
be interpreted—it appeared because it served well to describe the phenom-
ena. Today we know more, and we understand internal energy as the kinetic
and potential energies of atoms and molecules on the microscopic level. Thus,
while the concept of internal energy arose from the desire to describe phenom-
ena, today it is relatively easy to understand, because it has a macroscopic
analogue in mechanics.

Entropy also came into play to describe the phenomena, but it is a new
quantity, without a mechanical analogue. A deeper understanding of entropy
can be gained, as for internal energy, from considerations on the atomic scale.
Within the framework of his Kinetic Theory of Gases, Ludwig Boltzmann
(1844-1905) found a microscopic interpretation of entropy, where entropy
is related to concepts of probability. A not too precise description of this
interpretation follows below.

Macroscopically, a state is described by only a few macroscopic proper-
ties, e.g., temperature, pressure, volume. Microscopically, a state is described
through the location and momentum of all atoms within the system. The
microscopic state is constantly changing due to the microscopic motion of
the atoms, and there are many microscopic states that describe the same
macroscopic state. If we denote the total number of all microscopic states
that describe the same macroscopic state by Ω, then the entropy of the
macroscopic state according to Boltzmann is
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S = kB lnΩ . (4.37)

The constant kB = R̄/A = 1.3804 × 10−23 J
K is the Boltzmann constant,

which can be interpreted as the gas constant per particle.
The growth of entropy in an isolated system, dS

dt ≥ 0, thus means that the
system shifts to macrostates which have larger numbers of microscopic real-
izations. Equilibrium states have particularly large numbers of realizations,
and this is why they are observed.

To make the ideas somewhat clearer, we consider the expansion of a gas
when a barrier is removed, see Secs. 3.13, 4.13. This is a particularly simple
case, where the internal energy, and thus the distribution of energy over the
particles, does not change. Hence, we can ignore the distribution of thermal
energy over the particles, and the exchange of energy between them.

We assume a system of N gas particles in a volume V . The volume of a
single particle is v0, and in order to be able to compute the number Ω, we
“quantize” the accessible volume V into n = V/v0 boxes that each can ac-
commodate just one particle. Note that in a gas, where the distance between
individual particles is relatively large, most boxes are empty. Due to their
thermal energy, the atoms move from box to box. The number of microstates
is simply given by the number of realizations of a state with N filled boxes
and (n−N) empty boxes, which is

Ω (N, V ) =
n!

N ! (n−N)!
. (4.38)

By means of Stirling’s formula lnx! = x ln x − x (for x � 1) the entropy
(4.37) for this state becomes

S (N, V ) = kB

[

−N ln
N

n
− (n−N) ln

(

1− N

n

)]

. (4.39)

Now we can compute the change of entropy with volume. For this, we
consider the same N particles in two different volumes, V1 = n1v0 and V2 =
n2v0. The entropy difference S2−S1 = S (N, V2)−S (N, V1) between the two
states can be written as

S2 − S1 = kB

[

N ln
n2

n1
+ n1 ln

(

1− N

n1

)

−n2 ln

(

1− N

n2

)

+N ln

(
1− N

n2

)

(
1− N

n1

)

⎤

⎦ . (4.40)

In an ideal gas the number of possible positions n is much bigger than the
number of particles N , that is N

n1
� 1, N

n2
� 1. Taylor expansion yields the

entropy difference to leading order as
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S2 − S1 = kBN ln
n2

n1
= mR ln

V2

V1
, (4.41)

where we reintroduced volume (V1,2 = n1,2v0), and introduced the mass as
m = M N/A; R = R̄/M is the gas constant. This is just the change of entropy
computed in Sec. 4.13.

It is instructive to compare the number of realizations for the two cases,
for which we find

Ω2

Ω1
= exp

S2 − S1

k
= exp

(

N ln
V2

V1

)

=

(
V2

V1

)N

. (4.42)

For a macroscopic amount of gas, the particle number N is extremely large
(order of magnitude ∼ 1023), so that already for a small difference in volume
the ratio of microscopic realization numbers is enormous. For instance for
V2 = 2V1, we find Ω2

Ω1
= 2N .

Microscopic states change constantly due to travel of, and collisions be-
tween, particles. Each of the Ω microstates compatible with the given
macrostate is observed with the same probability, 1/Ω. The Ω1 microstates
in which the gas is confined in the volume V1 are included in the Ω2 mi-
crostates in which the gas is confined in the larger volume V2. Thus, after
removal of the barrier, there is a finite, but extremely small probability of

P = Ω1

Ω2
=
(

V1

V2

)N
to find all gas particles in the initial volume V1. This

probability is so small that the expected waiting time for observing a return
into the original volume exceeds the lifetime of the universe by many orders
of magnitude. If we do not want to wait that long for the return to initial
state, we have to push the gas back into the initial volume, which requires
work.

In generalization of the above, we can conclude that it is quite unlikely that
a portion Vν of the volume is void of particles. The corresponding probability

is Pν =
(
V−Vν

V

)N
. The average volume available for one particle is V̄ = V

N ,
and when Vν = νV̄ we find, for the large particle numbers in an macroscopic

amount of gas, Pν =
(
1− ν

N

)N � e−ν . Thus, as long as Vν is bigger than the
average volume for a single particle, so that ν > 1, the probability for a void is
very small. Moreover, inhomogeneous distributions are rather unlikely, since
the number of homogeneous distributions is far larger than the number of
strongly inhomogeneous distributions. This is why we observe homogeneous
distributions in equilibrium.

Figure 4.8 gives an illustration of microstates for a rather small system.
The system of N = 9 particles with n = 81 boxes allows for Ω = 81!

9!(81−9)! =

2.61 × 1011 microstates, three of which are shown in the figure. Microstate
A is one of the ΩL = 27!

9!(27−9)! = 4.69 × 106 microstates in which the gas

in confined to the left third of the system. Microstates B and C are more
homogeneous distributions.
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A B C

Fig. 4.8 A system of 9 particles with 81 accessible positions in three different
microstates A, B, C

4.15 Entropy and Disorder

Often it is said that entropy is a measure for disorder, where disorder has a
higher entropy. This can be related to the above discussion by means of the
following analogy: The ordered state of an office is the state where all papers,
folders, books and pens are in their designated shelf space. Thus, they are
confined to a relatively small initial volume of the shelf, V1. When work is
done in the office, all these papers, folders, books and pens are removed from
their initial location, and, after they are used, are dropped somewhere in the
office—now they are only confined to the large volume of the office, V2. The
actions of the person working in the office constantly change the microstate
of the office (the precise location of that pen . . . where is it now?), in analogy
to thermal motion.

At the end of the day, the office looks like a mess and needs work to
clean up. Note, however, that the final state of the office—which appears to
be so disorderly—is just one accessible microstate, and therefore it has the
same probability as the fully ordered state, where each book and folder is
at its designated place on the shelf. A single microstate, e.g., a particular
distribution of office material over the office in the evening, has no entropy.
Entropy is a macroscopic property that counts the number of all possible
microstates, e.g., all possible distributions of office material.

A macroscopic state which puts strong restrictions on the elements has a
low entropy, e.g., when all office material is in shelves behind locked doors.
When the restrictions are removed—the doors are unlocked—the number of
possible distributions grows, and so does entropy. Thermal motion leads to a
constant change of the distribution within the inherent restrictions.

To our eye more restricted macroscopic states—all gas particles only in a
small part of the container, or all office material behind closed doors—appear
more orderly, while less restricted states generally appear more disorderly. In
this sense one can say that entropy is a measure for disorder.

In the office, every evening the disordered state differs from that of the
previous day. Over time, one faces a multitude of disordered states, that is
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the disordered office has many realizations, and a large entropy. In the end,
this makes cleaning up cumbersome, and time consuming.

Our discussion focussed on spatial distributions where the notion of or-
der is well-aligned with our experience. The thermal contribution to entropy
is related to the distribution of microscopic energy em over the particles,
where em is the microscopic energy per particle. In Statistical Thermody-
namics one finds that in equilibrium states the distribution of microscopic
energies between particles is exponential, A exp

[− em
kT

]
. The factor A must

be chosen such that the sum over all particles gives the internal energy,

U =
∑

m Aem exp
[
− em

kBT

]
. One might say that the exponential itself is an

orderly function, so that the equilibrium states are less disordered than non-
equilibrium states. Moreover, for lower temperatures the exponential is more
narrow, the microscopic particle energies are confined to lower values, and
one might say that low temperature equilibrium states are more orderly than
high temperature equilibria. And indeed, we find that entropy grows with
temperature, that is colder systems have lower entropies.

4.16 Entropy and Life

The second law states that systems left to themselves tend to disorder, in
the non-trivial sense discussed above. To leave a system to itself, it must
be isolated from its surroundings, so that no transport of mass and energy
over the system boundaries occurs. For such a system the second law reads
dS
dt ≥ 0, entropy—disorder—must increase. A system which is not isolated
can have decreasing entropy. Indeed, for a closed system the second law reads
dS
dt −∑ Q̇k

Tk
≥ 0; thus, by suitable manipulation of the system, in particular

cooling (Q̇k < 0), its entropy can decrease, more ordered states are possible.
Earth itself is not isolated, since it receives an abundance of high tem-

perature energy from the sun in form of radiation (sun surface temperature
TS � 5700K). At the same time Earth emits low temperature energy, also
in form of radiation (Earth surface temperature TE � 300K). This exchange
of energy with Earth’s surrounding allows decreasing entropy locally on the
planet. When we assume that the amount of heat received and emitted by ra-

diation is the same (
∣
∣
∣Q̇
∣
∣
∣), the second law for Earth reads dS

dt ≥
∣
∣
∣Q̇
∣
∣
∣
(

1
TS

− 1
TE

)
.

Since TS > TE , the left hand side is negative, Earth’s entropy may, but must
not, decrease.

If entropy is decreasing within a system (which cannot be isolated!), en-
tropy must be growing somewhere else. When a sufficient portion of the
surroundings are included in the system, entropy must grow. The entropy
in the universe, which is a rather large isolated system, is increasing. The
processes in the sun create entropy locally, in the sun.

Life, most importantly, is fed by the sun. Just think of the human body:
we grow, we learn, and thus keep disorder within the confines of our body
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rather small. As humans are open systems, we maintain a low entropy level
by exchange of mass and energy with our surroundings. Within the larger
system around us, entropy grows, but within the smaller boundaries of our
bodies (and minds!), entropy decreases, or is at least maintained at the same
level.

The sun is the source of life, since it provides the energy we need to lower
entropy in our open system Earth, and in our open system human body.
Evolution, as an increase of order, does not contradict the second law.

4.17 The Entropy Flux Revisited

When we discussed the possible form of the entropy flux Ψ̇ in Sec. 4.3, we
introduced two coefficients β, γ but we soon set them to β = 1/T and γ = 0
in order to simplify the proceedings. In this section, we run briefly through
the proper line of arguments that show that γ must be a constant, which
can be set to zero. The argument also shows that β must depend only on
temperature, must grow inversely to temperature, and must be positive. Thus
β behaves like inverse thermodynamic temperature, which agrees with our
statements above.

For the argument we split the inhomogeneous system under consideration
into a large number of small subsystems, each with their individual properties,
see Fig. 4.3. With the entropy flux Ψ̇ = βQ̇− γẆ we find the second law for
non-equilibrium systems from summing over subsystems as

dS(γ)

dt
+
∑

γkẆk −
∑

βkQ̇k = Ṡgen ≥ 0 , (4.43)

where S(γ) is the entropy for this choice of flux. As before, Q̇k, Ẇk denote the
exchange of heat and work with the surroundings of the system, and βk, γk

are the corresponding values of the unknown coefficients in the sub-systems
at the system boundaries. All internal exchange of heat and work between
the subsystems must be such that entropy is generated. The corresponding
terms are absorbed in the entropy generation rate Ṡgen. The first law for the
system is given in (4.23).

We consider the above form (4.43) of the second law for a heat conductor.
For steady state heat transfer without any work exchange between a hot
reservoir (H) and a cold reservoir (L) through the heat conductor, the above
reduces to

−βHQ̇H − βLQ̇L = Ṡgen ≥ 0 . (4.44)

Here, βH and βL are the values of β at the hot and cold sides of the conductor,
respectively. The first law gives Q̇H = −Q̇L = Q̇ so that

(βL − βH) Q̇ = Ṡgen ≥ 0 . (4.45)
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Since heat must go from hot to cold, the heat must be positive, Q̇ > 0, which
requires (βL − βH) > 0. Thus, the coefficient β must be smaller for the part
of the system which is in contact with the hotter reservoir. This must be so
irrespective of the values of any other properties at the system boundaries
(L,H). Therefore β must depend on temperature only.

It follows that β must be a decreasing function of temperature alone, if
temperature of hotter states is defined to be higher. The left part of Fig. 4.9
shows a schematic of the heat transfer process.

heat transfer transmission of work

¯H (hot)

¯L (cold)

Q̇H= Q̇

¡
∣∣∣Q̇L

∣∣∣ = Q̇

S
∣∣∣Ẇout

∣∣∣

∣∣∣Q̇
∣∣∣

∣∣∣Ẇin

∣∣∣

S
∣∣∣Ẇin

∣∣∣

∣∣∣Q̇
∣∣∣

∣∣∣Ẇout

∣∣∣

°II

°I

HC

°II

°I

Fig. 4.9 Heat transfer through a heat conductor HC (left) and transmission of
work through a steady state system S (right)

We proceed with the discussion of the coefficient γ. For this, we turn our
attention to the transmission of work. The right part of Fig. 4.9 shows two
“reservoirs” characterized by different values γI, γII between which work is
transmitted by a steady state system S. The direction of work transfer is not
restricted: by means of gears and levers work can be transmitted from low
to high force and vice versa, and from low to high velocity and vice versa.
Therefore, transmission might occur from I to II, and as well from II to I.
Accordingly, there is no obvious interpretation of the coefficient γ.

Friction might occur in the transmission. Thus, in the transmission process

we expect some work lost to frictional heating, therefore
∣
∣
∣Ẇout

∣
∣
∣ ≤
∣
∣
∣Ẇin

∣
∣
∣. In

order to keep the transmission system at constant temperature, some heat
must be removed. Work and heat for both cases are indicated in the figure,
the arrows indicate the direction of transfer.

The first law for both transmission processes reads (steady state, dU
dt = 0)

0 = −
∣
∣
∣Q̇
∣
∣
∣−
∣
∣
∣Ẇout

∣
∣
∣+
∣
∣
∣Ẇin

∣
∣
∣ , (4.46)
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where the signs account for the direction of the fluxes. Since work loss in

transmission means
∣
∣
∣Ẇout

∣
∣
∣ ≤
∣
∣
∣Ẇin

∣
∣
∣, this implies that heat must leave the

system, Q̇ = −
∣
∣
∣Q̇
∣
∣
∣ ≤ 0.

Due to the different direction of work in the two processes considered, the
second law (4.43) gives different conditions for both situations,

−γI

∣
∣
∣Ẇin

∣
∣
∣+γII

∣
∣
∣Ẇout

∣
∣
∣+β
∣
∣
∣Q̇
∣
∣
∣ ≥ 0 , γI

∣
∣
∣Ẇout

∣
∣
∣−γII

∣
∣
∣Ẇin

∣
∣
∣+β
∣
∣
∣Q̇
∣
∣
∣ ≥ 0 , (4.47)

where, as we have just seen, β is a measure for the temperature of the trans-
mission system. Elimination of the heat between first and second laws gives
two inequalities,

(γII − β)
∣
∣
∣Ẇout

∣
∣
∣− (γI − β)

∣
∣
∣Ẇin

∣
∣
∣ ≥ 0 , (γI − β)

∣
∣
∣Ẇout

∣
∣
∣− (γII − β)

∣
∣
∣Ẇin

∣
∣
∣ ≥ 0,

(4.48)
or, after some reshuffling,

(β − γII)

∣
∣
∣Ẇout

∣
∣
∣

∣
∣
∣Ẇin

∣
∣
∣
≤ (β − γI) , (β − γI)

∣
∣
∣Ẇout

∣
∣
∣

∣
∣
∣Ẇin

∣
∣
∣
≤ (β − γII) . (4.49)

Combining the two equations gives the two inequalities

(β − γI)

⎛

⎝
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∣
∣Ẇout

∣
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∣
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∣
∣Ẇin
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∣
∣
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⎠
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≤ (β − γI) , (β − γII)
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∣

∣
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∣Ẇin

∣
∣
∣

⎞

⎠

2

≤ (β − γII) .

(4.50)

From the latter follows, since 0 ≤ |Ẇout|
|Ẇin| ≤ 1, that (β − γ) must be non-

negative.
Both inequalities (4.49) must hold for arbitrary transmission systems, that

is for all 0 ≤ |Ẇout|
|Ẇin| ≤ 1, and all β. For a reversible transmission, where

|Ẇout|
|Ẇin| = 1, both inequalities (4.49) can only hold for γI = γII. Accordingly,

γI = γII = γ must be a constant, and (β − γ) ≥ 0 for all β.
With γ as a constant, the entropy balance (4.43) becomes

dS(γ)

dt
+ γẆ −

∑
βkQ̇k = Ṡgen ≥ 0 . (4.51)

The energy balance Ẇ =
∑

Q̇k − dE
dt allows to eliminate work,

d
(
S(γ) − γE

)

dt
−
∑

(βk − γ) Q̇k = Ṡgen ≥ 0 . (4.52)
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With S = S(γ) − γE as the standard entropy, and T = 1/ (β − γ) as the
positive thermodynamic temperature, we find the second law in the form
(4.24). This is equivalent to setting γ = 0, and β = 1/T as was done in
Sec. 4.4.

Problems

4.1. Isothermal Stirring of Mercury
2 litre of mercury confined in a container in thermal contact to an environment
at 15 ◦C are stirred with a 200W stirrer. How much entropy is created in 20
minutes of stirring? Does the entropy of the mercury change? What happens
to the entropy created?

4.2. Adiabatic Stirring of Mercury
2 litre of mercury confined in an isolated container are stirred with a 200W
stirrer. When the mercury was at 15 ◦C initially, what is its temperature after
20 minutes of stirring? How much entropy is created in the process? What
happens to the entropy created?

4.3. Kneading of Pizza Dough
2 kg of dough (c = 2.73 kJ

kgK ) confined in a container are kneaded with a
350W kitchen mixer.

1. The container is in thermal contact to an environment at 25 ◦C so that
the temperature of the dough is 25 ◦C at all times. How much entropy is
created in 10 minutes of kneading?

2. The container is thermally isolated. When the dough was at 25 ◦C initially,
how long does it take until the temperature is 40 ◦C? How much entropy
is created in the process?

3. Both processes are irreversible, hence entropy is created. Explain where
the produced entropy goes.

4.4. Stirring of Petroleum
4 litre of petroleum (ρ = 640 kg

m3 , cp = 2.0 kJ
kgK ) confined in an isolated rigid

container are stirred by an electric motor which consumes 50W of electrical
power.

1. How long does it take until the temperature of the petroleum is raised by
5 ◦C?

2. What is the relation between entropy generation and power? Is the process
reversible or irreversible?

4.5. Industrial Stirrer
During manufacture, 2 tons of polyethylene (incompressible liquid, specific
heat c = 2.9308 kJ

kgK ) are stirred in a well-insulated container for 20 minutes.
It is observed that the temperature rises from 42 ◦C to 49 ◦C. Ignoring kinetic
and potential energies, determine the power demand of the stirrer, and the
entropy generated during the process.
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4.6. A Brick Falls
A 2 t brick cube falls to the ground on a planet without atmosphere. The
gravitational acceleration is 1 m

s2 . The cube crashes on the ground and comes
to rest. From what height must the cube fall to increase its temperature by
10K? When the brick’s initial temperature was 200K, how much entropy is
created in the process? How much work could be obtained in a reversible
process? Brick: ρ = 1922 kg

m3 , c = 0.79 kJ
kgK

4.7. A Bad Accident
A 2t truck running at a speed of 120 km/ h crashes against a concrete wall
and comes to rest. Assume that the truck is made of steel (ρ = 7830 kg

m3 ,

c = 0.5 kJ
kgK ), and that all energy stays in the truck.

1. By what amount will the average temperature of the truck change?
2. How much entropy is created in the process? Assume initial temperature

is T0 = 20 ◦C.
3. How much work could have been obtained in a reversible process, e.g., by

electromagnetic brakes that charge a battery? Compare the possible work
to T0Sgen.

4.8. Dissipation of Kinetic Energy
In Sec. 4.9 it was shown that in an isolated system kinetic energy will vanish
in equilibrium. Repeat the proof for a non-adiabatic system.

4.9. Tank and Contents
A well-insulated steel tank of mass 10 kg contains 5 litre of liquid water.
Initially, the temperature of the tank is 7 ◦C, and the temperature of the
water is 90 ◦C. Specific heats: csteel = 0.5 kJ

kgK , cwater = 4.18 kJ
kgK

1. What is the temperature of the system after equilibrium is established?
2. Compute the change of entropy of the tank.
3. Compute the change of entropy of the water.
4. How much entropy is created in the process? Is the process reversible or

irreversible?

4.10. Property Change in Argon
The state of argon (ideal gas with constant specific heats) is changed by
heating and compression from initial state p1 = 1bar, T1 = 230K to the
final state p2 = 20 bar, T2 = 400K. Compute the change of internal energy
and the change of entropy of the gas. Do you have enough information to
compute the heat and work exchanged? Why not?

4.11. Work and Heat
Krypton (Kr) gas at T1 = 230 ◦C is confined in a piston-cylinder system. The
gas undergoes a reversible process where the pressure changes according to
the relation p = p1(V1/V )2. The initial and final volumes are V1 = 0.2m3

and V2 = 0.1m3 and the initial pressure is p1 = 4bar.
As all monatomic gases, krypton behaves as an ideal gas with constant

specific heat; its molar mass is M = 83.8 kg
kmol . Determine:
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1. The mass of Kr in the system.
2. Pressure p2 and temperature T2 at the end of the process.
3. The total work for the process.
4. The total heat exchange.
5. The change of entropy of the gas.

4.12. Irreversible Expansion of Xenon
Xenon (ideal gas with constant specific heats) is confined in one half of a
2.5 litre container. The other half of the container is evacuated, and the con-
tainer is well-insulated. When the partition is removed, the gas expands ir-
reversibly to fill the whole container. Initially, the xenon is at p1 = 20 bar,
T1 = 400K. Compute the final state p2, T2 and the entropy generated.

4.13. Irreversible Expansion of Neon
Neon (ideal gas with constant specific heats) is confined in a 1 litre gas con-
tainer at p1 = 13 bar, T1 = 500K. This container is enclosed in an evacuated
rigid container of unknown volume, which is well-insulated. The inner con-
tainer becomes defect, and the neon expands irreversibly to fill the accessible
volume. The final pressure is measured as 4 bar. From the first and second
law determine the final temperature T2, the volume of the bigger container,
and the entropy generated.

4.14. Ideal Gas with Non-constant Specific Heat
We go back to problem 3.12, where you made a table of values for cv (T ),
cp (T ), u (T ) and h(T ) for air, when the specific heat at constant volume is
cv (T ) =

(
0.695 + 0.0598T

1000K

)
kJ

kgK .

1. To your table, add a column for the entropy at standard pressure p0,

defined as s0 (T ) =
∫ T
T0

cp(T ′)
T ′ dT + s0 for temperatures in the range

(300K, 900K). As reference value chose s0 (300K) = 7.14 kJ
kgK .

2. 3 kg of air are heated in a reversible isochoric process (constant volume)
from 320K, 2 bar to 800K. By means of your table, determine the work
W12, the heat supply Q12, and the change in entropy, S2 − S1.

3. Redo the calculation of 2. under the assumption that the specific heat can
be approximated by its value at 300K (so that it is constant). Determine
the relative errors for heat, work and entropy difference.

4.15. Equilibrium State I
N blocks of different metals with masses mi, specific heats ci and tempera-
tures Ti are enclosed in an adiabatic rigid chamber. All blocks are brought
into thermal contact. Use the first and second law to show that in equilibrium
all blocks must have the same temperature.

Hint: In equilibrium entropy must be a maximum. Since energy is con-
served, entropy must be maximized under the constraint of given energy.
The most elegant way to solve the problem is using the method of Lagrange
multipliers to take care of the constraint.
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4.16. Equilibrium State II
An insulated container holds the mass m0 =

∫
ρdV of an ideal gas, and

the overall energy is fixed at E0 =
∫
ρ
(
u (T ) + 1

2V2 + gz
)
dV . Note that

in general density ρ, temperature T and velocity V depend on location −→r .
Show that in equilibrium temperature is homogeneous, density follows the
barometric law, and velocity vanishes.

Hint: Here you have to maximize total entropy S =
∫
ρs (T, ρ) dV under

constraints of given mass and energy. Use Lagrange multipliers and Euler’s
equation of variational calculus.

4.17. Equilibrium State III
An insulated room contains a rigid shelf on which rests a metal ball (mass
m, specific heat c, initial temperature T ). The shelf is at height H above
the floor. By using first and second law, answer the following questions: Is
the system in a thermodynamic equilibrium state, and if so, why? If not,
what is the system’s thermodynamic equilibrium state, and why? Does your
answer depend on whether the room is evacuated, or filled with air? If you
find the system is not in thermodynamic equilibrium, why do we find it in
the unstable configuration?



Chapter 5

Energy Conversion and the Second
Law

5.1 Energy Conversion

In the preceding sections we have evaluated the second law with respect
to its ability for the description of basic equilibration processes, e.g., the
equilibration of temperature, the direction of heat transfer, the dissipation of
kinetic energy, and friction losses in gears. Now we shall apply thermodynamic
analysis to conversion processes between work and heat.

The science of thermodynamics emerged from an engineering question:
How much work can be obtained from a given amount of heat? This question
arose when the first steam engines were built, which had efficiencies of only a
few percent. The question is still of outmost importance, as a sustainable way
of living requires the optimal use of resources. Having a good understanding
of the possibilities and limitations in energy conversion processes is the first
step in building better—more efficient—engines.

Before we discuss more complex energy conversion processes, we consider a
relatively simple problem: Energy conversion processes between two thermal
reservoirs at different temperatures TH and TL, with TH > TL.

The natural environment, usually assumed to be at T0 = 25 ◦C, is the
prototype of a thermal reservoir. Due to its size, the environment has al-
most infinite thermal mass mcv, and hence it can provide or accept a large
amount of heat without changing its temperature. Ultimately, all systems are
in thermal contact with the natural environment, and it serves as heat sink
or source for most energy conversion processes.

Many of today’s heat engines rely on the combustion of a fuel (coal, oil,
gas). Combustion processes do not create a reservoir of constant high tem-
perature, but rather a flow of hot combustion gases that provides heat at
varying temperature. Therefore, the following considerations are not always
directly applicable to combustion systems. Nevertheless, the subsequent sec-
tions give important and relevant insights, to which we shall come back again
and again.

H. Struchtrup, Thermodynamics and Energy Conversion, 83
DOI: 10.1007/978-3-662-43715-5_5, c© Springer-Verlag Berlin Heidelberg 2014
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TL

TH

E

Q̇H

Q̇L

Ẇ

Fig. 5.1 Two heat reservoirs at TH and TL connected by a thermal engine E

Pure heat transfer between the two reservoirs was discussed already in Sec.
4.8, with the statement that by itself heat goes from warm to cold, but cannot
go from cold to warm. We now consider processes that involve heat and work.
The systems considered are engines that operate at steady state, that is they
do not accumulate or loose energy or entropy over time, dE

dt = dS
dt = 0. The

detailed processes inside the engines will be discussed extensively later. For
the present overall evaluation, however, they are of no concern, and thus the
set-up considered is as simple as shown in Fig. 5.1: The thermal engine E
exchanges heat with both reservoirs, and produces or consumes power. The
direction of the arrows in Fig. 5.1 simply indicates the convention for heat
and work: heat in and work out are positive. In the following figures, however,
we will use absolute values of heat and work, and the direction of the flows
will be indicated by the directions of the arrows.

For steady state processes, the first and second law for this set-up read

0 = Q̇H + Q̇L − Ẇ , − Q̇H

TH
− Q̇L

TL
= Ṡgen ≥ 0 . (5.1)

5.2 Heat Engines

First we consider power generation, that is the conversion of heat into work

in a heat engine, so that Ẇ =
∣
∣
∣Ẇ
∣
∣
∣ > 0. Elimination of Q̇L between the first

and second law (5.1) gives the work

Ẇ =

(

1− TL

TH

)

Q̇H − TLṠgen . (5.2)

Since we require Ẇ > 0, the right hand side of this equation must be positive
as well. The last term, −TLṠgen, is zero or negative, since thermodynamic
temperature and entropy generation rate are both non-negative; therefore,

the first term,
(
1− TL

TH

)
Q̇H , must be positive. Since the bracket is always
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positive, this implies positive heat input from the hot reservoir, Q̇H =
∣
∣
∣Q̇H

∣
∣
∣ >

0. The heat rejected to the colder reservoir is Q̇L = − TL

TH
Q̇H − TLṠgen < 0.

Figure 5.2 shows the direction of heat and work flow for a heat engine between
the reservoirs.

TL

TH

E

∣∣∣Q̇H

∣∣∣

∣∣∣Q̇L

∣∣∣

∣∣∣Ẇ
∣∣∣

Fig. 5.2 Heat and work directions in a heat engine

According to (5.2), for given TH , TL, the work output is larger for smaller
entropy generation rate Ṡgen ≥ 0. Entropy generation is due to heat transfer
and friction processes within the engine, and between engine and reservoirs,
and cannot be totally avoided in real engines. Instead, the engineering task
is to minimize entropy generation within the system as much as possible, in
order to achieve the best possible performance of the engine. The work loss
to irreversibilities is proportional to the entropy generation,

Ẇloss = TLṠgen ≥ 0 . (5.3)

The theoretical limit for the power generated from two reservoirs with
constant temperatures is obtained for Ṡgen = 0, that is for a fully reversible
engine, as

ẆC =

(

1− TL

TH

)

Q̇H . (5.4)

This is the work output of a Carnot engine, named after Sadi Carnot (1796-
1832), who established this theoretical limit. Any entropy generation Ṡgen in

the engine reduces the work output by TLṠgen.
To quantify the performance of engines, it is useful to define dimensionless

efficiency measures that compare the output (“what you get”) to the input
(“what you pay for”). For heat engines, accordingly, one defines the thermal
efficiency ηth as the ratio between work output and heat input. For heat
engines operating between two reservoirs, we obtain

ηth =
Ẇ

Q̇H

= 1− TL

TH
− TLṠgen

Q̇H

< 1 (5.5)
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for irreversible engines, and

ηC =
ẆC

Q̇H

= 1− TL

TH
< 1 (5.6)

for the Carnot engine.
The Carnot efficiency ηC is the efficiency of a fully reversible engine oper-

ating between two reservoirs at constant temperatures. Since it was computed
from general considerations, its value is completely independent of the details
of the engine, i.e., it does not depend on the working fluid used, nor on the
realization of the engine. The Carnot efficiency is a universal limit for the
thermal efficiency any engine operating between two reservoirs at TH , TL

can have. We summarize the above in two statements:

(a) The thermal efficiency of a fully reversible engine operating between
two reservoirs is independent of the realization of the engine; it is given
by the Carnot efficiency ηC.

(b) Any engine operating between two reservoirs in which irreversible
processes occur has a thermal efficiency below that of a fully reversible
engine.

The amount of work produced grows with the temperature ratio TH/TL

between the reservoirs. In technical energy conversion processes one will aim
for high upper temperature TH to ensure high energy conversion efficiency.
At high temperatures material strength is limited, so that the upper tem-
peratures are limited through the materials used for building the engines.
Typically, the lower temperature TL is the temperature of the environment,
T0.

For temperature ratios TH/TL close to unity, i.e., small temperature differ-
ences, the thermal efficiency is small, and only little power can be produced.
Hence, low temperature waste heat (low TH) is relatively useless for power
production, and, if possible, should rather be used for space heating. High
temperature waste heat (high TH), however, has considerable work potential
that should be used. In other words:

Energy at high temperature is more valuable than energy at low temper-
ature, since more work can be extracted from it.

5.3 The Kelvin-Planck Statement

Even the—fully reversible—Carnot engine has a thermal efficiency ηC below
unity: Not all heat received from the hot reservoir can be converted into
work, some heat must be rejected to a colder reservoir. The Kelvin-Planck
formulation of the second law states this as follows:

No steady state thermodynamic process is possible in which heat is com-
pletely converted into work.
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forbidden allowed

Fig. 5.3 Heat cannot be completely converted into work, but work can be com-
pletely converted to heat

This statement is a direct consequence of the first and second law. For a
steady state process with just one heat exchange the laws require

− Q̇H

TH
= − Ẇ

TH
≥ 0 , (5.7)

hence heat and work must both be negative. Figure 5.3 shows the forbidden
process, and also the—allowed—inverse process, the complete conversion of
work into heat through friction. A typical example for the latter are resis-
tance heaters in which electrical work is converted to heat through electric
resistance.

5.4 Refrigerators and Heat Pumps

While heat cannot go from cold to warm by itself, one can use work consum-
ing devices to perform this task, a refrigerator or heat pump as depicted in
Fig. 5.4.

A refrigerator removes heat from a cold reservoir, e.g., the interior of a
freezer, at TL, and rejects heat to the environment at TH—the goal is to cool
the cold reservoir. A heat pump is used for space heating, it takes heat from
the environment at TL, and rejects heat into the room that is being heated
at TH . While the values of the temperatures TL, TH differ for refrigerator
and heat pump, both operate according to the same principles.

With heat being removed from the colder reservoir, and heat rejected into

the warm reservoir, we have Q̇H = −
∣
∣
∣Q̇H

∣
∣
∣ < 0, and Q̇L =

∣
∣
∣Q̇L

∣
∣
∣ > 0. From

combining first and second law by eliminating Q̇H , we find the condition

−Ẇ −
(
TH

TL
− 1

)∣
∣
∣Q̇L

∣
∣
∣ = TH Ṡgen ≥ 0 . (5.8)

Since
(

TH

TL
− 1
)
> 0, the sign requirement can only be fulfilled if work is done

on the system, Ẇ = −
∣
∣
∣Ẇ
∣
∣
∣ < 0, where
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Fig. 5.4 Heat and work directions in a refrigerator/heat pump
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∣Ẇ
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TL
− 1

)∣
∣
∣Q̇L

∣
∣
∣+ TH Ṡgen . (5.9)

This equation relates the work requirement, Ẇ , to the heat removed from
the colder reservoir, Q̇L; it is well suited for evaluating refrigerators.

For heat pump systems one is interested in the work required in relation

to the heat supply Q̇H to the warmer reservoir. Eliminating
∣
∣
∣Q̇L

∣
∣
∣ one finds

∣
∣
∣Ẇ
∣
∣
∣ =

(

1− TL

TH

) ∣
∣
∣Q̇H

∣
∣
∣ + TLṠgen . (5.10)

Since T Ṡgen ≥ 0, any generation of entropy within a refrigeration or heat

pump system increases the work requirement
∣
∣
∣Ẇ
∣
∣
∣, and thus the operating

cost. The extra work to overcome irreversibilities is TH Ṡgen for a refrigerator

and TLṠgen for a heat pump. One will aim at reducing all causes for entropy
generation, i.e., friction, heat transfer over finite temperature difference, etc.,
as much as possible.

The theoretical limit for the work of the refrigeration and heat pump
systems are obtained for fully reversible engines, for which Ṡgen = 0. This
results in the expressions for a Carnot refrigerator and a Carnot heat pump,
respectively, which read

∣
∣
∣Ẇ
∣
∣
∣
R,C

=

(
TH

TL
− 1

) ∣
∣
∣Q̇L

∣
∣
∣ ,

∣
∣
∣Ẇ
∣
∣
∣
HP,C

=

(

1− TL

TH

) ∣
∣
∣Q̇H

∣
∣
∣ . (5.11)

Also the performance of refrigerators and heat pumps is measured by di-
mensionless efficiency measures that compare the output (“what you get”)
to the input (“what you pay for”), which here are the ratios of heat re-
moved/supplied to the work required to run the device, known as the coef-
ficients of performance (COP). We obtain, for refrigerator and heat pump
operating between two reservoirs,
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COPR =

∣
∣
∣Q̇L

∣
∣
∣

∣
∣
∣Ẇ
∣
∣
∣
=

1

TH

TL
− 1 +

TH Ṡgen

|Q̇L|
≶ 1 , (5.12)

COPHP =

∣
∣
∣Q̇H

∣
∣
∣

∣
∣
∣Ẇ
∣
∣
∣
=

1

1− TL

TH
+

TLṠgen

|Q̇H |
≥ 1 . (5.13)

The COP of a refrigerator can be above or below unity, but the COP of
a heat pump is never below unity. A resistance heater (RH), which converts
electrical power ẆRH fully into heat Q̇RH = ẆRH has a COP of unity,
COPRH = 1, which is the lower bound for heat pumps. A typical heat pump
has a COP above unity and gives more efficient heating.

Irreversible processes in engines lead to entropy generation and reduce the
COP. For fully reversible engines we find the COP of Carnot engines,

COPR,C =
1

TH

TL
− 1

≷ 1 , COPHP,C =
1

1− TL

TH

> 1 . (5.14)

The COPs for the Carnot refrigerator and Carnot heat pump are the max-
imum possible COP for refrigeration or heat pump processes between two
heat reservoirs at TH , TL.

5.5 Kelvin-Planck and Clausius Statements

Clausius’ statement of the second law says that heat will not go from cold
to warm by itself. Note that the two words “by itself” are important here: a
heat pump system can transfer heat from cold to warm, but work must be
supplied, so the heat transfer is not “by itself.”

The Kelvin-Planck statement of the second law says that it is impossible
to construct a device operating at steady state that receives heat from a single
reservoir and produces work. In other words, no heat engine can be build that
has a thermal efficiency of ηth = 1. In our treatment, this statement followed
from the evaluation of the second law, while the Clausius statement was used
explicitly in its development.

The Clausius statement is a daily experience—when we touch a hot plate,
we do not expect to get colder hands—but the Kelvin-Planck statement might
be more difficult to grasp. It is instructive to show that both statements are
equivalent. To this end, we consider the setting shown in Fig. 5.5, consisting

of an engine I that completely converts the heat
∣
∣
∣Q̇H

∣
∣
∣ to power

∣
∣
∣Ẇ
∣
∣
∣ =
∣
∣
∣Q̇H

∣
∣
∣,

and an engine II, a heat pump that consumes the work produced by engine
I. Engine I is forbidden by the Kelvin-Planck statement while engine II is
allowed by the Clausius statement. As the figure shows, the net effect of the
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∣∣∣
= I + II

Fig. 5.5 The equivalency of the Kelvin-Planck (K/P) and Clausius (C) statements
of the second law

combined system [I+ II] is heat transfer from cold to warm “by itself”, which
is forbidden by the Clausius statement. Both statements are equivalent.

5.6 Thermodynamic Temperature

In the derivation of the second law we have introduced thermodynamic tem-
perature T as the factor of proportionality between the heat transfer rate Q̇
and the entropy flux Ψ̇ .

In previous sections we have seen that this definition of thermodynamic
temperature stands in agreement with the direction of heat transfer: heat
flows from hot (high T ) to cold (low T ) by itself. The heat flow aims at
equilibrating the temperature within any isolated system that is left to itself,
so that two systems in thermal equilibrium have the same thermodynamic
temperature. Moreover, the discussion of internal friction showed that ther-
modynamic temperature must be positive.

The discussion of energy conversion processes between two reservoirs adds
another requirement for thermodynamic temperature: For any reversible en-
gine operating between two reservoirs, it must fulfill the relation

TH

TL
= − Q̇H

Q̇L

. (5.15)

This relation follows from (5.1)2 for the case of a fully reversible engine,
Ṡgen = 0, independent of the realization of the reversible engine, or the
working substance employed.

It is therefore possible, at least in principle, to measure temperature ra-
tios through measurement of the heat exchange in fully reversible engines.
Accordingly, to define the thermodynamic temperature scale, only a single
reference temperature is required.

The Kelvin temperature scale, named after William Thomson, Lord Kelvin
(1824 - 1907), uses the triple point of water (611 kPa, 0.01 ◦C) as reference.
The triple point is the state at which a substance can coexist in all three
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phases, solid, liquid and vapor, see Sec. 6.3. The Kelvin scales assigns the
value of TTr = 273.16K to this unique point, which can be reproduced easily
in laboratories.

Since thermodynamic temperature cannot be negative, the smallest possi-
ble thermodynamic temperature is 0K, known as absolute zero.

The ideal gas temperature scale, introduced in Sec. 2.13, coincides with the
Kelvin scale. This will be seen later, in Sec. 8.2, when we explicitly compute
the thermal efficiency of a Carnot cycle operating with an ideal gas.

5.7 Perpetual Motion Engines

Perpetual motion engines are engines that violate the first or the second law
of thermodynamics, or both. Naturally, one will never meet these engines
since they are impossible to build—the thermodynamic laws are not to be
violated! One might meet inventors, however, who claim to have invented
engines that do miraculous things. Inevitably, the inventors will never be
able to show their engines in working condition, and their claims remain
eternally unproven.

A perpetual motion engine of the first kind is an engine that violates the
first law of thermodynamics, e.g., an engine that produces more work than

the net heat exchange,
∣
∣
∣Ẇ
∣
∣
∣ >
∣
∣
∣Q̇H

∣
∣
∣−
∣
∣
∣Q̇L

∣
∣
∣.

A perpetual motion engine of the second kind is an engine that violates
the second law of thermodynamics, e.g., a heat engine operating between two
reservoirs at TL, TH with an efficiency above the Carnot efficiency, η > 1− TL

TH
.

Violations of the second law are sometimes difficult to understand, and thus
perpetual motion engines of the second kind are more difficult to identify for
not so clever inventors, and their gullible investors.

5.8 Reversible and Irreversible Processes

Irreversible processes are associated with entropy generation which reduces
the performance of engines. So far the terms reversible and irreversible were
rather loosely defined in Sec. 2.10. A more exact definition of these terms
will make it easier to identify irreversible processes, and the related losses.
We define:

A thermodynamic process from state 1 to state 2 is reversible, if the
process can be inverted so that the system returns to its initial state
(state 1), and no changes remain in its surroundings.

A thermodynamic process from state 1 to state 2 is irreversible, if, when
the system is brought back into its initial state (state 1), changes remain
in its surroundings.
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Fig. 5.6 Upper row: Irreversible expansion of a gas into vacuum. Lower row: The
intial state is recovered by pushing the piston and removing heat. Since the heat
added to the surroundings, Q21, cannot be fully converted into the work needed to
push, W21, changes remain in the surroundings.

For an example, we return to the uncontrolled expansion of an ideal gas,
which is shown again in Fig. 5.6. We found, in Sec. 3.13, that the internal
energies of initial and final states are the same, U2 = U1, while the gas fills a
bigger volume in the final state, V2 > V1. To return the gas to the initial state,
its volume must be reduced by compression, which requires the (reversible)

work W21 =
∫ V1

V2
pdV < 0. The first law for any process from state 2 back to

the initial state 1 reads

U1 − U2 = Q21 −W21 = 0 ,

so that the heat Q21 = W21 < 0 must be removed from the system, as
shown in the figure. Thus, the process 2-1 draws the work W21 from the
surroundings and transfers the heat Q21 to the surroundings. The process
would be reversible, if the heat Q21 could be completely converted to the work
W21 by an engine residing in the surroundings. This, however, is forbidden by
the Kelvin-Planck statement of the second law, which states that only some
of the heat can be converted to work, but not all. Thus, some extra work
has to be provided to return the system to its original state, the system’s
surroundings have changed: the original process is irreversible.

Heat transfer serves as another example: The heat |QAB| has flown from
a hot body A to a cold body B by itself. To return both bodies to their
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original state one can use a heat pump, which consumes the work WHP ,
removes the heat QAB from the colder body B, and delivers the heat |Q′

AB| =
|QAB|+|WHP | to the warmer body A. After this, body B is in its initial state.
Body A received too much heat, however. To return A into its initial state,
the heat |Q′′

AB| = |WHP | must be moved from A to the surroundings. Due to
the Kelvin-Planck statement, the heat added to the surroundings |Q′′

AB| can
only provide part of the work |WHP | required to drive the heat pump: the
process is irreversible.

5.9 Internally and Externally Reversible Processes

For a sound thermodynamic evaluation of processes it is important to identify
and understand all causes for work loss to irreversible processes. Even if a
process is reversible within the boundaries of the system considered, there
might be associated irreversible processes outside the system boundaries. For
the thorough evaluation of the performance of a system, in particular for
accounting for the associated work losses inside and outside the system, the
following definitions are useful:

Internally reversible process: No irreversible processes occur inside the
system boundaries.

Externally reversible process: No irreversibilities occur outside the sys-
tem boundaries.

Fully reversible process : A process which is both, externally and inter-
nally reversible.

5.10 Irreversibility and Work Loss

The thermodynamic laws for closed systems that exchange heat with an ar-
bitrary number of reservoirs read

d (U + Ekin)

dt
= Q̇0+

∑
Q̇k−Ẇ ,

dS

dt
− Q̇0

T0
−
∑ Q̇k

Tk
= Ṡgen ≥ 0 , (5.16)

where the heat exchange Q̇0 with a reservoir at T0 is highlighted. Most ther-
modynamic engines utilize the environment as heat source or sink, and in this
case Q̇0 should be considered as the heat exchanged with the environment.
Note that the environment is freely available, and no cost is associated with
removing heat from, or rejecting heat into, the environment. For the heat
engines of Sec. 5.2 and the heat pumps of Sec. 5.4 the environmental tem-
perature is T0 = TL, while for the refrigerators of Sec. 5.4 we have T0 = TH .

Elimination of Q̇0 between the two laws and solving for work gives
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Ẇ =
∑(

1− T0

Tk

)

Q̇k − d (U + Ekin − T0S)

dt
− T0Ṡgen . (5.17)

This equation generalizes the findings of the previous sections to arbitrary
processes in closed systems: The generation of entropy in irreversible pro-
cesses reduces the work output of work producing devices (where Ẇ > 0,
e.g., heat engines) and increases the work requirement of work consuming
devices (where Ẇ < 0, e.g., heat pumps and refrigerators). We note the

appearance of the Carnot factor
(
1− T0

Tk

)
multiplying the heating rates Q̇k.

The amount of work lost to irreversible processes is

Ẇloss = T0Ṡgen ≥ 0 , (5.18)

sometimes it is denoted as the irreversibility. It is an important engineering
task to identify and quantify the irreversible work losses, and to reduce them
by redesigning the system, or use of alternative processes.

5.11 Examples

5.11.1 Entropy Generation in Cooling

A 2 kg block of copper at T1 = 250 ◦C equilibrates with the environment at
T0 = 20 ◦C through heat transfer. The left part of Fig. 5.7 shows a sketch
of the process, where the system boundary is chosen such that heat is trans-
ferred at the environmental temperature T0. Copper can be considered as
an incompressible solid with constant specific heat c = 0.4 kJ

kgK , specific in-

ternal energy u = c (T − T0), and specific entropy s = c ln T
T0
. We compute

the amount of heat transferred into the environment, and the total entropy
generated.

The first and second law for this process read

dU

dt
= Q̇ ,

dS

dt
=

Q̇

T0
+ Ṡgen .

Integrating over time between initial state (T1) and final state (T2 = T0)
gives

U2 − U1 = Q12 , S2 − S1 =
Q12

T0
+ Sgen ,

where Sgen =
∫ 2
1
Ṡgendt is the total entropy generation. With the given prop-

erty relations we find

mc (T0 − T1) = Q12 , mc ln
T0

T1
=

Q12

T0
+ Sgen
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∣∣∣

copper
m = 
c
T

2 kg
 = 0.4 kJ/kgK
 

T0

Fig. 5.7 A block of copper initially at T1 cools to environmental temperature T0

by heat transfer (left), or by driving a reversible engine (Carnot engine, right); T
is the actual temperature at time t.

and thus, with T0 = 293K, T1 = 523K (thermodynamic temperature must
be used for entropy and the second law!),

Q12 = −184 kJ , Sgen =
mc

T0

[

(T1 − T0)− T0 ln
T1

T0

]

= 0.163
kJ

K
.

Since entropy is generated, an irreversible loss is associated with the process.
The entropy generating process is heat transfer over the finite temperature
difference between copper block and environment.

5.11.2 Work Generation in Cooling

In the this example we determine the amount of work that could have been
obtained if the heat was not just transferred, but used to drive a heat engine.
We consider the same block of copper as before, but now the heat is used
to drive a Carnot engine in contact with the environment, as shown in the
right part of Fig. 5.7. In this case, there is no entropy generation, since the
Carnot engine is fully reversible. Thus, the first and second laws read (system
boundaries include the Carnot engine)

dU

dt
= Q̇L − Ẇ ,

dS

dt
=

Q̇L

T0
.

Integration gives

U2 − U1 = QL −W , S2 − S1 =
QL

T0
,

so that
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QL = mcT0 ln
T0

T1
= −135.8 kJ ,

W = QL −mc (T0 − T1) = mc

[

T1 − T0 − T0 ln
T1

T0

]

= 48.2 kJ .

A temperature difference can be used to drive a heat engine. If heat is just
transferred over a finite temperature difference, entropy is created, and the
opportunity to provide work is lost. In this example about 26% of the heat
leaving the copper (QH = 184 kJ) could be converted to work in the best
case. Note that W = T0Sgen, where Sgen is the entropy generation in case
that no work is produced as computed in the previous section.

5.11.3 Perpetual Motion Engines

We consider some perpetual motion engines.
(a) A company claims to produce a power generation device that produces

7 kW of power, takes in 11 kW of heat at a temperature of 840K and rejects
8 kW of heat at 280K.

We evaluate this claim: The work and heat flows are as in Fig. 5.2. Eval-

uation of the first law shows that
∣
∣
∣Q̇H

∣
∣
∣ =

∣
∣
∣Q̇L

∣
∣
∣ +
∣
∣
∣Ẇ
∣
∣
∣ should hold. With

∣
∣
∣Q̇H

∣
∣
∣ = 11 kW,

∣
∣
∣Ẇ
∣
∣
∣ = 7kW and

∣
∣
∣Q̇L

∣
∣
∣ = 8kW the first law is not fulfilled—

the device is a perpetual motion engine of the first kind.
(b) Another company claims to produce a power generation device that

produces 7 kW of power, takes in 10 kW of heat at a temperature of 840K
and rejects 3 kW of heat at 280K.

We evaluate this claim: The first law is balanced now, we need to check the
second law. The thermal efficiency of the device would be η = Ẇ/Q̇H = 0.7.
The work of a Carnot engine operating between the same temperatures is
ηC = 1 − TL/TH = 2/3. Thus the efficiency claimed is bigger than the
Carnot efficiency, which violates the second law—this engine is a perpetual
motion engine of the second kind.

(c) Yet another company markets a refrigeration device that removes 1 kW
of heat from a cold space that is kept at −10 ◦C, and rejects heat into an
environment at 22 ◦C. The company claims a power consumption of 122W.

We evaluate this claim: The coefficient of performance for a Carnot refrig-

eration device operating between the same temperatures is COPR,C =
|Q̇|
|Ẇ | =

1
TH/TL−1 = 8.219 which would give a power consumption of ẆC = 122W.

Thus, the company claims to have a Carnot refrigeration device. While this
claim does not violate the first or the second law, it stands in contrast to
the fact that any real process is irreversible. Thus, for an actual device one
must expect efficiencies and COP’s below the Carnot values, which are the
maxima obtained for fully reversible processes. The company’s claim must
be wrong.
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5.11.4 A Heat Engine

An engine that operates at steady state between two reservoirs at TH =
750 ◦C and TL = 15 ◦C, has a heat intake of 0.1MW, and rejects 50 kW
of heat to the low temperature environment. We compute the power pro-
duced, the thermal efficiency, the entropy generation rate, and the work loss
to irreversibilities.

We identify Q̇H = 100 kW and Q̇L = −50 kW. The first law applied to
the engine gives Ẇ = Q̇H + Q̇L = 50 kW. Accordingly, the engine’s thermal

efficiency is η = Ẇ
Q̇H

= 0.5.

The second law gives Q̇H

TH
+ Q̇L

TL
+ Ṡgen = 0 and thus the entropy generation

rate is Ṡgen =
|Q̇L|
TL

− Q̇H

TH
= 0.076 kW

K . Since Ṡgen > 0, the second law is
fulfilled.

The thermal efficiency for a Carnot engine operating between the same
temperatures is ηC = 1− TL

TH
= 0.718 (Kelvin temperatures!) which is above

the efficiency of the engine, as it must be. A Carnot engine would produce
the power ẆC = ηCQ̇H = 71.8 kW. The work loss to irreversibilities is
Ẇloss = ẆC − Ẇ = 21.8 kW.

A more instructive way to compute the work loss is as follows: Eliminating
the heat exchange with the environment, Q̇L, between first and second law
gives

Ẇ =

(

1− TL

TH

)

Q̇H − TLṠgen .

The work loss to irreversibilities is Ẇloss = TLṠgen = 21.8 kW.

5.11.5 Refrigerator

A restaurant refrigerator located in a kitchen at 21 ◦C maintains its inte-
rior at 4 ◦C. The refrigerator consumes 300W of power with a coefficient of
performance COPR = 3. We compute entropy generation and work loss.

The heat withdrawn from the interior is Q̇L = COPR

∣
∣
∣Ẇ
∣
∣
∣ = 900W.

According to the first law, the heat rejected into the kitchen is
∣
∣
∣Q̇H

∣
∣
∣ =

∣
∣
∣Ẇ
∣
∣
∣ + Q̇L = 1200W. The entropy generation rate follows from the second

law as

Ṡgen = − Q̇H

TH
− Q̇L

TL
=

∣
∣
∣Q̇H

∣
∣
∣

TH
− Q̇L

TL
= 0.083

W

K
,

where TL = 277K and TH = 294K. Eliminating the heat rejected into the
kitchen between first and second law yields

∣
∣
∣Ẇ
∣
∣
∣ = −Ẇ =

(
TH

TL
− 1

)

Q̇L + TH Ṡgen .
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The work loss to irreversibilities is Ẇloss = TH Ṡgen = 247.7W; this work is
required as input to overcome irreversibilities. A fully reversible refrigerator,
i.e., a Carnot refrigerator, which removes the same amount of heat Q̇L has a

COPR,C = 1/
(

TH

TL
− 1
)
= 16.3, and would consume 55W of electrical power.

Note that efficient operation of a refrigerator is not only achieved by in-
creasing its COP, but also by improving the thermal insulation. Indeed, the
heat Q̇L that is removed from the interior has crept in through the insulated
walls of the refrigerator. Better insulation reduces the amount of heat that
must be removed, and thus the work consumption of the refrigerator.

5.11.6 Heat Pump with Internal and External
Irreversibilities

A heat pump is used to keep a home at 20 ◦C. The heat pump draws heat

from the outside environment at 0 ◦C; its heating power is
∣
∣
∣Q̇H

∣
∣
∣ = 2kW for

a power consumption of
∣
∣
∣Ẇ
∣
∣
∣ = 0.5 kW. In order to facilitate sufficient heat

transfer, a temperature difference of 10K is required between the working
substance of the heat pump and the respective environments. Figure 5.8 gives
a sketch of the heat and work flows, and the relevant temperature levels.

HP

∣∣∣Q̇H

∣∣∣

∣∣∣Q̇L

∣∣∣

∣∣∣Ẇ
∣∣∣

∣∣∣Q̇L

∣∣∣

∣∣∣Q̇H

∣∣∣
TH= 20±C

T̂H= 30±C

TL= 0±C

T̂L= ¡10±C

Fig. 5.8 A heat pump that requires a finite temperature difference of 10K for heat
exchange

We evaluate the process step by step. Let us first consider a perfectly
reversible Carnot heat pump, that is a device that can operate at the actual
temperatures of the two environments, TH = 293K and TL = 273K. The
coefficient of performance of such an ideal engine is



5.11 Examples 99

COPHP,C =

∣
∣
∣Q̇H

∣
∣
∣

∣
∣
∣ẆC

∣
∣
∣
=

1

1− TL

TH

= 14.65 .

For the given heating power the fully reversible heat pump would consume∣
∣
∣ẆC

∣
∣
∣ = 0.137 kW of power.

A internally reversible heat pump with external irreversibilities due to heat
transfer over finite temperatures is a Carnot heat pump operating between
the temperatures T̂H = 303K and T̂L = 263K. This engine would have a
coefficient of performance

COPHP,C−int =
1

1− T̂L

T̂H

= 7.58

and would consume ẆC−int = 0.264 kW of power. The internally reversible
engine requires more work than the fully reversible engine, since a bigger
temperature interval is bridged. Entropy is generated in the heat transfer
over finite temperature differences, with the generation rate

Ṡgen =
∣
∣
∣Q̇H

∣
∣
∣

(
1

TH
− 1

T̂H

)

+
∣
∣
∣Q̇L

∣
∣
∣

(
1

T̂L

− 1

TL

)

.

Since the engine is internally reversible, the relation
|Q̇L|
T̂L

=
|Q̇H |
T̂H

holds, so

that

Ṡgen =

∣
∣
∣Q̇H

∣
∣
∣

T̂H

[
T̂H

TH
− T̂L

TL

]

= 0.467
W

K
.

As always, the work loss is more interesting than the entropy generation rate.
We find the work loss to external irreversibilities as

Ẇloss−ext = ẆC−int − ẆC = TLṠgen = 0.127 kW .

The actual engine consumes
∣
∣
∣Ẇ
∣
∣
∣ = 0.5 kW of power, that is it loses an

additional 0.236 kW to internal irreversibilities. Its coefficient of performance,

COPHP = Q̇H

/∣∣
∣Ẇ
∣
∣
∣ = 4, is typical for a commercial heat pump system.

The realistic heat pump system is 4 times more efficient than a resistance
heater (COPRH = 1), but the perfect—i.e., fully reversible—Carnot heat
pump is 3.7 times more efficient than the real engine.

We note that the heat required to keep the home at a comfortable tem-
perature needs to be provided since the home loses the same amount of heat
through its walls. Better insulation significantly reduces the heat requirement,
and thus the heating costs.
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Problems

5.1. Heat Engines
An engine that operates between two reservoirs at TH = 500 ◦C and TL =
25 ◦C produces 1MW of power from a heat intake of 2.5MW. Compute the
heat rejected, the thermal efficiency, the entropy generation rate, and the
work loss to irreversibilities.

Another engine operates between two reservoirs at TH = 1000 ◦C and
TL = 10 ◦C, and has a thermal efficiency of 45% and its heat rejection rate
is 1.76MW. Compute the power produced, the heat intake rate, the entropy
generation rate, and the work loss to irreversibilities.

5.2. Investment Advice
A friend asks whether he should invest in a new start-up company. The
company claims to sell a power generation device that produces 12.5 kW of
power, takes in 21 kW of heat at a temperature of 800K and rejects 13 kW
of heat at 300K. What advice do you give? Why?

5.3. More Investment Advice
Another friend asks whether she should invest in a company which claims to
make a power generation device that produces 12 kW of power, takes in heat
at a temperature of 800K and rejects 8 kW of heat at 350K. What advice
do you give? Why?

5.4. Your Friends Keep Asking You for Advice
A neighbor would like to have an air conditioning system. He finds a prod-
uct with the following specifications: For keeping a room at 20 ◦C when the
outside temperature is 30 ◦C the product consumes 0.5 kW to remove 9 kW
of heat. What’s your advice here, and why?

5.5. The Perfect Heater?
A relative needs a new heating system. She shows you a flyer from a company
marketing baseboard heaters. The flyer claims a 100% heating efficiency. Is
that a valid claim? Can your relative find a more efficient alternative? If so,
what would it be?

5.6. A Refrigerator
Yet another friend asks whether he should invest in a company which claims
to produce a refrigeration device with a COP of 7, that consumes 0.9 kW of
power to keep the inside at 4 ◦C, and rejects of heat to the warm environment
at 32 ◦C. What advice do you give? Why?

5.7. A Heat Pump
An off-the shelf heat pump system has a COP of 3.5 for operation between
30 ◦C and −10 ◦C. Determine the entropy generation per kW of heating, and
the percentage of consumed power required to overcome irreversibilities.
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5.8. Another Heat Pump
A heat pump providing 2 kW of heat operates between the temperatures of
23 ◦C and −2 ◦C ; its entropy generation rate is Ṡgen = 1.3 W

K . Determine the
power needed to drive the heat pump, and its COP.

5.9. Heat Engine with External Irreversibilities
A internally reversible heat engine operates between two reservoirs at 300K
and 400K; the engine produces 40 kW of power. The heat exchangers between
the engine and the reservoirs require a temperature difference of 20K. Deter-
mine the heat exchanged with the two environments, the entropy generated
in heat transfer, and the work loss.

5.10. Refrigerator with Internal and External Irreversibilities
In a frozen pizza factory, the freezing compartment is kept at a temperature of
−30 ◦C, while the outside temperature is 25 ◦C. The cooling system removes
2.25MW of heat, and consumes 1.5MW of power. Measurements show that
both heat exchangers operate at a temperature difference of 12 ◦C to their
respective environments.

1. Determine the COP of the refrigeration system, and the COP and power
requirement of a fully reversible system used for the same cooling purpose.

2. Determine the work losses to internal and external irreversibilities.

5.11. Heat for Cooling
A chemical plant rejects 1MW of waste heat at 400 ◦C. Elsewhere in the
plant, 5MW of heat have to be removed from a warehouse at −10 ◦C. Can
the waste heat be used to cool the warehouse when the environment is at
17 ◦C? If so, how? Give arguments based on 1st and 2nd law, discuss your
assumptions.

5.12. Entropy Generation
In an industrial process, a device conducts heat between two hot reservoirs,
which are at 200 ◦C and 400 ◦C, and the environment at 23 ◦C. Specifically,
the conductor exchanges 4 kW of heat with the hottest reservoir, and 6 kW
of heat with the environment. Determine the entropy generation, and the
respective work loss.

5.13. Heat in the T-S-Diagram
In a reversible process in a closed system the heat is given as the area below

the process curve in the T-S-diagram, Q12 =
∫ 2
1
TdS , or, when we divide by

mass, q12 = Q12

m =
∫ 2
1 Tds. To make use of this formula, one therefore needs

temperature as a function of entropy, T (s), for the process.
Consider a reversible process in air, as ideal gas with constant specific

heats, for which pressure and temperature are related as p = p1

(
T
T1

)n
with

a constant n. A process of this kind is called a polytropic process.



102 5 Energy Conversion and the Second Law

1. Find the function T (s, p) by inverting the property relation for entropy,
s (T, p).

2. Simplify for the polytropic process to obtain T (s).
3. Make a sketch of the curve for polytropic processes with various values of

n. How does it change when n gets bigger?

4. Find heat by integration: q12 =
∫ 2
1 Tds. Also compute the work per unit

mass, w12 = W12

m .
5. Specify for a polytropic process with n = 2 that starts at 20 ◦C, 7 bar

(state 1) and proceeds until pressure has doubled.



Chapter 6

Properties and Property Relations

6.1 State Properties and Their Relations

The thermodynamic laws contain many state properties, e.g. [SI units in
brackets]

T temperature [K]
p pressure [ kPa]
m mass [ kg]
V volume [m3]

v = V/m specific volume [ m
3

kg ]

ρ = 1
v mass density [ kg

m3 ]
V velocity [ ms ]
u specific internal energy [ kJkg ]

h = u+ pv specific enthalpy [ kJkg ]

s specific entropy [ kJ
kgK ]

However, only few properties (T, p,m, V,V) can be measured directly, while
many of the quantities that appear in the thermodynamic laws (u, h, s, . . .)
cannot be measured directly.

Experience shows that state properties are not independent, but are related
through property relations, which depend on the substance. By means of
property relations, thermodynamic quantities (u, h, s, . . .) can be determined
indirectly, through measurement of (T, p,m, V,V).

Measurements show that for simple substances it is sufficient to know two
properties to find all others. This implies property relations of the form

p = p (T, v) thermal equation of state
v = v (T, p) thermal equation of state
u = u (T, v) caloric equation of state
h = h (T, p) caloric equation of state
s = s (T, p) entropy

H. Struchtrup, Thermodynamics and Energy Conversion, 103
DOI: 10.1007/978-3-662-43715-5_6, c© Springer-Verlag Berlin Heidelberg 2014
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and so on. The thermal and caloric equations of state, p (T, v) and u (T, v),
must be determined in careful measurements, where the measurement of the
latter relies on the first law. In most cases, the equations of state are not
given as explicit equations, but in form of tables. The best known exception
is the ideal gas law, p = RT/v.

Entropy must be determined from the thermal and caloric equations of
state through integration of the Gibbs equation, which gives a differential
relation between properties, and holds for all simple substances in the form

Tds = du+ pdv , (6.1)

or, with h = u+ pv and thus dh = du+ pdv + vdp, in the alternative form

Tds = dh− vdp . (6.2)

Property relations can be formulated between any set of three properties.
For instance: Considering the entropy as function of temperature and pres-
sure, s (T, p), together with the thermal equation of state, p (T, v), both can
be combined to s (T, p (T, v)) = s (T, v), that is entropy as function of tem-
perature and volume. Inversion of the caloric equation of state u (T, v) for
temperature yields temperature as a function of energy and volume, T (u, v).
Considering the latter in the entropy expression s (T, v) yields entropy as
function of energy and volume, s (u, v). Solving this relation for energy, yields
energy as a function of entropy and volume, u (s, v). And so on. These are
just some examples of variable changes in property relations. A detailed anal-
ysis of property relations, where variable changes are used to identify deeper
relations between properties can be found in Chapter 16, where it will be seen
that the Gibbs equation substantially reduces the measurements necessary
to produce thermodynamic tables.

6.2 Phases

Depending on the conditions, e.g., the values of pressure and temperature,
a substance assumes different phases—solid, liquid, vapor—which can also
coexist. We shall need property relations for all individual phases as well as
for the coexisting states.

Atoms and molecules interact through interatomic potentials φ (r) of the
form depicted in Fig. 6.1. For intermediate particle distances around d, the
particles attract each other, while they repel each other when they are pushed
very close together (r < d). For large distances (r � d), the particles do not
notice each others presence (φ (r) → 0 for r → ∞).

In a solid, the particles sit at fixed locations in the atomic compound, e.g.,
a crystal lattice, and oscillate around the minimum of the potential. The
interatomic forces are strong, and keep the solid together.



6.3 Phase Changes 105

Fig. 6.1 Interparticle potential φ as function of interparticle distance r

When the temperature is increased, the oscillations become stronger, and
the particles have enough energy to split the molecular bonds with their
neighbors, while the attractive forces are still significant. The particles can
move freely, but are densely packed with distances close to d. This is the
liquid state.

At even higher temperatures the particle energies exceed the attractive
potentials which cannot hold the particles together anymore. The particles
move fast at greater average distances. This is the gaseous, or vapor, state.

In solid and liquid states, the particles are in permanent contact and in-
teraction. While gas particles have a large average distance, they neverthe-
less interact through frequent collisions. The interaction between particles
leads to microscopic exchange of energy and momentum which facilitates the
macroscopic transfer of energy and momentum. The constant redistribution
of momentum and energy between particles drives the system towards the
equilibrium state.

6.3 Phase Changes

It is a daily experience that matter changes between phases: ice will melt,
water will boil and evaporate, dew will condense out of moist air, and so on.

We study the evaporation of liquid water at constant pressure p = 1atm,
as depicted in Fig. 6.2. Water is confined in a piston-cylinder system with a
moving piston, the mass of the piston fixes the pressure in the system.

We go through the figure from left to right: At temperatures below 100 ◦C
(and above 0 ◦C) only the liquid phase is found, we speak of compressed liq-
uid. Isobaric heat supply increases the temperature of the compressed liquid.
When the temperature reaches 100 ◦C, the water starts to evaporate. Fur-
ther heat supply does not increase the temperature, which still is 100 ◦C,
but leads to more evaporation. As evaporation occurs, liquid and vapor are
in an equilibrium state where both phases coexist, the saturated state. The
corresponding liquid and vapor states are denoted as saturated liquid and
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kg

kg
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compressed
liquid

saturated
liquid
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vapor

T < 100±C T = 100±C T = 100±C T = 100±C T > 100±C

p =1atm p =1atm

p =1atm

p =1atm

p =1atm

Fig. 6.2 Constant pressure evaporation of water at p = 1 atm

saturated vapor, respectively. Finally, when all liquid is evaporated, further
heat supply increases the temperature of the vapor above 100 ◦C, we speak
of superheated vapor.

When heat is withdrawn, the opposite process happens: the superheated
vapor will cool down until it reaches 100 ◦C, then vapor will start to con-
dense. After all vapor is condensed, the compressed liquid cools to lower
temperatures.

The saturation temperature depends on pressure, we write Tsat (p). The
inversion gives the saturation pressure, denoted as psat (T ). In the example
we have Tsat (1 atm) = 100 ◦C and psat (100

◦C) = 1 atm. Figure 6.3 shows
a sketch of the saturation curve of water in the p-T-diagram. The curve
begins in the triple point (611Pa, 0.01 ◦C) and ends in the critical point
(22.09MPa, 374.14 ◦C).

For temperatures above the critical temperature, and for pressures above
the critical pressure, a saturated liquid-vapor equilibrium is not possible. In
the critical point all properties agree between vapor and liquid, and above
the critical point only one phase exists, one speaks of supercritical fluid.

The triple point gives the lowest temperature/pressure at which a satu-
rated liquid-vapor equilibrium is possible; only at this point all three phases,
solid, liquid and vapor, can coexist.

Apart from the liquid-vapor phase change, i.e., evaporation and conden-
sation, one observes the phase changes between solid and liquid, i.e., melting
and freezing (solidification), and between solid and vapor, i.e., sublimation
and deposition. For each, phase equilibrium is only possible for values of
pressure and temperature T and pressure p on the corresponding saturation
curve, psat (T ).
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0:01±C 100±C 373:95±C

611Pa

1atm

22:1MPa

p

T

Cr

Tr

Fig. 6.3 Liquid-vapor saturation curve for water in the p-T-diagram with data
for triple point (Tr), critical point (Cr), and the boiling point of water at standard
pressure

Figure 6.4 shows the saturation curves for water as ice, liquid, and vapor
in a p-T-diagram. Note the large number of different ice phases, which reflect
different lattice configurations.1 Phase equilibria (coexistence of two phases)
are only possible on those curves which are given by the saturation pressure
psat (T ) for the respective phase equilibrium, or, alternatively, by the satura-
tion temperature Tsat (p) which is the inverse function. All three phases can
coexist in only one point, the triple point. Away from the saturation lines
the substance will be in just one of the phases as indicated in the figure. An
interesting information that can be drawn from the diagram is that no liquid
water exists at temperatures below −23 ◦C.

A particular feature of water is the negative slope of its melting curve
which implies that ice will melt under pressure. This behavior is related to
the volume change: A given amount of ice has a larger volume than the same
amount of liquid water, as can be seen by ice swimming on water. Melting
reduces the volume and thus counteracts the pressure increase. Melting under
pressure might play a role in the flow of glaciers, but does not explain the
slipperiness of ice, see Sec. 17.12.

Sublimation can be observed in winter, where snow evaporates, in par-
ticular on dry sunny days, without melting. An industrial application of

1 Read about Kurt Vonnegut’s fictitious ice-nine in his book Cat’s Cradle. Fortu-
nately, the real ice IX (not included in the diagram) has properties that differ from
those fabled by Vonnegut. Everything you want to know about water (including
full phase diagrams up to ice XV) can be found on Martin Chaplin’s water site
at http://www1.lsbu.ac.uk/water.



108 6 Properties and Property Relations

vapor

liquid
solid

0 100 200 300 400 500 600 700 800

10¡6

10¡4

10¡2

100

102

104

106
pr

es
su

re
 (b

ar
)

temperature (K)

su
bl

im
at

io
n 

cu
rv

e

vaporization curve

m
el

t
e 

in
g 

cu
rv

(ic
e 

I)

(ice VI)
(ice V)

(ice III)

critical point

triple point

Fig. 6.4 Phase diagram of water (after chart from http://www.chemicalogic.com).
Note that the pressure axis is logarithmic.

sublimation is the process of freeze-drying which is used to produce instant
coffee: coffee is frozen at a temperature TC , and then subjected to a pres-
sure pC below the sublimation pressure, pC < psub (TC); this forces direct
evaporation of ice.

Saturation curves for other substances show the same principal charac-
teristics as those for water, in particular the existence of critical and triple
points. However, for almost all other substances the solid has a smaller vol-
ume than the liquid, and the solid-liquid line has a positive slope. Figure
6.5 shows p-T-diagrams with the saturation lines for sublimation, melting
and vaporization, and indication of the solid, liquid, and vapor regions. For
supercritical fluid there is no distinction between liquid and vapor.

Phase changes are related to volume changes. For most substances the
volume of the liquid is larger than that of the solid (see the left Fig. 6.5),
with water being an exception (see the right Fig. 6.5). Other substances that
exhibit expansion on freezing are silicon, gallium and bismuth. Vapor vol-
ume is always larger than liquid volume at the same pressure. The volume
differences do not become apparent in the p-T-diagram, where the saturated
states appear as lines, but in the pressure-volume diagram (p-v-diagram). For
a substance that contracts on freezing, such a diagram is sketched in Fig. 6.6.
Saturated state lines in the diagram are indicated. There are two lines for
saturated liquid, one describes phase equilibrium with saturated vapor, the
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Fig. 6.5 Saturation lines and phases in the p-T-diagram. Left: Ordinary substance,
which expands on melting. Right: Water, which contracts on melting.

other phase equilibrium with saturated solid. In the two-phase regions (solid
+ liquid, liquid + vapor, solid + vapor) one observes mixtures of saturated
states, as discussed in the next section. On the triple line, one observes mix-
tures of all three phases, solid (volume vtrs ), liquid (vtrl ) and vapor (vtrv ) where
all three phases are at triple point pressure and temperature, ptr, Ttr.
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Fig. 6.6 p-v-diagram for an ordinary substance
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We could also plot a T-v-diagram, but instead we show, in Fig. 6.7, the p-
v-T-surface of an ordinary substance (contracts on freezing). The p-T-, p-v-,
and T-v-diagrams are just the appropriate projections of the surface.

Fig. 6.7 p-v-T-surface of an ordinary substance

6.4 p-v- and T-s-Diagrams

An indispensable tool for thermodynamic analysis are plots of processes in
suitable diagrams. The diagrams most often used are the p-v- and the T-s-
diagram. For most processes only liquid and vapor or gas phases are encoun-
tered, and thus one uses diagrams that only show liquid and vapor states,
and the corresponding two-phase region.

Figure 6.8 shows both diagrams including saturation lines and critical point.
Isothermal lines (constant temperature) are sketched in the p-v-diagram, and
isobaric lines (constant pressure) are sketched in the T-s-diagram. Note that
both are horizontal in the two-phase region, where pressure and temperature
are related through the saturation equation p = psat (T ). Obviously, in the
p-v-diagram constant pressure lines are horizontal, and constant volume lines
are vertical; in the T-s-diagram constant temperature lines are horizontal, and
constant entropy lines are vertical.
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Fig. 6.8 p-v-diagram with two-phase region and isothermal lines (left), and T-s-
diagram with two-phase region and isobaric lines (right)

6.5 Saturated Liquid-Vapor Mixtures

For technical applications the most important phase change is that between
liquid and vapor; it is, e.g., employed in steam power plants and vapor re-
frigeration systems. We describe the properties of liquid-vapor mix in detail.
Other phase equilibria, e.g., liquid-solid equilibrium, can be treated along the
same lines.

We consider a mass m of a substance at temperature T and saturation
pressure psat (T ) in liquid-vapor equilibrium. In phase equilibrium, saturated
liquid and vapor can either be separated, with the liquid on the bottom of
the container, or they can be mixed, with the liquid dispersed as droplets in
the vapor, see Fig. 6.9. The mass of substance in the liquid phase is mf , and
the mass of substance in the vapor phase is mg, where mf +mg = m. The use
of the indices f (for fluid) and and g (for gaseous) stems from a time when
the word fluid was synonymous with liquid, while the word today includes
gaseous states as well.

The specific volumes of the saturated liquid and vapor are vf (T ) and
vg (T ), respectively,

2 and thus the total volume of the saturated mixture is

V = mfvf +mgvg . (6.3)

The specific volume of the mixture is obtained by division with the total
mass,

v =
V

m
=

mf

m
vf +

mg

m
vg = (1− x) vf + xvg . (6.4)

Here, we have introduced

2 Normally, specific volume is a function of temperature and pressure, v (T, p). For
saturated states, however, the pressure is the saturation pressure psat (T ) which
is a function of temperature. Therefore the specific volume of a saturated state
is a function only of temperature. The same holds for other specific quantities
(energy, enthalpy, entropy).
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Fig. 6.9 Saturated state in p-v-diagram. The liquid might collect on the container
bottom, or might be dispersed as droplets.

x =
mg

m
=

mg

mf +mg
(6.5)

as the quality of the saturated liquid-vapor mixture, defined as the relative
mass of saturated vapor. Note that

mf

m =
m−mg

m = 1− x.
Other extensive quantities, e.g., internal energy U , enthalpy H , or entropy

S, are computed from the specific properties of the saturated liquid and vapor
states just like volume. The specific energy, enthalpy, entropy of the saturated
liquid are denoted as uf (T ), hf (T ), sf (T ), and those of the saturated vapor
as ug (T ), hg (T ), sg (T ). Total energy, enthalpy, entropy of the mixture are

U = mfuf +mgug ,

H = mfhf +mghg , (6.6)

S = mfsf +mgsg .

The corresponding specific properties, u = U/m etc., are weighted averages,
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v = (1− x) vf + xvg ,

u = (1− x)uf + xug = uf + xufg , (6.7)

h = (1− x)hf + xhg = hf + xhfg ,

s = (1− x) sf + xsg = sf + xsfg .

Here,
ufg = ug − uf , hfg = hg − hf , sfg = sg − sf (6.8)

are the energy of vaporization, the enthalpy of vaporization, and the entropy
of vaporization. For the quality the above implies the identities

x =
mg

mf +mg
=

v − vf
vg − vf

=
u− uf

ufg
=

h− hf

hfg
=

s− sf
sfg

. (6.9)

Property data for saturated states are listed in tables, either ordered by
temperature (“temperature table”, with p = psat (T )) or by pressure (“pres-
sure table”, with T = Tsat (p)). Figure 6.10 shows an excerpt of a temperature
table and Fig. 6.11 shows an excerpt of a pressure table, both for water. Sat-
uration tables for other substances are widely available.

Property data for internal energy and enthalpy is determined from ex-
periments by evaluating the first law, which only allows to determine en-
ergy or enthalpy differences. Therefore, in designing a property table, one
has the freedom to choose the value of a reference energy. For the tables
shown, the internal energy of the saturated liquid at the triple point was
chosen as uf (TTr) = 0. All other energy and enthalpy values refer to this
choice. Entropy is determined from integration of the Gibbs equation, and
one has a choice of an integrating constant, which was chosen here such that,
sf (TTr) = 0. Often, the reference value used in tables is determined from the
third law (Sec. 23.6).

Care has to be taken when one uses data from different tables, since these
might rely on different choices for the energy and entropy references, which
will lead to errors, if not properly corrected.

6.6 Identifying States

Quality can only have values between 0 and 1. If one finds values outside this
range, one either has compressed liquid, or superheated vapor.

A state of given temperature T for which another property (v or u or h or
s) is known, is compressed liquid for

v < vf (T ) or u < uf (T ) or h < hf (T ) or s < sf (T ) ,

and it is superheated vapor if

v > vg (T ) or u > ug (T ) or h > hg (T ) or s > sg (T ) .
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T psat vf vg uf ug hf hfg hg sf sfg sg
deg-C kPa m3/kg m3/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kgK kJ/kgK kJ/kgK

0.01 0.6113 0.001000 206.14 0.00 2375.3 0.00 2501.4 2501.4 0.0000 9.1562 9.1562
10 1.2276 0.001000 106.38 42.00 2389.2 42.01 2477.8 2519.8 0.1510 8.7498 8.9008
20 2.339 0.001002 57.79 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.3706 8.6672
30 4.246 0.001004 32.89 125.78 2416.6 125.79 2430.5 2556.3 0.4369 8.0164 8.4533
40 7.384 0.001008 19.52 167.56 2430.1 167.57 2406.7 2574.3 0.5725 7.6845 8.2570
50 12.35 0.001012 12.03 209.32 2443.5 209.33 2382.8 2592.1 0.7038 7.3725 8.0763
60 19.94 0.001017 7.671 251.11 2456.6 251.13 2358.5 2609.6 0.8312 7.0784 7.9096
70 31.19 0.001023 5.042 292.95 2469.6 292.98 2333.8 2626.8 0.9549 6.8004 7.7553
80 47.39 0.001029 3.407 334.86 2482.2 334.91 2300.4 2635.3 1.0753 6.5369 7.6122
90 70.14 0.001036 2.361 376.85 2494.5 376.92 2283.2 2660.1 1.1925 6.2866 7.4791

MPa
100 0.10135 0.001044 1.6729 418.94 2506.5 419.04 2257.1 2676.1 1.3069 6.0480 7.3549
110 0.14327 0.001052 1.2102 461.14 2518.1 461.30 2230.2 2691.5 1.4185 5.8202 7.2387
120 0.19853 0.001060 0.89190 503.50 2529.3 503.71 2202.6 2706.3 1.5276 5.6020 7.1296
130 0.2701 0.001070 0.66850 546.02 2539.9 546.31 2174.2 2720.5 1.6344 5.3925 7.0269
140 0.3613 0.001080 0.50890 588.74 2550.0 589.13 2144.8 2733.9               1.7391 5.1908 6.9299
150 0.4758 0.001091 0.39280 631.68 2559.5 632.20 2114.3 2746.5 1.8418 4.9961 6.8379
160 0.6178 0.001102 0.30710 674.87 2568.4 675.55 2082.6 2758.1 1.9427 4.8075 6.7502
170 0.7917 0.001114 0.24280 718.33 2576.5 719.21 2049.5 2768.7 2.0419 4.6244 6.6663
180 1.0021 0.001127 0.19405 762.09 2583.7 763.22 2015.0 2778.2 2.1396 4.4461 6.5857
190 1.2544 0.001141 0.15654 806.19 2590.0 807.62 1978.8 2786.4 2.2359 4.2720 6.5079
200 1.5538 0.001157 0.12736 850.65 2595.3 852.45 1940.8 2793.2 2.3309 4.1014 6.4323
210 1.9062 0.001173 0.10441 895.53 2599.5 897.76 1900.7 2798.5 2.4248 3.9337 6.3585
220 2.318 0.001190 0.08619 940.87 2602.4 943.62 1858.5 2802.1 2.5178 3.7683 6.2861
230 2.795 0.001209 0.07158 986.74 2603.9 990.12 1813.9 2804.0 2.6099 3.6047 6.2146
240 3.344 0.001229 0.05976 1033.21 2604.0 1037.32 1766.5 2803.8 2.7015 3.4422 6.1437
250 3.973 0.001251 0.05013 1080.39 2602.4 1085.36 1716.1 2801.5 2.7927 3.2803 6.0730
260 4.688 0.001276 0.04221 1128.39 2599.0 1134.37 1662.5 2796.9 2.8838 3.1181 6.0019
270 5.499 0.001302 0.03564 1177.36 2593.7 1184.51 1605.2 2789.7 2.9751 2.9550 5.9301
280 6.412 0.001332 0.03017 1227.46 2586.1 1235.99 1543.6 2779.6 3.0668 2.7903 5.8571
290 7.436 0.001366 0.02557 1278.92 2576.0 1289.07 1477.1 2766.2 3.1594 2.6227 5.7821
300 8.581 0.001404 0.02167 1332.0 2563.0 1344.0 1405.0 2749.0 3.2534 2.4511 5.7045
310 9.856 0.001447 0.018350 1387.1 2546.4 1401.3 1326.0 2727.3 3.3493 2.2737 5.6230
320 11.27 0.001499 0.015488 1444.6 2525.5 1461.5 1238.6 2700.1 3.4480 2.0882 5.5362
330 12.85 0.001561 0.012996 1505.3 2498.9 1525.3 1140.6 2665.9 3.5507 1.8910 5.4417
340 14.59 0.001638 0.010797 1570.3 2464.6 1594.2 1027.8 2622.0 3.6594 1.6763 5.3357
350 16.51 0.001740 0.008813 1641.9 2418.4 1670.6 893.3 2563.9 3.7777 1.4335 5.2112
360 18.65 0.001893 0.006945 1725.2 2351.5 1760.5 720.5 2481.0 3.9147 1.1379 5.0526
370 21.03 0.002213 0.004925 1844.0 2228.5 1890.5 441.6 2332.1 4.1106 0.6865 4.7971

374.14 22.09 0.003155 0.003155 2029.6 2029.6 2099.3 0.0 2099.3 4.4298 0.0000 4.4298

Liquid-vapor satura�on states of water, temperature table

source: h�p://www.thermofluids.net/

Fig. 6.10 Saturation table for water (temperature table)

A state of given pressure p for which another property (v or u or h or s)
is known, is compressed liquid for

v < vf (p) or u < uf (p) or h < hf (p) or s < sf (p) ,

and it is superheated vapor if

v > vg (p) or u > ug (p) or h > hg (p) or s > sg (p) .

A state of given pressure p and temperature T is compressed liquid for

T < Tsat (p) or p > psat (T ) ,
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p Tsat vf vg uf ug hf hfg hg sf sfg sg
kPa deg-C m3/kg m3/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg kJ/kgK kJ/kgK kJ/kgK

0.6113 0.01 0.001000 206.14 0.00 2375.3 0.00 2501.4 2501.4 0.0000 9.1562 9.1562
1 6.98 0.001000 129.21 29.30 2385.0 29.30 2484.9 2514.2 0.1059 8.8697 8.9756
2 17.50 0.001001 67.00 73.48 2399.5 73.48 2460.0 2533.5 0.2607 8.4630 8.7237
3 24.08 0.001003 45.67 101.04 2408.5 101.05 2444.5 2545.5 0.3545 8.2231 8.5776
5 32.88 0.001005 28.19 137.81 2420.5 137.82 2423.7 2561.5 0.4764 7.9187 8.3951

7.5 40.29 0.001008 19.24 168.78 2430.5 168.79 2406.0 2574.8 0.5764 7.6751 8.2515
10 45.81 0.001010 14.67 191.82 2437.9 191.83 2392.9 2584.7 0.6493 7.5009 8.1502
20 60.06 0.001017 7.649 251.38 2456.7 251.40 2358.3 2609.7 0.8320 7.0765 7.9085
30 69.10 0.001022 5.229 289.20 2468.4 289.23 2336.1 2625.3 0.9439 6.8247 7.7686
50 81.33 0.001030 3.240 340.44 2483.9 340.49 2305.4 2645.9 1.0910 6.5029 7.5939
75 91.78 0.001037 2.217 384.31 2496.7 384.39 2278.6 2663.0 1.2130 6.2434 7.4564

MPa
0.100 99.63 0.001043 1.694 417.36 2506.1 417.46 2258.0 2675.5 1.3026 6.0568 7.3594
0.150 111.37 0.001053 1.1593 466.94 2519.7 467.11 2226.5 2693.6 1.4336 5.7897 7.2233
0.200 120.23 0.001061 0.8857 504.49 2529.5 504.70 2202.0 2706.7 1.5301 5.5970 7.1271
0.250 127.44 0.001067 0.7187 535.10 2537.2 535.37 2181.5 2716.9 1.6072 5.4455 7.0527
0.300 133.55 0.001073 0.6058 561.15 2543.6 561.47 2163.8 2725.3 1.6718 5.3201 6.9919
0.350 138.88 0.001079 0.5243 583.95 2548.9 584.33 2148.1 2732.4 1.7275 5.2130 6.9405
0.400 143.63 0.001084 0.4625 604.31 2553.6 604.74 2133.9 2738.6 1.7766 5.1193 6.8959
0.500 151.86 0.001093 0.3749 639.68 2561.2 640.23 2108.5 2748.7 1.8607 4.9606 6.8213
0.600 158.85 0.001101 0.3157 669.90 2567.4 670.56 2086.2 2756.8 1.9312 4.8288 6.7600
0.700 164.97 0.001108 0.2729 696.44 2572.5 697.22 2066.3 2763.5 1.9922 4.7158 6.7080
0.800 170.43 0.001115 0.2404 720.22 2576.8 721.11 2048.0 2769.1 2.0462 4.6166 6.6628
0.900 175.38 0.001121 0.2150 741.83 2580.5 742.83 2031.1 2773.9 2.0946 4.5280 6.6226

1.0 179.91 0.001127 0.19444 761.68 2583.6 762.81 2015.3 2778.1 2.1387 4.4478 6.5865
1.5 198.32 0.001154 0.13177 843.16 2594.5 844.89 1947.3 2792.2 2.3150 4.1298 6.4448
2.0 212.42 0.001177 0.09963 906.44 2600.3 908.79 1890.7 2799.5 2.4474 3.8935 6.3409
3.0 233.90 0.001217 0.06668 1004.78 2604.1 1008.42 1795.8 2804.2 2.6457 3.5412 6.1869
3.5 242.60 0.001235 0.05707 1045.43 2603.7 1049.75 1753.7 2803.4 2.7253 3.4000 6.1253
4.0 250.40 0.001252 0.04978 1082.31 2602.3 1087.31 1714.1 2801.4 2.7964 3.2737 6.0701
6.0 275.64 0.001319 0.03244 1205.44 2589.7 1213.35 1571.0 2784.3 3.0267 2.8625 5.8892
8.0 295.06 0.001384 0.02352 1305.57 2569.8 1316.64 1441.4 2758.0 3.2068 2.5364 5.7432
10 311.06 0.001452 0.018026 1393.04 2544.4 1407.56 1317.1 2724.7 3.3596 2.2545 5.6141
12 324.75 0.001527 0.014263 1473.0 2513.7 1491.3 1193.6 2684.9 3.4962 1.9962 5.4924
14 336.75 0.001611 0.011485 1548.6 2476.8 1571.1 1066.5 2637.6 3.6232 1.7485 5.3717
16 347.44 0.001711 0.009306 1622.7 2431.7 1650.1 930.5 2580.6 3.7461 1.4994 5.2455
18 357.06 0.001840 0.007489 1698.9 2374.3 1732.0 777.1 2509.1 3.8715 1.2329 5.1044
20 365.81 0.002036 0.005834 1785.6 2293.0 1826.3 583.4 2409.7 4.0139 0.9130 4.9269

22.09 374.14 0.003155 0.003155 2029.6 2029.6 2099.3 0.0 2099.3 4.4298 0.0000 4.4298

source: h�p://www.thermofluids.net/

Liquid-vapor satura�on states of water, pressure table

Fig. 6.11 Saturation table for water (pressure table)

and it is superheated vapor if

T > Tsat (p) or p < psat (T ) .

It is a useful exercise to verify the above conditions by means of p-v-, T-s-,
and p-T-diagrams!

6.7 Example: Condensation of Saturated Steam

As an example we consider the isochoric (constant volume) condensation of
saturated steam from an initial temperature of T1 = 280 ◦C to T2 = 200 ◦C.
In the initial state, the properties are just at the saturation values, which can
be read from Fig. 6.10 as
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p1 = psat (T1) = 64.12 bar , v1 = vg (T1) = 0.03017
m3

kg
,

u1 = ug (T1) = 2586.1
kJ

kg
, h1 = hg (T1) = 2779.6

kJ

kg
,

s1 = sg (T1) = 5.8571
kJ

kgK
.

The values of two properties—two bits of information—are required to fix
a state. In state 1 these are the temperature and the knowledge that the
steam is saturated. For state 2, we know its temperature T2, and its volume,
which is unchanged, v2 = v1. To learn more about the final state, it is best
to draw the process into a p-v-diagram. As shown in Fig. 6.12, the isochoric
process to lower temperature is a vertical line downwards from the saturated
vapor curve, and the final state 2 lies in the two-phase region between the
saturation lines. Hence, this state is a mixture of saturated liquid at volume
vf (T2), and saturated vapor at volume vg (T2), which we find from the table

as vf (T2) = 0.001157 m3

kg and vg (T2) = 0.12736 m3

kg .

p

v

T2

T1 1

2

v2 = v1vf (T2) vg (T2)

Fig. 6.12 Isochoric cooling of saturated vapor between T1 and T2 in the p-v-
diagram. The final state 2 is in the two-phase region (mixture of saturated liquid
and saturated vapor).

Since v2 = v1 = vg (T1), the quality of the final state is

x2 =
v2 − vf (T2)

vg (T2)− vf (T2)
=

0.03017− 0.001157

0.12736− 0.001157
= 0.23 .

With this value for quality we find the properties at the end point as
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p2 = psat (T2) = 15.54 bar ,

v2 = v1 = 0.03017
m3

kg
,

u2 = uf (T2) + x2ufg (T2) = 1251.7
kJ

kg
,

h2 = hf (T2) + x2hfg (T2) = 1298.6
kJ

kg
,

s2 = sf (T2) + x2sfg (T2) = 3.274
kJ

kgK
.

The values for uf (T2) , ufg (T2) etc. are taken from the table. The verification
of the above results is left to the reader.

We recall that quality must have values between 0 and 1. If one computes
a quality outside this range, the corresponding state is not a saturated state,
but either compressed liquid or superheated vapor, for which the property
data must be found in the appropriate tables.

6.8 Superheated Vapor

For superheated vapors the equations of state depend on two properties, and
are normally laid down in extensive tables, or in computer software. Figure
6.13 shows an excerpt of a table with data for water vapor at some pressures
between 10 kPa and 20MPa.

As an example we consider the adiabatic reversible compression of satu-
rated vapor at T1 = 100 ◦C to a pressure p2 = 3MPa. From the second law
for reversible processes, δq = Tds follows that such a process is isentropic
(constant entropy), and thus it is a natural choice to draw the process curve
in a T-s-diagram as depicted in Fig. 6.14. Clearly, the final state 2 is outside
the two phase region, to the right, which means the final state is superheated
vapor. The properties of state 1 can be read from the saturation table in
Fig. 6.10 as

p1 = psat (T1) = 1.014 bar ,

v1 = vg (T1) = 1.673
m3

kg
,

u1 = ug (T1) = 2506.5
kJ

kg
,

h1 = hg (T1) = 2676.1
kJ

kg
,

s1 = sg (T1) = 7.3549
kJ

kgK
.
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deg-C m3/kg kJ/kg kJ/kg kJ/kg K m3/kg kJ/kg kJ/kg kJ/kg K m3/kg kJ/kg kJ/kg kJ/kg K

T v u h s v u h s v u h s
Sat. 14.674 2437.9 2584.7 8.1502 1.694 2506.1 2675.5 7.3594 0.19444 2583.6 2778.1 6.5865

50 14.869 2443.9 2592.6 8.1749
100 17.196 2515.5 2687.5 8.4479 1.696 2506.7 2676.2 7.3614
150 19.512 2587.9 2783.0 8.6882 1.936 2582.8 2776.4 7.6143
200 21.825 2661.3 2879.5 8.9038 2.172 2658.1 2875.3 7.8343 0.2060 2621.9 2827.9 6.6940
250 24.136 2736.0 2977.3 9.1002 2.406 2733.7 2974.3 8.0333 0.2327 2709.9 2942.6 6.9247
300 26.445 2812.1 3076.5 9.2813               2.639 2810.4 3074.3 8.2158 0.2579 2793.2 3051.2 7.1229
400 31.063 2968.9 3279.6 9.6077 3.103 2967.9 3278.2 8.5435 0.3066 2957.3 3263.9 7.4651
500 35.679 3132.3 3489.1 9.8978 3.565 3131.6 3488.1 8.8342 0.3541 3124.4 3478.5 7.7622
600 40.295 3302.5 3705.4 10.1608 4.028 3301.9 3704.4 9.0976 0.4011 3296.8 3697.9 8.0290
700 44.911 3479.6 3928.7 10.4028 4.490 3479.2 3928.2 9.3398 0.4478 3475.3 3923.1 8.2731
800 49.526 3663.8 4159.0 10.6281 4.952 3663.5 4158.6 9.5652 0.4943 3660.4 4154.7 8.4996
900 54.141 3855.0 4396.4 10.8396 5.414 3854.8 4396.1 9.7767 0.5407 3852.2 4392.9 8.7118

1000 58.757 4053.0 4640.6 11.0393 5.875 4052.8 4640.3 9.9764 0.5871 4050.5 4637.6 8.9119
1100 63.372 4257.5 4891.2 11.2287 6.337 4257.3 4891.0 10.1659 0.6335 4255.1 4888.6 9.1017
1200 67.987 4467.9 5147.8 11.4091 6.799 4467.7 5147.6 10.3463 0.6798 4465.6 5145.4 9.2822
1300 72.602 4683.7 5409.7 11.5811 7.260 4683.5 5409.5 10.5183 0.7261 4681.3 5407.4 9.4543

T v u h s v u h s v u h s
Sat. 0.09963 2600.3 2799.5 6.3409 0.06668 2604.1 2804.2 6.1869 0.03944 2597.1 2794.3 5.9734
225 0.10377 2628.3 2835.8 6.4147
250 0.11144 2679.6 2902.5 6.5453 0.07058 2644.0 2855.8 6.2872
300 0.12547 2772.6 3023.5 6.7664 0.08114 2750.1 2993.5 6.5390 0.04532 2698.0 2924.5 6.2084
350 0.13857 2859.8 3137.0 6.9563 0.09053 2843.7 3115.3 6.7428 0.05194 2808.7 3068.4 6.4493
400 0.15120 2945.2 3247.6 7.1271 0.09936 2932.8 3230.9 6.9212 0.05781 2906.6 3195.7 6.6459
500 0.17568 3116.2 3467.6 7.4317 0.11619 3108.0 3456.5 7.2338 0.06857 3091.0 3433.8 6.9759
600 0.19960 3290.9 3690.1 7.7024 0.13243 3285.0 3682.3 7.5085 0.07869 3273.0 3666.5 7.2589
700 0.2232 3470.9 3917.4 7.9487 0.14838 3466.5 3911.7 7.7571 0.08849 3457.6 3900.1 7.5122
800 0.2467 3657.0 4150.3 8.1765 0.16414 3653.5 4145.9 7.9862 0.09811 3646.6 4137.1 7.7440
900 0.2700 3849.3 4389.4 8.3895 0.17980 3846.5 4385.9 8.1999 0.10762 3840.7 4378.8 7.9593

1000 0.2933 4048.0 4634.6 8.5901 0.19541 4045.4 4631.6 8.4009 0.11707 4040.4 4625.7 8.1612
1100 0.3166 4252.7 4885.9 8.7800 0.21098 4250.3 4883.3 8.5912 0.12648 4245.6 4878.0 8.3520
1200 0.3398 4463.3 5142.9 8.9607 0.22652 4460.9 5140.5 8.7720 0.13587 4456.3 5135.7 8.5331
1300 0.3631 4679.0 5405.1 9.1329 0.24206 4676.6 5402.8 8.9442 0.14526 4672.0 5398.2 8.7055

T v u h s v u h s v u h s
Sat. 0.02352 2569.8 2758.0 5.7432 0.013495 2505.1 2673.8 5.4624 0.005834 2293.0 2409.7 4.9269
300 0.02426 2590.9 2785.0 5.7906
350 0.02995 2747.7 2987.3 6.1301 0.016126 2624.6 2826.2 5.7118
400 0.03432 2863.8 3138.3 6.3634 0.02000 2789.3 3039.3 6.0417 0.009942 2619.3 2818.1 5.5540
450 0.03817 2966.7 3272.0 6.5551 0.02299 2912.5 3199.8 6.2719 0.012695 2806.2 3060.1 5.9017
500 0.04175 3064.3 3398.3 6.7240 0.02560 3021.7 3341.8 6.4618 0.014768 2942.9 3238.2 6.1401
550 0.04516 3159.8 3521.0 6.8778 0.02801 3125.0 3475.2 6.6290 0.016555 3062.4 3393.5 6.3348
600 0.04845 3254.4 3642.0 7.0206 0.03029 3225.4 3604.0 6.7810 0.018178 3174.0 3537.6 6.5048
700 0.05481 3443.9 3882.4 7.2812 0.03460 3422.9 3855.3 7.0536 0.02113 3386.4 3809.0 6.7993
800 0.06097 3636.0 4123.8 7.5173 0.03869 3620.0 4103.6 7.2965 0.02385 3592.7 4069.7 7.0544
900 0.06702 3832.1 4368.3 7.7351 0.04267 3819.1 4352.5 7.5182 0.02645 3797.5 4326.4 7.2830

1000  0.07301 4032.8 4616.9 7.9384 0.04658 4021.6 4603.8 7.7237 0.02897 4003.1 4582.5 7.4925
1100 0.07896 4238.6 4870.3 8.1300 0.05045 4228.2 4858.8 7.9165 0.03145 4211.3 4840.2 7.6874
1200 0.08489 4449.5 5128.5 8.3115 0.05430 4439.3 5118.0 8.0937 0.03391 4422.8 5101.0 7.8707
1300 0.09080 4665.0 5391.5 8.4842 0.05813 4654.8 5381.4 8.2717 0.03636 4638.0 5365.1 8.0442

source: h�p://www.thermofluids.net/

p = 1.00MPa (179.91 C)°

p = 20.0MPa (365.81 °C)

p = 5.0MPa (263.99 C)°

p = 12.5MPa (327.89 C)°p = 8.0 MPa (295.06 C)°

p = 2.00MPa (212.42 C)°

superheated water vapor

p = 0.01MPa (45.81 C)° p = 0.10MPa (99.63 C)°

p = 3.00MPa (233.90 C)°

Fig. 6.13 Excerpt from a property table for superheated water vapor for a variety
of pressures. The temperature in brackets is the saturation temperature.
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T

s

1

2

p1

p2

Fig. 6.14 Isentropic compression of saturated vapor from p1 to p2 in the T-s -
diagram

Two bits of information are required to identify state 2, and here these are
its pressure, p2, and its entropy, since the process is isentropic, s2 = s1 =
7.3549 kJ

kgK . In the table for superheated water vapor, Fig. 6.13, we have to
consider the center box which refers to the pressure 3MPa. The required
value for entropy cannot be found in the table, but lies between values given.
The values closest above and below the required value of s2 = 7.3549 kJ

kg K in
the table are

sa = s (p2 = 3MPa, Ta = 500 ◦C) = 7.2338
kJ

kgK
,

sb = s (p2 = 3MPa, Tb = 600 ◦C) = 7.5085
kJ

kgK
.

Figure 6.15 shows a sketch of the function s (p2, T ) in a diagram, with the
tabled data points sa, sb and the target point s2 indicated. Assuming that
the line a − 2 − b can be well approximated by a straight line, we find the
target temperature T2 by linear interpolation as

T2 = Ta +
s2 − sa
sb − sa

(Tb − Ta) = 543.1 ◦C .

Correspondingly, the values for volume, internal energy, and enthalpy are
computed by interpolation as

v2 = va +
s2 − sa
sb − sa

(vb − va) = 0.12337
m3

kg
,

u2 = ua +
s2 − sa
sb − sa

(ub − ua) = 3186.0
kJ

kg
,

h2 = ha +
s2 − sa
sb − sa

(hb − ha) = 3556.0
kJ

kg
.



120 6 Properties and Property Relations

T

s

T2 ¡ Ta
Tb¡ Ta =

s2 ¡ sa
sb¡ sa

T2

s2

sa

sb

Ta Tb

s( T,p2 )

Fig. 6.15 Linear interpolation

Here, va = v (p2, Ta), ua = u (p2, Ta) etc. are the appropriate data values
from the table.

Since the process is adiabatic, we have q12 = 0 and the work per unit mass
can be computed from the first law as w12 = u1 − u2 + q12 = −679.5 kJ

kg .
Thermodynamic properties are often listed in tables as discrete values, and

interpolation must be frequently used. Typically, tabulated values are spaced
such that the assumption of linearity is valid in good approximation.

6.9 Compressed Liquid

For compressed liquid, i.e., the pure liquid state, only few tables are available,
Fig. 6.16 shows a table for compressed liquid water.

Most liquids, including water, are almost incompressible for a wider range
of pressures, and this allows us to develop useful approximations that relate
compressed liquid properties to those of saturated liquid.

For incompressible fluids a change of pressure does not lead to a change
of volume, so that the volume can be approximated by the volume of the
saturated liquid,

v (T, p) � v (T ) � vf (T ) , (6.10)

that is the volume is independent of pressure, but not of temperature. Incom-
pressibility refers to changes at constant temperature, while thermal expan-
sion or contraction are allowed. With this approximation, isothermal lines for
the compressed liquid in the p-v-diagram are vertical lines upwards from the
saturated liquid line.

Internal energy seen as a function of temperature and volume can then be
reduced to its saturated liquid value as well:

u (T, v) � u (T, vf (T )) = uf (T ) . (6.11)
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Compressed LiquidWater (H2O) Table

deg-C m3/kg kJ/kg kJ/kg kJ/kg K m3/kg kJ/kg kJ/kg kJ/kg K m3/kg kJ/kg kJ/kg kJ/kg K

T v u h s v u h s v u h s
sat. 0.0012859 1147.8 1154.2 2.9202 0.0014524 1393.0 1407.6 3.3596 0.0016581 1585.6 1610.5 3.6848

0 0.0009977 0.0 5.0 0.0001 0.0009952 0.1 10.0 0.0002 0.0009928 0.2 15.1 0.0004
20 0.0009995 83.7 88.7 0.2956 0.0009972 83.4 93.3 0.2945 0.0009950 83.1 98.0 0.2934
40 0.0010056 167.0 172.0 0.5705 0.0010034 166.4 176.4 0.5686 0.0010013 165.8 180.8 0.5666
60 0.0010149 250.2 255.3 0.8285 0.0010127 249.4 259.5 0.8258 0.0010105 248.5 263.7 0.8232
80 0.0010268 333.7 338.9 1.0720 0.0010245 332.6 342.8 1.0688 0.0010222 331.5 346.8 1.0656

100 0.0010410 417.5 422.7 1.3030 0.0010385 416.1 426.5 1.2992 0.0010361 414.7 430.3 1.2955
120 0.0010576 501.8 507.1 1.5233 0.0010549 500.1 510.6 1.5189 0.0010522 498.4 514.2 1.5145
140 0.0010768 586.8 592.2 1.7343 0.0010737 584.7 595.4 1.7292 0.0010707 582.7 598.7 1.7242
160 0.0010988 672.6 678.1 1.9375 0.0010953 670.1 681.1 1.9317 0.0010918 667.7 684.1 1.9260
180 0.0011240 759.6 765.3 2.1341 0.0011199 756.7 767.8 2.1275 0.0011159 753.8 770.5 2.1210
200 0.0011530 848.1 853.9 2.3255 0.0011480 844.5 856.0 2.3178 0.0011433 841.0 858.2 2.3104
220 0.0011866 938.4 944.4 2.5128 0.0011805 934.1 945.9 2.5039 0.0011748 929.9 947.5 2.4953
240 0.0012264 1031.4 1037.5 2.6979 0.0012187 1026.0 1038.1 2.6872 0.0012114 1020.8 1039.0 2.6771
260 0.0012749 1127.9 1134.3 2.8830 0.0012645 1121.1 1133.7 2.8699 0.0012550 1114.6 1133.4 2.8576
280 0.0013216 1220.9 1234.1 3.0548 0.0013084 1212.5 1232.1 3.0393
300 0.0013972 1328.4 1342.3 3.2469 0.0013770 1316.6 1337.3 3.2260
320 0.0014724 1431.1 1453.2 3.4247
340 0.0016311 1567.5 1591.9 3.6546

T v u h s v u h s v u h s
sat. 0.0020360 1785.6 1826.3 4.0139

0 0.0009904 0.2 20.0 0.0004 0.0009856 0.3 29.8 0.0001 0.0009766 0.2 49.0 0.0014
20 0.0009928 82.8 102.6 0.2923 0.0009886 82.2 111.8 0.2899 0.0009804 81.0 130.0 0.2848
40 0.0009992 165.2 185.2 0.5646 0.0009951 164.0 193.9 0.5607 0.0009872 161.9 211.2 0.5527
60 0.0010084 247.7 267.9 0.8206 0.0010042 246.1 276.2 0.8154 0.0009962 243.0 292.8 0.8052
80 0.0010199 330.4 350.8 1.0624 0.0010156 328.3 358.8 1.0561 0.0010073 324.3 374.7 1.0440

100 0.0010337 413.4 434.1 1.2917 0.0010290 410.8 441.7 1.2844 0.0010201 405.9 456.9 1.2703
120 0.0010496 496.8 517.8 1.5102 0.0010445 493.6 524.9 1.5018 0.0010348 487.7 539.4 1.4857
140 0.0010678 580.7 602.0 1.7193 0.0010621 576.9 608.8 1.7098 0.0010515 569.8 622.4 1.6915
160 0.0010885 665.4 687.1 1.9204 0.0010821 660.8 693.3 1.9096 0.0010703 652.4 705.9 1.8891
180 0.0011120 751.0 773.2 2.1147 0.0011047 745.6 778.7 2.1024 0.0010912 735.7 790.3 2.0794
200 0.0011388 837.7 860.5 2.3031 0.0011302 831.4 865.3 2.2893 0.0011146 819.7 875.5 2.2634
220 0.0011695 925.9 949.3 2.4870 0.0011590 918.3 953.1 2.4711 0.0011408 904.7 961.7 2.4419
240 0.0012046 1016.0 1040.0 2.6674 0.0011920 1006.9 1042.6 2.649 0.0011702 990.7 1049.2 2.6158
260 0.0012462 1108.6 1133.5 2.8459 0.0012303 1097.4 1134.3 2.8243 0.0012034 1078.1 1138.2 2.7860
280 0.0012965 1204.7 1230.6 3.0248 0.0012755 1190.7 1229.0 2.9986 0.0012415 1167.2 1229.3 2.9537
300 0.0013596 1306.1 1333.3 3.2071 0.0013307 1287.9 1327.8 3.1741 0.0012860 1258.7 1323.0 3.1200
320 0.0014437 1415.7 1444.6 3.3979 0.0013997 1390.7 1432.7 3.3539 0.0013388 1353.3 1420.2 3.2868
340 0.0015684 1539.7 1571.0 3.6075 0.0014920 1501.7 1546.5 3.5426 0.0014032 1452.0 1522.1 3.4557
360 0.0018226 1702.8 1739.3 3.8772 0.0016265 1626.6 1675.4 3.7494 0.0014838 1556.0 1630.2 3.6291
380 0.0018691 1781.4 1837.5 4.0012 0.0015884 1667.2 1746.6 3.8101

source: h�p://www.thermofluids.net/

p = 15MPa (342.24 C)p =10MPa (311.06 C)p = 5MPa (263.99 C)

p = 50MPap = 30Mpap = 20MPa (365.81 C)

Fig. 6.16 Excerpt from a property table for compressed liquid water for a variety
of pressures. The temperature in brackets is the saturation temperature.

For consistency, enthalpy needs to be treated differently. Due to the def-
inition h = u + pv, the above approximations give in a first step h (T, p) =
uf (T ) + pvf (T ). For the saturated liquid at the same temperature we have
hf (T ) = uf (T ) + psat (T ) vf (T ). Combining both by eliminating uf (T ), we
find the approximation for the enthalpy of compressed liquid as

h (T, p) � hf (T ) + (p− psat (T )) vf (T ) . (6.12)
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For small enough pressures, the correction term for enthalpy can be ignored,
so that h (T, p) � hf (T ).

Finally, entropy can be treated similar to internal energy,

s (T, v) � s (T, vf (T )) = sf (T ) . (6.13)

With this approximation, isobaric lines for the compressed liquid in the T-s-
diagram lie on the saturated liquid line.

As an example, we consider compressed liquid water at p = 10MPa and
T = 200 ◦C, for which the table in Fig. 6.16 gives

v (T, p) = v (200 ◦C, 10MPa) = 0.001148
m3

kg
,

u (T, p) = u (200 ◦C, 10MPa) = 844.5
kJ

kg
,

h (T, p) = h (200 ◦C, 10MPa) = 856.0
kJ

kg
,

s (T, p) = s (200 ◦C, 10MPa) = 2.3178
kJ

kgK
.

With the above approximations, we find the corresponding values from the
saturation table in Fig. 6.10 as

v (T, p) � vf (T ) = vf (200
◦C) = 0.001157

m3

kg
,

u (T, v) � uf (T ) = uf (200
◦C) = 850.65

kJ

kg
,

h (T, p) � hf (T ) = hf (200
◦C) = 852.45

kJ

kg
,

h (T, p) � hf (T ) + (p− psat (T )) vf (T ) = 862.2
kJ

kg
,

s (T, v) � sf (T ) = sf (200
◦C) = 2.3309

kJ

kgK
.

For this particular example, the approximations yield relative errors below
1%, and even smaller at lower pressures. For higher pressures, however, the
relative errors are larger, since compressibility affects all property values,
hence these approximations should be used with care. Whenever a full table
for compressed liquid states is available, that table should be used. If a table
for the liquid states is not available, as is often the case for relatively low
pressures, the approximations are quite useful.
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6.10 The Ideal Gas

When the temperature of a vapor is sufficiently above the critical temperature
or when the pressure is sufficiently below the critical pressure, it will obey
the ideal gas law

pv = RT , (6.14)

where R = R̄/M is the gas constant. We have discussed ideal gases already
in Sec. 2.15, and used the ideal gas law and the caloric equation of state in
examples. We repeat some of the property relations and add new ones.

Experiments and theoretical considerations (see Sec. 16.3) show that for
ideal gases internal energy u and enthalpy h = u + pv = u + RT depend
on temperature only. Therefore, also their derivatives, the specific heats at
constant volume, cv, and at constant pressure, cp, defined in (3.15, 3.22),
depend only on temperature,

cv =

(
∂u

∂T

)

v

=
du

dT
= cv (T ) , (6.15)

cp =

(
∂h

∂T

)

p

=
dh

dT
= cp (T ) .

Since h = u+RT , it follows

cp = cv +R . (6.16)

Integration of the specific heats gives energy and enthalpy,

u (T ) =

∫ T

T0

cv (T
′) dT ′ + u0 , (6.17)

h (T ) =

∫ T

T0

cp (T
′) dT ′ + h0 ,

with reference energy u0 and, for consistency, reference enthalpy h0 = u0 +
RT0.

The entropy of an ideal gas is determined from integration of the Gibbs
equation (6.2). With dh = cpdT and the ideal gas law, the Gibbs equation
assumes the form

ds =
cp
T
dT − v

T
dp =

cp
T
dT − R

p
dp . (6.18)

The entropy for the state (T, p) follows by integration between (T, p) and
(T0, p0) as

s (T, p) = s0 (T )−R ln
p

p0
, (6.19)

where we introduced the abbreviation
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s0 (T ) =

∫ T

T0

cp (T
′)

T ′ dT ′ + s (T0, p0) . (6.20)

The constant of integration is chosen such that s0 (T ) is the ideal gas entropy
at reference pressure p0 = 1bar. The value of the reference entropy s (T0, p0)
can be obtained from the third law, which will be discussed later (Sec. 23.6).
As long as non-reacting mixtures are considered, its value is unimportant,
since it cancels in all calculations. Indeed, only entropy differences are rele-
vant, for which we find

s (T2, p2)− s (T1, p1) = s0 (T2)− s0 (T1)−R ln
p2
p1

. (6.21)

When one is not interested in entropy as a function of T and p, but as a
function of T and v, the ideal gas law can be used to eliminate pressure,

s (T2, v2)− s (T1, v1) = s0 (T2)− s0 (T1)−R ln
T2v1
T1v2

. (6.22)

In summary, energy and enthalpy of the ideal gas depend only on temper-
ature, and its entropy depends explicitly on pressure (6.21) or volume (6.22),
and on temperature through the function s0 (T ). The temperature dependent
quantities u (T ) , h (T ) , s0 (T ) are tabulated.3

As an example we consider a property table for air. The molar specific
heat of air can be approximated by the Shomate equation

c̄p = a0 + a1T + a2T
2 + a3T

3 +
a4
T 2

, (6.23)

with (for T ≤ 1000K)

a0 = 30.0051
kJ

kmolK
, a1 = −8.86766× 10−3 kJ

kmolK2 ,

a2 = 2.21273× 10−5 kJ

kmolK3 , a3 = −1.02450× 10−8 kJ

kmolK4 ,

a4 = 838.737
kJK

kmol
. (6.24)

The mass based specific heats are cp = c̄p/M and cv = cp−R. Internal energy
u, enthalpy h and entropy function s0 (T ) follow from integration using the
formulas above. Figure 6.17 shows the resulting table.

Tables for other gases are widely available, or can be easily produced from
the Shomate equation with the appropriate data for the coefficients, which
can be found, e.g., from NIST (http://webbook.nist.gov/).

3 Some tables list molar quantities ū = uM , h̄ = hM , s̄0 = s0M .
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Property table for AIR as ideal gas 

T
cv 

[kJ/kg] 
cp

[kJ/kg] 
u

[kJ/kg] 
h

[kJ/kg] 
s0

[kJ/kgK] Pr Vr

220 0.715 1.002 157.68 220.81 6.826 0.346 636.0
230 0.715 1.002 164.83 230.83 6.870 0.404 569.3
240 0.715 1.002 171.98 240.85 6.913 0.469 512.1
250 0.715 1.002 179.13 250.87 6.954 0.540 462.5
260 0.715 1.002 186.28 260.89 6.993 0.620 419.5
270 0.715 1.002 193.43 270.91 7.031 0.707 381.8
273 0.715 1.002 195.57 273.92 7.042 0.735 371.5
280 0.716 1.003 200.58 280.94 7.067 0.803 348.7
290 0.716 1.003 207.74 290.96 7.103 0.908 319.5

298.15 0.716 1.003 213.57 299.14 7.130 1.000 298.2
300 0.716 1.003 214.90 300.99 7.137 1.022 293.6
310 0.717 1.004 222.07 311.03 7.169 1.146 270.5
320 0.718 1.005 229.24 321.08 7.201 1.281 249.9
330 0.718 1.005 236.42 331.13 7.232 1.426 231.4
340 0.719 1.006 243.61 341.18 7.262 1.584 214.7
350 0.720 1.007 250.81 351.25 7.291 1.753 199.6
360 0.721 1.008 258.01 361.33 7.320 1.935 186.0
370 0.722 1.009 265.23 371.42 7.347 2.131 173.6
380 0.724 1.011 272.46 381.52 7.374 2.341 162.3
390 0.725 1.012 279.70 391.63 7.401 2.565 152.0
400 0.726 1.013 286.96 401.75 7.426 2.805 142.6
410 0.727 1.014 294.22 411.89 7.451 3.060 134.0
420 0.729 1.016 301.51 422.04 7.476 3.333 126.0
430 0.730 1.017 308.80 432.21 7.500 3.622 118.7
440 0.732 1.019 316.11 442.39 7.523 3.930 112.0
450 0.734 1.021 323.44 452.59 7.546 4.257 105.71
460 0.735 1.022 330.79 462.80 7.569 4.603 99.93
470 0.737 1.024 338.15 473.03 7.591 4.970 94.56
480 0.739 1.026 345.53 483.28 7.612 5.358 89.58
490 0.741 1.028 352.92 493.55 7.633 5.769 84.94
500 0.743 1.030 360.34 503.83 7.654 6.202 80.62
510 0.744 1.031 367.77 514.14 7.674 6.659 76.59
520 0.746 1.033 375.23 524.46 7.694 7.141 72.82
530 0.749 1.036 382.70 534.81 7.714 7.648 69.30
540 0.751 1.038 390.20 545.17 7.734 8.182 66.00
550 0.753 1.040 397.72 555.56 7.753 8.744 62.90
560 0.755 1.042 405.25 565.97 7.771 9.33 59.99
570 0.757 1.044 412.81 576.40 7.790 9.95 57.26

T
cv 

[kJ/kg] 
cp

[kJ/kg] 
u

[kJ/kg] 
h

[kJ/kg] 
s0

[kJ/kgK] Pr Vr

580 0.759 1.046 420.39 586.85 7.808 10.61 54.69
590 0.761 1.048 428.00 597.32 7.826 11.29 52.27
600 0.764 1.051 435.62 607.82 7.844 12.00 49.98
610 0.766 1.053 443.27 618.34 7.861 12.75 47.83
620 0.768 1.055 450.95 628.88 7.878 13.54 45.80
630 0.771 1.058 458.64 639.44 7.895 14.36 43.87
640 0.773 1.060 466.36 650.03 7.912 15.22 42.05
650 0.775 1.062 474.10 660.64 7.928 16.12 40.33
660 0.778 1.065 481.87 671.28 7.944 17.06 38.70
670 0.780 1.067 489.66 681.94 7.960 18.04 37.15
680 0.783 1.070 497.47 692.62 7.976 19.06 35.68
690 0.785 1.072 505.31 703.33 7.992 20.12 34.29
700 0.787 1.074 513.17 714.06 8.007 21.24 32.96
710 0.790 1.077 521.06 724.82 8.023 22.40 31.70
720 0.792 1.079 528.97 735.60 8.038 23.61 30.50
730 0.795 1.082 536.91 746.41 8.053 24.86 29.36
740 0.797 1.084 544.87 757.24 8.067 26.17 28.27
750 0.800 1.087 552.85 768.09 8.082 27.54 27.24
760 0.802 1.089 560.86 778.97 8.096 28.95 26.25
770 0.805 1.091 568.90 789.87 8.111 30.43 25.31
780 0.807 1.094 576.95 800.80 8.125 31.96 24.40
790 0.809 1.096 585.03 811.75 8.139 33.55 23.54
800 0.812 1.099 593.14 822.73 8.152 35.21 22.72
810 0.814 1.101 601.27 833.73 8.166 36.92 21.94
820 0.816 1.103 609.42 844.75 8.180 38.70 21.19
830 0.819 1.106 617.59 855.79 8.193 40.55 20.47
840 0.821 1.108 625.79 866.86 8.206 42.47 19.78
850 0.823 1.110 634.01 877.95 8.219 44.46 19.12
860 0.826 1.112 642.26 889.07 8.232 46.52 18.49
870 0.828 1.115 650.52 900.20 8.245 48.65 17.88
880 0.830 1.117 658.81 911.36 8.258 50.86 17.30
890 0.832 1.119 667.12 922.54 8.271 53.15 16.74
900 0.834 1.121 675.45 933.74 8.283 55.52 16.21
910 0.836 1.123 683.81 944.96 8.295 57.97 15.70
920 0.838 1.125 692.18 956.21 8.308 60.51 15.20
930 0.840 1.127 700.57 967.47 8.320 63.13 14.73
940 0.842 1.129 708.98 978.75 8.332 65.84 14.28
950 0.844 1.131 717.41 990.05 8.344 68.64 13.84

Fig. 6.17 Property data for air: specific heats cv (T ) and cp (T ), internal energy
u (T ), enthaply h (T ) and entropy function s0 (T ) as functions of temperature

6.11 Monatomic Gases (Noble Gases)

For monatomic gases, i.e., the noble gases helium (He), neon (Ne), argon
(Ar), krypton (Kr), xenon (Xe), and radon (Rn), the specific heats are true
constants with the values

cv =
3

2
R , cp = cv +R =

5

2
R (6.25)

and the caloric equation of state follows from straightforward integration as

u (T ) = cv (T − T0) + u0 , (6.26)

h (T ) = cp (T − T0) + h0 .

With cp = const, the integration in (6.20) can be performed easily, and
the entropy becomes

s (T, p) = cp ln
T

T0
−R ln

p

p0
+ s0 . (6.27)

Since the resulting expressions for the thermodynamic quantities of
monatomic gases are rather simple, these are typically not tabulated.
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6.12 Specific Heats and Cold Gas Approximation

The value of the specific heat is related to the degrees of freedom of a
molecule. Specifically, each degree of freedom contributes 1

2R to the specific
heat at constant volume (equipartition of energy). The atoms of monatomic
gases are essentially spheres that can translate in three directions (up/down,
right/left, forward/backward); accordingly, the specific heat of monatomic
gases is cv = 3× 1

2R.
For diatomic gases like oxygen (O2), nitrogen (N2), hydrogen (H2), the

molecules are shaped like dumb-bells. At low temperatures these have, in
addition to their three translational degrees of freedom, two rotational de-
grees of freedom for the rotation about two principal axes—there is no rota-
tion around the longitudinal axis. More complex molecules like carbondioxid
(CO2) and water (H2O) have three translational and three rotational degrees
of freedom. Moreover, the molecules can oscillate, the more complicated a
molecule is, the more oscillating modes are observed.

At sufficiently low temperatures only translational and rotational modes
are excited. With each mode contributing 1

2R to the specific heat, we have
at low T for a diatomic gas cv = 5

2R, cp = 7
2R, and for a polyatomic gas

cv = 3R, cp = 4R. Oscillatory modes obey quantum mechanical laws; they are
not excited at low temperatures and contribute in a temperature dependent
manner for higher temperatures. Figure 6.18 shows the molar specific heat
c̄p = Mcp for a variety of ideal gases. Note the temperature independent value
c̄p = 5

2 R̄ = 20.8 kJ
kgK for monatomic gases, and the common low temperature

value of c̄p = 7
2 R̄ = 29.1 kJ

kg K for diatomic gases.

Air, as a mixture of roughly 78% N2, 21% O2 and 1% Ar, behaves
essentially like a diatomic gas, with the low temperature specific heats
cairv = 5

2Rair, c
air
p = 7

2Rair . As air temperatures rises, so do the specific
heats.

To simplify computations, one frequently assumes constant specific heats.
To not deviate too much from the actual states, one should use suitable
average values cavgv , cavgp for the temperature interval under consideration, or,
alternatively, the values at room temperature. In the latter case one speaks
of the cold-gas-approximation, or, for air, cold-air-approximation. Internal
energy, enthalpy and entropy are

u (T ) = cavgv (T − T0) + u0 ,

h (T ) = cavgp (T − T0) + h0 , (6.28)

s (T, p) = cavgp ln
T2

T0
−R ln

p2
p0

+ s0 .

The cold-gas-approximation, where one uses cavgv = cv (T0), works best for
relatively low temperatures (e.g., T < 600K for air), but is highly useful
to understand the basic behavior of thermodynamic systems. Constant spe-
cific heats allow analytical calculations that give, e.g., explicit expressions for
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Fig. 6.18 Molar specific heat at constant pressure c̄p = Mcp for various ideal gases
as function of temperature. Note that specific heat of monatomic gases (noble gases)
is constant. Based on specific heat data from NIST.

efficiencies that help to further the understanding. Exact engineering calcu-
lations must use variable specific heats, of course, and tabulated data must
be used, unless the gas is monatomic and the specific heat independent of
temperature!

6.13 Real Gases

Gases (or vapors) at relatively high pressures or relatively low temperatures
do not obey the ideal gas law. To understand why that is the case, it is
helpful to know a little bit about the derivation of the ideal gas law with the
tools of Statistical Thermodynamics, which relies on two assumptions: (a)
Gas particles are mass points, that is their volume can be ignored. (b) There
are no long-distance forces between the particles, they only interact in short
collisions, and travel most distance between collisions in free flight.

J. D. van der Waals (1837-1923) derived an equation that modifies the
ideal gas equation to address both points. The van der Waals equation reads

p =
RT

v − b
− a

v2
. (6.29)
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The constant b accounts for the volume of the particles, where v − b is the
volume accessible to an individual particle. The constant a accounts for long-
range attractive forces between the particles, which reduce the pressure. The
constants a, b can be obtained from fitting to critical point data. For large
values of the specific volume v the equation reduces to the ideal gas law. A
deeper discussion of the van der Waals equation can be found in Sec. 16.8,
where it will be seen that the equation gives a good qualitative description
of real gas effects and liquid-vapor phase change. However, its quantitative
agreement with gas behavior is not so good. Therefore, the equation is mainly
used as an educational example, but not for simulation of real processes.

Since explicit equations for real gas behavior are useful for simulations
and calculations, there exist a wide variety of real gas equations, which
can be found in the technical literature (Redlich-Kwong equation, Beattie-
Bridgeman equation, virial expansions, etc.).

6.14 Fully Incompressible Solids and Liquids

Also for solids the specific heats depend in general on temperature and volume
(or any other pair of properties), and must be collected in tables. Quite often
it is possible to treat the solids to be fully incompressible (no change of
volume, v = const), and to assume constant specific heat. Then, internal
energy, enthalpy and entropy are

u (T ) = c (T − T0) + u0 ,

h (T, p) = c (T − T0) + v (p− p0) + h0 , (6.30)

s (T ) = c ln
T

T0
+ s0 .

As always, u0, h0 and s0 are suitable reference values. Due to incompressibil-
ity, the specific heats at constant volume and constant pressure agree, as the
following line of equations shows:

cp =

(
∂h

∂T

)

p

=

(
∂(u+ pv)

∂T

)

p

=

(
∂u

∂T

)

+

(

v
∂p

∂T

)

p

=

(
∂u

∂T

)

= cv . (6.31)

The same approximations can be used for fully incompressible liquids.

Problems

6.1. Property Diagrams and Data (Water)
Draw schematic p-T, p-v, T-v and T-s-diagrams for water, and mark the
following points in the diagrams.
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CR) critical point TR) triple point

1) p = 1bar, v = 0.85 m3

kg 2) p = 1bar, h = 3400 kJ
kg

3) p = 20MPa, v = 0.0012 m3

kg 4) h = 2700 kJ
kg , x = 1

5) p = 20MPa, u = 3100 kJ
kg 6) s = 3 kJ

kg K , T = 255 ◦C
Also, determine temperature, quality, specific internal energy, specific en-

thalpy, and specific volume for each point, and say whether you have com-
pressed liquid, saturated state, or superheated vapor.

6.2. Property Diagrams and Data (R134a)
Consider cooling fluid R134a. Based on the posted tables, determine temper-
ature, pressure, quality, specific internal energy, specific enthalpy, and specific
volume for each point, and say whether you have compressed liquid, saturated
state, or superheated vapor. Put all values in a table.

1. T = −4 ◦C, h = 178.2 kJ
kg , 2. T = −24 ◦C, p = 0.2MPa ,

3. T = 20 ◦C, s = 0.9883 kJ
kgK

6.3. Boiling Temperature
Water in a 5 cm deep pan is observed to boil at 98 ◦C. At what temperature
will the water in a 50 cm deep pan boil? Assume both pans are filled to the
rim.

6.4. Food Preservation
To preserve fruit or vegetables (canning), the food is cooked in a jar which
is covered by a lid, resting on a rubber seal. As water is evaporated during
cooking, vapor escapes and carries air out. After a while, only food, liquid
water and vapor are left in the jar. Then cooking stops, and as the jar cools,
the pressure in the jar drops, tightly sealing the jar. Consider a jar of 20 cm
diameter at 15 ◦C, and determine the force necessary to pull of the lid.

6.5. Cooling of Steam
2 kg of superheated steam at 2 bar, 300 ◦C (state 1) are isobarically cooled
to the saturated vapor state (state 2). Then, the volume of the container is
fixed and the steam is cooled further until the temperature is 20 ◦C (state 3).

1. Draw the process into a p-v-diagram with respect to saturations lines.
Mark the critical point.

2. Compute heat and work exchanged for the processes 1-2 and 2-3.

6.6. Isentropic Expansion of R-134a Vapor
Refrigerant R-134a at 1.2MPa, 50 ◦C (state 1) enclosed in a piston-cylinder
device expands in an adiabatic reversible (i.e., isentropic) process to 100 kPa
(state 2). Determine specific volume, internal energy, enthalpy, entropy at
both points. Compute heat and work exchanged between refrigerant and
surroundings.
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6.7. Evaporation of Water
3 kg of saturated liquid water at 70 ◦C (state 1) are isobarically heated until

the volume reaches 0.921 m3

kg (state 2). Then, the volume of the container is

fixed and the heating continues until all liquid is just evaporated (state 3).

1. Draw the process into a p-v-diagram with respect to saturation lines. Mark
the critical point.

2. Compute heat and work exchanged for the processes 1-2, and 2-3.

6.8. Condensation of R134a
500 g of cooling fluid R134a are enclosed in a piston cylinder system at 3.2 bar,
25 ◦C. The system is isobarically cooled until the cooling fluid assumes a
temperature of −8 ◦C.

1. Draw the process into p-v- and T-s-diagram with respect to saturation
lines.

2. Determine heat and work exchanged.
3. Determine the change of entropy.



Chapter 7

Reversible Processes in Closed
Systems

7.1 Standard Processes

In Chapter 8 we shall study thermodynamic cycles in closed systems which
model thermal engines, including internal combustion engines. The focus will
lie on the understanding of the working principles of the cycles, and on the
main parameters that determine their efficiency. For this it is customary to
base the analysis on reversible processes, which allow a full analysis.

There are a number of processes that are often realized (at least approx-
imately) in thermodynamic systems: processes at constant volume, constant
pressure, constant temperature, or adiabatic processes. Typical thermody-
namic cycles consist of closed chains of several of these processes. In this
chapter we compute work and heat for these standard processes as a refer-
ence for the discussion of cycles.

7.2 Basic Equations

Figure 7.1 shows, again, a piston-cylinder device as the prototypical closed
system. In reversible (quasi-static) processes, the system exchanges energy

Ẇ

Q̇

T, p, V

Fig. 7.1 Closed system with piston work and heat exchange. In this chapter we
are interested in reversible processes only, so there is not stirring.

H. Struchtrup, Thermodynamics and Energy Conversion, 131
DOI: 10.1007/978-3-662-43715-5_7, c© Springer-Verlag Berlin Heidelberg 2014
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through heating and piston work only; stirring (propeller work) as an irre-
versible process is excluded. All movement of the material in the system is so
slow that velocity and kinetic energy can be ignored. For a stationary system,
potential energy is constant and can be ignored as well. Thus, at all times
the system is in homogeneous equilibrium states which are characterized by
the temperature T , the pressure p, and the volume V .

We list the relevant equations from previous chapters. Under the above
simplifications, the first law for closed systems reduces to

dU

dt
= Q̇− Ẇ , (7.1)

where Q̇ is the heat transfer rate, and Ẇ denotes power. Integration over the
duration of the process gives the time-integrated energy balance

U2 − U1 = Q12 −W12 , (7.2)

where

Q12 =

∫ t2

t1

Q̇dt and W12 =

∫ t2

t1

Ẇdt (7.3)

are the total amounts of heat and work exchanged between the states 1 (at
time t1) and 2 (at time t2).

For an infinitesimal step of the process (duration dt) we have the differen-
tial form of the first law

dU = δQ− δW , (7.4)

where δQ = Q̇dt and δẆ = Ẇdt are heat and work exchanged during dt.
The notation implies that work and heat have inexact differentials, since they
are process dependent quantities.

For a reversible process in a closed system, the work is just the piston
work,

Ẇ = p
dV

dt
or W12 =

∫ t2

t1

Ẇdt =

∫ 2

1

δW =

∫ 2

1

pdV , (7.5)

and the heat can be computed from the second law, which for reversible
processes (Ṡgen = 0) reduces to

Q̇ = T
dS

dt
or Q12 =

∫ t2

t1

Q̇dt =

∫ 2

1

δQ =

∫ 2

1

TdS . (7.6)

Thus, for reversible processes, heat and work are the areas below the process
curves in the p-V-diagram and the T-S-diagram, respectively, as depicted in
Fig. 7.2.
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T

T1

T2

SS1 S2

2

1

Q12 =
∫ 2

1
TdS

p

p1

p2

VV1 V2

2

1

W12 =
∫ 2

1
pdV

Fig. 7.2 Heat and work in reversible processes as areas below the process curves
in the p-V- and the T-S-diagram

In the following sections we shall compute work and heat per unit mass,
which for reversible processes are given by

w12 =
W12

m
= u1 − u2 + q12 =

∫ 2

1

pdv , (7.7)

q12 =
Q12

m
= u2 − u1 + w12 =

∫ 2

1

Tds . (7.8)

T

sv

p

1 1

2 2

Fig. 7.3 Isochoric process: Realization, p-v- and T-s-diagrams

7.3 Isochoric Process: v = const., dv = 0

Isochoric processes (constant volume) can be easily realized by fixing the
volume, e.g., by clamping the piston, see Figure 7.3 for process sketch and
diagrams.

With dv = 0 in the constant volume process, heat and work follow from
(7.7, 7.8) as
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w12 = 0 , q12 = u2 − u1 . (7.9)

We compute the process curve of an isochoric process in the T-s-diagram
for an ideal gas with constant specific heats. From the Gibbs equation and
the caloric equation of state we find for the isochoric process

Tds = du+ pdv = du = cvdT , (7.10)

so that upon integration

s− s1 = cv ln
T

T1
or T = T1e

s−s1
cv . (7.11)

Thus, for an ideal gas, the isochoric process in the T-s-diagram follows an
exponential, as indicated in the T-s-diagram.

sv

1

1

2
2

Tp
kg

Fig. 7.4 Isobaric process: Realization, p-v- and T-s-diagrams

7.4 Isobaric Process: p = const., dp = 0

Isobaric processes (constant pressure) are easily realized by free pistons,
where the piston weight controls the pressure; see Fig. 7.4 for process sketch
and diagrams.

With dp = 0 in the constant pressure process, heat and work follow from
(7.7, 7.8) as

w12 =

∫ 2

1

pdv = p

∫ 2

1

dv = p (v2 − v1) ,

q12 =

∫ 2

1

Tds =

∫ 2

1

(dh− vdp) =

∫ 2

1

dh = h2 − h1 . (7.12)

Here we have used the Gibbs equation in the form (4.13), Tds = dh− vdp.
Again we compute the process curve in the T-s-diagram for an ideal gas

with constant specific heats. From the Gibbs equation and the caloric equa-
tion of state we find for the isobaric process



7.5 Isentropic Process: q12 = δq = ds = 0 135

Tds = dh− vdp = dh = cpdT , (7.13)

so that upon integration

s− s1 = cp ln
T

T1
or T = T1e

s−s1
cp . (7.14)

This was used for drawing the curve in the diagram. For an ideal gas, the
isobaric process in the T-s-diagram follows an exponential. Since cp = cv +
R > cv, isobaric lines in the T-s-diagram are not as steep as isochoric lines
starting at the same point.

7.5 Isentropic Process: q12 = δq = ds = 0

A system that is insulated against heat transfer is adiabatic. However, adi-
abatic processes are also realized if the process is sufficiently fast, so that
there is no time to exchange heat. A pressure disturbance at the boundary,
i.e., induced by the moving piston, travels with the speed of sound, and ac-
cordingly mechanical equilibrium in the working fluid is assumed rather fast.
A temperature disturbance at the boundary, however, diffuses slowly into the
working fluid. In other words, pressure equilibration and heat transfer occur
on quite distinct time scales. Accordingly, a compression (i.e., pressure in-
crease) or expansion (i.e., pressure decrease) process may be slow enough to
allow for pressure equilibration in the system, but at the same time may be
so fast that there is no time to exchange heat between the working fluid and
the system walls, even if they have different temperatures. Such a process
can be modelled to be (approximately) adiabatic.

From the relation between entropy and heat for reversible processes (7.6)
follows for an adiabatic process

δq = 0 = Tds =⇒ ds = 0 , s = const. (7.15)

The reversible adiabatic process is isentropic, see Fig. 7.5 for process sketch
and diagrams.

The work is best computed from (7.8) which gives

w12 = u1 − u2 . (7.16)

We study the isentropic process in the ideal gas in more detail: From (6.21)
follows

s2 − s1 = s0 (T2)− s0 (T1)−R ln
p2
p1

= 0 (7.17)

or

p2
p1

=
a exp

[
s0(T2)

R

]

a exp
[
s0(T1)

R

] =
pr (T2)

pr (T1)
. (7.18)
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sv
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2
2

Tp

insulation

Fig. 7.5 Isentropic process: Realization, p-v- and T-s-diagrams

pr (T ) = a exp
[
s0(T )
R

]
is called the relative pressure and often is tabulated

(e.g., for air); a is a constant used for scaling of pr (T ), its value does not
affect the relation (7.18). With the ideal gas law p = RT

v we can rewrite (7.18)
as

v2
v1

=
b T2

pr(T2)

b T1

pr(T1)

=
vr (T2)

vr (T1)
, (7.19)

where vr (T ) = b T
pr(T ) is called the relative volume, and might be tabu-

lated as well; b is another scaling constant. The ideal gas table for air in
Fig. 6.17 includes columns for pr (T ) and vr (T ), where a was chosen such

that pr (298.15K) = 1, i.e., a = exp
[
− s0(298.15K)

R

]
, and b = 1; other tables

might use other values of both constants.
In case of constant specific heats, the entropy is given by (6.27), which for

an isentropic process gives

s2 − s1 = cp ln
T2

T1
−R ln

p2
p1

= 0 . (7.20)

Solving for the temperature ratio we find, with R = cp − cv,

T2

T1
=

(
p2
p1

) k−1
k

, (7.21)

where k denotes the ratio of specific heats k =
cp
cv
. By means of the ideal gas

law we find the alternative relations

p2
p1

=

(
v2
v1

)−k

,
T2

T1
=

(
v2
v1

)1−k

. (7.22)

The above relations can be expressed in compact from as

Tp
1−k
k = const. , pvk = const. , T vk−1 = const. (7.23)
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The value of the ratio of specific heats is k = 1.667 for monatomic gases, and,
under the cold-gas approximation, k = 1.4 for diatomic gases, and k = 1.333
for polyatomic gases. Equations (7.23) are the adiabatic relations for ideal
gases with constant specific heats.

7.6 Isothermal Process: T = const, dT = 0

Isothermal processes require exchange of heat with a large reservoir at con-
stant temperature. Since heat exchange is slow, isothermal processes must be
rather slow and therefore they are not found in the most common thermo-
dynamic cycles. Figure 7.6 shows process sketch and diagrams.

sv

1
1

2

2

Tp

T

Fig. 7.6 Isothermal process: Realization, p-v- and T-s-diagrams

Since temperature is constant, heat and work can be computed as

q12 =

∫ 2

1

Tds = T

∫ 2

1

ds = T (s2 − s1) ,

w12 = u1 − u2 + q12 = u1 − u2 + T (s2 − s1) . (7.24)

We consider the special case of the ideal gas where p = RT
v , which was

used to draw the curve in the p-v-diagram.With the thermal equation of state
explicitly known, the work can also be determined by integration (recall T is
constant!),

w12 =

∫ 2

1

pdv = RT

∫ 2

1

dv

v
= RT ln

v2
v1

= −RT ln
p2
p1

. (7.25)

For the ideal gas the internal energy depends only on temperature, that is
du = 0 when dT = 0, and thus the heat exchange is equal to the work,

q12 = w12 = RT ln
v2
v1

= −RT ln
p2
p1

. (7.26)

It is left to the reader to confirm that (7.24) evaluated with the property
relations for an ideal gas yields the same result.
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7.7 Polytropic Process (Ideal Gas): pvn = const

Processes in actual applications might differ from those discussed above. A
useful approximate description of a wide variety of processes in ideal gases is
offered by the polytropic process, which is a generalization of the adiabatic
relations (7.23) to arbitrary exponents n,

Tp
1−n
n = const. , pvn = const. , T vn−1 = const. (7.27)

Special choices for the polytropic exponent n refer to the previously discussed
processes as follows

n = 0 ⇒ p = const isobaric
n = 1 ⇒ pv = RT = const. isothermal
n = k ⇒ pvk = const isentropic (const. cp)
n = ∞ ⇒ v = const. isochoric

Often one uses values of n in the interval 1 ≤ n ≤ k to describe processes
that are not fully adiabatic and not fully isothermal, e.g., compression or
expansion processes with small heat exchange. Figure 7.7 shows the various
processes in the two diagrams.

sv

n=0

n=1

n=k n=1

n=0

n=1

n=k n=1
Tp

Fig. 7.7 Polytropic processes with n = 0, 1, k,∞ in p-v- and T-s-diagram

Since pvn = p1v
n
1 , the work follows by integration as

w12 =

∫ 2

1

pdv = p1v
n
1

∫ 2

1

dv

vn
=

p1v1
1− n

[(
v2
v1

)1−n

− 1

]

=
R

1− n
(T2 − T1) ,

(7.28)
which holds for all n 
= 1. The work for the case n = 1 (isothermal) can be
found from the above by using l’Hôpital’s rule:



7.9 Examples 139

lim
n→1

w12 = lim
n→1

RT1

1− n

[(
v2
v1

)1−n

− 1

]

= RT1 lim
n→1

d
dn

(
v2
v1

)1−n

d
dn (1− n)

= RT1 ln
v2
v1

.

(7.29)
The heat exchanged follows from the first law, q12 = u2 − u1 + w12.

7.8 Summary

For easy reference, we collect the results of this section in a table,

isochoric dv = 0 w12 = 0 q12 = u2 − u1

isobaric dp = 0 w12 = p (v2 − v1) q12 = h2 − h1

isentropic ds = 0 w12 = u1 − u2 q12 = 0
isothermal dT = 0 w12 = u1 − u2 + q12 q12 = T (s2 − s1)

isothermal (id. gas) dT = 0 w12 = RT ln v2
v1

q12 = w12

polytropic (id. gas) pvn = const. w12 = R
1−n (T2 − T1) q12 = u2 − u1 + w12

7.9 Examples

7.9.1 Isochoric Process for Ideal Gas

Carbon dioxide is confined in a 10 litre tank at a pressure of p1 = 10 bar.
In an isochoric heat transfer process the temperature drops from T1 = 670K
to T2 = 25 ◦C. We compute the heat transferred from the system and the
entropy change.

The mass of carbon dioxide in the system is (MCO2
= 44 kg

kmol , RCO2
=

0.189 kJ
kg K)

m =
pV

RT
= 79.0 g .

Since volume is constant, the ideal gas law gives the final pressure as

p2 = p1
T2

T1
= 4.45 bar .

Specific internal energy and specific entropy in initial and final state can be
read from an appropriate table as

u1 =
ū (T1)

M
= 467.9

kJ

kg
, s1 =

s̄0 (T1)

M
−R ln

p1
p0

= 5.231
kJ

kgK
,

u2 =
ū (T2)

M
= 156.4

kJ

kg
, s2 =

s̄0 (T2)

M
−R ln

p2
p0

= 4.579
kJ

kgK
.
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Since the process is isochoric, the work is zero, w12 = 0. The heat withdrawn
is

Q12 = mq12 = m (u2 − u1) = −23.8 kJ ,

and the total entropy change is

S2 − S1 = m (s2 − s1) = −51.48
J

kg
.

7.9.2 Isochoric Heating of Water

Saturated liquid-vapor mix at 100 ◦C with quality x = 0.1 is isochorically
heated until the pressure is 2.5MPa. We compute the final state, and the
heat supplied per unit mass.

From a steam table we find initial volume, specific energy and specific
entropy as

v1 = [(1− x1) vf + x1vg]T=100 ◦C

= 0.9× 0.001044
m3

kg
+ 0.1× 1.673

m3

kg
= 0.168

m3

kg
,

u1 = [uf + x1ufg]T=100 ◦C = 418.94
kJ

kg
+ 0.1×2087.5

kJ

kg
= 627.7

kJ

kg
,

s1 = [sf + x1sfg]T=100 ◦C = 1.3069
kJ

kgK
+ 0.1×6.048

kJ

kgK
= 1.912

kJ

kgK
.

The final state is superheated vapor of the same volume at 2.5MPa. Using
steam tables (with interpolation) we find

T2 = T

(

2.5MPa, 0.168
m3

kg

)

= 645.8K ,

u2 = u

(

2.5MPa, 0.168
m3

kg

)

= 3370.7
kJ

kg
,

s2 = s

(

2.5MPa, 0.168
m3

kg

)

= 7.709
kJ

kgK
.

Since the process is isochoric, the work is zero, w12 = 0. The heat supplied
per unit mass for this evaporation process is

q12 = u2 − u1 = 2743.0
kJ

kg
.
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7.9.3 Isobaric Heating of Ideal Gas

200 kg of air are isobarically heated from the initial state p1 = 15 bar, T1 =
440K until the volume has doubled. We compute the final state, the heat
supplied, and the work done by the gas.

The initial volume is

V1 =
mRT1

p1
= 16.84m3 ;

specific energy and enthalpy are (from table)

u1 = u (440K) = 316.11
kJ

kg
, h1 = 442.39

kJ

kg
.

The initial entropy is

s1 = s0 (T1)−R ln
p1
p0

= 7.523
kJ

kgK
− 0.287

kJ

kgK
ln

15

1.01325
= 6.750

kJ

kgK
.

With the volume doubled, and the pressure constant, the final temperature
is

T2 =
pV2

mR
= 2

pV1

mR
= 2T1 = 880K .

With the temperature known, the other properties are found in the table as

u2 = u (T2) = 658.81
kJ

kg
, h2 = h (T2) = 911.36

kJ

kg
,

s02 = s02 (T2) = 8.258
kJ

kgK
, s2 = s02 −R ln

p2
p0

= 7.485
kJ

kgK
.

The work done by the system is

W12 = p (V2 − V1) = 25.26MJ ,

while the heat exchanged is

Q12 = m (h2 − h1) = 93.79MJ .

7.9.4 Isobaric Cooling of R134a

Superheated cooling fluid R134a at initial state p1 = 0.18MPa and T1 =
40 ◦C is isobarically cooled until the temperature is T2 = −24 ◦C. We deter-
mine initial and end state properties, the heat transfer per unit mass, and
the work per unit mass.

From a vapor table we find the initial data as
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v1 = v (0.18MPa, 40 ◦C) = 0.1373
m3

kg
,

u1 = u (0.18MPa, 40 ◦C) = 261.53
kJ

kg
,

h1 = h (0.18MPa, 40 ◦C) = 286.24
kJ

kg
,

s1 = s (0.18MPa, 40 ◦C) = 1.0898
kJ

kgK
.

The saturation temperature for 0.18MPa is Tsat = −12.7 ◦C and since the
final temperature lies below this value, the final state is compressed liquid.
We use the approximations for compressed liquid to determine1

v2 � vf (T2) = 0.00073
m3

kg
, u2 � uf (T2) = 19.21

kJ

kg
,

h2 � hf (T2) = 19.29
kJ

kg
, s2 � sf (T2) = 0.0798

kJ

kg
.

Work and heat per unit mass are obtained as

w12 = p (v2 − v1) = −24.58
kJ

kg
,

q12 = h2 − h1 = −266.95
kJ

kg
.

7.9.5 Isentropic Compression of Ideal Gas

We consider the isentropic (adiabatic reversible) compression of air with a
compression ratio V1/V2 = 8. The initial state of the air is T1 = 290K and
p1 = 95 kPa, so that s01 = s0 (T1) = 7.103 kJ

kgK (from the Table in Fig. 6.17).

The final temperature must be obtained from (7.19), which reads

8 =
v1
v2

=
vr (T1)

vr (T2)
=

T1 exp
[
s0(T2)

R

]

T2 exp
[
s0(T1)

R

] . (7.30)

The table includes values for vr (T ) which we use now. From the table we
find vr (T1) = 319.5, so that vr (T2) = vr (T1) /8 = 39.93. To find T2 from the
table, we have to interpolate between 650K and 660K, which gives

T2 = 650K+
vr (T2)− vr (650K)

vr (660K)− vr (650K)
10K = 652.4K .

1 The saturation pressure at T2 is psat (−30◦C) = 84.4kPa. The derived approxima-
tion for enthalpy adds the term vf (T2) (p− psat (T2)) = 0.069 kJ

kg
to enthalpy—here

this term contributes little, and can be safely ignored.
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To find the proper temperature value when vr is not provided in a table,
one has to use trial and error. A first guess can be obtained from assuming

constant specific heats, which yields T̂2 = T1

(
v1
v2

)k−1

= 666K (with k = 1.4).

With data from the table we find for T
(1)
2 = 650K and T

(2)
2 = 660K

T1 exp

[
s0

(
T

(1)
2

)

R

]

T
(1)
2 exp

[
s0(T1)

R

] = 7.905 ,

T1 exp

[
s0

(
T

(2)
2

)

R

]

T
(2)
2 exp

[
s0(T1)

R

] = 8.231 .

Linear interpolation gives a value below the estimate, T2 = 642.9K.
The internal energies for the two states are read from the table as

u1 = u (T1) = 207.74
kJ

kg
, u2 = u (T2) = 475.97

kJ

kg
.

The work required for compression is

w12 = u1 − u2 = −268.2
kJ

kg
.

Since the process is adiabatic, q12 = 0.

7.9.6 Reversible and Irreversible Adiabatic
Expansion

Reversible processes require control over the process at all times. The slow
expansion of a gas in a piston-cylinder system is the prototypical example for
reversible processes.

To further our understanding, we consider the adiabatic expansion—
reversible and irreversible—of air as ideal gas at initial state p1 = 10 bar,
T1 = 500K to an end state of half the pressure, so that p2 = 1

2p1.
For the adiabatic reversible case we can refer to the above table which tells

us that
w12 = u (T1)− u (T2) ,

where T2 follows from isentropicity of the process,

0 = s (T2, p2)− s (T1, p1) = s0 (T2)− s0 (T1)−R ln
p2
p1

.

With the relative pressure pr (T ) = a exp
[
s0(T )
R

]
, this relation assumes the

form
pr (T2)

pr (T1)
=

p2
p1

=
1

2
.
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The table in Fig. 6.17 gives pr (T1 = 500K) = 6.202, hence pr (T2) = 3.101,
and interpolation in the table yields T2 = 412K.

The tabulated relative pressure simplifies the determination of the final
state. We now show how one has to proceed when pr is not in the table: The
property table gives s0 (T1 = 500K) = 7.654 kJ

kg K and with Rair = 0.287 kJ
kgK

and p2

p1
= 1

2 the above equation gives

s0 (T2) = s0 (T1) +R ln
p2
p1

= 7.455
kJ

kgK
.

Interpolation in the table gives T2 = 412K. The corresponding work per unit
mass is

w12 = u (500K)− u (412K) = 360.34
kJ

kg
− 295.38

kJ

kg
= 64.96

kJ

kg
.

We compare the reversible adiabatic process to the fully irreversible pro-
cess, which was discussed in Secs. 3.13, 4.13. There we saw that the temper-
ature of the ideal gas remained constant. If the initial and final pressures are
the same as for the reversible process, we compute the change of entropy as

s2 − s1 = s (T1, p2)− s (T1, p1) = s0 (T1)− s0 (T1)−R ln
p2
p1

= 0.199
kJ

kgK
.

In the irreversible process no useful work is produced and entropy is gener-
ated.

7.9.7 Isentropic Expansion of Compressed Water

Water at T1 = 300 ◦C, p1 = 20MPa expands in an isentropic (adiabatic and
reversible) process to p2 = 1 atm. We determine the final temperature, the
volume change, and the work.

The saturation temperature for the initial pressure is Tsat (p1) =
365.8 ◦C > T1. Accordingly the initial state is compressed liquid. As will
be seen, the process ends in the two phase region. Figure 7.8 shows the p-v-
and T-s-diagrams.

From the property table in Fig. 6.16 we find the initial properties

v1 = v (20MPa, 300 ◦C) = 0.0013596
m3

kg
,

u1 = u (20MPa, 300 ◦C) = 1306.1
kJ

kg
,

h1 = h (20MPa, 300 ◦C) = 1333.3
kJ

kg
,

s1 = s (20MPa, 300 ◦C) = 3.2071
kJ

kgK
,
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Fig. 7.8 Isentropic expansion of compressed liquid into the two-phase region in
p-v- and T-s-diagram

while the approximations of Sec. 6.9 give

v1 � vf (T1) = 0.001404
m3

kg
,

u1 � uf (T1) = 1332.7
kJ

kg
,

h1 � hf (T1) + vf (T1) (p1 − psat (T1)) = 1360.0
kJ

kg
,

s1 � sf (T1) = 3.2534
kJ

kgK
.

Comparison shows that the approximations introduce errors of {3.2%, 2.0%,
2%, 1.4%}. For the computation of the final state, we use the table values.

The final state is given by its entropy, s2 = s1 = 3.2071 kJ
kgK and its

pressure, p2 = 1 atm. Since sf (p2) < s2 < sg (p2) this state is saturated
liquid-vapor mixture with the quality

x2 =
s2 − sf (p2)

sfg (p2)
= 0.314 ,

and the properties

T = 100 ◦C , v2 = 0.526
m3

kg
, u2 = 1074.8

kJ

kg
,

h2 = 1128.2
kJ

kg
, s2 = 3.2071

kJ

kgK
.

The volume changes quite a bit due to evaporation, v2 − v1 = 0.525 m3

kg , and

the expansion gives the work w12 = u1 − u2 = 231.3 kJ
kg .
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7.9.8 Isothermal Expansion of Steam

Water vapor at p1 = 200 bar and T = 400 ◦C is isothermally expanded to
p2 = 1bar. To determine work and heat we require internal energy and
entropy at the two states. From a steam table we find

u1 = u (20MPa, 400 ◦C) = 2619.3
kJ

kg
, s1 = s (20MPa, 400 ◦C) = 5.554

kJ

kgK
,

u2 = u (1 bar, 400 ◦C) = 2967.9
kJ

kg
, s2 = s (1 bar, 400 ◦C) = 8.5435

kJ

kgK
,

so that heat and work are

q12 = T (s2 − s1) = 2012.4
kJ

kg
,

w12 = u1 − u2 + q12 = 1663.8
kJ

kg
;

note that for the computation of heat the thermodynamic temperature of
673.15K must be taken.

It is interesting to compare this result with that obtained under the as-
sumption that water vapor can be described as an ideal gas (R = 0.462 kJ

kg K),
which yields

q12 = w12 = −RT ln
p2
p1

= 1647.8
kJ

kg
.

We see clear differences, in particular for the heat q12, which are due to real
gas effects. Clearly, the assumption of ideal gas behavior of steam at these
conditions is not justified.

7.9.9 Polytropic Process

A mass of m = 3kg of neon (monatomic ideal gas with M = 20.18 kg
kmol , R =

0.412 kJ
kg K , cv = 3

2R = 0.618 kJ
kgK ) is compressed from V1 = 2m3, T1 = 450 ◦C

to V2 = 0.5m3 in a polytropic process with polytropic exponent n = 1.3.
The polytropic exponent lies between unity and the ratio of specific heats,

k = 1.67, and thus the process curve must lie between isothermal and isen-
tropic lines as indicated in Fig. 7.9.

The final temperature follows from the polytropic relation as

T2 = T1

(
V1

V2

)n−1

= 1095.9K .

The work can be obtained from (7.28) as

W12 =
mR

1− n
(T2 − T1) = −1536.2 kJ .
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Fig. 7.9 Polytropic process with 1 < n < k

The heat removed from the system follows, with U = mcv (T − T0), as

Q12 = U2 − U1 +W12 = m

[

cv +
R

1− n

]

(T2 − T1) = −845.0 kJ .

To draw the proper curve in the T-s-diagram, it is best to compute the
entropy change,

S2 − S1 = m

[

cv ln
T2

T1
+R ln

V2

V1

]

= mR

[
1

k − 1
− 1

n− 1

]

ln
T2

T1
= −0.942

kJ

K
.

Thus, in this compression process, entropy decreases, and temperature grows,
as indicated in the diagram.

Problems

7.1. Water in Tank
A closed rigid tank contains 3 kg of saturated water vapor, initially at 140 ◦C.
Heat transfer occurs, and the pressure drops to 200 kPa. Kinetic and potential
energy effects are negligible. Determine heat and work exchanged during the
process.

7.2. Isochoric Heating of Air
2 kg of air are heated in a reversible process at constant volume. The initial
temperature and pressure are T1 = 20 ◦C and p1 = 2bar, and the final
temperature is T2 = 500K. Compute heat and work exchanged, and the
change in entropy. Draw the process in p-v- and T-s-diagrams.
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7.3. Water in Tank
A closed rigid tank contains 2 kg of saturated water (liquid and vapor), ini-
tially at 0.2MPa with a quality of 4.65%. How much heat must be added so
that the final state is saturated vapor? What is the final temperature, and
how much work is required?

7.4. Heating and Melting of Ice
2 kg of ice are initially at −20 ◦C and 1 bar. The ice is isobarically heated,
then melted and further heated until a temperature of 20 ◦C is reached. De-
termine the heat required for this process, the volume change, and the work.
Determine also the heat required to heat the ice to 0 ◦C and for melting at
0 ◦C. The heat of melting at 1 bar is hsf = 333.1 kJ

kg , and the specific heat of

ice is cice = 2.1 kJ
kgK .

7.5. Freezing of Water
1.6 kg of liquid water are initially at 15 ◦C and 1 bar. The water is isobari-
cally cooled, then frozen and further cooled until a temperature of −15 ◦C
is reached. Determine the heat required for this process, the volume change,
and the work. The heat of melting at 1 bar is hsf = 333.1 kJ

kg , and the specific

heat of ice is cice = 2.1 kJ
kgK .

7.6. Condensation of Steam
Steam (water vapor) initially at 30 bar, 450 ◦C is isobarically cooled until the
volume is one half of the initial volume.

1. Draw the process in a p-v- and in a T-s-diagram with respect to saturation
lines.

2. Determine heat and work for the process when the initial volume was 2m3.
3. Now the volume is fixed and heat is supplied. At what temperature is the

saturated vapor state reached?

7.7. Lowering of a Piston
A freely moving piston with cross section A = 0.1m2 and mass m = 2 t closes
a cylinder filled with air; the external pressure is 1 atm. The initial state in the
cylinder is V1 = 0.3m3, T1 = 500K. Heat is withdrawn, and the piston moves
down as the volume of the gas decreases. The piston movement stops when
the volume reaches 2/3 of the original volume, but there is further cooling
until the temperature is 270K. Compute the mass of air in the cylinder, and
the total amounts of work and heat exchanged. Draw the process in p-v and
T-s-diagrams.

7.8. Cooling of Air
10 grams of air at 1400K, 150 bar are cooled in a closed system. The total heat
withdrawn is 7936 J and the final temperature is 600K. The cooling occurs
first at constant pressure (from state 1 to state 2), and then at constant
volume (from state 2 to the final state 3). Compute first the temperature at
state 2, and then the pressure at state 3. Also determine the work done by
the process.
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7.9. Isentropic Compression of Saturated Liquid-Vapor Mixture
Saturated liquid-vapor mixture of water at 25 ◦C with a quality of x = 0.9
is compressed in an adiabatic reversible process to 175 bar. Determine the
temperature of the final state, and work and heat per unit mass.

7.10. Isentropic Expansion of Air
Air is isentropically expanded in a closed system from T1 = 25 ◦C and p1 =
1MPa to p2 = 2.5 bar. Determine heat and work exchanged per unit mass.
Draw the process in p-v and T-s-diagrams.

7.11. Isentropic Expansion
Neon and air are expanded isentropically from 1000 kPa and 500 ◦C to
100 kPa in a piston-cylinder device. Which gas has the lower temperature
after expansion? Why? Compute the work per unit mass for both.

7.12. Isentropic Compression
Which of the two gases—neon or air—has the higher final temperature as it
is compressed isentropically from 100 kPa and 450K to 1000 kPa in a piston-
cylinder device? Compute the work per unit mass for both cases.

7.13. Isentropic Expansion of Superheated R134a Vapor
Cooling fluid R134a in a closed system is initially at 1.2MPa, 50 ◦C. Then
the cooling fluid is expanded in an adiabatic reversible process to 0.12MPa.
Determine the temperature of the final state, and work and heat per unit
mass.

7.14. Isentropic Expansion of R134a Vapor
Cooling fluid R134a in a closed system is initially at 1.6MPa, 60 ◦C. Then
the cooling fluid is expanded in an adiabatic reversible process to 0.32MPa.
Determine the temperature of the final state, and work and heat per unit
mass.

7.15. Expansion of Air
Air (ideal gas with variable specific heats) at 1400K, 50 bar is expanded
in a piston-cylinder system until its volume is 12 times the initial volume.
Determine work and heat per unit mass (a) when the expansion is isentropic,
(b) when the expansion is isothermal.

7.16. Isothermal Compression of Water Vapor
In a piston-cylinder system, a mass of 20 kg of water vapor initially at 3 bar,
1200 ◦C is isothermally compressed to 50 bar.

1. Determine heat and work for this process based on the property tables of
water.

2. Assume water vapor at these conditions can be described as an ideal gas
and compute work and heat based on this assumption. Compare with the
result of the exact calculation and discuss the differences.
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7.17. Evaporation and Expansion
As part of the processes in a low temperature Carnot engine, R134a undergoes
the following process in a piston-cylinder system:

1-2: Isothermal evaporation and heating from saturated liquid state at
T1 = 60 ◦C until the volume is 13 times the initial volume.

2-3: Isentropic expansion to p3 = 0.28MPa.

1. Draw the process in a p-v- and in a T-s-diagram with respect to saturation
lines.

2. Determine heat and work for the process when the initial volume was
V1 = 20 litres.

3. What would be the thermal efficiency of the corresponding Carnot engine?

7.18. Polytropic Compression of Oxygen
Pure oxygen is compressed in a polytropic process with polytropic exponent
n = 1.25 so that the final volume is half the original volume. The initial
temperature is 300K, the final pressure is 10 bar, and the work done is 40 kJ.
Determine the final temperature, the initial pressure, the mass of oxygen, the
heat exchanged in the process, and the change in entropy. Draw the process
in p-v and T-s-diagrams.

7.19. Polytropic Compression
Argon gas, initially at 1 bar, 100K, undergoes a polytropic process with n =
1.5 to a final pressure of 17 bar. Determine the specific work and heat transfer
for the process. Argon can be treated as an ideal gas; recall that it is a
monatomic gas, so the specific heats are constant.

7.20. Polytropic Expansion
Helium gas, initially at 20 bar, 200K, undergoes a polytropic process with
n = 1.2 to a final pressure of 2 bar. Determine the specific work and heat
transfer for the process. Helium can be treated as an ideal gas, recall that it
is a monatomic gas, so the specific heats are constant.

7.21. Polytropic Compression
Radon gas (Rn, MRn = 222 g

mol ) initially at 4 bar, 400K, is compressed in a
piston cylinder system. After compression the measured pressure and tem-
perature are 12 bar and 600K, respectively. Assume that the process can
be described as being polytropic, and determine the polytropic exponent n.
Then determine the specific work and heat transfer for the process. Radon
can be treated as an ideal gas; it is monatomic, hence the specific heats are
constant.

7.22. Compression of Air
Air at T1 = 227 ◦C, p1 = 1 atm is compressed in a piston-cylinder device to
1/3 of its original volume. Compute the work and the heat transfer per kg of
air when the compression process is (a) isothermal, (b) isentropic, (c) isen-
tropic with constant specific heats (cold air approximation), (d) polytropic
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with n = 1.4, (e) polytropic with n = 1.1. Draw the process curves in p-v
and T-s-diagrams.

7.23. Irreversible Expansion of Helium
An adiabatic and rigid container is divided by a membrane so that one third
of the container holds 1 kg of helium at 300K and 100Pa while the other part
is evacuated. The membrane is destroyed, and the gas undergoes a rather fast
and irreversible process until it assumes its stable equilibrium state.

1. Compute temperature and pressure in the equilibrium state, and the
change of entropy for the process.

2. Design a reversible compression process that will bring the gas back to its
original state (i.e. filling 1/3 of the container, 300K, 100Pa) and compute
the work and heat exchange required.

7.24. Ice and Saturated Liquid-Vapor Mixture
An insulated piston–cylinder device initially contains 0.01m3 of saturated
liquid–vapor mixture with a quality of 0.2 at 120 ◦C. How much ice at 0 ◦C
must be added isobarically to the cylinder so that after equilibrium is reached
the cylinder contains saturated liquid at 120 ◦C? Hint: The process is isobaric,
work is done.



Chapter 8

Closed System Cycles

8.1 Thermodynamic Cycles

In previous chapters we discussed thermal efficiency of heat engines and co-
efficient of performance of refrigerators and heat pumps from a general view-
point, without asking for the processes occurring within the engines. Now we
will discuss the working principles of several closed system cycles.

All engines considered are steady state devices that do not accumulate
energy or mass over time. To realize a steady state thermodynamic engine,
a working fluid is subjected to a series of processes such that the process
curve in a property diagram forms a closed loop. As the engine operates, the
working fluid runs through the same cycle of processes again and again.

The closed loop integral of the energy vanishes,
∮
dE = 0, since energy is

a state property;1 the engine does not accumulate energy. Thus, integration
of the differential energy balance dE = δQ− δW over the full cycle yields

W� =

∮
δW =

∮
δQ = Q� = Qin − |Qout| , (8.1)

where W� and Q� are the total net work and net heat exchanged for the
cycle. Moreover, Qin > 0 is the total heat transferred into the cycle, and
Qout < 0 is the total heat transferred out.

Net work and net heat are positive for a clockwise process—a heat engine—
and are negative for a counter-clockwise process—a refrigerator or a heat
pump.

For a closed system, the engine contains the constant mass m of the work-
ing substance, and the net work and heat per unit mass are

w� =
W�
m

=
Q�
m

= q� = qin − |qout| . (8.2)

1 We have
∫ 2

1
dE = E2 − E1. For a closed loop inital and endpoint are the same,

that is E2 = E1.

H. Struchtrup, Thermodynamics and Energy Conversion, 153
DOI: 10.1007/978-3-662-43715-5_8, c© Springer-Verlag Berlin Heidelberg 2014
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sv

Tp qin

qout

q¯ = qin¡ jqoutjw¯ q¯ = w¯

Fig. 8.1 Thermodynamic cycle in p-v- and T-s-diagram. Heat in, qin, and heat
out, qout, are indicated for a heat engine, which runs clockwise.

For an engine that runs through the cycle with the frequency ṅ (measured
for instance in rounds per minute, rpm) the net power and the heat transfer
rates are

Ẇ� = ṅmw� = ṅmq� = Q̇� , Q̇in = ṅmqin , Q̇out = ṅmqout . (8.3)

Figure 8.1 shows a reversible thermodynamic cycle in the p-v- and T-s-
diagrams. For a reversible process in a closed system, the net work of the
cycle per unit mass of working fluid is

w� =

∮
pdv . (8.4)

In the p-v-diagram, the net work is just the area enclosed by the process curve
as indicated in the figure. Note that the integral is positive for a clockwise
cycle, and negative for a counter-clockwise cycle.

Similarly, the net heat exchanged for a reversible cycle is the area enclosed
by the cycle in the T-s-diagram,

q� =

∮
Tds , (8.5)

where the heat is positive for a clockwise cycle. Heat in and heat out,

qin =

∫

ds>0

Tds , qout =

∫

ds<0

Tds , (8.6)

can be read from the T-s-diagram as the areas below the respective process
curves. This is indicated in the figure for a heat engine (clockwise cycle).
With this, the net work (w� = q�), the heat in, and the heat out can all be
read from the T-s-diagram. This implies that the thermal efficiency or the
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coefficient of performance for a reversible cycle can be completely determined
from the T-s-diagram, by means of the relations

ηth =
w�
qin

=

∮
Tds

∫
ds>0

Tds
= 1−

∣
∣∫

ds<0
Tds
∣
∣

∫
ds>0

Tds
,

COPR =
qin
|w�| =

∫
ds>0

Tds
∣
∣∮ Tds

∣
∣ =

1

|∫ds<0
Tds|∫

ds>0
Tds

− 1
, (8.7)

COPHP =
qout
|w�| =

∫
ds<0 Tds∣
∣
∮
Tds
∣
∣ =

1

1−
∫
ds>0

Tds

|∫ds<0
Tds|

.

While in this chapter we discuss only reversible cycles, we note that the
processes in real engines always suffer from irreversibilities, so that their
thermal efficiencies or COP’s will be smaller than those that will be computed
below.

8.2 Carnot Cycle

As a first example for the evaluation of a thermodynamic cycle we consider the
Carnot cycle. We introduced the Carnot engine as a fully reversible engine—
no internal or external irreversibilities—operating between two reservoirs of
temperatures TH , TL. The Carnot cycle is one possible realization of such an
engine. For a heat engine, it consists of the following four processes

1-2 rev. isothermal compression at TL

2-3 rev. adiabatic (isentropic) compression from TL to TH

3-4 rev. isothermal expansion at TH

4-1 rev. adiabatic (isentropic) expansion from TH to TL

Heat is only exchanged with the reservoirs during the isothermal processes,
at which the working substance is at the temperature of the reservoirs, and
therefore there are no external irreversibilities associated with the cycle. Since
there are no internal or external irreversibilities, the above cycle is a fully
reversible cycle that exchanges heat only with the two reservoirs.

The T-s-diagram allows us to compute the thermal efficiency of the cycle:
The area enclosed by the cycle is the net work,

w� = q� = (TH − TL)Δs . (8.8)

The area below the curve 3-4 is the heat in,

qin = q34 = THΔs . (8.9)
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Fig. 8.2 Carnot cycle in the p-v- and T-s-diagrams

Accordingly, the thermal efficiency is, as expected, the Carnot efficiency

ηC =
w�
qin

= 1− TL

TH
. (8.10)

We now compute the efficiency by considering the cycle for an ideal gas.
With the work and heat of reversible processes computed in the last chapter,
we find the values for heat and work of the individual processes as

1-2 isothermal: w12 = −RTL ln p2

p1
, q12 = −RTL ln p2

p1
,

2-3 isentropic: w23 = u (TL)− u (TH) , q23 = 0 ,
3-4 isothermal: w34 = −RTH ln p4

p3 , q34 = −RTH ln p4

p3 ,

4-1 isentropic: w41 = u (TH)− u (TL) , q41 = 0 ,

(8.11)

Since the processes (2-3) and (4-1) are isentropic, we have

0 = s3 − s2 = s0 (TH)− s0 (TL)−R ln
p3
p2

,

0 = s4 − s1 = s0 (TH)− s0 (TL)−R ln
p4
p1

. (8.12)

From comparison of the two equations we find that the pressures at the corner
points of the process are related as p3

p2
= p4

p1
, or, alternatively, p3

p4
= p2

p1
.

The thermal efficiency of the cycle is

ηC =
w�
qin

=
w12 + w23 + w34 + w41

q34
. (8.13)

With the above results for work and heat, and the relation between the
pressures, we find, once more, the Carnot efficiency,
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ηC =
−TL ln p2

p1
− TH ln p4

p3

−TH ln p4

p3

= 1− TL

TH
. (8.14)

That we found the well-known result again from detailed calculations for
an ideal gas proves that the ideal gas temperature scale (Sec. 2.13) is identical
to the thermodynamic temperature scale (Sec. 5.6).

The net work of the ideal gas Carnot cycle,

w� = R (TH − TL) ln
p2
p1

(8.15)

grows with the temperature difference (TH − TL) and the pressure ratio p2

p1
.

Thus, for large efficiency and large work output the Carnot cycle should
operate at large temperature difference TH − TL and at large pressure ra-
tios p2

p1
. Then, the volume ratio between smallest and largest volume,2 v1

v3
=

p2

p1

(
TH

TL

) 1
k−1

, becomes large, which is quite unpractical for designing a com-

pact engine. Moreover, the overall pressure ratio p3

p1
= v1

v3
TH

TL
= p2

p1

(
TH

TL

) k
k−1

becomes large, which makes effective sealing difficult. For example, an engine
with air as working gas operating at TL = 300K, TH = 750K, and a pressure
ratio of p2

p1
= 5, has the thermal efficiency ηC = 1 − TL

TH
= 0.6, the overall

volume ratio v1
v3

= 49.5, and the overall pressure ratio p3

p1
= 124; it produces

the net work w� = 208 kJ
kg . Internal combustion engines with comparable net

work operate with significantly smaller volume and pressure ratios, and thus
are more compact and lighter, and suffer less from sealing problems.

Another problem for the Carnot cycle is that the isothermal heat exchange
processes (1-2, 3-4) require slow processes, so that the cycle frequency ṅ must
be low. To produce significant amounts of power Ẇ = ṅmw� the engine
would have to contain a large mass m, that is it must be large. Engines that
operate on higher frequencies ṅ can be more compact.

The Carnot engine operates between two reservoirs of constant tempera-
ture. If the engine is to be heated by burning of a fuel, one does not have a
constant high temperature reservoir, but a flow of hot combustion product at
flame temperature TF which is gradually cooled to TH in the heat exchange.
This implies that there will be a temperature difference between engine and
combustion gas, and thus an external irreversibility. If one uses such a hot
flow to heat the engine, one will have warm exhaust which has still work
potential. If the exhaust is expelled into the environment, the equilibration
of temperature between the warm exhaust (at TH or higher) and the environ-
ment (at TL or lower) is an external irreversibility. To eliminate, or at least

2 For the isothermal process 1-2 we have p1v1 = p2v2 which gives v1
v3

= p2
p1

v2
v3
; the

adiabatic relation for the process 2-3 gives v2
v3

=
(

TH
TL

) 1
k−1

.
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reduce this loss, the exhaust must be used for preheating of the combustion
air. We shall come back to this point in Secs. 11.7 and 12.1.

In principle, one could make an effort to design an engine that follows the
Carnot cycle. Obviously, due to irreversibilities, the real engine would have an
efficiency below the Carnot efficiency. Moreover, for the reasons listed above,
such an engine would be relatively large and heavy in relation to the amount
of power it could deliver. Thus, in fact, one does not try to build engines that
follow the Carnot cycle for practical applications.

The Stirling cycle with an ideal gas, which will be discussed in Sec. 13.1,
is an alternative realization of a Carnot engine, but compared to the Carnot
cycle it has a significantly smaller volume ratio. Stirling engines, i.e., engines
designed to follow the Stirling cycle, are commercially available. Naturally,
these have efficiencies below the Carnot efficiency due to unavoidable internal
and external irreversibilities.

8.3 Carnot Refrigeration Cycle

Inversion of the Carnot cycle gives the Carnot refrigeration (or heat pump)
cycle with the following processes:

1-2 rev. adiabatic (isentropic) compression from TL to TH

2-3 rev. isothermal compression at TH

3-4 rev. adiabatic (isentropic) expansion from TH to TL

4-1 rev. isothermal expansion at TL

The process curves in the p-v- and T-s-diagrams are depicted in Fig. 8.3.
As before, the curve in the T-s-diagram is independent of the working fluid,
while the p-v-diagram is sketched for an ideal gas as working fluid.
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Fig. 8.3 Carnot refrigeration cycle (inverse Carnot cycle)
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The analysis of the inverse cycle is just analog to the analysis in the preced-
ing section, and we do not go through the details. The well-known coefficients
of performance for a Carnot refrigerator and a Carnot heat pump can be eas-
ily read from the T-s-diagram as

COPR,C =
|qin|
|w�| =

TLΔs

(TH − TL)Δs
=

1
TH

TL
− 1

, (8.16)

COPHP,C =
|qout|
|w�| =

THΔs

(TH − TL)Δs
=

1

1− TL

TH

. (8.17)

8.4 Internal Combustion Engines

In an internal combustion engine, heat is provided to the system by burning
an air-fuel mixture inside the system. Engine operation requires the exchange
of the working fluid after one cycle is completed, to bring in new fuel and
oxygen. Accordingly, internal combustion engines exchange mass with their
surroundings. Nevertheless, during the working cycle the system is closed,
and thus internal combustion engines can be analyzed as closed systems.

Internal combustion engines are the dominant power source for cars,
trucks, ships and non-electric trains. In cars one usually finds Otto engines,
while in trucks, ships and trains Diesel engines are used.

Figure 8.4 shows a sketch of a single piston-cylinder assembly of an internal
combustion engine. The piston is connected through rods to the crankshaft.
The crankshaft is driven through the expansion process, which pushes the
piston down, and it provides the work for the compression processes. Most
engines have several cylinders that run through the cycle with a phase shift
to ensure even load on the crankshaft; in single cylinder engines a fly wheel
might be mounted to the crankshaft.

As the crank shaft turns, the piston moves between bottom dead center
and top dead center. The volume the piston moves through is known as the
swept volume Vs, the remaining volume at top dead center is the clearance
volume Vc. Valves allow the exchange of working fluid with the surroundings.

The main difference between Otto and Diesel engine is that an Otto engine
draws in air-fuel-mix while in a Diesel engine the fuel is injected into the
cylinder later in the process. The combustion process in the Otto engine is
triggered by a spark plug, while in the Diesel engine the fuel begins to burn
as soon as it is injected. Accordingly, the figure shows spark plug (for Otto
engine) and injector (for Diesel engine).

We now follow through the processes in a four-stroke engine, starting at
top dead center:

Stroke I: The first stroke is the intake stroke. The valves are open, and as the
piston moves towards bottom dead center air-fuel-mix (Otto) or air (Diesel)
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Fig. 8.4 Cylinder and piston of an internal combustion engine

enters the cylinder. Since the valves are open, the pressure in the cylinder is
nearly constant. Whence bottom dead center is reached, the valves close.

Stroke II: In the second stroke the piston returns to top dead center. Since
the valves are closed, the working fluid (air-fuel-mix or air) is compressed.
The process is fast, and nearly adiabatic, pressure and temperature increase.
The compression work is provided by the crankshaft. Shortly before the piston
reaches top dead center, the combustion is triggered, either by firing the spark
plug (Otto), or by injecting fuel which begins to burn in the hot air (Diesel).

Stroke III: As the fuel burns, the temperature of the working fluid is fur-
ther increased. The hot combustion gas expands in the third stroke, as the
piston returns to bottom dead center. The expansion is fast, nearly adiabatic,
pressure and temperature decrease. The expansion work is transferred to the
crankshaft.

Stroke IV: For the last of the four strokes the valves open, which leads to a
sudden pressure drop. The piston returns once more to top dead center and
pushes the expanded combustion products out. This is the exhaust stroke.

We summarize the processes in the four strokes in the following list:

Stroke I : intake valve open
Stroke II : compression, combustion starts valve closed
Stroke III : combustion continues, expansion valve closed
Stroke IV : exhaust valve open

A rough schematic p-V-diagram for all four strokes is shown in Fig. 8.5.
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Fig. 8.5 Schematic p-V-diagram for an internal combustion engine

During strokes I and IV the valves are open, and the mass in the cylinder
changes. As indicated in the p-V-diagram, in real engines there is a small
depression during intake, and a small compression during exhaust, which we
ignore. Thus, assuming that during intake and exhaust the pressure equals
the exterior pressure p0, the piston work for the two processes is WI = p0Vs

andWIV = −p0Vs. The work for these two strokes just cancels,WI+WIV = 0,
and does not need to be considered further.

During strokes II and III the valves are closed, and the working fluid goes
through a closed system cycle. Due to the chemical processes occurring in
the combustion processes, the full analysis of this closed cycle is difficult.
However, the ratio between the amounts of air and fuel is rather large.
Therefore, the amount of fuel can be ignored for a basic analysis, and the
working fluid can be considered as air for the complete cycle. This leads to
the following modelling assumptions:

(a) The working fluid is air.
(b) The energy that is supplied through the combustion of fuel can be

described as a heat transfer into the system.
(c) The exchange of the working fluid in exhaust and intake during which

hot expanded combustion product is exchanged against cold precombustion
working fluid can be considered as a heat exchange with the surroundings.

This air standard analysis allows to study internal combustion engines
in a simplified yet significant manner. Further simplifications will appear in
the following sections which deal with the Otto and Diesel cycles, and some
variants.
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Fig. 8.6 Air-standard Otto cycle

8.5 Otto Cycle

The Otto cycle is named after Nicolaus.A. Otto (1832-1891), who build the
first working internal combustion engine. In the Otto cycle, the fuel is mixed
into the air outside the cylinder by injection, so that air-fuel mix enters
the engine. The compression and expansion processes are assumed to be
adiabatic—the processes are fast, and there is hardly time for effective heat
exchange. When the spark plug ignites the compressed air-fuel-mix, the mix-
ture explodes. The reaction is so fast, that the piston does not move much,
and for modelling we describe this as an isochoric heat transfer into the work-
ing fluid. Thus, the compression and expansion strokes of the Otto engine can
be modelled as

Stroke II: 1-2 adiabatic compression
2-3 isochoric heating (air-fuel mix explodes)

Stroke III: 3-4 adiabatic expansion
4-1 isochoric cooling (exchange of working fluid)

The respective process curves are shown in Fig. 8.6. For further analysis we
assume reversible processes for which we find heat and work as

1-2 isentropic: w12 = u1 − u2 < 0 , q12 = 0 ,
2-3 isochoric: w23 = 0 , q23 = u3 − u2 > 0 ,
3-4 isentropic: w34 = u3 − u4 > 0 , q34 = 0 ,
4-1 isochoric: w41 = 0 , q41 = u1 − u4 < 0 .

(8.18)

The thermal efficiency of the Otto cycle is

ηOtto =
w�
qin

=
w12 + w23 + w34 + w41

q23
= 1− u4 − u1

u3 − u2
. (8.19)
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Under cold-air assumptions the internal energy is u (T ) = cv (T − T0) + u0

so that

ηOtto = 1− T4 − T1

T3 − T2
= 1− T1

T2

T4

T1
− 1

T3

T2
− 1

. (8.20)

For the two isentropic processes we have, still using the cold-air assumption,

T2

T1
=

(
v1
v2

)k−1

=

(
Vc + Vs

Vc

)k−1

=

(
v4
v3

)k−1

=
T3

T4
. (8.21)

We conclude that T4

T1
= T3

T2
, and write the thermal efficiency of the cold-air-

standard Otto cycle as

ηOtto = 1− 1

rk−1
, (8.22)

where we have introduced the compression ratio

r =
Vc + Vs

Vc
. (8.23)

The simplified analysis shows that the compression ratio r is the most im-
portant parameter for the evaluation of the Otto cycle. Under the cold air
assumption the thermal efficiency depends solely on the compression ratio,
and it grows with increasing compression ratio. Obviously, one will aim for
large compression ratios to have efficient engines.

The compression ratio cannot be arbitrarily large. As the air-fuel-mix is
compressed, its temperature increases, T2 = T1r

k−1. When the temperature
of the air-fuel-mix reaches its auto-ignition temperature, it will start to re-
act before the spark plug induces the explosion at the appropriate point in
the process. Premature combustion, known as engine knocking, reduces the
power output since it leads to increased pressure during compression, and,
even more importantly, it damages the engine. To prevent knocking, the com-
pression ratio must be limited to values which guarantee that auto-ignition
cannot occur. High grade fuel, i.e., gasoline with larger octane numbers, has
a higher auto-ignition temperature, and must be used in engines with larger
compression ratios.

Typical values for the compression ratio in Otto engines are between 8
and 12. These values yield efficiencies for the idealized cycle discussed above
between 0.565 and 0.63. Real engines have about 30% loss to irreversible
processes (friction, heat transfer) within the engine, and another 30% loss to
friction in the drive train, so that their actual efficiency is η = 0.7 × 0.7 ×
ηOtto = 0.28 (for r = 8).

Since the working cycle of the engine happens during only two of the four
strokes (recall that inlet and exhaust work cancel), the power delivered by
an engine which runs at a frequency ṅ is
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Ẇ =
ṅ

2
mw� , (8.24)

where m = p1 (Vc + Vs) /RT1 is the mass of air in the cylinder.

8.6 Example: Otto Cycle

As an example we consider an engine operating on the ideal Otto cycle with
a compression ratio r = 9. The total swept volume of all cylinders is Vs =
3 litres, and the engine runs at ṅ = 3000 rpm. The intake is at T1 = 300K,
p1 = 0.98 bar, and the heat transfer through the combustion process is q23 =
717 kJ

kg . We determine temperatures, pressures and specific volume for the four
corner points of the process, and compute heat and work for all subprocesses.
For the computation we treat the working fluid as air with constant specific
heats (cold-air approximation), R = 0.287 kJ

kg K , cv = 0.717 kJ
kgK , k = 1.4.

We begin with the computation of the measurable properties, their numer-
ical values are found in the table below this paragraph. From the ideal gas
law we have v1 = RT1

p1
. Since the process 4-1 is isochoric, we have v4 = v1,

and the other two volumes follow from the compression ratio as v2 = v3 = v1
r .

The compression process 1-2 is isentropic, so that p2 = p1r
k; the ideal gas law

gives T2 = p2v2
R . The heat for the isochoric heating process (the explosion) is

q23 = u3 − u2 = cv (T3 − T2), so that T3 = T2 +
q23
cv

; from the ideal gas law

p3 = RT3

v3
. Since the process 3-4 is isentropic, the pressure at the end of the

expansion is p4 = p1r
−k; the temperature follows again from the ideal gas

law, T4 = p4v4
R . The numerical values are

v/ m3

kg T/K p/ bar

1 0.879 300.0 0.98

2 0.098 725.3 21.2

3 0.098 1725.3 50.5
4 0.879 714.0 2.33

The clearance volume follows from the compression ratio r = Vc+Vs

Vc
as Vc =

Vs

r−1 = 0.375 litres. The mass in the cylinders is m = Vc

v2
= 3.83 g.

Work and heat for the four processes are, with ui − uj = cv (Ti − Tj),

w12 = cv (T1 − T2) = −304.9 kJ
kg , q12 = 0 ,

w23 = 0 , q23 = cv (T3 − T2) = 717 kJ
kg ,

w34 = cv (T3 − T4) = 725.1 kJ
kg , q34 = 0 ,

w41 = 0 , q41 = cv (T1 − T4) = −296.8 kJ
kg .

The net work for the cycle is
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w� = w12 + w23 + w34 + w41 = 420.2
kJ

kg
,

the power produced is

Ẇ =
ṅ

2
mw� = 40.3 kW ,

and the thermal efficiency of the cycle is

η =
w�
q23

= 1− 1

rk−1
= 0.585 .

8.7 Diesel Cycle

In the Diesel cycle, named after its inventor Rudolf Diesel (1858-1913), only
air is drawn in and compressed, and the fuel is injected after the compression.
Here, one utilizes the temperature increase of the air in compression: as the
fuel is injected it starts to burn in the hot compressed air. The compression
ratios of Diesel engines can be substantially higher than those of Otto engines,
with values of up to r = 30.

However, injection of the fuel is slow, and the injected fuel disperses into
droplets which are not as well mixed with the air as the gasified fuel in the
Otto engine. Therefore combustion is slower than in the Otto engine, the
piston moves as the fuel burns. This process can be modelled as an isobaric
heat transfer process, so that the Diesel cycle is modelled as follows:

Stroke II: 1-2 adiabatic compression
Stroke III: 2-3 isobaric heating (slow combustion during fuel injection)

3-4 adiabatic expansion
4-1 isochoric cooling (exchange of working fluid)

The respective process curves are shown in Fig. 8.7, which also indicates
clearance volume, swept volume, and the injection volume Vi, which is the
volume at the end of the isobaric heating process. For further analysis we
assume reversible processes for which we find heat and work as

1-2 isentropic: w12 = u1 − u2 < 0 , q12 = 0 ,
2-3 isobaric: w23 = p3 (v3 − v2) > 0 , q23 = h3 − h2 > 0 ,
3-4 isentropic: w34 = u3 − u4 > 0 , q34 = 0 ,
4-1 isochoric: w41 = 0 , q41 = u1 − u4 < 0 .

(8.25)

The thermal efficiency of the Diesel cycle is

ηDiesel =
w�
qin

=
w12 + w23 + w34 + w41

q23
= 1− u4 − u1

h3 − h2
. (8.26)
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Fig. 8.7 Air-standard Diesel cycle. Note that in the T-s-diagram the isochoric line
has a larger slope than the isobaric line.

Under cold-air assumptions energy and enthalpy are u (T ) = cv (T − T0)+
u0, h (T ) = cp (T − T0) + h0, so that

ηDiesel = 1− cv
cp

T1

T2

T4

T1
− 1

T3

T2
− 1

. (8.27)

For the two isentropic processes we have, still using the cold-air assumption,

T2

T1
=

(
V1

V2

)k−1

= rk−1 ,
T3

T4
=

(
V4

V3

)k−1

=

(
V4

V2

V2

V3

)k−1

=
rk−1

rk−1
c

,

(8.28)
where rc = V3/V2 = Vi/Vc is the cut-off ratio. For the isobaric process we
have (ideal gas law!) T3

T2
= V3

V2
= rc, so that the thermal efficiency of the

Diesel process becomes3

ηDiesel = 1− 1

rk−1

1

k

rkc − 1

rc − 1
. (8.29)

For the same compression ratio r the Diesel efficiency is below the Otto
efficiency. However, the Diesel cycle allows significantly higher compression
ratios than the Otto cycle, and that is the reason why it has a larger efficiency.
For a cycle with cut-off ratio rc = 2 and compression ratio r = 20, we find
the thermal efficiency as 0.65. Irreversible losses to friction in the engine
and drive train reduce the thermal efficiency, actual engines have efficiencies
around 37%.

From the p-v-diagram we can see that in a Diesel cycle the maximum
pressure is sustained for a longer period, in contrast to the Otto engine, where

3 With T4
T1

= T4
T3

T3
T2

T2
T1

=
rk−1
c

rk−1 rcr
k−1 = rkc .
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the maximum pressure is just a short spike. Due to this, Diesel engines must
be build more sturdily, which is the main reason why they are more expensive.
On the other hand, they are more efficient, and thus require less fuel. The
cost of gasoline and Diesel fuel, respectively, also depends on taxation, and
thus it might be more cost effective to drive a Diesel powered car in some
countries, while an Otto powered car might be more cost effective in other
countries.

8.8 Example: Diesel Cycle

An air standard four-stroke Diesel cycle has a clearance volume Vc = 0.5 litre,
and a compression ratio r = 16.16. Intake temperature and pressure are 17 ◦C
and 1 bar, respectively, and the temperature at the end of the expansion is
707 ◦C. The engine runs at 4400 rpm. We determine temperatures, pressures
and specific volume for the four corner points of the process, and compute
heat and work for all subprocesses. For the computation we treat the working
fluid as air with variable specific heats.

We outline how the various properties are determined, and collect their
numerical values in the table below this paragraph. The values for T1, p1 and
T4 are given above. From the ideal gas law we have v1 = v4 = RT1

p1
; from

the compression ratio v2 = v1
r . The compression process 1-2 is isentropic, so

that for the relative volume vr (T2) =
vr(T1)

r . With tabulated data for vr (T )

follows T2, while the ideal gas law gives the pressures p2 = p3 = RT2

v2
. With

T4 given, the pressure at 4 follows from the ideal gas law, p4 = RT4

v4
. The

expansion 3-4 is isentropic, so that pr (T3) = pr (T4)
p3

p4
. With tabulated data

follows T3, and from the ideal gas law v3 = RT3

p3
. With this, all points are

identified, and energies and enthalpies can be found from the property table.
Altogether we have

v/ m3

kg T/K p/ bar vr pr u/ kJ
kg h/ kJ

kg

1 0.832 290 1.0 319.5 208
2 0.0515 840 46.81 19.77 626 867

3 0.113 1845 46.81 1075 1531 2060

4 0.832 980 3.38 77.61 743

The swept volume follows from the compression ratio r = Vc+Vs

Vc
as Vs =

Vc (r − 1) = 7.58 litre, the injection volume is Vi =
v3
v2
Vc = 1.1 litre, and the

cut-off ratio is rc = Vi

Vc
= 2.2. The mass in the cylinders during the working

cycle is m = Vc

v2
= 9.71 g.

Work and heat for the four processes are
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w12 = u1 − u2 = −418 kJ
kg , q12 = 0 ,

w23 = p (v3 − v2) = 288 kJ
kg , q23 = h3 − h2 = 1193 kJ

kg ,

w34 = u3 − u4 = 788 kJ
kg , q34 = 0 ,

w41 = 0 , q41 = u1 − u4 = −535 kJ
kg .

The net work for the cycle is

w� = w12 + w23 + w34 + w41 = 658
kJ

kg
,

the power produced is

Ẇ =
ṅ

2
mw� = 234.3 kW ,

and the thermal efficiency of the cycle is

η =
w�
q23

= 0.552 .

This is somewhat lower as the efficiency under the cold-air approximation,

which is η = 1 − 1
rk−1

1
k
rkc−1
rc−1 = 0.606. The difference is due to the effect of

temperature dependent specific heats.

8.9 Dual Cycle

In real engines the combustion process is neither just an instantaneous, i.e.,
isochoric, explosion as assumed above for the Otto cycle, nor is it a slow iso-
baric combustion as assumed above for the Diesel cycle. To have a somewhat
better model, one can modify the description of the fuel combustion process
as a combination of isochoric and isobaric heating. The resulting cycle is the
dual cycle:

Stroke II: 1-2 adiabatic compression
2-3’ isochoric heating

Stroke III: 3’-3 isobaric heating
3-4 adiabatic expansion
4-1 isochoric cooling

Figure 8.8 shows the corresponding diagrams. Depending on the choice of
parameters, one can model Otto and Diesel engines as a dual cycle. The dual
step would have a more pronounced isochoric and smaller isobaric step for
Otto engines, and a smaller isochoric but more pronounced isobaric step for
Diesel engines. Moreover, Otto engines have compression ratios below 12,
while Diesel engines have higher compression ratios.



8.10 Atkinson Cycle 169

sv

Tp

1
4

3

2

1

4

3

2

3’ 3’

Fig. 8.8 Dual cycle

8.10 Atkinson Cycle

At the end of the expansion process in the Otto and Diesel cycles, the work-
ing fluid is at elevated pressure and temperature, and more work could be
extracted. One method to use this work is to drive a turbo charger, which
essentially is a compressor that is used to fill the cylinders with air-fuel mix
(Otto) or air (Diesel) at elevated pressures. With this, the mass of air in the
engine is higher than when it only draws air at environmental pressure p0.
Since the power output of the engine is proportional to mass, Ẇ = ṅ

2mw�,
turbo charging increases the power output, or gives the same power from a
smaller engine.

An alternative method to make use of the work potential is used in Atkin-
son engines. The Atkinson cycle is a modification of the Otto cycle where the
compression and expansion strokes have different lengths. Specifically, the
expansion stroke is longer than the compression stroke, so that—in the best
case—the pressure at the end of expansion is equal to the intake pressure.
The early engines build by James Atkinson (1846–1914) relied on mechan-
ical valve control. Since valves can be controlled electronically, Atkinson’s
ideas become more prominent, and engines based on the Atkinson cycle are
routinely used in modern hybrid cars.

To achieve the Atkinson cycle in an actual engine one uses clever control
of the valves. In the Otto engine the valves close at the end of the intake
stroke (Stroke I), and as the piston reverses its direction, compression starts
immediately (Stroke II). In an Atkinson engine the valve remains open during
the beginning of the second stroke, so that some of the intake is pushed back
into the intake manifold. The valve closes a bit later (at volume V1) and com-
pression commences. Thus, compression occurs only on part of Stroke II. The
valves remain closed for the full expansion (Stroke III), so that the expansion
stroke is longer than the compression stroke. At the end of expansion, the
valves open and the exhaust stroke (Stroke IV) begins. Computerized control
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Fig. 8.9 Atkinson cycle 1-2-3-4-1 compared to Otto cycle 1-2-3-4’-1. The shaded
area is the extra work delivered by the Atkinson cycle for the same heat input.

of the valve timing allows to vary the length of the compression stroke to
optimize engine performance for the current driving conditions.

The processes in the ideal air-standard Atkinson cycle are:

1-2 adiabatic compression
2-3 isochoric heating (air-fuel mix explodes)
3-4 adiabatic expansion
4-1 isobaric cooling (exchange of working fluid)

The corresponding process diagrams are depicted in Fig. 8.9. The figure also
indicates the point 4′ at which the expansion would finish in the Otto cycle.
The shaded areas in the two diagrams indicate the additional work generated
in the Atkinson cycle as compared to the Otto cycle. The compression ratio
is r = V1

Vc
and the expansion ratio is re =

Vc+Vs

Vc
.

Work and heat for the processes are

1-2 isentropic: w12 = u1 − u2 < 0 , q12 = 0 ,
2-3 isochoric: w23 = 0 , q23 = u3 − u2 > 0 ,
3-4 isentropic: w34 = u3 − u4 > 0 , q34 = 0 ,
4-1 isobaric: w41 = p1 (v1 − v4) < 0 , q41 = h1 − h4 < 0 .

(8.30)

Accordingly, the net work and the thermal efficiency of the engine are

w� = w12 + w23 + w34 + w41 = h1 − u2 + u3 − h4 , (8.31)

and

ηAtkinson =
w�
q23

= 1− h4 − h1

u3 − u2
. (8.32)
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As before, we evaluate the process under the cold-air approximation, where

h4 − h1 = cp (T4 − T1) , u3 − u2 = cv (T3 − T2) , (8.33)

so that

ηAtkinson = 1− k
T4 − T1

T3 − T2
. (8.34)

For the temperatures at the corner points of the process we find

T2 = T1r
k−1 , T4 = T1

v4
v1

= T1
re
r

, T3 = T4r
k−1
e = T1

rke
r

, (8.35)

so that net work and thermal efficiency become

w� = cvT1

[

k
(
1− re

r

)
+

rke − rk

r

]

, (8.36)

ηAtkinson = 1− 1

rk−1
k

re
r − 1
(
re
r

)k − 1
. (8.37)

It is easy to see that for re > r the factor

[

k
re
r −1

( re
r )

k−1

]

is less than unity.

Therefore, the thermal efficiency of the Atkinson cycle is larger than that of
the Otto cycle with the same compression ratio.

In order to have the ideal Atkinson cycle performed, the heat addition q23

must be such that T3 = T1
rke
r . If more heat is added, so that the temperature

T3 lies above this value, the pressure p4 at the end of expansion will be above
the inlet pressure p1. In this case, the cooling process (which models exhaust
and intake) would include an isochoric process:

1-2 adiabatic compression
2-3 isochoric heating
3-4’ adiabatic expansion
4’-4 isochoric cooling
4-1 isobaric cooling

The corresponding process diagrams are shown in Fig. 8.10. Work and heat
for the processes are

1-2 isentropic: w12 = u1 − u2 < 0 , q12 = 0
2-3 isochoric: w23 = 0 , q23 = u3 − u2 > 0
3-4’ isentropic: w34′ = u3 − u4′ > 0 , q34′ = 0
4’-4 isochoric w4′4 = 0 q4′4 = u4 − u4′ < 0
4-1 isobaric: w41 = p1 (v1 − v4) < 0 , q41 = h1 − h4 < 0

(8.38)
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Fig. 8.10 Overheated Atkinson cycle with excess pressure at the end of expansion

The thermal efficiency of the overheated Atkinson cycle is below that of the
ideal Atkinson cycle. In the cold-air approximation one finds

η = 1− 1

rk−1

[

k
T3r

1−k
e − T1

T3r1−k − T1
+ (k − 1)

T3r
1−k
e − T1

re
r

T3r1−k − T1

]

, (8.39)

which reduces to (8.37) for T3 = T1
rke
r .

Problems

8.1. Power Cycle in the T-s-Diagram
Compute the efficiency of the cycle in the sketch, and compare with the
efficiency of the Carnot cycle.

s

T

TH

TL

Δs

8.2. Refrigeration Cycle in the T-s-Diagram
A closed system runs on the process indicated in the sketch as a refrigeration
cycle. Is the cycle running clockwise or counterclockwise? Use the sketch
to determine the COP and compare with the Carnot cycle. Draw the p-v-
diagram of the cycle for the case that the working fluid is an ideal gas. Assume
TM = (TH + TL)/2.
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s

T

TH

TL

Δs

TM

8.3. Inventors
Two inventors have developed heat engines that operate between the tem-
peratures of 900K and 300K. One inventor claims an efficiency of 50% for
his engine, the other claims an efficiency of 66%. If you had some money to
invest, which inventors start-up would you invest in? Explain!

8.4. Carnot Heat Engine
A heat engine operates on a fully reversible Carnot cycle between two reser-
voirs at 25 ◦C and 527 ◦C. The engine contains 4 g of air, and the largest
volume is 2 litres. The pressure ratio for isothermal compression is equal to
the pressure ratio for isentropic compression.

1. Draw the process diagrams, and make a table with temperature, pressure,
specific volume, and specific internal energy at the corner points of the
process.

2. Determine specific heat and work for the four processes in the cycle, the
net work for the cycle, and the thermal efficiency.

3. When the engine runs at 350 rpm, determine the power produced.

8.5. Carnot Cycle
A Carnot power cycle using hydrogen as working fluid operates between the
temperatures 320K and 1000K with maximum and minimum pressures given
by 40 bar and 0.2 bar, respectively. The maximum volume of the hydrogen
in the engine is 6.65 litres and the engine runs at 700 rpm. Draw the process
in a T-s-diagram and in a p-v-diagram, then make a table with pressures,
specific volumes, internal energies, and entropies at all corner points of the
process. Compute the thermal efficiency, the mass of hydrogen in the engine,
the maximum volume ratio, and the power produced. Based on the data
obtained, discuss the feasibility of the process (apart from the fact that it
would be impossible to build a fully reversible engine).

8.6. Carnot Heat Pump
A food drying unit requires a heating power of 200 kW which must be supplied
at TH = 75 ◦C, while the exterior temperature is TL = 15 ◦C. For this purpose
consider a closed systemCarnot heat pump using xenon (ideal gas,monatomic,
M = 131.3 kg

kmol) as working fluid. The ratio between maximum and minimum
volume of the unit is 40, and the largest pressure that can occur is 80 bar.
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1. Draw the process in a T-s-diagram and in a p-v-diagram.
2. Make a table with pressures, temperatures and specific volumes, at all

corner points.
3. Compute heat and work for all processes. Determine the net work and the

COP.
4. When the engine operates at 500 rpm, determine the mass of xenon in

the engine and the maximum volume (which could be distributed over
several cylinders). Based on the data obtained, discuss the feasibility of
the process.

8.7. Otto Cycle
The air entering a 3 litre Otto engine (ideal air-standard cycle, air as ideal
gas with variable specific heats) with compression ratio r = 9.2 is at en-
vironmental conditions (98 kPa, 300K). After the heat supply, the pressure
has doubled. Determine heat added, net work output, thermal efficiency, and
power output when the engine runs at 2000 rpm. Draw diagrams.

8.8. Otto Engine
An air standard four-stroke Otto engine has a swept volume of 2.5 litres, and
a clearance volume of 0.4 litres. Temperature and pressure at intake are given
by T1 = 290K, p1 = 0.7 bar. The temperature at the end of combustion is
T3 = 1400K. Consider the working fluid to be air, as ideal gas with R =
0.287 kJ

kg K , and with variable specific heats.

1. Draw the p-V- and T-s-diagrams for the process.
2. Determine the values of temperature, pressure, specific volume, and inter-

nal energy at the corners of the cycle. Make a table with these values.
3. Determine the net work per unit mass and the thermal efficiency.
4. Determine the mass of air in the cylinders and net power output of the

engine when it runs at 4500 rpm.

8.9. Otto Engine
An air standard four-stroke Otto engine has a compression ratio of 9.4 and
a clearance volume of 0.3 litre. Temperature and pressure at intake are T1 =
280K, p1 = 1.1 bar, and the pressure after expansion is p4 = 2.984 bar.

Consider the working fluid to be air, as ideal gas with variable specific heats.

1. Draw the p-V- and T-s-diagrams for the process.
2. Determine the values of temperature, pressure, specific volume, and inter-

nal energy at the corners of the cycle. Make a table with these values.
3. Determine the net work per unit mass and the thermal efficiency.
4. Determine the mass of air in the cylinders and net power output of the

engine when it runs at 1200 rpm.

8.10. Diesel Engine
An air standard four-stroke Diesel engine has a swept volume of 7 litres, and
a clearance volume of 0.5 litre. The volume at the end of the fuel injection
(isobaric heat supply) is 1 litre.
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Temperature and pressure at intake are given by T1 = 300K, p1 = 1bar.
Consider the working fluid to be air, as ideal gas with constant specific heats,
R = 287 J

kgK , cv = 5
2R, k =

cp
cv

= 1.4.

1. Draw a p-V-diagram of the process and then determine:
2. The values of all temperatures, pressures and specific volumes at the cor-

ners of the cycle. Make a table with these values.
3. The net work per unit mass and the thermal efficiency.
4. The mass of air in the cylinder and net power output of the engine when

it runs at 2500 rpm.

8.11. Diesel Cycle
A 16 cylinder 170-litre Diesel engine operating on the ideal air-standard Diesel
cycle has a compression ratio of 17, and a cut-off ratio of 2.2. Determine the
amount of power delivered when the engine runs at 900 rpm based on the air-
standard cycle, under cold-air assumption (that is: constant specific heats).
Consider the following two cases for outside temperature and pressure: (a)
T0 = 280K, p = 1bar. (b) T = 305K, p = 0.9 bar. Draw diagrams.

8.12. Diesel and Otto cycle
Draw a schematic, and the process curves in a p-V-diagram and a T-s-diagram
for a Diesel and an Otto cycle. Mark swept volume, clearance volume etc.
These are four-stroke engines: what are the four strokes? Indicate them in
the diagram. Discuss the difference between Diesel and Otto cycles. Why can
the Diesel have a higher compression?

8.13. Dual Cycle
The processes in a 4-stroke Diesel cycle with compression ratio of 14 are
modeled as dual cycle with the following data: The engine draws air at 1 bar,
27 ◦C, the maximum temperature reached in the cycle is 2200K, and the total
amount of heat added is q23 = 1520.4 kJ

kg . The working fluid can be considered

as air (ideal gas, variable specific heats).

1. Draw the process in a p-V-diagram, and a T-s-diagram. Include intake and
exhaust, and indicate the 4 strokes in the p-V-diagram.

2. Determine temperatures, pressures, and specific volumes in the points
1,2,3’,3,4.

3. Determine the thermal efficiency of the cycle.

8.14. Atkinson Engine
A four-stroke-engine operating on the Atkinson cycle draws air at 0.9 bar,
17 ◦C. The working cycle consists of the following reversible processes:

1-2: Adiabatic compression of air with compression ratio 8.6
2-3: Isochoric heating to T3 = 1500K
3-4: Adiabatic expansion
4-1: Isobaric cooling
Consider the working fluid to be air, as ideal gas with R = 0.287 kJ

kgK , and
variable specific heats.
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1. Draw p-v- and T-s-diagram for the cycle.
2. Make a list with temperature, pressure, specific volume at the four corner

points of the cycle.
3. Determine the expansion ratio of the engine.
4. Determine net work and thermal efficiency of the cycle.
5. The engine runs at 2000 rpm and the engine delivers 28.75 kW. Determine

the gas volume at bottom dead center.

8.15. Atkinson Engine
A four-stroke-engine operating on the ideal Atkinson cycle draws air at
0.9 bar, 17 ◦C. The working cycle consists of the following reversible pro-
cesses:

1-2: Adiabatic compression of air with compression ratio 10.08.
2-3: Isochoric heating.
3-4: Adiabatic expansion with expansion ratio 16.
4-1: Isobaric cooling.
Consider the working fluid to be air, as ideal gas with R = 0.287 kJ

kgK , and
variable specific heats.

1. Draw p-V- and T-s-diagram for the cycle.
2. Make a list with specific volume, temperature, pressure, at the four corner

points of the cycle.
3. Determine net work and thermal efficiency of the cycle.
4. The engine runs at 2000 rpm and the engine delivers 18 kW. Determine

the mass in the cylinders, and the swept volume.

8.16. Overheated Atkinson Engine
Show that the thermal efficiency of the overheated Atkinson cycle under the
cold-air approximation is given by Eq. (8.39).

8.17. Overheated Atkinson Engine
An overheated 4-stroke Atkinson cycle has a compression ratio of 10, and an
expansion ratio of 14.09; its swept volume is 1.2 litres. The cycle draws air
at p = 0.9 bar, T0 = 0 ◦C, and the total heat rejected into the environment is
397.38 kJ

kg . Assume air-standard conditions, with air as ideal gas with variable
specific heat, and reversible processes.

1. Draw the process into p-V- and T-s-diagrams.
2. Determine pressure, temperature, specific volume, specific internal energy

and specific enthalpy at all relevant process points.
3. Determine the net work, the heat addition, and the thermal efficiency of

the cycle.
4. The engine runs at 1750 rpm, determine the power output.



Chapter 9

Open Systems

9.1 Flows in Open Systems

So far we have considered only closed systems, which do not exchange mass.
We shall now extend the discussion to systems which exchange mass with
their surroundings. Figure 9.1 shows a generic open system with two inflows
and two outflows. In the following, and in the figure, the amount of mass
exchanged per unit time, the mass transfer rate or mass flow, is denoted by
ṁ. The system also exchanges propeller and piston work, Ẇ = Ẇpropeller +

Ẇpiston, and heat, Q̇ = Q̇1+Q̇2, with its surroundings, just as a closed system
does. Below, we shall add the appropriate terms to the thermodynamic laws
to account for mass transport over the system boundary.

States in open systems are normally inhomogeneous. One might think of
a mass element entering the system of Fig. 9.1 on the left. As the element
of mass travels through the system, it constantly changes its state: When it
passes the heating, its temperature changes, when it passes the propeller its

Ẇpropeller

Ẇpiston

Q̇1 Q̇2

ṁ1
in

ṁ2
in

ṁ1
out

ṁ2
out

Fig. 9.1 Open system with two inflows, two outflows and two heat sources. The
dotted line indicates the system boundary.

H. Struchtrup, Thermodynamics and Energy Conversion, 177
DOI: 10.1007/978-3-662-43715-5_9, c© Springer-Verlag Berlin Heidelberg 2014
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pressure and temperature change and so on. Thus, at each location within the
system one finds different properties. As discussed earlier, an inhomogeneous
system is in a non-equilibrium state. In an open system the non-equilibrium
is maintained through the exchange of mass, heat and work with the sur-
roundings.

9.2 Conservation of Mass

Mass cannot be created or destroyed, that is mass is conserved. Chemical
reactions change the composition of the material, but not its mass.1 In a
closed system, the law of mass conservation states that the total mass m
in the system does not change in time, i.e., it simply reads dm

dt = 0. In an
open system, where mass enters or leaves over the system boundaries, the
conservation law for mass states that the change of mass in time is due to
inflow—which increases mass—and outflow—which decreases system mass.
In other words, the rate of change in mass is due to the net difference of mass
flows entering and leaving the system,

dm

dt
=
∑

in

ṁi −
∑

out

ṁe . (9.1)

Here, ṁi denotes incoming mass flows and ṁe denotes exiting mass flows, as
indicated in Fig. 9.1. By definition, the mass flow is positive, the direction of
flow is made explicit by the signs in the equation.

ds = V?dt

dAV?

Fig. 9.2 Mass flow through the cross section A

Figure 9.2 shows an element dA of the system boundary that is crossed by
mass flowing with the local velocity V⊥. All velocity components parallel to
the surface do not play a role in transport through the surface elements, and
it suffices to consider only the normal (i.e., perpendicular to dA) velocity
V⊥ as indicated in the figure. During the time interval dt a mass element
travels the distance ds = V⊥dt. All mass elements that are initially in the
volume element dsdA = V⊥ dAdt will cross the surface element dA during
dt. With the local density ρ, the mass in the volume element is ρV⊥ dAdt,
which thus is the mass crossing dA during dt. Division by the time interval
dt gives the amount of mass crossing the surface element per unit time as

1 As long as one ignores the very small relativistic mass defect.
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ρV⊥ dA. The macroscopic mass flow through a finite cross section A results
from integration over all surface elements,

ṁ =

∫

A

ρV⊥ dA . (9.2)

For a finite cross section one will expect spatial variations of the density
ρ and velocity V⊥ over the cross section which would have to be taken into
account in the integral. As an example Fig. 9.3 shows a typical velocity profile
in pipe flow, where the fluid sticks to the wall, so that the velocity at the wall
is zero, and the flow is fastest in the middle. However, for many engineering
applications it is not necessary to resolve the velocity profile, or the profiles
of other properties. Instead, it suffices to work with local averages, and this
will be done from now on. When the average values are inserted in (9.2), they
can be pulled out of the integral, and we find

ṁ = ρV A , (9.3)

where ρ and V are averages over the cross section A.

V (r) V
r

z

average velocityvelocity field

Fig. 9.3 Velocity field and average velocity in pipe flow

Sometimes it is convenient to use the volume flow V̇ which is given by

V̇ =
ṁ

ρ
= VA . (9.4)

9.3 Flow Work and Energy Transfer

The total energy E of an open system changes due to exchange of heat and
work, and due to convective energy transport, that is energy carried in or out
by the mass crossing the system boundary. Apart from propeller and volume
change work one has also to account for flow work, which is the work required
to push mass over the system boundaries.

We consider convective transfer first: The specific energy e = u+ 1
2V2+gz

is the local energy per unit mass. Any element of mass crossing the boundary
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carries this specific energy along, and thus a mass flow ṁ carries the convec-
tive energy flux

Ė = ṁe = ṁ

(

u+
1

2
V2 + gz

)

(9.5)

over the system boundary.
Now we compute flow work. The power required to push mass over the

system boundary is, as always, the force required times the velocity. The
force is the local pressure times the cross section, thus

Ẇflow = − (pA)V = −p

ρ
ṁ . (9.6)

Work is done to the system when mass is entering, then Ẇflow must be

negative. The system does work to push leaving mass out, then Ẇflow must
be positive. Accordingly, flow work points opposite to mass flow, which is
ensured by the minus sign in the equation.

Thus, in comparison to the energy balance for closed systems, the energy
balance for the general open system of Fig. 9.1 has additional contributions to
account for convective energy transport and flow work. In condensed notation
it reads

dE

dt
= Q̇− Ẇ +

∑

in/out

Ė −
∑

in/out

Ẇ flow , (9.7)

where the sums have to be taken over all flows crossing the system boundary.
From the above expressions we find

Ė − Ẇ flow = ṁ

(

u+
p

ρ
+

1

2
V2 + gz

)

= ṁ

(

h+
1

2
V2 + gz

)

. (9.8)

The enthalpy h = u+ p
ρ arises through the combination of convective trans-

port of internal energy and flow work.
Explicitly accounting for mass flows leaving and entering the system, the

1st law—the balance of energy—for the general open system becomes

dE

dt
=
∑

in

ṁi

(

h+
1

2
V2 + gz

)

i

−
∑

out

ṁe

(

h+
1

2
V2 + gz

)

e

+ Q̇− Ẇ . (9.9)

The indices (i, e) indicate the values of the properties at the location where
the respective flows cross the system boundary, that is their average values
at the inlets and outlets, respectively. This equation states that the energy
E within the system changes due to convective inflow and outflow, as well as
due to heat transfer and work. Note that the flow energy includes the work
required to move the mass across the boundaries (flow work). Moreover, there
can be several contributions to work and heat transfer, that is Ẇ =

∑
j Ẇj

and Q̇ =
∑

k Q̇k.
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9.4 Entropy Transfer

All mass that is entering or leaving the system carries entropy. The entropy
flow associated with a mass flow is simply Ṡ = ṁs, where s is the specific
entropy. Adding the appropriate terms for inflow and outflow to the 2nd law
(4.24) for closed systems yields the 2nd law—the balance of entropy—for
open systems as

dS

dt
=
∑

in

ṁisi −
∑

out

ṁese +
∑

k

Q̇k

Tk
+ Ṡgen with Ṡgen ≥ 0 . (9.10)

This equation states that the entropy S within the system changes due to
convective inflow and outflow, as well as due to entropy transfer caused by
heat transfer (Q̇k/Tk) and entropy generation due to irreversible processes
inside the system (Ṡgen ≥ 0). If all processes within the system are reversible,

the entropy generation vanishes (Ṡgen = 0). Recall that Q̇k is the heat that
crosses the system boundary where the boundary temperature is Tk.

9.5 Open Systems in Steady State Processes

Many thermodynamic systems and cycles are composed of open system de-
vices. Since the cycles (e.g., power plants or refrigerators) run continuously,
they are mainly operating at steady state. In the following sections we shall
study the basic equations for steady open systems, and tabulate work and
heat for the most important devices.

In steady state processes no changes occur over time at a given location.
Then all time derivatives vanish and mass balance (9.1), energy balance (9.9),
and entropy balance (9.10) assume the forms

∑

out

ṁe =
∑

in

ṁi , (9.11)

∑

out

ṁe

(

h+
1

2
V2 + gz

)

e

−
∑

in

ṁi

(

h+
1

2
V2 + gz

)

i

= Q̇− Ẇ , (9.12)

∑

out

ṁese −
∑

in

ṁisi −
∑

k

Q̇k

Tk
= Ṡgen ≥ 0 . (9.13)

The interpretation of these equations is straightforward: The mass balance
(9.11) states that, in steady state, as much mass leaves the system as en-
ters. The energy balance (9.12) states that a change of the flow energy
ṁ
(
h+ 1

2V2 + gz
)
between outflow and inflow is effected by exchange of heat

and work. The last equation, Eq. (9.13), states that the difference of entropy
flowing in and out of the system is due to transfer of entropy caused by heat
transfer (Q̇/T ) and entropy generation inside the system (Ṡgen). Entropy is
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Ẇ12 Q̇12

ṁ ṁ

1 2

Fig. 9.4 Typical one-inlet-one-exit system

created, if the processes are irreversible (Ṡgen > 0), and entropy is conserved

when all processes are reversible (Ṡgen = 0).
Note that in a steady state process the volume of the system must remain

unchanged, which implies that no piston work occurs: all work exchange is
due to propeller work.

9.6 One Inlet, One Exit Systems

A case of particular importance are systems with only one inlet and one exit,
as sketched in Fig. 9.4, for which the mass balance reduces to

ṁin = ṁout = ṁ . (9.14)

There is just one constant mass flow ṁ flowing through each cross section of
the system.

The corresponding forms for energy and entropy balance are2

ṁ

[

h2 − h1 +
1

2

(V2
2 − V2

1

)
+ g (z2 − z1)

]

= Q̇12 − Ẇ12 , (9.15)

ṁ (s2 − s1)−
∑

k

Q̇k

Tk
= Ṡgen ≥ 0 . (9.16)

It is instructive to study the equations for an infinitesimal step within the
system, i.e., for infinitesimal system length dx, where the differences reduce
to differentials,

2 The subscripts refer to properties at different locations within the device: “1”
denotes the inlet, “2” denotes the outlet. This must be distinguished from the
analysis of closed systems, where the subscripts normally refer to states assumed
at different times t1, t2.
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ṁ

(

dh+
1

2
dV2 + gdz

)

= δQ̇− δẆ , (9.17)

ṁds− δQ̇

T
= δṠgen . (9.18)

Heat and power exchanged, and entropy generated, in an infinitesimal step
along the system are process dependent, and as always we write (δQ̇, δẆ , δṠ)
to indicate that these quantities are not exact differentials. Use of the Gibbs
equation in the form Tds = dh− vdp allows to eliminate dh and δQ̇ between
the two equations to give an expression for power,

δẆ = −ṁ

(

vdp+
1

2
dV2 + gdz

)

− TδṠgen . (9.19)

The total power for the finite system follows from integration over the length
of the system as

Ẇ12 = −ṁ

∫ 2

1

(

vdp+
1

2
dV2 + gdz

)

−
∫ 2

1

TδṠgen . (9.20)

The above equation has several implications: First, since TδṠgen ≥ 0, we
see—again—that irreversibilities reduce the power output of a power pro-
ducing device (where Ẇ12 > 0), and increase the power demand of a power
consuming device (where Ẇ12 < 0). Efficient energy conversion requires to
reduce irreversibilities as much as possible.

When we consider (9.19) for a flow without work, we find Bernoulli’s equa-
tion (Daniel Bernoulli, 1700-1782) for pipe flows as

vdp+
1

2
dV2 + gdz = − 1

ṁ
T δṠgen . (9.21)

The Bernoulli equation is probably easier to recognize in its integrated form
for incompressible fluids (where v = 1

ρ = const.),

H2 −H1 =
p2 − p1

ρ
+

1

2

(V2
2 − V2

1

)
+ g (z2 − z1) = − 1

ṁ

∫ 2

1

TδṠgen . (9.22)

Here,H = p
ρ+

1
2V2+gz denotes hydraulic head. The right hand side describes

loss of hydraulic head due to irreversible processes, in particular friction.
Finally, for reversible processes—where δṠgen = 0 in (9.20)—we find the

reversible steady-flow work

Ẇ rev
12 = −ṁ

∫ 2

1

(

vdp+
1

2
dV2 + gdz

)

. (9.23)

For flows at relatively low velocities and without significant change of level
the above relation can be simplified to
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wrev
12 == ¡

∫ 2

1
vdp

1

2

p

v

Fig. 9.5 Specific reversible steady state flow work is the area to the left of the
process curve

Ẇ rev
12 = −ṁ

∫ 2

1

vdp . (9.24)

The specific reversible flow work, i.e., the work per unit mass flowing through
the device, is

wrev
12 =

Ẇ rev
12

ṁ
= −
∫ 2

1

vdp . (9.25)

In a p-v-diagram, wrev
12 is the area to the left of the process curve, see Fig. 9.5

for an illustration.
The heat exchanged in a reversible process in a steady-state, one inlet,

one exit system follows from the integration of the second law (9.18) with
δṠgen = 0 as

Q̇rev
12 =

∫ 2

1

δQ̇rev = ṁ

∫ 2

1

Tds . (9.26)

Correspondingly, the specific reversible heat, i.e., the heat per unit mass
flowing through the device, is

qrev12 =
Q̇rev

12

ṁ
=

∫ 2

1

Tds . (9.27)

In a T-s-diagram, qrev12 is the area below the process curve, just as in a closed
system.

9.7 Entropy Generation in Mass Transfer

Friction in flows leads to loss of pressure and corresponding entropy gener-
ation. When we consider a simple flow with no work added or withdrawn,
Eq. (9.21) gives the entropy generated in dx as
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δṠgen = −ṁ

T

(

vdp+
1

2
dV2 + gdz

)

.

The total entropy generated in a finite system is

Ṡgen = −ṁ

∫ out

in

1

T

(

vdp+
1

2
dV2 + gdz

)

. (9.28)

For a system where kinetic and potential energy are unimportant, this reduces
to

Ṡgen = −ṁ

∫ out

in

v

T
dp . (9.29)

We interpret the entropy generation rate as the product of a flux, the mass
flow ṁ, and a thermodynamic force, namely the integral over − v

T dp. Since
specific volume v and thermodynamic temperature T are strictly positive,
the force

∫ out
in

v
T dp is proportional to the pressure difference, − ∫ outin

v
T dp ∝

(pin − pout). In order to obtain a positive entropy generation rate, the mass
flow must be proportional to the force, which is the case for

ṁ = βA (pin − pout) = βAΔp . (9.30)

Here, A is the mass transfer area and β > 0 is a positive transport coefficient
that must be measured.

One particular example for this law is the Hagen-Poiseuille relation
(Gotthilf Hagen, 1797-1884; Jean Poiseuille, 1797-1869) of fluid dynamics
which gives the volume flow V̇ = ṁ/ρ of a fluid with shear viscosity η through
a pipe of radius R and length L as

V̇ =
πR4

8ηL
Δp . (9.31)

Another example for (9.30) is Darcy’s law (Henry Darcy, 1803-1858) that
describes flow through porous media. Then A is the cross section of the
porous medium considered, and β is a coefficient of permeability.

Real processes are irreversible, and produce entropy. For a simple flow, the
work loss to irreversibilities is

Ẇloss =

∫ out

in

TδṠgen . (9.32)

Since δṠgen = − ṁ
T vdp, for isothermal flow of an incompressible liquid,

entropy generation and work loss are

Ṡgen =
V̇

T
(pin − pout) , Ẇloss = V̇ (pin − pout) , (9.33)

where V̇ = ṁv is the volume flow.
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Fig. 9.6 Compressor (left) and turbine (right): Sketch and T-s-diagrams

For an ideal gas flow, we have instead

Ṡgen = ṁR ln
pin
pout

, Ẇloss = −ṁ

∫ 2

1

vdp . (9.34)

9.8 Adiabatic Compressors, Turbines and Pumps

In a turbine, high pressure flow drives propeller blades that are attached to a
rotating shaft. The flow does work on the blades, the rotating shaft delivers
the work to the surroundings. As the flow does work, the pressure drops,
that is turbines are driven by pressure differences. Compressors perform the
opposite task: the shaft is driven, and the rotating blades pressurize the flow:
compressors create a pressure difference and consume work.

The flow through most turbines (T ) and compressors (C), as sketched in
Fig. 9.6, is so fast that there is no time to exchange heat with the surround-
ings, and thus they are often treated as being adiabatic. Although the flows
are fast, the flow velocities are normally ignored, since the kinetic energy does
not contribute significantly to work. With these simplifications (9.15, 9.16)
reduce to

ẆC = ṁ (h1 − h2) < 0 , ẆT = ṁ (h1 − h2) > 0 ,

wC = ẆC

ṁ = h1 − h2 < 0 , wT = ẆT

ṁ = h1 − h2 > 0 ,
s2 − s1 ≥ 0 , s2 − s1 ≥ 0 ,

(9.35)

which hold for reversible and irreversible adiabatic turbines and compressors.
In reversible adiabatic compressors and turbines the flow is isentropic (con-
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Q̇12

TR1 2

heat exchanger

Q̇12

1 2

Fig. 9.7 Flow heat exchanger. Left: The system boundary is just around the flow.
Right: The system includes the heat transfer to a reservoir R, the system boundary
is extended.

tinuous lines 1-2s), while in irreversible adiabatic compressors and turbines
the entropy must grow (dashed lines 1-2s), as illustrated in the figure.

Pumps serve to increase the pressure in liquids. Many liquids can be as-
sumed to be incompressible in good approximation, so that v = const. The
reversible pump work can then easily be computed from the flow work (9.24),

wrev
P = −

∫ 2

1

vdp = −v

∫ 2

1

dp = v (p1 − p2) < 0 . (9.36)

9.9 Heating and Cooling of a Pipe Flow

In flow heat exchangers, the working fluid flows through pipes that are ex-
posed to an environment at different temperature. For a simple pipe flow with
heat exchange but no work, as depicted in Fig. 9.7, one can usually ignore
the kinetic and potential energies, thus the heat exchanged is obtained from
the first law as

Q̇12 = ṁ (h2 − h1) , q12 =
Q̇12

ṁ
= h2 − h1 . (9.37)

For further insight, we consider the associated entropy generation. First
we apply the second law to the flow alone, that is the system boundary is
directly at the pipe, see left of Fig. 9.7. The appropriate form of the second
law for an element dx of the flow is the Bernoulli equation (9.21). Ignoring
kinetic and potential energy, we see that the pressure must drop along the
flow, dp = − 1

ṁvTδṠgen ≤ 0. The pressure drop is due to friction in the flow.
In our calculations we normally ignore friction effects in heat exchangers, so
that δṠgen = 0, and thus the pipe flow in heat exchangers is assumed to be
isobaric: dp = 0, or p = const.

While the flow itself is reversible, typically there is irreversibility associated
with the heat exchange to the external environment: the isobaric flow heat
exchanger is internally reversible, but externally irreversible. The schematic
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Fig. 9.8 Typical throttling devices: orifice, porous plug

on the right of Fig. 9.7 shows heat exchange with a reservoir at tempera-
ture TR. Application of the second law to the system with boundary at the
reservoir, where the temperature is TR, yields

ṁ (s2 − s1)− Q̇12

TR
= ṁ

(

s2 − s1 − h2 − h1

TR

)

= Ṡgen . (9.38)

The above equations are valid for heating (Q̇12 > 0) and cooling (Q̇12 < 0).
Heat exchange between flows in closed and open heat exchangers will be
discussed in Secs. 9.15, 9.16.

9.10 Throttling Devices

Throttling devices are used to create significant pressure drops by pressing
the fluid through a small orifice or a porous plug, as depicted in Fig. 9.8, or
other narrow obstacles which induce friction losses to the flow.

No work is exchanged, and the flow can be considered as adiabatic; flow
velocities are small so that kinetic energy can be ignored. Due to high friction
losses the process is irreversible, and the pressure drops, dp = − 1

ṁvTδṠgen <
0, or p2 − p1 < 0. Then first and second law (9.15, 9.16) reduce to

h2 − h1 = 0 , s2 − s1 > 0 . (9.39)

Throttling devices are isenthalpic (i.e., constant enthalpy), adiabatic, and
irreversible.

9.11 Adiabatic Nozzles and Diffusers

Nozzles and diffusers have no moving mechanical parts, they change flow
properties through changing the cross section. Nozzles are used to accelerate
a flow, for instance in order to produce thrust for an airplane or a rocket.
Diffusers are used to slow down flows and increase the pressure. As can be
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ṁ

1

nozzle s

T

1

2s
2

ṁ
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Fig. 9.9 Nozzle and diffuser: sketch and T-s-diagrams

seen from Fig. 9.9, neither work (no moving boundaries!) nor heat (fast flow!)
are exchanged, and thus the first law reduces to

h2 +
1

2
V2
2 = h1 +

1

2
V2
1 . (9.40)

For nozzles the inflow velocity is normally much less than the outflow velocity
and can be ignored, so that

nozzle: V2
2 � V2

1 ⇒ V2 =
√
2 (h1 − h2) . (9.41)

For diffusers, on the other hand, the inflow velocity normally is high, while
the outflow velocity is slow, thus

diffuser: V2
2 � V2

1 ⇒ h2 = h1 +
1

2
V2
1 . (9.42)

To better understand the relation between changes of pressure and velocity
we employ the Bernoulli equation (9.21) for reversible processes and constant
potential energy, dz = 0, which gives vdp = −VdV . For a nozzle dp < 0 and
thus dV > 0 (acceleration in pressure gradient), while for a diffuser dV < 0
and thus dp > 0 (pressure increase by deceleration).

In reversible adiabatic nozzles and diffusers the flow is isentropic (con-
tinuous lines 1-2s), while in irreversible adiabatic nozzles and diffusers the
entropy must grow (dashed lines 1-2), as illustrated in Fig. 9.9.
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9.12 Isentropic Efficiencies

Many thermodynamic processes are adiabatic, since they happen so fast that
no heat can be exchanged during the process. When the process is adiabatic
and reversible, the second law tells us that the process is isentropic as well,
since Q̇ = 0 and Ṡgen = 0. Real processes, however, will always be irreversible,
so that real adiabatic processes are accompanied by entropy generation. A
useful measure for the quality of the performance of irreversible devices is
given by efficiency measures that compare adiabatic irreversible devices to
their isentropic counterparts. In the following we discuss isentropic efficiencies
for compressors, pumps, turbines, nozzles and diffusers.

Compressor: The left T-s-diagram in Fig. 9.6 shows, for an ideal gas, two
isobaric lines. An adiabatic and reversible compression of the gas between
pressures p1 and p2 follows the isentropic path 1-2s; the required compressor
work per unit mass is wC,rev = h1 − h2s. A real compressor is irreversible
due to internal friction and internal heat transfer, and the compressed state
will have a larger entropy. The endpoint of the compression is point 2 with
s2 > s2s = s1 and the required compressor work is wC = h1−h2. Note that in
the figure the line connecting points 1 and 2 is dotted to indicate that during
compression the gas is in non-equilibrium states that cannot be marked as a
path in the T-s-diagram, only the initial and endpoints are known.

The performance of an adiabatic compressor can be measured by compar-
ing its actual work requirement with the best case by means of the isentropic
compressor efficiency

ηC =
wC,rev

wC
=

h1 − h2s

h1 − h2
≤ 1 . (9.43)

The real compressor requires more work input, since some work is needed
to overcome friction and other irreversibilities. The isentropic efficiency is
defined such that it has values between 0 and 1; realistic compressors have
efficiencies ηC = 0.8− 0.9. This definition can be extended to pumps, which
do not compress a gas, but increase the pressure in a liquid.

Turbine: The expansion in an adiabatic and reversible turbine follows the
isentropic path 1-2s in the right T-s-diagram of Fig. 9.6; the work delivered
per unit mass is wT,rev = h1 − h2s. A real turbine is irreversible, and will
expand to state 2 producing the work wT = h1 − h2.
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The performance of an adiabatic turbine can be measured by comparing
its actual work requirement with the best case by means of the isentropic
turbine efficiency

ηT =
wT

wT,rev
=

h1 − h2

h1 − h2s
≤ 1 . (9.44)

The real turbine delivers less work, since some work is consumed to overcome
friction and other irreversibilities. The isentropic efficiency is defined such
that it has values between 0 and 1; realistic turbines have efficiencies ηT =
0.85− 0.95.

Nozzle: An adiabatic nozzle accelerates the flow, while no work is exchanged.
For a nozzle expanding from p1 to p2, the outflow velocity is V =

√
2 (h1 − h2)

(inflow velocity ignored). The nozzle efficiency is usually defined not by the
velocity, but the specific kinetic energy of the outflow, as

ηN =
1
2V2

1
2V2

rev

=
h1 − h2

h1 − h2s
≤ 1 . (9.45)

Typical nozzle efficiencies are above 95%.

Diffuser: Isentropic diffuser efficiency cannot be defined through enthalpies
that easily. The first law for the diffuser states h2 = h1 +

1
2V2

1 , which implies
that for an ideal gas, where h2 = h (T2), the exit temperature T2 is the same
for reversible and irreversible diffusers. However, irreversibilities lead to lower
exit pressure p2 as compared to the reversible exit pressure p2s, see the T-
s-diagram in Fig. 9.9. Not all of the available kinetic energy 1

2V2
1 is used

for compression, i.e., pressure increase, but some is lost to irreversibility. A
reversible diffuser that gives the end pressure p2 of the irreversible diffuser
would convert the kinetic energy 1

2V2
x = hx − h1, where hx = h (Tx), and Tx

is the temperature at the end of an isentropic compression between the inlet
state {p1, T1} and {p2, Tx}. With the help of this artificial state, isentropic
diffuser efficiency can be defined as

ηD =
hx − h1

h2 − h1
. (9.46)

The definition becomes more transparent for an ideal gas with constant spe-
cific heats, for which we find

ηD =
Tx − T1

T2 − T1
=

(
p2

p1

)k−1
k − 1

T2

T1
− 1

. (9.47)
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9.13 Summary: Open System Devices

For later reference, we list work, heat and operating conditions for the most
common one-inlet-one-exit devices in a table:

adiabatic compressor: s2 − s1 ≥ 0 wC = h1 − h2 q = 0
adiabatic turbine: s2 − s1 ≥ 0 wT = h1 − h2 q = 0
rev. adiabatic pump: s2 − s1 = 0 wP = v (p1 − p2) q = 0
heating and cooling: p2 − p1 = 0 w = 0 q12 = h2 − h1

throttling device: h2 − h1 = 0 w = 0 q = 0

adiabatic nozzle: V2 =
√
2 (h1 − h2) w = 0 q = 0

adiabatic diffuser: h2 = h1 +
1
2V2

1 w = 0 q = 0

9.14 Examples: Open System Devices

9.14.1 Reversible Turbine with Kinetic Energy

Steam (water vapor) at 15MPa, 500 ◦C is expanded in a steady state adi-
abatic reversible turbine to 40 kPa. The inlet diameter of the turbine is
d1 = 0.1m, the exit diameter is d2 = 1.0m, and the entry velocity is
V1 = 40 m

s . We determine the properties of the end state and the power
produced. As we do this, we consider the question whether the kinetic energy
of the flow can be ignored.

From the steam table for water we find specific volume, enthalpy and
entropy of the inlet state as

v1 = v (15MPa, 500 ◦C) = 0.0208
m3

kg
,

h1 = h (15MPa, 500 ◦C) = 3309
kJ

kg
,

s1 = s (15MPa, 500 ◦C) = 6.344
kJ

kgK
.

The mass flow through the turbine is (A1 = π
4 d

2
1 = 7.85× 10−3m2)

ṁ =
V1A1

v1
= 15.1

kg

s
.

Since the process is adiabatic and reversible, it is isentropic, so that s2s =
s1 = 6.344 kJ

kgK at p2 = 40 kPa. This is a saturated state with the quality

x2s =
s2s − sf

sfg |p2=40 kPa

=
6.344− 1.026

6.644
= 0.80 .

The corresponding values for volume and enthalpy are
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v2s = (1− x2s) vf + x2svg = [0.2× 0.00103+ 0.8× 3.993]
m3

kg
= 3.195

m3

kg
,

h2s = hf + x2shfg = [317.6 + 0.8× 2319]
kJ

kg
= 2173

kJ

kg
.

Since the mass flux is constant throughout the turbine, the exit velocity is
(A2 = π

4 d
2
2 = 0.785m2)

V2s =
ṁ v2s
A2

= 61.5
m

s
.

From the first law for an adiabatic turbine we find the specific work as

wT,rev = h1 − h2s +
1

2

(V2
1 − V2

2s

)
= 1136

kJ

kg
− 1091

m2

s2
= 1135

kJ

kg
.

Note that 1 kJ
kg = 1000 m2

s2 , thus the contribution of kinetic energy 1
2

(V2
1 − V2

2

)

is far smaller than the contribution of thermal energy (h1 − h2s). This ex-
ample supports our statement that in the computation of turbines and com-
pressors kinetic energy can be ignored.

The power produced by the reversible turbine is

Ẇ = ṁwT,rev = 17.2 MW .

The T-s-diagram for the turbine is depicted as process (1− 2s) in Fig. 9.10.

T

s

1

2

p1

p2

2s

Fig. 9.10 T-s-diagram for a reversible and an irreversible steam turbine between
pressures p1 and p2
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9.14.2 Irreversible Turbine

We consider the turbine of the previous example for the irreversible case,
with an isentropic efficiency of ηT = 0.8. The T-s-diagram for the turbine is
depicted as process (1− 2) in Fig. 9.10.

Due to the definition of isentropic efficiency, the specific work and the
power produced for this turbine is

wT = ηTwT,rev = 911.2
kJ

kg
, Ẇ = ṁwT = 13.8MW .

As suggested by the previous example, we ignore kinetic energy. Then, the
enthalpy of the final state is

h2 = h1 − wT = 2398
kJ

kg
,

which corresponds to the quality at the turbine exit

x2 =
h2 − hf

hfg |p2

= 0.9 .

9.14.3 Irreversible Compressor

In a refrigeration cycle, cooling fluid R134a enters the adiabatic compressor
as saturated vapor at p1 = 0.14MPa. The compressor with isentropic effi-
ciency of ηC = 0.85 compresses the vapor to p2 = 1MPa. We compute the
specific work required. The irreversible compression process (1− 2), and the
reversible ideal process (1− 2s) are indicated in the T-s-diagram of Fig. 9.11.

T

s

1

2

p2

p1

2s

Fig. 9.11 Reversible and irreversible compression of R134a
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From the table we find the data for the inlet state as

T1 = Tsat (p1) = Tsat (0.14MPa) = −18.8 ◦C ,

h1 = hg (p1) = hg (0.14MPa) = 236.0
kJ

kg
,

s1 = sg (p1) = sg (0.14MPa) = 0.9322
kJ

kgK
.

The enthalpy at the exit of the reversible compression to p2 is (interpolation
in superheated vapor table)

h2s = h (p2, s2 = s1) = h

(

1MPa, s = 0.9322
kJ

kgK

)

= 276.8
kJ

kg
,

the corresponding temperature is T2s = 47.1 ◦C. The work for the reversible
compressor is

wC,rev = h1 − h2s = −40.8
kJ

kg
.

The definition of the isentropic compressor efficiency (9.43) yields the work
for the irreversible compressor as

wC =
wC,rev

ηC
= −48.0

kJ

kg
.

Since wC = h1 − h2, the enthalpy at the compressor exit is

h2 = h1 − wC = 284.0
kJ

kg
;

interpolation in the steam table yields the exit temperature T2 = 53.4 ◦C.

9.14.4 Irreversible Pump

A water flow of ṁ = 10 kg
s enters a pump at 1 bar, 20 ◦C, and leaves at 100 bar.

The power consumption of the pump is 120 kW. We determine the enthalpy
of the compressed liquid at the pump exit, and the isentropic efficiency of
the pump.

The water at the pump inlet is in the compressed liquid state, for which
we can approximate h1 � hf (T1) = 84.0 kJ

kg . The power consumption of the
pump is

ẆP = ṁwP = ṁ (h1 − h2) ,

which implies that (power consumed is negative, ẆP = −120 kW!)

h2 = h1 − ẆP

ṁ
= 96.0

kJ

kg
.
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Considering water as incompressible liquid with v1 � vf (T1) = 0.001 m3

kg ,
we have for a reversible pump between the two pressures

wP,rev = −v1 (p2 − p1) = −9.9
kJ

kg
.

Thus, the isentropic efficiency of the pump is

hP =
wP,rev

wP
=

−v1 (p2 − p1)

h1 − h2
= 0.825 .

9.14.5 Isobaric Evaporation

A mass flow of 36 t
h compressed water at 25 ◦C, 80 bar is isobarically heated

and evaporated to 550 ◦C. The heat is provided from combustion of coal
which delivers qcoal = 20 MJ

kg of heat per kg of coal. We determine the mass
flow of coal required for this process. Figure 9.12 shows the process diagrams.

With the enthalpies of water

h1 � hf (25
◦C) = 104.9

kJ

kg
, h2 = h (8MPa, 550 ◦C) = 3521

kJ

kg
,

the heat required for heating and evaporation is

Q̇12 = ṁw (h2 − h1) = 34.2MW .

This heat is provided through the combustion of coal, that is

Q̇12 = ṁcoalqcoal =⇒ ṁcoal =
Q̇12

qcoal
= 1.71

kg

s
= 6.15

t

h
.

T

v

p

s

1

1
2

2

Fig. 9.12 Isobaric heating and evaporation of compressed liquid
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We further assume that the heat generated by combustion of coal provides
a hot environment (the boiler) at temperature TB = 1100K. The entropies
of in- and outflow are

s1 � sf (25
◦C) = 0.3674

kJ

kgK
, s2 = s (8MPa, 550 ◦C) = 6.8778

kJ

kgK
,

and the associated entropy generation rate is

Ṡgen = ṁw

(

s2 − s1 − h2 − h1

TB

)

= 34.05
kW

K
.

9.14.6 Throttling of Compressed Liquid

Cooling fluid R134a at T1 = 16 ◦C, p1 = 0.8MPa, runs through an adiabatic
throttle, which it leaves at p2 = 140 kPa. We determine the exit state of the
flow.

Since the saturation pressure psat (T1) = 0.504MPa is less than the actual
pressure p1, the initial state is compressed liquid. The throttle is isenthalpic,
that is h2 = h1. With the approximation for compressed liquid, we have for
the latter

h1 � hf (T1) + v1 (p1 − psat (T1)) � hf (T1) = 71.7
kJ

kg
.

At 140 kPa, the enthalpy h2 = h1 = 71.7 kJ
kg lies between the enthalpies of

the saturated states, hf < h2 < hg, so that the exit state is in the two-phase
region. The quality is

x2 =
h2 − hf

hfg |p2

=
73.7− 27.1

212.1
= 0.22 .

The temperature at the exit is the saturation temperature, T2 = Tsat (p2) =
−18.8 ◦C.

From the compressed liquid approximation we find the inlet entropy as
s1 � sf (T1) = 0.274 kJ

kgK . The entropy of the end state is

s2 = sf + x2sfg = 0.1055
kJ

kgK
+ 0.22× 0.827

kJ

kgK
= 0.287

kJ

kgK
.

As expected, the entropy grows in the process, s2 > s1; the T-s-diagram is
shown in Fig. 9.13.
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Fig. 9.13 Throttling of compressed R134a liquid into the two phase region

9.14.7 Nozzle

Argon at T1 = 600K, p1 = 15 bar enters an adiabatic nozzle in which it
is expanded to p2 = 150 kPa. The nozzle efficiency is 92%. We determine
the maximum possible exit velocity, the actual exit velocity and the exit
temperature.

Argon is a monatomic gas, and thus has constant specific heat, cp = 5
2R =

0.52 kJ
kgK , k = 1.67. For an isentropic process between the two pressures we

find the exit temperature as

T2s = T1

(
p1
p2

) 1−k
k

= 238.9K .

When we ignore the inlet velocity, the exit velocity for the isentropic nozzle
is given by

V2s =
√
2 (h1 − h2s) =

√
2cp (T1 − T2s) = 613

m

s
.

The isentropic nozzle is the best possible case, since it has no losses to friction
or other irreversibilities. Thus, the above is the maximum velocity possible.

The definition of the isentropic efficiency of a nozzle (9.45) gives the exit
velocity as

V2 =
√
ηNV2

2s = 588
m

s
.

Since V =
√
2 (h1 − h2) =

√
2cp (T1 − T2), the exit temperature is

T2 = T1 − V2
2

2cp
= 267.7K .
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9.14.8 Diffuser

Air enters the adiabatic irreversible diffuser of an air engine with a velocity of
V1 = 300 m

s , at p1 = 0.1 bar, T1 = 230K. The inlet cross section is A1 = 1m2.
The process can be described as polytropic with n = 1.5. We determine the
pressure at the end of the diffuser, where the flow velocity can be ignored
(V2 � 0), and the mass flow.

Throughout the process the temperature is so low that constant specific
heats can be assumed. We set the enthalpy constants such that h = cpT
where cp = 1.004 kJ

kg K and T is the temperature in Kelvin.
The mass flow into the diffuser is

ṁ = ρ1V1A1 =
p1
RT1

V1A1 = 45.48
kg

s
.

The first law for the diffuser gives

h2 = h1 +
1

2
V2
1 = h (T1) +

1

2
V2
1 = 275.9

kJ

kg
.

With the enthalpy constants chosen here, the corresponding temperature is

T2 =
h2

cp
= 274.8K .

Since the process is polytropic, the exit pressure is

p2 = p1

(
T2

T1

) n
n−1

= 0.171 bar .

The entropy generation per unit mass follows from the 2nd law as

Ṡgen

ṁ
= s2 − s1 = cp ln

T2

T1
−R ln

p2
p1

=

(

cp − n

n− 1
R

)

ln
T2

T1
= 0.025

kJ

kgK
.

For a reversible adiabatic diffuser, the entropy would stay constant, and the
exit pressure would be higher:

p2s = p1

(
T2

T1

) k
k−1

= 0.186 bar .

The isentropic diffuser efficiency (9.46) is

ηD =

(
p2

p1

) k−1
k − 1

(
p2s

p1

) k−1
k − 1

=
T2

T1

n
n−1

k−1
k − 1

T2

T1
− 1

= 0.846 .



200 9 Open Systems

9.15 Closed Heat Exchangers

Closed heat exchangers serve to transfer heat between different fluids, for
instance from the hot combustion gas to evaporating water in steam power
plants, or from the condenser in the power plant to the cooling water. We
ignore friction losses in the flow, so that the flows are isobaric. Figure 9.14
shows the exchange of heat between two fluids A and B in co- and counter-
flow heat exchangers, where superscripts i and e denote incoming and exiting
flows, respectively. Since the fluids flow through different piping systems, they
might have different pressures pA, pB.

The conservation laws for mass and energy give for both set-ups (adiabatic
to the outside, steady state)

ṁA = const. , ṁB = const. , ṁB (hB,e − hB,i) = −ṁA (hA,e − hA,i) .
(9.48)

Due to finite temperature differences, the heat exchange will be irreversible.
The second law for externally adiabatic heat exchange reads

ṁA (sA,e − sA,i) + ṁB (sB,e − sB,i) = Ṡgen ≥ 0 . (9.49)

For a closer look, we consider the first and second law for an infinitesimal
section dx of the heat exchanger (no work, kinetic and potential energies can
be ignored), which read

ṁAdhA + ṁBdhB = 0 , ṁAdsA + ṁBdsB = δṠgen (9.50)

co-flow heat exchanger

counter-flow heat exchanger
ṁA; T

i
A ṁA; T

e
A

ṁB; T
i
BṁB; T

e
B

±Q̇BA

ṁA; T
i
A

ṁB; T
i
B

ṁA; T
e
A

ṁB; T
e
B

±Q̇BA

dx

dx

Fig. 9.14 Co-flow and counter flow heat exchangers (schematic)
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For isobaric processes the Gibbs equation gives dh = Tds, which allows to
combine the above to

δṠgen = ṁA

[
1

TA
− 1

TB

]

dhA . (9.51)

Accordingly, entropy generation and lost work depend on the local temper-
ature difference between the streams. The total entropy generation is given
by the integral over the length of the heat exchanger (HE),

Ṡgen =

∫

HE

δṠgen = ṁA

∫

HE

[
1

TA
− 1

TB

]

dhA . (9.52)

To see that the entropy generation is positive, we note that, under the given
simplifications, the first law for stream A reads ṁAdhA = δQ̇BA where δQ̇BA

is the heat going from B to A (heat into the system is positive). Since heat
goes from warm to cold, we have δQ̇BA > 0 if TB > TA .

A detailed discussion of counter-flow and co-flow heat exchangers shows
that the local temperature difference between the two flows is smaller for the
counter-flow design, which therefore is thermodynamically preferable (see
Sec. 15.2).

9.16 Open Heat Exchangers: Adiabatic Mixing

Another interesting process that occurs quite often is heat exchange be-
tween two flows by adiabatic mixing of two (or more) streams, as depicted
in Fig. 9.15. To prevent backflow, the mixed streams should have the same
pressure, but their temperatures and/or phase states are different. For the
computation, pressure losses through the mixing chamber are normally ig-
nored, so that the outflow pressure equals the inflow pressure. Moreover,
kinetic and potential energies can be ignored since their changes are much
smaller than changes in enthalpy.

ṁ1

ṁ2

T1; h1; V1

T2; h2; V2

T3; h3; V3

ṁ3 = ṁ1 + ṁ2p1 = p2 = p3 = p

1

2

3

Fig. 9.15 Adiabatic and isobaric mixing of two streams



202 9 Open Systems

The steady state mass and energy balances (9.11, 9.12) reduce to

ṁ3 = ṁ1 + ṁ2 , ṁ3h3 = ṁ1h1 + ṁ2h2 , (9.53)

or
ṁ2 (h3 − h2) = ṁ1 (h1 − h3) . (9.54)

That is, the mass flow and the total enthalpy flow are conserved in mixing.
Since mixing occurs uncontrolled, the process is irreversible, and the entropy
will increase; from (9.13) we find

Ṡgen = ṁ1 (s3 − s1) + ṁ2 (s3 − s2) ≥ 0 . (9.55)

There is a corresponding work loss, since the temperature difference between
the flows could be used to drive heat engines, but is not.

9.17 Examples: Heat Exchangers

9.17.1 Closed Heat Exchanger

In the condenser of a steam power plant, a mass flow ṁc = 10 t
h saturated

liquid-vapor mixture at 35 ◦C, x = 0.9 is isobarically condensed to the sat-
urated liquid state by heat exchange with cooling water. We determine the
mass flow ṁw of cooling water which enters at Tw1 = 20 ◦C and leaves at
Tw2 = 30 ◦C.

The cooling water can be described as incompressible liquid with constant
specific heat cw = 4.18 kJ

kgK . From (9.48) we obtain, with A for the cooling
water and B for the condensate,

ṁw = ṁc
(hc1 − hc2)

cw (Tw2 − Tw1)
.

The entropy generation is

Ṡgen = ṁwcw ln
Tw2

Tw1
+ ṁc (sc2 − sc1) .

Enthalpies and entropies of the condensate are

hc1 = h (35 ◦C, x = 0.9) = 2323
kJ

kg
, sc1 = s (35 ◦C, x = 0.9) = 7.57

kJ

kgK
,

hc2 = hf (35
◦C) = 146.7

kJ

kg
, sc2 = sf (35

◦C) = 0.505
kJ

kgK
,

so that the required mass flow of cooling water is
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ṁw = ṁc
hc1 − hc2

cw (Tw2 − Tw1)
= 521

t

h
= 145

kg

s
.

The corresponding entropy generation is

Ṡgen = 20.3
kW

K
− 19.6

kW

K
= 0.67

kW

K
.

9.17.2 Adiabatic and Isobaric Mixing

Compressed water at T1 = 20 ◦C is mixed with superheated steam at T2 =
400 ◦C; both streams are at p = 2bar. We determine the mass flow ratio
ṁ2/ṁ1 so that the outflow is just saturated liquid at p = 2bar (state 3), and
the entropy generation rate.

Enthalpy and entropy of the three states are

h1 = hf (20
◦C) = 84.0 kJ

kg , s1 = sf (20
◦C) = 0.297 kJ

kgK ,

h2 = h (2 bar, 400 ◦C) = 3277 kJ
kg , s2 = s (2 bar, 400 ◦C) = 8.222 kJ

kg ,

h3 = hf (2 bar) = 504.7 kJ
kg , s3 = sf (2 bar) = 1.530 kJ

kgK .

From (9.54) we find the mass flow ratio as

ṁ2

ṁ1
=

h1 − h3

h3 − h2
= 0.152 .

The entropy generation per unit mass of outflow follows from (9.55) as

Ṡgen

ṁ1 + ṁ2
=

(s3 − s1) +
ṁ2

ṁ1
(s3 − s2)

1 + ṁ2

ṁ1

= 0.187
kJ

kgK
≥ 0 .

Problems

9.1. Joule’s Honeymoon
When J. P. Joule went into Switzerland for his honeymoon in 1847, he took
some rather precise thermometers along. These he used to measure the change
of temperatures in waterfalls between top and bottom. For a waterfall of
300m height, which change in temperature would he have measured?

9.2. Grand Coulee Dam
The Grand Coulee Dam is the largest concrete structure in the US, and the
sixth largest production site for electrical energy worldwide. It has 24 tur-
bines and can produce up to 6.8GW electrical power. The relevant change of
height for power production is about 110m. Compute the mass flow through
the turbines when all run at full load. Assume adiabatic flow conditions,
neglect kinetic energy (discuss why you can do that!) and assume that the
temperature stays constant.
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9.3. Seven Mile Dam
Seven Mile Dam in B.C. has a maximum capacity of 848MW and generates
3200GWh of energy per year. The height for power generation is 65m: De-
termine the mass flow rate at maximum capacity, the total amount of water
running through the turbines per year, and the average mass flow rate.

9.4. Taking a Shower
A typical shower head has a flow rate of 8 litres/min at a pressure of 4 bar.
Determine the power required to provide the water for a shower in the top
floor of a 400m high-rise building. Compare with the energy demand for
heating the water from 10 ◦C to 35 ◦C.

9.5. Air Turbine
The adiabatic turbine in a gas power cycle delivers 25MW. Air enters the
turbine at 1227 ◦C, 18 bar and the pressure ratio over the turbine is 16.7. As-
sume reversible operation and determine the mass flow through the turbine.
Determine the inlet velocity when the inlet cross section is 900 cm2.

9.6. Reversible Turbine
Air at 1427 ◦C, 25 bar enters an adiabatic turbine at a rate of 25 kg

s with
a velocity of 60 m

s . The exiting air is at the local atmospheric pressure of
0.91 bar and its velocity is 120 m

s .

1. Determine the power delivered by the turbine.
2. Determine the cross sections at inlet and exit.
3. Compare the change in enthalpy with the change in kinetic energy and

discuss whether the kinetic energy could have been ignored.

9.7. Irreversible Turbine
The irreversible turbine in a gas turbine power plant expands air from p1 =
12 bar, 1200K to 1 bar; the isentropic efficiency is 0.9. Compute the work
output per kg of air.

9.8. Irreversible Pump
A mass flow of 200 kg

s of liquid water is pumped from 1 bar to 200 bar. Com-
pute the power consumption of the pump for an isentropic pump efficiency
of 75%.

9.9. Irreversible Turbine
A mass flow of 44 kg

s steam passes through a well-insulated (i.e., adiabatic)
turbine operating at steady state; the turbine develops 34.04MW of power.
The steam enters at 450 ◦C, and exits as saturated vapor at 0.05 bar. The
inlet velocity is 50 m

s , and the outlet velocity is 100 m
s .

1. Determine the inlet pressure.
2. Compare the change in enthalpy with the change in kinetic energy and

discuss whether the kinetic energy could have been ignored.
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3. Compute the power that could be obtained in an adiabatic reversible tur-
bine operating between the same inlet condition, and the same exit pres-
sure.

4. Determine the isentropic efficiency of the turbine, ηT .

9.10. Air Compressor
A compressor for air operates on a polytropic process with n = 1.272. The
state at the inlet is 1 bar, 300K, and the pressure rises to 6 bar. Heat transfer
occurs at a rate of 46.95 kJ

kg of air flowing through the compressor, since the
casing is cooled to reduce the work needed for compression. Compute the
power required if the mass flow is 4 kg

s .

9.11. R134a Compressor
The adiabatic compressor in a refrigeration plant consumes 2MW. Refriger-
ant R134a enters the compressor as saturated vapor with a temperature of
−18 ◦C, and is compressed to 1.0MPa; you can assume reversible operation,
and ignore kinetic and potential energies. Determine the mass flow through
the turbine, and the inlet cross section when the inlet velocity is 40 m

s .

9.12. Irreversible Compressor
The adiabatic compressor in a gas power cycle consumes 12MW. Air enters
the compressor at 320K, 1.04 bar and the pressure ratio over the compressor is
13. The compressor is irreversible with isentropic efficiency of 0.85. Determine
the mass flow through the turbine and the exit cross section when the exit
velocity is 100 km

h .

9.13. Heat Exchanger in Frozen Pizza Factory
Consider a refrigeration plant with a COP of 3.25. The plant’s power con-
sumption is Ẇ = 215 kW. The waste heat is rejected into an isobaric stream
of water at 1 bar that enters the heat exchanger at 12.5 ◦C, and leaves at
25 ◦C. Compute the mass flow of cooling water.

9.14. Cooling of an Air Stream
A mass flow of 20 kg

s of air is isobarically cooled from 200 ◦C to 50 ◦C by heat
transfer to the outside environment at 18 ◦C. Determine the cooling rate,
entropy generation rate and the work loss for this process.

9.15. Groundwater as Heat Source
Groundwater is used as a heat source for a heat pump. The heat pump has a
COP of 4.25, and provides 2.5 kW of heat. The heat pump draws heat from
groundwater which comes in at a rate of of 5 kg

min at Tin = 15 ◦C. Determine
the exit temperature of the water flow.

9.16. Adiabatic Throttle
To relieve a duct, superheated water vapor at 10MPa, 600 ◦C is throttled
into the environment where the pressure is 1 bar. Determine the temperature
of the vapor entering the environment, and the entropy generation per unit
mass. Estimate work loss.
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9.17. Adiabatic Nozzle
Superheated water vapor at 10MPa, 600 ◦C is expanded into the environ-
ment, where the pressure is 1 bar. The isentropic efficiency of the nozzle is
95%. Determine the velocity and temperature at the nozzle exit.

9.18. Nozzle
To drive a rocket, the combustion product should be accelerated in a nozzle
to a velocity of 1.769 km

s with a mass flow of 20 kg
s . The exit pressure is

0.2 bar, and the nozzle has an isentropic efficiency of 0.96. Assume negligible
inlet velocity and determine the inlet pressure when the inlet temperature is
2300K, and the exit cross section. Consider the combustion product as air
(ideal gas with variable specific heats).

9.19. Irreversible Nozzle Flow of Air
In a jet engine, hot combustion air leaving the turbine at 1200K, 8 bar is
adiabatically expanded in an irreversible nozzle with isentropic efficiency of
0.929. The temperature at the nozzle exit is 600K. Consider the air as ideal
gas with variable specific heats. Compute the exit velocity and the exit pres-
sure.

9.20. Diffuser
Air enters the reversible diffuser of a jet engine that flies with a velocity
of 900 km

h at a height of 10 km above sea level, where the temperature is
−50 ◦C and the pressure is 35 kPa. Determine the pressure at the diffuser
exit. Consider air as ideal gas with constant specific heats.

9.21. Diffuser
The inlet ducting to a jet engine forms a diffuser that steadily decelerates the
entering air to negligible velocity relative to the engine. Consider an airplane
flying at 1000 km

h in a height where the pressure is 0.6 bar, and the tempera-
ture is −3 ◦C. Assume ideal gas behavior with variable specific heats, adia-
batic reversible flow conditions, and neglect potential energy effects. Compute
the temperature and the pressure at the exit of the diffuser.

9.22. Ramjet
A ramjet is a simple engine for aircraft propulsion which works without mov-
ing parts. In a simple thermodynamic model it works as follows (seen from
an observer resting with the aircraft): Air enters the diffuser where it is de-
celerated and the pressure increases. Next, the air is heated by combustion
of fuel, and then the compressed hot gas is expanded through a nozzle.

Consider this process for air as ideal gas with variable specific heats, and
the following sub-processes:

1-2: Outside air at T1 = 240K, p1 = 0.2 bar enters the diffuser with
velocity V1 = 3040 km

h ; this is the velocity of the supersonic aircraft
relative to the air.

2-3: The compressed air is isobarically heated to 2300K.
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3-4: The heated air is expanded through an adiabatic and reversible
nozzle to the outside pressure p4 = p1 = 0.3 bar.

1. Make a sketch of this series of processes in p-v- and T-s-diagrams.
2. Determine temperature T2 and pressure p2 at the diffuser exit. The diffuser

can be considered to operate on an adiabatic reversible process, and at the
diffuser exit the flow velocity is negligibly small.

3. Determine the heat added per unit mass of air flowing through, q23.
4. Determine the exit velocity V4.
5. The mass flow of air is ṁ = 1 kg

s . Determine the cross sections at diffuser
inlet and nozzle exit, A1 and A4.

6. Determine the thrust of the engine, F = ṁ (V4 − V1) and the propulsive
power Ẇ = FV1.

9.23. Adiabatic Polytropic Process
Consider an irreversible adiabatic compression p1 → p2 of an ideal gas with
constant specific heats. The process can be described as polytropic with ex-
ponent n.

1. Which of the following restrictions apply to the coefficient n? Give your
arguments.

a) 1 ≤ n ≤ k , b) 0 ≤ n ≤ ∞ , c) 0 ≤ n ≤ 1 ,

d) k ≤ n ≤ ∞ , e) 0 ≤ n ≤ k

2. What is the equivalent condition for an adiabatic polytropic expansion?



Chapter 10

Basic Open System Cycles

10.1 Steam Turbine: Rankine Cycle

About 70-75% of the World’s electrical energy are produced in steam cycles.
An external heat source is used to evaporate pressurized water, and then the
high pressure vapor is expanded in steam turbines. The fuel for most steam
power plants is coal, followed by nuclear power. Since the heat is supplied
externally, many other heat sources can be used, including oil, gas and heat
from solar radiation.

The Rankine cycle, which we shall discuss now, has been the basic steam
cycle for power generation, it is named after William Rankine (1820-1872).
Modern steam power plants use more efficient variations of the Rankine cycle
that will be discussed in Sec. 12.2.

Figure 10.1 shows a schematic of the Rankine cycle. Saturated liquid wa-
ter is pressurized in an adiabatic pump (1-2). In the steam generator, the
high pressure water is heated, evaporated and superheated (2-3). The super-
heated steam is expanded in the steam turbine (3-4), which generates work;
part of the turbine work is used to run the pump, the net work is delivered
to the generator. The turbine discharges into the condenser (4-1), in which
the steam is condensed back to the initial state. Pump and turbine may be
irreversible. Figure 10.2 shows the Rankine cycle in the diagrams with respect
to saturation lines. Work and heat for the four processes are (see Sec. 9.13)

1-2 adiabatic pump: w12 = h1 − h2 , q12 = 0 ,
2-3 isobaric heating: w23 = 0 , q23 = h3 − h2 ,
3-4 adiabatic turbine: w34 = h3 − h4 , q34 = 0 ,
4-1 isobaric cooling: w41 = 0 , q41 = h1 − h4 .

(10.1)

The net work of the cycle is

w� = w12 + w23 + w34 + w41 = h1 − h2 + h3 − h4 , (10.2)

and the heat supply is

H. Struchtrup, Thermodynamics and Energy Conversion, 209
DOI: 10.1007/978-3-662-43715-5_10, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 10.1 Schematic of Rankine cycle. The dotted line shows the overall system
boundary for the cycle. Part of the turbine work is used to drive the pump.
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Fig. 10.2 Rankine cycle: p-v- and T-s-diagrams

qin = q23 = h3 − h2 . (10.3)

Accordingly, the thermal efficiency of the Rankine cycle is

ηR =
w�
qin

=
h1 − h2 + h3 − h4

h3 − h2
= 1− h4 − h1

h3 − h2
. (10.4)

The total power produced, the heat consumed, and the heat rejected by the
cycle follow after multiplication with the mass flow ṁ as

Ẇ = ṁw� , Q̇in = ṁq23 , Q̇out = ṁq41 . (10.5)
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In early steam engines the steam was expanded in piston-cylinder devices,
not in turbines. Reciprocating piston engines have large load changes, and
are more bulky, while turbines are running at constant loads, and can deliver
the same amount of power with a significantly smaller footprint.

The condenser is James Watt’s (1736-1819)most important contribution—
of many—to the improvement of steam engines. The temperature Tc in the
condenser is prescribed through heat exchange with the environment, so that
Tc is not much above the environmental temperature T0. The condenser pres-
sure is the corresponding saturation pressure psat (Tc) which lies substantially
below the environmental pressure p0. Since the work delivered by a turbine
grows with the pressure ratio,1 a steam cycle with a condenser will have a
significantly larger work output than a cycle that discharges into the envi-
ronment. The gain of work through the condenser is illustrated in the T-s-
diagram of Fig. 10.3.

T

s

p

p0

pc

Fig. 10.3 Rankine cycle with and without condenser. The shaded area is the gain
of work through the condenser.

A condenser requires a significant amount of cooling which usually is pro-
vided by a cooling water cycle that employs cooling towers. Due to the dif-
ficulty of providing sufficient cooling, most steam locomotives do not have
condensers, and discharge into the environment. Therefore steam locomo-
tives have low thermal efficiencies, and must be supplied with fresh water
frequently.2 In a steam power plant with condenser the working fluid runs
continuously through the system in a closed loop, which allows the use of

1 This can best be seen for an ideal gas with constant specific heats, for which an

isentropic turbine delivers the work wT = cpT1

(
1−

(
p2
p1

) k−1
k

)
.

2 The water supply for steam locomotives is a driving force in Sergio Leone’s won-
derful “spaghetti western” Once Upon a Time in the West (feat. Henry Fonda,
Claudia Cardinale, Jason Robards, Charles Bronson).
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purified water to reduce pipe corrosion. Some of the cooling water, however,
evaporates in the open cooling towers from which warm moist air rises. As
the rising moist air cools down by heat exchange with the surrounding air,
some of the water condenses to clouds (Sec. 19.9).

Would the pump be fed with saturated liquid-vapor mix, the sudden col-
lapse of vapor bubbles during the compression process (cavitation) would in-
duce shock waves that lead to material damage and, ultimately, pump failure.
Cooling into the compressed liquid region only increases the heat removal,
and has no benefit. Thus, the pump should be fed with saturated liquid.

As the steam expands in the turbine, it crosses the saturation line and small
liquid droplets form. These droplets hit the fast rotating turbine blades and
cause corrosion. On the other hand, a smaller quality x4 reduces the amount
of heat rejected in the condenser, and thus improves thermal efficiency. To
obtain a good balance between efficiency and prevention of corrosion, one
aims at having the quality at the turbine exit at x4 = 0.9 or higher.

The pipes of the steam generator are normally made from standard steel.
At the high pressures that occur in the cycle, the temperature for the pipes
should not exceed ∼ 560 ◦C.

Increase of the pressure in the steam generator improves efficiency since the
average temperature for heat supply increases. However, when the pressure
becomes large, and the turbine inlet temperature is capped at Tmax, the
expansion into the condenser leads to low qualities, and thus damage of the
turbine blades due to droplet formation. This is illustrated in Fig. 10.4, where
the standard Rankine cycle has the corner points 1-2-3-4’. To shift the point
4’ towards values of higher quality requires either a turbine inlet temperature
T3 above the maximum temperature Tmax for the steam generator, or lower
pressure p3. Another alternative, as illustrated in the figure, is to expand the
steam in a first turbine to the intermediate pressure p5, reheat back to Tmax,
and then expand in a low pressure turbine to the condenser pressure pc. Net
work, heat in and thermal efficiency for the reheat cycle are

w� = h1 − h2 + h3 − h4 + h5 − h6 ,

qin = h3 − h2 + h5 − h4 , (10.6)

ηreheat = 1− h6 − h1

h3 − h2 + h5 − h4
.

More complex steam cycles involve multiple turbine stages, and internal
heat regeneration to improve efficiency (Sec. 12.2).

10.2 Example: Rankine Cycle

As an example we consider a standard Rankine cycle with specifications
based on the discussion in the previous section: The condenser temperature
is T1 = 40 ◦C, the upper pressure is p2 = p3 = 80 bar, pump and turbine are
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Fig. 10.4 Schematic and T-s-diagram of Rankine cycle with reheat

irreversible with isentropic efficiencies ηP = 0.85 and ηT = 0.88, respectively,
and the quality at the turbine exit is x4 = 0.9. Schematic and thermodynamic
diagrams for this cycle are as in Figs. 10.1 and 10.2.

We begin with the computation for the pump. State 1 is saturated liquid
at T1 with the properties

v1 = vf (T1) = 0.001008
m3

kg
,

p1 = psat (T1) = 7.384 kPa ,

h1 = hf (T1) = 167.57
kJ

kg
.

A reversible pump between p1 and p2 requires the work

wp,rev = h1 − h2s = −v1 (p2 − p1) = −8.057
kJ

kg
.

The work for the irreversible pump is

wp = h1 − h2 =
wp,rev

ηP
= −9.48

kJ

kg
,

and thus the enthalpy after the pump is

h2 = h1 − wP = 177.05
kJ

kg
.

Next we study the turbine. The turbine exit state is

T4 = T1 = 40 ◦C , x4 = 0.9 ,

h4 = (hf + x4hfg)|T1
= 2333.6

kJ

kg
.
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We have to find the corresponding turbine inlet state, for which the pressure
p3 = 8MPa is known, but not the temperature. For the solution we use a

trial and error strategy: In the first step, we try T
(a)
3 = 550 ◦C, for which

enthalpy and entropy are

h
(a)
3 = h (8MPa,550 ◦C) = 3521.0

kJ

kg
,

s
(a)
3 = s (8MPa,550 ◦C) = 6.8778

kJ

kgK
.

The isentropic expansion from this point to the condenser pressure yields

x
(a)
4s =

s
(a)
3 − sf
sfg |T1

= 0.821 ,

h
(a)
4s =

(
hf + x

(1)
4s hfg

)

|T1

= 2142.3
kJ

kg
.

From the definition of the turbine efficiency (9.44) we finally find the exit
enthalpy for the first guess as

h
(a)
4 = h

(a)
3 − ηT

(
h
(a)
3 − h

(a)
4s

)
= 2307.7

kJ

kg
.

Since this value lies below the target value of h4 = 2333.6 kJ
kg , for the second

try we use a higher temperature, T
(b)
3 = 600 ◦C. Following the same line of

arguments we find

h
(b)
3 = h (8MPa,600 ◦C) = 3642.0

kJ

kg
,

s
(b)
3 = s (8MPa,600 ◦C) = 7.0206

kJ

kgK
,

x
(b)
4s =

s
(b)
3 − sf
sfg |T1

= 0.839 ,

h
(b)
4s =

(
hf + x

(b)
4s hfg

)

|T1

= 2187.0
kJ

kg
,

h
(b)
4 = h

(b)
3 − ηT

(
h
(b)
3 − h

(b)
4s

)
= 2361.6

kJ

kg
.

The last value lies above the target value of h4 = 2333.6 kJ
kg , and thus the

actual temperature T3 lies between the two guesses (550 ◦C,600 ◦C). Linear
interpolation between

(
T

(a)
3 , h

(a)
4

)
,
(
T

(b)
3 , h

(b)
4

)
, and h4 gives

T3 = 574 ◦C ,
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from which we find

h3 = h (8MPa,574 ◦C) = 3579.1
kJ

kg
,

s3 = s (8MPa,574 ◦C) = 6.946
kJ

kgK
,

x4s =
s3 − sf
sfg |T1

= 0.829 ,

h4s = (hf + x4shfg)|T1
= 2163.8

kJ

kg
,

h4 = h3 − ηT (h3 − h4s) = 2333.6
kJ

kg
,

s4 = sf + x4sfg = 7.489
kJ

kgK
.

Although some small inaccuracy can be expected due to interpolation, the
enthalpy h4 is at the target value.

With this, all four enthalpy values are determined, and we can compute
the net work, the heat in, and the thermal efficiency of the cycle 1-2-3-4 as

w� = h1 − h2 + h3 − h4 = 1236.0
kJ

kg
,

qin = h3 − h2 = 3402.1
kJ

kg
,

η =
w�
qin

= 1− h4 − h1

h3 − h2
= 36.3% .

For a power generation of Ẇ = 50MW, the circulating mass flow is

ṁ =
Ẇ

w�
= 40.5

kg

s
= 11.2

t

h
.

To obtain an idea on the losses to irreversibilities we compute the efficiency
for the reversible cycle 1-2s-3-4s,

ηrev = 1− h4s − h1

h3 − h2s
= 41.3% .

Thus, the irreversibilities in pump and turbine reduce the cycle efficiency by
5%.

Another interesting value is the back-work-ratio, defined as the portion of
the turbine work that is required to drive the pump, for which we find

bwr =
|wP |
wT

=
h2 − h1

h3 − h4
= 0.76% .
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Less than one percent of the turbine work is required for the pump. To
understand the low back-work-ratio we recall that for a reversible adiabatic
process the work for both, pump and turbine, is given by w = − ∫ vdp. The
overall pressure difference for both devices are the same, but the volumes for
both processes differ considerably: The pump is fed with liquid water, while
the turbine is fed with vapor which has a substantially larger volume than
the liquid.

10.3 Vapor Refrigeration/Heat Pump Cycle

The vapor refrigeration cycle is based on the inversion of the Rankine cycle.
However, as we have seen in the last example, the back-work-ratio for the
Rankine cycle is very small, that is only a small portion of the turbine work
is required for the pump. In the inversion of the cycle the turbine becomes a
compressor which consumes power. Due to the small back-work-ratio, only a
very small portion of the compressor work could be regained in the inverse
pump, and thus one uses a throttling valve instead.

We consider a refrigerator or heat pump, exchanging heat with a cold and
a warm external environment at temperatures TL, TH , respectively (recall
Sec. 5.4). Heat pump and refrigerator follow the same cycle, but they differ
in the external temperatures, and in the temperatures and pressures that
occur in the process.

Fig. 10.5 Schematic and T-s-diagram for a standard vapor refrigeration cycle
exchaning heat with environments at TL, TH

The standard vapor compression cycle operates as shown in the schematic
and the T-s-diagram of Fig. 10.5: Saturated or superheated vapor at low
temperature (state 1) is adiabatically compressed to higher pressure (state
2). The compressed vapor is cooled and condensed (state 3) in the condenser
which exchanges heat with the high temperature environment. The liquid at
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state 3, either saturated or compressed, is then expanded in the throttling
device to the lower pressure (state 4). In the throttling process some of the
liquid evaporates, and the temperature drops. The low temperature saturated
mixture at state 4 receives heat from the low temperature environment and
evaporates to the compressor inlet condition (state 1).

Work and heat for the four processes are

1-2 adiabatic compressor: w12 = h1 − h2 < 0 , q12 = 0 ,
2-3 isobaric cooling: w23 = 0 , q23 = h3 − h2 ,
3-4 adiabatic throttle: w34 = 0 , q34 = 0 ,
4-1 isobaric heating: w41 = 0 , q41 = h1 − h4 .

(10.7)

The expense for refrigerator and heat pump is the work required to drive the
compressor. The gain for the refrigerator is the heat taken in from the cold
environment (qin = q41), and the gain for the heat pump is the heat rejected
into the warm environment (qout = q23). Thus, depending on whether we
consider a refrigeration device or a heat pump we find the coefficients of
performance, as gain/expense,

refrigerator: COPR =
qin
|w�| =

h1 − h4

h2 − h1
, (10.8)

heat pump: COPHP =
|qout|
|w�| =

h2 − h3

h2 − h1
. (10.9)

The total power consumed, the cooling power, and the heating power of the
cycle follow after multiplication with the mass flow ṁ as

Ẇ = ṁw� , Q̇in = ṁq41 , Q̇out = ṁq23 . (10.10)

Working fluids employed for vapor compression cycles must have good
temperature-pressure characteristics. For the low temperatures reached, the
pressures should be relatively high, and the specific volumes small, so that
the pipes and the compressors must not be too voluminous. The critical
point should be high, so that the process runs through the 2-phase region.
Moreover, the operating temperatures must lie above the triple point, so that
solid formation (freezing) will not occur. The heat of evaporation should be
large. Finally, at least for household applications, one will prefer a non-toxic
and non-flammable working fluid.

Water, obviously, is not suitable, due to extremely low vapor pressures
at low temperatures, and the relatively high triple point temperature Ttr =
0.01 ◦C. Chlorofluorocarbons (e.g., refrigerant R12, CCl2F2) are now phased
out since they destroy the ozone layer, and are presently replaced by fluoro-
carbons (no chlorine) like R134a (CF3CH2F). Efficient alternatives are am-
monia (NH3) which is poisonous, and propane (C3H8) and methane (CH4)
which are flammable.
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10.4 Example: Vapor Compression Refrigerator

A refrigerator operating with R134a maintains the cold environment at 0 ◦C
and rejects heat into an environment at 26 ◦C, the cooling power is 13 kW.

The coefficient of performance for a Carnot refrigerator operating between
these temperatures is

COPR,C =
1

TH

TL
− 1

=
1

299
273 − 1

= 10.5 ,

and the Carnot refrigerator would consume a power of ẆC = Q̇/COPR,C =
1.24 kW.

We shall study three increasingly realistic variants of the vapor refrigera-
tion cycle and compare their performance among each other, and with the
above COP of the Carnot refrigerator. For all three cycles we assume that the
compressor draws saturated vapor, and the throttle draws saturated liquid.
The three cycles considered are drawn into the T-s-diagram in Fig. 10.6.
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35:5 ±C
26 ±C
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¡10 ±C

Fig. 10.6 T-s-diagrams for three refrigeration cycles (1-2-3-4, 1′-2′-3′-4′, 1′-2′′-3′-
4′)

The cycle 1-2-3-4 operates without temperature difference between the cold
environment and the evaporator. For the heat transfer between condenser
and warm environment (2-3), there is a finite temperature difference for the
cooling before the saturation temperature is reached, but the condensation
occurs with infinitesimal temperature difference. Moreover, the compressor
is reversible.

The cycle 1′-2′-3′-4′ operates with a temperature difference of about
10 ◦C to facilitate heat transfer between condenser and evaporator and their
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respective environments. Moreover, its compressor is reversible, while the
cycle 1′-2′′-3′-4′ has an irreversible compressor with isentropic efficiency
ηC = 0.8.

We first analyze the cycle 1-2-3-4: From the tables we find the following
property data for the corner points:3

h1 = hg (0
◦C) = 247.23

kJ

kg
, s1 = sg (0

◦C) = 0.9190
kJ

kgK
,

p2 = p3 = psat (26
◦C) = 685.3 kPa ,

h2 = h

(

685.3 kPa,0.9190
kJ

kgK

)

= 263.5
kJ

kg
,

h3 = h4 = hf (26
◦C) = 85.75

kJ

kg
.

The COP for this cycle is

COPR =
h1 − h4

h2 − h1
= 9.93 .

This value is below the COP of the Carnot refrigerator since irreversible losses
occur in the throttle and in heat transfer over finite temperature difference
for the first part (before the 2-phase region is reached) of the cooling process
2-3. With the required cooling power Q̇in = 13 kW the mass flow and power
consumption are

ṁ =
Q̇in

h1 − h4
= 0.081

kg

s
, Ẇ =

Q̇in

COPR
= 1.31 kW .

Next we consider the cycle 1′-2′-3′-4′ for which we find the data4

h1′ = hg (−10 ◦C) = 241.3
kJ

kg
, s1′ = sg (−10 ◦C) = 0.9253

kJ

kgK
,

p2′ = p3′ = psat (35.5
◦C) = 900 kPa ,

h2′ = h

(

900 kPa,0.9253
kJ

kgK

)

= 272.4
kJ

kg
,

h3′ = h4′ = hf (900 kPa) = 99.56
kJ

kg
.

The COP for this cycle is

COPR′ =
h1′ − h4′

h2′ − h1′
= 4.56 .

3 To find h2 one needs to interpolate several times. First find

h
(
600 kPa, 0.919 kJ

kgK

)
= 261.97 kJ

kg
, h

(
700 kPa, 0.919 kJ

kgK

)
= 265.16 kJ

kg
,

then interpolate in pressure.
4 To reduce the amount of interpolation, we assume a minimum temperature dif-
ference of 9.5◦C for the condenser.
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The finite temperature difference for heat transfer reduces the COP consid-
erably. For this process mass flow and power consumption are

ṁ′ =
Q̇in

h1′ − h4′
= 0.092

kg

s
, Ẇ ′ =

Q̇in

COPR′
= 2.85 kW .

For the irreversible compressor 1′-2′′ we find the enthalpy at the exit as

h2′′ = h1′ +
h2′ − h1′

ηC
= 280.2

kJ

kg
.

The COP for the cycle with irreversible compressor is

COPR′′ =
h1′ − h4′

h2′′ − h1′
= 3.64 .

The irreversible loss in the compressor reduces the COP further. For this
process the mass flow is unchanged, ṁ′′ = ṁ′ and the power consumption is

Ẇ ′′ =
Q̇in

COPR′′
= 3.57 kW .

This example shows explicitly how internal (throttle, compressor) and
external (heat transfer over finite temperature differences) irreversibilities
lead to a significant reduction of the performance characteristics of a cycle in
comparison to the best possible case (here: the Carnot refrigerator).

The realistic cooling cycle 1′-2′′-3′-4′ has a COP that is not much more
than 1/3 of the Carnot cycle. Advanced cooling cycles use process modifica-
tions like cascade refrigeration that increase the COP (Sec. 12.5).

To understand the irreversibilities better, we determine entropy generation
and work loss for the four processes in the refrigeration cycle. To compute
these, we require the entropies which are

s1′ = sg (−10 ◦C) = 0.9253
kJ

kgK
,

s2′′ = s

(

900 kPa, h = 280.2
kJ

kg

)

= 0.9499
kJ

kgK
,

s3′ = sf (900 kPa) = 0.3656
kJ

kgK
,

s4′ = sf (−10 ◦C) + x4′sfg (−10 ◦C) = 0.3863
kJ

kgK
,

where we have used that x4′ =
[
h4′−hf

hfg

]

|T=−10 ◦C
= 0.306.

The 2nd law gives the entropy generation rates in compressor, condenser,
throttle and evaporator as
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Ṡgen,comp = ṁ (s2′′ − s1′) ,

Ṡgen,cond = ṁ (s3′ − s2′′)− Q̇2′′3′

TH
= ṁ

[

s3′ − s2′′ − h3′ − h2′′

TH

]

,

Ṡgen,throt = ṁ (s4′ − s3′) ,

Ṡgen,evap = ṁ (s1′ − s4′)− Q̇1′4′

TL
= ṁ

[

s1′ − s4′ − h1′ − h4′

TL

]

.

With TL = 273K, TH = 299K we find the entropy generation rates

Ṡgen,comp = 2.263
W

K
, Ṡgen,cond = 1.826

W

K
,

Ṡgen,throt = 1.904
W

K
, Ṡgen,evap = 1.822

W

K
.

As was shown in Secs. 5.4,5.10, refrigerator work loss is obtained by multiply-
ing entropy generation with the temperature of the environment,5 Ẇloss,R =

TH Ṡgen, which gives the individual contributions

Ẇloss,comp = 0.677 kW , Ẇloss,cond = 0.546 kW ,

Ẇloss,throt = 0.569 kW , Ẇloss,evap = 0.545 kW .

We see that each of the four sources of irreversibility—two internal, and two
external—contributes about one quarter of the total work loss of Ẇloss,R =
2.337 kW. This result clearly shows that for a proper thermodynamic assess-
ment of a system one must consider both, internal and external irreversibili-
ties. Note that the work loss is the difference between the actual system work
and the work of the Carnot refrigerator (apart from round-off errors).

10.5 Gas Turbine: Brayton Cycle

The Brayton cycle (George Brayton, 1830-1892) is an internal combustion
cycle based on a gas turbine. Schematic and T-s-diagram are depicted in
Fig. 10.7. Environmental air at p1 = p0, T1 = T0 enters the compressor
in which it is adiabatically compressed to the pressure p2. As the air flows
through the combustion chamber, fuel is injected and burnt with some of the
air’s oxygen which leads to heating of the air. The pressurized hot combustion
product expands in the turbine and delivers work; some of the work is required
to drive the compressor. The expanded combustion product exhausts to the
environment.

5 Also for a heat pump the work loss is entropy generation times the temperature
of the environment, only that the latter is at TL, so that Ẇloss,HP = TLṠgen;
re-read Secs. 5.4, 5.10 for details.
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Fig. 10.7 Schematic and T-s-diagram for standard Brayton cycle. Process 4-1 is
the equilibration of the exhaust to envrionmental temperature.

As for the reciprocating internal combustion engines, we shall ignore the
addition of fuel, and the change of composition through the chemical reac-
tion, and treat the working fluid as air. Then, the combustion is described
as an isobaric heating process. The turbine exhaust is warmer than the en-
vironment, and exchanges heat with the environment at T0. The discharge
of hot air (state 4) and the intake of cool air (state 1) can be described as
an isobaric cooling process at p1 = p4 = p0; this process is indicated in the
schematic as dotted line.

The Brayton cycle is the equivalent to the Rankine cycle for the ideal gas,
and the basic analysis is similar. The main differences are that the Brayton
cycle operates without phase change, has no cooler or condenser, and that
its back-work-ratio is much larger than that of the Rankine cycle.

Work and heat for the four processes are

1-2 adiabatic compressor: w12 = h1 − h2 , q12 = 0 ,
2-3 isobaric heating: w23 = 0 , q23 = h3 − h2 ,
3-4 adiabatic turbine: w34 = h3 − h4 , q34 = 0 ,
4-1 isobaric cooling: w41 = 0 , q41 = h1 − h4 .

(10.11)

The net work of the cycle is

w� = w12 + w23 + w34 + w41 = h1 − h2 + h3 − h4 , (10.12)

and the heat supply is
qin = q23 = h3 − h2 . (10.13)

Accordingly, the thermal efficiency of the Brayton cycle is

ηB =
w�
qin

=
h1 − h2 + h3 − h4

h3 − h2
= 1− h4 − h1

h3 − h2
. (10.14)
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The total power produced, the heat consumed, and the heat rejected by the
cycle follow after multiplication with the mass flow ṁ as

Ẇ = ṁw� , Q̇in = ṁq23 , Q̇out = ṁq41 . (10.15)

To gain further insight into which parameters are most important, we
consider the reversible cycle operating under the cold-air approximation (air
as ideal gas with constant specific heats), for which we find the thermal
efficiency as

ηB,rev =
h1 − h2s + h3 − h4s

h3 − h2s
= 1− T4s − T1

T3 − T2s
. (10.16)

The processes 1-2s and 3-4s are isentropic so that

T2s

T1
=

(
p2
p1

) k−1
k

= P
k−1
k =

(
p3
p4

) k−1
k

=
T3

T4s
. (10.17)

This yields

ηB,rev = 1− T1

T2
= 1− 1

P
k−1
k

. (10.18)

The thermal efficiency of the gas turbine increases with the pressure ratio
P = p2/p1.

We proceed by studying operating conditions of gas turbine systems. Obvi-
ously, the inlet pressure and temperature, p1 and T1, are set by the environmen-
tal conditions, p0 and T0. The highest temperature in the cycle is the turbine
inlet temperature T3 which is limited by the materials used for the turbine. For
fixed values of T1 and T3, the work per unit mass of air for the gas turbine is

w� = h1 − h2s + h3 − h4s = cpT1

(

1− P
k−1
k +

T3

T1

(
1− P

1−k
k

))

. (10.19)

Figure 10.8 shows Brayton cycles in the T-s-diagram. All cycles share the
intake pressure p1 and the maximum temperature Tmax, but their upper
pressures (pa, pb, . . .) differ. The specific work is the area enclosed by the cycle
in the T-s-diagram, and the figure shows that the cycle with the largest upper
pressure (ph), which has the largest efficiency, has a low work output. Also
the cycle with the smallest pressure (pa), which has the smallest efficiency,
has low work output, while a cycle with intermediate pressure (pd) has the
largest work output.

The goal is to produce a certain amount of power Ẇ = ṁw�. A gas turbine
with small specific work but large efficiency must have a larger mass flow than
a turbine with larger specific work. Larger mass flow can only be achieved by
building a bigger system, or several smaller systems, which adds capital and
maintenance costs. Normally, one will chose to operate a gas turbine close
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Fig. 10.8 Brayton cycle between pressure p1 and pressures pa · · · ph with maximum
temperature Tmax. Cycle (1-2d-3d-4d) produces significantly more work than cycles
(1-2a-3a-4a) and (1-2h-3h-4h).

to the maximum work output, where the thermal efficiency is smaller, but
capital and maintenance costs are smaller as well.

The maximum of the specific work is found, from the condition dw�
dP = 0,

for the pressure ratio

Pmax =

(
T3

T1

) k
2(k−1)

; (10.20)

the corresponding specific work and thermal efficiency are

w� = cpT1

(√
T3

T1
− 1

)2

, ηB,max = 1−
√

T1

T3
. (10.21)

From the above it is clear that increase of the turbine inlet temperature T3

will increase work output and thermal efficiency. The use of modern materials
and the cooling of turbine blades by pressing cold air through small channels
in the blades have led to dramatic increases of turbine inlet temperatures
which can be as high as 1700K for airplanes at take-off.

For simple gas turbine systems, the hot exhaust is just expelled into the
environment, where it equilibrates by heat transfer to the environment at T0.
This process is associated with external entropy generation, the correspond-
ing work loss is
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Ẇloss,41 = T0Ṡgen,41 = T0ṁ

(

s1 − s4 − h1 − h4

T0

)

. (10.22)

Figure 10.8 shows that the turbine exit temperature T4 decreases with in-
creasing pressure ratio. This implies that the external loss becomes smaller
with increasing pressure ratio, and hence explains why the cycle efficiency
increases.

As can be seen from the T-s-diagrams in Figs. 10.7, 10.8, the exhaust
temperature T4 lies above the environmental temperature T1, and may also
lie above the pre-combustion temperature T2. In advanced gas turbine cycles,
the hot exhaust is used to preheat the compressed gas before combustion
(regenerative Brayton cycle, Sec. 13.4), or as heat source for a steam power
plant (combined cycle, Sec. 13.6). With this, the hot exhaust is used, and the
external loss is reduced.

10.6 Example: Brayton Cycle

We assume a gas turbine operating with the compressor inlet temperature
T1 = 300K and the turbine inlet temperature T3 = 1400K. The working
medium is air under cold-air approximation, with R = 0.287 kJ

kg K and k = 1.4.

We first consider a reversible system. From (10.20) we obtain the optimum
pressure ratio

p2
p1

=

(
T3

T1

) k
2(k−1)

= 14.82

and find specific net work and thermal efficiency as

w� = cpT1

(√
T3

T1
− 1

)2

= 405.5
kJ

kg
, ηB = 1−

√
T1

T3
= 0.537 .

The two remaining temperatures are obtained as

T2s = T4s =
√
T1T3 = 648.1K .

The back-work ratio for this cycle is

bwr =
|wC |
wT

=
h2s − h1

h3 − h4s
=

T2s − T1

T3 − T4s
= 46.3% .

We compare the above result with that for a gas turbine system with
internal irreversibilities operating at the same values for p1, p2, T1, T3 but with
isentropic efficiencies for compressor and turbine given as ηC = ηT = 0.9.
From (9.43, 9.44) we obtain the temperatures T2 and T4 as

T2 = T1 − T1 − T2s

ηC
= 686.8K , T4 = T3 − ηT (T3 − T4s) = 723.3K .
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The thermal efficiency of the irreversible gas turbine system is

ηB =
h1 − h2 + h3 − h4

h3 − h2
= 1− T4 − T1

T3 − T2
= 40.6% .

The internal irreversibilities reduce the thermal efficiency by 25%.
The back-work ratio for the irreversible cycle is

bwr =
|wC |
wT

=
h2 − h1

h3 − h4
=

T2 − T1

T3 − T4
= 57.2% ;

more than 50% of the turbine work is needed to drive the compressor.

10.7 Gas Refrigeration System: Inverse Brayton Cycle

The inversion of the Brayton cycle results in a gas cooling system as depicted
in Fig. 10.9. Gas is compressed adiabatically (1-2), and then cooled by heat
exchange with the warm environment (2-3). The cooled gas is expanded adi-
abatically in a turbine, and assumes a low temperature (3-4). Finally, the gas
is heated by drawing heat from the cold environment (4-1). As always, we
consider a cooling system exchanging heat with reservoirs at TL, TH . Then,
to have heat transfer in the proper direction, the compressor inlet temper-
ature T1 must not be above TL, and the turbine inlet temperature T3 must
not be smaller than TH . These temperature requirements are shown in the
T-s-diagram in Fig. 10.9.
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Fig. 10.9 Inverse Brayton cycle: Schematic and T-s-diagram
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The processes in the inverse Brayton cycle are

1-2 adiabatic compressor: w12 = h1 − h2 , q12 = 0 ,
2-3 isobaric cooling: w23 = 0 , q23 = h3 − h2 ,
3-4 adiabatic turbine: w34 = h3 − h4 , q34 = 0 ,
4-1 isobaric heating: w41 = 0 , q41 = h1 − h4 .

(10.23)

and the coefficient of performance is

COPR =
qin
|w�| =

h1 − h4

h2 − h3 + h4 − h1
=

1
h2−h3

h1−h4
− 1

. (10.24)

Gas cooling cycles are mainly used at low temperatures, and thus we pro-
ceed by assuming constant specific heats for the ideal gas that is used as
cooling fluid (cold-gas assumption); then

COPR =
qin
|w�| =

1
T2−T3

T1−T4
− 1

. (10.25)

We consider the special case of reversible compressor and turbine, for which
we find

COPR =
1

T2s−T3

T1−T4s
− 1

=
1

T2s

T1
− 1

=
1

(
p2

p1

)k−1
k − 1

. (10.26)

Here, we used the adiabatic relations for compressor and turbine,

T2s

T1
=

(
p2
p1

) k−1
k

=
T3

T4s
. (10.27)

Since T1 ≤ TL and T2 > TH , the pressure ratio must be sufficiently large,

p2
p1

>

(
TH

TL

) k
k−1

. (10.28)

Larger pressure ratios give smaller COP, but increase the cooling power. In
particular for large pressure ratios there are large external irreversibilities
associated with the heat transfer over finite temperature differences between
the cooling fluid and the two environments (see T-s-diagram in Fig. 10.9).
Nevertheless, gas refrigeration cycles offer a relatively simple means to achieve
low temperatures (∼ 130K). Advanced gas cooling systems use internal heat
exchange (regeneration) to increase the COP.
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Problems

10.1. Rankine Cycle
A small steam power plant produces 50MW from a simple Rankine cycle
operating between an evaporator pressure of 60 bar and a condenser pressure
of 10 kPa. The turbine inlet temperature is 550 ◦C and the quality at its exit
is 0.9. Assume that the adiabatic pump is reversible.

1. Draw a sketch of the cycle, and the corresponding p-v- and T-s-diagrams.
2. Make a list with the values of the relevant enthalpies of the cycle.
3. Determine the isentropic efficiency of the turbine.
4. Determine the mass flow of steam in the cycle and the thermal efficiency

of the system.

10.2. Steam Cycle
Consider a simple steam power plant that develops a power of 100MW. The
condenser pressure is 10 kPa, the pressure in the steam generator is 8MPa,
and the temperature at the turbine inlet is 500 ◦C. The isentropic efficiency
of the pump is 75%. At the turbine exit the quality is measured as x = 0.91.

1. Draw a schematic, a T-s-diagram, and a p-v-diagram (both with respect
to saturation lines) of the plant.

2. Determine the enthalpies at the corner points, and the thermal efficiency
of the cycle.

3. Determine the isentropic efficiency of the turbine.
4. Determine the mass flow of water through the cycle.
5. In the condenser the heat is transferred to a stream of cooling water which

changes its temperature by 10 ◦C. Compute the mass flow of cooling water
(incompressible liquid with specific heat cw = 4.2 kJ

kgK).

10.3. Geothermal Steam Power Plant
In the Larderello (Italy) steam power plant, steam at 5 bar, 220 ◦C is produced
by geothermal heating. Assume that the processes in the plant follow the basic
Rankine cycle with irreversible turbine (ηT = 0.85) and reversible pump. The
condenser temperature is 40 ◦C.

1. Determine the enthalpies at the corner points.
2. Compute the thermal efficiency, and discuss its value as compared to stan-

dard steam power plants, which operate at higher pressures and tempera-
tures.

10.4. Reheat Rankine Cycle
A steam power plant with a power output of 80MW operates on a reheat
Rankine cycle:

1-2: adiabatic irreversible pump from condenser pressure p1 = 10 kPa
to p2 = 10MPa, state 1 is saturated liquid, isentropic pump efficiency
is 95%
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2-3: isobaric heating to 500 ◦C
3-4: adiabatic turbine, expansion to p4 = 1MPa, isentropic turbine
efficiency is 80%

4-5: isobaric reheat to 500 ◦C
5-6: adiabatic turbine, expansion to p6 = p1, isentropic turbine effi-
ciency is 80%

1. Draw a schematic, and the corresponding p-v- and T-s-diagrams with re-
spect to saturation lines.

2. Determine the thermal efficiency of the system.
3. Determine the mass flow rate.

10.5. Another Reheat Cycle
For an ideal (i.e., reversible) Rankine cycle with reheat, the minimum and
maximum pressures reached are 10 kPa and 9MPa, respectively. Moreover,
the turbine inlet temperatures of both turbines are 500 ◦C, the quality at the
condenser inlet is 90% and the mass flow is 25 kg

s of steam. Determine:

1. The reheat pressure.
2. The heat input and the power produced.
3. The thermal efficiency.

10.6. Refrigerators, Heat Pumps
Draw schematics for vapor refrigeration cycles and heat pumps, as well as
the corresponding T-s- and p-v-diagrams (include irreversible processes for
compressors). Explain the difference in operating conditions between heat
pumps and refrigerators. Also draw T-s-diagrams for Carnot heat pump and
refrigerator, and use the diagrams to compute their COP’s.

10.7. Refrigerator
A vapor-compression refrigeration system uses R134a as working substance.
The pressure in the evaporator is 1.4 bar, and the condenser pressure is 7 bar.
The temperature at the compressor inlet is −10 ◦C, and the working fluid
leaves the condenser at a temperature of 24 ◦C. Moreover, the mass flow rate
is 0.1 kg

s , and the isentropic efficiency of the compressor is 67%.

1. Draw a sketch, a p-v-diagram, a T-s-diagram (with respect to saturation
lines).

2. Determine the COP of the system.
3. Compute the refrigeration capacity, and the power consumption.
4. Compute COP and power consumption if the isentropic efficiency of the

compressor is 85%.

10.8. Refrigeration Cycle
A frozen pizza factory requires a refrigeration rate of 200 kW to maintain
the storage facility at −15 ◦C. Cooling is performed by a standard vapor-
compression cycle, using R134a with the following data: condenser pressure:
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700 kPa, evaporator temperature: −20 ◦C, isentropic efficiency of compressor:
75%. The condenser is cooled by liquid water. Use the log p-h diagram for
R134a for the solution of this problem.

Determine the mass flow rate of the refrigerant, the power input to the
compressor, the COP, and the mass flow rate of the cooling water when its
temperature changes by 10 ◦C.

10.9. Vapor Refrigeration Cycle
A refrigerator uses R134a as working fluid which undergoes the following
cycle:

1-2: Adiabatic irreversible compression of saturated vapor at T1 =
−18 ◦C to p2 = 9bar; the isentropic efficiency of the compressor is
ηC = 0.85

2-3: Isobaric cooling and condensation to compressed liquid state at
T3 = 32 ◦C
3-4: Adiabatic throttling to evaporator pressure p4 = p1

4-1: Isobaric evaporation to state 1

1. Draw a schematic, and the process in a T-s-diagram, with respect to sat-
uration lines.

2. Make a table with the values of temperature, pressure, and enthalpy at
points 1-4.

3. Compute the coefficient of performance (COP).
4. The refrigerator draws a power of 4 kW. Compute the mass flow and the

cooling power.

10.10. Heat Pump
A heat pump that operates on the ideal vapor-compression cycle with R134a
is used to heat water from 15 to 54 ◦C at a rate of 0.24 kg

s . The condenser
and evaporator pressures are 1.4 and 0.32MPa, respectively. Determine the
COP and the power input to the heat pump.

10.11. Heat Pump
A vapor compression heat pump with R134a as cooling fluid is used to keep
a house at 20 ◦C. The heat pump has a compressor with isentropic efficiency
of 85%, and it draws heat from groundwater which has a temperature of
12 ◦C. The condenser and evaporator pressures are 900 kPa and 320 kPa,
respectively, the temperature at the inlet of the throttling valve is 30 ◦C, and
the compressor draws saturated vapor.

Compute the COP, the mass flow, and the power consumption if the heat-
ing power is 10 kW. Don’t forget to draw schematic and diagrams.

10.12. Vapor Heat Pump Cycle
An air conditioning system sucks in a mass flow of 5000 kg

h of outside air
at 10 ◦C, 0.95 bar, and heats it isobarically to 24 ◦C. The air is heated by
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means of an standard vapor heat pump cycle (R134a), whose compressor
has an isentropic efficiency of 0.85. The condenser pressure is 800 kPa. The
evaporator is outside the building, and the minimum temperature difference
for heat transfer is 10 ◦C. Consider the air as ideal gas with constant specific
heats (cv = 0.717 kJ

kgK , R = 0.287 kJ
kg K).

1. Make a sketch of the system, and draw the corresponding T-s-diagram.
2. Make a table with the values of pressure, temperature and enthalpy at the

corner points.
3. Determine the COP of the cycle.
4. Determine the work required to run the heat pump.

10.13. Gas Turbine (Ideal Brayton Cycle)
An ideal Brayton cycle with air as working fluid (variable specific heats) is to
be designed such that the minimum and maximum temperatures in the cycle
are 300K and 1500K, respectively. The pressure ratio is 16.7. Compressor
and turbine are both irreversible, with an isentropic efficiency of 0.9 for the
turbine and 0.85 for the compressor.

Compute compressor and turbine work per unit mass of air, and the ther-
mal efficiency of the cycle.

10.14. Brayton Cycle
This problem compares the calculation with constant and non-constant spe-
cific heats, to give an idea of the differences. Air enters the compressor of
a simple Brayton cycle gas turbine power plant at 95 kPa and 290K. The
heat transfer rate is 50 MJ

s and the turbine entry temperature is 1400K. The

pressure ratio is P =
(

Tmax

Tmin

) k
2(k−1)

for maximum power output. Compressor

and turbine are reversible. Compute the power delivered and the thermal
efficiency for:

1. Cold air approximation, that is constant specific heats with values at room
temperature.

2. Variable specific heats.

Make tables for the values of pressure and temperature at the relevant
process points, and draw diagrams and schematic.

10.15. Gas Turbine (Brayton Cycle)
A Brayton cycle delivers a power of 150MW. The working fluid can be con-
sidered as air (ideal gas with variable specific heats), and the following data
are known: inlet state p1 = 0.9 bar, T1 = 280K; state after adiabatic compres-
sion p2 = 17.06 bar, T2 = 690K, maximum temperature in the cycle 1600K,
heating rate 354MW.

Determine the thermal efficiency of the cycle, compressor and turbine work
per unit mass of air, mass flow of air, and the isentropic efficiencies of com-
pressor and turbine.
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10.16. Brayton Cooling Cycle
A small gas-cooling system operates on the inverse Brayton cycle. The cycle
uses argon as cooling fluid. The cycle is used for maintaining a small cold
space at −60 ◦C, and rejects heat into the environment at 25 ◦C. Both heat
exchangers require a temperature difference of at least 5 ◦C for operation.
The cycle operates between the pressures 1 bar and 4 bar, and isentropic
efficiencies of compressor and turbine are 0.75 and 0.85, respectively. Draw
schematic and diagrams and determine:

1. The COP.
2. The mass flow required for a cooling power of 0.5 kW, and the required

power to run the system.
3. The work losses to irreversibilities in turbine, compressor and both heat

exchangers. Discuss the results.

10.17. Gas Refrigeration Cycle
A refrigerator for cryogenic applications uses helium as working fluid which
undergoes the cycle described below.

1-2: Adiabatic irreversible compression of helium at T1 = −75 ◦C and
p1 = 1bar to p2 = 10 bar, the isentropic efficiency of the compressor is
0.85

2-3: Isobaric cooling until the temperature reaches T3 = 30 ◦C
3-4 : Adiabatic irreversible expansion in turbine to pressure p4 = p1,
the isentropic efficiency of the turbine is 0.8

4-1: Isobaric heating to state 1

Helium is an ideal gas with constant specific heats, with cp = 5.196 kJ
kgK ,

R = 2.0785 kJ
kgK .

1. Draw a schematic, and the process in a T-s-diagram.
2. Make a table with the values of temperature and pressure at points 1-4.
3. Compute the coefficient of performance (COP).
4. The mass flow is 1.5 kg

s . Compute the cooling power, and the power needed
to run the refrigerator.

10.18. Gas Cooling System
A gas refrigeration system operates on the inverse Brayton cycle (1-2:
adiabatic compression, 2-3: isobaric heat exchange, 3-4: adiabatic expansion,
4-1: isobaric heat exchange) with air as the working fluid. The compressor
pressure ratio is 3. This system is used to maintain a refrigerated space
at −23 ◦C and rejects heat to the environment at 27 ◦C. The isentropic
efficiency of the compressor is 0.8, but the turbine exhibits no losses. The
temperature difference for heat transfer is 10 ◦C. Consider air as an ideal gas
with variable specific heats.
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1. Draw a schematic, and the corresponding T-s-diagram.
2. Make a list with the enthalpies and temperatures at the corner points of

the process.
3. Compute the COP.
4. For the computation above, the knowledge of pressure ratio was enough, so

nothing was said about the value of p1. Discuss the choice of this pressure
(should it be high or low . . .).



Chapter 11

Efficiencies and Irreversible Losses

11.1 Irreversibility and Work Loss

In the discussion of work losses for closed and open systems we found that
irreversibilities reduce the efficiency of energy conversion, see Sec. 5.10. We
shall study this now in greater detail. The arguments used in this section are
similar to “exergy accounting” (see Sec. 11.8 further below).

We consider a general thermodynamic system as in Fig. 9.1 which is de-
scribed through the balance laws for mass, energy, and entropy (9.1, 9.9,
9.10). Part of the heat exchange between the system and its surroundings
will take place at a temperature T0, and we write

Q̇ = Q̇0 +
∑

k=1

Q̇k ,
∑

k

Q̇k

Tk
=

Q̇0

T0
+
∑

k=1

Q̇k

Tk
, (11.1)

where Q̇k is heat transferred over the system boundary at temperature Tk;
in particular, Q0 is the heat exchanged at T0. With that, the first and second
laws of thermodynamics (9.9, 9.10) can be written as

dE

dt
+
∑

out

ṁe

(

he +
1

2
V2
e + gze

)

−
∑

in

ṁα

(

hi +
1

2
V2
i + gzi

)

=

= Q̇0 +
∑

k=1

Q̇k − Ẇ , (11.2)

dS

dt
+
∑

out

ṁese −
∑

in

ṁisi =
Q̇0

T0
+
∑

k=1

Q̇k

Tk
+ Ṡgen . (11.3)

The highlighted temperature T0 can be freely chosen according to the de-
tails of the actual system considered. Since most thermodynamic systems
interact with the environment, one most often chooses T0 to be the tem-
perature of the environment, usually T0 = 298K for the standard reference
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environment. Indeed, the environment acts as an infinite heat reservoir, and
no cost is associated with heat drawn from, or dumped into, the environment.

Elimination of the heat exchange with the environment, Q̇0, between the
first and second laws (11.2, 11.3) yields an equation for power,

Ẇ = −T0Ṡgen +
∑

k=1

(

1− T0

Tk

)

Q̇k +
∑

in

ṁi

(

hi − T0si +
1

2
V2
i + gzi

)

−
∑

out

ṁe

(

he − T0se +
1

2
V2
e + gze

)

− d (E − T0S)

dt
. (11.4)

This equation is the generalization of (5.17) in Sec. 5.10 to include open
system boundaries. The equation is valid for any system, open or closed,
transient or steady state, that exchanges heat at least at T0, and possibly at
other temperatures.

Note, that for Q̇ = Q̇0 = 0 there is nothing to be eliminated between the
two equations, so that (11.4) is not relevant for fully adiabatic processes.

The factor T0 relates power loss to entropy generation; the lost power is
sometimes denoted as irreversibility,

Ẇloss = T0Ṡgen . (11.5)

Equation (11.4) allows to relate irreversibility as measured by entropy
generation Ṡgen to power losses for complete thermodynamic systems, such
as power and refrigeration cycles, in contact with the environment. Since
Ṡgen ≥ 0 and1 T0 > 0, this equation shows that irreversibilities reduce work

output for a power producing system (where Ẇ > 0, e.g., a power plant) or
increase work demand for a power consuming system (where Ẇ < 0, e.g., a
heat pump or a refrigerator).

The task of a thermal engineer can be described as to improve efficiency of
a thermal system as much as possible. This requires to identify and reduce—
as much as possible—causes of losses, i.e., irreversibilities. This will lead to a
redesign of the system, which in turn leads to a change of the inflow, outflow
and boundary conditions of the system.

A proper understanding of the losses associated with a system requires
that all sources for irreversibility are considered. For a proper accounting of
losses, the system boundary should be wide enough to include all causes for
loss, so that internal and external irreversibilities are accounted for.

The redesign should start with removing the main causes for losses. If we
indicate the different causes for entropy generation by Greek indices, we can
write

Ẇloss =
∑

α

T0Ṡ
α
gen . (11.6)

1 T is the thermodynamic temperature, of course!
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The importance of the various entropy generating processes can be evaluated
by a relative measure, e.g., the ratio between lost power and the total power
exchange for the process

χα =
T0Ṡ

α
gen∣

∣
∣Ẇ
∣
∣
∣

. (11.7)

One will not be able to avoid losses altogether, and thus will have to ac-
cept values of a few percent (or more) for χα. Nevertheless, any reduction
in irreversibilities that can be attained at reasonable cost for redesign and
construction will lead to increased power production or decreased power con-
sumption, and thus offer substantial savings in the long run of operation.

11.2 Reversible Work and Second Law Efficiency

A sometimes useful measure2 for the performance of a system is the second
law efficiency ηII, which compares the actual performance to the reversible
work, i.e., the best case scenario for the same process parameters.

The reversible work Ẇrev is the power that would be obtained from a re-
versible process operating under the same boundary conditions as the system
considered, and exchanging heat with the environment at T0. Its value follows
from (11.4) simply by setting the irreversibility to zero, T0Ṡgen = 0,

Ẇrev =
∑

k=1

(

1− T0

Tk

)

Q̇k +
∑

α,in

ṁα

(

hα − T0sα +
1

2
V2
α + gzα

)

−
∑

α,out

ṁα

(

hα − T0sα +
1

2
V2
α + gzα

)

− dE − T0S

dt
. (11.8)

Since all irreversibilities reduce the process performance, for a work generat-
ing process the reversible work is the maximum work that could be obtained,
and for a work consuming process it is the minimum work required. The
actual work can be expressed as the difference between reversible work and
work loss, Ẇ = Ẇrev − Ẇloss.

The second law efficiency is defined as the ratio between the actual work
of the process and the reversible work. For a power producing system one
defines

ηII =
Ẇ

Ẇrev

=
Ẇrev − Ẇloss

Ẇrev

= 1− T0Ṡgen

Ẇrev

< 1
(
Ẇ > 0

)
, (11.9)

and for a power consuming system, one defines

2 All efficiencies are useful only when they are defined and applied in a meaningful
way!
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ηII =

∣
∣
∣Ẇrev

∣
∣
∣

∣
∣
∣Ẇ
∣
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∣

=

∣
∣
∣Ẇrev

∣
∣
∣

∣
∣
∣Ẇrev

∣
∣
∣+ Ẇloss

=
1

1 +
T0Ṡgen

|Ẇrev|
< 1

(
Ẇ < 0

)
. (11.10)

The simplest examples are given by steady state engines operating be-
tween two reservoirs at constant temperatures, and we consider heat engine,
refrigerator, and heat pump, as depicted in Fig. 11.1. Note that all engines
exchange heat with the environment at T0, while the temperatures of the
other reservoirs are different. The fully reversible engines operating between
two reservoirs are Carnot engines.

TH

HE

Q̇H

Q̇0

TH

Ẇ

TL

R
Q̇0

Q̇L

ẆHP
Q̇H

Q̇0
T0T0

Ẇ

Fig. 11.1 Heat engine (HE), refrigerator (R), and heat pump (HP) in contact with
the environment at T0

For a heat engine that receives the heat Q̇H from a hot reservoir at TH >
T0, and rejects heat into the environment at T0, actual and reversible work

are Ẇ =
(
1− T0

TH

)
Q̇H − T0Ṡgen > 0 and Ẇrev =

(
1− T0

TH

)
Q̇H > 0. For the

second law efficiency we obtain

ηII =
Ẇ

Ẇrev

=
Ẇ/Q̇H

Ẇrev/Q̇H

=
Ẇ/Q̇H

1 − T0

TH

=
η

ηC
, (11.11)

where η = Ẇ/Q̇H is the thermal efficiency of the actual engine, and ηC =
Ẇrev/Q̇H = 1− T0

TH
is the thermal efficiency of a fictional Carnot heat engine

operating between the same temperatures. It is straightforward to conclude
that for a more complex power producing system ηII = η/ηrev where ηrev is
the thermal efficiency associated with the reversible work.
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For a refrigerator that removes the heat Q̇L from a cold space at TL < T0

and rejects heat into the environment at T0, actual and reversible work are

Ẇ =
(
1− T0

TL

)
Q̇L − T0Ṡgen < 0 and Ẇrev =

(
1− T0

TL

)
Q̇L < 0. For the

second law efficiency we obtain

ηII =

∣
∣
∣Ẇrev

∣
∣
∣

∣
∣
∣Ẇ
∣
∣
∣

=
Q̇L/

∣
∣
∣Ẇ
∣
∣
∣

Q̇L/
∣
∣
∣Ẇrev

∣
∣
∣
=

(
T0

TL
− 1

)

COPR =
COPR

COPR,C
, (11.12)

where COPR = Q̇L/
∣
∣
∣Ẇ
∣
∣
∣ is the actual coefficient of performance, and

COPR,C = Q̇L/
∣
∣
∣Ẇrev

∣
∣
∣ = 1

/(
T0

TL
− 1
)

is the COP of the Carnot refrig-

erator.
For a heat pump that supplies the heat Q̇H to a warm space at TH > T0

and draws heat from the environment at T0, actual and reversible work are

Ẇ =
(
1− T0

TH

)
Q̇H − T0Ṡgen < 0 and Ẇrev =

(
1− T0

TH

)
Q̇H < 0. Also in

this case the reversible heat pump is a Carnot engine. For the second law
efficiency we obtain

ηII =

∣
∣
∣Ẇrev

∣
∣
∣

∣
∣
∣Ẇ
∣
∣
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∣
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∣
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∣ /
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∣
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)
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COPHP

COPHP,C
,

where COPHP =
∣
∣
∣Q̇H

∣
∣
∣ /
∣
∣
∣Ẇ
∣
∣
∣ is the coefficient of performance, and

COPHP,C =
∣
∣
∣Q̇H

∣
∣
∣ /
∣
∣
∣Ẇrev

∣
∣
∣ = 1

/(
1− T0

TH

)
is the COP of the Carnot heat

pump.
To summarize, we state that the second law efficiency gives a qualitative

measure for the overall quality of a process by comparing actual performance
to that of a fictional reversible system with the same parameters..

11.3 Example: Carnot Engine with External
Irreversibility

Fully reversible (e.g., Carnot) engines cannot be build since any real process is
associated with some irreversibilities. These can be reduced, but not avoided.
For instance, heat transfer requires finite temperature differences, which are
accompanied by entropy generation, i.e., work loss. As an example we study
a reversible Carnot heat engine with external irreversibilities that occur in
transferring heat in and out of the engine, see Fig. 11.2.

We compare a fully reversible engine (I), which does not require tem-
perature differences for heat transfer, and an engine (II) that requires finite
temperature differences. When both engines take in the same amount of heat,
their power outputs are



240 11 Efficiencies and Irreversible Losses

C I C II

Q̇in

ẆI

Q̇I
out

ẆII

Q̇II
out

TH

TL

TL+ ΔT

TH¡ ΔT

Q̇in

fully reversible internally reversible
externally irreversible

Q̇II
out

Q̇in

TH

TL

Fig. 11.2 Heat engine between two reservoirs: Fully reversible cycle (I), and in-
ternally reversible cycle with external irreversibilities (II)

ẆI =

(

1− TL

TH

)

Q̇in , ẆII =

(

1− TL +ΔT

TH −ΔT

)

Q̇in ; (11.13)

obviously ẆI > ẆII. The heat rejected to the environment by the two engines
is

∣
∣
∣Q̇I

out

∣
∣
∣ = Q̇in − ẆI =

TL

TH
Q̇in ,

∣
∣
∣Q̇II

out

∣
∣
∣ = Q̇in − ẆII =

TL +ΔT

TH −ΔT
Q̇in .

(11.14)
For engine II, the entropy generation due to irreversible heat transfer at the
higher and lower temperatures are

ṠH
gen =

(
1

TH −ΔT
− 1

TH

)

Q̇in =
Q̇in

TH

ΔT

TH −ΔT
> 0 ,

ṠL
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1
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) ∣
∣
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∣
∣
∣

TL

ΔT

TL +ΔT
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Q̇in

TL

ΔT

TH −ΔT
> 0 ;

the corresponding work loss to heat transfer is

Ẇloss = ẆI − ẆII = TL
Q̇inΔT

TH −ΔT

(
1

TL
+

1

TH

)

= TL

(
ṠL
gen + ṠH

gen

)
.

(11.15)
While the internally reversible engine II has the optimum efficiency with

respect to its boundary temperatures TL + ΔT and TH − ΔT , the engine
does not have optimum efficiency with respect to the available boundary
temperatures TL and TH , due to external irreversibilities in heat transfer.

This simple example shows once more the importance of considering ex-
ternal losses. In order to obtain a comprehensive picture of thermodynamic
performance, one cannot restrict the attention to the performance of an
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isolated system, say a heat engine, but one has to account for the interaction
of the system with its surroundings as well.

A perfect heat exchanger, which operates at infinitesimal temperature dif-
ference, and hence does not generate entropy, requires an infinite exchange
surface, and thus can only be thought of, but not be build. Thus, in any
existing heat exchanger the temperature difference is finite, and entropy is
generated. The art of building heat exchangers, or choosing heat exchangers
for a particular system, is to make the temperature difference, and thus the
work losses, as small as technology and purchase or construction costs allow.

11.4 Example: Space Heating

Another instructive example is given by the heating of a house with a device
powered by electricity, e.g., a resistance heater or a heat pump. The house
sits in an external environment at temperature T0, and its temperature is
maintained at Thouse > T0. Due to the temperature difference between the
warm house and the cooler environment there is a heat loss Q̇loss to the
environment. The heating system must provide the same amount of heat to
compensate for the loss, so that the inside temperature remains at Thouse.

We first examine the case where the heat is provided by a heat pump
which draws the power Ẇ from the electrical grid, draws heat Q̇L from the
environment, and provides the heat Q̇H = Q̇loss at a temperature TH >
Thouse; the temperature difference ensures heat transfer from the heat pump
to the house. Figure 11.3 shows the energy flows and the temperature levels
for this process.

HP

Q̇H

Ẇ

Q̇L

Q̇L

Q̇H

TH

Thouse

TL

T0

Q̇loss = Q̇H

Fig. 11.3 Energy flows for the heating of a house by means of a heat pump



242 11 Efficiencies and Irreversible Losses

There are two sources of entropy generation, that is, ultimately, work loss:
the heat pump itself, and the heat transfer from the house to the environment.
The latter is given, from (11.4), as

Ṡloss =

(
1

T0
− 1

Thouse

) ∣
∣
∣Q̇loss

∣
∣
∣ .

This loss is independent of the method used for heating, and can be reduced
by reducing the heat loss Q̇loss, or the inside temperature Thouse. By Newton’s
law of cooling the heat loss is given by

Q̇loss = αA (Thouse − T0) ,

where A is the outer surface of the house, and α is an overall heat transfer
coefficient. The heat loss can be reduced by better insulation of the exterior
walls and the roof, which gives smaller value for α, but also by reduction of
the inside temperature Thouse. For a house exposed to an environment at 0 ◦C,
the heating cost can be reduced by 10% when the setting of the thermostat
is reduced from 22 ◦C to 20 ◦C.

Next we consider losses associated with the heat pump. To ensure heat
transfer from the environment and into the house, the heat pump operates
between temperatures TL < T0 and TH > Thouse. The first law relates power
and heat transfer rates as

∣
∣
∣ẆHP

∣
∣
∣ +
∣
∣
∣Q̇L

∣
∣
∣ =
∣
∣
∣Q̇H

∣
∣
∣ =
∣
∣
∣Q̇loss

∣
∣
∣ .

The heat supplied to the house,
∣
∣
∣Q̇H

∣
∣
∣, is the sum of the power to run the

heat pump
∣
∣
∣ẆHP

∣
∣
∣, which must be paid for, and the heat intake from the

environment
∣
∣
∣Q̇L

∣
∣
∣, which is freely available.

The combined first and second law applied to the heat pump gives the

required work as (with ẆHP = −
∣
∣
∣ẆHP

∣
∣
∣)

∣
∣
∣ẆHP

∣
∣
∣ =

(

1− T0

Thouse

) ∣
∣
∣Q̇loss

∣
∣
∣+ T0Ṡgen ,

where Ṡgen = Ṡint
gen + Ṡext

gen denotes the associated internal and external ir-
reversibilities. The external irreversibilities due to heat transfer from the
environment to the cold side of the heat pump, and heat transfer from the
hot side of the heat pump to the house, are

Ṡext
gen =

(
1

TL
− 1

T0

) ∣
∣
∣Q̇L

∣
∣
∣+

(
1

Thouse
− 1

TH

) ∣
∣
∣Q̇H

∣
∣
∣ .



11.4 Example: Space Heating 243

If these are inserted explicitly into the above equation for power, it assumes
the form ∣

∣
∣ẆHP

∣
∣
∣ =

(

1− TL

TH

)∣
∣
∣Q̇loss

∣
∣
∣ + TLṠ

int
gen ;

here TLṠ
int
gen is the work loss to internal irreversibilities which are unavoidable

in a real-life heat pump.
The most efficient heating method is given by a fully reversible heat pump

which would require the work
∣
∣
∣Ẇrev

∣
∣
∣ =
(
1− T0

Thouse

) ∣∣
∣Q̇loss

∣
∣
∣. Real heat pumps

have higher power consumption, and require finite temperature differences
for heat exchange, so that irreversible processes are present.

The least efficient heating method are resistance heaters, for which Q̇L = 0,

and the heating rate is equal to the power,
∣
∣
∣ẆRH

∣
∣
∣ =
∣
∣
∣Q̇H

∣
∣
∣.

The coefficients of performance (COP) for heat pump and resistance heater
are

COPHP =

∣
∣
∣Q̇house

∣
∣
∣

∣
∣
∣ẆHP

∣
∣
∣

=
1

(
1− T0

Thouse

)
+

T0Ṡgen

|Q̇loss|
> 1 , COPRH =

∣
∣
∣Q̇house

∣
∣
∣

∣
∣
∣ẆRH

∣
∣
∣

=1 .

Thus, vendors for resistance heaters are right when they claim that their
product has an “efficiency” of 100%, but they conceal that a heat pump can
have a much higher COP.

A Carnot heat pump operating without temperature differences in heat
transfer has the maximum coefficient of performance, COPHP,C = 1

1− T0
Thouse

.

When the outside temperature is 0 ◦C and the house is kept at 20 ◦C, the
maximum COP is 14.65.

If the heat pump requires temperature differences of 5 ◦C for heat trans-
fer, but is internally reversible, its coefficient of performance is COPHP =

1

1− TL
TH

= 1

1− T0−ΔT
Thouse+ΔT

= 9.93. In this case, the second law efficiency is

ηIIR =
COPHP

COPHP,C
= 0.68 .

A resistance heater has a COPRH = 1 independent of the temperatures, and,
for the same temperatures, the second law efficiency

ηIIR =
COPRH

COPHP,C
= 1− T0

Thouse
= 0.068 .

Obviously, heat pumps have a considerably smaller power demand than re-
sistance heaters, and thus are a better choice for space heating than resis-
tance heaters. Indeed, resistance heaters are common only where electricity
is cheap, e.g., in Norway and British Columbia where hydropower is the main
source for generation.
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11.5 Example: Entropy Generation in Heat Transfer

Heat exchange over finite temperatures is irreversible, the associated entropy
generation is related to a work loss. The reason for the work loss is that
any temperature difference could be used to drive a heat engine. In heat
exchange, there is no engine, hence the loss. As we have seen, energy at
higher temperature is more valuable, since more work can be extracted (larger
Carnot efficiency). Heat transfer over finite temperature difference conserves
the amount of energy transferred (heat), but after transfer the energy is at
lower temperature, where the energy is less valuable, since less work can be
extracted. We now discuss why the lost work for a system in contact with
the environment is T0Ṡgen (11.5).

We consider heat transfer Q̇ between reservoirs at TH and TL. The asso-
ciated entropy generation is

Ṡgen = Q̇

(
1

TL
− 1

TH

)

.

A Carnot heat engine operating between the two reservoirs and receiving the
heat Q̇ from the hot reservoir could produce the power

ẆC =

(

1− TL

TH

)

Q̇ = TLṠgen .

Note that the Carnot engine involves heat exchange, which must be done
by perfect heat exchangers operating at infinitesimal temperature difference,
which is impossible in practice.

We recall that the computation of work loss and reversible work relies
on the assumption that all boundary parameters remain unchanged. The
hypothetical Carnot engine consumes the heat Q̇H = Q̇, but rejects the heat

∣
∣
∣Q̇

′
L

∣
∣
∣ = Q̇− ẆC =

TL

TH
Q̇

into the cold reservoir, which therefore receives less heat than in the case
of pure heat conduction—the difference is just the portion of heat that is
converted to power. In order to compensate for this, there must be a second
reversible engine employed which rejects the heat

ΔQ̇ = Q̇−
∣
∣
∣Q̇

′
L

∣
∣
∣ =

(

1− TL

TH

)

Q̇ = ẆC

at the temperature TL.
If T0 > TL, a reversible heat engine operating between T0 and TL is em-

ployed. An engine that delivers the work Ẇ ′ =
(

T0

TL
− 1
)
ΔQ̇ rejects the

required heat ΔQ̇, and the reversible work is
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Ẇrev = ẆC + Ẇ ′ =
T0

TL

(

1− TL

TH

)

Q̇ = T0Ṡgen .

If T0 < TL, a portion of the work ẆC must be used to drive a Carnot heat
pump operating between the environment at T0 and TL. To deliver the heat

ΔQ̇, the heat pump requires the power Ẇ ′′ =
(
1− T0

TL

)
ΔQ̇. Accordingly,

the reversible work is, again,

Ẇrev = ẆC − Ẇ ′′ = T0Ṡgen .

In both cases, the second engine is exchanging heat with the environment
at T0. It should be noted that fully reversible engines are not available, so that
the discussed systems are only of theoretical interest. Nevertheless, wherever
heat transfer over finite temperature differences occurs, there is the poten-
tial to do work. Whether it is feasible to do this depends on the individual
circumstances of the heat transfer process, in particular on the temperature
difference. The larger the temperature difference, the larger is the entropy
generation, and the bigger is the work potential.

11.6 Work Potential of a Flow (Exhaust Losses)

Many engines, in particular combustion engines, discard warm or hot exhaust.
We ask how much work could be extracted by bringing the exhaust into
equilibrium with the environment by reversible processes. For this we consider
Fig. 11.4, which shows a system to extract work from an available mass flow
ṁ at T1, p1, V1. The figure indicates that we can obtain work from propellers
inside the flow and by heat transfer through reversible engines which discard

heat engines

ṁ
T1
p1
V1

ṁ
T2
p2
V2

Ẇflow

ẆHE

T0T0

δQ̇0

δQ̇

Fig. 11.4 A system to extract work out of a flow by equilibrating it with the
environment
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heat into the environment at T0. We consider steady state operation in a
one-inlet-one-exit system for which the combined law (11.4) reduces to

Ẇ = −T0Ṡgen − ṁ

∫ 2

1

(

dh− T0ds+ d

(
1

2
V2

)

+ gdz

)

. (11.16)

With the Gibbs equation Tds = dh− vdp we can write instead

Ẇ = −T0Ṡgen + ṁ

∫ 1

2

(

vdp+ d

(
1

2
V2

)

+ gdz

)

+ ṁ

∫ 1

2

(

1− T0

T

)

Tds .

(11.17)
The first term on the right, −T0Ṡgen, describes irreversible losses anywhere
in the system, the second term is the reversible flow work extracted from the
propellers inside the flow, and the third term is the reversible work available
from the external heat engines. Indeed, with ṁTds = δQ̇ the last term can

be written as − ∫ 21
(
1− T0

T

)
δQ̇ where −δQ̇ is the heat supplied to the heat

engines on an infinitesimal step of the flow. Thus, if the entropy generation
vanishes, the heat engines are a series of infinitesimal Carnot engines.

The maximum work is extracted when all processes are reversible, so that
Ṡgen = 0, and when no external irreversibilities occur, which requires that
the exhaust is in equilibrium with the environment, i.e.,3 T2 = T0, p2 = p0,
V2 = V0 = 0. Then,

Ẇrev = ṁψ1 = ṁ

[

h1 − h0 − T0 (s1 − s0) +
1

2
V2
1 + g (z1 − z0)

]

. (11.18)

Here we have defined the flow exergy (or availability) ψ as the maximum
work per unit mass that can be extracted from a flow by equilibrating it with
the environment.

The exhaust of a turbine or nozzle has work potential as measured by
its exergy. If this work potential is not used, exergy is destroyed and en-
tropy produced. For the case of a single outflow into the environment, the
corresponding entropy generation is

Ṡgen =
ṁψ

T0
. (11.19)

11.7 Heat Engine Driven by Hot Combustion Gas

As a relevant application we consider the maximum amount of work that can
be obtained from combustion of a fuel in a fully reversible process. We will

3 The environment is at rest and work could be extracted from any flow faster
than the environment. Thus, for no external irreversibilities to occur, one must
set V2 = 0. However, then one could not remove the exhaust—for real applications
one will assume V2 � V1.
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compare the result to that of a case where a single reversible Carnot engine
is employed to convert combustion heat into power.

Fuel must be mixed with air and, after its work is done, the combustion
product must be removed. Thus, for combustion processes one does not have
a single hot reservoir, but the heat is taken from a stream that is gradually
cooled as heat is withdrawn.

To simplify the discussion, we ignore the amount of fuel mass added, and
treat the combustion product as air; we shall also simplify for constant specific
heats to obtain explicit formulae for work and efficiencies. Pressure losses
are ignored, and the combustion is assumed to take place at environmental
pressure p0.

First we consider the isobaric combustor: fuel and air enter the combustor
at environmental temperature T0, and the hot combustion gas leaves at the
flame temperature TF . Since we ignore the mass flow of fuel, the heat added
to the air is

Q̇fuel = ṁ [h (TF )− h (T0)] = ṁcp (TF − T0) , (11.20)

where the flame temperature TF depends on the amount of fuel added. The
amount of heat supplied by combustion of the fuel is the product of the
mass flow of fuel and the fuel’s heating value qHV (measured in kJ/ kg fuel),
Q̇fuel = ṁfuelqHV. Thus, the cost associated with the process is proportional
to Q̇fuel.

Q̇fuel is also the maximum heat available to convert into power in a heat
engine. If Q̇fuel is completely consumed by the heat engine, the exhaust of
the power plant is at T0. The maximum amount of work that can be obtained
from the hot combustion gas4 follows from (11.18), after ignoring kinetic and
potential energies, as

Ẇrev = ṁ [h (TF )− h (T0)− T0 (s (TF , p0)− s (T0, p0))]

= ṁcp

[

TF − T0 − T0 ln
TF

T0

]

, (11.21)

with the corresponding thermal efficiency

ηmax =
Ẇrev

Q̇fuel

= 1− ln TF

T0

TF

T0
− 1

. (11.22)

This thermal efficiency for power extraction from a hot gas flow, valid only
for constant specific heat, is the equivalent to the Carnot efficiency, which
describes processes between reservoirs at constant temperatures.

4 This is also the maximum amount of work that can be obtained from the fuel in a
combustion process, but, since combustion is irreversible, it is not the maximum
amount of work available from the fuel—this will be discussed later, when reacting
mixtures are discussed.
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TH

T0

C

Q̇in

Q̇out

Q̇fuel

ṁ

ẆC

ṁ

TFT0

Fig. 11.5 Carnot engine heated by continuous stream of combustion gas

Now we compare this hypothetical best case to the case where the heat
extracted from the flow is transferred into a single Carnot engine operat-
ing between the temperatures T0 and TH . The engine is heated by the hot
combustion gas that enters its heat exchanger at flame temperature TF and
leaves at TH . For now we assume that the exhaust at TH is not further
utilized, but dumped into the environment. The Carnot engine is internally
reversible, but obviously there are external irreversibilities associated with
the heat transfer into the engine, and with heat transfer between the exhaust
gas and the environment. Figure 11.5 shows the corresponding system, in-
cluding the air temperatures before and after combustion, and before and
after heat exchange with the Carnot engine. The heat withdrawn from the
combustion gas and added to the Carnot engine is

Q̇in = ṁ [h (TF )− h (TH)] . (11.23)

Accordingly, the work produced by the—reversible—Carnot engine is

ẆC =

(

1− T0

TH

)

Q̇in =

(

1− T0

TH

)

ṁ [h (TF )− h (TH)]

= ṁcp

(

1− T0

TH

)

(TF − TH) . (11.24)

The temperature TH at the hot side of the engine is a variable of the
process. A larger value of TH increases the thermal efficiency of the Carnot
engine, but also leads to a larger exergy of the exiting flow, and thus to a larger
external loss. Small values of TH lead to small thermal efficiency, and to large
temperature difference between engine and hot gas flow, which implies large
entropy generation and work loss in heat transfer. Closer examination shows
that for a given flame temperature TF and the combustion flow ṁ, the power
produced by the Carnot engine, ẆC , has a maximum at TH,max =

√
T0TF ,

where the power produced is
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ẆC,max = ṁcp

(√
TF −

√
T0

)2
. (11.25)

Next we consider the efficiency of this conversion process. There are several
efficiency measures that can be defined. The thermal efficiency of the Carnot
engine alone is based on the heat intake of the engine,

ηC,max =
ẆC,max

Q̇in

= 1− T0

TH,max
= 1−

√
T0

TF
. (11.26)

Interestingly, this is just the thermal efficiency (10.21) of the ideal Brayton
cycle at maximum work. However, this efficiency is not a good measure for
the system performance, since it ignores that more heat is available from
the exhaust gas at TH , which is not further used, and, according to the
assumptions made, dumped into the environment.

Since the total heat available from cooling the hot flow to environmental
temperature is5 Q̇fuel = ṁcp (TF − T0), the proper efficiency measure for the
conversion of combustion heat into power in this set-up is

ηcomb =
ẆC,max

Q̇fuel

=

(√
TF −√

T0

)2

TF − T0
= 1− 2

√
T0√

TF +
√
T0

. (11.27)

Figure 11.6 shows the efficiencies ηmax, ηC,max and ηcomb for temperatures TF

between T0 = 298K and 1500K. We compute the efficiencies for TF = 1500K
as ηmax = 0.599, ηC,max = 0.554, and ηcomb = 0.383 (TH = 668K for the
Carnot engine).
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14001400
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Fig. 11.6 Efficiencies ηmax (continuous), ηC,max (dash-dotted), and ηcomb (dashed)
as defined and discussed in the text

5 Recall that the fuel cost is proportional to Q̇fuel.
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The efficiency ηmax describes the best possible, i.e., fully reversible, system
to produce work from the combustion gas. This efficiency can be used to define
the second law efficiency for other processes as ηII = η

ηmax
. For the data given

above, we find the second law efficiencies ηIIC,max = 0.925, and ηIIcomb = 0.639.
The fully reversible system has the highest efficiency, ηmax. The single

Carnot engine looses work to irreversibilities in heat transfer between hot
gas and engine, and in the dumping of hot exhaust into the environment;
accordingly it has a significantly lower efficiency ηcomb. The efficiency ηC,max

considers only the actual heat entering the engine, Q̇in, not the total heat
produced in combustion, Q̇F . This efficiency is higher than ηcomb since it
ignores the energy lost with the hot exhaust at TH .

It is particularly important to note that the efficiency ηC,max, which ignores
the exhaust losses, leads to a far better impression of the quality of the process
than the use of the efficiency ηcomb which includes the exhaust losses. The
important lesson to be learned here, is that one has to be rather careful about
efficiency values presented anywhere, since one can always find an efficiency
measure that lets a process appear to be better than it actually is, simply by
excluding some, or all, external irreversibilities associated with the process.

The discussed process invites the question what one could do to utilize
the exhaust at TH . For an answer, we recognize that the fuel is needed to
heat the air before it exchanges heat with the heat engine. Fuel consumption
can be reduced by using the exhaust air (at TH) to preheat the incoming air
before combustion. The heat exchanger used for this is called a regenerator,
and Fig. 11.7 shows the system with the regenerator added. When we assume
perfect heat exchange between the incoming and the exiting air streams (both

T0

C

Q̇in

Q̇out

Q̇fuel TF TH

ẆC

ṁ

T0

T0

TH

TH

¤

Fig. 11.7 Carnot engine heated by continuous stream of combustion gas with
regenerator added
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with mass flow ṁ), the incoming air can be heated to TH while the exiting
air cools down to T0. In this case, only the heat

Q̇∗
fuel = ṁ [h (TF )− h (TH)] = ṁcp (TF − TH) = Q̇in (11.28)

must be provided from the combustion of fuel. As indicated, this is just the
heat going into the heat engine, Q̇in, so that now all heat from the fuel is
used in the engine. The exhaust is in equilibrium with the environment, and
hence there is no external entropy generation—and no external loss. The
only irreversibility in the considered process is the heat transfer between the
hot gas and the engine. The efficiency for the engine with regenerator, and
optimal choice for TH , is

ηC,reg =
ẆC,max

Q̇∗
fuel

=
ẆC,max

Q̇in

= ηC,max . (11.29)

Regeneration will be discussed in more detail in subsequent chapters, includ-
ing the consideration of imperfect heat exchange.

11.8 Exergy

Exergy, also known as “availability”, is defined as the maximum amount of
work that can be extracted from a flow or an amount of substance by only
exchanging heat with the environment until equilibrium with the environment
is reached.

Thus, exergy describes work potential, and can be a useful concept to an-
swer questions like whether it is worthwhile to harvest energy from a system.
As an example one might think of the exhaust of fuel fired power plants as
discussed in Section 11.6.

Exergy analysis is now an accepted method within the field of thermody-
namics. We shall introduce the concept in this section, but since we prefer
to focus on entropy generation and lost work arguments, we shall use exergy
only occasionally.

To compute exergy, the combined first and second law (11.4) is simplified
for the case where heat is exchanged only with the environment at T0 and all

processes are reversible, that is by setting
∑

k 
=0

(
1− T0

Tk

)
Q̇k − T0Ṡgen = 0 .

We shall distinguish between flow exergy, and closed system exergy.
In a closed system, where all mass flows vanish, Eq. (11.4) reduces further

to

−d (E − T0S)

dt
= Ẇ . (11.30)

Integrating between the actual state {Ea, Sa} and the final equilibrium state
{E0, S0}, and subtracting the work done to the environment, which has con-
stant pressure p0, yields the closed system exergy as
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Ξa =

∫
Ẇdt−

∫ 0

a

p0dV = −
∫ 0

a

(dE − p0dV − T0dS)

Ξa = Ea − E0 + p0 (Va − V0)− T0 (Sa − S0) . (11.31)

The specific closed system exergy is

ξ =
Ξ

m
= e − e0 + p0 (v − v0)− T0 (s− s0) . (11.32)

Flow exergy ψ is defined as the maximum work per unit mass that can
be extracted from a single flow in a steady state process as it is equilibrated
with the environment, that is heat is exchanged only with the environment
and the outflow is in equilibrium with the environment. Thus, from (11.8),

ψ =
Ẇ

ṁ
= h− h0 − T0 (s− s0) +

1

2

(V2 − V2
0

)
+ g (z − z0) = ξ + (p− p0) v .

(11.33)
With these definitions, the combined first and second law (11.4) can be writ-
ten in form of an exergy balance. Use of the mass balance (9.1) to eliminate
some terms with the constant factor (e0 + p0v0 − T0s0), yields

dΞ

dt
+
∑

out

ṁeψe −
∑

in

ṁiψi =
∑

k 
=0

(

1− T0

Tk

)

Q̇k −
(

Ẇ − p0
dV

dt

)

− T0Ṡgen .

(11.34)
This equation describes the change of exergy of a system due to convective
transport (ṁψ), heat transfer (Q̇k) at temperatures Tk 
= T0, work (Ẇ −
p0

dV
dt ), and exergy destruction due to irreversibilities (−T0Ṡgen).

The combination
(
Ẇ − p0

dV
dt

)
is called the useful work. Note that for typ-

ical open systems, e.g., turbines, the volume V stays constant, so that p0
dV
dt

is zero. Moreover, most relevant closed system engines are reciprocating, so
that for one cycle

∮
p0

dV
dt dt = p0

∮
dV = 0. This is reflected in our discussion

of the Otto and Diesel cycles, where we did not consider the work done on
the environment.

Problems

11.1. A Heat Engine
A heat engine that operates between two reservoirs at TH = 500 ◦C and
TL = 25 ◦C produces 1.25MW of power from a heat intake of 2.5MW.

Compute the heat rejected, the thermal efficiency, the entropy generation
rate, the work loss to irreversibilities, and the 2nd law efficiency of the engine.

11.2. A Heat Pump
An off-the-shelf heat pump system has a COP of 3.4 for operation between
25 ◦C and −5 ◦C. Determine the entropy generation per kW of heating, the
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percentage of power consumed required to overcome irreversibilities, and the
2nd law efficiency of the system.

11.3. A Refrigerator
A refrigeration system has a COP of 2 for operation between 20 ◦C and
−10 ◦C and consumes 1.5 kW of electrical power. Determine the second law
efficiency of the system, the entropy generation rate, and the amount of power
required to overcome irreversibilities.

11.4. Heating of House
A small house is exposed to an environment of T0 = −5 ◦C, the temperature
inside is to be maintained at Th = 22 ◦C. The heat loss is given by Newton
laws of cooling as Q̇loss = αA(Th − T0), where A = 260m2 is the outside
surface of the house and α = 1 W

m2 K is an overall heat transfer coefficient. De-
termine the amount of electrical work for heating the house for the following
cases:

1. With a resistance heater.
2. With an internally and externally reversible Carnot heat pump.
3. With an externally irreversible Carnot heat pump with 15K temperature

difference for heat transfer.

11.5. Space Heating
A friend who is going to build a house asks you for advice on heating systems.
His contractor has offered the following choices: (a) baseboard resistance
heaters, (b) heat pump with hot water radiators (circulating water heated
to 60 ◦C), (c) heat pump with warm water floor heating (circulating water
heated to 35 ◦C).

Based on your knowledge of thermodynamics, which option should your
friend chose? Present your arguments. Assume outside temperature −10 ◦C
and inside temperature 20 ◦C.

11.6. A Cycle
A closed piston-cylinder engine with helium as working medium operates on
the following reversible cycle

1-2: Isentropic compression from p1 = 10 bar, T1 = 300K
2-3: Isobaric heat addition until T3 = 1200K
3-1: Isochoric cooling to the initial state

1. Draw p-V-diagram and T-s-diagram for the cycle.
2. Determine the thermal efficiency of the cycle and the net work output per

unit mass.
3. How much work per unit mass could be obtained from the heat rejected

into the environment in the best case? Assume the environment is at T0 =
300K, p0 = 1bar.
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11.7. Exhaust of a Car Engine
The engine of a car delivers a net work of 848.4 kJ

kg from an heat intake of

1520.4 kJ
kg (reversible operation). The state at the end of the expansion stroke

of the engine is 1146.6K and 3.822 bar. In the engine, air in this state is
exhausted into the environment which is at 300K, 1 bar.

The exhaust process is modelled as isochoric cooling to the environment.
Use the combined first and second law to compute the amount of work that
could be obtained from the exhaust in a fully reversible process and compare
to the work delivered by the engine.

What would be the thermal efficiencies for the engine alone, and for a
system that also provides the work obtainable from the exhaust?

11.8. Exhaust of a Car Engine (Continuous)
The state at the end of the expansion stroke of a car engine is 1140K and
3.8 bar. In the actual engine, air in this state is exhausted into the environ-
ment which is at 300K, 1 bar.

Assume that the exhaust is leaving the engine as a continuous steady flow,
and determine the work that could be obtained from the exhaust in a fully
reversible process. Compare to the work delivered by the engine.

11.9. Use of Waste Heat
A chemical plant rejects 2MW of waste heat at 350 ◦C and 4MW at 200 ◦C.
Moreover the plant consumes 5MW of electrical energy. In the past, the waste
heat was just dumped into the environment (20 ◦C), but now there is a plan
to use it for power production to reduce the electricity bill. Estimate what
percentage of the electric power consumed in the plant could be produced by a
suitable system, when 20% of the maximum possible is lost to irreversibilities.

11.10. Reversible Heat Transfer
Consider a steady state isobaric flow (pressure p, mass flow ṁ) of a fluid
that enters the system at a temperature T1 and leaves at the environmental
temperature T0. The heat withdrawn is used to drive a series of infinitely
many infinitesimal Carnot engines. All processes are fully reversible. Compute
the total power output of the system.

δQ
δW

1 0

C

T T-dT

T0  
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11.11. Entropy Generation in Mixing
In an adiabatic mixing chamber, a mass flow of 200 kg

s compressed liquid
water at 10 bar, 40 ◦C is mixed isobarically with saturated steam so that
the exiting flow is in the saturated liquid state. Determine the mass flow of
saturated steam that must be added, the entropy generation rate, and the
work loss for the process (with respect to standard environment).

11.12. Entropy Generation in Steam Generator
The temperature in the boiler of a big steam power plant is constant at
700 ◦C. The pipes of the steam generator run trough the boiler, with the
inlet state being compressed liquid at 200 bar, 50 ◦C, and the exit state being
at 200 bar, 550 ◦C. For a mass flow of 1150 t

h , determine the heating rate,
the entropy generation rate and the associated work loss (with respect to
standard environment).

11.13. Entropy Generation in Steam Generator
Consider a 250MW nuclear power plant with thermal efficiency of 0.32. The
steam generator is kept at a pressure of 17.5MPa. The incoming feedwater is
in the compressed liquid state at 40 ◦C, and the exiting steam is superheated
vapor at 400 ◦C. The heat is provided by a counter-flow of molten sodium
(ideal incompressible liquid, mass density 0.927 g

cm3 , specific heat 1.26 kJ
kgK)

which enters at 500 ◦C and leaves at 350 ◦C.

1. Determine the mass flows of steam and sodium.
2. Determine the total entropy generation rate in steam generator, and the

corresponding work loss.

11.14. Entropy Generation in Condenser
The condenser of a small steam power plant is kept at a temperature of 45 ◦C.
The inlet state is at a quality of 90%, and the exit state is saturated liquid.
The condenser rejects heat to the environment which is at 5 ◦C. For a mass
flow of 75 t

h , determine the cooling rate, the entropy generation rate and the
associated work loss.

11.15. Entropy Generation in Throttling
Cooling fluid R134a in compressed liquid state at 1MPa, 26 ◦C is throttled
adiabatically to a pressure of 0.14MPa. For a mass flow of 1 kg

s , determine
the entropy generation rate, and the associated work loss.

11.16. Work Potential of a Hot Rock
A 2t block of granite (specific heat c = 0.79 kJ

kgK ) is initially at a temperature
of 500 ◦C. How much work could be obtained from equilibrating the rock with
the environment at 15 ◦C?



Chapter 12

Vapor Engines

12.1 Boiler Exhaust Regeneration

The discussion of losses in combustion driven systems in the last chapter has
shown that regeneration, i.e., use of exhaust energy by means of heat exchange
within the system, can yield dramatic improvement of engine efficiency. In
direct continuation of the argument, we first discuss regeneration in steam
cycles, which rely on external combustion. For this, we need to consider not
only the steam cycle, but also its heat source, which is hot combustion air.

HE

Q̇H

Q̇L

Q̇F TF TX

Ẇ

ṁ

T0

combustion heat exchanger

TH

TL

ṁ

Fig. 12.1 Heat engine driven by external combustion without exhaust regeneration

Figure 12.1 shows a heat engine (HE) which is driven by heat exchange
with a hot combustion product. Air at T0, flowing at rate ṁ, is mixed with
fuel and burned so that the combustion product has the temperature TF . The
heat supplied to the air from the combustion is (air standard approximation,
i.e., fuel mass ignored)

Q̇F = ṁ (hF − h0) . (12.1)

The hot gas runs through the heat exchanger which it leaves at temperature
TX , so the heat supplied to the heat engine is
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Q̇H = ṁ (hF − hX) . (12.2)

Since the exhaust leaves at temperature TX , the heat

Q̇E = ṁ (hX − h0) = Q̇F − Q̇H (12.3)

remains unused; this is just the heat added to the environment when the
exhaust equilibrates.

Earlier, we have discussed this set up when the heat engine is a Carnot
engine, and have found the exhaust temperature TX for optimum work out-
put, see Sec. 11.7. The discussion showed that the simplest way to utilize the
exhaust heat Q̇E is regeneration by preheating the air before combustion.

HE

Q̇H

Q̇L

Q̇F TF TX

Ẇ

ṁ

T0

TE

TR

TX

combustion heat exchanger
regenerator

TH

TL

Fig. 12.2 Heat engine driven by external combustion with exhaust regeneration

Figure 12.2 shows the system with an added regenerator for preheating
the air. The heat exchange in the regenerator is, from the first law,

Q̇R = ṁ (hR − h0) = ṁ (hX − hE) , (12.4)

where TE is the final exhaust temperature, and TR the preheat temperature.
In a perfect regenerator the preheat temperature would be TX , and the ex-
haust would leave at T0. Accordingly, the regenerator effectiveness is defined
as the ratio between the heat used for preheating, (hR − h0), and the heat
available for preheating, (hX − h0), that is

ηreg =
hR − h0

hX − h0
. (12.5)

With regenerator, the heat addition from the fuel becomes

Q̇F = ṁ (hF − hR) = Q̇H +
(
1− ηreg

)
ṁ (hX − h0) , (12.6)
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where Q̇H = ṁ (hF − hX) is the heat supplied to the heat engine as before.
Thus, with a perfect regenerator (ηreg = 1), we have Q̇H = Q̇F , i.e., all the
heat provided from the fuel arrives in the engine.

A realistic regenerator has effectiveness of about 80%, and still leads to
a much better fuel usage compared to direct exhaust into the environment.
It must be noted that for several reasons a somewhat elevated exhaust tem-
perature TE is beneficial: The combustion of fossil fuels generates water and
sulfur oxides; the exhaust temperature must be high enough to avoid water
condensation and subsequent formation of sulfuric acid. Also, the combustion
air must be moved through the system, either by means of fans, or by natural
draught chimneys, which rely on the buoyancy of warm air (Sec. 13.8). Since
effective natural draught requires relatively warm exhaust, there is a marked
loss. Therefore, modern power plants use fans.

From our previous discussion of heat engines we know that efficiency is
high when heat is added at larger temperatures. Thus, for the heat engine
one will aim at having the average temperature for heat addition TH as
high as possible. The temperature TH is limited by the temperature-pressure
characteristics of the working fluid and the materials used for construction.
The maximum steam temperature in steam cycles using steel pipes in the
steam generator is 560 ◦C. The regenerative steam cycles discussed below
aim at raising the average temperature for heat addition, and thus increasing
efficiency.

External (to the heat engine) irreversibilities occur in the combustion
chamber, and in heat transfer to the heat engine. Our discussion of com-
bustion processes in Chapter 25 will show that combustion irreversibility
decreases with increasing flame temperature TF . On the other hand, heat
transfer irreversibility grows with the temperature difference between com-
bustion product (TF ) and the heat engine (TH). If TH is limited, as is the case
in steam power plants, reduction of TF decreases heat transfer irreversibility,
but increases combustion irreversibility, with the total irreversibility staying
relatively constant. Heat is transferred more easily at larger temperature dif-
ferences, and one can adjust TF for efficient heat transfer. More efficient use
of the fuel is made when the heat engine temperature TH is increased, as in
the combined cycle of Sec. 13.6.

12.2 Regenerative Rankine Cycle

With a high average temperature of the combustion gas in the boiler pos-
sible by exhaust regeneration, we now turn to the question of how to raise
the average temperature during heat addition in a steam power plant. The
basic Rankine cycle was already discussed in Sec. 10.1, where we introduced
reheating between turbine stages as one means to this end, Fig. 12.3 repeats
the T-s-diagram and the schematic, with air preheater added to the sketch.
A higher pressure in the steam generator implies higher average temperature.
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However, direct expansion from high pressure into the condenser (3-4’) results
in unacceptably low values for steam quality at the turbine exit, and turbine
blade damage through droplet formation. Reheat at intermediate pressure is
used so that the quality at turbine exit is larger, which implies fewer droplet,
and low blade damage.
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Fig. 12.3 Schematic and T-s-diagram of Rankine cycle with reheat and preheating
of combustion air

Heat is added between states 2 and 3, with rather low temperatures in
the liquid region right after the pump, the boiler feedwater. In a regenerative
Rankine cycle internal heat exchange is used to preheat the feedwater between
pump and boiler. For this, some steam is bled-off after the high pressure
turbine stage (state 4), and then used to heat the feedwater.

One distinguishes between open feedwater heaters, in which vapor and
water are mixed isobarically, and closed feedwater heaters, where vapor and
feedwater are running through a heat exchanger at different pressures. In
both cases modifications of the cycle are necessary, in order to feed the bled-
off flow back into the cycle, and to adjust pressures. Real life power plants
employ an array of closed and open feedwater heaters to optimize efficiency
and thus increase fuel utilization as much as possible.

12.2.1 Open Feedwater Heater

A reheat steam cycle with a single open feedwater heater is depicted in
Fig. 12.4 together with the corresponding T-s-diagram. In the open feedwa-
ter heater, compressed liquid water coming from the low pressure pump (P1,
state 2) is mixed isobarically with some of the steam leaving the high pressure
turbine (T1, state 6). The mixing ratio is adjusted such that the resulting
mixture (state 3) is saturated liquid at the mixing pressure p3 = p2 = p6.
The high pressure pump (P2) compresses this liquid to p4 before it is fed
into the boiler where it is heated, evaporated and superheated to state 5.
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The high-pressure, high-temperature steam is expanded in the high pressure
turbine and then split into the stream to the feedwater heater, and the main
stream. The latter is reheated in the boiler (6-7), expanded in the low pres-
sure turbine (7-8), condensed (8-1), and compressed (1-2), before it enters
the feedwater heater.

As the figure indicates, the working fluid undergoes two different cycles.
The main stream ṁA undergoes the full cycle 1-2-3-4-5-6-7-8-1 (continuous
line), while the mass flow ṁB bled-off after the high pressure turbine under-
goes the cycle 3-4-5-6-3 (dashed line).
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Fig. 12.4 Schematic and T-s-diagram for a steam power plant with reheat and
one open feed water heater (o.f.w.h.). Regeneration of combustion air in the air
preheater is indicated as well. To not overload the T-s-diagram, only reversible
process curves are indicated for pumps and turbines.

The heat added to this process from the fuel is

Q̇in = (ṁA + ṁB) (h5 − h4) + ṁA (h7 − h6) , (12.7)

and takes place at relatively high temperature. The low temperature heat-
ing 2-3 occurs through internal heat exchange in the open feedwater heater.
Increase of the average temperature for external heat addition increases the
thermal efficiency, and this is why the open feedwater heater gives better
efficiency.

The mass flow ratio is determined from the energy balance for the feed-
water heater. We assume that the feedwater heater has no heat loss to the
environment, so that

ṁAh2 + ṁBh6 = (ṁA + ṁB)h3 , (12.8)

which gives the mass flow ratio as
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y =
ṁB

ṁA + ṁB
=

h3 − h2

h6 − h2
. (12.9)

Together, the two turbines produce the power

ẆT = (ṁA + ṁB) (h5 − h6) + ṁA (h7 − h8) > 0 , (12.10)

while the pumps consume

ẆP = ṁA (h1 − h2) + (ṁA + ṁB) (h3 − h4) < 0 . (12.11)

Accordingly, the thermal efficiency of the cycle is

η =
Ẇ

Q̇in

=
(1− y) (h1 − h2 + h7 − h8) + h3 − h4 + h5 − h6

h5 − h4 + (1− y) (h7 − h6)
. (12.12)

12.2.2 Closed Feedwater Heater

With closed feedwater heaters the streams that exchange heat can be at
different pressures, which gives some additional flexibility for process design.
The bled-off steam must re-enter the main flow after the feedwater heater,
and this can be done either by pumping it into the boiler flow, as depicted in
Fig. 12.5, or by throttling it to lower pressure, for instance into the condenser
as shown in Fig. 12.6. The latter solution is less efficient, since throttling is
highly irreversible.

We consider the case with pump in detail. Steam is bled-off after the high
pressure turbine (state 6) and runs through the closed feedwater heater (cfwh)
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Fig. 12.5 Schematic and T-s-diagram for a steam power plant with reheat and one
closed feed water heater (cfwh). Pump 2 only compresses the bled-off flow before
it is mixed into the main feedwater flow in the mixing chamber (mix). Combustion
air flow is not shown.
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where it exchanges heat with the pressurized feedwater, and condenses (state
9). The condensate is brought to the turbine inlet pressure by the second
pump (P2, state 10), and then mixed into the main flow to state 4.

Again, the working fluid undergoes two different cycles. The main stream
ṁA runs through the full cycle 1-2-3-4-5-6-7-8-1 (continuous line), while the
mass flow ṁB bled-off after the high pressure turbine runs through the cycle
9-10-4-5-6-9 (dashed line).

The energy balance for the (adiabatic) feedwater heater reads

ṁA (h3 − h2) = ṁB (h6 − h9) , (12.13)

so that the mass flow ratio is

y =
ṁB

ṁA + ṁB
=

h3 − h2

h6 − h9 + h3 − h2
. (12.14)

Note that the temperature of the main flow after the feedwater heater, T3,
will be below the temperature of the condensing heating flow, T9.

The energy balance for the adiabatic mixing chamber reads

ṁAh3 + ṁBh10 = (ṁA + ṁB)h4 . (12.15)

Heat input, turbine power and pump power are

Q̇in = (ṁA + ṁB) (h5 − h4) + ṁA (h7 − h6) ,

ẆT = (ṁA + ṁB) (h5 − h6) + ṁA (h7 − h8) > 0 , (12.16)

ẆP = ṁA (h1 − h2) + ṁB (h9 − h10) < 0 .

and thus the thermal efficiency is

η =
(1− y) (h1 − h2 + h7 − h8) + y (h9 − h10) + (h5 − h6)

h5 − h4 + (1− y) (h7 − h6)
. (12.17)

If the bled-off flow is simply throttled into the condenser, the total mass
flow ṁA + ṁB must be pumped up and preheated in the feedwater heater.
In this case the energy balance for the feedwater heater is

(ṁA + ṁB) (h3 − h2) = ṁB (h5 − h8) ,

which gives the mass flow ratio as

y =
ṁB

ṁA + ṁB
=

h3 − h2

h5 − h8
.

The thermal efficiency for this cycle can be read from the schematic as

ηcwfh th =
h1 − h2 + h4 − h5 + (1− y) (h6 − h7)

h4 − h3 + (1− y) (h6 − h5)
.
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ṁB

9

9

4

Fig. 12.6 Schematic and T-s-diagram for a steam power plant with reheat and one
closed feed water heater (cfwh). The bled-off flow is throttled into the condenser.

12.2.3 Several Feedwater Heaters

The example below will give further evidence that regeneration through
feedwater heaters yields improvement of thermal efficiency. Already small
improvements of thermal efficiency lead to significant savings (or increased
profit), and therefore one aims for optimum process configurations. Modern
power plants employ arrays of open and closed feedwater heaters operating
at various pressures.

Feedwater heaters reduce the external irreversibility in the heat transfer
between the combustion gas and the working fluid in the boiler steam gen-
erators. However, feedwater heaters add internal irreversibilities, due to heat
transfer over finite temperature differences, mixing, and throttling. The sub-
sequent examples will show that the overall irreversibilities of cycles with
feedwater heaters are smaller. With multiple feedwater heaters, the internal
irreversibilities become smaller, since the temperature differences for heat
exchange become smaller. Since irreversibilities imply work loss, plants with
multiple feedwater heaters have higher thermal efficiency, due to smaller irre-
versibilities. While efficiency grows with the number of feedwater heaters, the
increase slows down with the number of heaters. Above a certain number of
heaters, the small increase of efficiency cannot offset the cost for construction
and maintenance, and thus one will limit their number.

The design of a large power plant with multiple feedwater heaters requires
optimization of the process to determine the number of feedwater heaters,
and the optimal values for the pressures and mass flow rates of the bled-
off flows. This multi-parameter optimization is done by means of computer
programs.

Figure 12.7 shows a schematic of a 750MW power plant in Germany. The
plant employs three turbine stages at high pressure (HP), intermediate pres-
sure (MP) and low pressure (LP), which drive the generator. The power
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Fig. 12.7 Schematic of 750 MW power plant Bexbach, Germany. The plant has
several feed water heaters, and three turbine stages. Note the extra turbine to drive
the pump [simplified from H.D. Baehr: Thermodynamik, Springer 1996].
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for the feedwater pumps is provided by a smaller turbine. Steam is bled-off
from the turbines at a variety of pressures and routed through six feedwater
heaters. The condensate leaving the low pressure feedwater heaters 2 and 4
is pumped up into the main flow, while for the other feedwater heaters the
condensate is throttled into the lower heaters, or the condenser.

12.3 Example: Steam Cycles with Feedwater Heaters

We consider the thermal efficiencies for the cycles depicted in Figs. 12.3-12.6
with the following base data:

condenser pressure: 7.5 kPa
boiler pressure: 125 bar
reheat pressure: 10 bar
high pressure turbine inlet temperature: 500 ◦C
low pressure turbine inlet temperature: 500 ◦C
boiler temperature TB: 900K
standard environmental temperature T0: 298K

The boiler temperature will be required to estimate the entropy generation
in the heat transfer between boiler and steam cycle. Since all cycles operate
between the boiler temperature TB and the environmental temperature T0,
their efficiencies must be compared to the corresponding Carnot efficiency
ηC = 1− T0

TB
= 0.669.

To simplify the discussion, we shall assume that all pumps and turbines
are reversible. Realistic pumps and turbines are irreversible, and add another
source of irreversibility to the discussed cycles. Since all pumps and turbines
are considered to be adiabatic, their entropy generation rates are Ṡgen =
ṁ (sout − sin), where the appropriate mass flow and entropy values must be
used. The latter would be obtained from pressure and enthalpy data, based
on the isentropic irreversibilities.

It is left to the reader to verify the data and calculations in detail.

12.3.1 No Feedwater Heater

We first examine the basic reheat cycle as shown in Fig. 12.3, for which we
find the following property values (point 4 is in the two-phase region)

h1 = hf (7.5 kPa) = 168.8 kJ
kg , s1 = sf (7.5 kPa) = 0.5764 kJ

kgK ,

h2 = h (125 bar, s1) = 181.4 kJ
kg , s2 = s1 ,

h3 = h (125 bar, 500 ◦C) = 3342 kJ
kg , s3 = s (125 bar, 500 ◦C) = 6.462 kJ

kgK ,

h4 = h (10 bar, s3) = 2722 kJ
kg , s4 = s3 ,

h5 = h (10 bar, 500 ◦C) = 3479 kJ
kg , s5 = s (10 bar, 500 ◦C) = 7.762 kJ

kgK ,

h6 = h (7.5 kPa, s5) = 2421 kJ
kg , s6 = s5 .
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The work per unit mass is

Ẇ

ṁ
= h1 − h2 + h3 − h4 + h5 − h6 = 1665.4

kJ

kg
,

and the heat intake is

Q̇in

ṁ
= h3 − h2 + h5 − h4 = 3917.6

kJ

kg
,

so that the thermal efficiency of this simple reheat cycle is

ηR =
Ẇ

Q̇in

= 0.425 .

The entropy generation rates for the two heat transfer steps in the boiler
follow from the second law as

Ṡgen,23 = ṁ (s3 − s2)− Q̇23

TB
= ṁ

[

s3 − s2 − h3 − h2

TB

]

,

Ṡgen,45 = ṁ (s5 − s4)− Q̇45

TB
= ṁ

[

s5 − s4 − h5 − h4

TB

]

.

The entropy generation in the condenser due to heat transfer to the standard
environment at T0 is

Ṡgen,61 = ṁ (s1 − s6)− Q̇61

T0
= ṁ

[

s1 − s6 − h1 − h6

T0

]

.

The total entropy generation for the system is

Ṡgen = Ṡgen,23 + Ṡgen,45 + Ṡgen,61 ,

and from the data we find the entropy generation per unit as

Ṡgen

ṁ
= 3.20

kJ

kgK
.

As a measure for the associated work loss, we consider the standard work
loss T0Ṡgen relative to the power output:

Ẇloss

Ẇ
=

T0Ṡgen

Ẇ
= 57% .
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12.3.2 Open Feedwater Heater

We next examine the reheat cycle with open feedwater heater as shown in
Fig. 12.4, for which we find

h1 = hf (7.5 kPa) = 168.8 kJ
kg , s1 = sf (7.5 kPa) = 0.5764 kJ

kgK ,

h2 = h (10 bar, s1) = 169.9 kJ
kg , s2 = s1 ,

h3 = hf (10 bar) = 762.8 kJ
kg , s3 = sf (10 bar) = 2.139 kJ

kgK ,

h4 = h (125 bar, s3) = 775.8 kJ
kg , s4 = s3 ,

h5 = h (125 bar, 500 ◦C) = 3342 kJ
kg , s5 = s (10 bar, 500 ◦C) = 6.462 kJ

kgK ,

h6 = h (10 bar, s5) = 2722 kJ
kg , s6 = s5 ,

h7 = h (10 bar, 500 ◦C) = 3479 kJ
kg , s7 = s (10 bar, 500 ◦C) = 7.762 kJ

kgK ,

h8 = h (7.5 kPa, s5) = 2421 kJ
kg , s8 = s7 .

The mass flow ratio is adjusted such that the mixed state (state 3) is
saturated liquid. From applying the first law to the open feedwater heater,
we find the mass flow ratio

y =
ṁB

ṁA + ṁB
=

h3 − h2

h6 − h2
= 0.23 .

Net work and heat in per unit mass are

Ẇ

ṁA + ṁB
= (1− y) (h1 − h2 + h7 − h8) + h3 − h4 + h5 − h6 = 1418.4

kJ

kg
,

Q̇in

ṁA + ṁB
= h5 − h4 + (1− y) (h7 − h6) = 3147.3

kJ

kg
,

so that the thermal efficiency of the cycle is

ηofwh =
Ẇ

Q̇in

= 0.451 .

Compared to the standard reheat cycle, the single open feedwater heater
improves thermal efficiency by 2.6%. The following calculation shows that
this improvement is due to decreased irreversible losses.

The entropy generation rates for the two heat transfer steps in the boiler
follow from the second law as

Ṡgen,45 = (ṁA + ṁB)

[

s5 − s4 − h5 − h4

TB

]

,

Ṡgen,67 = ṁA

[

s7 − s6 − h7 − h6

TB

]

,

and the entropy generation in the condenser is
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Ṡgen,81 = ṁA

[

s1 − s8 − h1 − h8

T0

]

.

Moreover, entropy is generated in the adiabatic feedwater heater through
mixing:

Ṡgen,ofwh = ṁA (s3 − s2) + ṁB (s3 − s6) .

The total entropy generation for the system is

Ṡgen = Ṡgen,45 + Ṡgen,67 + Ṡgen,81 + Ṡgen,ofwh ,

with a value per unit mass of

Ṡgen

ṁA + ṁB
= 2.3

kJ

kgK
.

Now, the standard work loss T0Ṡgen relative to the power output is

Ẇloss

Ẇ
=

T0Ṡgen

Ẇ
= 48.4% .

12.3.3 Closed Feedwater Heater (with Pump)

Now we examine the reheat cycle with closed feedwater heater and pump as
shown in Fig. 12.5, where

h1 = hf (7.5 kPa) = 168.8 kJ
kg , s1 = sf (7.5 kPa) = 0.5764 kJ

kgK ,

h2 = h (125 bar, s1) = 181.4 kJ
kg , s2 = s1 ,

h3 � hf (T9) = 762.8 kJ
kg , s3 � sf (T9) = 2.139 kJ

kgK ,

h4 = 765.8 kJ
kg , s4 � sf (T4) = 2.145 kJ

kgK ,

h5 = h (125 bar, 500 ◦C) = 3342 kJ
kg , s5 = s (125 bar, 500 ◦C) = 6.462 kJ

kgK ,

h6 = h (10 bar, s5) = 2722 kJ
kg , s6 = s5 ,

h7 = h (10 bar, 500 ◦C) = 3479 kJ
kg , s7 = s (10 bar, 500 ◦C) = 7.762 kJ

kgK ,

h8 = h (7.5 kPa, s7) = 2421 kJ
kg , s8 = s7 ,

h9 = hf (10 bar) = 762.8 kJ
kg , s9 = sf (10 bar) = 2.139 kJ

kgK ,

h10 = h (125 bar, s9) = 775.8 kJ
kg , s10 = s9 .

State 3 is chosen by assuming perfect heat exchange in the feedwater
heater, so that T3 = T9 = Tsat (10 bar) = 179.9 ◦C. With that, the mass
flow ratio is

y =
ṁB

ṁA + ṁB
=

h3 − h2

h6 − h9 + h3 − h2
= 0.229 .

The boiler feed state (state 4) has the enthalpy
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h4 = (1− y)h3 + yh10 .

Net work and heat in per unit mass are

Ẇ

ṁA + ṁB
= (1− y) (h1 − h2 + h7 − h8) + y (h9 − h10) + (h5 − h6)

= 1423.2
kJ

kg
,

Q̇in

ṁA + ṁB
= h5 − h4 + (1− y) (h7 − h6) = 3160.0

kJ

kg
,

so that the thermal efficiency of the cycle is

ηcfwh p =
Ẇ

Q̇in

= 0.450 .

Compared to the standard reheat cycle, the single closed feedwater heater
improves thermal efficiency by 2.5%, slightly below the cycle with open feed-
water heater.

The entropy generation rates for the two heat transfer steps in the boiler
follow from the second law as

Ṡgen,45 = (ṁA + ṁB)

[

s5 − s4 − h5 − h4

TB

]

,

Ṡgen,67 = ṁA

[

s7 − s6 − h7 − h6

TB

]

,

and the entropy generation in the condenser is

Ṡgen,81 = ṁA

[

s1 − s8 − h1 − h8

T0

]

.

Moreover, entropy is generated in the feedwater heater and mixing chamber:

Ṡgen,cfwh = ṁA (s4 − s2) + ṁB (s4 − s6) .

The total entropy generation for the system is

Ṡgen = Ṡgen,45 + Ṡgen,67 + Ṡgen,81 + Ṡgen,cfwh

and its value per unit mass is

Ṡgen

ṁA + ṁB
= 2.32

kJ

kgK
.
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As a measure for the associated work loss, we consider the standard work
loss T0Ṡgen relative to the power output:

Ẇloss

Ẇ
=

T0Ṡgen

Ẇ
= 48.5% .

12.3.4 Closed Feedwater Heater (with Throttle)

Finally we examine the reheat cycle with closed feedwater heater and throt-
tling into the condenser as shown in Fig. 12.6, for which we find

h1 = hf (7.5 kPa) = 168.8 kJ
kg , s1 = sf (7.5 kPa) = 0.5764 kJ

kgK ,

h2 = h (125 bar, s1) = 181.4 kJ
kg , s2 = s1 ,

h3 � hf (T8) = 762.8 kJ
kg , s3 � sf (T8) = 2.139 kJ

kgK ,

h4 = h (125 bar, 500 ◦C) = 3342 kJ
kg , s4 = s (125 bar, 500 ◦C) = 6.462 kJ

kgK ,

h5 = h (10 bar, s4) = 2722 kJ
kg , s5 = s4 ,

h6 = h (10 bar, 500 ◦C) = 3479 kJ
kg , s6 = s (10 bar, 500 ◦C) = 7.762 kJ

kgK ,

h7 = h (7.5 kPa, s6) = 2421 kJ
kg , s7 = s6 ,

h8 = hf (10 bar) = 762.8 kJ
kg , s8 = sf (10 bar) = 2.139 kJ

kgK ,

h9 = h8 , s9 = s (7.5 kPa, h9) = 2.471 kJ
kgK .

State 3 is chosen by assuming perfect heat exchange in the feedwater
heater, so that T3 = T8 = Tsat (10 bar) = 179.9 ◦C. The energy balance
for the feedwater heater now is

(ṁA + ṁB) (h3 − h2) = ṁB (h5 − h8) .

With that, the mass flow ratio is

y =
ṁB

ṁA + ṁB
=

h3 − h2

h5 − h8
= 0.297 .

Net work and heat in per unit mass are

Ẇ

ṁA + ṁB
= h1 − h2 + h4 − h5 + (1− y) (h6 − h7) = 1351.4

kJ

kg
,

Q̇in

ṁA + ṁB
= h4 − h3 + (1− y) (h6 − h5) = 3111.6

kJ

kg
,

so that the thermal efficiency of the cycle is

ηcwfh th =
Ẇ

Q̇in

= 43.4% .
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Compared to the standard reheat cycle, the single closed feedwater with
throttling into the condenser improves thermal efficiency by only ∼ 1%. The
improvement is significantly lower than for the case where the bled-off flow
is pumped to boiler pressure, since a considerable amount of work is lost in
the irreversible expansion through the throttling valve.

The entropy generation rates for the two heat transfer steps in the boiler
follow from the second law as

Ṡgen,34 = (ṁA + ṁB)

[

s4 − s3 − h4 − h3

TB

]

,

Ṡgen,56 = ṁA

[

s6 − s5 − h6 − h5

TB

]

,

and the entropy generation in the condenser is

Ṡgen,cond = ṁA

[

s1 − s7 − h1 − h7

T0

]

+ ṁB

[

s1 − s9 − h1 − h9

T0

]

.

Moreover, entropy is generated in the feedwater heater and in throttling:

Ṡgen,cfwh = (ṁA + ṁB) (s3 − s2) + ṁB (s8 − s5) ,

Ṡgen,th = ṁB (s9 − s8) .

The total entropy generation is

Ṡgen = Ṡgen,34 + Ṡgen,45 + Ṡgen,cond + Ṡgen,cfwh + Ṡgen,th

and its value per unit mass is

Ṡgen

ṁA + ṁB
= 2.45

kJ

kgK
.

As a measure for the associated work loss, we consider the standard work
loss T0Ṡgen relative to the power output:

Ẇloss

Ẇ
=

T0Ṡgen

Ẇ
= 54.0% .

12.3.5 Summary

The analysis of the four configurations, one without and three with feedwa-
ter heaters, shows that incorporation of feedwater heaters improves thermal
efficiency of steam cycles. Due to the feedwater heaters, the average tempera-
ture for heat transfer between the working fluid and the boiler is smaller, hence
there is less irreversibility for the boiler processes. All feedwater heaters are as-
sociated with irreversibilities through heat exchange over finite temperature
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difference, mixing, or throttling. The reduction of irreversibility in the boiler
processes is larger than the additional irreversibility associated with the
feedwater heaters, so that overall the irreversibility is reduced, and the pro-
cess performance is improved. For this example, the improvement through
open feedwater heater and closed feedwater heater with pump is similar. The
system with open feedwater heater and throttling into the condenser yields
a smaller improvement, due to the additional irreversibility in the throttling
process; however, this system is cheaper to build and maintain. With more
feedwater heaters employed, the temperature differences for heat transfer, and
the pressure differences for throttling decrease, and thus irreversible losses are
reduced.

Finally, it must be noted that losses occurring in irreversible pumps and
turbines were ignored, to not overwhelm the computations with more detail.

12.4 Cogeneration Plants

12.4.1 Process Heat

Many industries require process heat and electrical power, for instance the
chemical industry, pulp and paper plants, refineries, textile production, etc.
Cogeneration power plant are variants of the Rankine cycle, which produce
power and provide heat at the required temperature level. Adjustments in
the process allow to provide variable amounts of process heat, depending on
demand. If excess electrical power is produced, this can be sold to the grid,
if more electrical power is needed, it must be purchased from the grid.

As an example we study a cogeneration plant that produces power and
steam at intermediate pressures and temperatures (say, 5 − 7 bar, 150 −
200 ◦C). Depending on the demand for process heat, steam can be routed into
the process heater either directly from the steam generator (with throttling
to lower the pressure), or it can be drawn out of the turbine at intermediate
pressure, see Fig. 12.8.

In normal mode, all generated steam is supplied to the turbine, and only
a portion of the steam is extracted from the turbine, that is

ṁ6 = 0 , ṁ5 
= 0 , ṁ4 
= 0 .

If the demand for process heat is larger, all steam is taken from the turbine,
so that

ṁ6 = 0 , ṁ5 
= 0 , ṁ4 = 0 .

This decreases the power generation. Only in case of extremely high demand
one will bypass the turbine entirely, so that

ṁ6 
= 0 , ṁ5 = 0 , ṁ4 = 0 .
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Fig. 12.8 Cogeneration power plant. The plant generates power and process heat.
Depending on demand, steam for the process heater is supplied directly from the
turbine feed flow (State 3), or extracted from the turbine (State 5).

In this case, only process heat is provided, no electrical power is generated.
From the diagram, we read off the pump and turbine work as

ẆP = ṁ1 (h1 − h2) + (ṁ5 + ṁ6) (h7 − h8) ,

ẆT = ṁ1 (h3 − h4) + ṁ5 (h3 − h5) ,

and the net work of the plant is

Ẇnet = ẆP + ẆT .

The process heat is

∣
∣
∣Q̇proc

∣
∣
∣ = ṁ5 (h5 − h7) + ṁ6 (h6 − h7) ,

and the heat addition in the steam generator is

Q̇in = ṁ1 (h3 − h2) + (ṁ5 + ṁ6) (h3 − h8) = (ṁ1 + ṁ5 + ṁ6) (h3 − h2′) .

The so-called utilization factor of the plant is

εu =
Ẇnet +

∣
∣
∣Q̇proc

∣
∣
∣

Q̇in

.

Note that the utilization factor favors use of process heat: For the case where
all heat is used in the process (ṁ5 = ṁ4 = 0), the utilization factor is unity.
However, for the case where no process heat is used (ṁ5 = ṁ6 = 0), the
utilization factor is equal to the thermal efficiency of the plant. Hence, as
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with all efficiency measures, one has to be careful in the interpretation of the
utilization factor.

12.4.2 District Heating

Since heat cannot be completely converted to work, a power plant has to
reject heat, typically to the environment. To maximize the work output, the
temperature for heat rejection should be as close as possible to the local en-
vironmental temperature T0. Heat transferred at environmental temperature
has no further use, and thus has no value. For space heating in winter, one
needs heat at somewhat elevated temperature. This heat can be provided
from the heat rejection of power plants in district heating systems. For this,
at times when space heating is required, the plant is operated at elevated
condenser temperature. The condenser heat is rejected into a water circuit
that then is used to bring the heat into buildings. In summer, when no heat-
ing is required, the condenser operates at lower temperatures, and the heat
is rejected directly to the environment. District heating works best when the
distance for heat transmission is short, so that little heat is lost to the envi-
ronment in transmission. Hence, for combined heat and power plants, its is
best to build smaller local power stations, which provide power and heat for
the closer neighborhood, rather than large plants far from consumers. Uti-
lization factors for combined heat and power plants can be defined similar to
those for process heating.

12.5 Refrigeration Systems

We return to the discussion of vapor refrigeration and heat pump cycles. The
basic cycle, consisting of compressor, condenser, throttle, and evaporator was
discussed in 10.3. Refrigerators and heat pumps draw heat from a cold envi-
ronment (TL) and reject heat into a warm environment (TH). This transfer of
heat from cold to warm requires work, which in vapor and gas refrigeration
systems is supplied to the compressor. Efficient refrigeration and heat pump
cycles requires: (a) small temperature differences between the working fluid
and the respective environments, and (b) efficient compressors.

Typically, compressors are adiabatic, which leads to relatively high temper-
ature of the compressed vapor, and therefore to large temperature differences
between the working gas and the warm environment. This implies large en-
tropy generation in heat transfer, hence more work is required to overcome
irreversibilities. Intercooling during compression lowers the work requirement
for compressors (see also Sec. 13.3). Intercooling also leads to lower tempera-
tures after compression, which reduces the work loss to irreversibilities. There
are several ways to incorporate intercooling into refrigeration cycles, which
we now discuss.
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Multi-stage refrigeration systems are particularly useful when one has to
bridge a large temperature difference between the cold and warm environ-
ment, as, e.g., in the production of frozen food. Heat pumps normally operate
on smaller temperature differences, and multi-stage compression is not used.

12.5.1 Cascade Refrigeration System

In a cascade refrigeration system two or more refrigeration cycles operate on
top of each other. Figure 12.9 shows an example with two cycles A and B
connected by a closed heat exchanger, which serves as evaporator for cycle
A, and as condenser for cycle B.

With the closed heat exchanger, the working fluids of the two cycles re-
main separated. Thus, the two cycles can employ different cooling fluids,
and operate at different pressures; cooling fluids can be chosen with the best
temperature-pressure characteristics in the respective temperature ranges.
For simplicity, the T-s-diagram is drawn for the case that both cycles use the
same working fluid, and for the case of reversible compressors.
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Ẇ

condenser

evaporator 58

23

1

5

6

7

20

A

B

A

B

Fig. 12.9 Schematic and T-s-diagram for a cascade refrigeration system: A closed
heat exchanger between two cycles serves as condensator for the low pressure cycle
and as evaporator for the high pressure cycle

The energy balance for the heat exchanger relates the mass flows of both
cycles,

ṁA (h5 − h8) = ṁB (h2 − h3) =⇒ ṁA

ṁB
=

h2 − h3

h5 − h8
. (12.18)

The cooling power of the cycle is

Q̇in = ṁB (h1 − h4) , (12.19)

and the two compressors consume the power
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Ẇ = ṁB (h1 − h2) + ṁA (h5 − h6) , (12.20)

so that the cycle has the coefficient of performance

COPR =
Q̇in∣
∣
∣Ẇ
∣
∣
∣
=

h1 − h4

h2 − h1 +
h2−h3

h5−h8
(h6 − h5)

. (12.21)

The T-s-diagram in Fig. 12.9 also indicates state 2′, which would be the
compressor exit state in a single stage system. The corresponding temper-
ature T2′ is significantly above the temperature TH of the heat receiving
environment. The two stage system reaches the maximum temperature T6,
which is not as high, and has smaller temperature differences in all heat
transfer processes, and thus lower irreversibility, and better COP.

12.5.2 Refrigeration with Flash Chamber

If only a single refrigerant is to be used, there are alternatives to design
multi-stage refrigeration cycles that do not need closed heat exchangers, and
use simpler open heat exchangers. Figure 12.10 shows a two-stage refriger-
ation system which uses a flash chamber at intermediate pressure to divide
the exit flow of the upper throttle into saturated liquid and saturated vapor.
The saturated liquid (state 7) is throttled further into the evaporator. The
saturated vapor (state 9) is mixed with the vapor leaving the low pressure
compressor (state 2); the mixture (state 3) is fed into the high pressure com-
pressor. Effectively, this cycle compresses with intercooling to temperature
T3.

The mass flow ṁA goes through the cycle 1-2-3-4-5-6-7-8-1, and the mass
flow ṁB goes through the cycle 3-4-5-6-3. Both mass flows are related through
the quality x6 of state 6,
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Fig. 12.10 Two-stage refrigeration cycle with flash chamber: Schematic and T-s-
diagram
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ṁA = (1− x6) (ṁA + ṁB) , ṁB = x6 (ṁA + ṁB) . (12.22)

Cooling power and compressor work can be read from the diagram as

Q̇in = ṁA (h1 − h8) , (12.23)

Ẇ = ṁA (h1 − h2) + (ṁA + ṁB) (h3 − h4) , (12.24)

and the coefficient of performance is

COPR =
Q̇in∣
∣
∣Ẇ
∣
∣
∣
=

h1 − h8

h2 − h1 +
h4−h3

1−x6

. (12.25)

12.6 Linde Method for Gas Liquefaction

Liquefaction of air, and other gases, provides low temperatures, and offers a
method to separate gas mixtures by distillation. For instance, steel mills have
their own air liquefaction plants to separate oxygen from air. The oxygen is
needed to remove carbon from the pig iron that leaves the blast furnace.

The Linde method is a classical approach to achieve this goal, by throttling
pressurized gas. For gases the critical point is relatively low, e.g., for air
Tcr = 132.5K, pcr = 37.7 bar, and thus the process must include a pre-
cooling stage.
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Fig. 12.11 Linde process for gas liquefaction
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For air liquefaction, the process runs as shown in Fig. 12.11: Air at envi-
ronmental conditions (T1 = 298K, p1 = 1bar) is compressed in a multi-stage
compressor with intercooling to a high pressure p2 � 200 bar. Intercooling is
necessary to reduce the work for compression as much as possible; for simplic-
ity the T-s-diagram in the figure shows isothermal compression at T2 = T1.
Next the compressed air is pre-cooled isobarically in the regenerator to a
temperature T3, and then throttled to p1. The temperature T3 must be suf-
ficiently low, so that state 4 after throttling is in the two-phase region. In a
flash chamber the flow is divided into saturated liquid—the desired product
P—and saturated vapor (state 5) which is routed through the pre-cooler. Ob-
viously, the conditions for this process are such that air cannot be described
as an ideal gas; proper tables for air as superheated vapor and saturated
liquid-vapor mix are required.

Due to the use of throttling, the Linde process is inherently irreversible,
and thus requires more work than a reversible process for the same task. As
we have seen, all refrigeration systems suffer from irreversibilities, and there
is little alternative to this process for large scale gas liquefaction.

Problems

12.1. Regenerative Boiler
The boiler for a power plant is fitted with a regenerator of effectiveness 81.2%
to preheat the incoming air before it is heated by burning of coal. Specifically,
the system draws environmental air at T0 = 7 ◦C, the flame temperature is
827 ◦C, and the boiler exhaust is at 667 ◦C.

1. Determine the preheat temperature, the final exhaust temperature, the
work potential of the boiler exhaust, and the work potential of the final
exhaust.

2. Determine the entropy generation in the regenerator, and the correspond-
ing work loss.

12.2. Mixing Chamber
Steam at 100 bar, 600 ◦C is throttled to 10 bar, and fed into an adiabatic
mixing chamber where it is mixed with compressed liquid water at 10 bar,
50 ◦C. The exiting mass flow is 100 kg

s of saturated liquid at 10 bar. For steady
state operation, determine

1. The mass flows of steam and liquid that enter.
2. The rate of entropy generation due to throttling, and the rate of entropy

generation due to mixing.
3. The associated work loss.

As always: draw a sketch and a T-s-diagram.
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12.3. Closed Feedwater Heater
In a closed feedwater heater, a mass flow of 200t/h of compressed liquid
water at 80 bar, 40 ◦C is heated by heat exchange with a stream of saturated
liquid-vapor mix at x = 0.95 , p = 10 bar.

For the case that both streams leave the heat exchanger in saturated liquid
state determine the mass flow of liquid-vapor mix, the entropy generation
rate, and the work loss.

12.4. Steam Power Plant with Regeneration and Reheat
A steam power plant operates on a reheat-regenerative Rankine cycle with
an open feedwater heater. Steam enters the high-pressure turbine at 100 bar,
550 ◦C, and leaves at a pressure of 8 bar as saturated vapor. Some steam is
extracted at this pressure to heat the feedwater in an open feedwater heater
which provides saturated liquid. The rest of the steam is reheated to 500 ◦C
and then expanded in the low pressure turbine to the condenser pressure of
10 kPa.

The isentropic efficiency of the low pressure turbine is 0.95; all pumps can
be considered to operate reversibly.

1. Draw a schematic and a T-s-diagram of the process, numerate corre-
sponding points in schematic and diagram, and name the different devices
(pump, turbine, etc.)

2. Make a list with the values of enthalpy at all relevant points of the process.
3. Compute the ratio of mass flow diverted to the feedwater heater after the

first turbine.
4. Compute the thermal efficiency of the cycle.
5. The net power output of the plant is 100MW. Determine the mass flow

through the high pressure turbine.
6. Determine total entropy generation rate and work loss of the cycle.

12.5. Vapor Power Plant with Regeneration
A power plant operates on a regenerative vapor power cycle with one closed
feedwater heater according to the following process:

1-2: Isentropic compression of saturated water from condenser pressure
0.04 bar to 60 bar.

2-3: Isobaric heating in the closed feedwater heater to 141.3 ◦C.
3-4: Isobaric heating in the steam generator to 60 bar, 550 ◦C.
4-5: Isentropic expansion into the condenser.

Some steam is extracted from the turbine at 4 bar to heat feedwater in a
closed feedwater heater. This part of the steam undergoes the following two
processes:

6-7: Isobaric cooling and condensation at 4 bar of diverted steam to
saturated liquid state.
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7-8: Throttling of condensate exiting the feedwater heater into the con-
denser.

1. Draw a schematic and a T-s-diagram of the process.
2. Make a list of the values of enthalpies at the points 1 to 8.
3. Compute the percentage of mass flow diverted into the feedwater heater

at point 6.
4. Determine the thermal efficiency of the cycle.
5. Determine the mass flow rate into the turbine, if the net power developed

is 320MW.
6. Determine total entropy generation rate and work loss of the cycle.

12.6. Steam Power Plant with Two Feedwater Heaters, One Open,
One Closed
Consider an ideal steam regenerative Rankine cycle with one open and one
closed feedwater heater. Steam enters the turbine at 12.5MPa, 550 ◦C, the
condenser pressure is 10 kPa. Steam for the closed feedwater heater is ex-
tracted from the turbine at 0.8MPa and for the open feedwater heater at
0.3MPa. The feedwater is heated to the condensation temperature of the
stream for the closed feedwater heater. The extracted steam leaves the closed
feedwater heater at saturated state and is throttled into the open feedwater
heater.

1. Draw a schematic of the process, and the corresponding T-s-diagram.
2. For a power output of 250MW determine the mass flow rate through the

steam generator, and the mass flows into the feedwater heaters.
3. Determine the thermal efficiency of the cycle.
4. Determine the entropy generation in the throttle, and estimate the corre-

sponding work loss.

12.7. Steam Power Plant with Reheat and Two Feedwater Heaters,
One Closed, One Open
The boiler pressure in a reheat steam power plant is 150 bar, the reheat
pressure is 14 bar, and the condenser pressure is 10 kPa. For both turbines,
the inlet temperature is 500 ◦C. After the high pressure turbine, some steam is
bled-off and routed to the closed feedwater heater where it is fully condensed,
and then pumped into the boiler feedwater. The remaining steam is reheated,
and then runs through the low pressure turbine. Part of the flow is bled-off
from the turbine at a pressure of 4 bar, while the main flow expands into the
condenser. The diverted flow is mixed in the open feedwater heater with the
flow that is pumped in from the condenser. The resulting mixture, which is in
the saturated liquid state, is then pumped to boiler pressure before it enters
the closed feedwater heater.

1. Draw a schematic of the process. Use the following numbering of processes:
1-2: Low pressure feedwater pump (from condenser). 3-4: Second feedwater
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pump (after open feedwater heater). 6-7: High pressure steam generator. 7-
8: High pressure turbine. 8-9: Reheat. 9-11: Low pressure turbine. 10: Bled-
off for open feedwater heater. 11-1: Condenser. 12-13: Third feedwater
pump.

2. Draw the corresponding T-s-diagram. Use different colors (or different line
styles) to show the process curves for the main flow and the two bled-off
flows.

3. Determine the enthalpies at all relevant states, based on the following
assumptions: Reversible pumps and turbines, exit of open feedwater heater
is saturated liquid (state 3), perfect heat exchange in closed feedwater
heater, so that T5 = T12.

4. Determine the thermal efficiency of the plant.
5. Determine the three mass flows when the plant delivers a power of 500MW.
6. Determine the overall entropy generation of the system, and the work loss

to irreversibilities.
7. Determine the thermal efficiency of a standard reheat plant with the same

pressures and turbines. Explain why the feedwater heaters improve effi-
ciency.

12.8. Steam Power Plant with Reheat and Two Feedwater Heaters,
One Closed, One Open
Repeat the previous problem, now considering irreversible pumps (isentropic
efficiency ηP = 0.85) and turbines (isentropic efficiency ηT = 0.92).

12.9. Steam Power Plant with Reheat and Two Feedwater Heaters,
One Open, One Closed
A reheat steam power plant has one closed feedwater heater (c.f.w.h.) and one
open feedwater heater (o.f.w.h.). The boiler pressure is 150 bar, the reheat
pressure is 15 bar, and the condenser pressure is 10 kPa. For both turbines,
the inlet temperature is 500 ◦C. After the high pressure turbine, some steam is
bled-off and routed to the o.f.w.h. The remaining steam is reheated, and then
runs through the low pressure turbine. Part of the flow is bled-off from the
turbine at a pressure of 5 bar. This flow is further routed through the c.f.w.h.,
where it fully condenses, and is then pumped into the o.f.w.h. The main flow
expands into the condenser, which it leaves as saturated liquid. This flow is
pumped to the o.f.w.h. pressure, heated in the c.f.w.h., and then mixed with
the other flows in the o.f.w.h. The resulting mixture in the o.f.w.h., which is
in the saturated liquid state, is then pumped to boiler pressure.

1. Draw a schematic of the process. Use the following numbering of pro-
cesses: 1-2: Low pressure feedwater pump (from condenser). 2-3 and 9-11:
Closed f.w.h. 4-5: Second feedwater pump (after o.f.w.h.). 5-6: High pres-
sure steam generator. 6-7: High pressure turbine. 7-8: Reheat. 8-10: Low
pressure turbine. 9: Bled-off for closed f.w.h. 10-1: Condenser. 11-12: Third
feedwater pump.
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2. Draw the corresponding T-s-diagram. Use different colors (or different line
styles) to show the process curves for the main flow and the two bled-off
flows.

3. Determine the enthalpies at all relevant states, based on the following
assumptions: Reversible pumps and turbines, exit of o.f.w.h. is saturated
liquid (state 4), perfect heat exchange in closed feedwater heater, so that
T3 = T11.

4. Determine the relative amounts of the relevant mass flows.
5. Determine the thermal efficiency of the plant.
6. Determine the three mass flows when the plant delivers a power of 500MW.
7. Determine the overall entropy generation of the system, and the work loss

to irreversibilities.
8. Determine the thermal efficiency of a standard reheat plant with the same

pressures and turbines. Explain why the feedwater heaters improve effi-
ciency.

12.10. Steam Power Plant with Reheat and Two Feedwater
Heaters, One Open, One Closed
Repeat the previous problem, now considering irreversible pumps (isentropic
efficiency ηP = 0.85) and turbines (isentropic efficiency ηT = 0.92).

12.11. Cogeneration Power Plant
A cogeneration power plant with reheat produces 3MW of power and supplies
7MW of process heat. Steam enters the isentropic high-pressure turbine at
8MPa and 500 ◦C and expands to a pressure of 1MPa. At this pressure, part
of the steam is extracted from the turbine and routed to the process heater;
this stream leaves the process heater as compressed liquid at 120 ◦C. The
remaining steam is reheated to 500 ◦C and then expanded in the isentropic
low-pressure turbine to the condenser pressure of 15 kPa. The condensate is
pumped to 1MPa and then mixed with the stream of compressed liquid that
comes from the process heater. The mixture is then pumped to the boiler
pressure.

1. Make a schematic of the cycle, and draw the corresponding T-s-diagram.
2. Determine the heat input, the relative amount of steam running through

the process heater, and the utilization factor.

12.12. Cogeneration Steam Power Plant with Regeneration
A small power plant that produces 30MW of power operates on a regenerative
vapor power cycle with one closed feedwater heater according to the following
process:

Steam of 125 bar, 550 ◦C (state 1) enters the high pressure turbine where it
is expanded isentropically to 10 bar (state 2). 50% of this steam are reheated
to 500 ◦C (state 3) and then expanded in the low pressure turbine to the
condenser pressure 0.075 bar (state 4). After condensation to saturated liquid
state (state 5) this stream is pumped isentropically to 10 bar (state 6) and
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routed into the open feedwater heater. Part of the steam extracted after
the high pressure turbine (state 2) is used for process heating. For this, the
steam passes through a heat exchanger which it leaves as compressed liquid
at 60 ◦C (state 7) that is fed into the open feedwater heater. The rest of the
extracted steam of state 2 is directly routed into the feedwater heater. The
water leaving the feedwater heater is in the saturated liquid state (state 8);
an isentropic pump increases its pressure to the boiler pressure (state 9).

1. Draw a schematic and a T-s-diagram of the process.
2. Make a table with enthalpies at the relevant states of the process.
3. Determine the mass flows through the boiler and the process heater.
4. Determine the utilization factor of the plant.

12.13. District Heating
A 40MW power plant is to be build to supply electrical power to a small town
in the North where, due to the low average temperature, a large amount of
space heating is required. One proposal suggest to set the condenser pressure
a bit higher, so that the condenser is at temperature TC1, and to use the
removed heat for district heating. An alternative proposal suggests to set the
condenser to the lower temperature TC2 so that the turbine delivers more
work, which can then be used to run heat pumps between TC1 and TC2.
Discuss these proposals and make a recommendation to town council. Use
thermodynamic arguments (of course!), it might be helpful to draw pictures
with energy flows and temperatures.

12.14. Standard Vapor Cooling Cycle with Ammonia
A standard vapor refrigeration cycle operates with ammonia as cooling fluid.
The maximum and minimum pressures reached are 1.5 atm and 10 atm, re-
spectively. The adiabatic compressor draws saturated vapor, and has an isen-
tropic efficiency of 0.9. The ammonia vapor leaving the compressor is cooled,
condensed and further cooled to 20 ◦C before it enters the throttling device.

Draw the process into the log p-h diagram for ammonia, and find the
enthalpies and temperatures at all principal points. For a cooling power of
2 kW, determine the power consumption and the COP.

12.15. Two-Stage Refrigeration Cycle

1. Draw a schematic, and the corresponding T-s-diagram for a two-stage
refrigeration cycle with an open heat exchanger.

2. Indicate all principal points in both diagrams by numbers, and indicate
the different elements by name (compressor, throttle, etc.).

3. Compute the mass flow ratio between upper and lower cycle in terms of
enthalpies.

4. Give the expression for the COP of the system in terms of enthalpies and
mass flow ratio.
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Note: The next three problems compare cooling cycles running between the same

upper and lower pressures. There is some data overlap, and to simplify proceedings

an irreversible compressor is considered only in the first cycle. For all three, start

with drawing a sketch, and the T-s-diagram

12.16. Standard Vapor Cooling Cycle with R134a
A standard vapor refrigeration cycles operates with R134a as cooling fluid
between the pressures 1.2MPa and 0.1MPa, respectively. The adiabatic com-
pressor draws saturated vapor, and has an isentropic efficiency of 0.9. The
vapor leaving the compressor is cooled and fully condensed before it en-
ters the throttling device. Draw a schematic and the T-s-diagram, and then
determine:

1. The COP for the cycle with irreversible and with reversible compressor.
2. The mass flow rate and the power consumption for a cooling power of

200 kW.
3. Determine entropy generation rates for each process, the overall entropy

generation rate, and work loss of the cycle. Assume TH = 30 ◦C and TL =
−20 ◦C.

12.17. Two-Stage Refrigeration Cycle with Flash Chamber
A two-stage compression refrigeration system operates with R134a between
the pressures 1.2MPa and 0.1MPa. The refrigerant leaves the condenser as
saturated liquid and is throttled to a flash chamber operating at 0.4MPa. The
refrigerant leaving the low-pressure compressor at 0.4MPa is also routed to
the flash chamber.

Ẇ

Q̇in

Q̇out

TH

TL

condenser

evaporator

Ẇ

flash
chamber

The saturated vapor leaving the flash chamber is compressed to the con-
denser pressure by the high-pressure compressor, while the saturated liquid
leaving the flash chamber is throttled to the evaporator pressure. The re-
frigerant leaves the evaporator as saturated vapor and both compressors are
isentropic. Draw a schematic and the T-s-diagram, and then determine:
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1. The fraction of mass flows running through the two compressors.
2. The COP, and compare to that of the previous problem.
3. The two mass flow rates and the power consumption for a cooling power

of 200 kW.
4. Determine entropy generation rates for each process, the overall entropy

generation rate, and work loss of the cycle. Assume TH = 30 ◦C and TL =
−20 ◦C.

12.18. Two-Stage Refrigeration Cycle with Heat Exchanger
A two-stage cascade refrigeration system operates with R134a between the
pressures 1.2MPa and 0.1MPa. Heat exchange between the two cycles takes
place in an adiabatic counter-flow heat exchanger where the pressures are 0.32
and 0.4MPa, respectively. In both cycles, the refrigerant is in saturated liquid
state at the condenser exit and at saturated vapor state at the compressor
inlet. Draw a schematic and the T-s-diagram, and then determine:

1. The fraction of mass flows running through the two compressors.
2. The coefficient of performance.
3. The two mass flow rates, and the power consumption for a cooling power

of 200 kW.
4. The total entropy generation rate and work loss of the cycle. Assume

TH = 30 ◦C and TL = −20 ◦C.

12.19. Two-Stage Refrigeration Cycles
Repeat the previous two problems for the case where the compressors have
an isentropic efficiency of 0.85.

12.20. Refrigeration Cycle with Intercooling
A vapor-compression refrigeration cycle operates at steady state with ammo-
nia as working fluid according to the following cycle:

1-2: Adiabatic irreversible compression of saturated vapor at p1 =
1.75 bar to p2 = 5bar, isentropic compressor efficieny is ηC = 0.8.

2-3: Isobaric cooling to 20 ◦C.
3-4: Adiabatic irreversible compression to p4 = 12 bar, isentropic com-
pressor efficieny is ηC = 0.8.

4-5: Isobaric heat rejection in condenser; state 5 is saturated liquid.

5-6: Throttling into the evaporator, p6 = p1.

6-1: Isobaric evaporation to state 1.

1. Draw a schematic and plot the process in a T-s-diagram.
2. Find the enthalpies at points 1-6.
3. Determine the coefficient of performance.

12.21. Advanced Cooling Cycle
In a hot climate, a two-stage cascade refrigeration system operates with refrig-
erant R134a. The evaporator temperature of the low pressure stage is −20 ◦C,
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and the condenser temperature of the high pressure stage is 50 ◦C. Heat ex-
change between the cycles takes place in a counter-flow heat exchanger where
the pressures are 0.4 and 0.5MPa, respectively. In both cycles, the refrigerant
is in saturated liquid state at the condenser exit, and in saturated vapor state
at the compressor inlet. The isentropic efficiency of both compressors is 0.8.

1. Draw a T-s-diagram of the cycle with respect to saturation lines.
2. Make a list of the enthalpies and entropies at states 1 through 8.
3. Determine the ratio of mass flows entering the upper and the lower com-

pressor.
4. Determine the COP of the cycle, and the power requirement for a cooling

power of 120 kW.
5. Determine entropy generation rates for all processes, the overall entropy

generation rate, and the work loss of the cycle. Assume TH = 40 ◦C and
TL = −10 ◦C.

12.22. Regenerative Gas Cooling System
A regenerative gas refrigeration cycle uses helium as working fluid. The he-
lium enters the compressor at 100 kPa and −10 ◦C and is compressed to
300 kPa. Then, it is cooled to 20 ◦C by heat exchange with a cooling water
flow. Next, the helium enters the regenerator where it is cooled further before
it enters the turbine. Helium leaves the refrigerated space at −25 ◦C and en-
ters the regenerator. Assume isentropic operation of turbine and regenerator,
and determine

1. The temperature at the turbine inlet.
2. The COP of the cycle.
3. The net power input required for a mass flow rate of 0.45 kg

s .

Helium behaves as an ideal gas; it is monatomic, and thus has constant
specific heat, cp = 5

2R.



Chapter 13

Gas Engines

13.1 Stirling Cycle

13.1.1 The Ideal Stirling Cycle

We have pointed out again and again that effective energy conversion requires
the reduction of internal and external irreversibilities as much as possible. An
important cause of external irreversibility is heat transfer between the sys-
tem and its heat sources and sinks, e.g., a stream of combustion gas, or the
environment. The related loss can be reduced if heat that is rejected in one
process of a cycle can be added elsewhere within the system. This simulta-
neously reduces the heat rejection and the heat supply from the exterior,
thus leading to efficiency improvements. Indeed, regeneration, i.e., internal
exchange of heat within a system, is the most important tool to reduce ex-
ternal irreversibilities, and increase efficiency. Historically, the first engine
which used a regenerator was the Stirling engine.

The idealized Stirling cycle consists of two isothermal and two isochoric
processes, taking place at temperatures TH and TL, and volumes V1, V2,
respectively. The working medium is an ideal gas, e.g., air or helium, which is
confined permanently in a cylinder. The T-S- and p-V-diagrams are depicted
in Fig. 13.1.

We ignore all internal irreversibilities, so that work and heat for the re-
versible processes within the ideal Stirling cycle are

1-2 isothermal: w12 = RTH ln V2

V1
> 0 , q12 = RTH ln V2

V1
> 0 ,

2-3 isochoric: w23 = 0 , q23 = u (TL)− u (TH) < 0 ,

3-4 isothermal: w34 = RTL ln V1

V2
< 0 , q34 = RTL ln V1

V2
< 0 ,

4-1 isochoric: w41 = 0 , q41 = u (TH)− u (TL) < 0 .

(13.1)

H. Struchtrup, Thermodynamics and Energy Conversion, 289
DOI: 10.1007/978-3-662-43715-5_13, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 13.1 Idealized Stirling power cycle in p-V- and T–s-diagrams

Since internal energy of the ideal gas depends only on temperature, u = u (T ),
it turns out that the heats exchanged during the isochoric processes are equal,
but of opposite sign,1

q23 = u (TL)− u (TH) = −q41 . (13.2)

With this, the heat q23, which is rejected during the isochoric cooling process,
can be used for the isochoric heating q41. In the Stirling engine, this is done
by means of the regenerator, which allows for internal heat exchange. The
working principle of the regenerator will be discussed further below.

When a regenerator is employed, the heat q41 is exchanged internally, and
only the heat q12 must be provided from the outside, e.g., by burning a fuel.
The thermal efficiency is obtained, with (13.1), as

ηSt =
w�
qin

=
w12 + w34

q12
= 1− TL

TH
. (13.3)

In case that TL and TH are the temperatures of reservoirs with which the cycle
exchanges heat, the above is just the Carnot efficiency, that is the maximum
efficiency for a process operating between reservoirs at temperatures TH and
TL. It follows that the ideal Stirling process with regenerator is a realization
of a Carnot engine, as long as the heat transfer with the reservoirs takes
places at infinitesimal temperature difference.

We note that the amounts of heat exchanged during the isochoric processes,
q23 and q41, can only be equal in size for an ideal gas (with variable or constant
specific heats), for which internal energy does not depend on specific volume,
u = u (T ) and not u = u (T, v). This is different for the Carnot cycle—another
realization of a Carnot engine—which has the same efficiency independent of
the working medium.

1 This implies that in the T-s-diagram the areas below the curves 2-3 and 4-1 are
equal.
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Although the efficiency is independent of the type of ideal gas used, most
Stirling engines use helium or hydrogen as working medium. The high heat
conductivity of gases with low molecular masses leads to a faster heat ex-
change and thus allows to operate the engine at a higher frequency.

The power output of the engine depends on the mass m enclosed in the
cylinder, and the rotation speed ṅ of the engine,

Ẇ = ṅmw� . (13.4)

Fast changes in power demand, as they are necessary for use in cars, can
be achieved by changing the amount of working gas in the cylinder, i.e., by
pumping additional mass in or out. This, of course, adds to the complexity
of the process. It is therefore no surprise that most of today’s applications of
the Stirling engine consider systems which run at constant load, and generate
electricity, in particular with heat supply from solar collectors.

13.1.2 Working Principle of a Stirling Engine

It is difficult, if not impossible, to build an engine that operates on the ideal
Stirling cycle. All real Stirling engines approximate the ideal cycle to some
extent. There are many different working principles for Stirling engines, and
here we discuss the operating principle of a Leybold Stirling engine for use in
teaching laboratories, which operates in the same way as the original Stirling
engine.2

The lab engine, sketched in Fig. 13.2, consists of a glass cylinder in which
two pistons—the working piston and the displacement piston—move verti-
cally with a phase shift of 90◦. Mounted on top of the cylinder is the heating
coil (electrical heating), which maintains the upper part of the engine at high
temperature (TH). The lower part of the cylinder is encased by a second glass
cylinder, with cooling water flowing between the two cylinders and through
the bottom of the displacement piston to maintain the lower part of the
engine at low temperature (TL).

The displacement piston shifts the gas between the upper high-
temperature part of the engine and the lower low-temperature part. The
movement of the displacement piston forces the gas through a cylindrical
hole in the displacement piston that is filled with copper wool which acts
as the regenerator. As the gas passes from the hot part of the engine to the
cold part, the gas cools gradually by giving up heat to the copper wool. On
the way back the gas takes heat from the regenerator and is thus gradually
heated. The working piston seals the gas against the environment and serves
to compress or expand it while exchanging work with the environment.

The actual thermodynamic cycle of the Stirling engine differs somewhat
from the idealized Stirling cycle, see Fig. 13.3 for a qualitative comparison

2 This engine is used in the teaching laboratory at the University of Victoria.
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minimum gas volume: ~200cm
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Fig. 13.2 Setup of Leybold-Stirling engine

of the idealized and the real cycle. In order to understand how the Stirling
engine approximates the ideal cycle, it is best to study the p-V-diagram in
Fig. 13.3, which also shows the displacement of the two pistons as function
of the shaft angle.

I. Isothermal expansion: The displacement piston is at bottom dead cen-
ter, almost at rest, so that most of the working gas is in the upper hot
zone. The working piston moves downward and the gas expands, the heat
supplied is transferred to work.
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II. Isochoric cooling: The working piston is at bottom dead center, so that
the total gas volume is (almost) fixed. The displacement piston is moving
upwards and the working gas streams into the lower cold part of the
engine. While flowing through the regenerator (copper wool), the gas
transfers heat to the regenerator.

III. Isothermal compression: The displacement piston is at top dead center,
and the working gas is in the lower cool part of the cylinder. The working
piston moves upwards compressing the gas. The gas releases heat to the
cooling water so that the gas temperature remains nearly constant.

IV. Isochoric heating: The working piston is at top dead center, while the
displacement piston is moving downwards. The cool gas is streaming
upwards through the regenerator, where it receives the energy which was
stored in Step II.

P
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real process

idealized process

I
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Fig. 13.3 Left: Ideal and real Stirling cycles in p-V-diagram. Right: Piston dis-
placement as function of shaft angle.

The main reasons why the measured p-V-diagram deviates from the ideal
one, and assumes the more oval form shown in Fig. 13.3 are:

1. Truly isochoric processes require that the working piston is at rest. How-
ever, since it is driven by a crankshaft, the working piston moves sinu-
soidally.

2. Compression and expansion (I and III) are fast, and do not take place
isothermally.

3. The heating coil releases heat into the gas at all times, not only during
step I .

4. Part of the working gas remains in the cool part of the engine at all times.
5. The regenerator is not 100% efficient.
6. Heat losses to the environment and friction dissipate energy.
7. Insufficient sealing leads to exchange of gas with the outside.
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13.1.3 The Reverse Stirling Cycle

A Stirling engine can also operate as a refrigeration engine or a heat pump.
In both cases the engine is driven by a motor, and the process curve in
the p-V-diagram runs counter-clockwise, see Fig. 13.4 for the ideal process
curve. During the isothermal processes (1-2, 3-4) heat is exchanged with
the environment of the engine, while the heat transfer during the isochoric
processes (2-3, 4-1) is an internal heat exchange by means of the regenerator.

Fig. 13.4 Stirling refrigeration cycle in p-V- and T–s-diagrams

We find for the branches of this cycle the following exchange of heat and
work with the environment:

1-2 isothermal: w12 = RTH ln V2

V1
< 0 , q12 = RTH ln V2

V1
< 0 ,

2-3 isochoric: w23 = 0 , q23 = u (TL)− u (TH) < 0 ,
3-4 isothermal: w34 = RTL ln V1

V2
> 0 , q34 = RTL ln V1

V2
> 0 ,

4-1 isochoric: w41 = 0 , q41 = u (TH)− u (TL) > 0 .

(13.5)

As for the Stirling heat engine, the heats for the isochoric processes have the
same absolute value, q23 = −q41, and the regenerator ensures internal heat
exchange.

The coefficient of performance for the inverse cycle is

COPR =
qin
|w�| =

q34
|w12 + w34| =

1
TH

TL
− 1

(13.6)

for a refrigeration engine, and

COPHP =
|qout|
|w�| =

|q12|
|w12 + w34| =

1

1− TL

TH

(13.7)
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for a heat pump, respectively. Again, these are the COP’s of the respective
Carnot engines, i.e., the maximum COP’s that can be reached between the
temperatures TH , TL.

The lab engine can run as both, heat pump and refrigerator. If run as a
heat pump, the lower, water cooled, part of the engine is the cold part of the
engine (at TL) and heat is pumped to the upper part of the engine which
becomes hot (TH). When the operating direction of the engine is reversed,
the lower, water cooled, part of the engine becomes the hot part of the engine
(at TH) and heat is pumped away from the upper part of the engine which
becomes cold (TL), the engine operates as a refrigerator.

13.1.4 Stirling Engines Then and Now

The Stirling engine was patented in 1816 by Robert Stirling (1790-1878), a
minister of the Church of Scotland. At that time, steam engines had a rather
low efficiency (2-10%), and were quite unsafe. Boilers exploded often, and
the high pressure steam that was released had scalding effects. The Stirling
hot-air engine was promising to overcome both problems: The regenerator
gave it a good efficiency, and in the unlikely case of a bursting engine, only
hot air was released so that the consequences of an accident were far less
severe. However, the Stirling engine could never live up to the expectations.
While the steam turbine was improved more and more to today’s efficiencies
of over 45%, and internal combustion engines, i.e., Otto and Diesel engines,
prevailed for the use in cars and trucks, Stirling engines almost vanished from
the scene.

Unlike an internal combustion engine, a Stirling engine does not exchange
the working gas in each cycle, but contains the gas permanently. The heat
is supplied outside the engine, so that any heat source is suitable to power a
Stirling engine. Thus, a Stirling engine can be driven by carbon fuels (coal,
natural gas, gasoline, Diesel oil), hydrogen, solar radiation, nuclear power,
waste heat of industrial processes, etc. If a fuel is used, it is burned con-
tinuously, with lower emissions than in a reciprocating internal combustion
engine.

Stirling refrigeration engines can give very low temperatures, and are
widely used for small scale cryogenic cooling. A promising application for
Stirling heat engines is the conversion of solar energy into electricity by means
of parabolic mirror dishes with Stirling engines in the focus. While these de-
vices can only operate under direct sunlight, they can be far more efficient
than photovoltaic cells.

At present it is not possible to build a high efficiency Stirling engine at
a competitive price. In order to have a high specific power (kW per litre of
engine capacity), the working gas must be highly pressurized (goal: up to
190 bar), causing problems of sealing against the environment and lubrica-
tion. It is at the seals where a large portion of mechanical losses occur. The
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efficiency increases with the temperature difference between the cold and the
hot part of the engine. Thus, highly efficient engines require non-standard
materials that can operate at temperatures of 750 ◦C and more.

3 4
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Fig. 13.5 p-V- and T-s-diagrams for the Ericsson cycle

13.2 Ericsson Cycle

The Stirling cycle operates in piston-cylinder assemblies, in closed systems.
The Ericsson cycle is very similar, only that it consists of open system devices,
namely isothermal turbine and compressor, and isobaric heat exchangers;
again, the working fluid is an ideal gas. Figure 13.5 shows the correspond-
ing p-V- and T-s-diagrams. Since we consider open system devices for the
realization of the cycle, the corresponding work and heat contributions are

1-2 compressor at TL: w12 = −RTL ln p2

p1
< 0 , q12 = −RTL ln p2

p1
< 0 ,

2-3 heating at p2: w23 = 0 , q23 = h (TH)− h (TL) > 0 ,
3-4 turbine at TH : w34 = −RTH ln p1

p2
> 0 , q34 = −RTH ln p1

p2
> 0 ,

4-1 cooling at p2: w41 = 0 , q41 = h (TL)− h (TH) < 0 .

Since the enthalpy of an ideal gas depends only on temperature, but not on
pressure, the amounts of heat exchanged on the isobaric legs are equal in mag-
nitude with opposite signs: a regenerator can be used for internal exchange of
heat. In fact, the regenerator must be a counter-flow heat exchanger, which
leads to the schematic shown in Fig. 13.6.

With the use of the regenerator, only the heat q34 must be supplied from
the outside, and the thermal efficiency of the ideal cycle becomes

ηEr =
w�
qin

=
w12 + w34

q34
= 1− TL

TH
. (13.8)

This, again, is the Carnot efficiency, that is the best possible efficiency obtain-
able from a heat engine operating between reservoirs at temperatures TH , TL.
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Fig. 13.6 Schematic of Ericsson engine

As the Stirling engine, the Ericsson engine uses external heat supply, which,
in principle, allows the use of any heat source.

The Ericsson cycle relies on isothermal turbine and compressor, which
require heat exchange during compression and expansion. Since heat transfer
is slow, these are difficult to realize: Fast compressors and turbines normally
are adiabatic, since the mass flows through too fast so that there is no time
for significant heat transfer. Adiabatic compression with intercooling, and
adiabatic expansion with reheat, together with regeneration, as discussed in
the next sections, are means to bring gas turbine cycles closer to the Ericsson
cycle, and thus improve their efficiency.

13.3 Compression with Intercooling

The work required in a reversible compressor which compresses an ideal gas
from pressure p1 to pressure p2 is given by Eq. (9.25),

wC = −
∫ 2

1

vdp . (13.9)

Thus, as discussed earlier, the work is the area to the left of the process curve
in the p-v-diagram, see Sec. 9.6; less work is required for smaller specific
volume of the compressed substance.

Figure 13.7 shows the curves for an isothermal and an adiabatic compressor
in the p-v-diagram, in the reversible case. The adiabatic curve is steeper
than the isothermal curve (Sec. 7.7), since in the isothermal process the
cooling during compression ensures a smaller specific volume. Therefore the
isothermal compressor requires less work than the adiabatic one.

For an isothermal compressor we have v = RT1/p, and the work is wC =
−RT1 ln

p2

p1
, while for an adiabatic compressor, assuming constant specific
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heats, we have v = v1 (p1/p)
1/k

and wc = cpT1

(

1−
(

p2

p1

)k−1
k

)

. The differ-

ence in work requirement is indicated by the shaded area in the figure.

2

1

p

v

p1

p2
20

T = const
q=0

Fig. 13.7 Adiabatic (1-2) and isothermal (1-2’) compressor in p-V-diagram. The
grey area is the difference in the compressor work.

Obviously, to reduce the work requirement one would aim at isothermal
compression. However, isothermal compression requires cooling during com-
pression which is impossible to achieve for the large throughputs required,
and cannot be used in practice.

An alternative is offered by multi-stage compressors with intercooling, in
which the gas is compressed adiabatically in each stage, and then isobari-
cally cooled to the environmental temperature T1 before it enters the next
stage. Intercooling reduces the gas volume, and thus the work requirement is
reduced. As an example, Fig. 13.8 shows a three stage compressor with inter-
cooling. As more stages are used, the process curve approaches the isothermal
curve. It should be noted that construction is more costly than for a single
stage compressor.

The work savings depend on the pressures chosen for intercooling, which
must be optimized. We consider an n-stage compressor which takes in gas at
p1, T1, and compresses it to the final pressure pe; between each stage the gas
is cooled back to T1. Stage i compresses from T1, pi to pi+1, and requires the
work

wCi =
h (T1)− h (Ti+1)

ηCi

, (13.10)

where ηCi
is the isentropic efficiency of stage i. The temperature at the exit

of an adiabatic reversible compressor between the same pressures, Ti+1, is

obtained from the relation pr(Ti+1)
pr(T1)

= pi+1

pi
. Accordingly, the reversible work

wC,rev (Pi) = h (T1) − h (Ti+1) is a function of the pressure ratio P = pi+1

pi

for the stage, and we can write
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Fig. 13.8 Schematic and p-v-diagram for a compressor with three adiabatic stages
and intercooling. The grey area is the amount of work saved in comparison to a
single adiabatic compressor.

wCi =
wC,rev

(
pi+1

pi

)

ηCi

. (13.11)

The total work is just the sum over the individual compressors,

wC =

n∑

i=1

wC,rev

(
pi+1

pi

)

ηCi

. (13.12)

The minimum compression work is obtained from setting ∂wC

∂pj
= 0 for all

intermediate pressures (j = 1, 2, . . . , n). The derivative is evaluated as follows:

∂wC

∂pj
=

∂

∂pj

⎡

⎣
wC,rev

(
pj

pj−1

)

ηCj−1

+
wC,rev

(
pj+1

pj

)

ηCj

⎤

⎦

=
w′

C,rev

(
pj

pj−1

)

ηCj−1

1

pj−1
−

w′
C,rev

(
pj+1

pj

)

ηCj

pj+1

p2j
, (13.13)

where w′
C,rev (P ) indicates the derivative of wC,rev (P ) with respect to the

pressure ratio. Setting the above to zero gives the condition for minimum
work requirement

pj
pj−1

w′
C,rev

(
pj

pj−1

)

ηCj−1

=
pj+1

pj

w′
C,rev

(
pj+1

pj

)

ηCj

. (13.14)

For the further evaluation we consider only the case where all stages have
the same isentropic efficiency, ηCj

= ηC , so that

pj
pj−1

w′
C,rev

(
pj

pj−1

)

=
pj+1

pj
w′

C,rev

(
pj+1

pj

)

. (13.15)
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The reversible work is a monotonous function of the pressure ratio. It fol-
lows that the multi-stage compressor requires minimum work when all stages
operate at the same pressure ratio P , i.e.,

pi+1

pi
= P . (13.16)

This implies that all stages consume the same work per unit mass, wC (P ).
Multiplication of the pressure ratios of all stages gives, with pn+1 = pe,

n∏

i=1

pi+1

pi
=

pe
p1

= Pn , (13.17)

so that

P =

(
pe
p1

) 1
n

and pi+1 = p1P
i =

n

√
pn−i
1 pie . (13.18)

Special cases are a two stage compressor, which consumes minimum work
for the intermediate pressure pm =

√
p1pe, and the three stage compressor

in the figure, for which the optimum intermediate pressures are obtained as
pb =

3
√
p21pe, pd = 3

√
p1p2e.

In case that the isentropic compressor efficiency depends on the pressure
within the compressor, one has to evaluate (13.14). We note that the above
argument is valid also for polytropic compressors, as long as the polytropic
exponent for all compressors is the same.

13.4 Gas Turbine Cycles with Regeneration and
Reheat

13.4.1 Regenerative Brayton Cycle

We return to the discussion of the Brayton cycle, which was introduced in
Sec. 10.5. As is evident from the discussion there, in particular from the T-s-
diagram, the Brayton cycle expels rather warm exhaust into the environment.
Since the exhaust is warmer than the environment, it has a work potential as
was shown in Sec. 11.6. If the exhaust is just blown into the environment, this
work potential remains unused. The ensuing equilibration between exhaust
and environment is an irreversible process—it is an external irreversibility
for the gas turbine.

To recover at least a portion of the exhaust work potential, the exhaust can
be lead through a regenerator to heat the compressed air before it enters the
combustion chamber. With this, less heat must be supplied from the outside,
and the efficiency is increased.

Figure 13.9 shows schematic and T-s-diagram for a Brayton gas turbine
cycle with regenerator, which is a counter-flow heat exchanger. Since heat
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Fig. 13.9 Schematic and T-s-diagram for a Brayton cycle with regeneration

goes from warm to cold, the preheat temperature Tx cannot be larger than
the turbine exhaust temperature T4, while the final exhaust temperature Ty

cannot be smaller than T2. Thus, the use of a regenerator makes only sense
when the turbine exhaust temperature T4 is larger than the temperature after
compression, T2.

A perfect heat exchanger would yield Tx = T4 and this is used to define
the regenerator effectiveness as3

ηreg =
hx − h2

h4 − h2
. (13.19)

A 100% effective regenerator would transfer heat at infinitesimal temperature
differences, a realistic regenerator operates with finite temperature differences
and around 80% effectiveness. The exhaust temperature Ty follows from the
energy balance over the regenerator, assuming that no heat is lost to the
exterior, as

h (Ty) = hy = h4 − hx + h2 . (13.20)

The regenerator reduces the amount of heat that must be supplied from
the fuel, which is qx3 = h3 − hx. Accordingly, the thermal efficiency for the
depicted cycle 1− 2− x− 3− 4− y is given by

ηB,reg =
h1 − h2 + h3 − h4

h3 − hx
= 1− h4 − h1 − ηreg (h4 − h2)

h3 − h2 − ηreg (h4 − h2)
. (13.21)

For ηreg = 0, this reduces to the thermal efficiency of the standard Brayton

cycle, ηB = 1− h4−h1

h3−h2
. For non-zero effectiveness, the efficiency is larger than

ηB. This follows from the fact that, because 0 < ηB < 1, h4 − h1 < h3 − h2,
which implies that with growing regenerator effectiveness ηreg the thermal
efficiency ηB,reg grows as well.

The actual improvement depends on the detailed data of the process.

3 Note that the working fluid is an ideal gas, where enthalpy is a function of tem-
perature only, h = h (T ).
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13.4.2 Example: Brayton Cycle with Regenerator

The impact of the regenerator is best studied by means of examples. We con-
sider a Brayton cycle with compressor inlet temperature T1 = 290K, turbine
inlet temperature T3 = 1500K, and pressure ratio p2/p1 = 10. To simplify
the computation, we rely on the cold-air approximation with k =

cp
cv

= 1.4,

cp = k
k−1R, which gives the temperatures after isentropic compressor and

turbine as

T2s = T1

(
p2
p1

) k−1
k

= 560K , T4s = T3

(
p1
p2

) k−1
k

= 777K .

First, we consider the fully reversible cycle, with 100% effective regenera-
tor. For this, according to (13.19, 13.20), the preheat temperature after the
regenerator is Tx = T4s, and the exhaust temperature is Ty = T2s. With the
computed temperatures, we find the specific work of the reversible cycle as

w� = cp (T1 − T2s + T3 − T4s) = 454.8
kJ

kg
,

and the thermal efficiencies of the cycle without and with regenerator are

ηB =
T1 − T2s + T3 − T4s

T3 − T2s
= 48.2% ,

ηB,reg =
T1 − T2s + T3 − T4s

T3 − Tx
= 62.7% .

We see that a regenerator can give substantial improvement for cycle
efficiency.

With the regenerator, the external loss is reduced, since the exhaust tem-
perature, and thus the external irreversibility, is lowered considerably. Indeed,
the exhaust of the cycle without regenerator (temperature Tx = T4s) has the
work potential

wex = cp

(

T4s − T1 − T1 ln
T4s

T1

)

= 201.9
kJ

kg
,

while exhaust of the cycle with regenerator (temperature Ty = T2s) has the
work potential

wex,reg = cp

(

Ty − T1 − T1 ln
Ty

T1

)

= 79.5
kJ

kg
.

Recall that the work potential of the exhaust is lost, since the exhaust is
dumped into the environment. For this example, the regenerator reduces the
exhaust loss by about 60%.
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All efficiency values in the above example are relatively high, since no
internal irreversibilities are accounted for. To study how internal irreversibil-
ities affect the results, we now assume isentropic efficiencies for compressor
and turbine of ηT = ηC = 0.85, and a regenerator effectiveness of ηreg = 0.8.

Then, we find the temperatures after compressor and turbine as

T2 = T1 +
T2s − T1

ηC
= 618K , T4 = T3 + ηT (T4s − T3) = 885K ,

and the temperatures after heat exchange in the regenerator, from (13.19,
13.20), as

Tx = T2 + ηreg (T4 − T2) = 832K , Ty = T4 − Tx + T2 = 671K .

The specific work for the cycle is now

w� = cp (T1 − T2 + T3 − T4) = 288
kJ

kg
,

and the thermal efficiencies for the cycle with and without regenerator are

ηB =
T1 − T2 + T3 − T4

T3 − T2
= 32.5% ,

ηB,reg =
T1 − T2 + T3 − T4

T3 − Tx
= 43% .

The corresponding work potentials of the dumped exhaust are wex = 273 kJ
kg

and wex,reg = 138 kJ
kg , i.e., the regenerator reduces the exhaust loss by 50%.

Nevertheless, the exhaust still has significant work potential, which is about
50% of the work actually delivered by the system. Another heat engine can be
used to produce work from the exhaust—see the discussion of the combined
cycle further below.

For motivation of the next section we compute the ratio between compres-
sor and turbine work, i.e., the back work ratio, for this cycle as

bwr =
|wC |
wT

=
h2 − h1

h3 − h4
=

T2 − T1

T3 − T4
= 53.3% .

13.5 Brayton Cycle with Intercooling and Reheat

Our discussion of compressors has shown that multi-stage compression with
intercooling reduces the work required for compression. Applying this idea in
a gas turbine cycle reduces the back work ratio, and also the temperature T2

behind the compressor. When a regenerator is used, the exhaust temperature
Ty is limited by the temperature T2 after compression, which is lower with
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Fig. 13.10 Schematic and T-s-diagram for gasturbine cycle with two-stage com-
pressor with intercooling, two-stage turbine with reheat, and regenerator

multi-stage compression. Lower exhaust temperature Ty lowers the external
irreversibility, and thus gives better efficiency.

In short, further efficiency gain can be obtained by using multi-stage com-
pression with intercooling together with regeneration. Figure 13.10 shows
schematic and T-s-diagram for a system with two-stage compression and re-
generator that also includes two turbines stages with intermediate reheat.

Reheat increases the average temperature for heating, and thus the effi-
ciency. The optimum reheat pressure can be determined by maximizing work,
similar to the discussion is Sec. 13.3. If the turbines have the same inlet tem-
perature, and the same isentropic efficiency, the maximum work is obtained
when they have the same pressure ratio.

Since reheat increases the turbine exit temperature, reheat will increase the
thermal efficiency only if accompanied by regeneration. The thermal efficiency
of this cycle is obtained as

η =
wC1 + wC2 + wT1 + wT2

qcomb + qreheat
= 1− ha − h1 + h2 − hb + h4 − hx

(h3 − hx) + (hd − hc)
. (13.22)

With intercooling and reheat, a larger portion of the heat can be exchanged
in the regenerator, which reduces the exhaust temperature Ty and the corre-
sponding exhaust loss, thus increasing the thermal efficiency. With more and
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more intercooling and reheat stages, the process becomes more similar to the
Ericsson process.

13.6 Combined Cycle

As we have seen, even in a gas turbine with regeneration there are significant
exhaust losses. An alternative to regeneration is using the gas turbine exhaust
to provide heat for another heat engine. In the combined cycle the gas turbine
exhaust is used in a heat recovery steam generator (HSRG) to provide heat for
a steam power cycle. Figure 13.11 shows schematic and energy flow diagram
for the combination of a standard Brayton cycle with a standard Rankine
cycle. Real power plants use state of the art regenerative steam cycles (see
Section 12.2).4
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C T
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TP
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ẆSC
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ẆSC= ´SCQ̇SC

Q̇SC
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SC
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Q̇in

Q̇out

Q̇out

Fig. 13.11 Schematic and energy flows in a combined cycle

In order to evaluate the combined cycle, we consider a gas turbine cycle
with thermal efficiency ηGT and a steam cycle with thermal efficiency ηSC ,
which are connected by an HSRG with effectiveness ηHSRG.

The heat into the system from combustion in the gas turbine is Q̇in. The
gas turbine cycle produces the work

4 In case that the gas exhaust from the HRSG still has marked work potential, a
regenerator can be added to the gas cycle for preheating of the combustion air
(not shown in Figure).
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ẆGT = ηGT Q̇in ,

and rejects the heat
Q̇out

GT = (1− ηGT ) Q̇in

to the HSRG. The latter delivers the heat

Q̇SC = ηHSRGQ̇
out
GT = ηHSRG (1− ηGT ) Q̇in

to the steam cycle, which thus produces the power

ẆSC = ηSCQ̇SC = ηSCηHSRG (1− ηGT ) Q̇in .

The combined power output of both cycles is

Ẇ = ẆGT + ẆSC = (ηGT + ηSCηHSRG (1− ηGT )) Q̇in ,

which gives the thermal efficiency of the combined cycle as

η =
Ẇ

Q̇in

= ηGT + ηSCηHSRG (1− ηGT ) .

The efficiency of the combined cycle is always greater than the efficiency of the
gas turbine alone (unless ηHSRG = 0), and is also larger than the efficiency of
the steam cycle alone as long as ηHSRG is large enough (in particular η > ηSC

if ηHRSG = 1).
A gas turbine with ηGT = 0.31 combined with a steam cycle of ηSC = 0.45

by means of a HRSG with ηHRSG = 0.9 has an overall efficiency of 60%.
Indeed, combined cycle power plants have the highest available efficiencies
among all combustion driven power plants. They allow large upper temper-
atures in the gas turbines, and reject heat at relatively low temperatures.
The only drawback to their use is that they require gaseous or liquid fuels,
and cannot be fed directly with coal. Recall that the average efficiency of
the World’s combustion power plants is about 35% or less. Much better use
of fossil fuels could be made by using coal gasification or liquefaction and
combined cycle plants.

13.7 The Solar Tower

We mentioned solar power conversion as an application for Stirling engines.
Here, we discuss an interesting application for solar power conversion, which
relies on the chimney effect, which, in turn, relies on the variation of air
pressure with height as expressed in the barometric formula (2.25).

The solar tower, or solar chimney, sketched in Fig. 13.12, works as follows:
Solar radiation provides heat Q̇� which passes through a glass roof, is ab-
sorbed by black mats on the ground, and the warm mats heat up air. The
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ṁ; T2; p(H)
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Fig. 13.12 Solar Tower. The sketch shows a cut trough a circular device.

warm air rises through the chimney and drives turbines which are connected
to a generator to produce the power Ẇ . When a layer of water is placed
below the black mats (e.g., one might use black sacks filled with water), the
heat provided from the sun goes partly into air and partly into the water.
When the solar heat supply stops after sunset, the warm water heats the air,
and the tower still produces electricity until the water has cooled down. An
experimental plant with a 180m tower was build some years ago in Spain,
plans to build a tower with a height of 1000m and a diameter of the glass
roof of 6 km in Australia are presently on hold.

We aim at a thermodynamic evaluation of the solar tower, and ask in
particular for its thermal efficiency. The temperatures involved are rather
low, and thus we can use the cold air approximation, i.e., we assume the
specific heats of air to be constants. The exterior air is assumed to have
constant temperature T0, and the pressure depends on height z according to
the barometric formula, p (z) = p0 exp

[− gz
RT

]
with p0 the pressure at the

ground.
The incoming air is at {T0, p0}, and as it flows towards the turbines it is

heated isobarically until it reaches the temperature T1 just before the tur-
bines. To compute this temperature, we apply the first law for open systems
between the outer rim and the point just before the turbine. Since the radius
is large, the flow velocity V0 at the outer rim can be neglected, and the first
law gives

ṁ

[

h1 − h0 +
1

2
V2
1

]

= Q̇� .
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The velocity at turbine inlet is related to mass flow by V1 = ṁ
ρ1A1

, where A1

is the cross section of the chimney at point 1, and the pressure of the flow
remains constant, so that ρ1 = ρ0

T0

T1
. Thus we find

ṁ

[

cp (T1 − T0) +
1

2

(
ṁT1

ρ0T0A1

)2
]

= Q̇� . (13.23)

To avoid a detailed discussion of heat transfer mechanisms, we assume the
temperature T1 to be given, so that the above is an equation for the heat
supply from the sun, Q̇�. Note that due to emission and absorption of radi-
ation the temperature T1 is limited, as in a greenhouse. A proper radiation
heat transfer analysis must be performed to establish the size the glass roof
must have, so that the specified temperature T1 is reached.

Next, we consider the flow between the turbine inlet (Point 1) and the
exhaust from the chimney (Point 2). We assume that turbine and chimney
are adiabatic, and, for simplicity, that the flow is reversible, so that it is
isentropic. The first law gives

ṁ

[

h2 − h1 +
1

2

(V2
2 − V2

1

)
+ gH

]

= −Ẇ .

The pressure at H follows from the barometric law, and thus the adiabatic
relations give, with p1 = p0,

T2

T1
=

(
p2
p1

) k−1
k

= exp

[

− gH

RT0

k − 1

k

]

� 1− gH

RT0

k − 1

k
,

ρ2
ρ1

=

(
p2
p1

) 1
k

= exp

[

− gH

RT0

1

k

]

� 1− gH

RT0

1

k
;

the Taylor expansions of the exponentials are well justified for H = 1000m,
T0 = 298K.

We use all this, and V2 = ṁ
ρ2A2

, cp = k
k−1R, to find the power produced as

Ẇ = ṁ

[(
T1

T0
− 1

)

gH − ṁ2

2

(
RT1

p0A2

)2
(

1 +
2gH

RT0

1

k
−
(
A2

A1

)2
)]

.

(13.24)
This equations gives power Ẇ in dependence of mass flow ṁ, all other quan-
tities are given by material and construction.

Before we study the full result, we have a look at a further simplification,
where the contribution of kinetic energies, that is all terms with factor ṁ2,
are ignored. In this case (13.24) and (13.23) reduce to

Ẇ = ṁ

(
T1

T0
− 1

)

gH , Q̇� = ṁcpT0

(
T1

T0
− 1

)

,
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which yields a thermal efficiency of

η =
Ẇ

Q̇�
=

gH

cpT0
.

Accordingly, it is beneficial to build the tower as high as possible. For a height
of 200m the efficiency is η = 0.65% and this increases to η = 3.25% when
the height is raised to 1000m. Note that the thermal efficiency is very low
nevertheless. Here it must be considered that the main investment is to build
the plant, while the energy source—solar radiation—is available for free, as
long as no clouds are present, which is, of course, why one would build such
a solar tower power plant in a sunny country.

Since the investment costs are high, one will aim to harvest as much power
as possible, which will be achieved by optimizing the operating conditions.
We return to (13.24) and determine the optimum mass flow to maximize
power from the condition dẆ/dṁ = 0 as

ṁmax =
p0A2

RT1

√
√
√
√
√
√

2
3

(
T1

T0
− 1
)
gH

1 + 2gH
RT0

1
k −
(

A2

A1

)2 .

The corresponding power output is

Ẇmax = ṁmax
2

3

(
T1

T0
− 1

)

gH .

Figure 13.13 shows power output and thermal efficiency as a function of
mass flow for the following data: g = 9.81 m

s2 , H = 1000m, T1 = 345K,

T0 = 300K, R = 0.287 kJ
kgK , cp = 1.004 kJ

kgK , k = 1.4, A1 = 2A2, A2 = πr2

with r = 45m. These are curves for reversible operation. As for all processes,
irreversible processes, mainly in the turbines, will reduce power generation
and efficiency. The power curve exhibits the maximum computed above, and
the thermal efficiency drops with increasing mass flow. The maximum power
output is Ẇmax = 206MW, where the efficiency is η (ṁmax) =

2
3

gH
cpT0

= 2.2%.

The corresponding heat intake is Q̇� (ṁmax) = 9521MW. For an average
absorbed irradiation of I = 340 W

m2 , the glass roof must have a surface of

Aroof = πr2roof = Q̇�(ṁmax)
I = 28 km2, which corresponds to a radius of

3 km.

13.8 Simple Chimney

In a simple chimney, no work is extracted, Ẇ = 0, the chimney serves to
drive an air flow. Equation (13.24), with Ẇ = 0, gives a relation between
mass flow and chimney height,
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Fig. 13.13 Power and thermal efficiency for a solar tower with height H = 1000m
and chimney radius r = 45m

ṁ =
p0A2

RT1

√
√
√
√
√
√

2
(

T1

T0
− 1
)
gH

1 + 2gH
RT0

1
k −
(

A2

A1

)2 .

We restrict the attention to cases where A2 � A1 and low enough
heights, so that 2gH

RT0

1
k � 1 and

ṁ = ρ0A2

√
2gH

T0

T1

√
T1

T0
− 1 .

The draught of the chimney depends on the square root of the height H . The
mass flow also has a non-linear dependence on the ratio between the temper-
atures outside (T0) and at the foot of the chimney (T1) with a maximum for
T1/T0 = 2.

In the past, the chimney effect was used for instance to drive the combus-
tion air for a coal power plant. As the above analysis shows, a well working
natural draught chimney requires a relatively high temperature (T1 = 2T0),
which implies discharge of large amounts of warm gas, and correspondingly
high entropy generation, and work loss. In modern power plants, and other
applications, discharge is effected by fans, which allow low exhaust temper-
atures. High chimneys are still build today, not to increase draught, but to
expel the exhaust into higher layers of the atmosphere for better dispersion
of the exhaust.

13.9 Aircraft Engines

13.9.1 Thrust and Propulsive Power

While stationary turbines drive generators to produce electrical power, air-
craft turbines accelerate the incoming air flow to produce thrust, which is
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the force F to push the airplane. The engines are powered through the com-
bustion of a fuel.

We consider an airplane moving with the velocity VA through environmen-
tal air. Due to the motion of the airplane, air is swept into the engine with
velocity VA and the engine accelerates the flow to the exhaust velocity VE

measured with respect to the engine. The temperature of the incoming air is
TA and the exhaust is at TE; inlet and exit pressure are just the environmental
pressure, but higher pressures occur inside the engine.

A sketch of the flow through the engine is shown in Fig. 13.14, which also
indicates the fuel that is required to drive the engine; the working principle
of the engine is discussed later.

F

Q̇fuelṁ

VA
TA

ṁ

VE
TE

Fig. 13.14 Acceleration of air and thrust in an air engine

According to Newton’s second law, the thrust is the rate of change of
momentum of the air that passes the engine,

F = ṁ (VE − VA) . (13.25)

Power is force times velocity, and thus the propulsive power provided by the
engine is the product of the force acting on the airplane, i.e., the thrust, and
the airplane velocity, that is

ẆP = FVA = ṁ (VE − VA)VA . (13.26)

Before we look inside the engine to discuss its working principles, we take
a look at the engine as a whole from different points of view, in order to find
criteria for engine performance. Indeed, depending on the point of view of
the observer, the engine seems to be performing different tasks:

For an observer resting with the engine, e.g., the pilot or a passenger, the
engine consumes fuel, and accelerates and heats air that passes through. This
is the frame of reference used in Fig. 13.14. For this observer the first law
reads

ṁ

[

hE − hA +
1

2
V2
E − 1

2
V2
A

]

= Q̇fuel . (13.27)

Note, that this observer does not notice thrust and propulsive power.
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VE¡ VA

VA

Fig. 13.15 Airplane and engine as observed from the ground

An observer on the ground, as depicted in Fig. 13.15, sees the airplane
flying with velocity VA through air which is at rest, and observes air expelled
from the engine with velocity (VE − VA) and temperature TE . To obtain the
appropriate form of the first law for this observer we use the identity

1

2

(V2
E − V2

A

)
=

1

2
(VE − VA)

2
+ VA (VE − VA) , (13.28)

which, when inserted into (13.27), gives the energy balance as

ṁ (hE − hA) +
1

2
ṁ (VE − VA)

2
+ ṁ (VE − VA)VA = Q̇fuel . (13.29)

We introduce the abbreviations

Ėex
kin =

1

2
ṁ (VE − VA)

2
,

for the exhaust flow of kinetic energy, and

Q̇H = ṁ (hE − hA) (13.30)

for the heating rate of the air passing through the engine, that is the amount
of heat required to heat the air isobarically from TA to TE . With these, and
the definition of propulsive power (13.26), the first law (13.29) assumes the
compact form

Q̇H + Ėex
kin + ẆP = Q̇fuel . (13.31)

This is the first law for the observer on the ground, who understands that
the heat Q̇fuel supplied through combustion of the fuel leads to three effects:
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(a) Propulsive power ẆP ; (b) Acceleration of environmental air, so that the
kinetic energy of exhaust is Ėex

kin; (c) Heating Q̇H of the air to temperature
TE .

Of course, both forms (13.27, 13.31) of the first law are equivalent, they
just differ by the point of view of the observer. However, the latter form is
better suited for evaluation of engine performance.

Subsonic flight and supersonic flight have different aerodynamics, with
more propulsive power required in supersonic flows. To optimize speed and
efficiency, commercial airliners fly at about 80-90% of the speed of sound.
For military applications speed is essential, and many fighter planes fly at
supersonic speeds.

13.9.2 Air Engine Efficiency

The engine is build to deliver the propulsive power ẆP . Heating Q̇H and
acceleration Ėex

kin are side effects which must be considered as losses. The ex-
haust leaving the engine at TE , VE −VA has work potential (exergy) against
the environment as discussed in Sec. 11.6. Since there is no way to put the
exhaust to use after it is expelled from an engine in flight, it just equilibrates
with the surrounding air—this is an irreversible loss, i.e., an external irre-
versibility associated with the process. For efficient use of the fuel one must
diminish external losses, that is aim for processes with low exhaust exergy,
which means low exhaust temperature TE and low exhaust velocity VE −VA.
We also note that low exit velocities diminish engine noise significantly.

The obvious measure for engine performance is the thermal efficiency for
propulsion, defined as

ηP =
ẆP

Q̇fuel

=
ẆP

Q̇H + Ėex
kin + ẆP

, (13.32)

where the first law (13.29) was used. For fixed value of ẆP the thermal
efficiency of propulsion grows, when heating Q̇H and exhaust kinetic energy
Ėex

kin become smaller.
A common measure from fluid dynamics for propulsive efficiency is the

Froude propulsive efficiency (William Froude, 1810-1879) ηF which asks how
much of the gain in kinetic energy produced in the engine, as seen from the
observer resting with the engine, is actually converted to propulsive power,
that is

ηF =
ẆP

ṁ
(
1
2V2

E − 1
2V2

A

) =
ẆP

ẆP + Eex
kin

=
2VA

VA + VE
. (13.33)

The Froude efficiency is a purely mechanical measure, other than the ther-
mal efficiency ηP it does not account for the loss through expulsion of hot
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exhaust. The Froude efficiency approaches unity when the outflow velocity
VE approaches the inflow velocity VA.

For a certain airplane, the required propulsive power ẆP and flight velocity
VA are given, while inflow temperature TA and inflow pressure pA depend on
the local condition of the air the airplane is flying through. Both efficiencies,
ηF and ηP , show that an efficient engine for the airplane will have a small
increase in velocity (VE − VA), but a large mass flow ṁ, so that ẆP =
ṁ (VE − VA)VA has the required value. Moreover, to keep the thermal loss
small, the exhaust temperature should be as low as possible.

13.9.3 Turbojet Engine

Standard air turbines operate similar to stationary gas turbines for power
generation. While in the latter the turbine serves to drive the compressor
and the generator, an air engine has a smaller turbine, which only serves to
drive the compressor. After the turbine, the still hot and compressed air is
expanded in a nozzle to accelerate the flow to VE .

2 3

T

s

1

2

3

4

1 4

ṁ

5 6

5

6

6s

5s

3s

2s

ṁ

fuel

Fig. 13.16 Schematic and T-s-diagram for a standard air engine with diffuser
(1-2), compressor (2-3), combustion chamber (3-4), turbine (4-5) and nozzle (5-6)

Figure 13.16 shows a schematic and the T-s-diagram for a simple standard
air turbine, i.e., a turbojet engine, consisting of diffuser, compressor, com-
bustion chamber, turbine and nozzle. The diffuser decelerates the inflow to
increase the pressure, thus lowering the work required for compression. The
turbine is used solely to drive the compressor, the work for both is equal,
with different sign. The hot pressurized combustion product is expanded and
accelerated in the nozzle. Since the throughput is fast, there is no time to
exchange heat, and diffuser, compressor, turbine and nozzle are considered
to be adiabatic.
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For the discussion of air engines we shall rely, again, on the air standard
analysis, that is we ignore any composition changes and treat the working
fluid as air. The standard air turbine operates on the following cycle

1-2 adiabatic diffuser: h2 = h1 +
1
2V2

A ,
2-3 adiabatic compressor: wC = h2 − h3 ,
3-4 isobaric heating (combustion): qin = h4 − h3 ,
4-5 adiabatic turbine: wT = −wC = h4 − h5 ,

5-6 adiabatic nozzle: VE =
√
2 (h5 − h6) ,

6-1 equilibration with environment.

(13.34)

Again, we consider the ideal process under cold-air approximation (constant
specific heat) to get insight into the parameters that determine performance.
Inlet conditions T1, p1, VA are given; compressor pressure ratio PC = p3

p2

and turbine inlet temperature T4 are design parameters for the engine. For
reversible processes, we find the following relations between the properties at
the corner points of the process:

T2 = T1 +
V2

A

2cp
, p2 = p1

(
T2

T1

) k
k−1

,

T3 = T2P
k−1
k

C , p3 = p4 = p2PC ,

T5 = T4 + T2 − T3 , p5 = p4

(
T5

T4

) k
k−1

,

T6 = T5

(
p1

p5

)k−1
k

, p6 = p1 .

(13.35)

Combining all results yields the exhaust velocity, specific propulsive power,
exhaust temperature and heat supply as

VE =

√

2cp

[
T4

(
1− P

1−k
k

)
+ T1

(
1− P

k−1
k

)]
+ V2

A ,

wP =
ẆP

ṁ
= (VE − VA)VA , (13.36)

T6 = T4P
1−k
k ,

qin = cp

[
T4 − T1P

k−1
k

]
;

here, P = p2

p1
PC is the overall pressure ratio of the engine. For given turbine

inlet temperature T4, the propulsive power has a maximum at pressure ratio

Pmax =
(

T4

T1

) k
2k−2

, while propulsive efficiency grows with P .

For a fixed pressure ratio P , exhaust temperature T6 and heat supply qin
grow linearly with the turbine inlet temperature T4, while exhaust speed VE

and propulsive power wP grow slower. Thus, increase of the turbine inlet
temperature increases propulsive power, but reduces the propulsive thermal
efficiency ηP = wp/qin, due to larger external irreversibilities.
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From the above follows that engines with high pressure ratio and large
turbine inlet temperatures provide large propulsive power. If one is interested
mainly in power, and efficiency has lower importance, one will run a engine
under these conditions. However, fuel cost is significant, and directly related
to efficiency. Most of today’s jet engines are high bypass turbofan engines,
which are far more efficient, as will be discussed in Sec. 13.9.5.

Standard turbojet engines, or turbofan engines with low bypass ratio, are
employed for supersonic propulsion, mostly for military applications. In af-
terburner engines additional boost is obtained by injecting fuel into the hot
nozzle flow, where it burns, and further heats the flow, and thus gives even
higher nozzle exit velocities.

13.9.4 Example: Turbojet Engine

An airplane cruises with a velocity VA = 300 m
s at about 9000m altitude

where the local pressure and temperature are p1 = 32 kPa and T1 = 241K.
The compressor pressure ratio is P = 12, and the turbine inlet temperature is
1400K. We assume isentropic efficiencies of 80% for compressor and turbine,
and 95% for diffuser and nozzle, and compute the velocity and temperature
of the exhaust gas, propulsive power for a mass flow of ṁ = 50 kg

s , thermal
and Froude efficiencies, and the work potential of the exhaust. The working
fluid is air, as ideal gas with variable specific heats. The process is as shown
in Fig. 13.16, with irreversible subprocesses. We go through the processes
step by step, all numerical values will be entered into a table that is found
further below.

Diffuser (1-2): The first law gives h2 = h (T2) = h1 + 1
2V2

A which de-
termines T2. The pressure after an isentropic diffuser that reaches T2 is

obtained as p2s = p1
pr(T2)
pr(T1)

; however, this is not the pressure after the

irreversible diffuser. The isentropic efficiency of the diffuser ηD = hx−h1

h2−h1

defines the fictitious temperature Tx that would be obtained by isentropic
compression to the actual pressure p2 for the irreversible compressor. We
find hx = h (Tx) = h1 + ηD (h2 − h1), and hence Tx. With that, the pressure

after the diffuser is p2 = px = p1
pr(Tx)
pr(T1)

.

Compressor (2-3): The exit pressure of the compressor is p3 = p2P .
Moreover, we find T3s from pr (T3) = pr (T2)P , and then h3 and T3 fol-
low from the isentropic compressor efficiency as h3 = h (T3) = h2 +
(h3s − h2) /ηC .

Heating (3-4): As always, the combustion chamber is assumed to be
isobaric, p4 = p3; the temperature T4 is given.

Turbine (4-5): The turbine is required to drive the compressor, that
is wT = −wC , or h4 − h5 = h3 − h2 from which we find h5 and then T5. A
reversible turbine expanding to the same pressure p5 would end with enthalpy
h5s = h4 + (h5 − h4) /ηT which follows from the definition of the isentropic
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turbine efficiency ηT . The pressure finally is obtained from the isentropic

relation between points 4 and 5s, p5 = p5s = p4
pr(T5s)
pr(T4)

.

Nozzle (5-6): The nozzle expands the turbine exhaust to the environ-
mental pressure p6 = p1. An isentropic nozzle would give the turbine exit
temperature T6s, and thus the enthalpy h6s = h (T6s), which follow from
pr (T6s) = pr (T5)

p6

p5
. Exit enthalpy, and temperature, follow from the isen-

tropic nozzle efficiency ηN , one finds h6 = h5 + (h6s − h5) ηN . The nozzle
exit velocity is V6 =

√
2 (h5 − h6).

The complete data is shown in the following table, which also contains
entropy values for inlet and exhaust:

p/ kPa T/K h/ kJ
kg pr (T ) V/ m

s s0 (T ) / kJ
kgK

1 32.0 241.0 241.9 0.476 300 6.917

2s 58.2 0

x 56.5 283.7 284.7 0.841 0

2 56.5 286.0 286.9 0.865 0
3s 678 576.6 583.3 10.38 0

3 678 647.0 657.4 0

4 678 1400 1516 332.2 0

5s 175 1005 1052 85.77 0

5 175 1086 1145 116.8 0
6s 32 701.1 715.3 21.36 0

6 32 721.1 736.8 904 8.040

With all data known, we can compute propulsive power and heat supply,

ẆP = ṁ (VE − VA)VA = 9.0MW ,

Q̇in = ṁ (h4 − h3) = 42.9MW .

Thermal propulsive efficiency and Froude efficiency thus are

ηP =
ẆP

Q̇in

= 21.1% and ηF =
2VA

VA + VE
= 49.9% .

The efficiencies are low, because the exhaust has considerable work potential
against the environment, which is not used. Substituting the appropriate
values into Eq. 11.18, the work potential of the exhaust, which is just the
work lost to external irreversibilities, is5

Ẇrev = ṁ

[

h6 − h1 − T1

[
s0 (T6)− s0 (T1)

]
+

1

2
(VE − VA)

2

]

= 20.3MW .

5 Note that inflow (state 1) and outflow (state 6) are at the same pressure; therefore
there is no pressure contribution to the entropy difference.
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Almost half of the loss (9.12MW) is due to kinetic energy losses, the re-
mainder is due to thermal losses. Altogether, the external work loss is more
than twice the actual propulsive power produced. Both must be reduced to
improve engine efficiency.

13.9.5 Bypass Turbofan Engine

The general discussion of air engine efficiency has shown that engines with
relatively slow and cold exhaust are more efficient. Since propulsive power is
given as ẆP = ṁ (VE − VA)VA, lower exit velocity VE must be compensated
by larger mass flow, to generate the desired power. Bypass turbofan engines
have smaller exit velocities, increased mass flow, and also smaller (average)
exit temperature, and thus have small external losses, and high efficiency.

2 31 4 5

ṁ; VA
ṁB

ṁC; VE

VBṁB

VB

Fig. 13.17 Bypass turbofan engine with fan, compressor, combustion chamber,
turbine and nozzle. The fan forces air through the bypass, where it is accelerated

In a turbofan engine, sketched in Fig. 13.17, an additional turbine stage
is added to drive the fan. The fan forces air through a duct outside the
engine core, called the bypass, where the air is accelerated to velocity VB.
The incoming mass flux ṁ is split into two streams, the bypass stream ṁB

and the core stream ṁC . Only the core stream runs through compressor,
combustion chamber, turbine and nozzle. The bypass flow is not heated; this
lowers the exhaust temperature and improves efficiency.

This arrangement increases the mass flow through the engine and decreases
the outflow velocity and temperature, and thus allows to produce propulsive
power at higher efficiency. The bypass ratio is defined as the ratio of the inlet
cross sections of core and bypass, MB = AB

AC
= ṁB

ṁC
, and we expect better

efficiency for larger bypass ratio. The fan is particularly important at take-off,
where the power demand is high, but the airplane speed VA is low.

Again, we study the ideal process under cold-air standard conditions. The
power demand for the adiabatic fan follows from the first law. For the ideal
process, we have isentropic compression by the fan followed by isentropic
expansion in the duct. Inlet and exit pressures agree, as do the respective
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entropies, and thus the exit temperature equals the inlet temperature. Hence,
the fan work is just the difference in kinetic energy for the bypass flow,

ẆF = ṁB

[
1

2
V2
A − 1

2
V2
B

]

. (13.37)

For irreversible fan and duct, the exit temperature would be slightly higher,
and enthalpy terms would appear in the first law.

The processes in the core are the same as for the standard turbine, but now
we use the numbering as in Fig. 13.17. As long as all processes are ideal, the
evaluation is easiest when we begin with the first law balanced over the total
core, between states 1 and 5. The turbine work is used to drive the compressor
and the fan, but since turbine and compressor are within the control volume,
only the fan work appears in the first law, which reads6

ṁC

[

h5 − h1 +
1

2
V2
E − 1

2
V2
A

]

= Q̇in −
(
−ẆF

)
. (13.38)

The heat supply to the compressed air is

Q̇in = ṁC (h3 − h2) = ṁCcp

[
T3 − T1P

k−1
k

]
, (13.39)

where T3 is the turbine inlet temperature, and T1P
k−1
k = T2 is the tem-

perature after the compressor; here, P is the overall pressure ratio of the
engine.

The compressed gas at state 3 is expanded reversibly, first in the adiabatic
turbine to state 4, and then in the adiabatic nozzle to exhaust state 5, so
that the exit temperature is

T5 = T3P
1−k
k . (13.40)

For simplicity, we assume that core and bypass exit velocities are equal,
VB = VE . Then, combining the above equations and solving for the exit
velocity gives

VE =

√
1

1 +MB
2cp

[
T3

(
1− P

1−k
k

)
+ T1

(
1− P

k−1
k

)]
+ V2

A . (13.41)

This result differs from the result for the standard turbine (13.36) only in that
the factor 1

1+MB
= ṁC

ṁC+ṁB
appears in the first term; the previous result is

found for MB = 0.
For given turbine inlet temperature T3, the exit velocity VE and the propul-

sive power ẆP = (ṁB + ṁC) (VE − VA)VA both have a maximum for the

6 ẆF < 0 is defined as the work consumed by the fan, the work delivered from the

core to drive the fan is
(
−ẆF

)
.
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overall pressure ratio Pmax =
(

T3

T1

) k
2k−2

. In modern turbines some of the

compressed air is forced through small ducts in the turbine blades for ef-
ficient blade cooling. This allows very high turbine inlet temperatures of
up to T3 = 1700K, with corresponding pressure ratios of Pmax � 30 (for
T1 = 240K).

At the optimal pressure ratio Pmax, exit velocity, propulsive power, and
heat supply become

Vmax
E =

√
1

1 +MB
2cp

(√
T3 −

√
T1

)2
+ V2

A , (13.42)

Ẇmax
P = ṁC (1 +MB) (Vmax

E − VA)VA , (13.43)

Q̇max
in = ṁCcp

√
T3

(√
T3 −

√
T1

)
, (13.44)

so that the propulsive thermal efficiency becomes

ηmax =
Ẇmax

P

Q̇max
in

=

[√
2cp

1+MB

(√
T3 −

√
T1

)2
+ V2

A − VA

]

VA

cp
1+MB

√
T3

[√
T3 −

√
T1

] . (13.45)

This efficiency depends on turbine inlet temperature T3 and bypass ratio
MB. Figure 13.18 shows the thermal efficiency ηmax as function of MB, T3.
For given turbine inlet temperature T3, the propulsive efficiency grows with
the bypass ratio, while for given bypass ratio there is a optimum for the
temperature.

T3

MB

´

Fig. 13.18 Efficiency ηmax of bypass turbofan engine over bypass ratio MB and
turbine inlet temperature T3 (for optimal pressure ratio Pmax, VA = 280 m

s
)
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The bypass ratio is limited, due to size and weight limitations of the engine,
and we ask for the optimum turbine inlet temperature T3 for given bypass
ratio MB, which follows from the condition

(
∂ηmax

∂T3

)

MB

= 0 .

The resulting equation between the optimal temperature T opt
3 and MB is

best solved for the bypass ratio,

MB =
cpT1
1
2V2

A

(√
T opt
3

T1
− 1

)4

2

√
T opt
3

T1
− 1

− 1 . (13.46)

For an aircraft travelling at speed VA = 280m
s through air (cp = 1.004 kJ

kgK)

at T1 = 240K, the optimal turbine inlet temperature has the values T opt
3 =

{1300K, 1500K, 1700K} for bypass ratios MB = {4.22, 6.78, 9.83}, the out-
flow velocity is 449 m

s .
The optimum efficiency for a bypass turbojet engine with given turbine

inlet temperature is obtained from inserting (13.46) into (13.45) as

ηoptmax =
Ẇmax

P

Q̇max
in

=

(
1−
√

T1

T3

)2

1− 1
2

√
T1

T3

. (13.47)

Optimum propulsive efficiency grows with increasing turbine inlet tempera-
ture. With the same data as before (T1 = 240K, T3 = 1700K) the optimized
reversible bypass turbojet engine reaches a thermal propulsive efficiency of
48%.

The optimized values computed above from simplifying assumptions (cold
air, air standard, reversible processes, same exit velocity for bypass and core
flows) are not too far from those encountered in state-of the art turbofan
engines. These engines are quite complex, with 2 or 3 turbine-compressor
and turbine-fan pairs running on concentric shafts, and sometimes gears, so
that high and low pressure turbines and compressors, and the fan run at
optimal rotational speeds.

Noise reduction is an important task in commercial aircraft. Engine noise is
high when engine exit flows are supersonic, hence real-life engines must be con-
structed to have subsonic exit velocities. From the above discussion it is evident
that turbofans allow low exit velocities, and hence relatively silent operation.7

7 The above optimization of the bypass engine relied on several simplifying as-
sumptions (cold air standard, all processes reversible) which leads to somewhat
inaccurate results. Hence, there is no value in including the requirement for sub-
sonic outflow into the arguments.
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In propjet engines, fan and bypass are replaced by a propeller, which pro-
vides all thrust, the turbine expands to the environmental pressure and pro-
vides the work to run the propeller. Propeller engines are efficient, but for
aerodynamic reasons are limited to lower velocities of not more than 600 m

s ,
while turbofan engines can operate at subsonic and supersonic flight speeds.

Problems

13.1. Stirling Cycle
A Stirling cycle with 5 g of air as working fluid is heated by solar radiation
and rejects heat to the environment. The highest and lowest temperatures
reached in the cycle are 1000K and 300K, respectively, and the maximum
pressure ratio is 10. Draw the process in a T-s-diagram and in a p-v-diagram,
then determine the thermal efficiency and the power produced when the
engine runs at 400 rpm. Determine the entropy changes, heat and work per
unit mass for all four processes.

13.2. Stirling Cycle for Refrigeration
A Stirling engine with helium as working gas is considered for refrigeration
purposes. The goal is to withdraw heat at a temperature of TL = 150K and
reject it to the environment at TH = 300K. Helium is a monatomic gas,
which is well described as an ideal gas with constant specific heats.

1. Draw T-s-diagram and p-v-diagram for the cycle.
2. For a volume ratio between largest and smallest volume of 3, compute

heat and work per unit mass for all four processes, and the coefficient of
performance.

3. The computation of specific heat and work is independent of the pressure.
Discuss the role of the pressure in the performance of the engine, why is
a high pressure desirable?

4. Determine the pressure at all corner points when the highest pressure in
the engine is 10 bar.

13.3. Stirling Cycle for Refrigeration
A Stirling engine with argon as working fluid is used for refrigeration pur-
poses. Heat exchange with the cold and warm surroundings takes place at
TH = 27 ◦C and TL = −73 ◦C, respectively. The highest pressure in the cycle
is pH = 12 bar and the smallest volume is one third of the largest volume.

1. Plot the Stirling cycle in a T-s-diagram, and in a p-v-diagram, number the
corner points.

2. Compute the pressures and specific volumes on all corner points
3. Discuss the regenerator: show that the amounts of heat rejection and heat

supply in the two isochoric processes have the same absolute value, but
different signs.

4. Compute the coefficient of performance of the cycle.
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5. Assume the cylinder of the engine contains an air mass of 40 g, and the
engine runs at 300 rpm – what is its refrigeration capacity?

13.4. Compression Modes
Air (ideal gas with variable specific heats) is compressed in a compressor from

p1 = 1.2 bar, T1 = 280K to p2 = 12 bar. The incoming volume flow is 1 m3

s .
Determine the power consumption for the following cases:

1. Isothermal reversible compression.
2. Isentropic compression.
3. Polytropic reversible compression with n = 1.2.
4. Compression in two isentropic stages with intercooling to T1 at pm =√

p1p2.

Draw a p-v- and a T-s-diagram which shows the four process curves. Hint:

For computation of isothermal and polytropic case use that w12 = − ∫ 21 vdp.

13.5. Two Stage Compressor with Irreversibilities
A two stage compression system with intercooling is used to increase the
pressure of an ideal gas. Specifically, the gas enters the system at p1, T1, and
leaves the first compressor (isentropic efficiency ηC1) at pressure p2. It is then
isobarically intercooled to T1, and compressed to p4 in the second compressor
(isentropic efficiency ηC2). Assume constant specific heats, and determine the
pressure p2 that should be chosen to minimize the work requirement of the
system.

13.6. Gas Turbine Cycle with Regeneration

1. Draw a schematic for a gas turbine system for electricity generation with
irreversible single stage compression, two stages of irreversible expansion
with reheat, and a regenerator. Enumerate the relevant corner points of
the process.

2. Draw the corresponding T-s-diagram.
3. Express the thermal efficiency in terms of enthalpies.

13.7. Brayton Cycle with Regeneration
A gas turbine running on the Brayton cycle has an efficiency of 35.9%, at
pressure ratio 14.7. The turbine inlet temperature is 1288 ◦C, and the air
entering the engine is at 1 bar, 20 ◦C. The engine produces a net power of
174.9MW and the mass throughput is 1690 t

h .

1. Determine the isentropic efficiencies of turbine and compressor.
2. Determine the thermal efficiency for this gas turbine for the case that a

regenerator with 80% effectiveness is added to the cycle.

13.8. Optimal Reheat Pressure
Prove the following statement from the text for a reheat turbine with n-stages:
If the turbines have the same inlet temperature, and the same isentropic
efficiency, the maximum work is obtained when they have the same pressure
ratio.
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13.9. Brayton Cycle with Intercooling, Reheat and Regeneration
A regenerative gas turbine cycle uses two stage of compression with inter-
cooling, and two stages of expansion with reheating. The pressure ratio for
each stage is 3.5, the turbine inlet temperature is 1400K for both turbines,
and between the compressors the air is cooled back to the environmental
temperature of 290K. The isentropic efficiencies of the compressors and tur-
bines are 80% and 85%, respectively, and the regenerator effectiveness is 80%.
Determine:

1. The enthalpies at all principal states.
2. The net work and the back work ratio.
3. The thermal efficiency for the system as described, and for the case that

no regenerator is present.
4. The work potential of the turbine exhaust, and of the final exhaust.

As usual: draw schematic and diagrams.

13.10. Gas Turbine with Regenerator
A gas turbine with air (non-constant specific heats) as working fluid operates
according to the following cycle:

1-2: Adiabatic compression of air at T1 = 300K, p1 = 1bar to T2 = 620K,
p2 = 9.74 bar.

2-3: Isobaric heating of the working fluid in the regenerator, the tempera-
ture T3 is 40K below the temperature of the turbine exhaust, T5.

3-4: Further isobaric heating in the combustion chamber to T4 = 1300K.
4-5: Adiabatic expansion in turbine to pressure p5 = p1, with isentropic

efficiency of 92%.
5-6: Isobaric cooling in the regenerator.

1. Draw a schematic, and a T-s-diagram.
2. Make a table with pressures, temperatures and enthalpies at the points 1

to 6.
3. Determine the thermal efficiency and the back-work-ratio of the cycle:

a) when it operates with regenerator
b) when it operates without regenerator

4. Compute the isentropic efficiency of the compressor.

13.11. Combined Cycle: Gas Turbine and Steam Power Plant
A combined cycle power plant consists of a gas turbine cycle (thermal effi-
ciency 28%), and a steam power plant (thermal efficiency 46%). The exhaust
of the gas turbine is used to provide the heat for generating steam in a heat
recovery steam generator. Assume that the HRSG has an efficiency of 92%,
and compute the overall efficiency of the system.

13.12. Turbojet Engine
A turbojet engine drives an airplane traveling with velocity 290 m

s at a height
where the pressure is 28 kPa, and the temperature is −40 ◦C. The compressor
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pressure ratio is 11, and the turbine inlet temperature is 1300K. The mass
flow through the engine is 60 kg

s .
Assume isentropic efficiencies of 82% for compressor and turbine, 95% for

the nozzle, and 100% for the diffuser. Determine the velocity of the exhaust
gas, the propulsive power, the rate of fuel consumption when the heating
value of the fuel is 42000 kJ

kg , the thermal efficiency, and the Froude propulsive
efficiency.

13.13. Air Engine
An airplane propelled by a standard turbo-jet engine flies at Mach number
M = 0.9 in an environment where the pressure is 40 kPa and the temperature
is 240K. The heat added to the air flowing through the engine is q = 550 kJ

kg
and the hot air leaves the engine at 650K. The engine inlet has a diameter
of 1m. Assume that the working fluid is air as ideal gas.

Determine outflow velocity, thrust, propulsive power, thermal efficiency,
and Froude efficiency of the engine.

13.14. Air Engine
Air at 25 kPa, 225K enters a turbojet engine in flight at an altitude of
10 000m, the flight velocity is 290 m

s . The pressure ratio across the com-
pressor is 10. The turbine inlet temperature is 1300K, and the pressure at
the nozzle exit is 25 kPa again. The diffuser and nozzle processes are isen-
tropic, compressor and turbine have isentropic efficiencies of 90% and 95%,
respectively, and there is no pressure drop for flow through the combustor.

Consider air as ideal gas with constant specific heats, R = 0.287 kJ
kgK ,

cp = 1.004 kJ
kg K .

Neglect kinetic energy except at the diffuser inlet and the nozzle exit.

1. Draw a schematic of the engine, and the corresponding T-s-diagram.
2. Make a table with the values of pressure and temperature at each principal

state.
3. Compute the velocity at the nozzle exit.
4. Compute the thrust of the engine and the propulsive power for a mass

flow rate of 80 kg
s .

5. Determine thermal efficiency and Froude efficiency.

13.15. Bypass Turbofan Engine
A bypass turbo fan engine has a bypass ratio of 5.5 (the mass flow through
the bypass is 5.5 times the mass flow through the gas turbine), and propels
an aircraft cruising at 250 m

s in high altitude where the pressure is 30 kPa
and the temperature is 230K. The mass flow through the gas turbine core is
30 kg

s . Assume variable specific heats.
The flow through the bypass consists of isentropic diffuser, fan, nozzle.
The gas turbine process is as follows:
1-2: Compression in isentropic diffuser.
2-3: Isentropic compressor, pressure ratio p3/p2 = 10.
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3-4: Isobaric heating in combustion chamber to 1300K.
4-5: Turbine TC to drive the compressor.
5-6: Turbine TF to drive the fan.
6-7: Isentropic expansion in nozzle.

1. Make a sketch of the engine, and draw the corresponding T-s-diagram.
2. Determine the power required to drive the fan, when the bypass outflow

velocity is 420 m
s .

Hint: Balance the complete bypass. Pressures at inlet and outlet are equal
to environmental pressure. Then, for isentropic operation, the outlet tem-
perature is equal to the inlet temperature (show that!)

3. Determine temperature, pressure, relative pressure, enthalpy, and outflow
velocity at all 7 points. Provide a table with the values.

4. Compute the propulsive power of the engine, its thermal efficiency, its
Froude efficiency, and the power that could be generated from the exhaust
by equilibrating it to the environment.



Chapter 14

Compressible Flow: Nozzles and
Diffusers

14.1 Sub- and Supersonic Flows

Gas flows through nozzles and diffusers show an interesting behavior when
their speed reaches, or is above, the speed of sound of the gas. This behavior
must be well understood for the proper design of devices and engines. In this
section we study the laws that govern the transition from sub- to supersonic
flow and vice-versa, and draw relevant conclusions for the design of nozzles
and diffusers, and for rocket motors. We will see that subsonic nozzles have a
converging cross section, while supersonic nozzles have a converging-diverging
cross section.

14.2 Speed of Sound

The ear reacts to small pressure oscillations,1 that is sound is a pressure
wave. The speed of sound is the speed with which such a small pressure
disturbance travels through a medium. To compute its value, we consider a
simple experiment, shown in Fig. 14.1 (left): In a long pipe, a wave is created
by a small push of a piston. This wave travels through the pipe with the
speed of sound, a.

To analyze the wave, and to compute the speed of sound, it is best to
consider the wavefront from a co-moving frame, as depicted on the right of
the figure. The wave travels into undisturbed fluid with properties p, ρ, h, s,
and the observer travelling with the wave sees fluid coming in at the speed
of sound a. The fluid left behind by the wave has slightly altered properties
p + dp, ρ + dρ, h + dh, s + ds, and the observer on the wave sees it leaving
with speed a− dV .

Since the wave travels fast, there is no time for heat exchange, thus we can
assume that the wave is adiabatic. Moreover, we shall ignore irreversibilities
through friction, that is we consider reversible wave propagation.

1 Large pressure difference can damage the ear!

H. Struchtrup, Thermodynamics and Energy Conversion, 327
DOI: 10.1007/978-3-662-43715-5_14, c© Springer-Verlag Berlin Heidelberg 2014
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p; ½; h; s

p + dp
½ + d½
a¡ dV
h + dh
s + ds

p
½
a
h
s

a

wavefrontwavefront
wavefront

(laboratory) (co-moving)

Fig. 14.1 A soundwave travelling through a pipe. Left: In the laboratory frame.
Right: In a co-moving frame.

Indeed, sound waves in air are only very weakly damped. That we hear
noises from far away only weakly is due to the spherical propagation of sound
waves, where the sound energy is distributed over shells of surface 4πR2 when
R is the distance from the sound source. Thus local sound energy, which is
what we hear, is inversely proportional to the square of the distance from the
source, that is proportional to 1/R2. In a pipe, however, the propagation is
one-dimensional, waves travel as plane waves with unchanged wave surface
area, which is equal to the pipe cross section.

Applying the mass balance to the wave front yields

ṁ = ρAV = const. (14.1)

Since the cross section A does not change, this yields

(ρ+ dρ) (a− dV) = ρa . (14.2)

The changes dV and dρ are so small that their product can be ignored, so
that the above reduces to

1

ρ
dρ =

1

a
dV . (14.3)

Since the wave is adiabatic, and does not exchange any work, the first law
simply gives

ṁ

(

h+
1

2
V2

)

= const. , (14.4)

which, with ṁ = const., reduces to

h+ dh+
1

2
(a− dV)2 = h+

1

2
a2 , (14.5)

so that, with (14.3)

dh = adV =
a2

ρ
dρ . (14.6)

Since the wave is adiabatic and reversible, the second law gives
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ṁs = const. (14.7)

or, since ṁ = const.,
s = const. or ds = 0 ; (14.8)

the entropy remains unchanged, the flow is isentropic.
We insert the above equations (14.3, 14.6, 14.8) into the Gibbs equation

Tds = dh− 1
ρdp to find

0 = a2
1

ρ
dρ− 1

ρ
dp . (14.9)

Solving for a we find

a =

√(
∂p

∂ρ

)

s

, (14.10)

where the subscript s indicates that the derivative must be taken at constant
entropy.

14.3 Speed of Sound in an Ideal Gas

The speed of sound depends on the material, and for its computation from
(14.10) one needs to know the thermal and caloric equations of state. Here,
we determine the speed of sound for an ideal gas. Starting point is, again,
the Gibbs equation, together with the caloric equation of state, h = h (T ) =∫
cpdT ,

Tds = dh− 1

ρ
dp = cpdT − 1

ρ
dp . (14.11)

With ds = 0 and the ideal gas law written as T = p
ρR , we obtain

0 = cpd

(
p

ρR

)

− 1

ρ
dp =

cp
ρR

dp− cpp

ρ2R
dρ− 1

ρ
dp . (14.12)

With cv = cp −R this yields

cv
ρR

dp =
cpp

ρ2R
dρ , (14.13)

or (
∂p

∂ρ

)

s

=
cp
cv

p

ρ
= kRT . (14.14)

Thus, the speed of sound in an ideal gas depends on temperature as

a =
√
kRT . (14.15)
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Keep in mind that k depends on temperature: For air (R = 0.287 kJ
kgK ) at

T = 298 we have k = 1.4 and thus a = 346 m
s , while at T = 1200K we have

k = 1.314 and find a = 672.8 m
s .

The speed of sound depends on the type of gas through the ratio of specific
heats, k, and through the gas constant, R = R̄

M . Gases with smaller molar
mass M have larger speed of sound. As example we consider helium (MHe =
4 kg

kmol , kHe = 5
3 ), argon (MAr = 39.95 kg

kmol , kAr = 5
3 ), and carbon dioxide

(MCO2
= 44 kg

kmol , kCO2
= 4

3 ) at 298K, for which we find aHe = 1016 m
s , aAr =

321.5 m
s and aCO2

= 274 m
s .

14.4 Area-Velocity Relation

The main design parameter for nozzles and diffusers is the change of cross
section, and we ask how flow properties, in particular velocity and pressure,
change with the cross section. Figure 14.2 shows an adiabatic and reversible,
i.e., isentropic, flow through a duct with varying cross section. We consider
a small slice of the duct of width dx, and apply the balances of mass, energy
and entropy, similar to what we did for the wave in the pipe above.

ṁ

½; V; A; h; s
dx

½ + d½
V + dV
A+ dA
h + dh
s (ds = 0)

ṁ

Fig. 14.2 Adiabatic reversible, i.e., isentropic, flow through a duct with changing
cross section

The mass balance yields

ṁ = ρVA = const. (14.16)

and thus
dṁ

ṁ
=

dA

A
+

dV
V +

dρ

ρ
= 0 . (14.17)

The first law gives at first
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h+
1

2
V2 = h0 = const. (14.18)

and thus
dh+ VdV = 0 . (14.19)

Here, h0 is the stagnation enthalpy, defined as the enthalpy the flow would
obtain when brought to rest adiabatically. Since the flow is isentropic, we
have ds = 0, and the Gibbs equation gives

Tds = dh− 1

ρ
dp = 0 . (14.20)

Elimination of enthalpy between the last two equations yields the relation
between pressure and velocity changes in isentropic nozzles and diffusers,

1

ρ
dp = −VdV , (14.21)

which we discussed already in Sec. 9.11. We use this to eliminate V from the
mass balance to find

dA

A
=

1

V2

1

ρ
dp− dρ

ρ
=

1

ρ
dp

⎛

⎝ 1

V2
− 1
(

∂p
∂ρ

)

s

⎞

⎠ , (14.22)

where the subscript indicates isentropic flow.
To proceed, we introduce the Mach number

Ma =
V
a

,

which compares flow velocity to speed of sound: Ma < 1 for subsonic flows,
Ma > 1 for supersonic flows, and Ma = 1 for sonic flows. Flows with Ma � 1
are called hypersonic and flows with Ma � 1 are called transonic.

With the definition (14.10) of the speed of sound we thus can write the
relation (14.22) as

dA

A
=

1

ρV2
dp
(
1−Ma2

)
, (14.23)

or, by eliminating pressure,

dA

A
= −dV

V
(
1−Ma2

)
. (14.24)

Equations (14.23) and (14.24) are the area-pressure relation and the area-
velocity relation for isentropic duct flows. Both relations carry the fac-
tor
(
1−Ma2

)
which has different sign for subsonic and supersonic flows.
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Accordingly, a change of cross section has different effect when applied to
sub- and supersonic flows.

Subsonic Flows (Ma<1): For a converging duct we have from (14.23,
14.24)

dA < 0 =⇒ dp < 0 , dV > 0 ;

the flow is accelerated while pressure drops; this is a nozzle.
For a diverging duct, on the other hand, we have the opposite signs,

dA > 0 =⇒ dp > 0 , dV < 0 ;

pressure grows, and the flow decelerates; this is a diffuser.

Supersonic Flows (Ma>1): For a converging duct we have from (14.23,
14.24)

dA < 0 =⇒ dp > 0 , dV < 0 ;

pressure grows, and the flow decelerates; this is a diffuser.
For a diverging duct, on the other hand, we have the opposite signs,

dA > 0 =⇒ dp < 0 , dV > 0 ;

the flow is accelerated while pressure drops; this is a nozzle.
In other words, a converging duct acts as a nozzle in subsonic flow, but as

a diffuser in supersonic flow. A diverging duct acts as a diffuser in subsonic
flow, but as a nozzle in supersonic flow. Figure 14.3 shows a summary.

p1 > p2 p1 > p2

p1 < p2 p1 < p2

V1 > V2 V1 > V2

V1 < V2 V1 < V2

subsonic supersonic

nozzle

diffuser

Fig. 14.3 Nozzles and diffuser cross section variation in sub- and supersonic flow
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14.5 Nozzle Flows

Rocket motors and some jet engines expel supersonic flows for propulsion,
and thus need appropriate nozzle geometries. To accelerate a subsonic flow
to supersonic speed requires a converging-diverging nozzle, where the flow
is accelerated to sonic speed in the converging part, and then to supersonic
speed in the diverging part. After its inventor Gustaf de Laval (1845-1913),
such a nozzle is called Laval nozzle.

We will almost exclusively deal with isentropic flows. So that we can per-
form analytical calculations, we restrict the treatment to ideal gases with
constant specific heats. We shall discuss flows through purely converging noz-
zles, and through converging-diverging nozzles. In both cases, the balances
of mass, energy and entropy reduce to

ṁ = ρVA = const. ,

h+
1

2
V2 = h0 = const. , (14.25)

T

p
k−1
k

=
T0

p
k−1
k

0

,
p

ρk
=

p0

ρk0
,

where ρ,V , T, h are the properties at a given cross section of the nozzle, and
T0, p0, h0 are stagnation properties. The stagnation state is defined as the
hypothetical state that is reached by bringing the flow to rest isentropically.

With h − h0 = cp (T − T0) and cp = k
k−1R we find from the above the

local velocity as

V =
√
2 (h0 − h) =

√
2kRT0

k − 1

(

1− T

T0

)

=

√
2kRT0

k − 1

√

1−
(

p

p0

) k−1
k

.

(14.26)
With the isentropic relation for density, we can write the mass flow through
the nozzle as

ṁ = ρ0

√
2kRT0

k − 1
A

⎡

⎣
(

p

p0

) 1
k

√

1−
(

p

p0

) k−1
k

⎤

⎦ = const. (14.27)

The mass flow is a product of three factors: The constant ρ0

√
2kRT0

k−1 which

is fixed by the stagnation state (ρ0, T0), the cross section A, and the flow
function ψ, which we define as

ψ

(
p

p0

)

=

(
p

p0

) 1
k

√

1−
(

p

p0

) k−1
k

. (14.28)

Figure 14.4 shows the flow function for k = 1.33, 1.4, 1.67.
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Fig. 14.4 Flow function ψ (p/p0) for k = 1.33, 1.4, 1.67. The function has a maxi-

mum at p∗
p0

=
(

2
k+1

) k
k−1

= 0.540, 0.528, 0.488.

The argument
(

p
p0

)
of the flow function assumes values between 0 and 1,

and the curve exhibits a maximum with the critical values

p∗

p0
=

(
2

k + 1

) k
k−1

, ψ∗ =

(
2

k + 1

) 1
k−1
√

k − 1

k + 1
; (14.29)

for the k values in the figure, the critical pressure assumes the values p∗

p0
=

0.534, 0.528, 0.487.
The condition of constant mass flow is equivalent to

Aψ

(
p

p0

)

= const. , (14.30)

and this relation will be used now to understand converging and converging-
diverging nozzle flows. For this, we study the outflow from a large container
into a nozzle, where the gas in the container is in the constant stagnation state
(T0, p0). The flow is driven by the difference between the back pressure outside
the nozzle, pb, and the stagnation pressure p0, as indicated in Fig. 14.5. No
flow occurs when pb = p0, and we now study what happens when pb is lowered
gradually.

14.6 Converging Nozzle

As the back pressure pb is lowered a bit, the flow develops. The cross section
A is decreasing along the nozzle coordinate x, see Fig. 14.6. According to
Fig. 14.4, the flow function is hill-shaped, and the nozzle feed state is on

the right foot of that hill, at p = p0, ψ = 0. Since Aψ
(

p
p0

)
is constant, for
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p0 ; T0 p0 ; T0pb pb

Fig. 14.5 Nozzle flows from stagnation. Left: Converging nozzle. Right:
Converging-diverging nozzle (Laval nozzle).

decreasing cross section A the flow function must grow, i.e., go uphill. The
flow function grows along x, and reaches its largest value in the smallest cross
section Ath, the throat of the nozzle, which is at the end of the converging
nozzle. As ψ grows along the nozzle coordinate, the pressure decreases, until
it assumes the pressure pe = pb in the end cross section of the nozzle. Further
decrease of the back pressure leads to lower pressures along the nozzle, and
larger values of the flow function.

When the back pressure pb assumes the critical value p∗, the flow function
in the exit is at its maximum ψ∗. No further growth of ψ is possible when
the back pressure is lowered further. Thus, the exit state remains at ψe = ψ∗

and pe = p∗, even when the back pressure is lowered below p∗. Figure 14.6
visualizes this behavior.

p0

x

pbpe

p¤

p0

p

p0

pe = pb

pe = p¤

1 ⎫⎬
⎭

Fig. 14.6 Converging nozzle: Geometry and pressure profile

When the pressure p∗ is reached in the nozzle throat, one speaks of choked
flow. Indeed, under this condition, the mass flow obtains a maximum value,
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ṁ∗ = ρ0
√
kRT0Ath

(
2

k + 1

) k+1
2k−2

, (14.31)

where Ath is the cross section at the nozzle end. No further increase of the
mass flow through the nozzle is possible. To understand this behavior, we
determine temperature and velocity in the exit at choked conditions. From
the adiabatic relation and (14.26, 14.29) we find

T ∗ = T0

(
p∗

p0

) k−1
k

=
2T0

k + 1
and V∗ =

√
2kRT0

k + 1
=

√
kRT ∗ = a∗ . (14.32)

Thus, for choked flow, the exit speed is just the local speed of sound, a∗. We
recall that the speed of sound is the velocity of a pressure disturbance. When
the back pressure is lowered, the information on the pressure change travels
with the speed of sound relative to the gas. Since the gas leaves with just the
same speed, the information on pressure change is not transmitted into the
nozzle, and no changes can occur inside, the exit velocity and the mass flow
are limited.

With pb < p∗, a pressure discontinuity occurs at the nozzle exit, which
contributes to thrust for the airplane or rocket. The exhaust expands outside
the nozzle to the back pressure, and accelerates, and this expansion is some-
what irreversible, more so with bigger pressure differences.2 Most commercial
airplanes have converging nozzles and subsonic outflow, to reduce noise.

14.7 Example: Safety Valve

The mass flow limitation must be considered for the design of safety valves.
As an example we consider a steam boiler that produces 10t/ h of saturated
vapor at p0 = 15 bar (so that T0 = 471K). In case of emergency, all steam
produced must be discharged through a safety valve. We compute the mini-
mum cross section the valve can have under the assumption that the steam
can be described as an ideal gas with constant specific heats and k = 1.135.
Solving (14.31) for the cross section gives, with the ideal gas law p0 = ρ0RT0,

Ath =
ṁ∗

p0

√
RT0

k

(
k + 1

2

) k+1
2k−2

= 13.5 cm2 .

2 In the discussion of jet engines we have considered adiabatic expansion to the
back pressure, which, for pb < p∗, is only possible in Laval nozzles as discussed
below. This simplification ignores the external expansion; however, the associated
irrversibilities can be included into the nozzle efficiency. A full discussion of the
exterior expansion, and the related thrust is beyond the scope of this book.
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14.8 Laval Nozzle

To reach exit velocities above the speed of sound requires converging-
diverging nozzles, which will be discussed next. The cross section A is first
decreasing until is reaches its smallest value Ath in the throat of the noz-
zle, and then it is increasing to the exit cross section Ae. Again we consider
the pressure distribution in the nozzle which results from lowering the back
pressure pb, see Fig. 14.7.

p0

x

pbpe

p¤

p0

p

p0

1

p3

p1

p2

p0

Fig. 14.7 Geometry and pressure profiles for a Laval nozzle. Pressure profiles
depend on the back pressure as discussed in the text.

When pb = p0, there is no flow and homogenous pressure p0 throughout the
nozzle. When the back pressure is lowered somewhat, a flow occurs. According
to Fig. 14.4, the flow function is hill-shaped, and the nozzle feed state is on

the right foot of that hill, at p = p0, ψ = 0. Since Aψ
(

p
p0

)
is constant, the

flow function must grow—go uphill—in the converging part of the nozzle,
and it must decrease—go downhill—in the diverging part.

We first consider relatively large back pressures in the pressure range p1 <
pb < p0 in the figure. As the nozzle converges, the flow state climbs uphill
until a value pth > p∗, ψth < ψ∗ is reached in the throat. This point is
to the right of the maximum. As the cross section grows in the diverging
part, the flow function must decrease, and this is only possible by returning
to higher pressures, that is by going back downhill towards the right. The
flow is accelerated in the converging part of the nozzle, and decelerated in
the diverging part, the outflow velocity is relatively low, and subsonic. The
extreme case of this flow type is reached for pb = p1, when the air is in the
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critical state in the throat—on top of the hill with sonic speed—but then is
decelerated again.

When the flow reaches the critical state in the throat, the flow function
can decrease by going down the left side of the hill, towards lower pressures,
and higher, i.e., supersonic, velocities. As indicated in the figure, this requires
low back pressures p2 < pb ≤ 0. In this range the flow is isentropic inside
the nozzle. If the back pressure is just at p3, the end pressure is equal to
the back pressure, and no external irreversibilities occur. If the back pressure
is in the range p2 < pb < p3, the end pressure is below the back pressure
and pressure is equilibrated through oblique shocks outside the nozzle. For
lower back pressures pb < p3, the end pressure is above the back pressure and
pressure is equilibrated through external expansion waves.

In the range p2 < pb < p1, isentropic flow inside the nozzle is not possi-
ble. The flow will follow isentropic flow conditions for a while, accelerating
to supersonic flow behind the throat, and then a irreversible normal shock
will occur, that is a sudden jump from low pressure supersonic flow to high
pressure subsonic flow. Behind the shock, the flow will be isentropic again,
and the gas will expand to the back pressure.

We shall not further discuss normal and oblique shocks, but stress that
they are strongly irreversible, and thus reduce nozzle efficiency substantially.
In a shock, the flow changes from supersonic to subsonic, which means signif-
icant reduction of thrust. Nozzle geometry must be carefully designed so that
the flow conditions are optimal. Some supersonic aircraft have nozzles with
variable geometry, to adjust for the wide range of back pressures encountered
between take-off and high altitude flight.

14.9 Rockets, Ramjet and Scramjet

Jet engines are air-breathing, that is they carry the fuel on board, and burn
it with oxygen from the ambient air that passes through the engine. Rockets
carry the oxygen on board, either as liquefied oxygen, or in the form of
a compound. Thus, rockets are independent of ambient air, and can fly at
extremely high altitude, and in space. In a rocket motor, fuel and oxidizer are
burnt at high pressure in the combustion chamber and then expand through
a Laval nozzle, which provides large supersonic exit velocities, and thus large
thrust, see Fig. 14.8.

The oxygen a rocket has to carry on board increases the take-off weight,
and reduces the payload that can be carried along. Some military applications
require fast transport of payload through the atmosphere,3 and rockets are
used because they offer extremely high velocities.

Ramjet and scramjet are conceptually simple air-breathing engines for su-
personic flight, hence they do not require to carry the heavy oxidizer on board.

3 . . . It is left to the reader to fathom what kind of delivery would be that urgent . . .
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fuel

oxydizer

Fig. 14.8 A rocket

In both pressure build-up in the engine is affected only through diffusers, see
Fig. 14.9 for sketches.

In a ramjet, the incoming air is slowed down to subsonic speed and high
pressure by means of a converging-diverging diffuser, which operates on the
same principles as a Laval nozzle, only inversely. Fuel is injected into the com-
pressed air and burned, the hot combustion product then expands through
a Laval nozzle to high velocities. Ramjets can be used for supersonic flight
with speeds up to Ma = 6.

In a scramjet (supersonic combustion ramjet), the flow stays supersonic at
all times. A supersonic diffuser slows down the flow and pressure increases.
Fuel is injected into the flow and burned, and the hot pressurized combustion
product leaves through a supersonic nozzle. Flight speeds could be up to
Ma = 15 or so. Due to the high air velocity at the burner, it is quite difficult
to maintain stable combustion of the fuel. To get the scramjet engine started
it must be accelerated to supersonic speed first, so that the converging diffuser
leads to pressure build-up.

ramjet

diffuser burner nozzle

scramjet

diffuser burner nozzle

Fig. 14.9 Ramjet and scramjet



340 14 Compressible Flow: Nozzles and Diffusers

14.10 Example: Ramjet

A ramjet is to fly at MaI = 3 in high altitude, where the temperature is
TI = 200K and the pressure is pI = 0.3 bar. The diffuser inlet, diffuser
outlet, and nozzle inlet all have the cross section AR = 0.1m2. We determine
the throat cross sections of diffuser and nozzle, and the nozzle exit cross
section for the case that the nozzle expands isentropically to the outside
pressure. Moreover, we will compute exit velocity, thrust, and propulsive
power. To simplify proceedings, we consider the working gas air as ideal gas
with constant specific heats, R = 0.287 kJ

kgK , k = 1.4, cp = k
k−1R.

Diffuser: The incoming flow is at TI , pI and MaI . The inlet density and
velocity are

ρI =
pI
RTI

= 0.523
kg

m3

VI = MaI aI = MaI
√
kRTI = 850.4

m

s
.

This gives the mass flow

ṁ = ρIVIAR = 44.45
kg

s
.

To be able to use the equations for nozzles, which also hold for diffusers, we
first need to determine the stagnation state for the diffuser. The stagnation
temperature TD0 follows from the first law (adiabatic deceleration), and the
corresponding stagnation pressure pD0 follows from the isentropic relation
(with h (T ) = cp (T − T0)):

hin +
1

2
V2
in = hD0 =⇒ TD0 =

cpTin + 1
2V2

in

cp
= 560.2K ,

pD0 = pin

(
TD0

Tin

) k
k−1

= 11.03 bar .

The critical state for the diffuser is determined from (14.29, 14.32) as

pD∗ = pD0

(
2

k + 1

) k
k−1

= 5.82 bar , ψD∗ =

(
2

k + 1

) 1
k−1
√

k − 1

k + 1
= 0.2588 ,

TD∗ = TD0

(
pD0

pD∗

) k−1
k

= 466.7K , VD∗ =
√
kRTD∗ = 433.0

m

s
,

ρD∗ =
pD∗

RTD∗ = 4.35
kg

m3
.

The throat cross section follows from the mass flow,
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AD∗ =
ṁ

ρD∗VD∗ = 0.0236m2 .

The diffuser exit area is given, and the corresponding exit pressure pD
follows from the constant mass flow relation Aψ = const. by first determining
the exit flow function ψD and then finding the corresponding pressure; this
yields

ψD = ψD∗AD∗

AR
= 0.611 =⇒ pD = 0.987pD0 = 10.87 bar .

The pressure can either be found from the plot of the flow function (Fig. 14.4),
or by numerical solution of (14.28); note that there are two solutions, the
larger one refers to subsonic flow. Temperature, density and velocity at the
diffuser outlet are

TD = TD∗
(

pD
pD∗

) k−1
k

= 557.9K , ρD =
pD
RTD

= 6.79
kg

m3
,

VD =
ṁ

ρDAR
= 65.4

m

s
.

Burner: In the burner, fuel is injected into the compressed air and isobar-
ically burned. As always, we ignore the mass of the fuel added, and treat
the combustion product as air. With the temperature after the burner at
TB = 1300K and the pressure pB = pD, we find density and velocity as

ρB =
pD
RTD

= 2.91
kg

s
, VB =

ṁ

ρBAR
= 152.5

m

s
.

The total heat supplied is

Q̇B = ṁcp (TB − TD) = 33.1MW .

Nozzle: The inlet state for the nozzle is the exit state of the burner
(ρB, TB,VB). For the computation of the nozzle, we must first determine
its stagnation state:

TN0 =
cpTB + 1

2V2
B

cp
= 1311.6K , pN0 = pB

(
TN0

TB

) k
k−1

= 11.22 bar .

Critical data in the nozzle throat are
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pN∗ = pN0

(
2

k + 1

) k
k−1

= 5.92 bar , ψN∗ = 0.2588 ,

TN∗ = TN0

(
pN0

pN∗

) k−1
k

= 1093.0K , VN∗ =
√
kRTN∗ = 622.7

m

s
,

ρN∗ =
pN∗

RTN∗ = 1.89
kg

m3
, AN∗ =

ṁ

ρN∗VN∗ = 0.0355m2 .

The computation of the throat cross section from critical data and the mass
flow is already included in the above list.

The last process to consider is the isentropic expansion in the diverging
part of the nozzle to the outside pressure pI = 0.3 bar. We find the following
data for the nozzle exit:

ψE =

(
pI
pN0

) 1
k

√

1−
(

pI
pN0

) k−1
k

= 0.0604 , AE = AN∗ψ
N∗

ψE

= 0.152m2 ,

TE = TN∗
(

pI
pN∗

) k−1
k

= 466.1K , ρE =
pI

RTE
= 0.224

kg

m3
.

Exit velocity and Mach number are

VE =
ṁ

ρEAE
= 1303.3

m

s
, MaE =

VE√
kRTE

= 3.01 .

Power and Efficiency: All cross sections and all property data for reversible
operation were computed above. From the given data we find thrust and
propulsive power as

F = ṁ (VE − Vin) = 201.12 kN , ẆP = FVin = 17.12MW .

This corresponds to the thermal propulsive efficiency and the Froude effi-
ciency

ηP =
ẆP

Q̇B

= 0.517 , ηF =
2Vin

Vin + VE
= 0.79 .

Problems

14.1. Speed of Sound
Determine the speed of sound in helium (based on constant specific heats) and
air (based on variable specific heats, tables) at 300K and 1500K. Compute
the corresponding Mach numbers for a velocity of 290 m

s .

14.2. Speed of Sound in R-134a
Determine the speed of sound in refrigerant R-134a at 1MPa, 60 ◦C. Use
table data!
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14.3. Security Valve
A steam boiler produces saturated vapor at 17.5 bar. The security valve has
a smallest free area of 20 cm2. Determine the maximum mass flow that can
be produced so that no pressure is building up when the valve is open.

14.4. Laval Nozzle
A Laval nozzle is to be designed such that it delivers 4 kg

s of air at 10 ◦C
and 1 bar at twice the speed of sound. The air that expands in the nozzle is
delivered by an isentropic compressor that draws air at 1 bar and 10 ◦C.

Consider air as ideal gas with constant specific heats, R = 0.287 kJ
kgK , cp =

1.004 kJ
kg K .

1. Determine the cross section at the end of the nozzle.
2. Determine temperature, pressure, mass density and velocity in the throat.
3. Determine stagnation pressure and stagnation temperature for the nozzle

flow.
4. Determine the power consumed by the compressor.
5. Determine the heat that must be withdrawn from the flow between com-

pressor and nozzle.

14.5. Nozzle Flow
Consider a Laval nozzle for rocket propulsion. Pressure and temperature in
the combustion chamber are 10 bar and 2500K, respectively. The mass flow
through the nozzle is 30 kg

s of combustion product (ideal gas, constant spe-

cific heats, R = 0.287 kJ
kgK , k = 1.4), the cross section at the end of the

nozzle is Ae = 700 cm2 and the flow is isentropic throughout the nozzle. The
environmental pressure is 0.9 bar.

1. Do you expect supersonic or subsonic flow at the outlet? Why?
2. Compute the area of the throat of the nozzle.
3. Find pressures and gas velocities at throat and end.
4. Discuss the flow behind the nozzle

14.6. Rocket Engine
A converging-diverging nozzle is fed from a combustion chamber at tempera-
ture T0 = 2200K. The flow through the nozzle is isentropic, and the outflow
is supersonic with the velocity v = 1400 m

s . The pressure in the throat is
measured as p∗ = 4bar.

The gas flowing through the nozzle can be considered as an ideal gas with
constant specific heats: cp = 0.98 kJ

kgK , k = cp/cv = 1.4.

1. Determine the pressure in the combustion chamber.
2. Determine temperature and pressure at the nozzle exit.
3. Determine the speed of sound at the nozzle exit.



Chapter 15

Transient and Inhomogeneous
Processes in Open Systems

15.1 Introduction

So far, we have considered steady state processes in open systems, and time
dependent processes in closed systems. In this chapter, to widen the scope a
bit, we show some simple applications of space dependent and time dependent
open systems.

The full discussion of inhomogeneous processes, steady state or transient,
requires the solution of the partial differential equations of hydrodynamics,
e.g., the Navier-Stokes equations and Fourier’s law of heat conduction. The
derivation of the transport equations is the subject of Non-equilibrium Ther-
modynamics, and their solution is a question of mathematics and numeri-
cal methods. Fluid Dynamics, and Heat and Mass Transfer are disciplines
which rely heavily on the study of solutions of the appropriate transport
equations.

Below, we first discuss one-dimensional co- and counter-flow heat exchang-
ers as a simple application of inhomogeneous systems. Then, as a relatively
easy application of open time-dependent systems, we consider filling and dis-
charge processes, e.g., of gas bottles, rooms, or cavities, as long as the content
can be assumed to have homogeneous properties.

15.2 Heat Exchangers

15.2.1 Basic Equations

We discuss the principles of simple heat exchange between two flows, which
are either running in the same direction (co-flow), or in opposite directions
(counter-flow), see Fig. 15.1 for a basic sketch of the set-up. Heat exchange is
assumed to be a one-dimensional process, where the temperatures TA (x) and
TB (x) of the two flows depend only on the space coordinate in flow direction,

H. Struchtrup, Thermodynamics and Energy Conversion, 345
DOI: 10.1007/978-3-662-43715-5_15, c© Springer-Verlag Berlin Heidelberg 2014
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ṁA

ṁB

x = 0 x = L

x
ṁA

ṁB co-flow
counter-flow

Fig. 15.1 Heat exchange between two flows A and B. Co- and counter flow settings
are indicated by the arrows that show the direction of flows.

x. In particular, temperature profiles perpendicular to the flow are ignored,
that is the given temperatures are cross-sectional averages.

Heat is transferred between the two flows due to different temperatures
TA (x) and TB (x). Typically, the inflow temperatures of the flows are given,
and one aims at determining the outflow temperatures.

Since the temperatures depend on the location x, we need to balance
energy for each location. Figure 15.2 shows small elements of infinitesimal
width dx and the corresponding flows and properties for co- and counter-flow
settings.

ṁA

hA(x) hA(x + dx)

dx

ṁB

hB(x) hB(x + dx)

±Q̇

co-flow

ṁA

hA(x) hA(x + dx)

dx

ṁB

±Q̇

counter-flow

hB(x) hB(x + dx)

Fig. 15.2 A volume element dx of the heat exchanger, and the corresponding
fluxes for co- and counter-flow heat exchangers

The task at hand is to determine the temperature curves in both flows.
Applying the first law to each flow in each element gives

ṁA [hA (x+ dx) − hA (x)] = −δQ̇ ,

±ṁB [hB (x+ dx) − hB (x)] = δQ̇ , (15.1)
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where in the second equation the upper sign refers to co-flow, and the lower
sign refers to counter-flow. The heat exchange between the flows within the
element dx is denoted by δQ̇, and is given by Newton’s law of cooling (4.35),
which we write here as

δQ̇ = α (TA − TB) dx . (15.2)

Heat transfer is proportional to the contact area bdx. In the above, the width
b is absorbed into the coefficient α and only the length dx of the element is
made explicit. The heat transfer coefficient α will be assumed to be constant.

Taylor expansion allows to relate the enthalpy differences to the specific
heats and the temperature gradients as

hA (x+ dx) − hA (x) = cAp
dTA

dx
dx ,

hB (x+ dx)− hB (x) = cBp
dTB

dx
dx ; (15.3)

for simplicity we shall assume that the specific heats are independent of
temperature.

Combining all of the above yields two coupled differential equations for
the temperatures,

dTA

dx
= α̂A (TB − TA) ,

dTB

dx
= ∓α̂B (TB − TA) , (15.4)

with the abbreviations

α̂A =
α

ṁAcAp
, α̂B =

α

ṁBcBp
. (15.5)

The coupled equations (15.4) can be integrated easily,1 and the solutions read

TA (x) = K2 exp [− (α̂A ± α̂B)x] +
α̂A

α̂A ± α̂B
K1 , (15.6a)

TB (x) = ∓ α̂B

α̂A
K2 exp [− (α̂A ± α̂B)x] +

α̂A

α̂A ± α̂B
K1 , (15.6b)

where K1 and K2 are integrating constants, and, as in all equations in this
section, the upper sign is for co-flow, and the lower sign is for counter-flow
exchangers.

1 Take the difference of both to get an equation for (TB − TA) that can be inte-
grated. Then use the result to eliminate TB in the equation for TA, and solve for
TA.
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15.2.2 Co-flow Heat Exchangers

We consider co-flow heat exchangers (upper sign) first. The known inflow
conditions are the temperatures TA (0) and TB (0), for which we find from
(15.6)

TA (0) = K2 +
α̂A

α̂A + α̂B
K1 , TB (0) = − α̂B

α̂A
K2 +

α̂A

α̂A + α̂B
K1 . (15.7)

Solving this for the constants K1 and K2 and inserting these into (15.6) gives
the temperature curves for the co-flow heat exchanger as

TA (x) =
TA (0) + α̂A

α̂B
TB (0)

1 + α̂A

α̂B

+
TA (0)− TB (0)

1 + α̂B

α̂A

exp [− (α̂A + α̂B)x] ,

(15.8)

TB (x) =
TA (0) + α̂A

α̂B
TB (0)

1 + α̂A

α̂B

− TA (0)− TB (0)

1 + α̂A

α̂B

exp [− (α̂A + α̂B)x] .

According to these equations, the two temperatures approach a common value
exponentially. The common value is obtained in the limit x → ∞ as

TA (∞) = TB (∞) =
TA (0)

1 + α̂A

α̂B

+
TB (0)

1 + α̂B

α̂A

. (15.9)

In a heat exchanger of finite length L, the exit temperatures TA (L) and
TB (L) differ from this value, see Fig. 15.3.

0.0 0.2 0.4 0.6 0.8 1.0
40

45

50

55

60

x Lê

T
A
;
T
B

TA

TB

T1

Fig. 15.3 Temperatures TA and TB in a co-flow heat exchanger with inflow tem-
peratures TA (0) = 40 ◦C and TB (0) = 60 ◦C , for α̂A/L = 0.7 and α̂B/L = 1. The
asymptotic value TA (∞) = TB (∞) = 47.5 ◦C is shown as well.
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The entropy generation is a useful measure for the work loss associated
with the heat exchanger. Since we consider the heat exchanger to be adiabatic
to the outside, the entropy generation is just the difference between entropy
flowing in and out; for simple incompressible fluids it is computed as

Ṡgen = ṁAc
A
p ln

TA (L)

TA (0)
+ ṁBc

B
p ln

TB (L)

TB (0)
. (15.10)

In a co-flow heat exchanger, all heat transfer takes places over finite tempera-
ture differences and the entropy generation is always finite. Therefore co-flow
heat exchangers always have an associated work loss.

15.2.3 Counter-Flow Heat Exchangers

Now we consider counter-flow heat exchangers (lower sign). The known inflow
conditions are the temperatures TA (0) and TB (L), for which we find from
(15.6)

TA (0) = K2 +
α̂A

α̂A − α̂B
K1 ,

(15.11)

TB (L) =
α̂B

α̂A
K2 exp [− (α̂A − α̂B)L] +

α̂A

α̂A − α̂B
K1 .

Solving this for the constants K1 and K2 and inserting these into (15.6) gives
the temperature curves for the counter-flow heat exchanger as

TA (x) = TA (0) + [TB (L)− TA (0)]
exp [(α̂B − α̂A) x]− 1

α̂B

α̂A
exp [(α̂B − α̂A)L]− 1

,

(15.12)

TB (x) = TB (L) + [TB (L)− TA (0)]
exp [(α̂B − α̂A)x]− exp [(α̂B − α̂A)L]

exp [(α̂B − α̂A)L]− α̂A

α̂B

.

This solution becomes singular for the special case α̂A = α̂B = α̂. L’Hôpital’s
rule must be used to find the temperature curves for this case as

TA (x) = TA (0) + [TB (L)− TA (0)]
α̂x

1 + α̂L
, (15.13)

TB (x) = TB (L) + [TB (L)− TA (0)]
α̂ (x− L)

1 + α̂L
. (15.14)

Thus, in general, we will observe exponential curves for the temperatures, but
straight lines in the case that α̂A = α̂B. Figure 15.4 shows the temperature
curves for three cases with different or equal values of α̂A and α̂B.
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Fig. 15.4 Temperature curves for a counter-flow heat exchanger with TA (0) =
40 ◦C and TB (0) = 60 ◦C, for the three cases (a) α̂A/L = 3.5 and α̂B/L = 5; (b)
α̂A/L = 5 and α̂B/L = 3.5; (c) α̂A/L = α̂B/L = 5
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In particular we note that the exit temperatures are not limited by a
common mean value as for co-flow exchange, but can be quite close to the
inlet temperature of the other stream. For an exchanger of length L, the exit
temperatures of the two streams are

TA (L) = TA (0) + [TB (L)− TA (0)]
exp [(α̂B − α̂A)L]− 1

α̂B

α̂A
exp [(α̂B − α̂A)L]− 1

,

(15.15)

TB (0) = TB (L) + [TB (L)− TA (0)]
1− exp [(α̂B − α̂A)L]

exp [(α̂B − α̂A)L]− α̂A

α̂B

.

We limit our attention to a case where α̂B < α̂A, and ask for the limiting
exit temperatures for infinite length, L → ∞, which are

TA (L∞) = TB (L∞) , (15.16)

TB (0) = TA (0)
α̂B

α̂A
+

(

1− α̂B

α̂A

)

TB (L∞) . (15.17)

Thus, stream A exits in equilibrium with stream B at x = L∞, but stream
B cannot achieve equilibrium with the incoming stream A at x = 0. When
α̂B > α̂, the behavior is opposite. The only case where both exiting streams
are in equilibrium with the incoming streams, in the case L → ∞, is for
α̂B = α̂A = α̂.

The above discussion already gives indication that a counter-flow heat
exchanger works particularly well when α̂B = α̂A = α̂, which is the case
when the mass flows are matched such that ṁAc

A
p = ṁBc

B
p , see (15.5). The

discussion of the entropy generation rate of the heat exchanger sheds more
light on this. Again ignoring heat loss to the exterior, the entropy generation
is

Ṡgen = ṁAc
A
p ln

TB (L)

TB (0)
+ ṁBc

B
p ln

TB (0)

TB (L)
, (15.18)

and Fig. 15.5 shows the reduced entropy generation rate

Ṡgen√
ṁAcAp ṁBcBp

= ln

⎡

⎣
(
TB (L)

TB (0)

)
√

α̂B
α̂A
(
TB (0)

TB (L)

)
√

α̂A
α̂B

⎤

⎦ , (15.19)

as a function of the ratio α̂A

α̂B
=

ṁBcBp
ṁAcAp

for various total exchanger lengths L.

If the heat exchanger is sufficiently long, the entropy generation develops a
minimum for α̂A

α̂B
= 1, which therefore is the optimum condition for running

counter-flow heat exchangers.
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αΒL = 1 

αBL = 3 

αBL = 5 

αBL = 10 

αBL = 100 

Fig. 15.5 Counter-flow heat exchanger: Reduced entropy generation rate over the

ratio α̂A
α̂B

=
ṁBcBp
ṁAcAp

for various values of α̂BL; note the logarithmic scale

15.2.4 Summary

In an infinitely long counter-flow heat exchanger running at optimum con-
dition α̂A

α̂B
= 1, both streams have the same temperatures at all locations

(with an infinitesimal difference for heat transfer, of course), and no entropy
is generated. In co-flow heat exchangers, the entropy generation is always
non-zero, since the temperature difference at the common inlet is given by
the temperatures of the incoming streams.

Realistic heat exchangers have finite length, and thus some generation of
entropy, which is always less in counter-flow heat exchangers as compared
to co-flow systems. In the latter, both flows approach an intermediate tem-
perature, while in the counter-flow case, the flows approach an exchange of
their temperatures: the exit temperature of one flow is close to the inlet
temperature of the other. This certainly is the more desirable outcome.

Entropy generation arguments should be used in the design of heat ex-
changers, which should be build such that the overall entropy generation in
the heat exchanger is as small as possible.

15.3 Heating of a House

As first example for transient processes in open systems, we study the heat-
ing of a house in a simplified model. The house of volume V0 is initially in
equilibrium with the outside environment at p0, T0. To elevate the temper-
ature in the house to a pleasant value TH , the house is heated at constant
rate Q̇heat. Heat transfer through the walls leads to heat loss Q̇loss to the
outside. Moreover, the house exchanges air through gaps in doors, windows
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and walls, and we assume that the pressure stays constant at all times. We
ask for the amount of heat that must be supplied to keep the house at the
inside temperature TH , and for the time required to heat the house to that
temperature.

The house consists of the mass mS of structural material (wood, stone,
concrete, plaster, . . . ), which has the average specific heat cS . To simplify the
calculation, we shall assume that the whole structure is at the temperature
T (t), that is we ignore any inhomogeneous temperature distribution in the
outside walls, which, in reality, would be colder further outside. The mass of
air in the house is denoted as ṁA (t) and is subject to change due to inflow
or outflow through gaps.

The mass and energy balances for the house read

dmA

dt
= −ṁA ,

dU

dt
= Q̇heat − αA (T − T0)− ṁAhA , (15.20)

where α is the heat transfer coefficient for the house, U is the total internal
energy (air and structure) and A is the outside surface. Kinetic and potential
energies are ignored, and the house and air have the homogeneous tempera-
ture T . The last term in the energy balance, ṁAhA, is the convective outflow
of energy. As long as the house is heated, we expect only outflow, due to iso-
baric expansion of the inside air. In cooling of the house, say at night when
the heating is switched off, the air contracts, and outside air (at h0) flows in.

Before we consider the time dependent process, we have a look at the final
steady state, for which dmA

dt = dU
dt = 0 and T = TH , so that the final house

temperature is obtained as

TH = T0 +
Q̇heat

αA
. (15.21)

This relation shows that the house temperature is controlled through adjust-
ment of the heating rate Q̇heat. Improved insulation reduces the heat transfer
coefficient α and thus the heat requirement Q̇heat.

With suitable choice of the energy constants, the internal energy of the
house and the enthalpy of the air are

U = (mScS +mAcv)T , h = u+RT = cpT , (15.22)

where cv and cp = cv+R are the specific heats of air, assumed to be constant.
The mass of air in the house follows from the ideal gas law as

mA =
p0V0

RT
. (15.23)

Combining the above, including eliminating the air mass by means of (15.23),
yields a differential equation for temperature, which after some simplifications
reads
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(

mScS + cp
p0V0

RT

)
dT

dt
= Q̇heat − αA (T − T0) . (15.24)

Separation of variables gives

mScS + cp
p0V0

RT

Q̇heat − αA (T − T0)
dT = dt , (15.25)

and integration between the initial state (T0, t0) and the final state (T, t)
gives the solution2

p0V0

R
cp

ln
[

T
T0

Q̇heat

Q̇heat−αA(T−T0)

]

Q̇heat + T0αA
+
cSmS

αA
ln

[
Q̇heat

Q̇heat − αA (T − T0)

]

= (t− t0) .

(15.26)
We can use the equilibrium condition (15.21) to write this in a more compact
form,

mHcp ln

TH

T0
− 1

TH

T − 1
+mScS ln

[
TH − T0

TH − T

]

= αA (t− t0) , (15.27)

wheremH = p0V0

RTH
is the final mass of air in the house. This equation describes

the evolution of the inside temperature T towards TH over time t, in an
implicit way. The first term on the left hand side describes the heating of the
air, and the second term describes the heating of the structure.

We consider a small house with a footprint of 10m× 10m, a height of 3m
and a flat roof. The air volume of the house is approximately 300m3 which
at final conditions (TH , p0) corresponds to a mass of mH = p0V0

RTH
= 350 kg.

Clearly, this mass, and the corresponding heat capacity mHcp, is much less
than mass mS and heat capacity mScS of the structure.

If we completely ignore the contribution to air heating, we obtain for the
temperature an exponential relation,

T = T0 + (TH − T0)

(

1− exp

[

− αA

cSmS
(t− t0)

])

, (15.28)

where we have used (15.21).
In a house, normally first the air is heated, e.g., by radiators or forced air

heating, and then heat is transferred from the warm air to the structure. If
heat transfer to the structure is slow, the structure heating can be ignored,
and the air temperature approaches the final temperature according to

T =
TH

1 +
(

TH

T0
− 1
)
exp
[
− αA

cpmA
(t− t0)

] , (15.29)

2 If you cannot do the integral with pencil and paper, you can use an integration
table, or a mathematical software package like Mathematica.
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where α now is the heat transfer coefficient between inside air (at T ) and
structure (at T0).

The approach to the final temperature is determined by the time constants
αA

cSmS
and αA

cpmA
, respectively. Due to the large differences in mass between

air and structure, the air heats up much faster than the structure.

15.4 Reversible Filling of an Adiabatic Container

When one inflates a bicycle tire with a hand pump, tire and pump become
warm. While some of the heat comes from friction in the pump—no seal is
friction free—a large part of the heat is due to the rise of temperature of the
air being compressed.

To fix ideas we consider the simplest possible case, namely the filling of an
adiabatic container with an ideal gas under the assumption that all processes
are fully reversible. The system to be considered consists of the adiabatic
container of volume V0 and an adiabatic reversible compressor which draws
outside air at T0, p0 and compresses it to the pressure p inside the container,
which grows over time. Figure 15.6 gives a sketch of the system considered.

Ẇ

ṁ
p0; T0

m (t)
p (t)
T (t)

V0

Fig. 15.6 Filling of a container with air

When all processes are reversible, it is convenient to set the system bound-
ary such that the system contains container and compressor. Then, the bal-
ances for mass, energy and entropy become

dm

dt
= ṁ ,

dU

dt
= −Ẇ + ṁh0 ,

dS

dt
= ṁs0 , (15.30)

where Ẇ is the power to run the compressor, and ṁ is the mass flow pushed
into the container. There is no generation of entropy due to the assumption
of reversibility. We assume that initially the container is in equilibrium with
the environment, so that it contains the mass m0 = p0V0

RT0
, and that the mass

flow has the same value at all times, i.e., ṁ = const. Integration of the mass
balance gives the mass in the container at time t as
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m (t) = ṁt+m0 . (15.31)

The entropy balance can be integrated easily, to give

S = ṁs0t+ S0 , (15.32)

where S0 = m0s0 is the entropy of the initial filling, and S = ms is the
entropy at time t. Combining the last two equations we find

S = ms = ṁs0t+m0s0 = ms0 . (15.33)

Therefore the specific entropy of the gas stays constant,

s =
S

m
= s0 . (15.34)

With the entropy of the ideal gas, s−s0 = cp ln
T
T0

−R ln p
p0
, and the ideal gas

law p = mRT
V0

, follows a relation between temperature and mass (k = cp/cv),

T (t) = T0

(
m (t)

m0

)k−1

. (15.35)

As air mass is added to the container, the pressure rises to

p (t) =
m (t)RT (t)

V0
= p0

(
m (t)

m0

)k

. (15.36)

The air inside the container is compressed adiabatically, as is the intake air
when it passes through the compressor.

Since the pressure rises, the power to drive the compressor is increasing
over time. From the first law, with U = mu = mcvT , h0 = cpT0, we find

Ẇ = ṁh0 − dU

dt
= −ṁcpT0

[(
m (t)

m0

)k−1

− 1

]

. (15.37)

We ask for the total work required for an n-fold increase of mass, so that
m = nm0. The filling time is

tn =
(n− 1)m0

ṁ
, (15.38)

and the corresponding work is

Wn =

∫ tn

0

Ẇdt = −m0cvT0

[
nk − 1− k (n− 1)

]
. (15.39)
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15.5 Reversible Discharge from an Adiabatic
Container

In the previous section we filled a container with compressed air. Expansion
of the compressed air yields work. Thus, compressing air into a container can
be used as a means to store energy. The reversible work potential of the air in
the filled container is the closed system exergy of the compressed air (11.31),

Ξ = m (u− uE) + pE (V − VE)− TEm (s− sE) . (15.40)

For the evaluation we must consider the appearing quantities with some
care: V is the system volume, which for the present notation is the container
volume V0, while VE = mRTE

pE
is the volume of the system when expanded

to environmental pressure and temperature pE = p0, TE = T0. Note that,
due to the reversible adiabatic filling process considered, s = s0 = sE . With
this, and the filling state m = nm0, T , p, as given above, the exergy of the
compressed air becomes

Ξn = m0cvT0

[
nk − 1− k (n− 1)

]
= −Wn . (15.41)

So, not surprisingly, the work potential of the compressed air equals the
work that is required for its reversible filling (with opposite sign). Thus, if all
processes are fully reversible, compressed air storage gives a 100% efficient
means of energy storage. All work required to fill the container could be taken
out to produce work again, e.g. as electricity.

15.6 Reversible Discharge after Cooling

Real life compressed air storage will have a storage efficiency below 100% due
to irreversible losses in compressor and turbine during filling and discharge,
and due to energy loss by heat transfer from the hot compressed gas to the
environment. To get some insight, we assume that, while filling and discharge
happen adiabatically and reversibly, the container loses some heat during
storage, so that the temperature drops to TC . In this case, the state of the
air in the container is

T = TC , mC = nm0 , pC =
mCRTC

V0
, (15.42)

with the reversible work potential

ΞC = mcv (TC − T0) + p0

(

V0 − mRT0

p0

)

− T0m

(

cp ln
TC

T0
−R ln

pC
p0

)

= m0cvT0

[
pC
p0

− n ln
pC
p0

+ n lnnk − 1− (n− 1) k

]

. (15.43)
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Since pressure and temperature are lower than directly after filling, the work
potential has dropped, ΞC < Ξn.

Realizing the work potential is another question. We study the inversion
of the filling process, that is a turbine for the reversible discharge of the air
into the environment. Again, we assume an adiabatic process with constant
mass flow. During discharge, the state of the air in the container changes
due to expansion. For this computation it is best to consider container and
turbine separately. With the present state in the container denoted by T , p,
u, s and so on, the discharge from the adiabatic container is given by mass
and energy balance,

dm

dt
= −ṁ ,

dU

dt
= −ṁh . (15.44)

Integration of the mass balance with the initial mass mC = nm0 gives the
mass at time t as

m (t) = mC − ṁt . (15.45)

With U = mcvT and h = cpT , the first law gives the temperature of the air
remaining in the container as

d ln T

dt
= − (1− k)

d lnm

dt
=⇒ T = TC

(
m

mC

)k−1

. (15.46)

The temperature drops as mass is discharged, and the same is true for pres-
sure,

p =
mRT

V0
=

mCRTC

V0

(
m

mC

)k

= pC

(
m

mC

)k

. (15.47)

The discharged gas is then expanded through the turbine from p to p0. For
the reversible adiabatic turbine the entropy is constant, so that the turbine
exit temperature is

Te = T

(
p0
p

) k−1
k

= TC

(
p0
pC

) k−1
k

. (15.48)

Interestingly, while the pressure ratio changes throughout the process, the
turbine exit temperature remains at the same value.

The power provided by the turbine is

Ẇ = ṁ (h− he) = ṁcp (T − Te) = ṁcpTC

[(
m

mC

)k−1

−
(
p0
pC

) k−1
k

]

.

(15.49)
The discharge will be finished when p = p0, that is
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(
p0
pC

) 1
k

=
mC − ṁtend

mC
=⇒ tend =

mC

ṁ

[

1−
(
p0
pC

) 1
k

]

. (15.50)

Then, the mass left in the container, and the temperature, are

mend = mC

(
p0
pC

) 1
k

, Tend = TC

(
mend

mC

)k−1

= TC

(
p0
pC

) k−1
k

= Te .

(15.51)
The total work delivered is

WC =

∫ tend

0

Ẇdt = ṁcpTC

[∫ tend

0

(
m

mC

)k−1

dt−
(
p0
pC

) k−1
k

tend

]

= · · · = m0cvT0

[
pC
p0

− k

(
pC
p0

) 1
k

+ k − 1

]

. (15.52)

The pressure pC assumes values between the reversible filling pressure pn =
p0n

k and np0, which is the pressure when the compressed air is thermally
equilibrated with the environment at T0.

When no heat loss occurs (TC = Tn), the turbine exit temperature is just

the environmental temperature, Te = Tn

(
p0

pn

) k−1
k

= T0, and it lies below

T0, when the air lost energy to the environment. In the extreme case that

TC = T0, the turbine exit temperature is T0n
1−k
k < T0. The actual work

delivered is below the work potential (15.43), since the air leaving the turbine
is colder than the environmental air, and thus there is work potential due to
temperature difference between exhaust and environment. When the cold
exhaust just mixes with the environmental air, entropy is produced, and this
work potential is lost.

The second law efficiency for the discharge process alone is the ratio be-
tween the work produced and the initial work potential,

ηII =
WC

ΞC
=

pC

p0
− 1− k

((
pC

p0

) 1
k − 1

)

pC

p0
− 1− k (n− 1) + nk ln

[

n
(

p0

pC

) 1
k

] . (15.53)

The second law efficiency is ηII = 1 for the case without heat loss in storage

(TC = Tn and Te = T0) and ηII =
[

k
k−1

(
n− n

1
k

)
− n+

]
/
[
nk

k lnn− n+ 1
]

for complete heat loss (TC = T0 and Te = T0n
k−1
k ). This efficiency does only

account for the work loss in discharge, but not for the loss associated to the
heat loss during storage.
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The storage efficiency for the complete filling and discharge process is the
ratio between the work produced in discharge, and the work required for
filling,

ηst =

∣
∣
∣
∣
WC

Wn

∣
∣
∣
∣ =

pC

p0
− 1− k

((
pC

p0

) 1
k − 1

)

nk − 1− k (n− 1)
. (15.54)

The storage efficiency is ηst = 1 for the case without heat loss in storage

(TC=Tn and Te=T0), and ηst=
[
n− 1− k

(
n

1
k − 1

)]
/
[
nk − 1− k (n− 1)

]

for complete heat loss (TC = T0 and Te = T0n
k−1
k ). This efficiency accounts

for the work lost in storage and discharge.
The values on both efficiencies depend on the total mass exchange, nm0,

e.g. for n = 20, we find for the second law efficiency values in [0.16, 1] and
for the storage efficiency values in [0.22, 1].

15.7 Reversible Filling of a Gas Container with Heat
Exchange

In the previous sections we assumed that no heat is exchanged during filling
and discharge, which would be the case when the processes are rather fast.
For a lower filling rate, since real containers are not adiabatic, there will
be heat exchange during filling, and here we study a container with heat
exchange. We assume that the container is in contact with the environment
at T0, and use Newton’s law of cooling. The balances for mass, energy and
entropy become

dm

dt
= ṁ ,

dU

dt
= Q̇− Ẇ + ṁh0 ,

dS

dt
− Q̇

T
= ṁs0 , (15.55)

where Q̇ = α (T0 − T ) is the heat exchange between the compressed gas at T
and the environment. As before, we assume that initially the container is in
equilibrium with the environment, so that it contains the mass m0 = p0V0

RT0
,

and that the mass flow is constant, ṁ = const. Integration of the mass
balance gives the mass in the container at time t as

m (t) = ṁt+m0 .

With S = ms and the mass balance, the entropy balance assumes the form

m
ds

dt
=

α (T0 − T )

T
− ṁ (s− s0) . (15.56)

The entropy of the ideal gas is

s− s0 = cv ln
T

T0
+R ln

V0/m

V0/m0
= cv ln

T

T0
−R ln

m

m0
. (15.57)
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After some manipulation, the second law reduces to a differential equation
for the gas temperature,

d ln T
T0

dt
= − α

mcv

(

1− T0

T

)

− ṁ

m

(

ln
T

T0
− (k − 1)

(

ln
m

m0
+ 1

))

. (15.58)

Solving the first law for power, and use of the appropriate constitutive equa-
tion and the differential equation for T results in

Ẇ = ṁcvT

[

ln
T

T0
− (k − 1) ln

m

m0
+ k

(
T0

T
− 1

)]

. (15.59)

The filling pressure follows from the ideal gas equation, p = mRT
V0

. Of course,
for the adiabatic case (α = 0) the solution of Sec. 15.4 fulfills both equations.

For the non-adiabatic case, the equation for temperature cannot be solved
with pencil and paper, but must be solved on a computer. The numerical so-
lution T (t) can then be used to determine the compressor power (15.59) and
the total work W =

∫
Ẇdt. Figure 15.7 shows, in dimensionless form, mass,

temperature, pressure and compressor work as functions of time, comparing
the adiabatic case (α = 0, dashed), and the case with heat loss to the envi-
ronment (α 
= 0, continuous). Less work is required in the latter case, since,
due to the constant heat loss, the temperature, and thus the pressure is lower.
For the data given with the figure, the total work requirement for filling (di-
mensionless) is, W

m0RT0
= −34.26 for the adiabatic case, and W

m0RT0
= −22.28

for the non-adiabatic case.
While non-adiabatic filling requires less work, the work potential of the

filling (same mass) is less as well, due to lower pressure. The heat loss to
the environment will continue after filling is completed. Accordingly, the fill-
ing pressure, and the work potential will drop after filling is completed. We
consider the work potential (exergy) in case that the filling temperature has
dropped to the environmental temperature T0. Then the state of the air in
the cavern is

m

m0
= n , T = T0 , p =

mRT0

V0
, s = cp ln

T0

T0
−R ln

p

p0
+ s0 (15.60)

with the work potential (exergy)

Ξ0 = m0cvT0 (k − 1) (n lnn− n+ 1) . (15.61)

The non-dimensional value corresponding to n = 11 (the final state in
Fig. 15.7) is Ξ0

m0RT0
= 16.38. Thus, if the container is filled adiabatically

and then cools to environmental temperature, the work potential is only half
of the filling work. Of course, irreversibilities during filling will increase the
work requirement, and irreversibilities during discharge will reduce the work
output below Ξ0 so that in the end the storage efficiency is relatively low.
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, temperature
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15.8 CAES: Compressed Air Energy Storage

Renewable energy resources such as wind power or solar energy suffer from
the fact that one cannot align the times of energy generation and energy de-
mand. Large scale use of renewable energy therefore requires efficient storage
mechanisms for the energy. Compressed air energy storage (CAES) systems
are suggested as one means to this end. The idea is to use renewable energy
at the time of production to fill a big cavern, e.g. an abandoned salt mine,
with compressed air. Later, when energy demand arises, the compressed air
in the cavity can be expanded through a turbine to generate electricity.

The filling and discharge problems discussed above can be considered as
prototypes of the processes in a compressed air storage system. But, of course,
what happens in realistic systems differs from the idealized description con-
sidered so far: First of all, the compressor used to fill the cavern, and the
turbine used to expand the air, will not be reversible, but both will loose
some work to friction. Typically, the temperature of the gas fed into the cav-
ern by the compressor differs from the temperature of the gas in the cavern,
entropy is generated as the two mix. As the air in the cavern heats up due
to compression there will be heat flow from the hot gas to the colder cavern
wall, entropy is generated in heat transfer over finite temperature differences.
Moreover, when simply a turbine is used to expand the air leaving the cavern,
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the exhaust temperature will typically lie below the environmental temper-
ature. More entropy is generated as the cold turbine exhaust mixes with
the environmental air. Since entropy generation means work loss, the storage
efficiency will always be below 100%.

A simplified CAES system is depicted in Fig. 15.8: An adiabatic irreversible
compressor (1-2) pushes air into the cavern, the compressor power is provided
by renewable energy, indicated in the figure by a wind turbine. After filling
is completed, the air sits a while in the cavern (state C). Cavern temperature
TC (t) and pressure pC (t) change over time. Since the simple expansion of the
air through a turbine leads to cooling and external loss, one typically reheats
the air that leaves the cavern. In the system studied here, the reheat occurs
by means of a regenerator (C-3) and a combustion chamber (3-4), that is a
fuel is used to add heat to the system. The compressed reheated air is then
expanded in the turbine (4-5) and the turbine exhaust is run through the
regenerator (5-6) before it is discharged into the environment.

With this set-up, a CAES system is not a pure energy storage system
but a mix between a storage system and a conventional gas turbine. In a
conventional gas turbine the compressor work is provided by the turbine,
and thus comes from the fuel. In a CAES system, the compressor work is
provided by an external source, either a regenerative source like wind or
solar, or surplus electricity from conventional power plants at times of weak
demand.

4
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Q̇in

combustion
C

T

regenerator

6

cavern

T0; p0

ẆC

ẆT

Q̇

T0

m (t) ; p (t) ; T (t)

C

Fig. 15.8 A simple compressed air energy storage system, with reheat and
regenerator
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In a realistic system, the compressor power depends on the amount of re-
newable energy available for storage. To simplify the problem we consider
constant mass flow ṁ and treat air as ideal gas with constant specific heats.
Typically, the cavern is not emptied to environmental pressure, but is main-
tained in a window, pmin ≤ pC (t) ≤ pmax, to ensure sufficient pressure ratio
in expansion and even power generation.

For compressor, regenerator and turbine, we can use the usual expressions
for exit properties, work, and heat. The only difference to steady state op-
eration is that due to the changing state in the cavern all temperatures and
pressures change over time.

The adiabatic irreversible compressor draws air at environmental state
p1 = p0, T1 = T0 and compresses it to the cavern pressure pC (t). The com-
pressor power is given by

ẆC = ṁ
1

ηC
cpT0

(

1−
(
pC
p0

) k−1
k

)

= ṁcp (T0 − T2) , (15.62)

where ηC is the isentropic efficiency. The compressor exit temperature follows
from the second equation as

T2 = T0

[

1− 1

ηC

(

1−
(
pC
p0

) k−1
k

)]

. (15.63)

The regenerator with effectiveness ηreg heats the pressurized air to the
temperature

T3 = TC + ηreg (T5 − TC) , (15.64)

where T5 is the turbine exit temperature. After the regenerator, the air is
heated to the turbine inlet temperature T4 by combustion of fuel. The heat
added is

Q̇ = ṁcp (T4 − T3) .

The irreversible adiabatic turbine (isentropic efficiency ηT ) expands the
heated cavern air to the environmental pressure p0, and produces the power

ẆT = ṁηT cpT

(

1−
(
p0
pC

) k−1
k

)

= ṁcp (T4 − T5) . (15.65)

The turbine exit temperature is

T5 = T4

[

1− ηT

(

1−
(
p0
pC

) k−1
k

)]

. (15.66)
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For the description of the cavern state we need the time dependent first law
to describe the change. We must distinguish between the periods of filling,
resting, and discharge. During filling the mass balance reads

dm

dt
= ṁ , (15.67)

and the first law reduces to

dU

dt
= α (T0 − TC) + ṁh2 , (15.68)

where we have employed Newton’s law of cooling to describe the heat loss to
the cavern wall. With the ideal gas law, TC = pCVC

mR , the internal energy can
be written as

U = mcvTC =
cv
R
mRTC =

1

k − 1
pCVC , (15.69)

where VC is the constant cavern volume. With this, the ideal gas law, and the
above result for T2, the first law becomes a differential equation for cavern
pressure,

dp

dt
= (k − 1)

α

VC

(

T0 − pCVC

mR

)

+ k
ṁRT0

VC

[

1− 1

ηC

(

1−
(
pC
p0

) k−1
k

)]

.

(15.70)
While the air sits in the closed cavern, it cools down, and the pressure drops.
In this case the second term is absent, and pressure changes according to

dpC
dt

= (k − 1)
α

VC

(

T0 − pCVC

mR

)

. (15.71)

During discharge, mass balance and first law become

dm

dt
= −ṁ ,

dU

dt
= α (T0 − TC)− ṁhC , (15.72)

where hC is the enthalpy of the air in the cavern. Applying the ideal gas law
gives an equation for the change of pressure during discharge,

dpC
dt

=
α

cv
R VC

(

T0 − pCVC

mR

)

− k
ṁ

m
pC . (15.73)

The above equations can be easily solved on the computer. To get some
idea of the solution behavior, we assume a regular 24 hour cycle of four 6
hour long segments of filling–resting–discharge–resting. The cavern volume is
VC = 250000m3. All other parameters are set somewhat arbitrarily, so that
the basic characteristics of the process become evident: The coefficient for
Newton’s law was chosen as α = 1000 kW

K , which is high enough to almost
equilibrate air and cavern wall over the resting period. The mass in the cavern,
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and the mass flow ṁ, are adjusted so that the cavern pressure oscillates
between 20 and 50 bar. The turbine inlet temperature, which is controlled
by fuel addition, is set to T4 = 1000K. The equation presented above can
be solved with an easy numerical stepping system. To have no influence of
initial conditions, the equations must be solved over several cycles. Figure
15.8 shows, for one cycle, mass, pressure, temperatures, work and heat for
the cavern and the devices.

We point to some distinctive features: During filling, cavern pressure and
temperature go up, they reach their maximum when filling stops. Subse-
quently, both drop, due to isochoric cooling by heat transfer to the cavern
walls. In discharge both drop further due to expansion. When discharge is fin-
ished, temperature is slightly below the wall temperature, hence it increases
during the low pressure rest period. Compressor power and exit temperature
increase during the filling period, since the compressor has to work over an
increasing pressure ratio. Turbine power decreases during discharge, since the
pressure ratio goes down.
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Fig. 15.9 Numerical solution for CAES plant (see text). Upper figures show the
mass in the cavern, m (t), and the pressure, pC (t). Left lower figure shows exit
temperatures of compressor, regenerator and turbine, right lower figure shows com-
pressor and turbine power, and heating rate.

There are several efficiency measures that can be used to evaluate the
performance of the system. The simplest is the ratio between overall work
produced by the turbine and energy input from renewable energy and fuel,
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ηoverall =
WT

Q+ |WC | = 0.475 . (15.74)

Here, WT ,WC , Q are the time integrals of ẆT , ẆC , Q̇. This measure assigns
the same importance to the renewable energy used to drive the compressor
and the heat from the fuel. For the given data, less than half of the energy
input is converted into work.

When the interest is mainly about the fuel usage, or the accompanying
release of CO2 into the atmosphere, which both are proportional to the heat
required to produce the work output, one will use the thermal efficiency

ηthermal =
WT

Q
= 0.940 . (15.75)

Since the compressor work must not be provided by the turbine, the back
work ratio is zero, and the thermal efficiency is about twice that of a conven-
tional Brayton cycle with regenerator. This efficiency assigns no cost to the
renewable energy.

The storage efficiency of the system is the percentage of compressor work
(input) that is recovered in the expansion (output). The output comes from
the fuel and the storage, and it is a question of interpretation how much can
be attributed to the fuel. It seems sensible to compare the CAES with a heat
engine with a thermal efficiency ηHE , so that its net work is WHE = ηHEQ.
The difference between the CAES turbine work, WT and the net work WHE

is due to the storage, and therefore we define the storage efficiency as

ηstorage =
WT − ηHEQ

WC
. (15.76)

Clearly, the efficiency value depends on the type of heat engine one considers
for comparison. State of the art combined cycle power plants reach thermal
efficiencies of 60%, which gives a rather low storage efficiency ηstorage = 0.347.
However, the comparison between CAES and combined cycle is somewhat
unfair, since both will be used for different purposes. The steam engine in the
combined cycle has large start-up and shut-down times, so that the cycle must
run at steady states for long periods to provide base power. By construction,
the CAES only operates from time to time, and one will run it at peak
power demand. Gas turbine systems have short start-up times, and therefore
are often used to provide power at times of large demand. Therefore, it is
more reasonable to compare CAES to a typical Brayton cycle, which, with
regenerator, can have efficiencies of up to ηHE = 42%. The corresponding
storage efficiency is ηstorage = 0.531.
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Problems

15.1. Heating of a Room
A room of volume 75m3 contains air, initially at T0 = 273K. A heater sup-
plies heat at a rate of 2000W. Since air can leave or enter the room through
small gaps in windows and doors, the pressure in the room is equal to the
outside pressure of 1 bar at all times. Assume that no air enters the room.

Consider air as an ideal gas with constant specific heats, and assume that
all properties inside the room are homogeneous.

1. Assuming that there are no heat losses to the environment, compute mass
and temperature of the air in the room as a function of time and plot the
result.

2. Consider the same problem with heat losses. For this, assume that the heat
losses are proportional to the difference between the temperatures inside
and outside (assume Toutside = T0 = 273K), that is Q̇loss = αA (T0 − T ).
Here, α = 90 kJ

m2 hK , is the heat transfer coefficient, and A = 60m2 is the
wall surface. Plot the resulting curves.

15.2. Heat Transfer Loss in Isobaric Pipe Flow
Consider a mass flow ṁ through a pipe of length L at steady state without
pressure loss; the fluid enters the pipe at temperature T1. The heat exchange
of the pipe section of length dx with the environment at T0 can be described
by Newton’s law as δQ̇ = α (T0 − T ) dx. For the following, assume that the
fluid has constant specific heat cp and ignore kinetic and potential energies.

1. Compute the temperature of the fluid, T (x).
2. Consider a control volume just around the fluid in the pipe, and compute

entropy generation and work loss in that volume. Discuss your findings.
3. Consider a control volume around the pipe whose boundaries are at the

environmental state and compute entropy generation and work loss. Show
that the entropy generation is positive (for any choice of temperatures).

15.3. Friction Loss in Pipe Flow (Incompressible Fluid)
Consider a mass flow ṁ through an adiabatic pipe of length L at steady state
with pressure loss. The fluid enters the pipe at temperature T1 and pressure
p1. Due to friction, the pressure drops as δp = −βdx along the distance
dx. Assume that the fluid is incompressible and has constant specific heat c
(note: this means du = cdT , but not dh = cdT !). Ignore potential and kinetic
energies.

1. Compute the temperature of the fluid, T (x).
2. Consider a control volume just around the fluid in the pipe, and compute

entropy generation and work loss in that volume.

15.4. Friction Loss in Pipe Flow (Ideal Gas)
Consider a mass flow ṁ through a pipe of length L at steady state with
pressure loss; the fluid enters the pipe at temperature T1 and pressure p1.
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Due to friction, the pressure drops as δp = −βdx along the distance dx; the
pipe is adiabatic. Assume that the fluid is an ideal gas with constant specific
heats. Ignore potential and kinetic energies.

1. Compute the temperature of the gas, T (x).
2. Consider a control volume just around the gas in the pipe, and compute

entropy generation and work loss in that volume.
3. Compare the results for a gas with those obtained for the incompressible

fluid in the previous problem (discuss!).



Chapter 16

More on Property Relations

16.1 Measurability of Properties

Some properties are easy to measure, and thus quite intuitive, e.g., pressure
p, temperature T and specific volume v. Accordingly, the thermal equation
of state, p (T, v) can be measured with relative ease. Other properties cannot
be measured directly, for instance internal energy u or enthalpy h, which
must be determined by means of applying the first law to a calorimeter, or
entropy s, which must be determined from other properties by integration of
the Gibbs equation.

The Gibbs equation
Tds = du+ pdv (16.1)

gives a differential relation between properties for any simple substance. Its
analysis with the tools of multivariable calculus, as presented below, shows
that specific internal energy u = U/m, specific enthalpy h = H/m, specific
Helmholtz free energy f = u−Ts, and specific Gibbs free energy g = h−Ts
are potentials when considered as functions of particular variables. The eval-
uation of the potentials leads to a rich variety of relations between thermo-
dynamic properties which will be derived and explored in this chapter. In
particular, these relate properties that are more difficult, or even impossible,
to measure to those that are more easy to measure, and thus reduce the
necessary measurements to determine data for all properties.

Later, in Chapter 17, it will be seen that the thermodynamic potentials
play an important role in finding the equilibrium states of a system.

16.2 Thermodynamic Potentials and Maxwell
Relations

We rewrite the Gibbs equation as

du = Tds− pdv . (16.2)

H. Struchtrup, Thermodynamics and Energy Conversion, 371
DOI: 10.1007/978-3-662-43715-5_16, c© Springer-Verlag Berlin Heidelberg 2014
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This equation suggests to consider the internal energy u as a function of
entropy s and volume v, that is u (s, v). Its exact differential (u is a state
function) is given by

du =

(
∂u

∂s

)

v

ds+

(
∂u

∂v

)

s

dv , (16.3)

and by comparison with (16.2) we identify

T =

(
∂u

∂s

)

v

, −p =

(
∂u

∂v

)

s

. (16.4)

Thus, the internal energy u (s, v) is a potential, in the sense that temperature
T (s, v) and pressure p (s, v) are obtained from derivatives of u.

The order of second derivatives can be exchanged,

∂2u

∂v∂s
=

∂2u

∂s∂v
, (16.5)

and since u is a potential for T and p, we find a relation between the deriva-
tives of T and p, one of the so-called Maxwell relations,

(
∂T

∂v

)

s

= −
(
∂p

∂s

)

v

. (16.6)

For the novice, expressions like (16.6) seem to be just mathematical sym-
bols. However, all expressions have a clear meaning which derives from the
properties they entail. For instance, the expression

(
∂T
∂v

)
s
gives the change of

temperature with volume at constant entropy. It can be measured, in prin-
ciple, by varying the volume of the system by a small amount dv while the
entropy s stays constant, and measuring the associated change in tempera-

ture dT . Similarly, the expression
(

∂p
∂s

)

v
describes the change of pressure with

entropy at constant volume. It can be measured, in principle, in a system at
constant volume v by varying the entropy by ds and recording the associated
pressure change dp. Similar interpretations apply to the expressions in (16.4).

The above partial derivatives are, in fact, not accessible to measurements
since one of the variables is entropy: since there is no direct measurement of
entropy, it is very difficult, if not impossible, to conduct an experiment in
which entropy is changed by a given amount ds, or fixed at a given value s.1

To find more relations of the same kind, we use that −pdv = −d (pv)+vdp,
which leads to a shift in variables from v to p, a so-called Legendre transform

1 Earlier we learned that an adiabatic and reversible process is isentropic. Thus,
a process at constant entropy s can be achieved in a very slow experiment in an
isolated container. However, the actual value of entropy for the given experiment
cannot be determined through measurement.
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(Adrien-Marie Legendre, 1752-1833). With this, the Gibbs equation (16.2)
becomes du = Tds+ vdp− d (pv), and by introducing enthalpy as

h = u+ pv , (16.7)

the Gibbs equation assumes the alternative form

dh = Tds+ vdp . (16.8)

This equation points to considering enthalpy h as a function of entropy s and
pressure p, where now h (s, p) is a potential, with

T =

(
∂h

∂s

)

p

, v =

(
∂h

∂p

)

s

, (16.9)

(
∂T

∂p

)

s

=

(
∂v

∂s

)

p

.

The last equation is the Maxwell equation for this potential, it results from

exchanging the order of derivatives, ∂2h
∂p∂s = ∂2h

∂s∂p . Again all partial derivatives
contain the entropy s as one of the variables, and therefore they are not
accessible to measurements.

Similarly, we can apply a Legendre transform to the term Tds = d (Ts)−
sdT in the Gibbs equation. This transformation exchanges the variable s,
which cannot be measured directly, by the variable T , which can be measured.
As a result, we find new potentials, the free energies.

The Helmholtz free energy is defined as

f = u− Ts , (16.10)

and with this the Gibbs equation can be written in the alternative form

df = −sdT − pdv .

We recognize that f (T, v) is a potential, with

−s =

(
∂f

∂T

)

v

, −p =

(
∂f

∂v

)

T

, (16.11)

(
∂s

∂v

)

T

=

(
∂p

∂T

)

v

.

The last equation is the Maxwell equation for this potential, it results from

exchanging the order of derivatives, ∂2f
∂v∂T = ∂2f

∂T∂v . Most remarkably, the

Maxwell relation (16.11)3 contains the expression
(

∂p
∂T

)

v
, which describes

the change of pressure p with temperature T in an experiment at con-
stant volume v. Since p, T and v can be measured, this expression can be
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found experimentally. In fact, measurement of {p, T, v} gives the thermal

equation of state p (T, v), and we can say that
(

∂p
∂T

)

v
can be determined

from the thermal equation of state. The other expression,
(
∂s
∂v

)
T
, cannot be

measured by itself, since it contains entropy s. Hence, with the Maxwell re-
lation the expression

(
∂s
∂v

)
T

can be measured through measurement of the
thermal equation of state.

The Gibbs free energy is defined as

g = h− Ts = f + pv , (16.12)

and with another Legendre transform, the Gibbs equation becomes

dg = −sdT + vdp .

We recognize that g (T, p) is a potential, with

−s =

(
∂g

∂T

)

p

, v =

(
∂g

∂p

)

T

, (16.13)

(
∂s

∂p

)

T

= −
(
∂v

∂T

)

p

.

The last equation is the Maxwell equation for this potential, it results from

exchanging the order of derivatives, ∂2g
∂p∂T = ∂2g

∂T∂p . Also this Maxwell relation
contains one expression that can be determined from the thermal equation
of state, namely

(
∂v
∂T

)
p
, relating it to an expression that is not accessible to

direct measurement, namely
(

∂s
∂p

)

T
. The usefulness of the above differential

relations, in particular of those that involve expressions that can be measured,
will become evident in the subsequent sections.

It is important to note that the thermodynamic properties u, h, f, g are
only potentials when considered as functions of the given variables. That is
only u (s, v), h (s, p), f (T, v), g (T, p) are potentials! One can use property
relations to change the variables, for instance with the thermal equation of
state p (T, v) one obtains g (T, p) = g (T, p (T, v)) = g (T, v)—however, as
function of T and v the Gibbs free energy is not a potential.

16.3 Two Useful Relations

Gibbs equation and Maxwell relations can be used to obtain additional rela-
tions between properties which will form the center of the following section
on measurement of thermodynamic properties. To proceed, we consider en-
ergy and entropy in the Gibbs equation (16.2) as functions of temperature
and volume, u (T, v), s (T, v), and evaluate their differentials as
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du =

(
∂u

∂T

)

v

dT +

(
∂u

∂v

)

T

dv , ds =

(
∂s

∂T

)

v

dT +

(
∂s

∂v

)

T

dv . (16.14)

After some reordering, the Gibbs equation (16.2) yields

[(
∂u

∂T

)

v

− T

(
∂s

∂T

)

v

]

dT +

[(
∂u

∂v

)

T

− T

(
∂s

∂v

)

T

+ p

]

dv = 0 . (16.15)

Two properties can always be controlled independently, that is in the above
dT and dv must be independent. This implies that their factors, in square
brackets, must vanish,

(
∂u

∂v

)

T

= T

(
∂s

∂v

)

T

− p ,

(
∂u

∂T

)

v

= T

(
∂s

∂T

)

v

. (16.16)

A faster approach to the first relation is to take the partial derivative of the
Gibbs equation (16.2) with respect to v while keeping T constant. Similarly
the second relation follows from taking the partial derivative of the Gibbs
equation (16.2) with respect to T while keeping v constant.

With the Maxwell relation (16.11)3 to replace the entropy derivative
(
∂s
∂v

)
T

in (16.16)1, we find an equation for the volume dependence of internal energy
that is entirely determined by the thermal equation of state p (T, v),

(
∂u

∂v

)

T

= T

(
∂p

∂T

)

v

− p . (16.17)

Since internal energy cannot be measured directly, the left hand side cannot
be determined experimentally. However, the right hand side is determined
by the thermal equation of state, p (T, v), which is easy to measure. The
equation states that the volume dependence of the internal energy is known
from measurement of the thermal equation of state.

For instance for the ideal gas p (T, v) = RT/v and thus
(
∂u
∂v

)
T

= 0—
the internal energy of the ideal gas is independent of volume, and therefore
depends only on temperature, u = u (T ). While we have used this from the
beginning as an experimental fact, we see here that it is a direct consequence
of the Gibbs equation and the thermal equation of state.

To obtain a similar relation for enthalpy, we take the partial derivative of
the Gibbs equation (16.9)1 with respect to p while keeping T constant, to
obtain (

∂h

∂p

)

T

= T

(
∂s

∂p

)

T

+ v . (16.18)

With the Maxwell relation (16.13)3 to replace the entropy derivative
(

∂s
∂p

)

T
,

this gives an equation for the pressure dependence of enthalpy, which is en-
tirely determined by the thermal equation of state p (T, v), or rather v (T, p),
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(
∂h

∂p

)

T

= −T

(
∂v

∂T

)

p

+ v . (16.19)

For instance for the ideal gas v (T, p) = RT/p and thus
(

∂h
∂p

)

T
= 0—the

enthalpy of the ideal gas is independent of pressure, and depends only on
temperature, h = h (T ).

16.4 Relation between Specific Heats

Our first use of (16.17) is to derive a relation between the specific heats at
constant volume and constant pressure,

cv =

(
∂u

∂T

)

v

and cp =

(
∂h

∂T

)

p

. (16.20)

It will be seen that, as long as the thermal equation of state is known, it
suffices to measure one of the specific heats, the other can then be determined
from the relation to be derived.

We start with the first law for reversible processes in differential form,
du = δq − pdv, and insert u (T, v), so that with the above definition of cv

δq = du+ pdv = cvdT +

[(
∂u

∂v

)

T

+ p

]

dv . (16.21)

With the just found relation (16.17) this simplifies to

δq = cvdT + T

(
∂p

∂T

)

v

dv . (16.22)

For a constant volume process we have dv = 0 and thus δq = cvdT which
relates the specific heat cv to the heat that must be added in an isochoric
process to raise the temperature by dT ; in fact this is the definition of cv as
a measurable quantity. Measurement of the specific heat cv (T, v) is done in
calorimeters, where a substance in a rigid container (dv = 0) originally at
temperature T is carefully heated by a known amount δq, e.g., by means of a
electrical resistor, and the corresponding temperature change dT is recorded.
Great care must be taken to control heat leaks, so that the amount of heat
added to the material is known as accurately as possible.

To introduce the specific heat at constant pressure, cp, we proceed as
follows: In the last equation, we consider volume v as function of T and p
by means of the thermal equation of state v (T, p), so that dv =

(
∂v
∂T

)
p
dT +

(
∂v
∂p

)

T
dp, to obtain
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δq =

[

cv + T

(
∂p

∂T

)

v

(
∂v

∂T

)

p

]

dT + T

(
∂p

∂T

)

v

(
∂v

∂p

)

T

dp . (16.23)

On the other hand, Legendre transform in (16.21) gives, with (16.19),

δq = dh− vdp = cpdT +

[(
∂h

∂p

)

T

− v

]

dp = cpdT − T

(
∂v

∂T

)

p

dp . (16.24)

By comparison we find from the last two equations

cv+T

(
∂p

∂T

)

v

(
∂v

∂T

)

p

= cp and

(
∂p

∂T

)

v

(
∂v

∂p

)

T

= −
(
∂v

∂T

)

p

. (16.25)

Thus, the two specific heats are related as

cp − cv = T

(
∂p

∂T

)

v

(
∂v

∂T

)

p

= −T

(
∂p

∂v

)

T

[(
∂v

∂T

)

p

]2

. (16.26)

The right hand side is known when the thermal equation of state, p (T, v), is
known. Thus, if one of the specific heats and the thermal equation of state
are measured, the other specific heat is known. It is easy to show from the
above that for the ideal gas cp − cv = R.

Finally, we note that straightforward application of the Gibbs equation in
(16.20) yields the equivalent expressions for the specific heats

cv = T

(
∂s

∂T

)

v

and cp = T

(
∂s

∂T

)

p

, (16.27)

see the above derivation of (16.16) for details.

16.5 Measurement of Properties

Only few thermodynamic properties can be measured easily, namely temper-
ature T , pressure p, and volume v. These are related by the thermal equation
of state p (T, v) which is therefore relatively easy to measure.

The specific heats (16.20) can be measured in careful measurements where,
because of (16.26), it suffices to measure either cv or cp. These calorimetric
measurements employ the first law, where the change in temperature in re-
sponse to the heat added to the system is measured.

Other important quantities, however, e.g., u, h, f, g, s, cannot be measured
directly. In the following we shall study how they can be related to measurable
quantities, i.e., T , p, v, and cv by means of the Gibbs equation and the
differential relations derived above.
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We first consider the measurement of internal energy. The differential of
u (T, v) is

du = cvdT +

(
∂u

∂v

)

T

dv . (16.28)

Therefore, the internal energy u (T, v) can be determined by integration when
cv and

(
∂u
∂v

)
T
are known from measurements. By (16.17) the term

(
∂u
∂v

)
T
is

known through measurement of the thermal equation of state, and we can
write

du = cvdT +

[

T

(
∂p

∂T

)

v

− p

]

dv . (16.29)

Thus, only the specific heat cv (T, v) must be measured when the thermal
equation of state p (T, v) is already known.

To determine what measurements must be taken to determine the specific
heat cv (T, v) =

(
∂u
∂T

)
v
, we consider its differential,

dcv =

(
∂cv
∂T

)

v

dT +

(
∂cv
∂v

)

T

dv . (16.30)

From the definition of cv follows, with (16.17),

(
∂cv
∂v

)

T

=
∂2u

∂v∂T
=

∂2u

∂T∂v
=

∂

∂T

(
∂u

∂v

)

T

=
∂

∂T

[

T

(
∂p

∂T

)

v

− p

]

= T

(
∂2p

∂T 2

)

v

. (16.31)

Thus, the volume dependence of cv follows from measurement of the thermal
equation of state.

Accordingly, in order to determine the specific heat cv (T, v) for all T and
v it is sufficient to measure the thermal equation of state p (T, v) for all (T, v)
and the specific heat cv (T, v0) for all temperatures T but only one volume
v0. Then, cv (T, v) follows from integration of (16.30). Finally, integration of
(16.28) gives the internal energy u (T, v).

Integration is performed from a reference state (T0, v0) to the actual state
(T, v). Since internal energy is a point function, its differential is exact, and
the integration is independent of the path chosen. The easiest integration
is in two steps, first at constant volume v0 from (T0, v0) to (T, v0), then at
constant temperature T from (T, v0) to (T, v). The integration results in

u (T, v)− u (T0, v0) =

=

∫ T

T0

cv (T
′, v0) dT ′ +

∫ v

v0

[

T

(
∂p

∂T

)

v′
− p (T, v′)

]

dv′ +
∑

i

Δui . (16.32)
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The internal energy can only be determined apart from a reference value
u (T0, v0). As long as no chemical reactions occur, the energy constant
u (T0, v0) can be arbitrarily chosen; see Chapter 23 on chemical reactions
for additional discussion. When phase changes are involved, the respective
energies Δui have to be added.

Enthalpy can be obtained from integration of its differential

dh = cpdT +

(
∂h

∂p

)

T

dp = cpdT +

[

v − T

(
∂v

∂T

)

p

]

dp , (16.33)

where (16.19) was used. Here, integration is performed from (T0, p0) to (T, p).
When we integrate in two steps, first at constant pressure p0 from (T0, p0) to
(T, p0), then at constant temperature T from (T, p0) to (T, p), the integration
gives

h (T, p)− h (T0, p0) =

=

∫ T

T0

cp (T
′, p0) dT ′ +

∫ p

p0

[

v (T, p′)− T

(
∂v

∂T

)

p′

]

dp′ +
∑

i

Δhi . (16.34)

Here we have explicitly introduced the heats of phase changeΔhi which must
be added whenever the line of integration crosses a saturation curve in the
p-T-diagram. The reference enthalpy h (T0, p0) can be chosen arbitrarily as
long as no chemical reactions occur. In case of chemical reactions, it should
be chosen as the enthalpy of formation, see the discussion in the chapter on
chemical reactions.

Entropy s (T, p) follows by integration of the Gibbs equation, e.g., in the
form

ds =
1

T
dh− v

T
dp =

cp
T
dT −

(
∂v

∂T

)

p

dp ,

as

s (T, p)− s (T0, p0) =

∫ T

T0

cp (T
′, p0)

T ′ dT ′ −
∫ p

p0

(
∂v

∂T

)

p′
dp′ +

∑

i

Δhi

Ti
;

(16.35)
Also entropy can be determined only apart from a reference value s (T0, v0)
which only plays a role when chemical reactions occur; see Chapter 23. When
the line of integration crosses saturation lines in the p-T-diagram, the corre-
sponding entropy changes Δsi = Δhi

Ti
must be included. This can be seen

as follows: At an equilibrium phase interface, temperature T and (satu-
ration) pressure psat (T ) are continuous. Integration of the Gibbs equation
Tds = dh− vdp across the phase interface yields TΔs = Δh.

For the ideal gas, where
(
∂v
∂T

)
p
= R

p and the specific heat depends on T

only, enthalpy and entropy assume the familiar forms (with suitable choice
of integration constants)
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h (T ) =

∫ T

T0

cp (T
′) dT ′ ,

(16.36)

s (T, p) = s0 (T )−R ln
p

p0
with s0 (T ) =

∫ T

T0

cp (T
′, p0)

T ′ dT ′ .

After u, h and s are determined, Helmholtz free energy f and Gibbs free
energy g simply follow by means of their definitions (16.10, 16.12). Thus the
measurement of all thermodynamic quantities requires only the measurement
of the thermal equation of state p (T, v) for all (T, v) and the measurement
of the specific heat at constant volume cv (T, v0) for all temperatures, but
only one volume, e.g., in a constant volume calorimeter.2 All other quantities
follow from differential relations that are based on the Gibbs equation, and
integration.

Above we have outlined the necessary measurements to fully determine all
relevant thermodynamic properties. We close this section by pointing out that
all properties can be determined if just one of the thermodynamic potentials is
known, this is shown in the next example. Since all properties can be derived
from the potential, the expression for the potential is sometimes called the
fundamental relation.

16.6 Example: Gibbs Free Energy as Potential

In this example we consider a particular function for the Gibbs free energy
g (T, p), to show that knowledge of one potential allows to determine all
relevant property relations, including all other potentials.

We consider the fundamental relation (A is a constant with the appropriate
dimensions)

g (T, p) = −A
T 4

p
.

We first use that g (T, p) is a potential (16.13), which gives the entropy and
the specific volume as derivatives,

s (T, p) = −
(
∂g

∂T

)

p

= 4A
T 3

p
,

v (T, p) =

(
∂g

∂p

)

T

= A
T 4

p2
.

The caloric equations of state then follow from the definition of g = h−Ts =
u+ pv − Ts = f − pv as

2 Or, alternatively, the measurement of the specific heat cp (T, p0) at all tempera-
tures but only one pressure p0.
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h (T, p) = g + Ts = g − T

(
∂g

∂T

)

p

= 3A
T 4

p
,

u (T, p) = h− pv = h− p

(
∂g

∂p

)

T

= 2A
T 4

p
,

f (T, p) = g − pv = g − p

(
∂g

∂p

)

T

= −2A
T 4

p
.

A switch of variables is obtained by solving the thermal equation of state
for pressure,

p (T, v) =
√
A
T 2

√
v
,

for which we find

s (T, v) = 4
√
AT

√
v ,

u (T, v) = 2
√
AT 2

√
v ,

h (T, v) = 3
√
AT 2

√
v ,

f (T, v) = −2
√
AT 2

√
v ,

g (T, v) = −
√
AT 2

√
v .

For the variables (T, v), the Helmholtz free energy f (T, v) is a potential. It
is easy to verify that the above expression for f fulfills

s = −
(
∂f

∂T

)

v

, p =

(
∂f

∂v

)

T

.

Temperature T (s, v) and the potentials u (s, v) and h (s, p) follow as

T (s, v) =
s

4
√
A
√
v
, u (s, v) =

1

8
√
A

s2√
v
, h (s, p) =

3

4
4
3

1

A
1
3

s
4
3 p

1
3 ;

the further evaluation of these potentials is left to the reader.
To determine the specific heat at constant volume we have to consider

energy as function of temperature and volume, u (T, v)

cv (T, v) =

(
∂u

∂T

)

v

=
∂u (T, v)

∂T
= 4

√
AT

√
v .

A shift in variables gives, e.g., cv (T, p) = 4AT 3

p or cv (s, p) = s.

16.7 Compressibility, Thermal Expansion

The isothermal compressibility gives information about the volume change
of a substance when pressure is changed isothermally, it is defined as
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κT = −1

v

(
∂v

∂p

)

T

; (16.37)

the minus sign is convention, and guarantees a positive value of the com-
pressibility.

The coefficient of thermal expansion gives information about the volume
change with temperature when the pressure is kept constant, it is defined as

α =
1

v

(
∂v

∂T

)

p

. (16.38)

We also define the coefficient

β =
1

p

(
∂p

∂T

)

v

, (16.39)

which describes the increase of pressure with temperature in an isochoric
process.

These and similar quantities are important for the design of thermal de-
vices, e.g. for load calculations etc. Obviously, they can be determined from
the measurement of the thermal equation of state p (v, T ). We shall show
next that they are not independent.

For this, we begin with a mathematical exercise: Consider a function
z (x, y) and its differential

dz =

(
∂z

∂x

)

y

dx+

(
∂z

∂y

)

x

dy . (16.40)

We also have, by inversion, x = x (y, z) and the corresponding differential

dx =

(
∂x

∂y

)

z

dy +

(
∂x

∂z

)

y

dz . (16.41)

Eliminating dx between the two equations gives

[

1−
(
∂z

∂x

)

y

(
∂x

∂z

)

y

]

dz =

[(
∂z

∂x

)

y

(
∂x

∂y

)

z

+

(
∂z

∂y

)

x

]

dy . (16.42)

Since z and y can be varied independently, the factors in square brackets
must vanish, and thus we have

(
∂z

∂x

)

y

=
1

(
∂x
∂z

)
y

,

(
∂z

∂x

)

y

(
∂x

∂y

)

z

(
∂y

∂z

)

x

= −1 . (16.43)
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These two equations hold for any choice of the functions3 x, y, z; e.g.,
Eq. (16.25)2 is a special case of (16.43)2.

A special choice is x = T , y = v, z = p so that

1 = −
(
∂p

∂T

)

v

(
∂T

∂v

)

p

(
∂v

∂p

)

T

=
pβκT

α
; (16.44)

this shows that the coefficients introduced above are dependent.
As an example we consider the ideal gas where pv = RT . We find

κT =
1

p
, α =

1

T
, β =

1

T
. (16.45)

From (16.26) we find

cp − cv = αβvpT = κTβ
2vp2T . (16.46)

Below we shall see that thermodynamic stability implies κT ≥ 0, and thus
the above implies cp ≥ cv. For incompressible substances the isothermal
compressibility vanishes, κT = 0, and thus the specific heats at constant
pressure and volume agree, cp = cv = c.

A relation between the isentropic and the isothermal compressibilities can
be found by the following chain of arguments, which uses (16.37, 16.27, 16.43),

κs = −1

v

(
∂v

∂p

)

s

= −1

v

(
∂v

∂T

)

s

(
∂T

∂p

)

s

= −1

v

[

−
(
∂s

∂T

)

v

(
∂v

∂s

)

T

](
∂T

∂p

)

s

=
cv
Tv

[(
∂v

∂p

)

T

(
∂p

∂s

)

T

](
∂T

∂p

)

s

= −cv
T
κT

[

−
(
∂T

∂s

)

p

]

=
cv
cp

κT . (16.47)

16.8 Example: Van der Waals Gas

The van der Waals equation (6.29) was developed to describe non-ideal gases,
it reads

p =
RT

v − b
− a

v2
. (16.48)

Here, the constant b accounts for the reduction of the volume accessible for
a gas particle due to the finite size of the other molecules, and the constant

3 In particular the first equation implies
(

∂z
∂y

)

x
= 1/

(
∂y
∂z

)
x
and

(
∂x
∂y

)

z
= 1/

(
∂y
∂x

)
z

as well, which were used to find the second equation.
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a accounts for the reduction in pressure due to attractive forces between the
particles. In ideal gases, the specific volume is relatively high, so that b � v
and a � v2, in which case the equation reduces to the ideal gas law p = RT

v .
While the van der Waals equation offers intuitive insight into the devia-

tion from ideal gas behavior, it only offers a qualitative description of real
gas behavior, including, as will be seen later, phase changes. Thus, despite
its quantitative inaccuracy, it serves as an important example to study ther-
modynamic principles and methods.

16.8.1 Determination of Constants a, b

The constants a and b are related to microscopic quantities, namely the eigen-
volume of gas molecules, and the interaction potential between gas molecules.
Their values a, b can be determined from property data at the critical point.

The critical isotherm has a horizontal inflection point at the critical point,
so that (

∂p

∂v

)

T,cr

=

(
∂2p

∂v2

)

T,cr

= 0 . (16.49)

Thus, together with the van der Waals equation (16.48) itself evaluated at
the critical point, we have three conditions to be fulfilled at the critical point,
which gives, after a brief calculation,

pcr =
1

27

a

b2
, vcr = 3b , RTcr =

8

27

a

b
. (16.50)

At the critical point helium and water have the following properties:

helium: Tcr = 5.3K , pcr = 0.23MPa , vcr = 1.445× 10−2 m3

kg ,

water: Tcr = 647.3K , pcr = 22.09MPa , vcr = 3.156× 10−3 m3

kg ,

(16.51)
from which one finds the constants as

helium: a = 144.07 m5

s2 kg , b = 4.817× 10−3 m3

kg , R = 1672 J
kgK ,

water: a = 660.1 m5

s2 kg , b = 1.0526× 10−3 m3

kg , R = 287 J
kg K .

(16.52)

The actual values for the gas constants of helium and water are 2079 J
kgK and

462 J
kgK , respectively, and we see that the van der Waals equation predicts

wrong values of the gas constants, with an error of about 20% for helium
and 38% for water. The bigger error for water can be attributed to the more
complex character of the dipole water molecules and their interaction among
themselves, which makes them, other than the monatomic “spherical” helium
atoms, not well suited for the arguments on interaction and eigenvolume that
lead to the van der Waals equation.
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The derivation of the van der Waals equation shows that the eigenvolume
of a particle v0 is related to the constant b as v0 = 1

2bM/NA where M is the
molar mass and NA = 6.022× 1023 1

mol is the Avogadro constant. Assuming
spherical particles, the corresponding molecule diameter is

d0 =
3

√
6

π
v0 = 3

√
3

π

bM

NA
, (16.53)

which gives dHe
0 = 3.126×10−10m and dH2O

0 = 3.11×10−10m.While certainly
not exact, this numbers give a good indication of the molecule size.

16.8.2 Isotherms

When dimensionless pressure, volume and temperature are introduced by
means of critical point data as

π =
p

pcr
, υ =

v

vcr
, τ =

T

Tcr
, (16.54)

use of (16.50) gives the dimensionless van der Waals equation

π =
8τ

3υ − 1
− 3

υ2
. (16.55)

In this dimensionless form, the equation is independent of the type of gas, all
factors are independent of the type of gas. This somewhat surprising finding
is known as the principle of corresponding states.

Figure 16.1 shows isothermal lines in the π-υ-diagram (i.e., the dimen-
sionless p-v-diagram). The critical isotherm (τ = 1) exhibits the horizontal
inflection point at the critical point (π = υ = 1). At supercritical tempera-
tures (τ > 1), the isotherms are monotonically decreasing with volume, and
for large temperatures they agree with the curves from the ideal gas law.

For sub-critical temperatures, however, the curves are non-monotonic; in

particular there is a portion of the curves where
(

∂v
∂p

)

T
≥ 0, which means

that the isothermal compressibility is negative, κT = − 1
v

(
∂v
∂p

)

T
< 0. In

the next chapter we will see that thermodynamic stability requires positive
compressibility, κT ≥ 0. Thus, these portions of the curves are unstable and
cannot be attained. In Section 17.8 it will be seen how these unstable states
are bridged by splitting of the van der Waals fluid into liquid and vapor
phases.

For sufficiently small temperatures the isothermal curves predict negative
pressure. States of negative pressure are unstable, but can be reached by very
careful experiments in which they appear to be metastable.
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Fig. 16.1 Isotherms of the dimensionless van der Waals equation, for τ =
0.4, 0.6, 0.8, 0.9, 1.0, 1.2, 1.5, 1.7, 2.0

16.8.3 Internal Energy and Entropy

Next we determine property relations for energy and entropy of the van der
Waals gas. By inserting the van der Waals equation (16.48) into (16.17), we
find (

∂u

∂v

)

T

= T

(
∂p

∂T

)

v

− p =
a

v2
, (16.56)

and from (16.31) we find

(
∂cv
∂v

)

T

=
∂

∂T

(
∂u

∂v

)

= T

(
∂2p

∂T 2

)

v

= 0 . (16.57)

This implies that for a van der Waals gas, as for the ideal gas, the specific heat
depends only on temperature, but not on volume. Energy itself, other than
for the ideal gas, has a dependence on volume. Insertion of the above into
(16.32) and explicit integration over volume then gives the internal energy of
the van der Waals gas as

u (T, v)− u (T0, v0) =

∫ T

T0

cv (T
′) dT ′ − a

(
1

v
− 1

v0

)

. (16.58)
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We recall that the coefficient a describes the influence of long range inter-
action between the particles. The above shows the explicit contribution of
these interactions on the energy of the gas. For large volume, the average
particle distance is very large, and the average particle-particle interaction
energy vanishes.

To compute the entropy s (T, v) we use the Gibbs equation,

Tds = du+ pdv =

(
∂u

∂T

)

v

dT +

[(
∂u

∂v

)

T

+ p

]

dv = cvdT +
RT

v − b
dv ,

(16.59)
where for the last equation the equation of state and the above result for
internal energy were used. Integration gives

s (T, v)− s (T0, v0) =

∫ T

T0

cv (T
′)

T ′ dT ′ +R ln
v − b

v0 − b
. (16.60)

As we have seen earlier, entropy measures the number of possible microscopic
realizations of the macroscopic state of a gas. In the van der Waals gas,
the volume accessible to a particle is reduced by the presence of the other
particles (measured by the coefficient b), and this reduces the number of
possible configurations, and thus the entropic contribution from volume. For
large volumes, v − b � v, i.e., the contribution of particle volume can be
ignored.

16.9 Joule-Thomson Coefficient

In a throttling process, the pressure drops while the enthalpy stays constant,
the process is isenthalpic and irreversible. The temperature, however, may
rise, fall, or stay constant. The Joule-Thomson coefficient (∂T/∂p)h describes
the change of temperature with pressure in an isenthalpic process.

With the choice x = h, y = p, z = T , the relation (16.43)2 gives an
expression for the coefficient,

(
∂T

∂p

)

h

= − 1

cp

(
∂h

∂p

)

T

. (16.61)

Use of the relation (16.19) and the definition of the coefficient of thermal
expansion α (16.38) gives

(
∂T

∂p

)

h

=
vT

cp

(

α− 1

T

)

. (16.62)

For an ideal gas where α = 1
T we obtain

(
∂T
∂p

)

h
= 0; this reflects that

enthalpy is a function only of temperature, which therefore must be constant
in an isenthalpic process.
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For a real gas, the curve where

(
∂T

∂p

)

h

= 0 or α =
1

T
, (16.63)

is the inversion curve, it separates states where the temperature increases or
decreases in throttling processes.

16.10 Example: Inversion Curve for the Van der
Waals Gas

We compute the inversion curve for the van der Waals gas in the dimensionless
variables π, υ, τ , where the condition assumes the form α = 1

υ

(
∂υ
∂τ

)
π
= 1

τ , or

υ

(
∂τ

∂υ

)

π

= τ .

By solving the dimensionless van der Waals equation (16.55) for τ , inserting
it into the above on both sides, and performing the derivatives, we find the
relation between pressure and volume on the inversion curve,

πinv =
18

υ
− 9

υ2
.

Eliminating π with the van der Waals equation gives the inversion relation
between τ and υ,

τ inv =
3

4

(

3− 1

υ

)2

or υinv =
1

3− 2
√

τ
3

.

The above can be combined to
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Fig. 16.2 Inversion curves for the van der Waals gas in π-τ - and π–υ-diagrams.
The π-τ -diagram also shows the saturation line, and the π–υ-diagram shows the
two phase region (thinner lines).
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πinv = 24
√
3τ − 12τ − 27 .

The corresponding curves in the π-τ - and π-υ-diagrams are shown in
Fig. 16.2, with respect to saturation lines, which will be determined in Sec.

17.9. For states below the curve the Joule-Thomson coefficient
(

∂T
∂p

)

h
is pos-

itive, so that pressure reduction leads to cooling.

Problems

16.1. Fundamental Relation for Ideal Gas
Internal energy and entropy of an ideal gas with constant specific heats are
u = cvT , s = cv ln

T
T0

+R ln v
v0
. Determine the fundamental relations u (s, v),

h (s, p), f (T, v) and g (T, p). Take the appropriate first derivatives of all to
verify that they are potentials.

16.2. Fundamental Relation for Ideal Incompressible Liquid
Internal energy and entropy of an ideal incompressible liquid with constant
specific heat are u = cT , s = c ln T

T0
. Determine the fundamental relations

u (s, v), h (s, p), f (T, v) and g (T, p). Take the appropriate first derivatives of
all to verify that they are potentials.

16.3. Ideal Gas Table (Air)
The specific heat of air is in good accuracy given as

c̄p (T ) = a+ bT + cT 2 + dT 3 +
e

T 2
,

with the constants:
for T < 1000K:

a = 30.0051
kJ

kmolK
, b = −8.86766× 10−3 kJ

kmolK2 ,

c = 2.212730× 10−5 kJ

kmolK3 , d = −1.02450× 10−8 kJ

kmolK4 ,

e = 8.38737× 102
kJK

kmol
;

for 1000K < T < 2200K:

a = 36.7781
kJ

kmolK
, b = −3.90661× 10−3 kJ

kmolK2 ,

c = 3.46633× 10−6 kJ

kmolK3 , d = −7.46611× 10−10 kJ

kmolK4 ,

e = −2.52571× 106
kJK

kmol
.



390 16 More on Property Relations

1. Use the above data to prepare a table with the values of ū (T ) , h̄ (T ) ,
s̄0 (T ) for air in the temperature range 230 − 2200K. Ad-
just enthalpy and entropy so that h̄ (300K) = 8693.5 kJ

kmol and

s̄ (T0 = 298.15K, p0 = 1bar) = 206.565 kJ
kmolK .

2. For easy handling of isentropic processes, it is convenient to have the rel-
ative pressure pr and the relative volume vr in the tables, see Sec. 7.5.
Review their definition, and add them to your table as well.

16.4. Ideal Gas Table (H2O)
When water vapor can be considered as ideal gas, its specific heat is in good
accuracy given in polynomial form as

c̄p (T ) = a+ bT + cT 2 + dT 3 ,

with the constants

a = 32.24
kJ

kmolK
, b = 0.1923× 10−2 kJ

kmolK2 ,

c = 1.055× 10−5 kJ

kmolK3 , d = −3.595× 10−9 kJ

kmolK4 .

1. Use this data to prepare a table with the values of ū (T ) , h̄ (T ) , s̄0 (T )
for water vapor in the temperature range 273− 1800K. Chose the energy
and entropy constants such that you have agreement (as close as possible)
with the table for water vapor as an ideal gas.

2. Next make tables for u (T ) , h (T ) , s (T, p), for various values of p. Re-
adjust the integration constants thus that your data matches the tables
for superheated steam at T = 50 ◦C, p = 0.01MPa. Make sets of tables
at different pressures to compare with actual steam tables. Discuss the
validity of the ideal gas assumption for vapor for high and low pressures,
and high and low temperatures.

16.5. Thermodynamic Potential for a Gas
The Gibbs free energy of a gas is given as (a, b, c are constants with appro-
priate units)

g (T, p) = a

(

T − T ln
T

T0

)

− b

2
T 2 − c

6
T 3 +RT ln

p

p0
.

1. Determine the equations of state for entropy s (T, p), specific volume
v (T, p), enthalpy h (T, p), internal energy u (T, p), Helmholtz free energy
f (T, p).

2. Determine the equations of state for entropy s (T, v), specific volume
v (T, v), enthalpy h (T, v), internal energy u (T, v), Helmholtz free energy
f (T, v).

3. Determine the specific heat at constant pressure, cp (T, p).
4. Determine the specific heat at constant volume, cv (T, v).
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16.6. Thermodynamic Potential
The Helmholtz free energy of a substance is given as (A is a positive constant–
determine its unit!)

f (T, v) = −ATαvβ .

1. Determine the equations of state for entropy s (T, v), pressure p (T, v),
internal energy u (T, v), enthalpy h (T, v), Gibbs free energy g (T, v).

2. Thermodynamic stability requires positive specific heat cv ≥ 0, and posi-
tive isothermal compressibility κT ≥ 0. Use these requirements to identify
the possible ranges of the exponents α and β.

16.7. Isothermal Compressibility and Thermal Expansion
Use tabulated data for superheated water vapor to estimate the isothermal
compressibility κT and the coefficient of thermal expansion α at 600 ◦C and
7.0MPa. Compare to the ideal gas values of κT,id.gas = 1/p and α = 1/T .
Also determine the factor β from tabulated values, and test how well your
approximations fulfill the relation pβκT

α = 1.

16.8. Isothermal Compressibility
Use tabulated data for superheated vapor of R134a to estimate the isothermal
compressibility κT at 60 ◦C and 1.4MPa. Compare to the ideal gas value of
κT,id.gas = 1/p. Is it easier to compress ideal gas or R134a (at this state)?
Why is that?

16.9. Coefficient of Thermal Expansion and Joule-Thomson
Coefficient

Use tabulated data for superheated water vapor to estimate the specific heat
at constant pressure, cp, and the coefficient of thermal expansion, α, at 550 ◦C
and 20MPa. Use your results to determine the Joule-Thomson coefficient at
the same state. When the vapor is throttled, will the temperature go up or
down?

16.10. Measuring the Coefficient of Thermal Expansion
In the temperature range between 0 ◦C and 50 ◦C the coefficient of volume
expansion of a liquid L is measured as αL = 1.2 × 10−3 1

K . To measure the
coefficient of volume expansion for a solid S, the following experiment is
conducted: A cylinder made of S is immersed in L and the percentage of
immersed volume of solid is measured at 0 ◦C and 50 ◦C as 82.1% and 86.6%,
respectively. Use Archimedes’ principle to determine the coefficient αS from
this data.

16.11. Thermosyphon
In warm countries, one finds often a simple device for heating of water, the
thermosyphon.

Solar radiation provides a heat flux Q̇ which heats water. Since warm water
has a smaller mass density than cold water, the heated water will rise. The
goal is to compute the mass flow ṁ and the temperature difference Tt − Tb

that will be observed.



392 16 More on Property Relations

to heating

_Q

pb; ½b
; Tb

pcw

pww

h1

h2

½t; Tt

_m

Fig. 16.3 Thermosyphon

1. Give arguments that ρb−ρt

ρb
= α (Tt − Tb) where α is the thermal expansion

coefficient of water.
2. Assume that the density is a linear function of height between 0 and h1

and show that the difference between the pressures in warm and cold water
is given by Δp = pww − pcw = (ρb − ρt) g

(
1
2h1 + h2

)
. This refers to the

pressure difference at rest, when ṁ = 0.
3. When the water is allowed to flow, the pressure difference determined

above is consumed by friction. The law of Hagen-Poiseuille relates the
volume flow and the pressure drop in a pipe of radius R and length

L as V̇ = πR4

8ηLΔp, where η is the viscosity. The first law for the col-
lector gives a relation between mass flow and temperature difference,
Q̇ = ṁcw (Tt − Tb). Combine all results to obtain equations for the tem-
perature difference and the mass flow. Discuss what parameters must be
increased to raise mass flow or temperature difference.

4. The maximum of solar radiation is 1300 W
m2 . Consider a collector with an

area of 1m2, and the data below to compute the temperature difference
and mass flow.

R = 1 cm , L = 10m , h1 = 1/
√
2m , h2 = 0.5m ,

cw = 4.18
kJ

kgK
, η = 10−3 kg

m s
, α = 2× 10−4 1

K
.

16.12. Van der Waals Equation
Go through the arguments of Sec. 16.8 step by step to derive Eq. (16.50).
Use critical point data for argon, oxygen, nitrogen to compute their van der
Waals constants. Compare the values for R with their actual values, and
discuss. Plot isotherms in a p-v-diagram. Also follow step by step through
the arguments of Sec. 16.10 to determine and plot the inversion curve.



Chapter 17

Thermodynamic Equilibrium

17.1 Equilibrium Conditions

We introduced the second law of thermodynamics to formalize the statement
that a system which is left to itself will approach a final stable equilibrium
state. A system left completely to itself is isolated, and does not exchange
heat, work or mass with its surroundings, therefore Q̇ = Ẇ = 0; for such
a system, the second law states that in equilibrium entropy will assume a
maximum. While the initial state of a system typically is inhomogeneous,
in equilibrium we expect homogeneous temperatures and zero velocity, since
internal heat transfer will equilibrate temperature, and internal friction will
dissipate all kinetic energy. If gravity can be ignored, pressure and density
(in a single phase system) are homogeneous as well, else they might be inho-
mogeneous, as, e.g., in the barometric formula.

Below, we shall confirm these expectations by evaluating the second law
for isolated systems. Thereafter, we generalize the discussion to thermody-
namic equilibria of closed systems with various boundary conditions. The
state of the system can be controlled from the surroundings of the system in
a number of ways. When the system is in thermal contact with a tempera-
ture reservoir it will assume the temperature of the reservoir, and thus the
system temperature is controlled. The system volume can be controlled by
confining material into a closed box. The system pressure can be controlled
by exerting a constant force on a piston that closes the system. The system’s
energy E is controlled when heat and work balance, i.e., Q̇ = Ẇ , so that
dE
dt = 0. Systems at controlled temperatures or pressures will exchange heat
or work, and change their volume, as they approach their equilibrium state.

We shall see that, depending on the boundary conditions, different ther-
modynamic properties will attain a minimum or a maximum in equilibrium.
However, the resulting equilibria share the same characteristics.

H. Struchtrup, Thermodynamics and Energy Conversion, 393
DOI: 10.1007/978-3-662-43715-5_17, c© Springer-Verlag Berlin Heidelberg 2014
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17.2 Equilibrium in Isolated Systems

An isolated system does not exchange energy or mass with its surroundings.
Accordingly, first and second law reduce to

dE

dt
= 0 ,

dS

dt
= Ṡgen ≥ 0 , (17.1)

with a constant mass m in the system. Since no work is exchanged, the
volume V must be constant as well. According to the second law, the state of
the system will change until the entropy has reached a maximum. However,
since mass and energy of the system do not change over time, at all times
the process is restricted by having the initial mass and energy enclosed in
the system. The approach to equilibrium is a reorganization of the local
properties of the system towards the final equilibrium state.

We study the approach to equilibrium for a single phase system; heteroge-
neous systems will be discussed later, in Sec. 17.7. For this we have to consider
the total mass, energy and entropy by integration over the full system,

m =

∫

V

ρdV , E =

∫

V

ρ

(

u+
1

2
V2 + γz

)

dV , S =

∫

V

ρsdV . (17.2)

In order to avoid confusion with the Gibbs free energy, the gravitational
acceleration is denoted by γ. Here, ρ, T , V , and u (ρ, T ), s (ρ, T ) are the local
values of the thermodynamic properties, that is, ρ = ρ (−→r ), T = T (−→r ) etc.,
where −→r is the location in the volume V of the system, see Sec. 2.7.

Before we proceed, we need to state the momentum vector
−→
M of the system.

Typically, we are interested in systems that are globally at rest, where the
overall momentum vanishes, but we might consider also systems moving with

a constant velocity −→v , so that
−→
M = m−→v . Since all elements of the system

have their own velocity
−→V (−→r ), we find the total momentum by summing

over the system,
−→
M = m−→v =

∫

V

ρ
−→V dV ; (17.3)

here
−→V is the local velocity vector with V =

√−→V · −→V . As long as no forces
act on the system, its momentum will be constant; total momentum vanishes

for a system at rest in the observer frame,
−→
M = 0.

The equilibrium state is the maximum of entropy S under the constraints

of given mass m, momentum
−→
M , and energy E. The best way to account

for the constraints is the use of Lagrange multipliers Λρ,
−→
ΛM and ΛE to

incorporate the constraints and maximize not S but
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Φ =

∫

V

ρsdV − Λρ

(∫

V

ρdV −m

)

−−→
ΛM ·

(∫

V

ρ
−→V dV −−→

M

)

− ΛE

(∫

V

ρ

(

u+
1

2
V2 + γz

)

dV − E

)

. (17.4)

The maximization of Φ will give the local values of the thermodynamic equi-
librium properties {ρ, T,V} in terms of the Lagrange multipliers, which then

must be determined from the given values of
{
m,

−→
M,E

}
.

For the solution of this problem, we employ some rules of variational cal-
culus. The condition for an extremum of the integral

∫ x1

x0
X (x, y, y′) dx with

y = y (x) and y′ = dy/dx, where X (x, y, y′) is known, is that the first varia-
tion of the integral vanishes. This requirement results in Euler’s differential
equation of variational calculus, d

dx
∂X
∂y′ − ∂X

∂y = 0 (Leonhard Euler, 1707 -

1783). The solution of Euler’s equation yields the desired function y (x) that
maximizes the integral. Euler’s equation holds also when x and y are vectors.

In our case we identify x = −→r , y =
{
ρ,
−→V , T

}
and

X = ρ

[

s− Λμ −−→
ΛM ·−→V − ΛE

(

u+
1

2
V2 + γz

)]

. (17.5)

In this particular case the integrand X is independent of y′ =
{

dρ
dr ,

d
−→V
dr ,

dT
dr

}
,

so that Euler’s equation reduces to

∂X

∂y
=

{
∂X

∂ρ
,
∂X

∂
−→V

,
∂X

∂T

}

= 0 , (17.6)

or, in detail,

∂X

∂ρ
=

[

s− Λρ −ΛM ·−→V − ΛE

(

u+
1

2
V2 + γz

)]

+ ρ

[(
∂s

∂ρ

)

T

− ΛE

(
∂u

∂ρ

)

T

]

= 0 , (17.7)

∂X

∂
−→V

= ρ
[
−−→
ΛM − ΛE

−→V
]
= 0 . (17.8)

∂X

∂T
= ρ

[(
∂s

∂T

)

ρ

− ΛE

(
∂u

∂T

)

ρ

]

= 0 , (17.9)

We proceed with evaluating these three conditions to find the equilibrium
state. For convenience, we begin with the middle equation, (17.8), which
gives immediately that the velocity is homogeneous in equilibrium,
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−→V = −
−→
ΛM

ΛE
. (17.10)

For the case of a system at rest, where

0 =
−→
M =

∫

V

ρ
−→V dV = −

−→
ΛM

ΛE

∫

V

ρdV = −
−→
ΛM

ΛE
m , (17.11)

this implies that in equilibrium all local elements are at rest,

−→V =
−→
ΛM =

−→
M = 0 . (17.12)

To evaluate the last condition, (17.9), we recall that the Gibbs equation
Tds = du− p

ρ2 dρ gives
(
∂s
∂T

)
ρ
= 1

T

(
∂u
∂T

)
ρ
. Hence, the condition becomes

(
∂s

∂T

)

ρ

− ΛE

(
∂u

∂T

)

ρ

=
1

T

(
∂u

∂T

)

ρ

− ΛE

(
∂u

∂T

)

ρ

= 0 . (17.13)

It follows that in equilibrium the temperature is homogeneous, and equal to
the inverse Lagrange multiplier,

T =
1

ΛE
. (17.14)

To evaluate the first condition, (17.7), we insert the above results for ΛE ,

ΛM ,
−→V and use again the Gibbs equation, which gives

(
∂s
∂ρ

)

T
− 1

T

(
∂u
∂ρ

)

T
=

− p
Tρ2 . After some reordering, we find

g = u− Ts+
p

ρ
= −TΛρ − γz , (17.15)

where g is the Gibbs free energy, and γ is gravitational acceleration. With
the temperature homogeneous, and the constant Lagrange multiplier Λρ, this
is an implicit equation for the equilibrium density, which appears as an ar-
gument in the Gibbs free energy g (ρ, T ), or, alternatively, it is an equation
for pressure p, if we write g (p, T ). Often we consider systems in which the
potential energy can be ignored. For such systems, the Gibbs free energy is
homogeneous, g (ρ, T ) = −TΛρ. Homogeneous Gibbs free energy and tem-
perature implies that density and pressure are homogeneous as well. Phase
equilibrium will be discussed in Sec. 17.9.

In summary, maximizing entropy in the isolated system yields that the sys-
tem is fully at rest, V = 0, has homogeneous temperature, T = 1/ΛE, and,
in the gravitational field, has inhomogeneous density and pressure, given im-
plicitly by g (T, ρ) = −TΛρ−γz. What remains is to determine the Lagrange
multipliers ΛE = 1/T and Λρ, which follow from the given values of mass
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m =
∫
V ρdV and energy E =

∫
V ρ [u (T, ρ) + γz] dV in the system. Their

detailed values depend on the size and geometry of the system.

17.3 Barometric and Hydrostatic Formulas

To gain insight into the influence of potential energy, we evaluate (17.15) for
ideal gases and incompressible fluids. For an ideal gas, the Gibbs free energy

is g (ρ, T ) = h (T )−T
(
s0 (T )−R ln ρRT

p0

)
. Using this in (17.15) and solving

for density gives the barometric formula,

ρ = ρ0 exp
[
− γz

RT

]
, (17.16)

where ρ0 = p0

RT exp
[
−Λρ

R − h(T )−Ts0(T )
RT

]
is the density at reference height

z = 0. The ideal gas law gives the corresponding expression for pressure as
p = p0 exp

[− γz
RT

]
, where p0 = ρ0RT is the pressure at z = 0.

For incompressible fluids, ρ = const., and internal energy and entropy
depend only on temperature, so that the Gibbs free energy is g (T, p) =
u (T ) + p

ρ − Ts (T ). Using this in (17.15) and solving for pressure gives the
hydrostatic pressure formula,

p = p0 − ργz , (17.17)

where p0 = ρT [s (T )− u (T ) /T − Λρ] is the pressure at reference height
z = 0.

17.4 Thermodynamic Stability

The equilibrium state determined in the previous sections should be stable,
which means that, indeed, it should be a maximum of the integral Φ as defined
in (17.4). This requires that the second variation of Φ must be negative. In
our case, where the integrand X depends only on y, this requires negative
values for the second derivatives ∂2X/∂y2 at the location of the maximum.
With the help of the Gibbs equation, the second derivatives can be written
as

∂X

∂ρ∂ρ
=

[
1

T
− ΛE

] [

2

(
∂u

∂ρ

)

T

+ ρ

(
∂2u

∂ρ2

)

T

]

− 1

ρT

(
∂p

∂ρ

)

T

,

∂2X

∂
−→V 2

= −ρΛE ,
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∂2X

∂T 2
= ρ

[
1

T
− ΛE

](
∂2u

∂T 2

)

ρ

− ρ

T 2

(
∂u

∂T

)

ρ

,

∂2X

∂ρ∂T
=

∂2X

∂T∂ρ
=

[
1

T
− ΛE

](
∂u

∂T

)

ρ

, (17.18)

∂X

∂ρ∂
−→V

=
∂X

∂
−→V ∂ρ

= −−→
ΛM − ΛE

−→V ,

∂X

∂T∂
−→V

=
∂X

∂
−→V ∂T

= 0 .

These must now be evaluated at the equilibrium state, T = 1/ΛE and
−→V =

−−→
ΛM/ΛE , where they must be negative. With the definitions of isothermal

compressibility κT (16.37) and the specific heat at constant volume cv (16.20),
the resulting conditions can be written as

∂X

∂ρ∂ρ |eq
= − 1

ρT

(
∂p

∂ρ

)

T

= − 1

ρ2TκT
< 0 ,

∂2X

∂
−→V 2 |eq

= − ρ

T
< 0 , (17.19)

∂2X

∂T 2 |eq
= − ρ

T 2

(
∂u

∂T

)

ρ

= − ρ

T 2
cv < 0 ;

all mixed derivatives vanish in equilibrium. With the mass density being pos-
itive, thermodynamic stability thus requires that isothermal compressibility,
specific heat, and thermodynamic temperature are positive,

κT > 0 , cv > 0 , T ≥ 0 . (17.20)

These conditions imply that the volume decreases when pressure is increased
isothermally, and that the temperature rises when heat is added to the sys-
tem. While this matches our daily experience, it is nevertheless remarkable
that it is guaranteed by the second law as a universal principle, valid for all
materials.

17.5 Equilibrium in Non-isolated Systems

Non-isolated systems exchange work or heat with their surroundings. For the
study of their equilibria, we use the first and second law in their global forms,

d

dt
(U + Epot) = Q̇− pB

dV

dt
,

dS

dt
− Q̇

TB
= Ṡgen ≥ 0 , (17.21)

which are valid when the system exchanges work only via a piston. Here, pB
is the pressure at the piston boundary, and the system exchanges heat only



17.5 Equilibrium in Non-isolated Systems 399

at boundary temperature TB; we shall consider only cases with homogeneous
pressure and temperature at the system boundary. For simplicity, we ignore
kinetic energy, which can be incorporated as in the previous sections, with
the same result that all elements of the system will be at rest in equilibrium.

For all systems discussed below, if single phase systems are considered, the
respective maximization or minimization requirements are mathematically
very similar to the maximization of entropy as discussed above.

In cases where the homogeneous boundary temperature TB is prescribed,
the role of the Lagrange multiplier ΛE is assumed by the boundary temper-
ature TB, and thus the homogeneous equilibrium temperature of the system
is T = TB.

In cases where the piston pressure is prescribed, the pressure condition
g (p, T ) = −TΛρ − γz must be compatible with the pressure prescribed at
the piston. If gravity can be ignored, this gives g (p, T ) = g (pB, T ) = −TΛρ,
hence homogeneous pressure p = pB. In cases with gravity, since we have
assumed homogeneous piston pressure, this implies horizontal piston and
g (p, T ) = g (pB, T )− γ (z − zB), where zB is the height of the piston.

17.5.1 Adiabatic and Isochoric System

For an adiabatic system, we have Q̇ = 0 and thus

d

dt
(U + Epot) = −pB

dV

dt
,

dS

dt
≥ 0 . (17.22)

Entropy grows in an adiabatic process, until it reaches a maximum in equilib-
rium. We note that for an isochoric process, where V = const., or dV

dt = 0, the
total energy E = U+Epot stays constant as well. Thus, we have in particular

S =⇒ Maximum and U + Epot = const. for Q̇ = 0, V = const. (17.23)

Indeed, this is the case of a fully isolated system as discussed above, which
does not exchange heat and work with its surroundings. The equilibrium
state for this case follows from maximizing entropy under constraints of given
values for mass m and energy U + Epot.

17.5.2 Adiabatic and Isobaric System

A Legendre transform gives an alternative form of the first law,

d

dt
(U + pBV + Epot) = V

dpB
dt

, (17.24)
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and we conclude that

S =⇒ Maximum and U + pBV + Epot = const. for Q̇ = 0, pB = const.
(17.25)

Note that H = U + pV is the enthalpy. The equilibrium state for this case
follows from maximizing entropy under constraints of given values for mass
m and U + pBV + Epot.

17.5.3 Isentropic and Isochoric System

For the discussion of non-adiabatic systems, we eliminate the heat Q̇ between
the first and the second law, to find

d

dt
(U + Epot)− TB

dS

dt
+ pB

dV

dt
= −TBṠgen ≤ 0 . (17.26)

It follows that in a process with constant entropy and constant volume, where
dS
dt = dV

dt = 0, the total energy will assume a minimum in equilibrium,

E = U + Epot =⇒ Minimum for S = const., V = const. (17.27)

The equilibrium state for this case follows from minimizing energy U +Epot

under constraints of given values for mass m and entropy S. Note that en-
tropy is difficult to control, and thus this case is typically not encountered in
applications.

17.5.4 Isothermal and Isochoric System

By means of a Legendre transform, (17.26) can be rewritten as

d

dt
(U − TBS + Epot) + S

dTB

dt
+ pB

dV

dt
= −TBṠgen ≤ 0 . (17.28)

It follows that in a process with constant boundary temperature and volume,
where dTB

dt = dV
dt = 0, the combination E − TBS assumes a minimum in

equilibrium,

U − TBS + Epot =⇒ Minimum for TB = const., V = const. (17.29)

Recall that U − TS = F is the Helmholtz free energy. The equilibrium state
for this case follows from minimizing U − TBS + Epot under constraint of
given value for mass m.
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17.5.5 Isothermal and Isobaric System

Another Legendre transform shows that for a process with constant boundary
pressure and temperature (dTB

dt = dpB

dt = 0) the combination E+pBV −TBS
assumes a minimum,

U + pBV −TBS+Epot =⇒ Minimum for TB = const., pB = const. (17.30)

Recall that U + pV − TS = H − TS = G is the Gibbs free energy. The
equilibrium state for this case follows from minimizing U+pBV −TBS+Epot

under constraint of given value for mass m.

17.5.6 Energy vs. Entropy

Temperature, volume and pressure are far easier to control than energy and
entropy, and thus one normally encounters the last two cases for the compu-
tation of equilibria. For simple one-phase systems the results are straightfor-
ward: homogeneous temperature T , and, if gravity is ignored, homogeneous
pressures p. More complex systems, in particular systems in several phases,
and reacting and inert mixtures of several components have additional degrees
of freedom that approach equilibrium values, and it is convenient to determine
these equilibrium values under the assumption that thermal and mechanical
equilibrium, i.e., homogeneous temperature and pressure, are established al-
ready. Then, the computation of equilibrium states typically entails to find
minima of free energies, either of the Helmholtz free energy F = U − TS, or
of the Gibbs free energy G = H − TS.

The free energies describe the competition between energy and entropy,
with the temperature as factor to determine their relative importance. We
take a look at this for the Helmholtz free energy, F = U−TS. The Helmholtz
free energy can attain a minimum state either by making the energy U small,
or by making the entropic term TS large. At low temperatures, the product
TS is relatively small, thus the entropic term does not matter much, and
energy is more important; states of low energies are assumed, for instance
the liquid state, which is due to the attractive potential between molecules.
For high temperatures, however, the entropic term TS dominates, and states
of large entropy are assumed, e.g., the vapor state. For intermediate tem-
peratures, energy and entropy find a compromise, e.g., the coexistence of
vapor, which has large entropy, and liquid, which has low energy, in phase
equilibrium.

17.6 Interpretation of the Barometric Formula

We discuss the barometric formula (17.16) in the context of the competition
between energy and entropy, where the temperature is the deciding factor.
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The barometric formula is quite interesting as a rough indicator on the behav-
ior of planetary atmospheres. For an exact discussion, however, one should
account for temperature variances within the atmosphere, and for the spher-
ical geometry of the planets.

We consider a column of atmosphere of base area A. The number of moles

in a layer of the atmosphere at height z is dn = ρ(z)
M Adz, while the total

number of moles in the column is N = m/M , with m =
∫
ρAdz being the

total mass in the column. The probability to find a particle in the layer at z
is given by

πdz =
dn

N
=

ρ (z)Adz

m
=

γ

RT
exp
[
− γz

RT

]
dz . (17.31)

π (z) as defined here is a probability density, which fulfills
∫∞
0

π (z)dz = 1.
Mean value and variance of the height of a particle are

z̄ =

∫ ∞

0

zπ (z) dz =
R̄T

Mγ
, σ =

√∫ ∞

0

(z − z̄)
2
π (z)dz =

R̄T

Mγ
. (17.32)

For large values of z̄ and σ, gases are more likely to escape a planet.
Obviously, z̄ and σ grow with temperature, which explains why hot planets,
e.g., Mercury, have lost their atmosphere. Moreover, z̄ and σ are smaller for
larger gravitation γ, which explains why heavier planets have more stable
atmospheres: Jupiter, for instance, is a heavy gas planet. Finally, z̄ and σ
grow with decreasing molar mass M which explains why light elements are
more likely to escape from the atmosphere of a planet. Indeed, there is only
little helium left in Earth’s atmosphere, although helium is one of the most
abundant elements in the universe. A good source for helium is natural gas
which was formed long ago, when Earth’s atmosphere was richer in helium.

The above discussion can be seen in the context of competition between
energy and entropy. When the temperature is low, the entropy is less impor-
tant, and the equilibrium state has a low potential energy, z̄ is small, and
z̄ = 0 for T = 0. But when the temperature is high, entropy is more impor-
tant, and tries to establish a state of even distribution within the accessible
volume. The actual state, with exponential decay, is a compromise between
the two opposing tendencies. We shall explore this competition more as we
proceed.

17.7 Equilibrium in Heterogeneous Systems

The thermodynamic equilibrium conditions, e.g., system entropy assumes a
maximum in isolated systems (17.23), or Gibbs free energy assumes a mini-
mum when pressure and temperature are prescribed at the boundary (17.30),
are universally valid. In this section, we evaluate the equilibrium state for a
heterogeneous system, which consists of two parts in thermal and mechani-
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U1

V1

S (U1; V1)

U2

V2

S (U2; V2)

Fig. 17.1 An externally adiabatic system at constant volume, containing two dif-
ferent materials or phases

cal contact. To be specific, we consider an adiabatically enclosed system at
constant volume that is divided into two parts as depicted in Fig. 17.1. The
two parts may contain different substances, or the same substance, and they
might contain different phases. The divider between the two parts can move
freely, and is diathermal, i.e., heat can pass, potential and kinetic energies
are ignored. Due to the boundary conditions for the system, total energy,
U = U1 + U2, and total volume, V = V1 + V2 are constants, but energy
and volume of the parts might change. We assume the system is in thermal
equilibrium and consider small perturbations from the equilibrium state such
that the energies and volumes of the two parts are

U1 + δU , U2 − δU and V1 + δV , V2 − δV . (17.33)

This perturbation yields a change in entropy, so that the entropy of the
perturbed state is S + δS. Since the perturbed state is an equilibrium state,
the entropy S = S1 (U1, V1) + S2 (U2, V2) is a maximum; accordingly, the
perturbation in entropy must be negative, δS < 0. We have

S + δS = S1 (U1 + δU, V1 + δV ) + S2 (U2 − δU, V2 − δV ) , (17.34)

and from Taylor expansion to first order we find

δS =

(
∂S1

∂U1

)

V1

δU +

(
∂S1

∂V1

)

U1

δV −
(
∂S2

∂U2

)

V2

δU −
(
∂S2

∂V2

)

U2

δV . (17.35)

From the Gibbs equation TdS = dU + pdV we identify (∂S/∂U)V = 1/T
and (∂S/∂V )U = p/T , and thus the above can be rewritten (with some
reordering) as

0 > δS =

[
1

T1
− 1

T2

]

δU +

[
p1
T1

− p2
T2

]

δV . (17.36)

Since δU and δV can have arbitrary positive or negative values, the sign
condition on δS can only be fulfilled when both terms vanish. This gives the
expected equilibrium conditions for the two parts, namely that they have the
same temperatures and pressures
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T1 = T2 and p1 = p2 . (17.37)

The above discussion can be performed for any splitting of the system, and for
different substances in the subsystem. It follows that all possible subsystems
have the same temperature and pressure, that is pressure and temperature
are homogeneous within the system.

If potential energy, e.g., gravitation, plays a role, pressure is not homoge-
neous, see Sec. 17.3. Pressure distribution within one substance or phase is
then given by g (p, T ) = −TΛρ − γz, while the pressure is continuous at the
interface between two substances or phases.

17.8 Phase Equilibrium

A particular class of equilibrium states concerns equilibria between different
phases of the same substance, e.g., liquid-vapor equilibria.

kg

p  T,

V

L

Fig. 17.2 Liquid (L) and vapor (V ) phase in equilibrium at given pressure p and
temperature T

Figure 17.2 shows liquid and vapor in equilibrium in a system where pres-
sure p and temperature T are fixed at the boundaries by the given mass of
the piston, and exposure to a large reservoir at T . According to (16.1) the
equilibrium state of this system is determined by a minimum of the Gibbs
free energy G, which is just the sum of the Gibbs free energies of the two
phases. The mass m = mL +mV within the system is constant, and thus we
have

G = mV gV (T, p) +mLgL (T, p) = mV gV (T, p) + (m−mV ) gL (T, p) .
(17.38)

The specific free energies of the individual phases, gL and gV , depend only on
the intensive variables p and T . When thermal and mechanical equilibrium
are established, T and p are homogeneous throughout both phases, and the
vapor mass mV is the only variable. The chemical equilibrium is assumed
when G becomes a minimum, that is for dG/dmV = 0, which gives
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gV (T, p) = gL (T, p) . (17.39)

Hence, in a two phase system in equilibrium, pressure, temperature and Gibbs
free energies are homogeneous. It follows that both phases can coexist only
at values for pressure and temperature (T, p) that fulfill the above condition.
Solving for p gives the saturation pressure psat (T ), with the well known
value of psat (100

◦C) = 1 atm for water. Solving for T gives the saturation
temperature, Tsat (p).

In case that temperature and pressure are chosen such that the Gibbs
free energies of liquid and vapor are different, the Gibbs free energy (17.38)
assumes a boundary minimum with either mL = m, mV = 0 (compressed
liquid) or mV = m, mL = 0 (superheated vapor). In detail we have for a
specified pressure p:

T < Tsat (p) =⇒ gL (T, p) < gV (T, p) =⇒ mL = m, mV = 0 ,

T > Tsat (p) =⇒ gL (T, p) > gV (T, p) =⇒ mV = m, mL = 0 .

The phase change can be understood as a competition between energy and
entropy. Recall that Gibbs free energy is g = h−Ts. For small temperatures,
the entropic term (−Ts) is relatively small, and energetic effects dominate.
Then the Gibbs free energy is small for the liquid, where the potential energy
between particles due to the molecular interaction is at a minimum, the parti-
cles are close to each other, and the volume is small. For larger temperatures,
the entropic contribution becomes more important, and the Gibbs free energy
becomes small for large entropies. Since vapor entropy grows with volume,1

the vapor state prevails and the volume is large. At saturation, energetic and
entropic contributions are of comparable size, and both phases coexist.

Alternatively, we have for a specified temperature T :

p > psat (T ) =⇒ gL (T, p) < gV (T, p) =⇒ mL = m, mV = 0 ,

p < psat (T ) =⇒ gL (T, p) > gV (T, p) =⇒ mV = m, mL = 0 .

Since vapor entropy grows with lower pressure2, the entropic term will domi-
nate even at low temperatures, if only the pressure is sufficiently small. Thus,
exposing a substance to low pressure might induce phase change.

While we used liquid and vapor as example, the above derivation is not
restricted to any particular phases. For any two phases to be in equilibrium,
their Gibbs free energies must agree. For an example, revisit Fig. 6.4 in Chap-
ter 6 which shows the saturation lines for water as ice, liquid, and vapor.

At the triple point, all three phases coexist in equilibrium, and their free
energies must agree (S stands for solid),

gV (T, p) = gL (T, p) = gS (T, p) . (17.40)

1 This can be seen from the ideal gas entropy in the form s−s0 = cv ln
T
T0

+R ln v
v0
.

2 This can be seen from the ideal gas entropy in the form s−s0 = cp ln
T
T0

−R ln p
p0
.
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These are two conditions for T, p and thus there is only one pair of values
Ttr, ptr at which three phases can coexist, the triple point (e.g., for water:
Ttr = 0.01 ◦C, ptr = 611Pa).

The conditions derived above describe the thermodynamic equilibrium of
two phases, which is not always attained. Some substances can exist for very
long periods in metastable states, outside of equilibrium. A typical example is
tin, which below 13.2 ◦C is stable as a semiconductor phase, and is metallic
above. However, the phase transition does only occur at much lower tem-
peratures. Another example is carbon, for which the stable phase at room
temperature is graphite, while diamond is metastable, which obviously does
not diminish its value, both as a gem, and for toolmaking.

17.9 Example: Phase Equilibrium for the Van der
Waals Gas

We consider the van der Waals equation (16.48) for its ability to describe
phase equilibrium.

p (vV ¡ vL)

∫ V

L

pdv

pr
es

su
re

 π

volume ν
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

L V
T = const

Fig. 17.3 Phase equilibrium for van der Waals gas

Figure 17.3 shows the sketch of an undercritical isotherm for the van der
Waals gas, which is not monotonous, but exhibits an unstable region where

κT = − 1
v

(
∂v
∂p

)

T
≤ 0 (so that the isotherm has a positive slope). Instead of

following the curve, the gas can split into two phases: L (liquid) and V (vapor)
as indicated. The question is, where the connecting line which determines the
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saturation pressure should be drawn. The answer comes from evaluation of
(17.39) which can be written as

gL = gV or, with g = f + pv, as fL − fV = p (vV − vL) , (17.41)

where p is the common pressure of the two phases, i.e., the saturation pres-
sure.

The difference in Helmholtz free energy can be reformulated as

fL − fV = −
∫ V

L
isotherm

(
∂f

∂v

)

T

dv =

∫ V

L
isotherm

pdv , (17.42)

where we used that f (T, v) is a potential, see (16.11). Thus the condition for
the saturation pressure reads

∫ V

L
isotherm

pdv = p (vV − vL) . (17.43)

This is Maxwell’s equal area rule, which states that the areas below the S-
shaped van der Waals curve and the straight line connecting vapor and liquid,
as shown in the figure, must be equal.

The evaluation of this condition leads to transcendental equations which
must be solved numerically. Figure 17.4 shows, in dimensionless variables,
some isotherms and the computed vapor dome in the p-v-diagram.

17.10 Clapeyron Equation

The Clapeyron equation describes the slope of the saturation curve. The
two phases, and the corresponding properties are denoted as phase ′ and
phase ′′, respectively. To find the Clapeyron equation, we consider a point
{psat, T } on the saturation curve, and an adjacent point on the curve
{psat + dpsat, T + dT }. For the Gibbs free energy of the latter, for one phase,
we find by Taylor expansion

g′ (psat + dpsat, T + dT ) = g′ (psat, T ) +
(

∂g′

∂psat

)

T

dpsat +

(
∂g′

∂T

)

psat

dT

= g′ (psat, T ) + v′dpsat − s′dT , (17.44)

where we have used (16.13). We consider the corresponding equation for phase
′′ as well,

g′′ (psat + dpsat, T + dT ) = g′′ (psat, T ) + v′′dpsat − s′′dT (17.45)

and take the difference,
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Fig. 17.4 Van der Waals isotherms and two phase region in the π − υ-diagram

g′′ (psat + dpsat, T + dT )− g′ (psat + dpsat, T + dT )

= g′′ (psat, T )− g′ (psat, T ) + (v′′ − v′) dpsat − (s′′ − s′) dT .

Since both points are on the saturation curve, the differences of the free
energies vanish on both sides, and we find the Clapeyron equation3

dpsat
dT

=
s′′ − s′

v′′ − v′
=

1

T

h′′ − h′

v′′ − v′
. (17.46)

h′′ − h′ is the heat of phase change, for instance the heat of evaporation or
the heat of melting.

17.11 Example: Estimate of Heat of Evaporation

The Clapeyron equation can be used to find an estimate for the vapor pressure
curve. We consider liquid-vapor equilibrium, where the Clapeyron equations
reads

dpsat
dT

=
1

T

hLV

vV − vL
, (17.47)

3 Note that g′ = g′′ implies h′′ − h′ = T (s′′ − s′).



17.12 Example: Ice Skating 409

with the heat of evaporation hLV = hV −hL. To proceed, we assume that the
specific volume of the vapor phase (V ) is far larger than the volume of the
liquid phase (L), so that vV − vL � vV . Moreover, we assume that the vapor
can be described by the ideal gas law, so that vV = RT/p. Both assumptions
are reasonably accurate at pressures not too far from the triple point. The
equation then reduces to the Clausius-Clapeyron equation

1

psat

dpsat
dT

=
hLV

RT 2
,

which can be integrated with the further assumption that the heat of evap-
oration hLV is constant, to give

ln
psat (T2)

psat (T1)
=

hLV

R

(
1

T1
− 1

T2

)

. (17.48)

We use this equation to estimate the heat of evaporation at 7.5 ◦C from
measurements of saturation pressures and volumes. From steam tables we
find the following data:

T1 = 278.15K , psat (T1) = 0.8721 kPa , vV (T1) = 147.12 m3

kg ,

T2 = 283.15K , psat (T2) = 1.2276 kPa , vV (T2) = 106.38 m3

kg .

With R = 0.462 kJ
kg K we find hLV (7.5 ◦C) = 2488.18 kJ

kg , which is reasonably

close to the exact value of 2515 kJ
kg .

17.12 Example: Ice Skating

Another interesting application is the discussion of ice flows and ice skating.
We consider the solid-liquid equilibrium at temperatures not too far from

0 ◦C = 273.15K, where hSL = 333.7 kJ
kg , vL = 0.001 m3

kg and vS = 0.001085 m3

kg .
Since the solid, i.e., the ice, has a larger volume than the liquid, the melting
curve has a negative slope,

dpsat
dT

=
1

T

hSL

vL − vS
= −142

bar

K
. (17.49)

Due to the density anomaly of water, ice swims on water. Would this not be
so, ponds and lakes would freeze completely in cold climates (ice would form
on the top, and sink), and no life could survive. Thus, the anomaly is of some
importance to our ecosystem. Note also that, considering its low molar mass,
water condenses at rather high temperatures (100 ◦C at p = 1 atm; compare
to saturation temperature of oxygen (O2) of −218.8 ◦C); this is due to the
strong attractive intermolecular forces between water molecules (hydrogen
bonds).
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Coming back to (17.49), we conclude that in order to lower the melting
temperature by 1 ◦C, the pressure must be increased by 142 bar. In other
words, to melt ice of −10 ◦C the pressure must be increased by 1420 bar. Due
to the weight of the ice, the pressure inside glaciers is quite high, and the
slow flow of glaciers might be attributed to this effect, but also to plastic
deformation.

Quite often, however, melting under pressure is used to explain the physics
of ice skating, but this is not a valid explanation. Indeed, high pressures would
break the ice before it could melt. The contact area for the skates would have
to be very small, to bring these high pressures on the ice. As most people
know, ice is very slippery even with street shoes, which have a large contact
area. Also one would expect a strong dependence of the skating ability on
temperature, since higher pressures are required for melting at lower tem-
peratures. Moreover, since no liquid water exist below −23 ◦C, skating would
not be possible at temperatures below that. Canadian students report that
they skated without problems at temperatures below −30 ◦C.

Today, it is believed that the slipperiness of ice is due to a molecular layer
of water molecules at the surface which are not fixated in the lattice struc-
ture of the ice. There seems to be no stable configuration with an energetic
minimum for the surface molecules, and they dangle about. This molecular
layer behaves almost like liquid water, and thus ice is slippery.4

Problems

17.1. Barometric Formula
Atmospheric air can be considered as an ideal gas with R = 0.287 kJ

kg K .

1. Balance the forces on a layer of the atmosphere of thickness dz to show
that dp

dz = −ρg.
2. Consider an isothermal atmosphere and compute p(z) with p(z = 0) =

p0 = 1bar.
3. In reality, the temperature of the atmosphere is decreasing with height

according to

T (z) = T0

(

1− γz

T0

)

where γ =
0.65K

100m
, T0 = 288K ,

(valid for 0 ≤ z ≤ 10, 000m). Compute p(z) for this case (again with
p(z = 0) = p0).

4. In your last result, consider the limit γ −→ 0 and show that you obtain
the same result as in ii.).

4 See: S.C. Colbeck, Pressure melting and ice skating, Am. J. Phys. 63, 888-890
(1995). Wettlaufer & Dash, Melting Below Zero, Scientific American Magazine,
February 2000.
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5. Plot the two curves, and discuss—what pressures are predicted for Mt.
Baker, Mt. Everest?

17.2. Three-Phase Equilibrium
Consider a phase mixture of solid, liquid and vapor in equilibrium, in a closed
system at constant pressure and temperature. Minimize the Gibbs free energy
to find the equilibrium condition (17.40).

17.3. Solid Carbon
Pure carbon in solid form can appear in different crystal lattices, as graphite
(h̄0

f = 0 kJ
mol , s̄0f = 5.75 kJ

kmolK ) or as diamond (h̄0
f = 1.89 kJ

mol , s̄0f =

2.38 kJ
kmolK). Here, h̄0

f , s̄
0
f denote enthalpy and entropy of formation, that

is the values of enthalpy and entropy at standard conditions (T0 = 298K,
p0 = 1 atm).

1. Experience shows that both forms exist at standard conditions, but ther-
modynamically only one is stable—is it graphite or diamond? State your
argument.

2. The mass density of graphite is 2.25 kg
litre and that of diamond is 3.52 kg

litre .
When the pressure is increased to 1.6 × 104 bar, is your answer to the
previous question the same? Explain.

3. At which pressure are graphite and diamond in equilibrium (at T0)?

17.4. Stirred Water
A rigid adiabatic container contains 1 litre of water at 20 ◦C. The water was
briefly stirred with a propeller, so that the average velocity is 15 m

s . Consider
only the time after stirring (but not the water motion) has stopped. Under the
conditions of this process, water can be described as an ideal incompressible

liquid
(
v = v0 = 0.001 m3

kg

)
with constant specific heat cp = cw = 4.18 kJ

kgK .

1. Show that incompressibility implies cp = cv = cw.
2. Combine the 1st and 2nd law of thermodynamics to show that, while the

water still moves after stirring stops, it comes to rest over time, and the
rest state is the equilibrium state, that is the kinetic energy will go to
zero. Hint: Use the Gibbs equation, and account for adiabatic process and
incompressibility.

3. Determine the increase of temperature between the stirred state and the
final rest state when the system is adiabatic.

17.5. Approximate Equation for Saturation Pressure
In order to find an approximate equation for the saturation pressure of a
substance, assume that the liquid can be considered as an incompressible
liquid, and the vapor as an ideal gas.

1. For the liquid (f) show first that incompressibility implies that the specific
heats at constant pressure and constant volume are the same. Next, assume
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constant specific heat cf and incompressibility and find internal energy,
enthalpy and entropy by integration. Show that

uf = cf (T − T0) , hf = cf (T − T0) , sf = cf ln
T

T0
.

The assumption of incompressibility is not sufficient to obtain the relation
for hf . What contribution is missing, and why (or when) can it be ignored?

2. Consider vapor (g) as an ideal gas with constant specific heats, and show
that specific enthalpy and entropy are given by

hg = cp (T − T0) + hfg (T0) , sg = cp ln
T

T0
−R ln

p

psat (T0)
+

hfg (T0)

T0
;

cp is the specific heat of the vapor, hfg (T0) is the specific heat of evapora-
tion at reference temperature T0, and psat (T0) is the saturation pressure
at T0. Discuss the choice of integrating constants and give clear arguments
why hfg (T0) appears in both relations.

3. Find an expression for the heat of evaporation hfg (T ).
4. Use the condition for phase equilibrium gf (T, psat (T )) = gg (T, psat (T ))

to find an equation for the saturation pressure psat (T ) .
5. Use data for water and chose T0 = 273.15K to make a table with values

of saturation pressure and heat of evaporation for several temperatures.
Compare to tabled data: When an error of 5% is acceptable, what is the
maximum temperature for which the approximation can be used?

6. An equation that is regularly used, and gives a better fit, is the Antoine
equation

log psat (T ) = A− B

C + T
.

Use data for water at 0.01 ◦C, 50 ◦C, and 100 ◦C to obtain the constants
A,B,C. You may use a computer program to find the constants. Plot the
saturation pressure as function of T , and make a list of values for temper-
atures up to the critical temperature 374.14 ◦C. Compare with tabulated
data.

17.6. Heat of Evaporation
Use the Clausius-Clapeyron equation together with the Antoine equation for
water (see previous problem) to find a relation for the heat of vaporization,
hfg (T ). Assume that the liquid volume can be ignored against the vapor
volume, and that the vapor can be described as an ideal gas. Plot hfg (T )
over T , and compare with tabulated data. Discuss the result.

17.7. Property Data: Interpolation
For a thermodynamic computation you need the Gibbs free energy, the en-
tropy, and the enthalpy of liquid water at a temperature of 97.5 ◦C and a
pressure of 1 atm. In an old and incomplete table you find the following data:
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compressed liquid:

g(95 ◦C, 1 atm) = −62
kJ

kg
,

saturated vapor:

gg(100
◦C) = −68.5

kJ

kg
, psat(100

◦C) = 1 atm .

Use only this data to determine (a) g(97.5 ◦C, 1 atm), (b) s(97.5 ◦C, 1 atm)
and (c) h(97.5 ◦C, 1 atm).

17.8. Phase Equilibrium of a Van der Waals Gas
Use Maxwell’s equal area rule to construct the two phase region for the
dimensionless van der Waals equation. For given temperature τ you need
to determine saturation pressure πsat (τ ) and saturation volumes υf (τ ) and
υg (τ). It is best to prescribe a value for υf and then find the corresponding
values for τ , πsat, and υg.

1. Write down the equations you need to solve the problem.
2. The equations are transcendental and thus must be solved numerically. Use

one of the convenient mathematics programs like Mathematica, Maple,
Matlab, etc. to solve the problem.

3. Plot the two-phase region and some isothermal curves in a p-v-diagram.
4. Plot the saturation curve in the p-T-diagram.

17.9. Homogeneity
Solve problems 4.15 and 4.16.



Chapter 18

Mixtures

18.1 Introduction

Many applications of thermodynamics involve not single substances but mix-
tures. The challenge is to track mixture composition, and to find the prop-
erty data for the given composition. As long as mixture composition does not
change, one can deal with mixtures the same way as with simple substances,
including tabulating their properties; our treatment of air is the prime exam-
ple of this.

Mixture composition can change through mixing or separation processes,
through phase changes when the components have different vapor pressures,
and through chemical reactions.

There is a vast array of applications for mixture theory, in particular in
chemical engineering. Applications to be discussed include desalination of
seawater, osmotic power plants, phase equilibrium and distillation processes,
chemical equilibrium and NH3 production, and combustion.

In this and the following chapters we shall provide the tools to properly
describe and evaluate these processes. The present chapter introduces addi-
tional properties to account for mixture composition, and relations between
properties of components and the mixture as a whole.

18.2 Mixture Composition

We consider mixtures of ν components, indicated by greek subscripts α =
1, 2, . . . , ν. The present chapter deals with non-reacting mixtures, reacting
mixtures will be discussed later.

Throughout the following we assume that all components have the same
temperature T . The mixture is contained in the volume V , and the mixing
state is homogeneous, so that each component is equally distributed in V .

The composition of the mixture can either be described through the masses
mα of the components contained in the volume V , or by their amount in

H. Struchtrup, Thermodynamics and Energy Conversion, 415
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molecule numbers Nα. Rather than tracking actual particle numbers, one
uses the mole as a unit for counting particles, with the mole number defined
as

nα =
Nα

A
=

mα

Mα
. (18.1)

Here A = 6.022× 1023 1
mol is Avogadro’s number, which defines the number

of particles in one mole, and Mα is the molar mass, i.e., the mass of 1mol of
particles of type α.

The total mass m and the total mole number n of the mixture are obtained
by summation over all components,

m =

ν∑

α=1

mα , n =

ν∑

α=1

nα =

ν∑

α=1

mα

Mα
=

m

M
. (18.2)

The last equation defines the average molar mass M of the mixture.
Often we will not be interested in the absolute amounts of the components,

but in the relative amounts. Mass fraction cα (sometimes denoted as ”mass
concentration”) and mole fraction Xα are defined as

cα =
mα

m
, Xα =

nα

n
=

Nα

N
; (18.3)

according to their definitions we have

ν∑

α=1

Xα =

ν∑

α=1

cα = 1 . (18.4)

18.3 Example: Composition and Molar Mass of Air

The average molar mass of a mixture is given by

M =
m

n
=

1

n

ν∑

α=1

mα =
1

n

ν∑

α=1

Mαnα =

ν∑

α=1

MαXα . (18.5)

Air is a mixture of several gases, the main components and their mole frac-
tions and molar masses are

nitrogen: XN2 = 0.7808 , MN2 = 28.02 kg
kmol ,

oxygen: XO2 = 0.2095 , MO2 = 32 kg
kmol ,

argon: XAr = 0.0093 , MAr = 39.94 kg
kmol ,

carbon dioxide: XCO2
= 0.000397 , MCO2

= 44.01 kg
kmol .
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Accordingly, the average molar mass of air is Mair = 28.97 kg
kmol . The corre-

sponding mass fractions are

cα =
mα

m
=

nαMα

nM
= Xα

Mα

M
,

so that

cN2 = 0.755, cO2 = 0.231, cAr = 0.013, cCO2
= 0.000455 .

18.4 Mixture Properties

In previous chapters, we have mainly used specific properties, that is proper-
ties per unit mass which are denoted as, e.g., vα, uα, hα, sα. For mixtures it
is often more convenient do refer to particle numbers, and thus we will often
use mole based properties, denoted as, e.g., v̄α, ūα, h̄α, s̄α.

Mole and mass based quantities are related through the molar mass Mα,
in particular we have

mass/mole density: ρa = mα

V , ρ̄a = nα

V ,
specific/molar volume: vα = V

mα
, v̄α = V

nα
= vαMα ,

specific/molar internal energy: uα , ūα = uαMα ,
specific/molar enthalpy: hα , h̄α = hαMα ,
specific/molar entropy: sα , s̄α = sαMα .

Properties of the mixture are obtained as weighted sums over the properties
of the individual components. We study this for the total internal energy, for
which we have

U = mu =
ν∑

α=1

mαuα = nū =
ν∑

α=1

nαūα . (18.6)

The specific internal energy, and the molar internal energy of the mixture are
obtained by division with m or n, as

u =
U

m
=

ν∑

α=1

cαuα , ū =
U

n
=

ν∑

α=1

Xαūα . (18.7)

Enthalpy and entropy of the mixture are obtained in the same way:

h =

ν∑

α=1

cαhα , h̄ =

ν∑

α=1

Xαh̄α , (18.8)

s =

ν∑

α=1

cαsα , s̄ =

ν∑

α=1

Xαs̄α . (18.9)
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Fig. 18.1 Mixing of components at constant T and p

Above, we have not indicated the dependencies between properties. In
general, the properties of one component will depend on the presence of
all other components. For instance, the internal energy of component α will
depend on temperature T and total pressure p of the mixture, and on all mole
fractions Xβ , β = 1, . . . , ν, that is ūα = ūα (T, p,Xβ). Therefore tabulated
data for single components (where Xα = 1 and Xβ = 0 for β 
= α) normally
cannot be used. As will be seen, tabulated data for pure components can only
be used for ideal gas mixtures, and ideal mixtures.

While all components have the same temperature T , they contribute to
pressure differently. The partial pressure pα is the contribution of component
α to total pressure p, with

p =
ν∑

α=1

pα . (18.10)

Note that, in general, pα = pα (T, p,Xβ), that is the partial pressure of a
component will depend on the state and composition of the mixture.

18.5 Mixing Volume, Heat of Mixing and Entropy of
Mixing

As components are mixed at constant temperature and pressure the extensive
properties might change. To properly account for the change, we consider ν
components in an initial unmixed state (I) where each component is at the
same temperature, T , and pressure, p. The components are mixed while keep-
ing temperature and pressure constant, the final state (E) is a homogeneous
mixture, see Fig. 18.1. We ask for the corresponding changes in total volume,
total enthalpy, and total entropy.

The volume change between initial and final state is computed as1

1 This and the other equations in this section are written with molar quantities and
mole numbers. It is straightforward to write all in specific properties and masses,
e.g. Vmix = mγvγ (T, p, cβ)−

∑ν
α=1 mαvα (T, p).
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Vmix = VE − VI = nγ v̄γ (T, p,Xβ)−
ν∑

α=1

nαv̄α (T, p) , (18.11)

where v̄α (T, p) denotes the specific volume of component α alone at (T, p) and
v̄γ (T, p,Xβ) denotes the specific volume of any component γ in the mixture
of composition Xβ (β = 1, . . . , ν) at (T, p). Note that in the mixed state all
components are distributed over the volume of the mixture, VE .

The change of volume is due to spatial hindrances or advantages on the
molecular scale. For instance a mixture of 1 litre of water with 1 litre of
ethanol (C2H5OH) yields a mixing volume of 1.93 litres.

When volume ratios are used to define the composition of a mixture, it
must be clarified whether the volume of the component is related to the
volume of the mixture, VE , or the to the total volume of the components
before mixing, VI . A widely used measure for the alcohol content of beverages
is “percent of alcohol by volume”, defined as volume of the ethanol component
alone over total volume of the mixture,

%ABV =
malcvalc (T, p)

VE
.

Isothermal mixing of components might release or require heat, which must
be transferred. The first law applied to the isothermal and isobaric mixing
process yields

Hmix = HE −HI =
ν∑

α=1

nα

[
h̄α (T, p,Xβ)− h̄α (T, p)

]
, (18.12)

where Hmix is the heat that must be exchanged in order to keep the tempera-
ture T constant for the mixing process. Here, h̄α (T, p) is the molar enthalpy
of component α alone at (T, p) and h̄α (T, p,Xβ) is the molar enthalpy of the
component α in a mixture of composition Xβ (β = 1, . . . , ν) at (T, p).

The enthalpy and internal energy are influenced by the interaction poten-
tial between molecules. In a pure substance, particles of type α interact only
with particles of the same type. In a mixture, however, particles of type α
are surrounded by different types of particles β (β = 1, . . . , ν), which leads
to different molecular interaction potentials, and thus a change in internal
energy ūα and enthalpy h̄α for the particles of type α as compared to the
pure substance. A more detailed exploration of this will come in Sec. 22.9.

The entropy of mixing is computed in the same way, as

Smix = SE − SI =

ν∑

α=1

nα [s̄α (T, p,Xβ)− s̄α (T, p)] . (18.13)

We shall discuss the enthalpy and entropy of mixing as we proceed. To
simplify the discussion we shall ignore volume changes from now on.
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18.6 Ideal Gas Mixtures

We first consider ideal gas mixtures, which are particularly simple. In ideal
gases, due to the large average distance between particles, the potential en-
ergies between particles can be ignored against their microscopic kinetic en-
ergies. Then, the individual components are not affected by the presence of
other components, there is no enthalpy of mixing, and the ideal gas law holds
for the individual components and the mixture.2

The partial pressure of one component distributed over the mixture volume
V is given by the ideal gas law

pα =
mα

V
RαT =

nα

V
R̄T , (18.14)

where R̄ = 8.314 kJ
kmolK is the universal gas constant, and Rα = R̄/Mα. The

second form of the ideal gas law shows that the behavior of all ideal gases
depends only on mole number, temperature and volume, but not on the type
of gas.

The total pressure is just the sum of the partial pressures. For ideal gases,
where the partial pressures are unaffected by the presence of other molecules,
this is known as Dalton’s law (John Dalton, 1766-1844),

p =
ν∑

α=1

pα =
ν∑

α=1

nα

V
R̄T =

n

V
R̄T =

m

V
RT . (18.15)

Here R = R̄/M is the gas constant for the mixture and M is the mixture’s
mean molar mass (18.5). Thus, with the proper molar masses, the components
and the mixture obey the ideal gas law.

Division of the ideal gas laws for the component and the mixture shows
that for ideal gas mixtures the pressure ratio equals the mole ratio,

pα
p

=
nα

n
= Xα . (18.16)

In case that the ideal gas mixture is separated, so that each individual
component is at the mixture pressure p and temperature T in its own volume
Vα, the ideal gas law for the components reads

Vα =
nαR̄T

p
with

ν∑

α=1

Vα =

ν∑

α=1

nαR̄T

p
=

nR̄T

p
= V . (18.17)

Here, V is the volume of the mixture in the mixed state. This is Amagat’s
law (Émile Amagat 1841-1915) which states that there will be no volume

2 Recall the van der Waals equation p = RT
v−b

− a
v2 , where the second term accounts

for attractive forces between the molecules; for large specifc volume a
v2 → 0 and

v − b → v.
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change when ideal gases are mixed, Vmix = 0, as long as the pressures and
temperatures before and after mixing are the same.

18.7 Energy, Enthalpy and Specific Heats for Ideal
Gases

For ideal gases, all energies and enthalpies depend only on the temperature
T . The potential energy between particles is not relevant due to their large
average distance, and thus there is no energy of mixing (Umix = 0), and no
enthalpy of mixing, Hmix = Umix + pVmix = 0. With that, the energies and
enthalpies of the components have the same temperature dependence in the
mixture and in the pure state,

u (T, cα) =

ν∑

α=1

cαuα (T ) , ū (T,Xα) =

ν∑

α=1

Xαūα (T ) , (18.18)

h (T, cα) =

ν∑

α=1

cαhα (T ) , h̄ (T,Xα) =

ν∑

α=1

Xαh̄α (T ) . (18.19)

Specific heats for the components and the mixture follow from differentiation
with respect to temperature,

cv =

(
∂u

∂T

)

v,cβ

=

ν∑

α=1

cαcv,α , c̄v =

(
∂ū

∂T

)

v,Xβ

=

ν∑

α=1

Xαc̄v,α ,(18.20)

cp =

(
∂h

∂T

)

p,cβ

=

ν∑

α=1

cαcp,α , c̄p =

(
∂h̄

∂T

)

p,Xβ

=

ν∑

α=1

Xαc̄p,α .(18.21)

Here, cv,α = duα(T )
dT etc. are the specific heats for the pure components.

18.8 Entropy of Mixing for Ideal Gas

While volume, energy and enthalpy do not change when originally separated
ideal gases at (T, p) (state I) are mixed, so that the mixture is at (T, p) (state
II), the entropy does change. We compute the entropy for the two cases.

Component α fills the mixture volume V at temperature T and is at its
partial pressure pα. Its entropy is not affected by the presence of other com-
ponents, it reads just as for a single component,

s̄α (T, pα) = s̄0α (T )− R̄ ln
pα
p0

, (18.22)

where s̄0α (T ) denotes the entropy of α alone at (T, p0) and is tabulated.
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With Xα = pα

p the molar entropy of one component in the mixture can be
rewritten as

s̄α (T, p,Xβ) = s̄0α (T )− R̄ lnXα − R̄ ln
p

p0
. (18.23)

Accordingly, the entropy of component α depends only on the relative amount
of α, while the composition of other components Xβ (β 
= α) does not play
a role.

In the unmixed state, all components are at (T, p) (i.e., Xα = 1), and
in the mixed state the components are at (T, pα). The corresponding total
entropies follow from summation over all components as

SI =

ν∑

α=1

nα

[

s̄0α (T )− R̄ ln
p

p0

]

, (18.24)

SII =
ν∑

α=1

nα

[

s̄0α (T )− R̄ lnXα − R̄ ln
p

p0

]

. (18.25)

The entropy of mixing is just the difference,

Smix = SII − SI = −R̄

ν∑

α=1

nα ln
pα
p

= −R̄

ν∑

α=1

nα lnXα > 0 . (18.26)

The entropy of mixing is positive, since Xα ≤ 1. Thus, entropy grows in
mixing, and we conclude that mixing is an irreversible process, with a work
loss. We shall later discuss how work could be obtained by reversible mixing.

The molar entropy of a mixture follows from (18.25) by division with the
mole number n as

s̄ =
∑

Xαs̄α (T, p,Xβ) =
∑

Xα

(

s̄0α (T )− R̄ lnXα − R̄ ln
p

p0

)

. (18.27)

18.9 Gibbs Paradox

We consider two different ideal gases in a container of Volume V , halved by
a slider. Both gases are at the same temperature and pressure (T, p), and
their mole numbers are equal n1 = n2 = n

2 . When the slider is pulled out,
the two gases mix while pressure and temperature remain unchanged. The
partial pressures for both gases are

p1 = p2 =
n1RT

V
=

n

2

RT

V
=

p

2
. (18.28)

In the final equilibrium state, both gases are evenly distributed throughout
the container. Entropy has grown, and the entropy of mixing for this process
is
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Smix = −R̄
2∑

α=1

nα ln
pα
p

= nR̄ ln 2 > 0 . (18.29)

When the slider is pushed back to separate the two parts of the container,
the state is quite different from the initial state, since both parts now con-
tain mixture. The difference between the two states becomes manifest in the
positive value of the entropy of mixing.

Let us now consider that both gases are identical. The slider can be pulled
out and pushed back at any time, without any change in the state of the
gas, which is always the same gas at (T, p) in both compartments. Yet, the
expression for the entropy of mixing, Eq. (18.29), predicts an entropy increase.
This increase should not be present for a single gas, and thus the prediction
of a positive entropy of mixing is considered to be a paradox, known as Gibbs
paradox.

The paradox can be resolved by noting that the particles of just one type
of gas cannot be distinguished. In particular, we cannot recognize whether an
arbitrary particle picked from the gas was originally in a particular partition
of the container. Indeed, could we mark the particles in one of the partitions
at the initial time (before the slider is pulled out), the final state would show
that particles that were on one side initially are now distributed over the
whole container. In short, the entropy of mixing can only be computed for
the mixing of distinguishable species.

18.10 Example: Isentropic Expansion through a
Nozzle

We consider the isentropic expansion of a mixture of oxygen (XO2 = 0.2)
and carbon dioxide (XCO2

= 1−XO2 = 0.8) entering a nozzle at V1 = 25 m
s ,

p1 = 6bar, T1 = 1200K and leaving at p2 = 1bar. We ask for the temperature
T2 and the velocity V2 at the nozzle exit.

The molar mass of the mixture is M = XO2MO2+XCO2
MCO2

= 41.6 kg
kmol .

Since the process is reversible and adiabatic, it is isentropic, that is the molar
entropy (18.27) of the mixture stays constant,

ṁ ṁ
p2 = 1bar
V2 = ?
T2 = ?

ṁ (s2 ¡ s1) = 0

XCO2 = 0:8
XO2 = 0:2

V1 = 25
m
s

p1 = 6bar
T1 = 1200K

Fig. 18.2 Isentropic expansion in nozzle
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s̄1 = s̄2 .

Since the mixing state does not change, this results in

XO2

[

s̄0O2
(T1)− R̄ lnXO2 − R̄ ln

p1
p0

]

+XCO2

[

s̄0CO2
(T1)− R̄ lnXCO2 − R̄ ln

p1
p0

]

=

XO2

[

s̄0O2
(T2)− R̄ lnXO2 − R̄ ln

p2
p0

]

+XCO2

[

s̄0CO2
(T2)− R̄ lnXCO2 − R̄ ln

p2
p0

]

or, after simplifying,

XO2 s̄
0
O2

(T2) +XCO2
s̄0CO2

(T2) = XO2 s̄
0
O2

(T1) +XCO2
s̄0CO2

(T1) + R̄ ln
p2
p1

.

The right hand side can be computed from tabulated data as

A (T2) = XO2 s̄
0
O2

(T2) +XCO2
s̄0CO2

(T2) = 259.20
kJ

kmolK
.

The temperature T2 must be found from trial and error, and interpolation. We
find A (890K) = 258.90 kJ

kmolK and A (900K) = 259.46 kJ
kmolK and conclude

from interpolation that T2 = 895.4K.
The velocity follows from the first law for the nozzle as

V2 =
√
2 (h1 − h2) + V2

1 .

We have

h1 − h2 =
1

M

[
XO2

(
h̄O2 (T1)− h̄O2 (T2)

)
+XCO2

(
h̄CO2

(T1)− h̄CO2
(T2)
)]

,

and thus h1 − h2 = 372.7 kJ
kg and V2 = 611 m

s .

18.11 Example: Isochoric Mixing of Two Gases at
Different p, T

We consider an adiabatic rigid container of volume V which is separated by a
membrane. The two parts of the container hold different ideal gases, with the
given data

(
m1, T

I
1 , p

I
1,M1, cv,1

)
and
(
m2, T

I
2 , p

I
2,M2, cv,2

)
, the superscript I

indicates the initial state, the final state will be denoted with superscript
E. To simplify the problem we assume the specific heats to be constant.
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The dividing membrane is removed, and we ask for the final pressure and
temperature, and for the amount of entropy generated.

The volumes of the compartments and of the container are

V1 =
n1R̄T I

1

pI1
, V2 =

n2R̄T I
2

pI2
, V = V1 + V2 .

Since the container is adiabatic and rigid, V = const., the first law applied
to the volume V gives that the total internal energy is constant, U I = UE ,
so that the final temperature is

TE =
m1cv,1T

I
1 +m2cv,2T

I
2

m1cv,1 +m2cv,2
=

X1c̄v,1T
I
1 +X2c̄v,2T

I
2

X1c̄v,1 +X2c̄v,2
.

The final pressure follows from the ideal gas law for the mixture as

pE =
nR̄TE

V
=

1
X1T I

1

pI
1T

E +
X2T I

2

pI
2T

E

.

The change in entropy of the two gases is

ΔS = n1

[

c̄p,1 ln
TE

T I
1

− R̄ ln
X1p

E

pI1

]

+ n2

[

c̄p,2 ln
TE

T I
2

− R̄ ln
X2p

E

pI2

]

,

which can be split into three contributions that refer to the entropy change
due to heat exchange, pressure equilibration and mixing,

ΔS = n

[

X1c̄p,1 ln
TE

T I
1

+X2c̄p,2 ln
TE

T I
2

]

+ nR̄

[

X1 ln
pI1
pE

+X2 ln
pI2
pE

]

− nR̄ [X1 lnX1 +X2 lnX2] .

18.12 Ideal Mixtures

Ideal mixtures are defined as mixtures with vanishing volume and heat of
mixing, and an entropy of mixing just as that of the ideal gas, i.e.,

Vmix = Hmix = 0 , Smix = −
∑

α

nαR̄ lnXα . (18.30)

Ideal gas mixtures are a special case of ideal mixtures. In particular, the
theory of ideal mixtures can be applied to dilute liquid solutions.

As for the ideal gas, the first two conditions (18.30)1,2 for ideal mixtures
state that mixing does not affect energy. This would be the case if inter-
molecular potential of the various components are equal, or at least rather
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similar, so that the potential energy of a pair of identical molecules (α-α-pair)
is similar to that of a dissimilar pair (α-β-pair).

The entropy of mixing warrants more detailed discussion. It is best moti-
vated through Boltzmann’s microscopic interpretation of entropy as discussed
earlier, in Sec. 4.14. The microscopic definition of entropy reads

S = k lnΩ , (18.31)

where k = R̄/A = 1.3806 × 10−23 J
K is Boltzmann’s constant, and Ω is the

number of microscopic realizations of a given macroscopic state. For instance,
for an ideal gas, simply speaking, a macroscopic state is given by the values
of temperature, pressure, and velocity of the gas, while a microscopic state
is given by the location and velocities of the gas particles. The entropy can
be computed from (18.31) for rather complex systems, e.g., polymers, but for
many systems the evaluation of the equation becomes too cumbersome to be
done analytically.

A macroscopic state is for instance given by mass, volume, and temperature
of a sample of substance. While the macroscopic state is maintained, due to
the thermal motion of the particles the system runs through a succession of its
accessible microscopic states. At standard condition, the average speed of a
gas molecule is of the order of the speed of sound (∼ 350 m

s ), and it undergoes
about 1010 collisions per second. Accordingly, the system goes through a vast
number of microstates per second.

While the full evaluation of S = k lnΩ requires consideration of the full
microstate, i.e., locations and velocities of particles, we can consider the lo-
cations alone to compute the entropy of mixing. We study a container with
N =

∑
α Nα particles of different types α = 1, . . . , ν. We divide the container

into N cells of equal size, and assume that there can be only one particle per
cell. Since we cannot distinguish between different particles of the same kind,
the number of possibilities to distribute the

∑
α Nα particles over the N cells

is

Ω =
N !
∏

Nα!
. (18.32)

The corresponding macrostate for a mixed state is simply to have N =∑
α Nα particles in the container.
Before we further evaluate this expression, we study the example of just

four particles of two different types, two of each type. In the state before
mixing, a wall separates the different components into the configuration[
1 1 || 2 2

]
. There is only one microscopic realization of this configuration,

since the particles cannot pass the wall. As soon as the wall is removed, the
particles can exchange positions due to thermal motion, and thus access a
larger number of microstates. Equation (18.32) gives Ω = 6; the states are
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 2 2
2 2 1 1
1 2 1 2
2 1 1 2
1 2 2 1
2 1 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, the mixed state, where the wall is removed has more microscopic real-
izations than the unmixed state, and the higher entropy.

Note that the original configuration forms one of the accessible microstates
of the unrestrained system as well. The probability that this state is 1/Ω,
which is indeed the probability that any particular microstate is assumed.
For real systems, the particle numbers are huge, and the number of possible
configurations is enormous. The probability to find the original configuration,
which was maintained by the wall before it was removed, is negligible, and
most microstates will be mixed—thus mixed states will be observed.

We proceed to evaluate (18.31) with (18.32) for large numbersNα. Bymeans
of Stirling’s formula lnN ! � N lnN −N , which holds for largeN , we find

Smix = k ln
N !
∏

Nα!
= k

(

N lnN −
∑

α

Nα lnNα

)

= k
∑

α

(Nα lnN −Nα lnNα) . (18.33)

When we introduce the mole number nα = Nα/A, the mole fraction Xα =
nα

n = Nα

N , and R̄ = kA, we recover (18.30)3,

Smix = −
∑

α

nαR̄ lnXα . (18.34)

In thermodynamic systems the number of particles is normally very large,
with 6.022×1023 particles per mole. For example in an equimolar binary mix-
ture with N1 = N2 = 1023 one finds lnΩ = 1.386 × 1023, Smix = 1.9139 J

K .
The probability to recover the initial unmixed state as one of the microstates
is incredibly small at 1

Ω = 4−1023 : spontaneous unmixing is not impossible,
but incredibly unlikely, and cannot be expected to be observed in the life-
time of the universe. Return to Sec. 4.14 for additional discussion on the
microscopic interpretation of entropy.

The computation of the entropy of mixing in this section relied on the
assumption that there are as many location cells as particles, which is
appropriate for simple liquids. The reader might wonder how the entropy of
mixing for an ideal gas comes about, for which there are far more cells than
particles. We briefly run through the necessary arguments: To deal with an
ideal gas mixture, we consider empty cells as an additional species with count
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Ne. With N = Ng + Ne as the total number of cells and Ng =
∑

α Nα as
number of gas particles, we have one additional term:

Smix,id.gas = k ln
N !

Ne!
∏

Nα!

= k

[
∑

α

(Nα lnN −Nα lnNα) + (Ne lnN −Ne lnNe)

]

(18.35)

With the mole fraction of gas species Xα = Nα/N , this can be simplified to

Smix,id.gas = −k
∑

α

Nα lnXα + kNg

[

ln
N

Ng
− N −Ng

Ng
ln

N −Ng

N

]

.

(18.36)
The first term is the entropy of mixing as discussed before. We proceed with
the discussion of the second term. The total volume filled by the gas is V =
Nvc, where vc is the cell volume. Therefore ln N

Ng
= ln v̄

v̄0
, where v̄ is mole

volume and v̄0 = vcA is a reference mole volume. For the ideal gas, there
are far more cells than gas particles, so that N � Ng, and in the limit we

find limNg
N →0

N−Ng

Ng
ln

N−Ng

N = −1. Hence, with k = R̄/A, we find three

contributions to ideal gas entropy, namely entropy of mixing, the well-known
volume dependence of entropy, and a constant,

Sid.gas = R̄ng

[

−
∑

α

Xα lnXα + ln
v̄

v̄0
+ 1

]

. (18.37)

18.13 Entropy of Mixing and Separation Work

We consider mixing and separation of ideal mixtures at constant tempera-
ture T . The combined first and second law for a closed system at constant
temperature T reads

Ẇ = −T Ṡgen − dU − TS

dt
, (18.38)

or, after integration over the duration of the process,

W12 + TSgen = − (U2 − U1) + T (S2 − S1) , (18.39)

where Sgen =
∫ t2
t1

Ṡgendt is the total entropy generation for the process.
We consider mixing first, where state 1 is the unmixed state, and state 2

is the mixed state. Then, since Umix = 0 for an ideal mixture,

W12 + TSgen = TSmix − Umix = TSmix > 0 . (18.40)
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When the mixing is fully irreversible, no work is drawn, W12 = 0, and the
entropy generation is just the entropy of mixing, Sgen = Smix. However, the
equation shows that it is possible to generate the work

W12 = TSmix − TSgen > 0 . (18.41)

In a real device, the irreversibilities of the process diminish the work by
TSgen. The maximum work is obtained from a fully reversible process as

W rev
mix = TSmix . (18.42)

Note that more work can be produced at higher temperature.
Now we consider separation, where state 1 is the mixed state, and state 2

is the unmixed state. Then, again with Umix = 0,

W12 = −TSgen − TSmix < 0 . (18.43)

Work is required for separation (TSmix > 0) and to overcome irreversibilities
in the device (TSgen > 0). The minimum separation work is obtained or a
fully reversible process, where Sgen = 0, as

W rev
sep = −TSmix . (18.44)

The separation work is directly proportional to the entropy of mixing, less
work is required for separation at lower temperatures.

Section 21 will present a closer look at desalination plants, which sepa-
rate salt from water, and osmotic power plants, which use mixing for power
generation. 21.5.

18.14 Non-ideal Mixtures

The equilibrium condition for a mixture at given pressure p and temper-
ature T is that the Gibbs free energy assumes a minimum. We denote the
Gibbs free energies of the unmixed and the mixed states by Gunmixed, Gmixed,
respectively. Both are related as

Gmixed = Gunmixed +Gmix with Gmix = Hmix − TSmix . (18.45)

The equilibrium state will be the mixed state for negative Gibbs free energy
of mixing, Gmix < 0, so that Gmixed < Gunmixed, but it will be the unmixed
state, if Gmix > 0, so that Gunmixed < Gmixed.

For an ideal mixture we have Hmix = 0, hence Gmix = −TSmix < 0.
Accordingly, ideal mixtures will assume a mixed equilibrium state.

The Gibbs free energy of mixing will only be positive if the enthalpy
of mixing is large, that is for Hmix > TSmix. Large enthalpy of mixing is
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observed when the intermolecular forces between like particles are much larger
than those between unlike particles.

Due to its dipole structure, water has strong polar bonds between its
molecules, while oil is non-polar. Breaking up the water bonds to form water-
oil pairs instead of water-water pairs requires energy, and hence the enthalpy
of mixing, Hmix, is positive. From the fact that oil separates from water,
we can conclude that the energetic effect exceeds the entropic effect, that is
Hmix > TSmix.

Table salt (sodium chloride, NaCl) dissociates in water into charged ions,
Na+ and Cl−, which have energetic bonds with water. Nevertheless, for water-
salt solutions, the enthalpy of mixing is positive, but smaller than the entropic
term TSmix. In dilute solutions, the energetic interaction between salt ions
and water molecules can be ignored, and the solution can be approximated
as an ideal mixture. Dissociation requires shielding of salt ions by the polar
water molecules, where several water molecules are shielding one salt ion. If
all water molecules are used for the hydrogen shells, no additional salt ions
can be dissolved, the solution becomes saturated.

Problems

18.1. Mixture Properties
An ideal gas mixture consists of 6 kg of O2, 5 kg of N2 and 12 kg of CO2.

1. Determine the mass and mole fraction of each component.
2. Determine the average molar mass and the gas constant of the mixture.
3. Compute the partial pressures of all components when the total pressure

is 2 bar.
4. Compute the entropy of mixing between mixed and unmixed state.

18.2. Heating of Mixture
A piston-cylinder device contains a mixture of 1 kg of H2 and 2 kg of N2,
initially at 200 kPa and 280K. The mixture is heated at constant pressure
until the volume is three times the initial volume. Determine the temperature
of the final state, the total heat transferred, and the change of entropy of the
mixture. Use tabulated property data.

18.3. Isobaric Cooling of Mixture
A piston-cylinder device contains a mixture of 0.75 kg of N2 and 2 kg of
CO at 300 kPa and 860K. Heat is now transferred from the mixture at con-
stant pressure until the volume is one third of the initial volume. Determine
the heat transfer, the work done, and the change of entropy. Use tabulated
property data.

18.4. Mixing of H2 and CO2

An adiabatic rigid tank is divided into two parts. One part contains 4.4 kg of
CO2 at 25 ◦C and 200 kPa, and the other part contains 1 kg of H2 at 80 ◦C
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and 400 kPa. After the divider is removed, the gases mix and the mixture
assume a final equilibrium state.

1. Determine the equilibrium temperature and the equilibrium pressure.
2. Compute the entropy generated in the process.

Assume constant specific heats at 300K for both gases.

18.5. Compressor
A compressor draws an ideal gas mixture (molar composition 50% CO2,
33.3% CO, 16.7% O2) at 37

◦C, 1 bar, 50 m
s . The mass flow rate is 5 kg

s , and
the exit state is 237 ◦C, 80 m

s . The compressor is not adiabatic, heat is lost

to the surroundings at a rate of 3 kJ
kg of mixture flowing.

1. Determine the power to run the compressor.
2. Assume that the compression is polytropic, and determine the polytropic

exponent. Then find the exit pressure.

18.6. Adiabatic Turbine
The combustion product in a gas turbine system consists of nitrogen, oxy-
gen, carbon dioxide and water with the following mole flow rates: ṅN2 =
1.7 kmol

s , ṅO2 = 0.15 kmol
s , ṅH2O = 0.25 kmol

s , ṅCO2
= 0.2 kmol

s .
At turbine inlet, the pressure is 12 bar, and the temperature is 1500K.

Determine the power production of the turbine in isentropic expansion to an
external pressure of 1 bar.

Hint: To estimate exit temperature for trial and error, you might want to
look at expansion of air first.

18.7. Mixing and Separation
1 kg of argon at 10 bar, 400K and 0.5 kg of xenon at 10 bar, 1000K are iso-
barically and adiabatically mixed in a closed piston-cylinder system.

1. Determine the equilibrium temperature of the mixture.
2. Determine the initial system volume, and the volume change between ini-

tial and final state. Explain the result.
3. Find the reversible work required for separation of the mixture.

Remark: Both gases are monatomic, with MAr = 39.95 kg
kmol , and MXe =

131.3 kg
kmol .

18.8. Mixing of Argon and Helium
An adiabatic cylinder is closed by a moveable piston. The cylinder contains
4litres of argon at 150 kPa and a rubber balloon which contains 1litre of he-
lium at 3 bar. Both gases are initially at a temperature of 25 ◦C, and the
piston rests due to its own weight. Assume that the pressure volume char-
acteristic of the balloon is of the form Δp = a (VB − V0)

2 where Δp is the
pressure difference between inside and outside, VB is the actual volume, the
reference volume V0 is 0.25litres, and a is a material constant. This implies
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that the balloon shell stores some energy when stretched. As soon as the bal-
loon has reached the volume V0, there are no further stresses in the balloon,
and the balloon shell will just collapse. For simplicity, ignore the thermal
mass of the balloon.

A small hole opens in the balloon through which all helium escapes; in the
final equilibrium state the gases are mixed.

1. Determine the pressure, temperature and cylinder volume in the final equi-
librium state.

2. Compute the entropy changes for both gases, and the total entropy gener-
ated in the process. Compare to the entropy of mixing, Smix, and discuss
the difference.



Chapter 19

Psychrometrics

19.1 Characterization of Moist Air

Psychros and metro are Greek words meaning cold and measure, respectively,
and psychrometrics describes moist air: mixtures of air and water vapor with
possibly some liquid water present as well. Psychrometrics is most impor-
tant for designing proper air conditioning systems for buildings, where the
air should be not too dry or moist, to make the environment comfortable;
moreover, moisture buildup at (or in!) walls must be prevented.

This chapter describes how to characterize and analyze moist air mixtures,
and discusses basic processes for moisturizing and dehumidification in HVAC
systems (Heating-Ventilating-Air-Conditioning).

We consider air-vapor mixtures at temperature T and pressure p = pa+pv.
Air behaves as an ideal gas, hence the partial pressure of air, pa, follows the
ideal gas law. At the relevant temperatures, the partial pressure of the vapor
in moist air, pv, is so low that the vapor can be described as an ideal gas as
well.

The vapor pressure cannot exceed the saturation pressure psat (T ). If pv <
psat (T ) there is no liquid water present, but if pv = psat (T ) some liquid water
will be present either in form of droplets (fog), or as an larger amount on
the bottom. Figure 19.1 illustrates undersaturated moist air as a mixture of
air and vapor, and saturated moist air as a mixture of air, vapor, and liquid
water.

Since the saturation pressure psat (T ) increases with temperature, warm
air can hold more water vapor than cold air. Cooling of moist air can lead to
condensation of water, e.g., on cold bottles, or on eyeglasses when one enters
the warm and humid air of a house coming in from a cold winter environment.

The humidity ratio ω, also known as specific humidity, is defined as the
ratio of vapor and air mass in a sample of moist air of the volume V ,

ω =
mv

ma
=

pvV
RvT
paV
RaT

=
Mv

Ma

pv
pa

= 0.622
pv

p− pv
, (19.1)

H. Struchtrup, Thermodynamics and Energy Conversion, 433
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saturated
moist air

Fig. 19.1 Undersaturated and saturated moist air

where we have used that Mv

Ma
= 0.622. The humidity ratio for the saturated

state, where pv = psat (T ), is a function of temperature and pressure

ωsat (T, p) = 0.622
psat (T )

p− psat (T )
. (19.2)

The relative humidity φ is defined as the ratio between the actual mole
fraction of vapor in the sample, and the vapor mole fraction in the saturated
state,

φ =
Xv

Xsat (T )
=

pv
psat (T )

, (19.3)

where it was used that, for ideal gas mixtures, Xα = pα

p . Whether we perceive
moist air as comfortable or not depends on the temperature and the relative
humidity. In a dry environment, the human body loses a lot of moisture to
evaporation from the skin and in breathing; one must drink a lot to replenish
the moisture. In deserts, it helps to cover the body loosely with cloth, to
prevent exposure of skin to the dry air, thus limiting evaporation from the
skin. In high humidity, the air cannot accept more vapor, and thus sweat does
not evaporate which results in difficulty to regulate the body temperature.
For buildings, a relative humidity of φ � 0.6 is providing the most pleasant
environment.

The enthalpy of a moist air sample is

H = Ha +Hv = maha +mvhv , (19.4)

where ha (T ) and hv = hg (T ) are the specific enthalpies of air and water
vapor. Since the amount of vapor changes due to evaporation and condensa-
tion, it is convenient to base the specific enthalpy of moist air on the dry air
mass and we write1

1 The subscript 1 + ω serves to distinguish a specific property per unit mass of
dry air, which corresponds to 1 + ω unit masses of moist air. This notation is
uncommon in the North-American literature, but it is useful to avoid confusion
with proper specific enthalpies.
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h1+ω (T, ω) =
H

ma
= ha (T ) + ωhv (T ) . (19.5)

Since at these low pressures air and vapor are ideal gases, their enthalpies
depend only on temperature T , while the enthalpy of moist air, h1+ω, depends
also on the humidity ratio ω.

The specific volume of moist air per unit mass of dry air can be computed
from the Amagat model as, again with Mv

Ma
= 0.622,

v1+ω =
Va + Vv

ma
=

maRaT
p + mvRvT

p

ma
=
(
1 +

ω

0.622

) RaT

p
. (19.6)

19.2 Dewpoint

In isobaric cooling, see Fig. 19.2, the partial pressures of air and vapor stay
constant as long as no water condenses. The dewpoint temperature Td is
defined as the temperature at which vapor starts to condense when moist air
is isobarically cooled,2

psat (Td) = pv or Td = Tsat (pv) . (19.7)

Figure 19.3 illustrates the cooling and condensation process for water in air
in a T-s-diagram. Initially, the vapor is at state 1. No water condenses as the
vapor is cooled until it reaches the dewpoint (state d). In the final state, the
air is mixed with saturated vapor (state 2) and saturated liquid (state 3).

kg kg

air and 
superheated
vapor at

air, 
sat. vapor,
sat. liquid at

ml

Q̇

p; T1 p; T2

Fig. 19.2 Isobaric cooling of moist air

2 Due to the presence of air, the saturation pressure will be slightly different for
vapor in air as compared to water alone (see the discussion in later chapters). The
difference is small, however, and can be ignored.
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Fig. 19.3 T-s-diagram of water for the isobaric cooling of moist air

19.3 Adiabatic Saturation and Wet-Bulb
Temperature

When moist air of temperature T and humidity ratio ω < ωsat flows over a
surface of water, some water will evaporate and the humidity of the air will
increase. Evaporation requires the heat of evaporation hfg, which is drawn
from the air and the liquid, which therefore cool down as liquid evaporates.
If there is sufficient contact between air and water, water will evaporate until
the air will finally be saturated.

This effect is an important part of our life: When the body gets hot, humans
sweat, the sweat evaporates by drawing the heat of vaporization from the
body. The dryer the surrounding air is, the more vapor it can accept, and thus
cooling by sweating is more efficient in dry climates. In moist climates, e.g., in
tropical rainforests, the air can only accept little or no additional vapor, the
sweat cannot evaporate, and no cooling is achieved. In dry climates, patios
are cooled by spraying a fine mist of water. The small droplets evaporate
immediately in the dry air, and this cools the air. Mothers blow air over their
babies’ food to cool it, good restaurants serve the meals under covers, so that
the food is only in contact with the saturated moist air under the cover, and
remains hot.

We study the system depicted in Fig. 19.4. Moist air at (T, p, ω) flows
through a wetted porous material, which provides a large contact surface
between air and liquid water. Pressure losses in the flow through the porous
material are ignored in the following. The air leaves in saturated state at
the so-called wet-bulb temperature Twb. We assume a steady state process
under adiabatic conditions, that is no heat is added to the air flow from the
exterior, and we assume that the make-up water flow from the reservoir is
at the wet-bulb temperature Twb. The first law for the system then reduces
to the equality between incoming and outgoing enthalpy flows,

∑
in ṁαhα =
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ṁa
ṁv

T; p; ! ṁsat
v

Twb; p; !sat(Twb)

ṁsat
v ¡ṁv

ṁa

moist air saturated moist air
water reservoir

Fig. 19.4 Saturation of a moist air flow

∑
out ṁαhα, or, in detail,

ṁaha (T )+ ṁvhv (T )+
(
ṁsat

v − ṁv

)
hf (Twb) = ṁaha (Twb)+ ṁsat

v hv (Twb) .
(19.8)

With ω = ṁv

ṁa
and ωsat (Twb, p) =

ṁsat
v

ṁa
= 0.622 psat(Twb)

p−psat(Twb)
we find an equation

for the humidity ratio of the incoming moist air,

ω (T, Twb, p) =
ha (Twb)− ha (T ) + ωsat (Twb, p) [hv (Twb)− hf (Twb)]

hv (T )− hf (Twb)
.

(19.9)
The temperatures of the incoming air, T , and of the wet bulb, Twb, can
be measured easily, and this measurement allows to determine the humidity
ratio ω from the above equation.

Indeed, for the measurement of the wet-bulb temperature it is sufficient
to cover a thermometer with a wet cloth, and expose it to air flow. After a
while (before the cloth has dried, of course) a steady state is reached, and
the thermometer shows the wet-bulb temperature of the air flow. For the
measurement in standing air (e.g. in a room), the wet thermometer has to be
moved, and one uses a sling psychrometer: two thermometers, one dry, one
wet, on a handle are rotated in the air.

19.4 Psychrometric Chart

From (19.9) it is evident that determining humidity from the measurement of
dry- and wet-bulb temperatures involves some work for finding property data.
Instead of working with property tables it is practical to use a psychrometric
chart, from which all interesting data for moist air can be extracted. Through
the humidity ratio, the equations depend on the total pressure, p, and one
should take care to use the proper chart. Small daily pressure changes at
a location do not affect the results much, but one will have to account for
changes of environmental pressure with height. Figure 19.5 shows a chart for
p = 0.8 bar which would be appropriate for a location at a height of about
2000m above sea level.

The psychrometric chart has the dry-bulb temperature T on the abscissa
and the humidity ratio ω on the ordinate. The diagram shows lines of constant
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relative humidity φ, constant wet-bulb temperature Twb, constant enthalpy
h1+ω, and constant specific volume v1+ω . When two of these six quantities
are known, all others can be easily read of the diagram. The chart will be
used in subsequent sections.

The construction of the psychrometric chart is not difficult. For typical
HVAC applications, vapor and dry air can be described as ideal gases with
constant specific heats, and liquid water can be described as incompressible
liquid with constant specific heat, so that

ha(T ) = cap(T−TR) , hv(T ) = cvp(T−TR)+hfg (TR) , hf (T ) = cf (T−TR) ,
(19.10)

where TR = 273.15K, cap = 1.005 kJ
kg K , cvp = 1.88 kJ

kgK , cf = 4.18 kJ
kgK , and

hfg (TR) = 2500 kJ
kg . This choice of reference values for enthalpies and temper-

ature (TR) ensures that the psychrometric chart is compatible with standard
steam tables, for which the triple point enthalpy of the saturated liquid is
typically set to zero.

At low pressures, the saturation pressure psat(T ) of water can be described
by the Antoine equation

psat(T ) = ptr exp

[

17.0361− 3974.54

T/ ◦C+ 233.290

]

, (19.11)

where T is the temperature in ◦C, and ptr = 0.611 kPa is the triple point
pressure.

To plot the lines of constant φ, Twb, h1+ω and v1+ω, we need, for the given
total pressure p, the humidity ratio ω as a function of the dry-bulb temper-
ature T , and the quantity in question, i.e., relative humidity, enthalpy, etc.
Lines of constant wet-bulb temperature Twb follow immediately by plotting
(19.9), which gives ω (T, Twb, p), for fixed values of Twb and p. Equations
(19.1) and (19.3) can be combined into

ω (T, φ, p) =
0.622

1
φ

p
psat(T ) − 1

(19.12)

which, when plotted for fixed φ and p, gives the lines of constant relative
humidity. Solving (19.5) for ω yields

ω (T, h1+ω) =
h1+ω − ha (T )

hv (T )
, (19.13)

which gives the lines of constant enthalpy per unit mass of dry air, h1+ω.
Finally, lines of constant specific volume per unit mass of dry air follow from
(19.6) as

ω (T, v1+ω, p) =

(
pv1+ω

RaT
− 1

)

0.622 . (19.14)
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The psychrometric chart for p = 0.8 bar of Fig. 19.5 was obtained from
the above equations. The chart exhibits lines of constant enthalpy (h1+ω =
10, 20...120 kJ

kg ), constant relative humidity (φ = 0.1, 0.2, ..., 1), constant wet-

bulb temperature (Twb = 0, 2.5, 5, 7.5, ...32.5 ◦C), and of constant specific
volume (v1+ω = 0.99, 1.00, ..., 1.24). Lines for enthalpy, volume and wet-bulb
temperature have no meaning for φ > 1 and are not drawn. As can be seen
from the equations above, the lines of constant wet-bulb temperature, con-
stant enthalpy h1+ω and constant volume v1+ω are not straight. Their curva-
ture is so small, however, that in the chart they appear to be straight lines.
Also note that enthalpy and wet-bulb temperature lines are not parallel.

Differences in enthalpy values between diagrams obtained from the equa-
tions above and those commonly distributed could arise due to different ref-
erence states for enthalpies, while enthalpy differences will agree. Figure 19.6
shows a standard ASHRAE3 chart for p = 1.01325 bar; the process depicted
in the chart will be discussed in the next section.

19.5 Dehumidification

When moist air is cooled below its dewpoint, water condenses, and the humid-
ity ratio ω drops. This process forms the basis for dehumidification systems,
in which moist air is cooled below the dewpoint, some water condenses, and
then the air is reheated, so that a desired final state is reached, Figure 19.7
shows a schematic for such a process.

We study the process by means of an example, that also shows how to
use the psychrometric chart. A mass flow ṁa = 10 kg

s of outside air of state
1 (T1 = 30 ◦C, T 1

wb = 22.5 ◦C, p = 1 atm) is to be dehumidified and cooled
so that the final state 4 is T4 = 20 ◦C, φ4 = 0.7. To achieve this state,
the flow is first cooled isobarically. As long as the temperature is above the
dewpoint, the humidity ratio does not change. At state 2 (φ2 = 1), water
starts to condense. The moist air is cooled further to state 3, while some
water condenses. State 3 has the same humidity ratio as the desired final
state 4, which is finally obtained by isobaric heating. The process curve is
shown in the psychrometric chart, Fig. 19.6.

From the diagram, we read the following data for the process

ω1 = 0.0145 , ω2 = ω1 , ω3 = ω4 , ω4 = 0.0105 ,
φ1 = 0.55 , φ2 = 1 , φ3 = 1 , φ4 = 0.7 ,
T1 = 30 ◦C , T2 = 19 ◦C , T3 = 14.5 ◦C , T4 = 20 ◦C ,
T 1
wb = 22.5 ◦C , T 2

wb = T2 , T 3
wb = T3 , T 4

wb = 16.5 ◦C ,
h1
1+ω = 66 kJ

kg , h2
1+ω = 55 kJ

kg , h3
1+ω = 41 kJ

kg , h4
1+ω = 47 kJ

kg ,

v11+ω = 0.878 m3

kg , v21+ω = 0.847 m3

kg , v31+ω = 0.829 m3

kg , v41+ω = 0.844 m3

kg .

3 American Society of Heating, Refrigerating and Air Conditioning Engineers.
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Fig. 19.6 ASHRAE psychrometric chart for standard atmospheric pressure p0 =
1atm = 1.01325 bar. The line 1-2-3-4 depicts the dehumidification process of Ex-
ample 19.5.
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ṁa; !1; T1

ṁw; T3

Q̇13 Q̇34

ṁa; !4; T4

1 42 3

Fig. 19.7 Dehumidification by cooling (1-2), condensation (2-3), and reheating
(3-4)

We assume that the liquid water leaves the system at temperature T3 where
it has the enthalpy hf(T3) = cf (T3 − T0) = 60.61 kJ

kg , see (19.10). The mass
balance for water reads

ṁ1
v = ṁw + ṁ4

v =⇒ ω1ṁa = ṁw + ω4ṁa ,

so that the amount of water removed is,

ṁw = (ω1 − ω4) ṁa = 0.04
kg

s
.

The heat exchange rates for cooling and reheating are obtained from the first
law, which here reduces to Q̇ =

∑
out ṁαhα −∑in ṁαhα (no work, kinetic

and potential energies ignored), and hence

Q̇13 = ṁah
3
1+ω + ṁwhf (T3)− ṁah

1
1+ω = −248 kW ,

Q̇34 = ṁa

(
h4
1+ω − h3

1+ω

)
= 60 kW .

The cooling process requires a refrigeration system, some of the heat rejected
by the refrigeration system can be used for reheating.

The volume flows entering and leaving the system are

V̇1 = v11+ωṁa = 8.78
m3

s
, V̇4 = v41+ωṁa = 8.44

m3

s
.

19.6 Humidification with Steam

The humidity ratio of dry or moist air can be increased by adding water
either as steam or as liquid at pressure p. Steam injection increases humidity
ratio and temperature, as long as the steam temperature is above the air
temperature. Injection of liquid water, e.g., by spraying of fine mist, leads to
cooling of the air, due to evaporation. We study both processes by means of
examples, beginning with steam.

We study a steam injection process as depicted in Fig. 19.8. A volume flow

V̇1 = 10 m3

s of moist air with dry- and wet-bulb temperatures T1 = 14 ◦C,
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1 2

s
steam

moist air moist air

Fig. 19.8 Humidification of moist air by addition of steam

Twb,1 = 5 ◦C flows at a pressure of p = 0.8 bar. Superheated steam at Ts =

211 ◦C, ps = 0.8 bar is injected at a rate of ṁs = 306 kg
h . We ask for the final

state (state 2) of the air.
From the psychrometric chart Fig. 19.5 we find the properties of state 1

as

ω1 = 0.0032 , φ1 = 0.26 , h1
1+ω = 22.5

kJ

kg
, v11+ω = 1.035

m3

kg
,

and the enthalpy of the injected steam follows from (19.10) as hs = 2897 kJ
kg .

The mass flow of dry air is ṁa = V̇1/v
1
1+ω = 9.66 kg

s .
For this continuous flow process, the balances for vapor mass and energy

read

ω1ṁa + ṁs = ω2ṁa ,

ṁah
1
1+ω + ṁshs = ṁah

2
1+ω .

From these, we find

ω2 = ω1 +
ṁs

ṁa
= 0.012 ,

h2
1+ω = h1

1+ω + (ω2 − ω1)hs = 48
kJ

kg
.

With the above values for ω2 and h2
1+ω state 2 can be localized in the chart,

and we find the following other properties: φ2 = 0.6, T2 = 20 ◦C, T 2
wb =

14.5 ◦C, v21+ω = 1.07 m3

kg .

19.7 Evaporative Cooling

Next we consider cooling and moisturizing of air by addition of liquid water,
again by means of an example, see Fig. 19.9. The initial state is relatively dry
air at a pressure of p = 1bar, relative humidity φ1 = 0.2, and temperature
T1 = 40 ◦C, so that ω1 = 0.009. Liquid water at Tw = 20 ◦C is sprayed into
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1 2

w
water

moist air moist airwater spray

Fig. 19.9 Evaporative cooling: Water is sprayed into moist air and evaporates

the air, and we ask how much liquid must be added per kg of air in order to
lower the temperature to T2 = 30 ◦C. The conservation laws for water mass
and energy for this process read

ω1ṁa + ṁw = ω2ṁa ,

ṁah1+ω (T1, ω1) + ṁwhf (Tw) = ṁah1+ω (T2, ω2) . (19.15)

First, we solve the problem analytically. With the above relations for en-
thalpies (19.5, 19.10) we find

ω2 − ω1 =
ha (T1)− ha (T2) + ω1 [hv (T1)− hv (T2)]

hv (T2)− hf (Tw)
(19.16)

=

[
cap + ω1c

v
p

]
(T1 − T2)

cvp(T2 − TR) + hfg (TR)− cf (Tw − TR)
= 4.13

g

kg
= 0.00413 ,

and thus ω2 = 0.0131.
When one plots this process into the psychrometric chart, one notices that

the wet-bulb temperatures of both states are very close. To understand this
behavior, we consider two states α = 1, 2 with the same wet-bulb temperature
Twb so that, from (19.9),

ha (Twb)+ωsat (Twb) [hv (Twb)−hf (Twb)]=ha (Tα)+ωα [hv (Tα)−hf (Twb)] .
(19.17)

By taking the difference of this equation for α = 1 and α = 2 we find

ω2 − ω1 =
ha (T1)− ha (T2) + ω1 [hv (T1)− hv (T2)]

hv (T2)− hf (Twb)
. (19.18)

This almost agrees with the expression (19.16), the only difference is the value
of the temperature of the added water in the denominator. If the added liquid
water in (19.16) is at the wet-bulb temperature of state 1, then the wet-bulb
temperature will stay constant. Since under HVAC conditions the enthalpy of
the vapor exceeds the enthalpy of the added liquid by far, the denominators
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in (19.16) and (19.18) will be very close, and both equations will give almost
the same result.

In short, evaporative cooling, that is injection of liquid water into moist
air, can be well approximated as a process of constant wet-bulb temperature.
The psychrometric chart shows lines of constant Twb and can be used to eval-
uate these processes. Moreover, since the lines of constant enthalpy h1+ω are
almost parallel to the lines of constant wet-bulb temperature, some authors
suggest to describe evaporative cooling as a constant enthalpy process.

19.8 Adiabatic Mixing

We consider the adiabatic and isobaric mixing of two moist air streams of
states 1 and 2. Mass and energy balances relate the final state 3 to the
incoming streams as

ṁ1
a + ṁ2

a = ṁ3
a ,

ω1ṁ
1
a + ω2ṁ

2
a = ω3ṁ

3
a , (19.19)

ṁ1
ah

1
1+ω + ṁ2

ah
2
1+ω = ṁ3

ah
3
1+ω .

Elimination of ṁ3
a gives

ṁ1
a

ṁ2
a

=
ω3 − ω2

ω1 − ω3
=

h3
1+ω − h2

1+ω

h1
1+ω − h3

1+ω

, (19.20)

which implies that in the psychrometric chart the mixed state 3 lies on the
line connecting states 1 and 2, see Fig. 19.10 for illustration.

As an example we consider mixing of two streams at p = 1 atm and

T1 = 15 ◦C , V̇1 = 30 m3

min , φ = 1 ,

T2 = 30 ◦C , V̇2 = 40 m3

min , φ = 0.5 .

From the psychrometric chart we read

h1
1+ω = 42 kJ

kg , ω1 = 0.011 , v11+ω = 0.830 m3

kg ,

h2
1+ω = 63 kJ

kg , ω2 = 0.013 , v11+ω = 0.876 m3

kg .

The corresponding mass flows of dry air are

ṁ1
a =

V̇1

v11+ω

= 36.15
kg

min
, ṁ2

a =
V̇2

v21+ω

= 45.66
kg

min
,

and the final state is

ω3 =
ṁ1

aω1 + ṁ2
aω2

ṁ1
a + ṁ2

a

= 0.012 , h3
1+ω =

ṁ1
ah

1
1+ω + ṁ2

ah
2
1+ω

ṁ1
a + ṁ2

a

= 54
kJ

kg
.
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Fig. 19.10 Adiabatic mixing of moist air streams: In the psychrometric chart, the
mixed state 3 is on the line connecting the initial states 1 and 2

A special situation may arise due to the convexity of the saturation line
(φ = 1). It can happen that the line connecting the two initial states lies
outside the accessible region of the diagram. Figure 19.11 shows this for the
special case of mixing of two saturated states. In these cases, some liquid
water will fall-out as fog, and the mixture will be in the saturated state.
Obviously, formation of fog must be avoided in HVAC applications. The
relevant equations are again the conservation laws for air and vapor mass,
and for energy, which now read

ṁ1
a + ṁ2

a = ṁ3
a ,

ω1ṁ
1
a + ω2ṁ

2
a = ωsat (T3) ṁ

3
a + ṁw ,

ṁ1
ah

1
1+ω + ṁ2

ah
2
1+ω = ṁ3

ah
3
1+ω (T3, ωsat) + ṁwhw (T3) .

Due to the occurrence of ωsat (T3), these are three non-linear equations for
the three unknowns T3, ṁw, ṁ

3
a, which are best solved numerically.

The air on top of water bodies normally is saturated. When two streams of
water at different temperatures meet, fog will occur as a result of the mixing
of the two accompanying air flows.

19.9 Cooling Towers

Evaporate cooling is used in cooling towers for steam power plants, which
require a large amount of heat rejection in the condenser. Figure 19.12 shows
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Á = 1

Fig. 19.11 Adiabatic mixing with fall-out of liquid water

a schematic for a natural draft cooling tower, the hyperbolic shape is chosen
for structural strength and low material use.

The cooling water flow ṁcw comes from the condenser of the power plant,
where it was heated to T1 while the water circulating in the steam cycle was
condensed. The incoming cooling water is sprayed into the cooling tower,
where some of it evaporates, which leads to cooling of the liquid. Since moist
air is lighter than dry air—the low molar mass of vapor lowers the average
molar mass—moist air rises and leaves the tower, while fresh environmental
air at (T3, ω3) is drawn in at the bottom. Make-up water at ṁm, T5 is added
to compensate the loss of evaporated water and the mass flow ṁcw leaves
the cooling tower towards the condenser at T2. Normally, the make-up water
is drawn from rivers or lakes, and that is why power plants are build close
to these. As the rising moist air equilibrates with the environment, some of
the added water might condense, which leads to clouds that normally can be
seen above cooling towers.

The balances for air and water mass, and for energy, read

ṁa = const. ,

ṁcw + ṁm + ṁaω3 = ṁcw + ṁaω4 , (19.21)

ṁcwhf (T1) + ṁmhf (T5) + ṁah
3
1+ω = ṁcwhf (T2) + ṁah

4
1+ω .

19.10 Example: Cooling Tower

As an example we study the cooling tower for a Ẇ = 300MW power plant
with a thermal efficiency η = 0.4. In the condenser, the cooling water is
heated from T2 = 30 ◦C to T1 = 40 ◦C (the numbers refer to Fig. 19.12), thus
the mass flow of cooling water is
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ṁa; T4; !4 > !3

ṁcw; T1

ṁa; T3; !3
ṁcw; T2

ṁm; T5

make-up watercooling water out

cooling water in

environmental air in

Fig. 19.12 Air and water flows in a cooling tower

ṁcw =
Q̇cw

h1 − h2
=

Q̇cw

cf (T1 − T2)
=

1− η

η

Ẇ

cf (T2 − T1)
= 10.77

t

s
.

We ask for the required flows of air and make-up water, which both depend
on the state of the incoming and exiting moist air. For further computation
we assume that the incoming air is at T3 = 25 ◦C, φ3 = 0.5, so that ω3 = 0.01,
h3
1+ω = 51 kJ

kg , and that the make-up water is at T5 = 25 ◦C, so that, with

(19.10), hf (T5) = 104.5 kJ
kg , and hf (T1) = 167.2 kJ

kg , hf (T2) = 125.4 kJ
kg . Fur-

thermore, we assume that the exiting air is saturated, so that ω4 = ωsat (T4).
The remaining unknowns in this problem are the air mass flow ṁa, the

make-up water flow ṁm and the exit temperature T4. This problem differs
from evaporative cooling as discussed above, due to the large amount of
warm water sprayed into the air. The heat transfer between air droplets and
air could only be described by a detailed heat transfer analysis. To simplify
the problem, we assume T4 = 30 ◦C which implies h4

1+ω = 100 kJ
kg and ω4 =

ωsat (T4) = 0.0272. Then we find from the conservation laws

ṁa =
hf (T1)− hf (T2)

h4
1+ω − h3

1+ω − [ωsat (T4)− ω3]hf (T5)
ṁcw = 9.61

t

s
,

ṁm = ṁa [ωsat (T4)− ω3] = 0.165
t

s
.
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The river that provides the make-up water should have a sufficiently large
mass flow rate, so that the removal of the make-up water will not disturb
the ecological equilibrium of the river. An alternative to cooling towers is the
direct use of river or lake water as cooling water. In this case, the heat rejected
by the power plant is added to the river or lake. The related increase in water
temperature changes the chemical environment, e.g., the amount of oxygen
dissolved decreases with increasing temperature (Henry’s law, Sec. 22.10),
which might disturb the ecological equilibrium more than the removal of
some water for use in cooling towers.

Problems

19.1. Compression of Moist Air
Air initially at 1 atm, 25 ◦C and relative humidity of 60% is compressed
isothermally until condensation of water occurs. Determine the pressure at
the onset of condensation. Draw the process for the vapor into a T-s-diagram.

19.2. Compressed Air
To avoid condensation of water in compressed air lines, it might be neces-
sary to dehumidify the compressed air. To study this, consider a compressor
that draws outside air at 93 kPa, 14 ◦C and relative humidity of 40%, and
compresses it to 800 kPa. After compression, the air flows through ducts for
distribution, where it is cooled to the workshop temperature of 22 ◦C. Deter-
mine the dewpoint of the compressed air–will there be condensation in the
pipes?

19.3. Air Conditioning

An air conditioning system provides a volume flow of 3 m3

s of moist air at
1 atm, 22 ◦C and 50% relative humidity by conditioning outside air at 34 ◦C
and 50% relative humidity. For this, the outside air is first cooled and dehu-
midified, and then heated to the final temperature. Assume that the conden-
sate leaves the system at 10 ◦C and determine the temperature after dehu-
midification is completed, the amount of heat that must be withdrawn in the
cooling process, and the heat added in the heating process per unit mass of
dry air.

19.4. Air Conditioning
An air conditioning system provides air at 1 atm, 20 ◦C and 60% relative hu-
midity which is obtained from outside air at 38 ◦C and 70% relative humidity
as follows: The outside air is first cooled and dehumidified, and then heated
to the desired final temperature. The pressure stays constant throughout the
process. Determine the temperature after dehumidification is completed, and
assume that the condensate leaves the system at this temperature. Next, de-
termine the heat that must be withdrawn in the cooling process, and the
heat added in the heating process, both per unit mass of dry air. Finally,
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determine the mass flow and the volume flow of the air delivered, when the
cooling power of the system is 150 kW.

19.5. Humidification
An air conditioning system draws 22 m3

min outside air at 1 atm, 10 ◦C and 40%
relative humidity. The air is first heated to 22 ◦C, and then humidified by
injection of steam. The air leaves the system at 25 ◦C and 55% relative hu-
midity. Determine the rate of heat supply in the heating section, the mass
flow rate of steam required, and the temperature of the steam.

19.6. Humidification
At an elevated location, an air conditioning system draws 20 m3

min outside
air at 0.8 bar. With a psychrometer it is determined that the dry- and wet-
bulb temperatures of the incoming air are 10 ◦C and 2.5 ◦C, respectively. To
reach the desired state, the air is first heated to a temperature T2, and then
humidified by injection of superheated steam at 0.8 bar, 150 ◦C, where the
enthalpy is 2777.84 kJ

kg . The air leaves the system at 22 ◦C and 55% relative
humidity. Determine the mass flow rate of steam required, the rate of heat
supply in the heating section, and the temperature of the air before steam is
injected.

19.7. Dehumidification and Mixing
The outside air of a building is at 26 ◦C, and 90% relative humidity, the
pressure is 1 atm. The air conditioning system of the building is required to
provide air at 22 ◦C and 50% relative humidity. To reach that state, the flow
of incoming outside air is split into two streams.

One stream is dehumidified by cooling to 5 ◦C so that liquid water con-
denses, and subsequent reheating. The cooling system removes 6 kW from
this flow.

Then, the dehumidified stream is mixed with the other stream, so that the
desired state is reached.

For the solution use the psychrometric chart.

1. Determine the dry air mass flows of the two streams.
2. Determine the heat required for the reheating of the dehumidified stream.
3. The final air flow should not be faster than 3 m

s , determine the cross section
of the duct.

19.8. Air Conditioning

An air conditioning system draws a volume flow of 20 m3

min of outside air at
30 ◦C and 90% relative humidity (state 1). The air flow is divided in to two
streams, stream A and stream B. Stream A is first dehumidified by cooling to
5 ◦C (state 2), and then heated to state 3. Stream A and stream B are then
mixed adiabatically. The mixture has a dry-bulb temperature of 20 ◦C at 50%
relative humidity (state 4). The pressure is constant at 1 atm throughout the
process.
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1. Indicate the states 1,2,3,4 in the psychrometric chart.
2. Compute the ratios of dry air mass flows , and the values of the two mass

flows.
3. Compute the heat to be removed from (1-2) and added to (2-3) stream A.
4. Is it feasible to do both, heating and cooling with a single refrigeration

cycle? Discuss?

19.9. Evaporative Cooling

To provide air at a desired state, a volume flow of 10 m3

s outside air (dry-bulb
temperature 15 ◦C, wet-bulb temperature 10.8 ◦C) is first heated to 30 ◦C and
then cooled and humidified by spraying of liquid water. The final temperature
is 25 ◦C. Determine the relative humidity at the exit, the mass flow of water
added, and the heating rate required. Use the psychrometric chart.

19.10. Evaporative Cooling

An air conditioning system draws a volume flow of 50 m3

min of outside air at
40 ◦C and 10% relative humidity (state 1). To produce moist air of pleasant
conditions, this air is first cooled by evaporative cooling to state 2, and then
by heat exchange with a cooling system to the final state, with dry-bulb
temperature T3 = 20 ◦C at φ3 = 60% relative humidity. The pressure is
constant at 1 atm throughout the process.

1. Indicate the states 1,2,3 in the attached psychrometric chart.
2. Determine the mass flow of water required for evaporative cooling (1-2).
3. Determine the heat to be removed, Q̇23, in kilowatts.
4. A leak occurs in the system, and moist air at state 3 is mixed with outside

air. Determine the dry air mass flow of leaked air when the mixture has a
dry-bulb temperature of T4 = 22 ◦C.

19.11. Mixing of Two Moist Air Streams
Consider the adiabatic mixing of two streams of moist air at p = 1 atm.

Stream 1 is saturated moist air of 20 ◦C at a volumetric flow rate of 60 m3

min and
stream 2 is moist air of 34 ◦C, 20% relative humidity. The relative humidity
after mixing is 60%. Mark all relevant points on the psychrometric chart.

1. For the incoming flows and for the mixture, determine the values for en-
thalpy, temperature, relative humidity, humidity ratio, and specific vol-
ume.

2. Determine the dewpoint temperature and the wet-bulb temperature of the
mixture

3. Compute the volumetric flow of stream 2.

19.12. Mixing of Air Streams
Two streams of moist air are mixed adiabatically at 1 atm. One stream has
a dry-bulb temperature of 40 ◦C and a wet-bulb temperature of 32 ◦C, and
the mass flow rate is 8 kg

s . The other stream is saturated air at 18 ◦C with

a mass flow rate of 6 kg
s . Determine the state of the mixture (temperature,

specific humidity, relative humidity, enthalpy, volume flow).
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19.13. Air Conditioning in the Desert
In the desert: The outside air of a building is at 40oC, and 10% relative
humidity, the pressure is 1 atm. The air conditioning system of the building
is required to provide air at 20 ◦C and 50% relative humidity. To reach that
state, the flow of incoming outside air is split into two streams, A and B:

Stream A is spray-cooled by injection of liquid water to a relative humidity
of 100%, the mass flow of water (at 20 ◦C) injected is 10 kg

h .
Stream B is cooled to temperature TB by a standard refrigeration cycle

with COP of 3. Then, the spray-cooled stream A is mixed with stream B, so
that the desired end state is reached.

1. Make a sketch of the process, and enter the relevant points in the psychro-
metric chart.

2. Determine the temperature TB.
3. Determine the dry air mass flows of both streams.
4. Determine the heat removed from stream B, and the power requirement

of the refrigerator.

19.14. Cooling Tower
In a 500MW steam power plant, the condenser is cooled by a cooling water
flow that enters the condenser at 26 ◦C, and leaves at 40 ◦C. The cooling
water is cooled back to 26 ◦C in a natural-draft cooling tower which draws
environmental air at 1 atm with dry- and wet-bulb temperatures of 23 ◦C
and 18 ◦C, respectively, and discharges saturated air at 37 ◦C. The thermal
efficiency of the power plant is 43.5%. Determine mass flow of cooling water,
volume flows of air into and out of the cooling tower, and the required mass
flow of makeup water.

19.15. Clouds
Cumulus clouds are formed when air at the ground is heated, takes up mois-
ture, and then rises due to its buoyancy. While rising, the moist air expands,
more or less adiabatically, since the pressure decreases with height. During
expansion the temperature of the rising air is decreasing. When the tempera-
ture reaches the dew point temperature, water vapor condenses, and a cloud
is formed.

In order to compute the height of the clouds, assume that the pressure in
the atmosphere is given by the barometric formula 2.26.

Consider a fixed mass of moist air, that occupies a volume V , and has
enthalpy H . Consider the moist air as an ideal gas, so that its enthalpy and
volume are given as

H = ma

[
cap (Ta − TR) + ω

(
hfg (TR) + cvp (Ta − TR)

)]
,

V = ma (Ra + ωRv)
Ta

p
.

Here, ma is the mass of dry air, ω is the humidity ratio, cap, c
v
p and Ra, Rv

are the specific heats and gas constants of dry air and vapor, hfg (TR) is the
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heat of evaporation of water at TR = 273.15K, Ta is the temperature of the
rising moist air, and p is the local pressure.

1. Discuss the assumptions behind the equations for enthalpy and volume.
2. Show that the first law for an adiabatic process for the moist air gives

dH = V dp.
3. Show that the temperature of the rising moist air is given by

Ta (z) = TM

(
p (z)

p0

)Ra+ωRv
cap+ωcvp

,

where TM is the temperature of the moist air at the ground, just before
rising (at z = 0).

4. Employ the ideal gas law for the vapor to find its partial pressure in the
moist air as

pv (z) =
ω

ω + Ra

Rv

p0

[

1− α

T0
z

] g
αRa

.

5. The saturation pressure for the vapor is given by psat (Ta (z)), and water
will condense, when pv (z) > psat (Ta (z)). Set TM = 298K, ω = 0.01 (or
other values), and find the height zCloud, where clouds begin to form.



Chapter 20

The Chemical Potential

20.1 Definition and Interpretation

Changes in the composition of the mixture, either by addition or removal of
components or by reaction, change the properties of the mixture, in particular
the Gibbs free energy. A straightforward extension of the Gibbs equation
which accounts for the change of Gibbs free energy with varying composition
is

dG = −SdT + V dp+

ν∑

α=1

μ̄αdnα , (20.1)

where the new quantity μ̄α is the chemical potential. We have by definition,

μ̄γ =

(
∂G

∂nγ

)

T,p,nα(α 
=γ)

. (20.2)

The chemical potential is of fundamental importance in the thermody-
namics of inert and reacting mixtures. To understand its physical meaning,
we consider two mixtures of different composition and different pressures
but equal temperatures T , which are divided by a semi-permeable membrane
that only allows component γ to pass, as depicted in Fig. 20.1. Since pressure
and temperature are controlled, we know that in equilibrium the Gibbs free
energy of the system must assume a minimum,

G −→ Minimum . (20.3)

The total Gibbs free energy of the system is the sum of the Gibbs free
energies of the two parts I and II of the system, which depend only on the
pressure, temperature and mole numbers within their portion of the system,

G = GI
(
T, pI, nI

1, . . . , n
I
γ , . . . , n

I
νI

)
+GII

(
T, pII, nII

1 , . . . , n
II
γ , . . . , n

II
νII

)
.

(20.4)
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membrane
permeable for  γ only

T; pI; nI
α T; pII; nII

α

I II

Fig. 20.1 System divided by semi-permeable membrane

Only the mole numbers nI
γ and nII

γ = nγ − nI
γ can change due to migration

through the semi-permeable membrane. All other mole numbers (nI
α, n

II
α ),

the pressures (pI, pII) and the temperature T are fixed. Thus, the condition
for equilibrium of the system, where G is at a minimum, is

(
∂GI

∂nI
γ

)

T,pI,nI
α(α
=γ)

+

(
∂GII

∂nI
γ

)

T,pII,nII
α (α
=γ)

= 0 (20.5)

or, since nI
γ + nII

γ = nγ = const. and thus ∂
∂nI

γ
= − ∂

∂nII
γ
,

μ̄I
γ =

(
∂GI

∂nI
γ

)

T,pI,nI
α(α
=γ)

=

(
∂GII

∂nII
γ

)

T,pII,nII
α (α
=γ)

= μ̄II
γ . (20.6)

In short, in thermodynamic equilibrium, the chemical potentials of the sub-
stance γ that can pass through a semipermeable membrane are equal,

μ̄γ

(
T, pI, nI

α

)
= μ̄γ

(
T, pII, nII

α

)
. (20.7)

Just as the continuity of temperature at diathermic walls allows us to measure
temperature, the continuity of the chemical potential at semi-permeable walls
allows us its measurement, at least in principle. And just as temperature
differences lead to heat flow and allow for power generation, differences in
chemical potential cause particle flow and allow for power generation, as will
be discussed in Section 20.7.

Nevertheless, the chemical potential is a rather abstract quantity, and we
need to study it further, and relate it to quantities we are more familiar with.

20.2 Properties of the Chemical Potential

The Gibbs free energy G (T, p, nβ) is an extensive quantity, which implies
that it is a homogeneous function of mole number,

zG (T, p, nβ) = G (T, p, znβ) . (20.8)
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We take the derivative of the above with respect to z, to obtain

G (T, p, nβ) =

ν∑

α=1

∂G (T, p, znβ)

∂ (znα)

d (znα)

dz

=

ν∑

α=1

∂G (T, p, znβ)

∂ (znα)
nα =

ν∑

α=1

μ̄α (T, p, znβ)nα . (20.9)

This must hold for all z. Since the left hand side is independent of z, the
right hand side should not depend on z as well. This is so, when the chemical
potential does not depend on all mole numbers nβ, but only on quotients like
the mole ratio Xβ , which is independent of z, since Xβ (nγ) =

nβ

n , so that
Xβ (znγ) = Xβ (nγ). Thus we have

μ̄α = μ̄α (T, p,Xβ) . (20.10)

With this we obtain from (20.9)

G (T, p, nβ) =

ν∑

α=1

nαμ̄α (T, p,Xβ) . (20.11)

According to (20.11), in a mixture the total Gibbs free energy is the sum of
the component mole numbers times their chemical potentials, G =

∑
nαμ̄α.

Since

G = H − TS =

ν∑

α=1

nαh̄α − T

ν∑

α=1

nαs̄α =

ν∑

α=1

nα

(
h̄α − T s̄α

)
, (20.12)

this implies that the chemical potential is the specific Gibbs free energy of
the component in the mixture, in the sense that

μ̄α (T, p,Xβ) = h̄α (T, p,Xβ)− T s̄α (T, p,Xβ) . (20.13)

Here, h̄α (T, p,Xβ) and s̄α (T, p,Xβ) are the specific enthalpy and entropy of
component α in the mixture at temperature T , pressure p, and composition
Xβ .

The molar Gibbs free energy of the mixture is defined as

ḡ =
G

n
=

ν∑

α=1

Xαμ̄α (T, p,Xβ) . (20.14)

For a single substance the chemical potential is equal to the molar Gibbs free
energy,

G = nḡ = nμ̄ so that μ̄ (T, p) = ḡ (T, p) . (20.15)
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For this reason, one sometimes finds the specific Gibbs free energy denoted
as the chemical potential. For the description of the component, it is useful
to distinguish between the Gibbs free energy ḡα (T, p) that describes the
component α alone at (T, p) and the chemical potential μ̄α (T, p,Xβ) that
describes the component α in a mixture at (T, p) with mole fractions Xβ ,
β = 1, . . . , ν.

Since the order of derivatives can be exchanged, we have the symmetry
property

∂μ̄β

∂nγ
=

∂2G

∂nγ∂nβ
=

∂2G

∂nβ∂nγ
=

∂μ̄γ

∂nβ
. (20.16)

20.3 Gibbs and Gibbs-Duhem Equations

We revisit the Gibbs equation for the mixture (20.1),

dG = −SdT + V dp+
ν∑

α=1

μ̄αdnα . (20.17)

The Gibbs equation for molar quantities of the mixture follows by setting
G = nḡ, S = ns̄, V = nv̄ and nα = nXα as

dḡ = −s̄dT + v̄dp+

ν∑

α=1

μ̄αdXα . (20.18)

Alternative forms of the Gibbs equation can be obtained through Legendre
transforms, which yield, e.g.,

Tds̄ = dū + pdv̄ −
ν∑

α=1

μ̄αdXα . (20.19)

As discussed in Sec. 16.2, the Gibbs equation leads to Maxwell relations,
such as
(
∂μα

∂T

)

p,Xβ

= −
(

∂s̄

∂Xα

)

T,p,Xβ

,

(
∂μα

∂p

)

T,Xβ

=

(
∂v̄

∂Xα

)

T,p,Xβ

.

(20.20)
With another Legendre transform (20.17) can be rewritten as

dG = −SdT + V dp+

ν∑

α=1

d (μ̄αnα)−
ν∑

α=1

nαdμ̄α , (20.21)
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which, together with (20.11), yields the Gibbs-Duhem relation

0 = −SdT + V dp−
ν∑

α=1

nαdμ̄α . (20.22)

Taking the derivative of the Gibbs-Duhem relation (20.22) with respect to a
mole number nγ yields, with the symmetry property (20.16),

ν∑

α=1

nα

(
∂μ̄α

∂nγ

)

T,p,nβ(β �=γ)

=

ν∑

α=1

nα

(
∂μ̄γ

∂nα

)

T,p,nβ(β �=γ)

= 0 . (20.23)

20.4 Mass Based Chemical Potential

It is an easy exercise to translate the above mole based relations into mass
based relations, which read

dG = −SdT + V dp+
ν∑

α=1

μαdmα , (20.24)

dg = −sdT + vdp+

ν∑

α=1

μαdcα , (20.25)

μα =

(
∂G

∂mγ

)

T,p,mα(α
=γ)

, (20.26)

μα = μα (T, p, cβ) , (20.27)

G (T, p,mβ) =

ν∑

α=1

mαμα (T, p, cβ) , (20.28)

μα (T, p, cβ) = hα (T, p, cβ)− Tsα (T, p, cβ) , (20.29)

μ (T, p) = g (T, p) , (20.30)

∂μβ

∂mγ
=

∂μγ

∂mβ
, (20.31)

0 = −SdT + V dp−
ν∑

α=1

mαdμα , (20.32)

ν∑

α=1

mα

(
∂μα

∂mγ

)

T,p,mβ(β �=γ)

=

ν∑

α=1

mα

(
∂μγ

∂mα

)

T,p,mβ(β �=γ)

= 0 . (20.33)

The verification of the above is left to the reader.
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20.5 The Chemical Potential for an Ideal Mixture

The Gibbs free energy of an ideal mixture at (T, p) is given by

G =

ν∑

α=1

nαμ̄α =

ν∑

α=1

nαḡα +Hmix − TSmix , (20.34)

where
∑

α nαḡα is the Gibbs free energy of the unmixed state, and Hmix −
TSmix is the Gibbs free energy of mixing. For the ideal mixture Hmix = 0,
and Smix is given by (18.26) so that

G =

ν∑

α=1

nαμ̄α =

ν∑

α=1

nαḡα + R̄T

ν∑

α=1

nα lnXα . (20.35)

Thus the chemical potential of the ideal mixture is the sum of the Gibbs free
energy of the component alone at mixing conditions (T, p) plus a contribution
from the entropy of mixing,

μ̄α (T, p,Xβ) = ḡα (T, p) + R̄T lnXα . (20.36)

20.6 The Chemical Potential for an Ideal Gas Mixture

Using that g = h − Ts and the property relations for the ideal gas, the
chemical potential of an ideal gas is

μ̄α (T, p,Xβ) = h̄α (T )− T s̄0α (T ) + R̄T ln
Xαp

p0
. (20.37)

As an example we study two ideal gas mixtures at
(
T, pI
)
and

(
T, pII

)
,

separated by a semi-permeable membrane that only allows component ν to
pass. The equilibrium condition (20.7) is

μ̄ν

(
T, pI, XI

β

)
= μ̄ν

(
T, pII, X II

β

)
, (20.38)

and evaluation with (20.37) gives

X I
νp

I = X II
ν pII . (20.39)

Thus, we find the intuitive result that for an ideal gas the partial pressure
pν = Xνp is continuous at the ideal semipermeable membrane. This means,
that the component that can pass the membrane behaves as if the mem-
brane is not present, it is homogeneously distributed over the entire accessible
volume.
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20.7 The Chemical Potential as Driving Force for
Mass Transfer

We consider the set-up shown in Fig. 20.2: Two reservoirs I and II contain
mixtures of different temperature T , pressure p, and composition Xα, which
remain constant at all times. Through semipermeable membranes the two
reservoirs are connected to a heat and mass conducting duct. Due to the
non-equilibrium between the two reservoirs we expect flows of mass and heat.
The duct might contain devices to extract work from these flows.

I

II

T I; pI; ¹I
α;X

I
α

T II; pII; ¹II
α;X

II
α

ṅγ Q̇I

Q̇II

Ẇ

ṅγ

Fig. 20.2 Chemical potential difference as driving force

The membranes let only component γ pass and we consider only steady
state processes. Since only component γ passes through membranes and duct,
the first and second law for the duct read

ṅγ

(
h̄II
γ − h̄I

γ

)
= Q̇I+Q̇II−Ẇ , ṅγ

(
s̄IIγ − s̄Iγ

)
=

Q̇II

T II
+
Q̇I

T I
+Ṡgen . (20.40)

Elimination of the heat rejected to reservoir II gives, with s̄γ =
h̄γ−μ̄γ

T ,

Ẇ + T IIṠgen = ṅγT
II

[
μ̄I
γ

T I
− μ̄II

γ

T II

]

+
(
ṅγ h̄

I
γ + Q̇I

) [

1− T II

T I

]

. (20.41)

The right hand side of this equation vanishes in the case of thermal and
chemical equilibrium, where T I = T II and μI

γ = μII
γ .

Power can be generated from the differences in temperature and chemical
potential. We have studied heat engines, which are driven by temperature
differences, in great detail in previous chapters. The generation of power from
differences in the chemical potential, known as osmotic power generation, will
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be discussed further below. The maximum possible power is generated when
transfer through the duct occurs fully reversibly, so that Ṡgen = 0.

When the duct is fully irreversible, so that no power is generated, Ẇ = 0,
the amount of entropy produced (which must be non-negative) is

Ṡgen = ṅγ

[
μ̄I
γ

T I
− μ̄II

γ

T II

]

+
(
ṅγh̄

I
γ + Q̇I

) [ 1

T II
− 1

T I

]

≥ 0 . (20.42)

As before, in Sec. 4.10, we interpret the entropy generation in terms of
thermodynamic forces and fluxes. The forces are the differences in reduced

chemical potential,
[
μ̄I
γ

T I − μ̄II
γ

T II

]
, and inverse temperature,

[
1

T II − 1
T I

]
, between

the reservoirs. The related fluxes are the matter flow ṅγ and the total energy

flow
(
ṅγ h̄

I
γ + Q̇I

)
. Previously, when we discussed Newton’s law of cooling,

we had only one flux-force pair, and set the flux proportional to the force.
For the present setting, we have two such pairs, which offers a richer set of
transport laws. Indeed, we allow for both forces to affect both fluxes, and write
fluxes and forces as vectors, with a matrix of coefficients αij ,

⎡

⎣
ṅγ

ṅγ h̄
I
γ + Q̇I

⎤

⎦ = A

⎡

⎣
α11 α12

α21 α22

⎤

⎦ ·

⎡

⎢
⎣

μ̄I
γ

T I − μ̄II
γ

T II

1
T II − 1

T I

⎤

⎥
⎦ . (20.43)

As always, we made the transfer surface A explicit. To ensure positive entropy
generation, the matrix of transport coefficients αij must be positive definite,
which is the case for α11 > 0 and α11α22 − α12α21 > 0.

We note that transfer of matter does not only occur due to differences in
pressure (typical flow), and composition (diffusion), but also in response to
a temperature gradient (thermodiffusion, or Soret effect, Charles Soret 1854-
1904) ). Heat transfer does not only occur due to a temperature difference,
but also due to differences in pressure or composition (Dufour effect, Louis
Dufour 1832-1892).

A deep discussion of laws of this type reveals the Onsager reciprocity
relations (Lars Onsager, 1903-1976), which for this case state that the matrix
must be symmetric, α21 = α21. Careful experiments show that the so-called
cross effects, which are described by the off-diagonal terms in the matrix, are
less important than the direct effects, which are described by the diagonal
terms. In engineering applications the cross effects are often ignored.1

1 The arguments we use here are typical in the field of Non-equilibrium Thermo-
dynamics. A thorough yet accessible introduction into this topic is presented in:
S. Kjelstrup, D. Bedeaux, E. Johannessen, J. Gross: Non-equilibrium Thermody-
namics for Engineers, World Scientific, Singapore 2010.
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When the flow ṅγ goes from I to II as shown, the reduced chemical potential
μ̄I
γ

T I must be larger than
μ̄II
γ

T II . In other words, a difference in chemical potential
causes a flow against the gradient of the (reduced) chemical potential.

When we ignore temperature differences (T I = T II = T ), we can expect a
linear law of the form

ṅν = κA
[
μ̄I
γ − μ̄II

γ

]
, (20.44)

where κ = α11/T is a positive constitutive coefficient, and A is the cross
section of the duct.

In the special case when both mixtures are ideal, and have the same pres-

sures and temperatures, we have μ̄I
γ−μ̄II

γ = R̄T ln
XI

γ

XII
γ
: there will be a particle

flux unless both mole fractions are equilibrated.
In short, the desire to equilibrate the chemical potential leads to a flux

of that component that can pass the duct. The flux direction is against the
gradient, which reduces the gradient. According to Eq. (20.41), this flux can
be used to produce power Ẇ > 0. Inversion of the flux, that is forcing flow
in the direction of the gradient, requires power input, Ẇ < 0. This is fully
equivalent to what we have seen on temperature differences: Heat will flow
from hot to cold—against the gradient—by itself, and this heat flux can be
used to produce power in a heat engine. Transferring heat from cold to hot—
in the direction of the gradient—requires work input, i.e., a heat pump.

Problems

20.1. Symmetry Property for Ideal Mixture
For an ideal mixture, prove the symmetry property (20.16), as well as (20.23).

20.2. Chemical Potential for Ideal Mixture
Determine the chemical potential of an ideal mixture (20.36) by taking the

derivative of (20.35), μ̄α =
(

∂G
∂nα

)

T,p,nγ

.

20.3. Mass Based Chemical Potential
Derive the equations for the mass based chemical potential in Sec. 20.4.

20.4. Mass Based Chemical Potential for Ideal Mixture
Rewrite the Gibbs free energy of an ideal mixture (20.35) in terms of mass
based quantities, G (T, p,mβ) and determine the mass based chemical poten-

tial from the derivative, μα =
(

∂G
∂mα

)

T,p,mγ

. Show that μ̄α = Mαμα.

20.5. Gas Mixture
A semipermeable membrane which allows only hydrogen to pass divides two
containers. In thermodynamic equilibrium container A holds 800 g of nitro-
gen and 150 g of hydrogen, while container B holds 1800 g of carbon dioxide
and 100 g of hydrogen. Container A is kept at a pressure of 20 bar and the
temperature of both containers is 300K.
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1. Determine the pressure in container B.
2. Determine the minimum work to separate the hydrogen out of container

A.

20.6. Gas Mixture
A semipermeable membrane which allows only hydrogen to pass divides two
containers which are kept at 300K. Initially, container A holds 1000 g of CO2

at 10 bar, and container B holds 300 g of O2 at 20 bar. Now 400 g of H2 are
added to the system, such that the pressures of A and B do not change.

1. Determine the amounts of H2 in containers A and B.
2. Determine the minimum work to separate the H2 out of container A.

20.7. Gas Mixture
A semipermeable membrane which allows only N2 to pass divides two con-
tainers which are kept at 350K. Initially, container A holds 2 kg of CO2 at
10 bar, and container B holds 3 kg of Xe at 20 bar. Now an unknown amount
of nitrogen is added to the system, such that the pressures of A and B do not
change. After thermodynamic equilibrium is established, it is observed that
the volume of container A has increased by 25%.

1. Determine the amount of N2 added to container A.
2. Determine the amount of N2 added to container B.
3. Determine the minimum work to separate the nitrogen out of container A.

20.8. Gas Separation
A binary mixture of ideal gases (α, β) is to be partly separated. The mixture
is at temperature T = 300K and the initial mole fraction is XI

α. The goal is
to separate half of the initial amount of α from the rest.

1. Determine the mole fraction of α in the mixture remaining after separation.
2. Show that the minimum work for separation is the difference in the entropy

of mixing of the final and initial mixtures, times the temperature of the
mixture.

3. Determine the minimum work for the required separation, per mole of
separated component α.

4. Suppose a semipermeable membrane exists that allows only α to pass.
Determine the pressure to which the mixture has to be compressed in
order to achieve the desired separation; assume the separated gas is at
pressure p0.

5. Specify the results for minimum separation work and pressure for XI
α =

0.5, 0.1, 0.01, 0.001, 0.0001 and discuss the results. Would you think mem-
brane separation makes sense? What would be the alternatives?

20.9. Ideal Gas in Gravitational Field
Show that in a mixture of ideal gases at temperature T0 in the gravitational
field (γ = 9.81 m

s2 ) the individual components obey the barometric formula.
Hint: Minimize free energy to show first that μ̄β− R̄T0+Mβγz = const., and
then evaluate the chemical potential for ideal gases.
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20.10. Binary Mixture in Gravitational Field
An ideal liquid mixture of incompressible components α = 1, 2 is enclosed
in a piston cylinder system in the gravitational field. The pressure at the
piston is p, and the system is kept at constant temperature T . The total mole
numbers of the components are nα, and their local mole densities are denoted

as να (z) with nα =
∫H
0 να (z)Adz, where A is the constant cross section of

the cylinder, z is the height coordinate, andH is actual height. To simplify the
computation, assume that the total mole density is constant, ν1 (z)+ν2 (z) =
ν0. By minimizing G+Epot (see Chapter 17) under constraints of given mole
numbers nα, find an equation for the mole fraction as function of height,

X1 (z) =
ν1(z)
ν0

. Show that the mole fraction depends on the difference between
molar masses Mα. Simplify for the case of a dilute solution, where X1 � 1.

20.11. Gibbs Equation
Show that the Gibbs equation (20.25) leads to the alternative forms

Tds = du + pdv −
∑

α

μαdcα , df = −sdT − pdv +
∑

α

μαdcα .

20.12. Equilibrium in a Mixture
Consider a mixture in equilibrium under controlled volume, energy and par-
tial masses. Maximize entropy

S =

∫
ρsdV .

under the constraints

U =

∫
ρudV , mα =

∫
ρcαdV ,

and show that in equilibrium pressure p, temperature T and chemical poten-
tial μα of all components are homogeneous. Use the Gibbs equation in the
form

Tds = du+ pdv −
∑

α

μαdcα .

Remark: s, u, v, μα are specific quantities (per unit mass of mixture); dm is
the mass element of mixture. Use Lagrange multipliers.



Chapter 21

Mixing and Separation

21.1 Osmosis and Osmotic Pressure

The word “osmosis” comes from the greek word for pushing and refers to the
passing of a substance through a semi-permeable membrane. Applications
are, e.g., cell membranes in the human body, or membranes for desalination.
For the discussion of osmotic phenomena we shall assume ideal mixtures only.

permeable for
solvent  ν only

pure solvent solution

T; pps T; ps;Xα

Fig. 21.1 Pressure difference at a membrane

The osmotic pressure is the pressure on the membrane due to those compo-
nents of the mixture that cannot pass. Specifically, we consider a membrane
which separates the pure solvent ν at pressure pps from an ideal mixture at
pressure ps, see Fig. 21.1. The osmotic pressure is defined as the pressure
difference over the membrane in equilibrium,

posm = ps − pps . (21.1)

The equilibrium condition for the membrane is

μ̄ν (T, pps) = μ̄ν (T, ps, Xα) . (21.2)

For the pure solvent, the chemical potential is just the specific Gibbs free
energy, and we find by Taylor expansion

H. Struchtrup, Thermodynamics and Energy Conversion, 467
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μ̄ν (T, pps) = ḡν (T, pps) = ḡν (T, ps) +

(
∂ḡv
∂p

)

T,p=ps

(pps − ps)

+
1

2

(
∂2ḡv
∂p2

)

T,p=ps

(pps − ps)
2 + . . . (21.3)

From now on, we assume that both, solution and solvent, are incompressible

liquids. In the equation above,
(

∂ḡv
∂p

)

T
= v̄ν is the molar volume of the solvent

alone which is assumed to be constant (incompressible!), so that
(

∂nḡv
∂pn

)

T
=

(
∂n−1v̄v
∂pn−1

)

T
= 0 (n ≥ 2), and

μ̄ν (T, pps) = ḡν (T, ps)− v̄νposm . (21.4)

The chemical potential of the solvent in the ideal mixture is

μ̄ν (T, ps, Xα) = ḡν (T, ps) + R̄T lnXν , (21.5)

and the equilibrium condition (21.2) reduces to

posm = − R̄T

v̄ν
lnXν . (21.6)

One kilogram of seawater contains 35 g sodium chloride (NaCl, with MNaCl =
58.5 g

mol) and 965 g of freshwater. It has a mass density of about 1029 kg
m3 , i.e.,

one litre of seawater contains 36 g of NaCl and 993 g of freshwater. Since NaCl
dissociates into Na+ and Cl− ions, the osmotic pressure of seawater at 277K
(4 ◦C) is

pswosm = − R̄T

Mwvw
ln

nw

nw + nNa+ + nCl−

= − R̄T

Mwvw
ln

1

1 + 2MwmNaCl

mwMNaCl

= 28.2 bar. (21.7)

Recall that solutions of salt in water are not ideal mixtures, unless they are
diluted, see Sec. 18.14.

21.2 Osmotic Pressure for Dilute Solutions

The osmotic pressure assumes a rather interesting form in the limit of dilute
solutions, where most of the solution is solvent ν, that is nν � nα holds.
Then we can expand
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− lnXν = − ln
nν

n
= − ln

nν

nν +
∑ν−1

α=1 nα

= ln

(

1 +
ν−1∑

α=1

nα

nν

)

�
ν−1∑

α=1

nα

nν

(21.8)
so that, when we also use that nν v̄ν = V is the volume of the mixture, the
osmotic pressure is

posm =
ν−1∑

α=1

nαR̄T

V
. (21.9)

The dissolved substances in a dilute solution exert an ideal gas pressure on
the membrane; the osmotic pressure is the sum of these ideal gas pressures.

21.3 Example: Pfeffer Tube

An instructive example for the strength of the osmotic forces is the Pfeffer
tube (Wilhelm Pfeffer, 1845-1920), depicted in Fig. 21.2. The solvent is water.
A tube is closed by a membrane that only lets the solvent ν pass, and is set
vertically into a bath of solvent. Some solvent will pass the membrane, so
that the solvent inside and outside the tube are at the same level. Then salt
is added to the tube. This leads to an additional amount of solvent drawn
from the bath into the tube; in the final equilibrium, the osmotic pressure
and the hydrostatic pressure are balanced.

Since this is a system in which temperature and (environmental) pressure
are controlled, the total Gibbs free energy G = H −TS+Epot of the system
will minimize. Drawing solvent into the tube increases the entropy of the

p0

pps
ps

H1

H2

g

Fig. 21.2 Pfeffer tube
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dissolved particles, which now have a greater volume to access, but also in-
creases the potential energy. The final equilibrium state, a balance of height
increasing entropic force and height reducing energetic force, will be calcu-
lated next under some simplifying assumptions. The goal is the computation
of the height H1 in the tube.

Directly at the membrane, the hydrostatic pressures of the solution in the
tube and solvent in the bath are

ps = p0 + ρsgH1 , pps = p0 + ρνgH2 ,

and these are balanced by the osmotic pressure, so that

posm = ps − pps = ρsgH1 − ρνgH2 .

With the simplified expression (21.9) we find at first.

R̄T

V g

ν−1∑

α=1

nα = ρsH1 − ρpsH2 .

V = AH1 is the volume of solution in the tube of cross section A. The
density of the solution is ρs = ρν +

∑ν−1
α=1 ρα � ρps +

∑ν−1
α=1

mα

V , where we
approximated the density of the solvent in solution, ρν , by the density of the
pure solvent, ρps. After multiplication with H1/ρps we obtain a quadratic
equation for H1,

H2
1 +H1

(
1

ρpsA

ν−1∑

α=1

mα −H2

)

− R̄T

Aρpsg

ν−1∑

α=1

nα = 0 .

Only the positive solution for H1 has physical meaning,

H1 =
1

2

(

H2 − 1

ρpsA

ν−1∑

α=1

mα

)

+

√√
√
√1

4

(

H2 − 1

ρpsA

ν−1∑

α=1

mα

)2

+
R̄T

Aρpsg

ν−1∑

α=1

nα .

As example we consider water (ρps = 1000 kg
m3 ) in a tube of cross section

A = 1 cm2 in which
∑ν−1

α=1 mα = mNaCl = 1 g of cooking salt (NaCl) is
dissolved. The salt dissolves into Na+ and Cl− ions, and thus we have to be
careful in the computation of the mole number of dissolved particles, which
is (with MNaCl = 58.5 g

mol )

ν−1∑

α=1

nα = nNa+ + nCl− = 2
mNaCl

MNaCl
= 3.419 10−2mol .
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When the tube is immersed into the pure solvent by H2 = 1 cm, the
solution in the tube will reach a height of H1 = 9.29m, which corresponds
to about 1 litre of water in the tube! This shows the enormous forces that
are present in osmosis, which are due to the desire of the salt to increase the
entropy of mixing by making the accessible volume (i.e., the volume of the
solution), as large as possible.

Due to the difference in density between salt solution and pure water, the
height H1 becomes smaller as the tube is pushed deeper into the solvent (i.e.,
for larger H2), as the problems show, it might even happen that H2 > H1.

The strong desire of the salt to draw water can be used (and was widely
used in the past) to cure meat: While water can pass cell membranes, salt
cannot, and thus a piece of meat or fish immersed in salt will be depleted
from some water. The same is true for bacteria on the meat which will die
from dehydration, and thus cannot spoil the meat.

Since seawater contains more salt than the cells of the human body, drink-
ing seawater is deadly: The seawater will draw water from the cells, which
will be damaged by dehydration. In fact, after drinking seawater one will be
more thirsty than before.

Another example for osmotic forces is putting sugar on strawberries, which
will draw water (juice) out of the strawberries that mixes with the sugar. The
opposite can be seen when raisins are put into water: the sugar inside the
raisin draws water in, and the raisin swells.

21.4 Desalination in a Continuous Process

In the previous section we have seen that salt can draw water through a
semipermeable membrane. In the inverse process, fresh water is obtained
from saltwater, by pressing the saltwater against a semipermeable membrane,
which only allows freshwater to pass, e.g., think of increasing the pressure
on the saltwater column in the Pfeffer tube. We ask for the minimum work
required for desalination, that is for the work required in a reversible process.

Figure 21.3 shows the general set-up for a continuous desalination plant,
without specifying how desalination is taking place inside the plant, which is
drawn as a grey box. A mole flow ṅsw of salt water with salt mole fraction
Xsw enters the plant at environmental pressure and temperature (p0, T0).
Work Ẇ is supplied to the plant, which also exchanges heat Q̇ with the
environment. Two streams leave the plant at (p0, T0), a stream of freshwater
ṅfw, and the brine stream ṅb which contains all salt and has a salt mole
fraction Xb > Xsw.
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ṅsw;Xsw; T0; p0 ṅfw; T0; p0

ṅb;Xb; T0; p0

¡Q̇ ¡Ẇ

T0

salt water freshwater

brine

desalination device

Fig. 21.3 Continuous desalination

This is a best case scenario, where the streams entering and leaving the
plant are in thermal (T0) and mechanical (p0) equilibrium with the environ-
ment. The following calculation will assume reversible processes, and thus
the actual work that a real plant requires will be larger. It is the task of
the engineer to design a process that uses as little work as possible, and the
calculation of the minimum work will serve as an important guideline on the
quality of the actual process devised.

The overall mole balance and the mole balance for salt read

ṅsw = ṅfw + ṅb , ṅswXsw = ṅbXb . (21.10)

With the freshwater/seawater ratio y = ṅfw/ṅsw we have

Xb =
Xsw

1− y
; (21.11)

note that y reaches its maximum ymax = 1−Xsw for full desalination, where
the brine would be pure salt (Xb = 1).

First and second law for the plant, which exchanges heat only at T0, read

∑

out

ṅαh̄α−
∑

in

ṅαh̄α = Q̇−Ẇ ,
∑

out

ṅαs̄α−
∑

in

ṅαs̄α =
Q̇

T0
+Ṡgen , (21.12)

all properties are taken at environmental conditions (p0, T0). Elimination of
Q̇ gives

Ẇ = −T0Ṡgen −ΔĠ0 , (21.13)

where

ΔĠ0 =
∑

out

ṅα

(
h̄α − T0s̄α

)−
∑

in

ṅα

(
h̄α − T0s̄α

)

=
∑

out

ṅαμ̄α (T0, p0, Xβ)−
∑

in

ṅαμ̄α (T0, p0, Xβ) . (21.14)
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Since all flows are at (p0, T0), ΔĠ0 is the difference in Gibbs free energy at
environmental conditions flowing through per unit time.

According to (21.4), for reversible operation, Ṡgen = 0, the work required

for desalination is given by −ΔĠ0. To simplify the problem we assume ideal
mixtures, where μ̄α (T0, p0, Xβ) = ḡα (T0, p0) + R̄T0 lnXα, and find the min-
imum work as

Ẇrev = −ΔĠ0 = T0ΔṠ0 = R̄T0

[
∑

in

ṅα lnXα −
∑

out

ṅα lnXα

]

. (21.15)

Inserting the proper flows and mole numbers yields at first

Ẇrev = R̄T0 [ṅswXsw lnXsw + ṅsw (1−Xsw) ln (1−Xsw)

− (ṅfw lnXfw + ṅbXb lnXb + ṅb (1−Xb) ln (1−Xb))] ; . (21.16)

note that the freshwater outflow is unmixed, i.e., Xfw = 1. After some alge-
bra, this finally assumes the form

Ẇrev = −posmV̇fw

[
(1− y) ln (1− y) + (1−Xsw) ln (1−Xsw)

y ln (1−Xsw)

− (1− y −Xsw) ln (1− y −Xsw)

y ln (1−Xsw)

]

, (21.17)

where V̇fw = v̄fwṅfw is the volume flow of freshwater produced, and posm =

− R̄T
v̄fw

ln (1−Xsw) is the osmotic pressure of the incoming seawater.

The minimum work required per liter of seawater, Ẇrev/V̇fw, depends on
the salt concentration Xsw in the incoming seawater, and on the extraction
ratio y. In the limit that only a small amount of freshwater is extracted,
y � 1, the work is proportional to the osmotic pressure of the seawater,

Ẇrev (y = 0) = −posmV̇fw . (21.18)

For the case of complete desalination, y → ymax = (1−Xsw), the work
required is larger,

Ẇrev (ymax) = −posmV̇fw

(

1 +
Xsw lnXsw

(1−Xsw) ln (1−Xsw)

)

= −ṅswTΔs̄mix ,

(21.19)
where Δs̄mix is the entropy of mixing for mixing brine and freshwater per
mole of mixture, i.e., for one mole of seawater. It should be noted that the
assumption of ideal mixture will not hold for large salt content, thus this is
a hypothetical value.

Figure 21.4 shows the work required as function of the freshwater ratio y.
For smaller values of y the increase in work requirement is not too large, and
one might consider to go to values of y = 0.5, or so. Note that larger values
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of y reduce the amount of seawater drawn for a given amount of freshwater
produced, and thus the overall size of the device or plant. As y approaches
the maximum value, we observe fast increase of the work requirement.

Fig. 21.4 Work required per litre of seawater over freshwater/seawater ratio y

The work requirement will be larger in actual processes, where additional
work input is needed to overcome irreversible losses. For a membrane-based
desalination system there are losses to friction in the pipes, the pump, in
filters, and as water is pressed through the membrane, and losses due to non-
uniform salt concentration: salt might accumulate in front of the membrane
and this concentration polarization increases the local osmotic pressure and
thus the work requirement. Note that less work is needed when reverse os-
mosis takes place at lower temperatures, where the osmotic pressure is lower.
Typical values for separation work in commercial membrane desalination sys-
tems are about 10 kJ per litre of freshwater.

21.5 Reversible Mixing: Osmotic Power Generation

Rivers transport freshwater into the sea, where freshwater and saltwater mix.
The difference in salt content can be used to drive osmotic power plants.

An intuitive basic set-up is to enclose saltwater in a piston-cylinder system
and bring it into contact with the freshwater via a semipermeable membrane.
The saltwater will draw freshwater into the cylinder to increase its entropy,
the piston will be pushed and work is done. Note that, in principle, the salt
inside the cylinder can draw an infinite amount of freshwater! Alternatively,
one can enclose the freshwater in the cylinder and bring it into contact with
the seawater via a semipermeable membrane. The saltwater will draw fresh-
water out of the cylinder to increase its entropy, the piston will be pulled in
and work is done.
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Osmotic power generation is in development, with one trial plant operating
in Norway. A main bottleneck for large scale commercial application is the
development of suitable membranes.

ṅsw;Xsw; T0; p0 ṅfw; T0; p0

ṅb;Xb; T0; p0

Q̇ Ẇ

T0

salt water freshwater

brine

reversible mixing device

Fig. 21.5 Mole flows, work and heat for reversible mixing

The amount of work that could be obtained can be determined from in-
verting the continuous desalination process discussed in the previous section,
see Fig. 21.5. To be able to use the same notation, we consider the reversible
mixing of brine (ṅb, Xb) and freshwater (ṅfw, Xfw = 1) to saltwater (ṅsw,
Xsw); for mixing of seawater and river water, Xb is the composition of the
seawater.

We introduce the freshwater/brine ratio as x =
ṅfw

ṅb
, for which we have

1− y =
ṅsw − ṅfw

ṅsw
=

ṅb

ṅb + ṅfw
=

1

1 + x
, Xsw =

Xb

1 + x
. (21.20)

The work obtained by reversible mixing per litre of fresh water follows from
(21.17) as (note that all signs must be inverted for the inverted process)

Ẇrev

V̇fw

=
R̄T

v̄fw

1

x
[(1 + x) ln (1 + x) + (1−Xb) ln (1−Xb)

− (1 + x−Xb) ln (1 + x−Xb)] . (21.21)

Here, V̇fw = v̄fwṅfw is the volume flow of freshwater. It is assumed that the
two streams have the same temperature.

In the limit x → 0, where the freshwater (fw) mixes with an infinite
amount of seawater (b), the work is proportional to the osmotic pressure of
the seawater, i.e.,

Ẇrev = − R̄T

v̄fw
V̇fw ln (1−Xb) = posmV̇fw . (21.22)

For the opposite case, where salty brine (b) mixes with a large amount
of freshwater (fw), so that x � 1, the work can also be expressed with the
volume flow of brine,
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Fig. 21.6 Work produced per litre of freshwater over freshwater/saltwater ratio x

Ẇrev = V̇fw
R̄T

v̄fw
Xb

lnx

x
= V̇b

R̄T

v̄b
Xb lnx . (21.23)

Figure 21.6 shows the work that could be produced in the best, i.e., re-
versible, case per litre of freshwater for Xb = 0.0218 (which is the value for
seawater) at T = 5 ◦C. The maximum work (2.8 kJ

litre) could be obtained by
reversibly mixing the freshwater with an infinite amount of seawater (limit
x → 0). When even amounts of salt- and freshwater are mixed (x = 1),
one still could produce 1.9 kJ

litre . The river Rhine, Germany’s largest river,

discharges in average a volume flow of 2200 m3

s . The power potential of an os-
motic power plant that uses 1/10 of the volume flow and operates at x = 1 is
Ẇpot = 418MW. There are many rivers with large1 or small discharge, which
in principle offer a tremendous potential for regenerative energy production
(driven by weather processes, i.e., the sun). Not all locations will be suitable,
and a feasible technology that operates on large and small scales would be
helpful.

Particular care must be taken in keeping the osmotic pressure of the in-
coming seawater high. Normally the freshwater discharged from a river into
the ocean will mix with the local seawater, and the mixture in front of the
river mouth will have a lower salt content, and therefore lower osmotic pres-
sure, than the ocean far away. This implies that the mixture that leaves the
osmotic power plant must be discharged at some distance from the origin of
the saltwater entering the plant.

1 Amazon: 219, 000 m3

s
, Congo 41, 800 m3

s
, Mississippi/Missouri: 16, 200 m3

s
,

Mackenzie/Peace/Finlay: 9, 910 m3

s
.
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The Norwegian company Statkraft (www.statkraft.com) is developing a
power plant based on the concept of pressure retarded osmosis, see Fig. 21.7.
The process relies on the fact that seawater pressurized to a pressure
psw between the environmental and the osmotic pressure of the seawater,
(psw − p0) < posm, draws freshwater at the environmental pressure p0 through
a semipermeable membrane. This increases the flow of pressurized brackish
(lower salt content than seawater) water, which is split into two streams.
The first stream runs through a turbine to produce power, while the other
stream is used to pressurize the incoming seawater in a pressure exchanger.
The relative amount of freshwater, i.e., x in the above calculation, depends
on the pressure psw. In reversible operation, as soon as the osmotic pressure
of the brackish water, which decreases due to dilution, has reached the value
(psw − p0), no further freshwater is drawn in. Irreversible pressure losses in
pipes and pressure exchanger will reduce the amount of power produced.

freshwater in, pE freshwater out, pE

sea water in, pE

brine out, pE

brine out, pE

pressure 
exchanger

p0 pL

membrane

tu
rbine

length L

power W
.

Fig. 21.7 Pressure retarded osmosis power plant (after www.statkraft.com)

21.6 Example: Desalination in Piston-Cylinder Device

A reciprocating desalination device as depicted in Fig. 21.8 operates accord-
ing to the following cycle:

1-2: Intake of seawater at constant pressure p0, until the intake valve closes
at volume V2.

2-3: Compression of seawater up to p3, which is the pressure at which
freshwater starts to pass a semipermeable membrane. The seawater can be
considered as incompressible.

3-4: Further increase of pressure forces freshwater through the membrane,
until a maximum pressure p4 is reached.

4-5: The exit valve opens, and the pressure drops to p0.
5-6: The brine is pushed out at constant pressure p0.
6-1: Exit valve closes, inlet valve opens.
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p

brine

freshwater

saltwater

W

p

V

1 2

3

4

56

pswosm + p0

p0

Fig. 21.8 Reciprocating desalination cycle

During the process the temperature remains constant at 15 ◦C.
We ask for the work to produce 1 litre of freshwater (ρH2O = 1000 g

litre)
in relation to the freshwater-seawater ratio. The local seawater has a mass
density ρsw = 1030 kg

m3 , it contains 35 g sodium chloride (NaCl) and 995 g
water per litre, so that ρswNaCl = 35 g

litre . Since the salt is dissociated, the mole
numbers of salt and water at state 2 are

nNaCl = 2
ρswNaCl

MNaCl
V2 = 1.197

mol

litre
V2

and

nsw
H2O =

ρsw − ρswNaCl

MH2O
V2 = 55.28

mol

litre
V2 .

Thus, the mole fraction of salt in the seawater is

Xsw =
nNaCl

nNaCl + nsw
H2O

= 0.021 ,

and its osmotic pressure is

pswosm = p3 − p0 = −ρH2ORH2OT ln [1−Xsw] = 28.3 bar .

Next we ask for the relation between pressure and volume during the de-
salination in step 3-4. The volume of fresh water produced is Vfw = V2 − V
which corresponds to the mole number

nfw =
ρH2O

MH2O
(V2 − V ) .

The mole number of water molecules remaining in the volume V is

nr = nsw
H2O − nfw =

ρsw − ρswNaCl

MH2O
V2 −

ρH2O

MH2O
(V2 − V ) =

ρH2O

MH2O
(V − Vs) ,
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where

Vs =
ρswNaCl − ρsw + ρH2O

ρH2O

V2

is the volume of the salt;2 for the given data Vs/V2 = 0.005. Since all salt
remains in V , the mole fraction of salt in V is

Xr =
nNaCl

nNaCl + nr
=

[

1 +
1

2

MNaCl

MH2O

ρH2O

ρswNaCl

V − Vs

V2

]−1

=

[

1 +
1

γ

V − Vs

V2

]−1

;

for the given data γ = 0.02154. Then the pressure p in the cylinder is p (V ) =
p0 + prosm (V ) with

prosm (V ) = −ρH2ORH2OT ln [1−Xr (V )] .

The work for the cycle is

W =

∮
pdV =

∫ V4

V3

prosm (V ) dV .

and with the abbreviations β =
Vfw

V2
, α = 1 − Vs

V2
= 0.995, we obtain for the

work per litre of freshwater produced

W

Vfw
= ρH20RH2OT

1

β
[(γ + α− β) ln (γ + α− β) + α lnα

− (α− β) ln (α− β)− (γ + α) ln (γ + α)] .

When plotted as a function of the freshwater-seawater ratio by volume, β, the
curve is very similar to the one shown in Fig. 21.4. Indeed, it is an easy, but
somewhat cumbersome, exercise to show that the above agrees with (21.17).

21.7 Example: Removal of CO2

The effect of greenhouse gases such as CO2 on Earth’s climate is widely
discussed. One of the solutions to at least reduce the impact of burning carbon
fuels is to remove CO2 from the combustion product, compress it, and and
store it in depleted gas or oil reservoirs below ground (CCS - carbon capture
and storage). As an alternative, it is sometimes suggested to remove CO2 from
the atmosphere. This is a less viable alternative, since the concentration of
CO2 in the atmosphere is very low, which makes it more costly to remove it,
as will be seen below.

2 Assuming ideal mixture. As said before, this assumption is only valid for low salt
concentrations. The computation of Vs is an extrapolation, and Vs should be seen
as a useful abbreviation.
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In the oxy-fuel process, oxygen is separated from air, then mixed with
fuel and a portion of the power plant’s exhaust, then the mixture is burned
to provide heat for power production. The exhaust is only CO2 and water,
which can be separated rather easily by condensation of water. Since the
concentration of oxygen in the air is far higher than the concentration of
CO2 in air, the separation work for O2 is lower in comparison.

To estimate the work requirements, we consider air as a mixture of “gas”
(no need to specify the composition), and carbon dioxide or oxygen with mole
fraction X and ask for the work required per mole of CO2 or O2 to reduce
the mole fraction in the air to X̂ = αX . For the computation we consider a
given amount nair of air at (T, p), and a fully reversible separation process.
The total amount of air is

nair = ngas + ns ,

where ns is the number of moles of the component to be separated (CO2 or
O2) in the air, and ngas is the number of moles of all other gases in the air.

Since all contributing gases are ideal, and since the temperature remains
constant, the first law just gives that the work for separation is equal to the
heat that must be removed,

W12 = Q12 .

The second law for the reversible process gives

S2 − S1 =
Q12

T
;

thus the separation work is

W12 = T (S2 − S1) .

Since total pressure and temperature remain unchanged, only the mixing
contributions to entropy are relevant.

In state 1, before separation, we have ngas moles of “gas” mixed with
ns =

X
1−Xngas moles of CO2 (or O2). In state 2 we have ngas moles of “gas”

mixed with n̂s =
X̂

1−X̂
ngas moles of CO2 (or O2), and [ns − n̂s] moles of pure

separated CO2 (or O2). The corresponding mixing contributions to entropy
are

S1 = −R̄
∑

nα lnXα = −R̄ [ngas ln (1−X) + ns lnX ] ,

S2 = −R̄
∑

nα lnXα = −R̄
[
ngas ln

(
1− X̂

)
+ n̂s ln X̂

]
.

We obtain the work per mole of separated CO2 (or O2) as
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w̄ =
W12

ns − n̂s
= −R̄T

ln (1− αX) + αX
1−αX ln (αX)− ln (1−X)− X

1−X lnX
X

1−X − αX
1−αX

.

The absolute work is larger for smaller original mole fraction. Figure 21.9
shows w̄ for α = {0.9, 0.5, 0.1} as function of the original mole fraction X .
The figure indicates that removal from carbon rich exhaust streams, where
X is larger, is cheaper.

It is worthwhile to look at some numbers: Removal of CO2 from atmo-
spheric air, where3 XCO2

= 400 ppm, requires a reversible separation work
of {19.6, 20.2, 21.3} kJ

mol for α = {0.9, 0.5, 0.1}. On the other hand, removal
of O2 from atmospheric air, where XO2 = 0.21 = 210000 ppm, requires a re-
versible separation work of approximately {3.99, 4.59, 5.54} kJ

mol , that is just
a quarter of the work required for CO2.

The Virgin Earth Challenge4 asks for the removal of one billion metric tons
of carbon dioxide per year, that is 2.273× 1010 kmol

year . This would require—in

form of work!— 4.5 × 1014 kJ
year at least (in a fully reversible process), that

is about 0.1 percent of the world’s energy consumption of 16TW = 5 ×
1017 kJ

year , and about 0.6 percent of the world’s power generation of 2.3TW =

7.2× 1016 kJ
year . The world’s yearly emissions of CO2 are ca. 30× 1012 kg

year or

6.8 × 1011 kmol
year . The minimum (!) work requirement for the removal of this

amount directly from the atmosphere is 1.45× 1016 kJ
year—about 2.9% of the

world’s energy consumption, and 20% of the world’s power generation.

Fig. 21.9 Work w̄ to remove 1 mole of gas from air with initial gas mole fraction
X, so that remaining air has gas content αX for α = 0.9 (continuous), α = 0.5
(short dashes), α = 0.1 (long dashes)

3 Value for January 2014. In average, the yearly increase of the CO2 content is about
2 ppm. This is about half of the newly emitted CO2, the remainder is absorbed
into the oceans.

4 Launched in 2007, http://www.virginearth.com

http://www.virginearth.com
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The reversible separation of oxygen (XO2 = 0.21) requires only about
5 kJ

mol , and thus the cost of oxygen separation is lower by approximately a
factor of four. Note that one oxygen molecule is required to form one CO2

molecule in combustion.
Obviously, additional cost occurs for compressing, pumping and storing of

the removed carbon dioxide, and, most importantly, for overcoming the irre-
versibilities in the separation process. Thus, it might be that the separation
cost is only a small part of the bill—only a careful cost analysis can show the
relative importance of the various cost factors.5

Indeed, an important cost factor that must not be forgotten is the oc-
currence of irreversible losses in the separation process. After all, the above
calculation only considers the reversible limit for separation work. The actual
amount of losses will depend strongly on the process chosen for separation,
and we can only make some general estimates.

It is a reasonable assumption that the work loss for separation of one mole
of CO2 (or of O2, in the case of the oxy-fuel process) is proportional to the
amount of air that must be moved through the separation plant and to the
work w̄p (X,α) required to move and process the incoming air in the plant.

To proceed, we need to estimate w̄p (X,α). The process through the sep-
aration plant is a flow process and we can estimate the processing work as

w̄p = v̄0Δp ,

where v̄0 is the molar volume of the air at environmental conditions. The
overall pressure lossΔp is associated with the actual transport and separation
process; examples are the pressure difference required to press the air through
a semipermeable membrane as given by Darcy’s law, or the pressure difference
required to transport air over larger distances, which is necessary to remove
the depleted air far from the plant, so that re-circulation of depleted air is
minimized. With the ideal gas law we obtain

w̄p = R̄T0
Δp

p0
.

Based on the above, the work to overcome irreversible losses required per
mole of gas separated can be estimated as

w̄irr =
ngas + ns

ns − n̂s
w̄p (X,α) =

1− αX

(1− α)X
R̄T0

Δp (X,α)

p0
.

Due to the low CO2 content of air, one needs to move about 550 times more
air through a separation plant to remove one mole of CO2, than one would
need to remove one mole of O2 for the oxy-fuel process. For α = 0.5 the value

for the work to overcome irreversible losses is 12990Δp(X,α)
p0

kJ
mol for separation

5 See D.W. Keith, M. Ha-Duong, J. K. Stolaroff, Climate Strategy with CO2 Cap-
ture from the Air, Climatic Change 74(1-3), pp. 17-45 (2006)]
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of CO2 from air, while it is only 21.26Δp(X,α)
p0

kJ
mol for the separation of O2

from air.
Figure 21.10 compares w̄irr for X = 390 ppm (the CO2 fraction in air in

2010) and X = 0.21 (the O2 fraction in air) as function of α = X̂/X (for

small α a larger amount of CO2 or O2 is removed), for Δp(X,α)
p0

= 0.01.
Already for this small pressure loss, the loss to irreversible work for taking
CO2 directly from the air is about 5 times the reversible work for separation,
so that the overall work would be about 6 times the reversible work! Presently,
no technology exists that would even reach this value.

Obviously, the actual values for w̄irr will depend on the pressure losses
Δp (X,α) for the actual process devised. One will expect higher pressure
losses for smaller gas content X and larger extraction ratio, i.e. smaller α.
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Fig. 21.10 Irreversible contribution to separation work for XCO2 = 384ppm (con-
tinuous) and XCO2 = 0.21 (dashed) as function of α = X̄/X, for Δp

p0
= 0.01.

The separation processes discussed earlier in this chapter rely on membrane
separation. For a membrane that allows only one component to pass, we can
see from (20.39) that the pressure ratio over the membrane must be (X II

ν = 1
for the pure separated gas)

pI

pII
>

1

X I
ν

.

With XCO2 = 400 ppm this implies a pressure ratio larger than 2500, while
for O2 separation, the pressure ratio must be only above 5. Clearly, while
membrane separation might be feasible for O2, it is not at all feasible for CO2

removal from air. Not only would the large pressure ratio require extremely
sturdy membrane materials, but the creation of huge pressure ratios will lead
to huge irreversible losses.

Thus, chemical processes must be considered, where the air passes over a
substance A that is keen to react with the CO2 to form An-CO2 compounds.
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In a subsequent step, the reaction product must be split into A and CO2 to
dispose the CO2 and re-use the A.

Another alternative is separation by distillation as discussed in the next
chapter. This requires cooling and partial liquefaction of air. All known large-
scale cooling processes involve substantial irreversibilities in compressors,
throttling valves, heat exchangers, also through heat leaks, and, again, the
actual work required will be substantially bigger than the reversible work.

Problems

21.1. Physiological Solution for Use in Hospitals
The osmotic pressure in bodily fluids of mammals is 7.7 atm at 36 ◦C. Com-
pute the amount of salt (NaCl) that must be added to 1 litre water to give a
solution with the same osmotic pressure.

MNaCl = 58.5 kg
kmol . Note: NaCl dissociates in solution.

21.2. Salt Water
One kilogram of water and 80 grams of NaCl are mixed, the mixture has a
temperature of 80 ◦C. Assume the mixture is ideal.

1. Compute the osmotic pressure of the solution.
2. Compute the entropy of mixing.
3. Compute the minimum work required for separation of salt and water.

21.3. Osmotic Equilibrium I
A semipermeable membrane which allows only water to pass, divides two
containers. There is 1 litre of water in total, and 10 g of NaCl in each con-
tainer. One container is kept at a pressure of 10 bar and the other at 20 bar;
the temperature of both is 300K.

1. Show that in equilibrium the pressure difference between the two contain-
ers equals the difference in osmotic pressures.

2. Set up the equation needed to determine how water is distributed between
the two containers, and determine the water masses in both containers.

3. Will the equilibrium change when the temperature is lowered to 20 ◦C? If
so, in which direction does water move, low to high pressure, or high to
low?

21.4. Osmotic Equilibrium II
A semipermeable membrane which allows only water to pass, divides two
containers. In thermodynamic equilibrium container A holds 400 g of water
and 20 g salt, container B holds 600 g of water and 20 g of salt. Moreover,
container A is kept at a pressure of 20 bar; the temperature of both is 300K.
Determine the pressure in container B.
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21.5. Osmotic Equilibrium with Temperature Difference I
Two piston-cylinder systems are connected by a semipermeable membrane
that allows only water to pass. Both cylinders contain water and NaCl. The
left cylinder is pressurized to 15 bar and its temperature is maintained at
320K . The right cylinder is maintained at a temperature of 325K.

Determine the pressure that must be exerted on the right cylinder so that
in chemical equilibrium the mole fraction of salt in both containers is Xs,L =
Xs,R = 0.05.

Hint: Careful, the temperature difference affects the chemical potentials!

21.6. Osmotic Equilibrium with Temperature Difference II
Two piston-cylinder systems are connected by a semipermeable membrane
that allows only water to pass. Both cylinders contain water and NaCl. The
left cylinder is pressurized to 10 bar and its temperature is maintained at
300K. The right cylinder is pressurized to 20 bar and its temperature is main-
tained at 305K. The mole fraction of salt in the left container is measured
as Xs,L = 0.05.

Determine the mole fraction of salt Xs,R in the right cylinder for the case
of chemical equilibrium.

Hint: Careful, the temperature difference affects the chemical potentials!

21.7. Partial Separation of a Binary Gas Mixture I
Some helium is to be separated from an equimolar mixture of argon and
helium. For this, the mixture is pressurized to a pressure pM , and then flows
past a membrane, which allows only helium to pass. The helium pressure
on the back of the membrane is 4 bar. Determine the pressure pM that is
necessary to remove 50% of the helium, in the best case.

21.8. Cooling Fluid
A cooling fluid consists of a mixture of water and ethylene glycol (C2H6O2,
M = 62 g

mol). The glycol mass fraction is cg = 0.3. Assume the mixture is
ideal.

1. Determine the mean molar mass of the mixture.
2. The mole volume of glycol is v̄g = 0.056 m3

kmol . Compute the specific volume
of the mixture, and its mole volume.

3. Determine the entropy of mixing for 1 kg of mixture.
4. What is the minimum work required for complete separation at 0 ◦C, per

kilogram of mixture?
5. The above cooling fluid is brought into contact with a semipermeable mem-

brane that allows only water to pass. On the other side of the membrane is
a salt (NaCl) solution. In equilibrium at 300K the cooling fluid is at pres-
sure pc = 45 bar and the salt solution is at pressure ps = 5bar. Determine
the mole fraction Xs of salt in the salt solution.
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21.9. Minimum Work for Reverse Osmosis
We computed the work loss in irreversible mixing as TSmix . This is also the
minimum work required for separation.

1. Discuss the above statement.
2. Compute the minimum work for the separation of 1m3 of salt water

at 35 ◦C. The saltwater contains 75 g sodium chloride (NaCl, MNaCl =
58.5 kg

kmol) per litre and has a mass density of 1060 kg
m3 . Remember that

NaCl dissociates into Na+ and Cl− ions. Note: You will get different re-
sults if you consider splitting into H2O, Na+, Cl−, than if you consider
splitting into H2O and NaCl. The difference is the entropy of mixing be-
tween sodium and chlorine.

21.10. Reversible Mixing
A fabrication process produces a salty waste flow (density: 1040 g

litre , 50 g of
salt per litre). How much work could be obtained by mixing 1 litre of seawater
(density: 1025 g

litre , 32 g of salt per litre) with 1 litre of the waste? Assume all
flows are at 8 ◦C.

21.11. Desalination in Piston-Cylinder Device
2 litres of saltwater are enclosed in a piston cylinder device. The saltwater is
compressed up to the pressure p2, which is the pressure at which freshwater
just starts to pass a semipermeable membrane. Further increase of pressure
forces freshwater through the membrane, until one litre of saltwater remains
in the cylinder.

The saltwater contains 50 g sodium chloride (NaCl) per litre and has a mass
density of 1040 kg

m3 ; it can be considered as incompressible ideal mixture, the
temperature remains constant at 15 ◦C.

Assume that the osmotic pressure can be computed from the approxima-
tion posm = −RWT

vW
lnXW � RW T

vW
(1−XW ).

1. Compute the pressure p2.
2. Find the relation between the volume remaining in the cylinder and the

pressure.
3. Compute the work required for the process.

21.12. Reverse Osmosis
Consider the continuous desalination device depicted below. Fresh seawater
at 15 ◦C, 1 bar is pumped isothermally to a pressure of 35 bar, and then flows
past a semipermeable membrane, which allows only fresh water to pass. The
exiting brine drives a turbine, and leaves the system at 1 bar. Assume that the
temperature remains constant throughout the device, and that all processes
are reversible.
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The mass densities of sea water, freshwater and brine are given as: ρsw =
1030 kg

m3 , ρfw = 1000 kg
m3 , ρb = 1040 kg

m3 , and the seawater contains 35 g
litre of

sodium chloride (MNaCl = 58.5 kg
kmol).

1. Determine the volume flow of freshwater produced per volume flow of sea
water.

2. Determine the work required to drive the pump, and the work that can
be recovered by the turbine. Compute the net work required per litre of
freshwater.

3. Assume now that pump and turbine are irreversible, with efficiencies of
85%, and determine the net work.

21.13. Osmotic Power Plant
Saltwater at 15 ◦C, 1 bar is pumped to a pressure of 20 bar and then flows
along a semi-permeable membrane through which freshwater enters and di-
lutes the saltwater. The exiting solution (diluted saltwater) drives a turbine,
and leaves the system at 1 bar. Assume that the temperature remains con-
stant throughout the device, and that all processes are reversible.

The incoming saltwater contains 45 g of sodium chloride (MNaCl =
58.5 kg

kmol) per litre. The mass densities of saltwater and freshwater are given

as: ρsw = 1035 kg
m3 , ρfw = 1000 kg

m3 , and there is no mixing volume.

1. Determine the osmotic pressure of the incoming saltwater.
2. The volume flow of saltwater is 1000 litres

min . Determine the volume flows
of the freshwater drawn in, and of the diluted saltwater that enters the
turbine.
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3. Determine the power required to drive the pump, and the power produced
by the turbine. Compute the net work produced per litre of freshwater
drawn in.

21.14. Osmotic Power Plant with Irreversibilities
Saltwater at 25 ◦C, 1 bar is pumped to a pressure of 22 bar, and then flows
along a semi- permeable membrane, through which fresh water enters and
dilutes the saltwater. Due to pressure loss in the desalination system, the
exiting solution (diluted saltwater) leaves the desalinator at a pressure of
19 bar. This flow drives a turbine, and leaves the system at 1 bar. Assume that
the temperature remains constant throughout the device, and that pump and
turbine are irreversible with isentropic efficiencies of 0.85.

The incoming saltwater contains 42 g of sodium chloride (MNaCl =
58.5 kg

kmol) per litre. The mass densities of saltwater and freshwater are given

as: ρsw = 1033 kg
m3 , ρfw = 1000 kg

m3 , and there is no mixing volume.

1. Determine the osmotic pressure of the incoming saltwater.
2. Determine the mole fraction of water in the exiting diluted water.
3. The volume flow of saltwater is 1000 litres/minute. Determine the volume

flows of the freshwater drawn in, and of the diluted saltwater that enters
the turbine

4. Determine the power required to drive the pump, and the power produced
by the turbine. Compute the net work produced per litre of freshwater
drawn in.

21.15. Desalination I
A pipe is closed at one end with a semipermeable membrane which only
allows water to pass. The pipe is pressed vertically into an ocean, see the
following sketch. The temperature of the ocean is 4 ◦C, and the salt water
contains 35 g sodium chloride (NaCl) per litre, moreover ρsw = 1030 kg

m3 ,

ρfw = 1000 kg
m3

1. To what height H1 must the pipe be immersed, before fresh water passes
the membrane?

2. At what height H2 have both, sea water and fresh water, the same height,
h = H ? Explain why this is possible.

3. When h > H2 one can run a water wheel with the fresh water leaving the
pipe. Of course, this setup is not a perpetual motion engine. Why? (for
some discussion see: Scientific American, June 1971, p. 124-125, and April
1972, p110-111). The above calculation assumed constant density of the
seawater, and a homogeneous salt content. Can that be expected?



21.7 Example: Removal of CO2 489

aaaaaaaaaaaaa

Ocean ground

f
r
e

s
h

 
w

a
t
e

r

semipermeable membrane

h
H

seawater

p0

21.16. Desalination II
The solution of the previous problem assumed constant density of the sea-
water. Consider the same problem for the case that the salt concentration
follows the barometric law, so that

ρsw = ρfw + ρs,0 exp

[

− gz

2RsT

]

,

where Rs is the gas constant for the salt (factor 2 accounts for dissociation)
and ρs,0 is a constant specified by the density at the surface (at z = 0). Note
that z points upwards, so that the density is larger at greater depth.

1. Discuss the salt concentration profile in the oceans. Under what circum-
stances would you expect the exponential and the constant profile, respec-
tively?

2. Compute the difference h−H for the exponential profile.
3. Discuss your findings.

Remark: Not all information on the web that you might find on this issue
is correct (the same is true for any other topic, of course).

21.17. Desalination III
Assume that the salt concentration in a salt water lake follows the barometric
law ρs = ρs,0 exp

[
− gz

2RsT

]
(salt density increasing with depth).

A pipe is closed at one end with a semipermeable membrane which only
allows water to pass. The pipe is pressed vertically into the lake. The tem-
perature of the lake is 4◦C, and the salt water at the surface contains 20 g
sodium chloride (NaCl) per litre. For the following, assume that the density
of salt water is given by ρsw = ρfw + ρs where ρw = 1000 kg

m3 .
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1. To what height H1 must the pipe be immersed, before fresh water passes
the membrane?

2. Compute the freshwater height h as a function of sea water height H .
3. Is it possible, that both, sea water and fresh water have the same height,

h = H?

21.18. Separation
Consider a mixture of three ideal gases, say oxygen, nitrogen and carbon
dioxide. Compute the minimum work required to

1. Separate the carbon dioxide from the two other gases
2. Separate all three components.

21.19. Partial Separation of a Binary Gas Mixture II
Some carbon dioxide is to be separated from a mixture of nitrogen and carbon
dioxide with mole fraction XCO2

= 0.0205. For this, the mixture is pressur-
ized to a pressure of 50 bar, and then flows past a membrane, which allows
only CO2 to pass. The CO2 pressure on the back of the membrane is 1 bar.
Determine:

1. The mole fraction of CO2 in the exiting mixture, in the best case.
2. The percentage of CO2 separated from the mixture.
3. The change of the entropy of mixing.
4. The minimum separation work per mole of CO2, when the environment

temperature is T0 = 300K.

21.20. Removal of Carbon Dioxide from the Atmosphere
From http://www.virginearth.com/ (2007): The Virgin Earth Challenge is
a prize of $25m for whoever can demonstrate to the judges’ satisfaction a
commercially viable design which results in the removal of anthropogenic,
atmospheric greenhouse gases so as to contribute materially to the stability
of Earth’s climate. From Wikipedia: The prize will be awarded to the first
scheme that is capable of removing one billion metric tons of carbon dioxide
from the atmosphere per year for 10 years.

Let’s evaluate the goal thermodynamically, by computing how much work
is necessary.

1. The Earth radius is 6370 km, the pressure at ground level is 1.01325 bar and
the gravitational acceleration is 9.81 m

s2 . Estimate mass and mole number
of Earth’s atmosphere.

2. In January 2014, the mole fraction of CO2 in the atmosphere was
397.80ppm, up from 393.14ppm in January 2012 (data from http://
co2now.org/). The pre-industrial level was 284ppm. Determine mole num-
ber and mass of CO2 in the atmosphere, the amount added in the past
year, and the amount added since industrialization began.

3. The yearly emissions from fossil fuels and cement production are 33.5Gt
of CO2. Compare this number to the amount added to the atmosphere
computed above. Where is the remaining CO2 going?
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4. Assume that there is a winner of the competition, the device is built, and
1 billion tons of CO2 are removed in one year. Determine the new mole
fraction of CO2 after the year.

5. Compute the minimum work required to remove 10 billion tons from the
atmosphere per year (assume T = 290K and January 2014 composition),
and compare to the world energy consumption of about 16TW, and the
world generation of electric power of about 2.5TW. Also compute the
minimum work required to remove the amount added to the atmosphere
per year. To simplify, consider a binary mixture of ‘air molecules’ and CO2

molecules.
6. Discuss all results and also the question of irreversibilities in the processes.



Chapter 22

Phase Equilibrium in Mixtures

22.1 Phase Mixtures

In this chapter we discuss equilibria between mixtures in different phases, e.g.
liquid-vapor equilibria, or liquid-solid equilibria. Phase mixtures normally are
characterized by different mole fractions (or concentrations) in the different
phases. We shall discuss phase diagrams, changes of melting and evaporation
temperatures in solutions, distillation processes, and gas solubility.

22.2 Gibbs’ Phase Rule

In extension to our previous notation we introduce Latin superscripts to de-
note the phases, and we assume that we have f different phases. For instance
Xj

α (α = 1, . . . , ν, j = 1, , . . . , f) denotes the mole fraction of component α

in phase j. Also, μj
α

(
T, p,Xj

β

)
is the chemical potential of component α in

phase j; note that the chemical potential depends only on the mole fractions
of the same phase.

For each phase, the mole fractions sum to unity, that is

ν∑

β=1

Xj
β = 1 for j = 1, 2, . . . , f . (22.1)

It follows that a mixture with ν components in f phases is characterized by
(ν − 1) f independent mole fractions. In addition, pressure p and temperature
T are variables, so that the mixture is characterized by (ν − 1) f+2 intensive
variables,

{
p, T,Xj

α

}
.

Phase boundaries are permeable interfaces between phases that allow all
components to pass, and thus in equilibrium the chemical potentials of all
components must be continuous between any two phases,

μ̄1
α = μ̄2

α = · · · = μ̄f
α for α = 1, . . . , ν . (22.2)

H. Struchtrup, Thermodynamics and Energy Conversion, 493
DOI: 10.1007/978-3-662-43715-5_22, c© Springer-Verlag Berlin Heidelberg 2014
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These equations are known as Gibbs’ phase rule, and they give (f − 1) ν
conditions1 that restrict the (ν − 1) f + 2 variables. The difference between
these numbers gives the number of degrees of freedom for the system,

F = [(ν − 1) f + 2]− [(f − 1) ν] = 2 + ν − f . (22.3)

That is, we can freely chose F properties of the mixture, while the remaining
(f − 1) ν properties are then fixed through Gibbs’ phase rule.

We consider this rule for the simple example of a single component, where
ν = 1. The variables are (p, T ) and we find F = 3− f .

In a single phase, we have f = 1, so that there are F = 2 degrees of
freedom: p and T can be chosen independently.

When there are two phases, either liquid-vapor, liquid-solid, or vapor-solid,
we have f = 2, so that there is only one degree of freedom, F = 1: pressure
and temperature cannot be chosen independently, but are dependent. The
sole equilibrium condition μ1 (p, T ) = μ2 (p, T ) defines the saturation pressure
psat (T ).

For three phases to coexist, we have f = 3, so that F = 0: this is possible
only at one pair of values (p, T )tr—the triple point.
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Fig. 22.1 p-T-diagram of a single substance

Figure 22.1 shows again a sketch of the p-T-diagram of a single substance
(for water, actually) with the saturation curves and the triple point.

22.3 Liquid-Vapor-Mixtures: Idealized Raoult’s Law

We study vapor-liquid equilibrium in mixtures where we denote the liquid
phase by ′ and the vapor phase by ′′. The Gibbs phase rule for this case reads

1 Just count the equal signs in each of the equations (22.2).
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μ̄′
α

(
T, p,X ′

β

)
= μ̄′′

α

(
T, p,X ′′

β

)
, α = 1, . . . , ν . (22.4)

Our goal is to simplify the phase rule by using constitutive equations for
incompressible liquids and ideal gases, respectively. Deviations from this ide-
alized behavior will be studied later. In particular, we make the following
assumptions:

1. The liquids are ideal mixtures, so that

μ̄′
α

(
T, p,X ′

β

)
= ḡ′α (T, p) + R̄T lnX ′

α ; (22.5)

ḡ′α (T, p) denotes the Gibbs free energy of α alone at (T, p) in the liquid state.
2. The pure liquids are incompressible, so that

ḡ′α (T, p) = ḡ′α
(
T, psatα (T )

)
+ v′α

(
p− psatα (T )

)
. (22.6)

The above results from Taylor expansion in pressure, with
(

∂ḡ
∂p

)

T
= v̄ =

const.; psatα (T ) is the saturation pressure for component α alone.
3. The vapor can be described as a mixture of ideal gases, so that, since

ḡ′′α (T, p) = h̄′′
α (T )− T

[
s̄0′′α (T )− R̄ ln p

p0

]
,

μ̄′′
α

(
T, p,X ′′

β

)
= ḡ′′α (T, p) + R̄T lnX ′′

α

= ḡ′′α
(
T, psatα (T )

)
+ R̄T ln

p

psatα (T )
+ R̄T lnX ′′

α . (22.7)

4. The mixture is sufficiently far away from the critical points of all com-
ponents, so that for the components alone

v̄′α � v̄′′α =
R̄T

psatα

. (22.8)

When we use the four assumptions in (22.4) together with the defini-
tion of the saturation pressure of the single components, ḡ′α (T, psatα (T )) =
ḡ′′α (T, psatα (T )), we find Raoult’s law for ideal mixtures (François-Marie
Raoult, 1830-1901)

X ′
αp

sat
α (T ) = X ′′

αp , α = 1, . . . , ν . (22.9)

The partial pressure of α in the vapor is given by pα = X ′′
αp. Raoult’s law

states that the amount of component α in the liquid is proportional to its
partial pressure in the vapor.

22.4 Phase Diagrams for Binary Mixtures

For the case of binary mixtures in liquid-vapor equilibrium, we have ν = 2
and Raoult’s law gives the equations
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X ′
1p

sat
1 (T ) = X ′′

1 p , (1−X ′
1) p

sat
2 (T ) = (1−X ′′

1 ) p . (22.10)

The variables are (T, p,X ′
1, X

′′
1 ), and according to Gibbs’ phase rule there

are two degrees of freedom, F = 2, so that when two variables are prescribed,
the others are fixed.

In particular, when pressure and temperature are prescribed, the values
for the mole fractions in both phases are computed as

X ′
1 =

psat2 (T )− p

psat2 (T )− psat1 (T )
, X ′′

1 =
psat1 (T )

p

psat2 (T )− p

psat2 (T )− psat1 (T )
. (22.11)

For given temperature T , we can draw the two curves into a p-X-diagram.
Solving for pressure gives the saturated liquid line,

p (T,X ′) = psat2 (T )− (psat2 (T )− psat1 (T )
)
X ′

1 , (22.12)

and the saturated vapor line,

p (T,X ′′) =
psat1 (T ) psat2 (T )

(1−X ′′
1 ) p

sat
1 (T ) +X ′′

1 p
sat
2 (T )

. (22.13)
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Fig. 22.2 p-X-diagram for a binary mixture at temperature T , according to
Raoult’s law in the idealized case

Figure 22.2 shows a p-X-diagram for fixed T with the two curves that meet
for X ′

1 = X ′′
1 = 0 and X ′

1 = X ′′
1 = 1 at the respective saturation pressures.

For the assumptions used, the saturated liquid curve is a straight line.
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Fig. 22.3 T-X-diagram for a binary mixture at pressure p, according to Raoult’s
law in the idealized case

Also indicated in the figure are three pressures. At p1 the pressure is higher
than both saturation pressures, and the there is only one single liquid phase.
At p3 the pressure is lower than both saturation pressures, and there is only
one single vapor phase. At the intermediate pressure p2, which lies between
the two saturation pressures, the mixture can be found either as pure liquid
or pure vapor phase, or it can split into two phases. What happens depends

on the overall mole fraction of the mixture X1 =
n′
1+n′′

1

n′
1+n′′

1 +n′
2+n′′

2
. If X1 ≤

X ′
1 (p2, T ), there is only a single liquid phase, and forX1 ≥ X ′′

1 (p2, T ), there is
only a single vapor phase. If X ′

1 (p2, T ) < X1 < X ′′
1 (p2, T ), the mixture splits

into two phases, the liquid phase with mole fraction X ′
1 (p2, T ) and the vapor

phase with mole fraction X ′′
1 (p2, T ). The component with the larger vapor

pressure (here component 1) is more volatile, i.e. more keen to evaporate,
and the vapor is richer in the more volatile component while the liquid is
depleted of it.

The equations (22.12, 22.13) can be numerically solved for T ; this requires
equations or tables for the saturation pressures psatα (T ). The resulting T-X-
diagram for constant pressure is sketched in Fig. 22.3. The interpretation of
the diagram follows the same lines as for the p-X-diagram: For temperatures
above both saturation temperatures T sat

α (p), e.g., T7, the mixture will be
pure vapor for all values X1. The mixture will be pure liquid for temperatures
below both saturation temperatures, e.g., T0 in the figure. For temperatures
between the two saturation temperatures (T1 to T6), the mixture will split
into two phases at X ′

1 (T, p) and X ′′
1 (T, p), if the overall mole fraction X1 lies
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between these values; else the mixture is either liquid (for X1 ≤ X ′
1 (T, p)) or

vapor (for X1 ≥ X ′′
1 (T, p)).

22.5 Distillation

Distillation is a separation procedure based on the different compositions
of vapor and liquid mixture in equilibrium. Figure 22.4 shows a sketch for a
bubble tray column for distillation that matches the T-X-diagram of Fig. 22.3.
A temperature gradient is imposed by heating at the bottom and cooling
at the top of the column. Several bubble trays are inserted in the column.
Industrial columns have up to 100 trays and can reach heights of 60 metres.
Heating at the bottom generates vapor that rises in the column, while liquid
is generated by condensation at the cooled top and drips down.

On the trays, which all have different temperatures following the temper-
ature gradient established in the column, the rising vapor passes as bubbles
through the liquid. This contact between vapor and liquid establishes thermo-
dynamic equilibrium on the tray, determined by the pressure in the column
and the temperature on the tray. Consider the tray at T3: The vapor leav-
ing the tray upwards has the mole fraction X ′′

1 (T3) while the liquid dripping
down has the mole fraction X ′

1 (T3). Figure 22.5 illustrates how liquid and
vapor pass through the tray: The vapor is forced to bubble through the liquid,
and this leads to exchange of components and energy.

For the mixture shown in Figs. 22.3 and 22.4, component 1 is more volatile,
so that the vapor becomes richer in component 1 as it ascends, while the liquid
becomes richer in component 2 as it descends.

The design and dimensioning of distillation columns is the task of chemical
engineers and will not be discussed further. Obviously, distillation becomes
more complex when multicomponent mixtures are involved, when saturation
temperatures of components are close, and when the mixtures exhibit non-
ideal behavior, e.g., azeotropes, see Sec. 22.11.

22.6 Saturation Pressure and Temperature of a
Solvent

We consider solutions of low volatility components, e.g., salts, in a more
volatile solvent, e.g., water, in liquid-vapor equilibrium. The mole fraction of
solvent vapor is

X ′′
ν = 1−

ν−1∑

α=1

X ′′
α = 1−

ν−1∑

α=1

X ′
α

psatα (T )

p
, (22.14)

where we used Raoult’s law for the mole fractions of the dissolved compo-
nents, X ′′

α. For the non-volatile substances the saturation pressures psatα (T )
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Fig. 22.4 Bubble-tray distillation column

condensate

vapor

condensate

vapor

Fig. 22.5 Schematic close-up of bubble trays
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are very low, so that
∑ν−1

α=1 X
′
α
psat
α (T )
p � 1; accordingly we can approximate

X ′′
ν � 1. Raoult’s law (22.9) for the solvent,X ′′

ν p = X ′
νp

sat
ν (T ), then simplifies

to
psol (T ) = X ′

νp
sat
ν (T ) . (22.15)

Here, psol (T ) denotes the actual saturation pressure of the solvent vapor
over the solution at temperature T . In other words, the ideal mixture of
composition X ′

ν at temperature T will boil when the pressure is psol (T ).
According to (22.15) the actual pressure in the solvent vapor, psol, is

smaller than the saturation pressure of the solvent alone, psatν (T ), that is
the dissolved substances reduce the volatility of the solvent. The reason for
this is a competition between solvent vapor and the salt dissolved in the liq-
uid to increase their entropy: The solvent vapor has a larger entropy than the
solvent liquid, but the dissolved salt has a larger entropy when it can access
a larger volume, that is when there is more liquid solvent.

p

T

psatν

psol

T sat
ν Tsol

psatν psol

Fig. 22.6 p-T-diagram: saturation curve for pure solvent and for solution

Figure 22.6 shows the saturation curves for the pure solvent and the so-
lution in a p-T-diagram. The curve for the pure solvent (psatν ) lies above the
curve for the solution (psol), in accordance with (22.15). The figure shows
that for a given pressure p the saturation temperature Tsol (p) of the solution
is higher than the saturation temperature T sat

ν (p) of the solvent alone: at a
given pressure saltwater boils at higher temperatures than pure water. To
estimate the change in saturation temperature, we assume that the slope of
the new saturation curve is close to the slope of the saturation curve of the
solvent as described by the Clausius-Clapeyron equation (17.46), that is

Tsol − T sat
ν

psatν − psol
� dT sat

ν

dp
= T sat

ν

v′′ν − v′ν
hLV

. (22.16)
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With the assumptions that the liquid volume can be neglected against the
vapor volume, and that the vapor follows the ideal gas law, and with (22.15),
this yields

Tsol − T sat
ν (p) =

Rν [T
sat
ν (p)]

2

hLV (p)
(1−X ′

ν) . (22.17)

Tsol is the temperature at which an ideal mixture of composition X ′
ν at pres-

sure p will boil.

22.7 Freezing of a Liquid Solution

Ice crystals cannot easily accept salt molecules into their lattice, and thus
when a salt solution is cooled, first water will freeze out, while the salt will
remain in the liquid as long as possible. Sea-ice, that is ice that freezes out of
oceans in cold climates, contains no salt. As sea-ice forms, the salt content of
the water just below the ice increases. This salty water has increased density,
and will sink towards the bottom of the ocean, thus driving ocean currents.
Completely frozen salt-water solution is a mixture of pure ice and regions of
salt-water crystals, e.g., NaCl-2H2O crystals.

The dissolved salt ions move in the liquid, they have a larger entropy when
they can move in a larger volume, that is when more liquid water is present.
So in order to gain entropy, the dissolved salt prevents water from freezing,
which is observed as a drop in the temperature at which water will freeze.
To estimate this drop, we consider solid and liquid as incompressible ideal
mixtures, so that we can approximate the chemical potentials of the solvent
in liquid solution (′) and ice (′′) as

μ′
ν = g′ν

(
T, psatν (T )

)
+ v′ν

(
pmelt − psatν (T )

)
+RνT lnX ′

ν , (22.18)

μ′′
ν = g′′ν

(
T, psatν (T )

)
+ v′′ν

(
pmelt − psatν (T )

)
+RνT lnX ′′

ν . (22.19)

With no salt in the ice, we haveX ′′
ν = 1, and equating the chemical potentials,

μ′
ν = μ′′

ν , gives

pmelt (T )− psatν (T ) = − RνT

v′ν − v′′ν
lnX ′

ν . (22.20)

For water, the volume of ice is larger than the volume of liquid, v′ν − v′′ν < 0,
and hence the melting pressure of the solution, pmelt (T ), is lower than that
of pure water (psatν (T )).

To compute the change in melting temperature, we use Fig. (22.7) and the
Clausius-Clapeyron equation to estimate

T sat
v (p)− Tmelt (p)

pmelt (T sat
v )− psatν (T sat

v )
� dT sat

v

dp
= T sat

v

v′′ν − v′ν
h′′
ν − h′

ν

, (22.21)
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p

T

psatν

pmelt

T sat
νTmelt

psatν

pmelt

Fig. 22.7 p-T-diagram: melting curve for pure solvent and for solution

so that, with (22.20),

Tmelt (p)− T sat
v (p) =

Rν [T
sat
v ]

2

h′
ν − h′′

ν

lnX ′
ν < 0 . (22.22)

Here, h′
ν − h′′

ν is the heat of melting, e.g., h′
ν − h′′

ν = 333.7 kJ
kg for water at

0 ◦C.

22.8 Non-ideal Mixtures: Activity and Fugacity

So far, we considered only ideal mixtures. In this section, we study how non-
ideal effects are incorporated into the description.

The activity coefficient γα (T, p,Xβ) and the activity aα (T, p,Xβ) =
γα (T, p,Xβ)Xα are defined such that the chemical potential reads

μ̄α (T, p,Xβ) = ḡα (T, p) + R̄T ln aα = ḡα (T, p) + R̄T ln [γαXα] . (22.23)

As always, ḡα (T, p) denotes the Gibbs free energy of component α alone,
under the same pressure and temperature as the mixture. For ideal mixtures
or ideal gases, the activity coefficient reduces to γα = 1, and the activity
becomes aα = Xα.

For the description of vapors, one uses typically the fugacity coefficient
ϕα (T, p,Xβ) and the fugacity fα (T, p,Xβ) = ϕαXα

p
psat
α (T ) , which are defined

such that

μ̄α (T, p,Xβ) = ḡα
(
T, psatα (T )

)
+ R̄T ln fα

= ḡα
(
T, psatα (T )

)
+ R̄T ln

[

ϕαXα
p

psatα (T )

]

. (22.24)
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Here, ḡα (T, psatα (T )) denotes the Gibbs free energy of component α alone at
saturation under the same temperature as the mixture. When the vapor can
be described as an ideal gas, the fugacity coefficient reduces to ϕα = 1.

Just as the chemical potential, activity and fugacity depend on the detailed
composition, Xβ , of the respective phase. Thus, on the first glance, it might
seem that the introduction of activity and fugacity and their coefficients has
no advantage, since one replaces one unknown function, the chemical poten-
tial, with another, activity or fugacity. The latter, however, are accessible to
measurements, and this is why they are used in chemical engineering.

To understand how fugacity can be measured, we consider the Gibbs equa-
tion (20.1) and take mixed derivatives with respect to p and nα, to find

∂2G

∂p∂nα
=

(
∂μ̄α

∂p

)

T,nα,nβ

=

(
∂V

∂nα

)

T,p,nβ

=
∂2G

∂nα∂p
. (22.25)

Here, we insert the chemical potential in the form (22.24) and separate the
term containing the fugacity ϕα. The result is an expression for the change
of ϕα with pressure,

(
∂ lnϕα

∂p

)

T,nα,nβ

=
1

R̄T

(
∂V

∂nα

)

T,p,nβ

− 1

p
. (22.26)

In the limit p → 0 the vapor will behave as an ideal gas, and therefore will
have the fugacity coefficient ϕα (T, p = 0, Xβ) = 1. Integration at constant
temperature between p = 0 and the actual pressure p thus gives the fugacity
coefficient as

lnϕα (T, p,Xβ) =
1

R̄T

∫ p

p=0

[(
∂V

∂nα

)

T,p′,nβ

− R̄T

p′

]

dp′ . (22.27)

The function under the integral can be measured by systematically adding
component α, and determining the resulting volume change; this must be
repeated for many pressures. Thus, the fugacity can be measured in the
vapor phase.

Measurements of activity and activity coefficients rely on Raoult’s law. We
reconsider Raoult’s law for the equilibrium between a liquid and a vapor mix-
ture, where we now use activity and fugacity coefficients to describe the liquid

and the vapor, respectively. Gibbs’ phase rule μ̄′
α

(
T, p,X ′

β

)
= μ̄′′

α

(
T, p,X ′′

β

)

becomes

ḡ′α (T, p) + R̄T ln a′α = ḡ′′α
(
T, psatα (T )

)
+ R̄T ln f ′′

α . (22.28)

When we consider the liquid as almost incompressible, and assume that its
molar volume can be ignored compared to the molar volume of the vapor,2

2 The same assumptions were used in Sec. 22.3.



504 22 Phase Equilibrium in Mixtures

this reduces to

a′α = f ′′
α or γ′

αX
′
α = ϕ′′

αX
′′
α

p

psatα (T )
. (22.29)

It follows that activity can be measured when fugacity is known.

22.9 A Simple Model for Heat of Mixing and Activity

Ideal mixtures have zero enthalpy of mixing Hmix, and their activity coeffi-
cients are unity. We shall now develop a simple model for Hmix to describe
non-ideal behavior. We consider binary mixtures only.

Part of the internal energy of a substance comes from the interaction poten-
tial between neighboring molecules. For a component alone, this contribution
to energy is included in enthalpy h̄α (T, p) or free energy ḡα (T, p), and we
can consider identical neighboring particles as energetically neutral.

In a mixture between components 1 and 2, there will be neighboring pairs
of the same type (1-1, 2-2) and pairs of different type (1-2). While the for-
mer are energetically neutral, the formation of the latter can either release or
require energy. When the attractive force between different particles (1-2) is
stronger than that between equal particles (1-1, 2-2), 1-2 pairs are energet-
ically preferred over neutral pairs, due to negative interaction energy; then
energy is released when a mixed pair (1-2) is formed. When the attractive
force between different particles (1-2) is weaker than between equal particles
(1-1, 2-2), neutral pairs are energetically preferred over (1-2) pairs, due to
positive interaction potential; then energy is required to form a pair.

We consider a mixture of N = N1 +N2 particles of types 1, 2. The proba-
bility to find a particle of type α is Nα

N and thus the probability to find a pair

(1-2) is proportional to N1N2

N2 . The total number of pairs is of the order of the
total number of particles N , and thus the number of (1-2) pairs is propor-
tional to N N1N2

N2 = N1N2

N . When we introduce mole numbers, the enthalpy of
mixing is

Hmix = ε̄
n1n2

n1 + n2
, ε̄ ≷ 0 . (22.30)

Depending on its sign, ε̄ is the energy released or required to form one mole
of (1-2) pairs.

With the entropy of mixing as before, the Gibbs free energy (20.34) of the
binary mixture becomes

G = n1ḡ1 (T, p) + n2ḡ2 (T, p) + ε̄
n1n2

n1 + n2

+ R̄T

(

n1 ln
n1

n1 + n2
+ n2 ln

n2

n1 + n2

)

. (22.31)
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The chemical potential is the derivative of the total Gibbs free energy (20.2),

μ̄α =

(
∂G

∂nα

)

T,p,nβ

= ḡα (T, p) + ε̄ (1−Xα)
2 + R̄T lnXα . (22.32)

Comparison with (22.23) gives the activity coefficient as

γα = exp
[ ε̄

R̄T
(1−Xα)

2
]
. (22.33)

22.10 Gas Solubility: Henry’s Law

We consider phase equilibrium between a liquid non-ideal mixture with the
activity coefficient from the model of the previous section, and an ideal gas
vapor phase (fugacity coefficient ϕ′′

α = 1). Then, with the activity coefficient
(22.33), Raoult’s law (22.29) assumes the form

exp
[ ε̄

R̄T
(1−X ′

α)
2
]
X ′

α =
p′′α

psatα (T )
, (22.34)

where p′′α = X ′′
αp is the partial pressure of α in the vapor.

We consider a not too volatile liquid solvent, say water, under an atmo-
sphere of volatile vapors, say air, where we can expect that the mole fractions
of air components (oxygen, nitrogen, argon, ...) in the liquid are rather small.

Then, in the above, we can set (1−X ′
α)

2 � 1, and find the mole fraction of
gases dissolved in the liquid given by Henry’s law (William Henry, 1774-1836),

X ′
α =

p′′α
psatα (T ) exp

[
ε̄

R̄T

] =
p′′α

Hα (T )
, (22.35)

with Henry’s constant Hα (T ). The saturation pressure can be approximated
by (17.48), so that Henry’s constant becomes3

Hα (T ) = Hα (T0) exp

[

ΔHα

(
1

T0
− 1

T

)]

with ΔHα =
h̄LV
α − ε̄

R̄
.

(22.36)
For oxygen, nitrogen, and carbon dioxide the following data can be found
(T0 = 298K):

HO2 (T0) = 43102 bar , ΔHO2 = 1700K ,
HN2 (T0) = 85590 bar , ΔHN2 = 1300K ,
HCO2 (T0) = 1648 bar , ΔHCO2 = 2400K ,
HHe (T0) = 149700 bar , ΔHHe = 230K .

3 Rolf Sander: Compilation of Henry’s Law Constants for Inorganic and
Organic Species of Potential Importance in Environmental Chemistry,
http://www.henrys-law.org/

http://www.henrys-law.org/
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It should be noted that at environmental temperatures oxygen and nitrogen
are well above their critical point, where no saturation pressure exists. There-
fore, it is somewhat surprising that the above derivation gives a meaningful
result for these temperatures.

In carbonated drinks, carbon dioxide dissolves in water under pressure
(normally around 2 bar, depending on temperature). When the pressure is
released by opening the bottle or can, the gas bubbles out, to establish the
equilibrium for the partial pressure of CO2 at the surface. From (22.36) we see
that Henry’s constant grows with temperature, so that less gas is dissolved
in warmer water. This is the reason for the effervescence of a warm pop can
as compared to a cold one.

Guinness beer is nitrogenated with a special tab. Due to the low dissolution
of N2, bottling it would give a very flat beer (under the same pressure one
could dissolve 50 times more CO2 than N2), unless a “widget” is used, where
N2 is enclosed in a small capsule that releases the gas when the pressure in
the can drops after it is opened.

Colder oceans are richer in oxygen, and thus are rich in marine life. There-
fore big whales migrate between the polar waters where they find most food.

For the solvent, the mole fraction in the liquid is almost unity, X ′
ν � 1,

which implies that the activity coefficient is close to unity as well, γ′
ν =

exp
[

ε̄
R̄T

(1−X ′
ν)

2
]
� 1. Hence, evaluation of Raoult’s law gives psatα (T ) =

p′′α, i.e., the partial pressure of water in a saturated water-air mixture is, for
all practical applications, equal to the saturation pressure of water, as used
in the discussion of psychrometrics.

22.11 Phase Diagrams with Azeotropes

Next, we study phase diagrams for non-ideal mixtures, based on Raoult’s law
(22.29). To obtain interesting behavior, it suffices to consider non-ideality in
the liquid phase, expressed through activity coefficients of the form (22.33),
while the vapor is considered as a mixture of ideal gases where the fugacity
coefficients are unity.

For a binary mixture, we obtain the two equations (with X2 = 1−X1),

X ′′
1 p = p′′1 (T,X

′
1) = psat1 (T )X ′

1 exp
[ ε̄

R̄T
(1−X ′

1)
2
]
, (22.37)

(1−X ′′
1 ) p = p′′2 (T,X

′
1) = psat2 (T ) (1−X ′

1) exp
[ ε̄

R̄T
X ′2

1

]
. (22.38)

Note that, as indicated, the left hand sides are just the partial pressures in
the vapor, expressed through the right hand sides as functions of temperature
and liquid composition.
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Fig. 22.8 p-X-digrams for ideal and non-ideal mixtures. Bold curves: saturated
liquid and saturated vapor lines. Thin curves: partial vapor pressures p′′α (T,X ′

1).

The saturated liquid curve is obtained from adding both equations to elim-
inate X ′′

1 ,

p (T,X ′
1)=psat1 (T )X ′

1 exp
[ ε̄

R̄T
(1−X ′

1)
2
]
+psat2 (T ) (1−X ′

1) exp
[ ε̄

R̄T
X ′2

1

]
.

(22.39)
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Fig. 22.9 T-X-digrams for ideal and non-ideal mixtures

The saturated vapor curve p (T,X ′′
1 ) cannot be computed analytically,

since it is not possible to analytically eliminate X ′
1 from the equations. In-

stead, we obtain it as follows: Division of the two equations for p′′1 and p′′2
gives

X ′′
1 (T,X ′

1) =
1

1 +
psat
2 (T )

psat
1 (T )

(
1
X′

1
− 1
)
exp
[− ε̄

R̄T
(1− 2X ′

1)
] . (22.40)
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With this, the saturated vapor curve can be expressed in parametric form as

{p (T,X ′
1) , X

′′
1 (T,X ′

1)} (22.41)

with X ′
1 as curve parameter.4

Figure 22.8 shows the phase diagrams together with the vapor pressures
p′′α (T,X ′

1) = X ′′
αp for various values of ε̄, based on data given in problem

22.25. For non-ideal mixtures, the saturated liquid and vapor lines meet not
only for the pure substances (X1 = 1 or X1 = 0), but also in a point between,
the so-called azeotrope.

The corresponding T-X-diagrams at constant p, which are of importance
to understand distillation processes, can be constructed as follows: For the
saturated liquid line one prescribes (X ′

1, p) in (22.39) and solves numerically
for T to find one point (X ′

1, T ) of the saturated liquid curve T (p,X ′
1). The

curve results from repetition for many values X ′
1. For the saturated vapor

curve one evaluates (22.40) for values on the saturated liquid curve to com-
pute X ′′

1 (T (p,X ′
1) , X

′
1) and then uses the saturated liquid line to find points

on the saturated liquid lines as {T (p,X ′
1) , X

′′
1 (T (p,X ′

1) , X
′
1)}. Figure 22.9

shows the resulting T-X-diagrams corresponding to the p-X-diagrams above,
they show azeotropes as well.

As compared to the ideal mixture, when the formation of mixed pairs (1-
2) is not favored, which is the case for ε̄ > 0, the mixture becomes more
volatile, as can be seen from the larger vapor pressures in Fig. 22.8 and the
lower saturation temperatures in Fig. 22.9. When the formation of mixed
pairs is favored, ε̄ < 0, the mixture is less volatile, vapor pressures are lower,
and saturation temperatures are higher.

Azeotropic mixtures cannot be separated by distillation processes, as be-
comes obvious when one considers the distillation column discussed earlier in
conjunction with an azeotropic T-X-diagram. The location of the azeotrope
might change with pressure, and separation can be achieved by distillation
at different pressures (for the model used to generate these figures, this effect
is very weak, however). Other methods for separation of azeotropic mixtures
are discussed in the chemical engineering literature.

Problems

22.1. Ammonia and Water
Absorption refrigeration systems often employ two phase equilibrium mix-
tures of ammonia (NH3) and water (H2O). For the following problems, as-
sume an ideal mixture:

1. A liquid-vapor mixture of ammonia and water at 30 ◦C has a mole fraction
of ammonia in the liquid of 60%. Determine the mole fractions of water

4 In other words, for given T , for each value X ′
1 one finds a point

{p (T,X ′
1) , X

′′
1 (T,X ′

1)} of the saturated vapor curve in the p-X-diagram.
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and ammonia in the vapor phase, and the total pressure of the mixture.
Saturation pressure of NH3 at psat(30

◦C) = 1116.5 kPa.
2. A two-phase mixture of ammonia and water is in equilibrium at 50 ◦C.

The composition of the vapor phase is 99 percent NH3 and 1 percent H2O
by mole numbers. Determine the composition of the liquid phase and the
total pressure. Saturation pressure of NH3 at 50 ◦C is 2033.5 kPa.

3. A liquid-vapor mixture of ammonia and water is at 40 ◦C and 1000 kPa.
Determine the mole fractions of water and ammonia in the vapor and
liquid phase. Saturation pressure of NH3 at psat(40

◦C) = 1554.33 kPa.
4. A liquid-vapor mixture of ammonia and water is in equilibrium at 10 ◦C

and 500 kPa. Determine the mole fractions of water and ammonia in
the vapor and liquid phase. Saturation pressure of NH3: psat(10

◦C) =
615.29 kPa.

22.2. Binary Mixture of Propane and 1-Butane I
Consider a mixture of n1 = 200 kmol propane (C3H8) and n2 = 100 kmol
1-butane (C4H10), with pressure p = 10 bar at a temperature of 320K. The
saturation pressures of the pure substances are psat1 (320K) = 15.722 bar, and
psat2 (320K) = 4.537 bar.

1. Use the idealized Raoult law to find the mole fractions X ′
1, X

′′
1 .

2. Determine the mole numbers n′
1, n

′
2, n

′′
1 , n

′′
2 .

22.3. Binary Mixture of Propane and 1-Butane II
Consider a mixture of n1 = 25 kmol propane (C3H8) and n2 = 100 kmol 1-
butane (C4H10), at T = 350K and p = 12 bar. The saturation pressures of
the pure substances can be found from the Antoine equation ln psat (T ) =
A− B

C+T , where the pressure is measured in bars, the temperature in K, and
the constants have the values

A B C
C3H8 9.1058 1872.46 -25.16
C4H10 9.0580 2154.9 -34.42

1. Use the idealized Raoult law to find the mole fractions X ′
1, X

′′
1 .

2. Determine the mole numbers n′
1, n

′
2, n

′′
1 , n

′′
2 .

22.4. Binary Mixture of Propane and 1-Butane III
Consider a two phase mixture of n1 = 150 kmol propane (C3H8) and an
unknown amount n2 of butane (C4H10), at a temperature of 320K.

At p = 10 bar the mole fraction of propane in the liquid phase is X ′
1 =

0.488, and the amount of propane in the liquid phase is 75 kmol.
The saturation pressure of propane is psat,1(320K) = 15.7 bar.

1. Use the idealized Raoult law to find the mole fraction X ′′
1 .

2. Determine the mole numbers n′
2, n

′′
1 , n

′′
2 .

3. Determine the saturation pressure of butane at 320K.



22.11 Phase Diagrams with Azeotropes 511

22.5. Binary Mixture of Propane and 1-Butane IV
Consider an ideal two phase mixture of propane (C3H8) and butane (C4H10),
at temperature of 330K. At this temperature, the saturation pressures of
propane and butane are 19.4 bar and 5.86 bar, respectively. The mixture is
equimolar, with 220 kmol of each component present, and the mole fraction
of butane in the vapor phase is 30%.

1. Determine the mole fractions of butane and propane in both phases.
2. Determine the pressure of the mixture, p .
3. Determine the total mole number in the liquid.

22.6. Phase Diagrams for Propane and 1-Butane
Construct phase diagrams for a mixture of propane and 1-butane (ideal mix-
ture). Use a computer with suitable software for plotting and evaluating of
equations.

The saturation pressures of the pure substances can be found from the
Antoine equation ln psat (T ) = A− B

C+T with

A B C
C3H8 9.1058 1872.46 -25.16
C4H10 9.0580 2154.9 -34.42

where the pressure is measured in bar, and the temperature in K.

1. Construct and plot the p-X phase diagram for a variety of temperatures
(stay in between critical and triple points!).

2. Construct and plot the T-X diagram for a variety of pressures.

22.7. Water and R134a
Mixtures of water and refrigerant are used in self-foaming products. Consider
a mixture of 120 g R134a (molar mass 102 g

mol ) and 50 g water, initially at
20 ◦C and 2 bar, later at 20 ◦C and 1 bar.

1. Find the overal mole fraction of R134a in the mixture.
2. Find the mole fractions X ′

R, X
′′
R, X

′
W , X ′′

W for both pressures. Use the
idealized Raoult law.

3. Draw a p-X-diagram for the mixture, and indicate the two states and
the overall mole fraction in the diagram. Carefully consider whehter the
mixture is all liquid, liquid-vapor mix, or all vapor.

4. Determine the mole numbers n′
R, n

′′
R, n

′
W , n′′

W for both states.
5. Assuming ideal mixtures for both phases, determine the volume change of

the system.

22.8. Saturation Temperature and Pressure

1. Pure water at p = 1bar boils at a temperature of 99.63 ◦C. How much salt
must be added per kg of water to lower the saturation pressure for the
same temperature by 1%?
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2. For the same solution, find the boiling temperature for a pressure of 1.5 bar.

Note: NaCl dissociates in solution.

22.9. Water and Salt
A solution of salt (NaCl, MNaCl = 58.5 kg

kmol) in water at 1.5 bar has a boiling
temperature of 112 ◦C. How many grams of salt are dissolved in one litre of
water?

Note: NaCl dissociates in solution.

22.10. Increase of Boiling Temperature
50 g sodium chloride are dissolved in 1 litre of water. Compute the boiling
temperature at 1 bar.

22.11. Melting
In winter, after ice rain, a street is covered with a 1 cm thick layer of ice.
What is the minimum mass of salt (NaCl) required per square meter to melt
the ice when the temperature is −10 ◦C?

22.12. Cooling Liquid for a Car
The coolant of a car is required to freeze only below −20 ◦C. How many
moles of ethylene glycol (C2H6O2) or NaCl must be mixed to water, in order
to lower the temperature of freezing to the required value? Why is glycol
preferable above NaCl?

22.13. Cooking Pasta in the Mountains
A cylindrical pot (base area 250 cm2, height 25 cm) contains 4 kg of pure
water and 2mol of NaCl. A lid which has a mass of 500 g rests freely on the
top of the pot. The outside pressure is 0.8175 atm. At what temperature will
the saltwater in the pot start to boil?

22.14. Boiling Point
100 g of glucose (C6H12O6) and 20 g NaCl are dissolved in one litre of water,
the mixture can be described as ideal mixture.

1. Find the boiling temperature of this mixture on a mountain, where the
local pressure is 0.75 bar.

2. Determine the minimum work to remove only the salt, when the temper-
ature is 23 ◦C.

22.15. A Lake
A lake in the mountains has a surface area of 1.2 km2, its average depth is
24m, and the water temperature is 17 ◦C. Air (XN2 = 0.79, XCO2 = 0.0004)
at 0.8 bar stands over the water. Compute the masses of dissolved nitrogen
and carbon dioxide.

22.16. Gas Mixture
Water is in contact with a gaseous mixture of nitrogen and carbon dioxide.
The mole fractions of the gases in the liquid phase are measured as 1.1 ×
10−4 for nitrogen and 0.006 for carbon dioxide. For a temperature of 25 ◦C,
determine the mole fraction in the gas mixture, and the overall gas pressure.
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22.17. Carbon Dioxide in Water
A piston cylinder system, which is maintained at a temperature of 298K,
contains 1 litre of liquid water, water vapor, and 5 g of carbon dioxide. The
gas phase fills a volume of 1/10 litre.

1. Determine the pressure in the system.
2. Determine the percentage of CO2 that is dissolved.

Hint: The solution becomes much easier with the assumption that in the
liquid the mole amount of CO2 is much smaller than the mole amount of
water. If you use the assumption, verify it.

22.18. Henry’s Law: Sparkling Water
A bottle of volume V = 1.05 litre contains 1 litre of liquid water, water vapor,
and carbon dioxide. The pressure in the bottle is 2 bar at a temperature of
55 ◦C. Compute the masses of water and CO2 in the bottle. Consider vapor
and gaseous CO2 as ideal gases. Ignore the volume (but not the amount) of
dissolved CO2 . Henry’s law constant for CO2: HCO2(55

◦C) = 3200 bar.

22.19. Henry’s Law: Nitrogen in Water I
A bottle of volume V = 0.55 litre contains 0.5 litre of liquid water, water
vapor, and nitrogen. The pressure in the bottle is 1.5 bar at a temperature
of 35 ◦C. Compute the masses of water and N2 in the bottle. Consider vapor
and gaseous N2 as ideal gases. Ignore the volume of dissolved N2. Henry’s
law constant for N2: HN2(35

◦C) = 98600 bar.
Remark: Guinness beer is nitrogenated with a special tab. This problem

shows, why bottling it might give a very flat beer, unless a “widget” is used.

22.20. Henry’s Law: Nitrogen in Water II
A bottle of total volume V = 0.55 litre contains 0.5 litre of liquid water, some
water vapor, and a total of 0.006mol of nitrogen. The temperature of the
bottle and its contents is 35 ◦C.

1. Compute the total mass of water in the bottle (use tables).
2. Determine the amounts of nitrogen (in moles) dissolved in the liquid, and

in the gas phase.
3. Determine the pressure in the bottle.

For the solution, ignore the volume (but not the amount) of dissolved N2.
Henry’s law constant for N2: HN2 (35

◦C) = 98600 bar.

22.21. A Diver
A deep sea diver breathes a mixture of 21% O2 and 79% He, which is at the
local water pressure. The divers body contains 5 litre of blood; for simplicity,
assume that blood behaves like water.

1. Assume the blood (i.e., water at 36oC) saturates with helium, and deter-
mine the amount (in moles) of helium dissolved in the blood at sea level
and at a depth of 200 m.
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2. For both cases determine also the volume (in litre) that the helium assumes
at standard conditions.

3. Explain in thermodynamic terms why the driver needs to decompress
slowly.

22.22. Henry’s Law: Measurement of Oxygen Content of Lake
Water
In order to retrieve water from deeper layers of a lake, the following simple
device is suggested: A cylinder of volume V = 0.11 litre is filled with helium
at 2 bar. The device is brought to the desired depth, and a valve is opened
which allows water to enter the system, while the helium remains inside. Then
the system is brought to the surface, and a sample of the water is taken to
analyze the oxygen content.

The temperatures of all gases and liquids are assumed to be 9 ◦C, and the
pressure on top of the lake is 0.9 bar. Density of water is 1 kg/litre. Henry’s
constant for O2 in water at 9 ◦C is HO2(T ) = 31200 bar.

1. 100ml of water enter the system—estimate the depth at which the valve
was opened.

2. It is measured that the mole fraction of oxygen in the water sample is
1.1 × 10−6. Use this information to compute the mole fraction of oxygen
in the water where the sample was taken.

Hint: Obviously, some of the oxygen will gas out and enter the gas volume
spanned by the helium, and this leads to a lower gas content in the liquid.

22.23. Measurement of Henry’s Constant
To measure Henry’s constant for oxygen in water, the following device is
suggested. A container is divided into two equal parts, one part is filled with
highly purified water, the other part is filled with oxygen at 10 bar. Then,
the division is removed, and oxygen and water assume an equilibrium state.
The gas pressure is measured as 9.66 bar, and throughout the measurement
the temperature is kept at 20 ◦C. Determine Henry’s constant HO2 (T ), and
the relative amount of oxygen that enters the liquid.

Hint: Ignore the change in volume due to oxygen entering the liquid.

22.24. Henry’s Law: Mass of CO2 In Air and Oceans

1. On earth, the pressure at ground level is 1 atm = 1.01325 bar, the gravi-
tational acceleration is 9.81 m

s2 , and the earth radius is 6300 km. Use this
data to compute the mass of the atmosphere.

2. 0.04 mole% of the air is carbon dioxide (CO2) and 20.95 mole% is oxygen
(O2). Compute the masses of CO2 and O2 in the atmosphere.

3. 70% of the earth is covered by oceans and the average depth of the oceans
is 4000m. Assuming the mass density of the oceans is 1000 kg

m3 , compute
the mass of water in the oceans.
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4. For an average water temperature of 4 ◦C, compute the masses of CO2

and O2 dissolved in the worlds oceans. Use Henry’s law in the form

X ′
α =

p′′α
Hα (T )

,

where Hα (T ) is Henry’s law constant.

Comment: This problem assumes equilibrium conditions and ignores chem-
ical effects. The actual amount of CO2 dissolved differs from the value ob-
tained here, due to formation of carbonic acid and carbonates, as well as
non-equilibrium conditions.

22.25. Azeotropic Curves
Consider a binary mixture in liquid-vapour equilibrium, for two substances
whose vapor pressures follow the Antoine law ln p = A − B

C+T , where p is
pressure in bar, and T is the temperature in Kelvin, with

A B/K C/K
component 1 9.1 2000 -25
component 2 9.0 2100 -25

Assume that the vapor can be described as an ideal gas, while the activity
coefficients in the liquid phase are given as

γα = exp

[

ε0
T0

T
(1−X ′

α)
2
]

,

where ε0 is a measure for the energy of interaction between particles of dif-
ferent type and T0 = 300K.

1. Set up the two equations for Raoult’s law for this case.
2. By eliminatingX ′′

1 , find the equation for the saturated liquid line, p (X ′
α, T ).

3. It is not possible to find the saturated vapor line analytically. Find a
parameter form of the saturated vapor line {p (X ′

α, T ) , X
′′
α (X ′

α, T )}, where
X ′

α plays the role of the curve parameter.
4. Plot the two lines, and the partial pressures in the vapor in a p-X-diagram

for ε0 = −2, 0, 2 (and other values of your choice) for T = 300K (and other
values of your choice). Discuss the curves, in particular the azeotropic
point.

5. Construct the T-X-diagram, and plot it for p = 20 bar.
6. Discuss distillation/rectification for a mixture with an azeotropic point. Is

it possible to completely separate such a mixture by distillation?



Chapter 23

Reacting Mixtures

23.1 Stoichiometric Coefficients

In a chemical reaction, the composition of a mixture changes due to the
formation of chemical compounds. The chemical changes are expressed in
reaction equations, e.g., for the formation of water from hydrogen and oxygen,
where two hydrogen molecules and one oxygen molecule react to form two
water molecules,

2H2 + 1O2 � 2H2O (23.1)

or
−2H2 − 1O2 + 2H2O = 0 . (23.2)

The first reaction equation uses arrows to indicate the possibility of forward
and backward reactions, while the second is written as an actual equation.
The coefficients (−2, −1, +2) are the stoichiometric coefficients γα, which
count how many particles of species α are involved in the reaction. Posi-
tive stoichiometric coefficients refer to products, negative coefficients refer to
reactants.

Chemical reactions can occur forward and backward. In chemical equilib-
rium, the composition of the reacting mixture does not change and there
are as many forward as backward reactions. Thus, the definition of “for-
ward” and “backward” is somewhat arbitrary, which implies that the signs
of the stoichiometric coefficients can be switched. Moreover, multiplication
of all stoichiometric coefficients with the same factor is possible as well, e.g.,
an alternative chemical equation for the above reaction is (multiplication
with − 1

2 )

H2 +
1

2
O2 −H2O = 0 (23.3)

with the stoichiometric coefficients
(
1, 12 ,−1

)
.

H. Struchtrup, Thermodynamics and Energy Conversion, 517
DOI: 10.1007/978-3-662-43715-5_23, c© Springer-Verlag Berlin Heidelberg 2014
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23.2 Mass and Mole Balances

Due to chemical reactions, the mole numbers of all components involved in
the reaction change. The reaction rate λ is defined as the number of net reac-
tions (counted in moles) per unit time and volume. The reaction rate can be
positive or negative, depending whether forward or backward reactions pre-
vail. For each mole of reactions there are γα moles of component α produced
or consumed. The rate of change of mole number for component α reads

dnα

dt
= γαV λ . (23.4)

Multiplication with the molar massMα gives the corresponding rate of change
for mass,

dmα

dt
= γαMαV λ . (23.5)

The total mass, m =
∑

α mα, is conserved,
1 that is

dm

dt
= V λ

∑

α

γαMα = 0 , (23.6)

where the summation has to be taken over all substances involved in the
reaction, that is products and reactants. Thus, the mass of the products is
equal to the mass of the reactants,

∑

α

γαMα = 0 . (23.7)

Division of (23.4) by the stoichiometric coefficient, and taking the difference
of the result for different components gives a conservation law,

d

dt

(
nα

γα

− nβ

γβ

)

= 0 . (23.8)

This can be integrated to give

nα

γα

− nβ

γβ

=
n0
α

γα

− n0
β

γβ

, (23.9)

where n0
a are the mole numbers at the beginning of the reaction. For the

water reaction, for example, we find

nH20

2
− nO2

−1
=

n0
H20

2
− n0

O2

−1
,

nH2O

2
− nH2

−2
=

n0
H20

2
− n0

H2

−2
(23.10)

or

1 As long as we ignore the relativistic mass defect, which is extremely small.



23.3 Heat of Reaction 519

nH2O

2
+ nO2 =

n0
H2O

2
+ n0

O2
, nH2O + nH2 = n0

H20 + n0
H2

. (23.11)

A third equation, for O2 and H2, is not shown; this equation is a linear
combination of those above, and does not give additional information.

Alternatively, one can balance the mole numbers of elements, since these
must be conserved (nuclear reactions excluded). The only elements in the
water reaction are oxygen and hydrogen, and the conservation of elements
gives rise to the equations

O : nH2O + 2nO2 = n0
H2O + 2n0

O2
, H : 2nH2O + 2nH2 = 2n0

H2O + 2n0
H2

.
(23.12)

Obviously, this is equivalent to the previous equations. Balancing of elements
must be used when multiple reactions occur.

23.3 Heat of Reaction

Chemical reactions are accompanied by changes in energy. We consider a
mixture in a piston-cylinder system at (T, p), in which reactions take place
at constant pressure and temperature. The heat of reaction is defined as the
amount of heat that must be exchanged to keep temperature and pressure
constant.

Since the system is isobaric, the first law assumes the form

H2 −H1 = Q12 . (23.13)

The initial enthalpy is

H1 =
∑

α

n1
αh̄α , (23.14)

and when a total of Λ =
∫ 2
1
V λdt moles of net reactions take place, the final

enthalpy is

H2 =
∑

α

(
n1
α + γαΛ

)
h̄α . (23.15)

Thus, the heat of reaction for one mole of reactions is2

Δh̄R (T, p) =
Q12

Λ
=
∑

α

γαh̄α . (23.16)

A reaction with Δh̄R < 0 is an exothermic reaction, heat must be with-
drawn to keep the temperature constant. A reaction with Δh̄R > 0 is an
endothermic reaction, heat must be added to keep the temperature constant.

2 Here we have implicitely assumed an ideal mixture, where the enthalpy h̄α of the
component is not affected by the change of composition, so that h̄1

α = h̄2
α.
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The heat of reaction can be measured. Normally, one finds Δh̄R tabulated
at standard conditions, i.e. at T0 = 298.15K, p0 = 1bar. Some values are
given in the following table:

1
2H2 � H : Δh̄R = 218.0 kJ

mol
1
2O2 � O : Δh̄R = 249.2 kJ

mol

H2 +
1
2O2 � H2O(l) : Δh̄R = −285.8 kJ

mol

H2 +
1
2O2 � H2O(v) : Δh̄R = −241.8 kJ

mol

C+ 1
2O2 � CO : Δh̄R = −110.5 kJ

mol

C+O2 � CO2 : Δh̄R = −393.5 kJ
mol

3
2H2 +

1
2N2 � NH3 : Δh̄R = −46.2 kJ

mol
1
2H2 +

1
2J2 � HJ : Δh̄R = 25.9 kJ

mol

CO2 +H2O � 1
6C6H12O6 +O2 : Δh̄R = 466.3 kJ

mol

CH4 + 2O2 � CO2 + 2H2O(l) : Δh̄R = −890.3 kJ
mol

CH4 + 2O2 � CO2 + 2H2O(v) : Δh̄R = −802.3 kJ
mol

If one of the products is water, the heat of reaction depends on whether the
product water is liquid (l) or vapor (v). Note that a change of sign or value of
the stoichiometric coefficients changes sign and value of the heat of reaction;
e.g., for the reaction 2H2O(l) � 2H2 + 1O2, we find Δh̄R = 571.6 kJ

mol .

23.4 Heating Value

The heating value is defined as the energy released in the combustion of 1 kg
of fuel at reference conditions. One distinguishes between the lower heating
value (LHV), where the product water is vapor (v) and the higher heating
value (HHV), where the product water is liquid (l). The difference is just the
heat of evaporation of the the product water at standard reference tempera-
ture T0 which is 2442 kJ

kg or 43.96 kJ
mol .

For instance for the combustion of methane (CH4), the higher and the
lower heating values are

HHV =

∣
∣Δh̄R (l)

∣
∣

MCH4

= 55643
kJ

kg
, LHV =

∣
∣Δh̄R (v)

∣
∣

MCH4

= 50150
kJ

kg
.

23.5 Enthalpy of Formation

When we discussed the measurement of properties, it became clear that in-
ternal energy, enthalpy and entropy cannot be measured directly. What can
be measured is, for instance, the specific heat at constant pressure, and the
thermal equation of state. The enthalpy follows by integration, as shown in
(16.34), which for the molar enthalpy of α assumes the form
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h̄α (T, p)− h̄0
α =

=

∫ T

T0

c̄p,α (T ′, p0) dT ′ +
∫ p

p0

[

v̄α (T, p′)− T

(
∂vα
∂T

)

p′

]

dp′ +
∑

i

Δh̄α,i .

(23.17)

When chemical reactions take place, the reference enthalpy h̄0
α =

h̄α (T0, p0) cannot be chosen arbitrarily. Indeed, for a reaction occurring at
(T0, p0) the heat of reaction—which can be measured—is Δh̄R (T0, p0) =∑

γαh̄
0
α. Thus, the reference enthalpies h̄0

α for different substances must
be properly related, so that they give the proper, i.e., measured, heat of
reaction—for all possible reactions.

To ensure this, the following convention is used to define the reference en-
thalpies as enthalpies of formation h̄0

f at (T0, p0): Stable elements at (T0, p0),
such as O2, N2, H2, C are assigned values of zero enthalpy,

h̄0
f,α = 0 (stable elements) . (23.18)

The values h̄0
f,α for compounds follows from measurement of Δh̄R. For in-

stance for the water reaction

Δh̄R = h̄0
f,H2O − h̄0

f,H2
− 1

2
h̄0
f,O2

= h̄0
f,H2O . (23.19)

While it would be convenient to use the h̄0
f,α as reference for thermody-

namic property tables, this is most often not done. Most property tables that
list enthalpy and internal energy as functions of temperature and pressure
refer to other reference states. For ideal gas tables it is customary to scale
such that the extrapolated enthalpy at T = 0K is zero. Vapor tables often
have the internal energy or the enthalpy at the triple point set to zero. Thus,
the tabulated values must be re-scaled before they are used for computations
involving chemical reactions.

We discuss how the proper data can be found, when the molar enthalpy
h̃α (T, p) is tabulated. When no chemical reactions occur, the tabulated data
can be used as is. However, when chemical reactions are considered, the
tabulated values h̃α (T, p) must be corrected to the proper reference. Since
enthalpy differences are independent of the choice of the reference state, and
since the enthalpy of formation is the enthalpy at (T0, p0), we have h̄α (T, p)−
h̄0
f,α = h̃α (T, p)− h̃α (T0, p0), or

h̄α (T, p) = h̄0
f,α +

[
h̃α (T, p)− h̃α (T0, p0)

]
. (23.20)

Here, h̃α (T, p) denotes tabulated enthalpy values, and h̄α (T, p) denotes the
enthalpies with proper reference value that must be used for the discussion
of chemical reactions.
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Water is a common reaction product, in particular when combustion
of fuels is considered. Pure water at (T0, p0) is liquid, with h̄0

f,H2O
(l) =

−285.83 kJ
mol , but when the product is a gas mixture some or all of the water

can be in the vapor state, with h̄0
f,H2O

(v) = −241.82 kJ
mol ; see the section on

psychrometrics for more discussion.

23.6 The Third Law of Thermodynamics

Also the entropy of a substance can be determined from integration based on
measurements of specific heat and the thermal equation of state. Equation
(16.35) written for the molar entropy of component α reads

s̄α (T, p)− s̄0f,α =

∫ T

T0

c̄p,α (T ′, p0)
T ′ dT ′ −

∫ p

p0

(
∂v̄α
∂T

)

p′
dp′ +

∑

i

Δh̄α,i

Ti
,

(23.21)
with the entropies of formation s̄0f,α = s̄α (T0, p0).

The Third Law of Thermodynamics, formulated by Walther Nernst (1864-
1941) based on experimental evidence, states that at absolute zero (T = 0K),
the entropy of any crystalline substance is a constant, and independent of
pressure and other properties (e.g. magnetization). Based on the microscopic
definition of entropy, S = k lnΩ, Max Planck (1858-1947) found that the
value of the constant depends on the quantum mechanical ground state,
and it is zero for crystals that only have one ground state (Ω = 1); then
s (T = 0K) = 0. Systems with more ground states have a residual entropy.

The third law allows to determine the entropy of formation s̄0f,α =
s̄α (T0, p0) from (23.21) by evaluating it at T = 0K and p = p0, which
yields 3

s̄0f,α = s̄α (T0, p0) =

∫ T0

0

c̄p,α (T ′, p0)
T ′ dT ′ +

∑

i

Δh̄α,i

Ti
. (23.22)

For substances with residual entropy, the latter must be added on the right
hand side. Thus, the third law assigns absolute values to the entropy constants
s̄0α = s̄α (T0, p0), i.e., the entropies of formation, which can be found in tables.

Most data tables for ideal gases show the entropy values s̄α (T, p0) with
respect to the proper reference, so that the tabulated value s̄α (T0, p0) is the
entropy of formation of α at standard reference conditions. In other words,
in contrast to enthalpy data, tabulated entropy data normally needs not to
be corrected. A notebale exception are saturation tables, e.g., for water one

3 Note that the sign of the enthalpies of phase change, Δh̄α,i, depends on the
direction of the phase change as the line of integration crosses a saturation curve
in the p-T-plane. When the integration goes from (T0, p0) to (0K, p0), the Δh̄α,i

are negative. For (23.22) the sign was switched, so that the Δh̄α,i appear with a
plus sign.
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often finds the reference set such that the entropy of liquid at the triple point
is set to zero.

23.7 The Third Law and Absolute Zero

An interesting implication of the third law is that a temperature of absolute
zero cannot be reached in a finite number of process steps. This can best be
shown with the help of the T-s-diagram in Fig. 23.1, which shows lines of
constant property ψ (e.g., pressure, magnetization, . . . ).

Fig. 23.1 Series of isothermal-isentropic processes between lines of constant ψ to
reach low temperatures; ψ can be any property (except T, s)

Due to the third law, the lines of constant ψ all emerge from one point at
T = 0K. To reach low temperatures, one can take a relatively large amount of
substance at (T1, ψ1) and subject it to an adiabatic process ending at (T2, ψ2).
Next, one takes a part of the substance at (T2, ψ2) and brings it to (T2, ψ1)
isothermally, where the rest of substance at (T2, ψ2) serves as a temperature
reservoir. Now one repeats the series of adiabatic and isothermal processes,
with smaller and smaller amounts of substance. The resulting zigzag process is
shown in the figure, where for simplicity the adiabatic processes are drawn as
adiabatic reversible—i.e., isentropic—processes. Since the curves of constant
ψ meet in the origin, the distance between the curves becomes smaller and
smaller, and each step leads to a temperature reduction smaller than the
previous. Accordingly, the heat δq = Tds removed per unit mass in each
isothermal step becomes smaller and smaller as well. Evidently, absolute zero
cannot be reached with a finite number of steps.
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Another conclusion from the third law refers to the specific heat: When
phase changes are excluded, specific heat and entropy are related by

s̄ (T, p) =

∫ T

0

c̄p (T
′, p)

T ′ dT ′ . (23.23)

Entropy must remain finite in the limit T → 0K, which implies that the
specific heat must vanish in the limit,

lim
T→0K

c̄p (T
′, p) = 0 . (23.24)

23.8 Law of Mass Action

In equilibrium at constant pressure and temperature, the Gibbs free energy
assumes a minimum, G (T, p, nα) −→ min. In a chemical reaction, the mole
numbers nα are related by stoichiometry. From the mole balance (23.8) fol-
lows

nα = n0
α + γαΛ , (23.25)

where Λ =
∫ 2
1
V λdt is the net number of reactions between the actual state

(nα) and a reference state (n0
α). The net number of reactions, Λ, is the only

variable in the system, thus the equilibrium condition is

dG

dΛ
=

ν∑

α=1

(
∂G

∂nα

)

p,T,nβ

∂nα

∂Λ
=

ν∑

α=1

μ̄αγα = 0 . (23.26)

The resulting equilibrium condition for chemical reacting mixtures is known
as the law of mass action,

ν∑

α=1

γαμ̄α = 0 . (23.27)

The computation of reactive equilibria requires knowledge of the chemical
potential. In the following we shall study equilibria in ideal mixtures.

Phase changes can be interpreted as chemical reactions, e.g., with stoi-
chiometric coefficients γV = 1 and γL = −1 for evaporation. Since for single
substances the chemical potentials are just the Gibbs free energies, the law
of mass action gives the equilibrium condition,

∑ν
α=1 γαμ̄α = ḡV − ḡL = 0.

23.9 Law of Mass Action for Ideal Mixtures and Ideal
Gases

For ideal mixtures the chemical potential is given by μ̄α = ḡα (T, p) +
R̄T lnXα, and the law of mass action gives
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ν∑

α=1

γα lnXα = −
∑ν

α=1 γαḡα (T, p)

R̄T
. (23.28)

We define the Gibbs free energy of reaction as

ΔḡR (T, p) =

ν∑

α=1

γαḡα (T, p) , (23.29)

and rewrite the equilibrium conditions as

ν∏

α=1

Xγα
α = exp

[

−ΔḡR (T, p)

R̄T

]

= KX (T, p) . (23.30)

The chemical equilibrium is determined through the equilibrium constant4

KX (T, p) which, in ideal mixtures, can be determined from property data
tables for single substances.

For ideal gases, the pressure dependence of the Gibbs free energy is ex-
plicitly known, we have ḡα (T, p) = ḡα (T, p0) + R̄T ln p

p0
, where ḡα (T, p0) =

h̄α (T )−T s̄0α (T ) is the temperature dependent part of the Gibbs free energy.
Thus, the previous equation can be recast as

ν∏

α=1

pγα
α = Kp (T ) , (23.31)

where Kp (T ) is known as the chemical constant, and is given by

Kp (T ) =

ν∏

α=1

p
γα
0 exp

[

−ΔḡR (T, p0)

R̄T

]

. (23.32)

Here, ΔḡR (T, p0) =
∑ν

α=1 γαḡα (T, p0) is the Gibbs free energy of reaction
at standard pressure p0 = 1bar.

Remarkably, the chemical constant Kp (T ) depends only on temperature,
but not on pressure. Nevertheless, as we shall see, the chemical equilibrium
is affected by total pressure p =

∑
α pα.

As presented in (23.31) the chemical constant has the unit [ bar]
∑

α γα .
Some authors prefer a dimensionless form, and write5

ν∏

α=1

(
pα
p0

)γα

= K̃p (T ) . (23.33)

4 It might be a bit misleading to refer to KX (T, p) and Kp (T ) as “constants”, since
they are functions of temperature and pressure, but this is the name they have.

5 Of course, they write without the tilde that was introduced to distinguish between
the two definitions.
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with

K̃p (T ) =

ν∏

α=1

exp

[

−ΔḡR (T, p0)

R̄T

]

. (23.34)

23.10 Example: NH3 Production (Haber-Bosch
Process)

Ammonia (NH3) is one of the most important materials in chemical industry.
It is used for the production of fertilizers and explosives, as cooling fluid in re-
frigeration systems, and as source material for many other chemical processes.
The world ammonia production is about 130× 106 t

y , and an ammonia plant

that produces 1500 t
d consumes about 650MW of energy; the energy required

to produce one ton is ca. 35GJ. Approximately 1% of the world’s energy
usage is devoted to the production of ammonia!

Before Haber and Bosch found out how to produce ammonia industrially,
the supply came from guano fields off the cost of South America (guano is
. . . bird droppings). Here, we discuss the basic principles of the Haber-Bosch
process which was developed by Fritz Haber (1868-1934) and brought to
industrial production by Carl Bosch (1874-1940).

Ammonia is produced by combining hydrogen, normally obtained from
natural gas by steam methane reforming, with nitrogen from air, where the
oxygen is removed by reaction with carbon monoxide and hydrogen from
the hydrogen production step. The chemical equation for ammonia synthesis
reads

−N2 − 3H2 + 2NH3 = 0 ,

and the law of mass action (23.31) for this reaction assumes the form

p2NH3

pN2p
3
H2

= Kp (T ) .

In order to determine the equilibrium compositions of ammonia, nitrogen and
hydrogen at given (T, p), we require the balances of hydrogen and nitrogen
mole numbers, and the total pressure,

nNH3
+ 2nN2 = 2n0

N2
, 3nNH3

+ 2nH2 = 2n0
H2

, p = pNH3
+ pN2 + pH2 .

Pressures and mole numbers are related via the ideal gas law

nα =
pαV

R̄T
,

where V is the reactor volume. Thus, we have four equations for the four
unknowns (pNH3

, pN2 , pH2 , V ),
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p2NH3

pN2p
3
H2

= Kp (T ) , p = pNH3
+ pN2 + pH2 .

pNH3
+ 2pN2 = 2n0

N2

R̄T

V
, 3pNH3

+ 2pH2 = 2n0
H2

R̄T

V
.

We assume a stoichiometric mixture of the reactants, n0
H2

= 3n0
N2

, to find

pH2 = 3pN2 , pN2 =
p− pNH3

4
, V =

4n0
N2

1 +
pNH3

p

R̄T

p
,

and a quadratic equation for the equilibrium ammonia mole fraction XNH3 =
pNH3

p , with the solution

XNH3
= 1 +

8

3p
√
3Kp (T )

−

√
√
√
√
(

1 +
8

3p
√
3Kp (T )

)2

− 1 .

Tabulated values for the chemical constant are

Kp (300K) = 4.67× 105
1

bar2
,

Kp (600K) = 1.862× 10−3 1

bar2
,

Kp (773K) = 1.585× 10−5 1

bar2
.

Thus, a larger ammonia fraction is encountered for smaller temperatures,
where Kp (T ) is larger, and for larger pressures. For instance, at T = 300K
and p = 1bar, one finds XNH3 = 0.935 and this increases to XNH3 = 0.9970
when the pressure is increased to 500 bar.

However, when one mixes hydrogen and nitrogen at (300K, 1 bar), the
mixture does not approach thermodynamic equilibrium, but remains in a
metastable state; nothing happens, since the reaction rate is too slow. As
Haber found out, iron catalysts are required to advance the reaction, but
these work only at relatively high temperatures, where the ammonia yield
is relatively small. In order to have a significant yield, the process must be
performed under high pressures. For a reactor temperature of T = 773K, the
mole fraction is XNH3 = 0.309 for p = 500 bar, but only XNH3 = 0.0013 for
p = 1bar.

In continuous reactors, the product is cooled (at pressures below psat), the
ammonia condenses and is removed, while the unused portions of hydrogen
and nitrogen are fed back into the production process.
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23.11 Le Chatelier Principle

The ammonia reaction shifts its equilibrium towards the desired product
when the temperature is lower, and the pressure is higher. To study how
changes of temperature and pressure affect the chemical equilibrium in other
reactions (for ideal mixtures), we turn to (23.30) and compute the change of
the equilibrium constantKX (T, p) with pressure and temperature. According
to the definition, larger KX implies more product.

We compute first the change of KX with temperature, as

(
∂ lnKX

∂T

)

p

= − 1

R̄T

[(
∂ΔḡR (T, p)

∂T

)

p

− ΔḡR (T, p)

T

]

=
Δh̄R (T, p)

R̄T 2
.

(23.35)

Here we have used
(

∂ḡ
∂T

)

p
= −s̄, which implies

(
∂ΔḡR (T, p)

∂T

)

p

= −
∑

α

γαs̄α = −Δs̄R . (23.36)

It follows that an endothermic reaction (Δh̄R > 0) will advance further at
larger temperatures, while an exothermic reaction (Δh̄R < 0) will advance
further at lower temperatures. The ammonia reaction is exothermic, and thus
temperature increase reduces the yield. Dissociation processes, e.g., H2 �
2H, are endothermic and thus pronounced dissociation takes place at high
temperatures.

For the change of KX with pressure we find

(
∂ lnKX

∂p

)

T

= − 1

R̄T

(
∂ΔḡR (T, p)

∂p

)

T

= −Δv̄R (T, p)

R̄T
. (23.37)

Here we have used
(

∂ḡ
∂p

)

T
= v̄, which implies

(
∂ΔḡR (T, p)

∂p

)

T

=
∑

α

γαv̄α (T, p) = Δv̄R (T, p) ; (23.38)

we might call Δv̄R the volume of reaction. Note that v̄α (T, p) is the volume
of component α alone at temperature and pressure of the mixture. We have
Δv̄R < 0 when the volume of the product is less than the volume of the
reactants, and Δv̄R > 0 when the volume of the product is larger than the
volume of the reactants. The reaction will advance further at higher pressures
for negative volumes of reaction, Δv̄R < 0.

For ideal gases, we have v̄ (T, p) = R̄T/p, hence, when all components are
ideal gases, the volume of reaction becomes
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Δv̄R (T, p) =
∑

α

γαv̄α (T, p) =
R̄T

p

∑

α

γα . (23.39)

In the ammonia reaction one mole of N2 and three moles of H2 combine to two
moles of NH3, hence

∑
α γα = −2. Thus, the product has half the volume

of the reactants, the volume of reaction is negative, and pressure increase
advances the reaction. In dissociation processes, e.g., H2 → 2H, the product
has a larger volume, and pressure increase reduces the amount of dissociated
gas.

The above statements are examples, for ideal mixtures, of Le Chatelier’s
Principle (Henry Le Châtelier, 1850-1936) which states that A change in one
of the variables (temperature, pressure, concentration, . . . ) that describe a
system in equilibrium, produces a shift in the position of the equilibrium that
counteracts the change.

For instance, when a reactive mixture with exothermic reaction is heated
to a higher temperature, backward reactions occur which consume energy
and reduce the temperature. When the pressure is increased on a reactive
mixture of ideal gases with negative reaction volume Δv̄R, reactions occur
that reduce the overall particle number, and increase the mole volume v̄, to
reduce the pressure p = RT

v̄ .

23.12 Multiple Reactions

In many technical applications multiple reactions occur simultaneously. We
denote the reaction rate densities for the various reactions as λa and the
stoichiometric coefficient for component α in reaction a as γa

α, where the
superscript a = 1, . . . , N indicates the reaction. The mole balance for com-
ponent α then reads

dnα

dt
=
∑

a

γa
αλaV . (23.40)

Integration upon time yields

nα = n0
α +
∑

a

γa
αΛa , (23.41)

where Λa is the net number of reactions of type a. The Λa are the free param-
eters for the establishment of equilibrium, hence the equilibrium conditions
are

dG

dΛa
=
∑

α

∂G

∂nα

∂nα

∂Λa
=
∑

α

μ̄αγ
a
α = 0 for a = 1, . . . , N . (23.42)

In other words, the law of mass action must hold for all reactions individually,
that is
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∑

α

μ̄αγ
a
α = 0 for a = 1, . . . , N . (23.43)

For ideal mixtures and ideal gases we obtain generalizations of (23.30, 23.31),

ν∏

α=1

X
γa
α

α = Ka
X (T, p) for a = 1, . . . , N. (23.44)

and
ν∏

α=1

p
γa
α

α = Ka
p (T ) for a = 1, . . . , N. (23.45)

Problems

23.1. Enthalpy of Formation and Heat of Reaction
Measurement of the heat of reaction at standard reference state T0, p0 for
several reactions gave the following values:

C + 1
2O2 = CO : Δh̄0

R = −110 kJ
mol ,

CO2 = CO+ 1
2O2 : Δh̄0

R = 280 kJ
mol ,

H2 +
1
2O2 = H2O : Δh̄0

R = −240 kJ
mol ,

CH4 + 2O2 = CO2 + 2H2O : Δh̄0
R = −800 kJ

mol .

1. Use this data to determine the heat of formation h̄0
f for H2O, CO2, CH4.

Do not read values from tables, but show how you use the data given
above!

2. Measurements show that for temperatures below 800K the specific heat of
methane (CH4) can be approximated as c̄p = 20.1 kJ

kmolK +0.053T kJ
kmolK2 .

Use this and the data from above to determine the enthalpy of methane
at 600K.

3. Use the results from above and the gas tables for oxygen, carbon dioxide
and water to compute the heat of reaction for CH4 + 2O2 = CO2 + 2H2O
at 600K.

23.2. Dimethyl Ether (DME)
The heat of reaction at standard conditions for the combustion of gaseous
dimethyl ether, C2H6O, is experimentally found as−1460 kJ

mol , when the prod-
uct water is liquid.

1. Use this measurement and tabled data to determine the enthalpy of for-
mation of DME.

2. Determine the heat of reaction when the product water is vapor.

23.3. Shifting the Chemical Equilibrium
Consider a mixture of CO2, CO and O2 in chemical equilibrium. Now the
pressure is doubled. Will the number of moles of CO2, CO and O2 change?
How? How does the equilibrium change when the temperature is increased?
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23.4. Changes in Chemical Equilibrium
An equimolar mixture of CO and H2O(g) reacts to form an equilibrium
mixture of CO2, CO, H2O and H2 at 1727 ◦C, 1 atm.

1. Will decreasing the pressure while keeping the temperature constant in-
crease or decrease the amount of H2 present? Explain.

2. Will lowering the temperature increase or decrease the amount of H2

present? Explain.

23.5. Shift in Chemical Equilibrium through Inert Addition
An equimolar mixture of O2 and H2 reacts to form an equilibrium mixture
of O2, H2, and H2O. After equilibrium is reached, N2 is added to the mix-
ture isobarically. As nitrogen is added, does the amount of water increase
or decrease? Use Le Chatelier’s principle for a first answer. Then perform a
detailed analysis to find a relation between the amounts of N2 added and
H2O present (assume stoichiometric mix of H2 and O2).

23.6. Shift in Chemical Equilibrium
Methane, CH4, reacts with stoichiometric air to form an equilibrium mixture
of CH4, CO2, H2O, O2, N2. Will the equilibrium between CH4, CO2, H2O,
O2 be different when the reaction takes place at the same temperature and
pressure, but no nitrogen is present? State your arguments, e.g., consider the
quotient pCH4/pCO2 .

23.7. Dissociation of Oxygen
Measurement of oxygen at 3800K shows equal mole fractions of O2and O.

1. Determine the pressure.
2. Now the pressure is doubled. Determine the mole fractions of O2 and O.

23.8. Law of Mass Action: Methanol Synthesis
Methanol (CH3OH) is produced by catalytic hydrogenation of carbon monox-
ide according to the reaction

CO + 2H2 − CH3OH = 0 .

Assume that all partners in the reaction are ideal gases.

1. Carbon monoxide and hydrogen are mixed in stoichiometric ratio. Find
an expression that relates the chemical constant Kp (T ), the methanol
mol ratio XCH3OH and the total pressure p of the mixture.

2. A measurement at 600K shows that Kp (600K) = 12000 bar2. For which
total pressure p do we have a methanol ratio of 30%?

3. The reaction is exothermal. What does that mean? Would a further in-
crease of temperature increase the methanol ratio?
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23.9. Law of Mass Action: Formation of NO
Air (79% N2 and 21% O2) is heated to 2000K at a constant pressure of 2 bar.
Assume that the equilibrium mixture at this temperature consists of N2, O2,
and NO.

For the reaction equation 1
2N2 +

1
2O2 = NO one finds at this temperature

that lnKp(T ) = −3.931.

1. Compute the mole fractions of the three components in equilibrium.
2. Will the equilibrium composition change when the pressure is doubled?
3. For this reaction, lnKp grows with temperature. Does that mean the re-

action is exothermic or endothermic?

23.10. Law of Mass Action: N2O4

One kmol of N2O4 dissociates at 25 ◦C, 1 atm to form an equilibrium ideal
gas mixture of N2O4 and NO2, in which the amount of N2O4 is 0.8154 kmol.

1. Determine the mole number of NO2 in equilibrium.
2. Determine the chemical constant Kp (T ) at 25

◦C for the reaction.
3. Determine the amount of N2O4 that would be present if the pressure is

0.5 bar.

Hint: Determine first the absolute mole numbers of NO2 and N2O4.

23.11. Chemical Reaction
Consider the combustion of hydrogen with oxygen according to H2O−H2 −
1
2O2 = 0, when the pressure in the combustion chamber is fixed at 2 bar.
Hydrogen and oxygen enter the chamber in the stoichiometric ratio at Tin =
298.15K, and the mass flow of hydrogen is 1 kg

min . The temperature in the
chamber can be fixed by controlling the heat flux.

1. Compute the mass flow of oxygen.
2. The partial pressure of water vapor in the exhaust should be larger than

95% What is the maximum temperature for the combustion chamber, and
what heat flux must be removed? Repeat for water conent of 98%.

3. Discuss the flame temperature under adiabatic conditions. Derive an equa-
tion that contains only Tflame as the unknown (or a set of equations, which
will serve for the same purpose) – that equation will containKp(T ), hα(T )
for all components).

T/K 298.15 300 400 500 600 700 800 900 1000

Log[
Kp(T )√

bar
] 40.047 39.7868 29.2307 22.8855 18.6323 15.5832 13.2285 11.4978 10.0010

T/K 1100 1200 1300 1400 1500 1750 2000 2500 3000

Log[
Kp(T )√

bar
] 8.8830 7.8980 7.0637 6.3475 5.7254 4.4796 3.546 2.232 1.344
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23.12. Steam Methane Reforming
Steam methane reforming is used to produce hydrogen from methane, in
particular for further use in ammonia production. The first reaction step in
steam methane reforming is the reaction

CH4 +H2O ↔ 3H2 +CO ,

which is then followed by the water gas shift reaction discussed in the next
two problems.

At 1173K, the chemical constant for this reaction is Kp (1173K) = 1.43×
103 bar2. Methane and steam are mixed in the ratio 1 to α by mole, and react
with help of catalysts at a pressure of 30 bar.

Find the equations to determine the partial pressures pCH4
, pH2O, pH2 ,

pCO. Use a computer to determine the mole fractions of all components in
chemical equilibrium at the given pressure and temperature for α = 1 and
α = 5. Also determine as a measure for the relative conversion of methane
into hydrogen the ratio pCH4/pH2. Interpret the result–can you explain it?

Assume that all components behave as ideal gases.

23.13. Property data: Water Gas Shift Reaction I
The water gas shift reaction is the second reaction for the production of
hydrogen from methane. The reaction equation reads

CO + H2O ↔ CO2 +H2 .

1. Assuming that all components are ideal gases, determine the heat of re-
action for the temperature T = 600K. Is the reaction exothermic or en-
dothermic?

2. Determine the Gibbs free energy of reaction at T = 600K and p = 1 atm.
3. Compute the chemical constant KX(T, p). Note: this asks for KX , not for

Kp.
4. For this reaction, does the Gibbs free energy of reaction depend on pres-

sure? Explain! Determine Kp (T ).

23.14. Law of Mass Action: Water Gas Shift Reaction II
Consider the chemical equilibrium of carbon monoxide, carbon dioxide, water
and hydrogen through the water gas shift reaction, as above, at T = 800K
and p = 1 atm. The chemical constant for this reaction is KX(800K, 1 atm) =
16.424.

1. Determine the equilibrium mole fractions for all components, when the
initial state was a stoichiometric mixture of carbon monoxide and water
vapor.

2. Can the equilibrium be shifted by a change of pressure? Explain!
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23.15. Law of Mass Action: High Temperature Combustion
Reaction of a stoichiometric mixture of benzene (C6H6) and dry air at
200 kPa, with a small heat loss, results in a flame temperature of 2400K.
Assume that nitrogen, oxygen and water do not dissociate, and consider the
equilibrium between CO2, COand O2. Determine the partial pressures of all
components in the mixture.

23.16. Law of Mass Action: Incomplete Combustion
Octane (C8H18) is burned with 95% theoretical air. The resulting equilibrium
mixture consists of CO2, CO, H2O, H2 and N2. Determine the mole fractions
of all constituents when the mixture is at 1000K and 2 bar.

23.17. Law of Mass Action: Methane
At 3000K and 8 bar, methane (CH4) reacts with the stoichiometric amount of
pure oxygen according to CH4+2O2 ↔ CO2+2H2O. The chemical constants
for the following reactions are given (all at 3000K):

C + 2H2 ↔ CH4 with Kp(T ) = 9.685 1
bar2

,
2H2 +O2 ↔ 2H2O with Kp(T ) = 484.9 1

bar ,
C +O2 ↔ CO2 with Kp(T ) = 15.87 1

bar ,
2CO2 ↔ 2CO+O2 with Kp(T ) = 0.1089 bar .

Determine the mole fraction of CH4 in equilibrium.

23.18. Law of Mass Action with Multiple Reactions
A mixture consists originally of 3 kmol of CO2 and 1 kmol of O2. Assume that
in equilibrium at 3000K and 3 bar only CO2, CO, O2 and O are present, and
determine the equilibrium composition.

23.19. Law of Mass Action: Nitrogen and Oxygen
A gas mixture consisting of 1 kmol of NO, 10 kmol of O2 and 40 kmol of N2

reacts to form an equilibrium mixture of N2, NO2, NO, and O2 at 500K,
0.1 atm. Determine the composition of the equilibrium mixture.

1. Solve for the case that the molecular nitrogen stays inert.
2. Solve for the case that the molecular nitrogen reacts.



Chapter 24

Activation of Reactions

24.1 Approaching Chemical Equilibrium

So far, we have considered chemical equilibrium, which stands at the end of
a reactive process, but not the details of reaching the equilibrium. In the dis-
cussion of the ammonia synthesis, we have mentioned the need for catalysts,
which facilitate the reactions, and are required to reach the equilibrium state
in reasonable time. In the present chapter, we shall discuss reaction rates,
and the activation of reactions. Activation losses are an important cause of
losses in fuel cells, and thus we will come back to this topic in the discussion
of thermodynamics of fuel cells.

H

h

Fig. 24.1 Metastable state in mechanics

To introduce the problem, we consider a mechanical analogy, see Fig. 24.1.
The stable state for the ball is the minimum at the bottom, but it is trapped
in a metastable state at a local minimum at height H . In order to reach
the absolute minimum, the ball has to overcome the well of height h, which
requires energy.

For chemical reactions to occur, the reactant molecules must be split into
parts that then can take part in forming the products. This requires energy,

H. Struchtrup, Thermodynamics and Energy Conversion, 535
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which can come, e.g., from collisional impact. As an example we consider the
formation of water from hydrogen and oxygen. The reactants are gases, and
even at high pressures, most collisions involve only two particles, while three-
particle collisions are very rare. In the following list X denotes a collision
partner that provides or removes energy to or from the collisions, but is not
involved in the reaction itself. The reactions that happen in the formation of
water are

H2 +X � 2H + X
O2 +X � 2O + X
H+O2 � O+OH
O+H2 � H+OH
OH+H2 � H2O+H

OH+H+X � H2O+X

From the statement that two-particle collisions are far more frequent than
three-particle collisions one might conclude that the first two reactions will
mainly happen in the forward direction (high energy impact of X on H2 or
O2 splits these), while the last reaction will mainly happen in the backward
direction (splitting of water by impact of X). The rate at which reactions
take place will be proportional to the probability for a collision and to the
probability that a reaction actually occurs when a collision takes place.

24.2 Reaction Rates and the Chemical Constant

We consider a simple reaction of the type

A + B � C +D . (24.1)

Accordingly, the rates of change of the mole densities να = nα/V of the
involved species must be related as

dνA
dt

=
dνB
dt

= −dνC
dt

= −dνD
dt

. (24.2)

We consider the rate of change of molecules of species A. Molecules of
type A are produced in backward reactions at rate rb and are consumed in
forward reactions at rate rf . The rate of change is just the difference between
backward and forward reactions,

dνA
dt

= rb − rf . (24.3)

Each rate, rb or rf , is proportional to the probability to find the reaction
partners at the same location, and to the probability that a reaction will
actually take place when the partners meet. An intuitive choice for the rates
is

rb = kbνCνD , rf = kfνAνB , (24.4)
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where νCνD and νAνB are measures for the probability to find the reac-
tion partners C − D or A − B, and kb, kf measure the reaction probability
(and include scaling factors for the probability). The above are the simplest
meaningful choices for the reaction rates; realistic reactions will have more
complicated relations between reaction rates and mole densities.

According to the model, the rate of change of the mole density of species
A is

dνA
dt

= kbνCνD − kfνAνB . (24.5)

This equation describes the approach to thermodynamic equilibrium. In the
final equilibrium state dνA

dt = 0 and the rate equation gives the law of mass
action of this reaction as

νCνD
νAνB

=
kf
kb

. (24.6)

kf

kb
is the chemical constant. Indeed, since for this reaction the total number

of moles stays constant, and since all stoichiometric coefficients are ±1, we
can write

νCνD
νAνB

=
XCXD

XAXB
=
∏

σ

Xγα
α =

kf
kb

= KX = e−
ΔḡR
R̄T ; (24.7)

the last identity follows from the law of mass action for ideal mixtures (23.30).

24.3 Gibbs Free Energy of Activation

The law of mass action (24.7) does not allow to identify the reaction rate
coefficients kb and kf individually, it only relates their ratio to the Gibbs free
energy of reaction. We split the latter into two contributions, the Gibbs free
energies of activation for backward and forward reactions, ḡb and ḡf , as

−ΔḡR = ḡb − ḡf . (24.8)

The law of mass action (24.7) is fulfilled for the coefficients

kf = k0e
− ḡf

R̄T , kb = k0e
− ḡb

R̄T , (24.9)

where k0 is a dimensional factor.
Both coefficients are of the form exp

[− ē
R̄T

]
, where ē is an energy (here,

the Gibbs free energy of activation). The barometric formula is of the same
form, only that there ē is the potential energy Mgz. The factor exp

[− ē
R̄T

]

is know as the Boltzmann factor, it is the typical form of a probability in a
thermally activated system.

Figure 24.2 shows the Gibbs free energies of activation in an energy land-
scape that refers back to Fig. 24.1. The Gibbs free energy of reaction, −ΔḡR,
is a measure for the energy difference between the reactants (A,B) and the
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Fig. 24.2 Gibbs free energies of activation

products (C,D). The equilibrium of the reaction lies towards the products.
For the forward reaction (A,B) → (C,D) to occur the activation energy ḡf
must be overcome, for the backward reaction (C,D) → (A,B) the larger
activation energy ḡb must be overcome.

In equilibrium, the same number of reactions takes place in both directions,
rf = rb, or kfνAνB = kbνCνD, so that the mole densities of all constituents
do not change in time. Due to the larger activation energy ḡb, the likelihood

for a backward reaction is less (kb = k0e
− ḡb

R̄T ) than the likelihood for the

forward reaction (kf = k0e
− ḡf

R̄T ). With kb < kf and kfνAνB = kbνCνD

follows νAνB < νCνD: there must be more particles on the product side.
The activation energies ḡf , ḡb do not affect the equilibrium, which is de-

scribed by the Gibbs free energy of reaction ΔḡR in the law of mass action.
However, the activation energies determine how fast the equilibrium will be
reached. When the activation energies are large, reactions are unlikely and
the reactants will persist in a metastable state, and make no progress towards
the final equilibrium state.

The smaller the activation energies divided by temperature,
ḡf,b
R̄T

, are, the
faster the equilibrium will be reached. Thus, equilibrium will be reached faster
at higher temperatures. Fuel in contact with oxygen must be ignited—that is
heated to higher T—to overcome the energy barrier at the point of ignition.
The released heat then provides the energy to overcome the barrier in the
neighborhood, a fast chain reaction occurs.

Catalysts do not take part in the reaction, but their presence lowers the
activation energies. Ammonia synthesis provides an example for a reaction
that is stuck in a metastable state, and will come to reaction only with the
help of catalysts. Even then, to overcome the energy barrier, the temperature
must be increased.
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24.4 Entropy Generation

We show that with the reaction laws (24.5,24.9) the entropy generation is
always positive as the reaction approaches towards equilibrium, and that it
is zero in equilibrium. For simplicity of the argument, we consider only the
reaction (24.1) as before.

When the reaction takes place in a closed system the first and second laws
read

dU

dt
= Q̇− Ẇ ,

dS

dt
− Q̇

T
= Ṡgen ≥ 0 . (24.10)

We restrict the discussion to the case where temperature and pressure are
kept constant throughout the reaction. Then Ẇ = pdV

dt and the two laws can

be combined by elimination of the heat Q̇ to

dG

dt
= −T Ṡgen ≤ 0 . (24.11)

The total Gibbs free energy of the mixture is

G =
∑

nαμ̄α (24.12)

where nα = ναV is the mole number and να is mole density.
For the time derivative of the Gibbs free energy we have to remember the

Gibbs-Duhem relation (20.22). With (24.2) we obtain

dG

dt
=
∑

α

μ̄α

dnα

dt
= (μ̄C + μ̄D − μ̄A − μ̄B)Λ < (24.13)

where Λ = (rf − rb) V is the net reaction rate in the system.
For an ideal mixture, the chemical potential is

μ̄α = ḡα + R̄T lnXα (24.14)

and thus

dG

dt
= Λ

(

ΔḡR + R̄T ln
XCXD

XAXB

)

= −T Ṡgen ≤ 0 . (24.15)

Here, ΔḡR =
∑

α γαḡα = ḡC + ḡD − ḡA − ḡB is the Gibbs free energy of reac-
tion. Since the total particle number is conserved, we can write the entropy
generation rate as

Ṡgen = −Λ

T

(

ΔḡR + R̄T ln
XCXD

XAXB

)

= −Λ

T

(

ΔḡR + R̄T ln
νCνD
νAνB

)

≥ 0 .

(24.16)
In thermodynamic equilibrium the term in the bracket, and thus the en-
tropy generation rate, vanishes: this gives the law of mass action (24.7).
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With ΔḡR = ḡf − ḡb we can split this term into contributions referring to the
forward and backward reactions,

Ṡgen =
Λ

T

[(−ḡf + R̄T ln νAνB

)− (−ḡb + R̄T ln νCνD

)] ≥ 0 . (24.17)

We find the same expressions in the overall reaction rate, for which we find
from (24.9)

Λ

V
= kfνAνB − kbνCνD = k0

(

e
−ḡf+RT ln νAνB

R̄T − e
−ḡb+R̄T ln νCνD

R̄T

)

. (24.18)

With (24.17,24.18) the entropy generation is of the form
V
T (x− y) (ex − ey) ≥ 0. Therefore the entropy generation rate is al-
ways non-negative, while it vanishes in thermodynamic equilibrium (x = y,
i.e., the law of mass action). This confirms that the reaction rate model
is thermodynamically sound. Note that the model relies on simplifying
assumptions that correspond to ideal mixtures.

Problems

24.1. Velocity of Reactions
Consider a reaction of the type A �→ B+C which occurs according to dnA

dt =
−k nA (decay of A). Compute the mole density of A as a function of time,
when the initial mole density of A is n0

A, and neither B nor C are present
initially. Assume constant volume.

24.2. Velocity of Reactions
Consider a reaction of the type B + C � 2A which occurs according to

dνA

dt
= kbνBνC − kfνAνA .

The initial mole densities of A, B, C are ν0A = 0, and ν0B = ν0C = ν0, that
is B and C are mixed in equal parts when the reaction commences. The rate

constants have the values kb = 1 m3

mol s , kf = 0.1 m3

mol s . The reaction takes place
at constant volume.

1. Derive the law of mass action for this reaction, and compute the equilib-
rium mole densities.

2. Compute the mole density of A as a function of time, and also compute
the mole densities of B and C as functions of time.

3. Plot νA

ν0 and νB

ν0 as functions of time.



Chapter 25

Combustion

25.1 Fuels

Combustion describes the exothermic reaction between a fuel and an oxidizer,
most often oxygen from air. Normally, the reactive equilibrium lies almost
completely on the product side (∼99.99%,), so that for computations it can
be assumed that all fuel is consumed, as long as enough oxygen is present.
However, by the Le Chatelier principle, the reaction will be less complete
when the product temperature is high: in very hot combustion one might
have to account for the law of mass action.

Many fuels are hydrocarbons, CxHy, of different compositions. Of these,
the best known are methane (natural gas) CH4, propane C3H8, n-octane
C8H18, n-dodecane C12H26, and hydrogen H2. Octane is the main ingredi-
ent in gasoline which is a mixture of various hydrocarbons. Similarly, Diesel
fuel is a mixture of heavier hydrocarbons such as dodecane. Other fuels con-
tain additional elements as well, e.g. methyl alcohol CH3OH, ethyl alcohol
C2H5OH, or coal which is mainly carbon (C) and other elements (S, O, H,
N, ash) in varying amounts.

The basic reactions occurring are the formation of water and carbon diox-
ide

CxHy +
(
x+

y

4

)
O2 → xCO2 +

y

2
H2O . (25.1)

In the above,
(
x+ y

4

)
is the stoichiometric amount of oxygen required to fully

oxidize a hydrocarbon fuel. With the equation written for one mole of fuel,
the stoichiometric coefficients are γCxHy

= −1, γO2
= − (x+ y

4

)
, γCO2

= x,
γH2O = y

2 .
In case that not enough oxygen is present, the combustion is incomplete,

and some carbon monoxide is formed,

CxHy +
(
x+

y

4
− z

2

)
O2 → (x− z)CO2 +

y

2
H2O+ zCO . (25.2)
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Carbon monoxide is an odorless and highly toxic gas that is a fuel itself
(CO + 1

2O2 � CO2). Combustion processes take place in many reaction
steps, which involve the splitting of larger molecules into smaller units, and
the formation of new species. The formation of H2O and CO is relatively
fast, while the formation of CO2 is slow, hence CO is formed first, and then
reacts to CO2 later.

25.2 Combustion Air

Most combustion processes use air as an oxidizer, which is freely available
for most applications, e.g., stationary power plants or air breathing engines
for cars and airplanes. Rockets fly at high altitudes or in space where the
oxygen density is low or zero and thus they must bring their oxidizer along.
To reduce payload, rocket engines are fed with fuel and pure oxygen, or with
solid oxidizer-fuel compounds, e.g., ammonium perchlorate and aluminium
powder.

For combustion with air, the oxygen is accompanied by the other com-
ponents of air. Since oxygen and nitrogen are the two main ingredients, in
combustion analysis one normally ignores the other components, and consid-
ers air as a mixture of oxygen and nitrogen with XO2 = 0.21 and XN2 = 0.79.
Thus, in dry air for one mole of oxygen 1

XO2
= 4.76 moles of air are required,

that is each mole of oxygen is accompanied by 3.76 moles of nitrogen.
Due to the presence of nitrogen, nitrogen oxides (NOx) may form in the

combustion processes which are toxic. Since the amounts are small, the for-
mation of NOx will be ignored below, but due to the toxicity the formation
of NOx must be monitored, and suppressed, in practice.

The amount of oxygen that is required for complete combustion of a fuel
is known as the stoichiometric amount, the corresponding amount of air is
denoted as stoichiometric air or as theoretical air. For the general hydrocar-
bon reaction (25.1) the stoichiometric air is

[
4.76
(
x+ y

4

)]
moles of air per

mole of fuel. Often the air amount is given as percent of theoretical air, for
instance 150% of theoretical air corresponds to

[
7.14
(
x+ y

4

)]
moles of air

per mole of fuel, or to 50% of excess air .

25.3 Example: Mole and Mass Flow Balances

As an example we consider the combustion of a mass flow ṁF = 5 kg
h of

octane (C8H18) with 150% theoretical air. We ask for the mass flow of air
required, and the mass flows of the products. Since chemical balances concern
mole numbers rather than masses, we first determine the mole flow of fuel as
(MC8H18 = 114 kg

kmol)

ṅF =
ṁF

MC8H18

= 0.0122
mol

s
.
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The required amount of air, and the resulting amount of product, is deter-
mined by writing a chemical equation for all involved components as

C8H18 + 1.5a (O2 + 3.76N2) → 0.5aO2 + bCO2 + cH2O+ dN2 .

Here, a is the amount of oxygen required for the stoichiometric combustion
per mole of fuel, the factor 1.5 on the left accounts for 150% of theoretical
air. The first term on the right is the unused portion of oxygen, which is total
oxygen coming in (1.5a) minus the stoichiometric amount (a). The numbers
a, b, c, d must be determined from balancing the elements C, H, O and N, on
both sides of the equation. This gives

8 = b , 18 = 2c , 1.5a× 2 = 0.5a× 2 + 2b+ c , 1.5a× 3.76× 2 = 2d ,

so that
a = 12.5 , b = 8 , c = 9 , d = 70.5 .

The resulting mole flows entering the combustion process are

ṅO2 = 1.5a ṅF = 0.229
mol

s
,

ṅN2 = d ṅF = 0.86
mol

s
,

ṅair = ṅO2 + ṅN2 = 1.089
mol

s
,

and the outgoing flows are

ṅCO2 = b ṅF = 0.098
mol

s
,

ṅH2O = c ṅF = 0.110
mol

s
,

ṅO2 = 0.5a ṅF = 0.076
mol

s
,

ṅN2 = d ṅF = 0.86
mol

s
.

The mass flows of incoming air and outgoing carbon dioxide and water are
(Mair = 29 kg

kmol , MCO2
= 44 kg

kmol , MH2O = 18 kg
kmol )

ṁair = Mairṅair = 31.58
g

s
= 113.7

kg

h

ṁCO2
= MCO2

ṅCO2
= 4.31

g

s
= 15.5

kg

h

ṁH2O = MH2OṅH2O = 1.98
g

s
= 7.13

kg

h

The mass-based air-fuel ratio is
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AF =
ṁair

ṁF
=

Mair

MF

ṅair

ṅF
=

Mair

MF
1.5a (1 + 3.76) = 22.7 .

One litre of octane (ρC8H18
= 0.703 kg

litre) has the mass mF = 703 g which
corresponds to the mole number nF = 6.17mol. Thus, the amount of CO2

produced in combustion of 1 litre of octane is nCO2
= bnF = 49.3mol that

is mCO2 = MCO2nCO2 = 2.17 kg of CO2 per litre of fuel. A car with a gas
mileage of 14 litres

100 km travelling at 50 km
h requires approximately 5 kg

h of octane
and expels 15.5 kg of carbon dioxide per hour.

25.4 Example: Exhaust Water

For the analysis of combustion processes it is important to know whether
some of the product water is liquid. Liquid water can lead to corrosion in
the system, and should be avoided; it will form when the temperature of the
combustion product sinks below the dewpoint of the product. For the analy-
sis, the moisture content of the incoming combustion air must be considered
as well to obtain accurate results.

We study this by means of an example. Fuel gas with a volumetric analysis
of 60% CH4 and 40% H2 is burnt with moist air at temperature 20 ◦C and
relative humidity φ = 0.7 with 60% excess air; the pressure is 1 bar. We ask
for the dew point temperature of the combustion product.

The mole fraction of water in the incoming air is

XH2O =
pv
p

= φ
psat (20

◦C)
p

= 0.0164 ,

so that each mole of oxygen is accompanied by XH2O/XO2 = 0.079 moles of
water.1 Then, the overall mole balance for the combustion per mole of fuel
reads

0.6CH4 + 0.4H2 + 1.6a (O2 + 3.76N2 + 0.079H2O)

→ 0.6aO2 + bCO2 + cH2O+ dN2 ,

which yields, from balancing elements (C, H, O, N),

0.6 = b , 0.6× 4 + 0.4× 2 + 1.6a× 0.079× 2 = 2c ,

1.6a (2 + 0.079) = 0.6a× 2 + 2b+ c , 12.032a = 2d ,

with the solution

a = 1.4 , b = 0.6 , c = 1.78 , d = 8.42 .

1 The calculation is as follows: Mole fraction of water is XH2O =
nH2O

nO2
+nN2

+nH2O
;

with nN2 = 3.76nO2 follows
nH2O

nO2
=

XH2O

XO2
= 4.76

1
XH2O

−1
.
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The mole fraction of water in the product is

Xprod
H2O

=
c

0.6a+ b+ c+ d
= 0.153 .

Thus, the partial pressure of the vapor in the product is pv = 0.153 bar which
corresponds to a dewpoint temperature Td = Tsat (pv) = 54.4 ◦C.

When the reaction product is cooled below the dewpoint, cliq moles of
water per mole of fuel will condense, while the remaining cvap = c−cliq moles
per mole of fuel will be in the vapor phase. When the product temperature is
25 ◦C, the partial pressure of the vapor in the gas phase is pv = psat (25

◦C) =
3.169 kPa, and the mole fraction of the vapor is

XH2O =
pv
p

=
cvap

0.6a+ b+ cvap + d
,

so that

cvap =
0.6a+ b+ d

p
pv

− 1
= 0.323 and cliq = 1.452 .

Thus, for each mole of fuel there will be 1.452mol of liquid water in the
system, which have to be removed.

25.5 First and Second Law for Combustion Systems

The goal of combustion is to produce heat, either for heating purposes or for
conversion into work in heat engines. Since the changes in chemical energy
are reflected in the proper values for enthalpies (23.20) and entropies (23.22),
the first and second law for a combustion system have the usual form (9.9,
9.10),

dE

dt
+
∑

α,out

ṁα

(

hα +
1

2
V2
α + gzα

)

−
∑

α,in

ṁα

(

hα +
1

2
V2
α + gzα

)

= Q̇− Ẇ ,

(25.3)

dS

dt
−
∑

k

Q̇k

Tk
+
∑

α,out

ṁαsα −
∑

α,in

ṁαsα = Ṡgen ≥ 0 . (25.4)

We shall consider mainly open systems, e.g., combustion chambers, at steady
state and ignore kinetic and potential energies, so that, now written with
mole flows instead of mass flows, and with molar enthalpy and entropy, the
first and second law read
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∑

α,out

ṅαh̄α −
∑

α,in

ṅαh̄α = Q̇− Ẇ , (25.5)

∑

α,out

ṅαs̄α −
∑

α,in

ṅαs̄α −
∑

k

Q̇k

Tk
= Ṡgen ≥ 0 . (25.6)

The mole flows ṅα must be determined by analysis of the combustion process
as shown in the previous sections.

25.6 Adiabatic Flame Temperature

If the combustion system is adiabatic, and no power is exchanged, the first
law for isobaric combustion reduces to

∑

α,out

ṅαh̄α (Tf ) =
∑

α,in

ṅαh̄α (Tin) . (25.7)

The temperature Tf of the combustion product is the adiabatic flame tem-
perature.

25.7 Example: Adiabatic Flame Temperature

As an example, we compute the adiabatic flame temperature for the combus-
tion process studied in Section 25.3, when the incoming fuel and airstreams
are at reference temperature and pressure, Tin = T0, p = p0. Then, the
enthalpies for the incoming streams are

h̄F (Tin) = h̄0
f,C8H18

= −249.95
kJ

mol
,

h̄O2 (Tin) = h̄0
f,O2

= 0 , h̄N2 (Tin) = h̄0
f,N2

= 0 .

After division by ṅF , and with the results of Sec. 25.3, the energy balance
(25.7) becomes

bh̄CO2 (Tf ) + 0.5ah̄O2 (Tf) + ch̄H2O (Tf) + dh̄N2 (Tf) = h̄F (Tin, p) .

When written with tabulated enthalpy values h̃α (T ) instead, this gives, by
means of (23.20),

bh̃CO2
(Tf) + 0.5ah̃O2 (Tf ) + ch̃H2O (Tf ) + dh̃N2 (Tf )

= h̄0
f,C8H18

+ b
[
h̃CO2

(T0)− h̄0
f,CO2

]

+ 0.5a
[
h̃O2 (T0)

]
+ c
[
h̃H2O (T0)− h̄0

f,H2O

]
+ d
[
h̃N2 (T0)

]
.
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Here we used that the products are ideal gases, so that the enthalpies depend
only on temperature. From the tables we find the values

h̄0
f,CO2

= −393.52
kJ

mol
, h̄0

f,H2O = −241.82
kJ

mol

and

h̃CO2
(T0, p0) = 9.624

kJ

mol
, h̃O2 (T0, p0) = 8.903

kJ

mol
,

h̃H2O (T0, p0) = 9.783
kJ

mol
, h̃N2 (T0, p0) = 8.672

kJ

mol
,

so that,

H (Tf) := 8h̃CO2
(Tf) + 6.25h̃O2 (Tf ) + 9h̃H2O (Tf) + 70.5h̃N2 (Tf )

= 5906.65
kJ

mol
.

The flame temperature must be determined by trial and error from tabu-
lated data. We find H (1800K) = 5810.9 kJ

mol and H (1850K) = 5994.6 kJ
mol .

Linear interpolation between these values gives the flame temperature as
Tf = 1826K.

25.8 Closed System Combustion

For a combustion process in a closed system, the integrated first law gives
(kinetic and potential energies ignored)

U2 − U1 = Q12 −W12 . (25.8)

As for enthalpies, the internal energies must be taken with respect to proper
reference data, and the best way to ensure this is to determine them from
enthalpies.

For ideal mixtures, which exhibit neither enthalpy nor volume of mixing,
we have

U1 =
∑

α, react

nαūα =
∑

α, react

nα

[
h̄α (T1, p1)− p1v̄α (T1, p1)

]
, (25.9)

U2 =
∑

α, prod

nαūα =
∑

α, prod

nα

[
h̄α (T2, p2)− p2v̄α (T2, p2)

]
. (25.10)

Here, v̄α (T, p) is the mole volume of α alone at (T, p) (Amagat model).
Application of the ideal gas laws pv̄ = R̄T , h̄ = h̄ (T ), gives

U1 =
∑

react

nα

(
h̄α (T1)− R̄T1

)
, U2 =

∑

prod

nα

(
h̄α (T2)− R̄T2

)
. (25.11)
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25.9 Example: Closed System Combustion

As an example we consider the isochoric and adiabatic combustion of nCH4
=

1mol of methane with nO2 = 9mol of oxygen (X1
CH4

= 0.1, X1
O2

= 0.9) in a
closed container, the initial temperature is T1 = 25◦C and the initial pressure
is p1 = 10 atm. Reactants and products are considered as ideal gases.

The chemical equation for this reaction is

CH4 + 9O2 = CO2 + 2H2O+ 7O2 ,

which implies nCO2
= 1mol, nH2O = 2mol, nO2 = 7mol. The final tempera-

ture must be determined from the first law, which reduces to U2 = U1. With
h̄0
f,CH4

= −74.85 kJ
mol and h̄0

f,O2
= 0, we find

U1 = nCH4

(
h̄CH4

(T1)− R̄T1

)
+ nO2

(
h̄O2 (T1)− R̄T1

)
= −99.64 kJ .

The final energy is given by

U2 = nCO2

(
h̄CO2

(T2)− R̄T2

)
+ nH2O

(
h̄H2O (T2)− R̄T1

)

+ nO2

(
h̄O2 (T2)− R̄T2

)
.

Again we must use trial and error to determine the final temperature. We
find U2 (T = 2800K) = −107.6 kJ and U2 (T = 2900K) = −70.98 kJ so that,
from U2 = U1 we find by linear interpolation, T2 = 2822K.

The total number of moles stays constant over the process, and the ideal
gas equation gives the final pressure

p2 = p1
T2

T1
= 9.464 p1 = 94.64 atm .

The partial pressures are obtained from the mole ratios, Xα = pα

p = nα

n as

p1CH4
= 1 atm , p1O2

= 9 atm , p2CO2
= 9.464 atm ,

p2H2O = 18.93 atm , p2O2
= 66.25 atm .

25.10 Entropy Generation in Closed System
Combustion

In a combustion process, the entropy changes due to temperature and compo-
sitions change. and are affected by the different entropies of formation s̄0f,α of
the various constituents. One will expect entropy generation in combustion,
since combustion processes cannot be controlled once started. As always, the
generation of entropy is related to a work loss.

The computation of the entropy changes in steady state combustion in
open systems will be seen in Sec. 25.12. Here we have a look at the entropy
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generation in closed system combustion, for the process described in the
preceding section.

Since the process is adiabatic, the second law can be integrated to

S2 − S1 = Sgen ≥ 0 (25.12)

where Sgen =
∫ tf
t=0 Ṡgendt is the overall entropy generated over the duration

of the process. We obtain

S1 =
∑

reactants

nαs̄α
(
T1, p

1
α

)
, S2 =

∑

products

nαs̄α
(
T2, p

2
α

)
, (25.13)

where the entropies must be evaluated as

s̄α (T, pα) = s̄0α (T, p0)− R̄ ln
pα
p0

(25.14)

with the partial pressures pα = Xαp.
The s̄0α (T, p0) are tabulated, and we find from the tables (with some in-

terpolation)

s̄CH4
(T1, p0) = 186.16

kJ

kmolK
, s̄O2 (T1, p0) = 205.04

kJ

kmolK
,

s̄CO2
(T2, p0) = 331.09

kJ

kmolK
, s̄H2O (T2, p0) = 283.19

kJ

kmolK
,

s̄O2 (T2, p0) = 282.08
kJ

kmolK
.

Then we have

S1 = 2.032
kJ

K
, S2 = 2.872

kJ

K
and Sgen = 0.841

kJ

K
.

25.11 Work Potential of a Fuel

As we have seen in the last section, combustion processes are accompanied
by entropy generation. Combustion is irreversible, and work potential is lost
to the irreversibility. In order to quantify the work loss, we ask how much
work one could obtain from a fuel in a reversible process.

Figure 25.1 shows the mass and energy flows of a fuel consuming power
plant: fuel and oxidizer enter the plant at reference conditions (T0, p0) and
are processed inside the plant, which produces the net power Ẇnet and rejects

the heat
∣
∣
∣Q̇out

∣
∣
∣. The reaction products leave the plant through the exhaust,

and we assume that they are in thermal and mechanical equilibrium with
the outer environment, i.e., they are at (T0, p0) as well. This guarantees that
most work available from the exhaust with respect to the environment is
harvested. Note that, in principle, some work could be obtained by reversible
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fuel

oxydizer

exhaust

T0

Ẇnet

∣∣∣Q̇out

∣∣∣

Fig. 25.1 Mass and energy flows for a fuel consuming power plant

mixing of the exhaust and the atmosphere. If the exhaust is just ejected into
the environment, the mixing process is irreversible with an associated work
loss; this loss will not be quantified.

Since nothing is said about the processes inside the plant, this set-up is
applicable to a wide array of systems, in particular to all combustion based
heat engines, that is Otto, Diesel, Brayton, Rankine cycles, and their variants,
and to electrochemical power devices, i.e., fuel cells.

Elimination of the heat rejected into the environment between (25.5) and
(25.6) gives the net work of the plant as

Ẇnet = −T0Ṡgen +
∑

reactants
at T0,p0

ṅα

(
h̄α − T0s̄α

)−
∑

products
at T0,p0

ṅα

(
h̄α − T0s̄α

)
.

(25.15)

All irreversible processes occurring inside the plant, e.g., combustion, heat
transfer over finite temperature differences, or friction losses in turbines, con-
tribute to the entropy generation Ṡgen, and thus diminishes the net work
output of the plant.

We evaluate (25.15) for the stoichiometric combustion of a fuel with pure
oxygen, with the chemical equation

|γfuel| fuel +
∣
∣γO2

∣
∣O2 = γCO2

CO2 + γH2OH2O . (25.16)

We choose γfuel = −1, and thus the mole flow of oxygen entering is ṅO2 =∣
∣γO2

∣
∣ ṅfuel and the mole flows of the products, carbon dioxide and water, are

ṅCO2
= γCO2

ṅfuel and ṅH2O = γH2Oṅfuel.
Since all flows are entering and leaving at atmospheric conditions (T0, p0),

we have h̄α (T0, p0) − T0s̄α (T0, p0, Xα) = ḡα (T0, p0) + R̄T0 lnXα, where we
have assumed ideal mixtures; as always ḡα (T0, p0) is the Gibbs free energy
of α alone at standard conditions.
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For this case, (25.15) can be written as

Ẇnet = −T0Ṡgen− ṅfuelΔḡR (T0, p0)− ṅfuelR̄T0 ln
(
X

γCO2

CO2
X

γH2O

H2O

)
. (25.17)

The last term is the entropy of mixing of the products. Since fuel and oxidizer
enter the system separately, there is no mixing term for the reactants.

The first term—which is always negative—is the work lost to the irre-
versible processes inside the system, and the last term is the work that could
be obtained by reversible mixing of the combustion products CO2 and H2O.
The second term—which is positive, since for a fuel ΔḡR < 0—is just the
Gibbs free energy of reaction, which is the dominant contribution to the
work potential of a fuel. The maximum work obtainable from the fuel in a
reversible process results from setting Ṡgen = 0.

In case that the combustion products (CO2, H2O) leave the plant in sepa-
rate streams at (T0, p0) the mixing term vanishes (last term in (25.17)), and
the maximum work that can be extracted per mole of fuel in a reversible
process is just the Gibbs free energy of the reaction,

wrev
fuel =

Ẇnet

ṅfuel
= −ΔḡR (T0, p0) . (25.18)

Additional work could be obtained by mixing the exhaust streams reversibly
(last term in (25.17)), and by reversible mixing of the exhaust with the envi-
ronmental air. The exhaust is in thermal (T0) and mechanical (p0) equilibrium
with the environment, but not in chemical equilibrium (μ̄α,0). For combus-
tion with (excess) air, additional mixing terms arise due to the presence of
N2 and excess O2; these will be studied in the next section.

The question arises whether the maximum work obtainable from a fuel
can be obtained from actual engineering devices. The answer is no, obvi-
ously, since all realistic processes are somewhat irreversible. It is, however,
important to understand and quantify the different causes for irreversible
losses, since only this understanding can lead to the design of better devices,
with smaller losses.

In a classical combustion power plant losses are due to combustion, heat
transfer, irreversible mixing, and friction. We shall study the relative impor-
tance of these in an extended example in the next section.

In fuel cells the flow of electrons is controlled, and thus combustion losses
do not occur, but there are other causes for irreversible losses. Fuel cells and
the losses within will be discussed in Chapter 26.
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25.12 Example: Work Losses in a CH4 Fired Steam
Power Plant

The work produced in a combustion power plant differs significantly from the
work available from the fuel, due to entropy generation within the system. In
the present section we study and compare the contributions to work loss from
all elements of a combustion driven Rankine cycle, where we consider different
amounts of excess air. Figure 25.2 shows a simplified picture of the energy
and mass flows in the considered system; neither reheat nor regeneration are
considered. Fuel and air enter the plant at (T0, p0), the fuel is burned at
constant pressure in the combustion chamber so that the flame temperature
is T2, and then the hot flue gas passes the steam generator that delivers heat
to the Rankine cycle. The exhaust leaves the plant at (T3, p0).

fuel

air

exhaust

T0

Ẇnet

∣∣∣Q̇out

∣∣∣

1

2 3

condenser

steam generator

pu
m

p

tu
rb

in
e

4

combustion

T3; p0

T2; p0

T0; p0

Fig. 25.2 A combustion steam power plant

For simplicity we consider the fuel to be methane (CH4). The heat of
reaction and the Gibbs free energy of reaction for the combustion of CH4 are
(at T0, p0, product water is vapor)

Δh̄R = −802.31
kJ

mol
, ΔḡR = −800.89

kJ

mol
.

The combustion equation reads
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CH4 + 2 (1 + x) (O2 + 3.76N2) −→ CO2 + 2H2O+ 2xO2 + 2 (1 + x) 3.76N2 ,

where x is the excess air in percent.
The corresponding incoming and outgoing mole flows are, expressed as

multiples of the fuel flow ṅF,

inflows:
fuel : ṅF ,
O2 : ṅO2 = 2 (1 + x) ṅF ,
N2 : ṅN2 = 7.52 (1 + x) ṅF ,

outflows:
CO2 : ṅCO2

= ṅF ,
H2O : ṅH2O = 2ṅF ,
O2 : ṅO2 = 2xṅF ,
N2 : ṅN2 = 7.52 (1 + x) ṅF .

The mole fractions in the outflow are

XCO2
=

1

10.52 + 9.52x
, XH2O =

2

10.52 + 9.52x
,

XO2 =
2x

10.52 + 9.52x
, XN2 =

7.52 (1 + x)

10.52 + 9.52x
.

The amount of excess air, x, follows from the first law for a given value of
the flame temperature T2, for which we consider three different values,

T2 = {1000K, 1600K, 2200K} .

The first law for adiabatic combustion reads

∑

in

ṅαh̄α (T0) =
∑

out

ṅαh̄α (T2) ,

which yields (with h̄0
f,O2

= h̄0
f,N2

= 0)

x =
h̄0
F − h̄CO2 (T2)− 2h̄H2O (T2)− 7.52h̄N2 (T2)

2h̄O2 (T2) + 7.52h̄N2 (T2)
,

and thus, for the three chosen values of the flame temperature,

x = {2.684, 0.776, 0.091} .

Next we ask for the maximum amount of work that could be obtained
from the fuel with the given amounts of excess air, i.e., in a reversible process
with exhaust at T0, p0. For fully reversible operation (25.15) reduces to



554 25 Combustion

Ẇmax =
∑

in

ṅα

(
h̄α − T0s̄α

)−
∑

out

ṅα

(
h̄α − T0s̄α

)
,

where the appropriate values of enthalpies and entropies must be inserted.
Since the gas mixture is always at p0, the entropies are s̄α (T, p0, Xα) =

s̄0α (T )− R̄ lnXα. One has to be careful with the choice of the mole fractions
for the inflow: since the fuel enters the plant unmixed with the air, which is
a mixture of oxygen and nitrogen, the entropies for the incoming flows are

s̄F = s̄0F (T0) , s̄O2 = s̄0O2
(T0)− R̄ lnXair

O2
, s̄N2 = s̄0N2

(T0)− R̄ lnXair
N2

with Xair
O2

= 0.21, Xair
N2

= 0.79. For the computation of reversible work, the
exhaust temperature is T0, while the mole fractions of the products are given
above in terms of the amount of excess air.

Using tabulated data for s̄0α (T ) and h̄CO2
(T ), the following values for the

maximum work per mole of fuel are found:

Ẇmax

ṅF
=

{

822.9
kJ

mol
, 816.5

kJ

mol
, 810.8

kJ

mol

}

.

More work could be obtained for larger amounts of excess air. Part of the
reversible work is related to reversible mixing of the products, and this con-
tribution is larger for larger amounts of excess air.

Now we proceed with the evaluation of the actual process, which is irre-
versible.

The combustion chamber is adiabatic, and exchanges no work with the
surroundings. The entropy generation in the combustion process follows from
applying the second law between inlet and combustion chamber exit as

Ṡcomb
gen =

∑

out,2

ṅαs̄α −
∑

in

ṅαs̄α .

The corresponding power loss is T0Ṡ
comb
gen and we compute the ratio between

the loss and the maximum work as

T0Ṡ
comb
gen

Ẇmax

= {51.9%, 38.3%, 30.5%} .

Thus, depending on the flame temperature (or the amount of excess air),
a large amount of the work that is available from the fuel is lost to the
irreversibility of the combustion process. The loss is larger for lower flame
temperature, since the hotter flow has increased work potential (or exergy):
heat at higher temperature is more valuable. A closer look shows that only
a small part of this loss (2.67%, 1.91%, 1.23%) can be attributed to mixing
loss.

After the combustion chamber, the hot flue gas enters the heat exchanger
where the heat Q̇SE is withdrawn from the gas and transferred to the steam
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engine. The heat exchange follows from the first law for the gas as

Q̇SE =
∑

2

ṅαh̄α −
∑

3

ṅαh̄α .

To determine the values, we need to specify the exhaust temperature, and we
assume an exhaust temperature of 400K (127 ◦C). Depending on the flame
temperature, we find the following amounts of heat transmitted to the steam
cycle (per mole of fuel):

Q̇SE

ṅF
=

{

692.7
kJ

mol
, 746.9

kJ

mol
, 766.3

kJ

mol

}

.

Since some thermal energy leaves with the exhaust, the heat transmitted lies
below the available heat of reaction, Δh̄R. Since the total mass flow is higher
at high excess air (low flame temperature), more heat (13.6%Δh̄R) is lost
than in the case for lower amounts of excess air (6.9%, 4.5%).

For the further calculation we have to specify the details of the steam
engine. We choose a standard Rankine cycle operating at condenser temper-
ature of Tc = 40 ◦C, turbine inlet conditions are TT = 550 ◦C, pT = 80 bar;
pump and turbine have isentropic efficiencies of 80% and 85%, respectively.
The corresponding specific enthalpies and entropies of the vapor stream are
(the subscripts refer to the the encircled numbers in Fig. 25.2)

h1 = 167.6 kJ
kg , s1 = 0.5725 kJ

kgK ,

h2s = 175.6 kJ
kg , s2s = 0.5724 kJ

kgK ,

h2 = 177.7 kJ
kg , s2 = 0.5792 kJ

kgK ,

h3 = 3521 kJ
kg , s3 = 6.878 kJ

kgK ,

h4s = 2142 kJ
kg , s4 = 6.878 kJ

kgK ,

h4 = 2348 kJ
kg , s4 = 7.488 kJ

kgK .

The thermal efficiency of the steam cycle is

η =
h1 − h2 + h3 − h4

h3 − h2
= 34.8%

for irreversible operation, and ηrev = 41.0% when pump and turbines are
reversible (states 2s, 4s instead of states 2, 4).

The energy balance for the heat exchanger gives the mass flow of steam
per mole of fuel as

ṁsteam

ṅF
=

Q̇SE

ṅF (h3 − h2)
.

The entropy generated in the heat exchanger, which is adiabatic to the out-
side, is computed from the entropy flows as
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ṠHE
gen =

∑

3

ṅαs̄α −
∑

2

ṅαs̄α + ṁsteam (s3 − s2) .

The relative amounts of work lost are

T0Ṡ
HE
gen

Ẇmax

= {9.33%, 20.7%, 27.5%} .

Entropy generation in heat transfer is larger when the temperature difference
between the flows is large. Since the temperatures for the steam cycle are
fixed, there are higher heat transfer losses for larger flame temperature. The
heat transfer loss could be reduced by using a heat engine that operates at
higher maximum temperature. This would reduce heat transfer losses, and
increase the thermal efficiency.

Another source of irreversibility is the thermal equilibration of the hot
exhaust (state 3) with the atmosphere,

Ṡexhaust
gen =

∑

exhaust at T0

ṅα

T0

(
h̄α − T0s̄α

)−
∑

3

ṅα

T0

(
h̄α − T0s̄α

)
.

The relative contributions of the exhaust loss are

T0Ṡ
exhaust
gen

Ẇmax

= {1.85%, 0.95%, 0.62%} .

The condenser contributes to work loss, due to the temperature difference
between the condensing steam and the environment. The entropy generation
for this process is

Ṡcond
gen =

∣
∣
∣Q̇C

∣
∣
∣

(
1

T0
− 1

TC

)

= (1− η) Q̇SE

(
1

T0
− 1

TC

)

,

and this corresponds to the relative work loss

T0Ṡ
cond
gen

Ẇmax

= {7.62%, 8.28%, 8.56%} .

Finally, we determine the actual power delivered by the power plant relative
to the maximum work

ẆSE

Ẇmax

=
ηQ̇SE

Ẇmax

= {29.3%, 31.8%, 32.9%} .

The efficiency of the power plant with respect to the heat available from
combustion is

ẆSE

ṅFΔh̄R
= {30.0%, 32.4%, 33.2%} .
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The actual work delivered and the various losses add up to the maximum
work,

Ẇmax = ẆSE + T0

(
Ṡcomb
gen + ṠHE

gen + Ṡexhaust
gen + Ṡcond

gen

)
.

The above analysis gives insight into the relative importance of the differ-
ent entropy generating processes.

For this standard steam cycle it becomes evident that more than 60% of the
available work are lost in combustion and heat transfer (T0Ṡ

comb
gen + T0Ṡ

HE
gen).

The heat transfer loss is reduced when the flame temperature is smaller, and
more excess air is used, but this also increases the combustion loss.

For the low exhaust temperature chosen, the exhaust loss (T0Ṡ
exhaust
gen )

is relatively small, but still amounts to up to 6% of the work produced
(ẆSE). Obviously this contribution will increase when the exhaust is hot-
ter. While we did not explicitly account for regeneration of the exhaust,
which might be used for preheating of the combustion air, see Sec. 12.1,
it is clear that a regenerator will reduce the final exhaust temperature,
T3. When the exhaust temperature is lowered to 350K, the exhaust loss
is {0.51%, 0.27%, 0.18%} of Ẇmax, and the overall efficiency is increased, so
that ẆSE/Ẇmax = {31.6%, 33.0%, 33.7%}.

Due to the large amount of heat transferred, the condenser loss (T0Ṡ
cond
gen )

is relatively large. While the temperature difference between environment
and condenser (Tc − T0 = 15 ◦C) cannot be reduced further, this contribu-
tion to the irreversible losses will become smaller when a more efficient heat
cycle (reheat and regeneration) is used, where more of the incoming heat is
converted to work, and less heat is rejected in the condenser.

The entropy generation in turbine and pump is

Ṡirr
gen = ṁsteam (s2 − s1 + s4 − s3) ,

which relates to the relative work loss

T0Ṡ
irr
gen

Ẇmax

= {5.36%, 5.40%, 5.44%} .

This loss is already included in the above calculation. Improved turbine and
pump increase the thermal efficiency and thus increase the net work, and
reduce the heat rejection—and thus the entropy generation—in the con-
denser. Indeed, for reversible operation of the steam cycle (use of h2s, h4s

instead of h2, h4, η = ηrev = 41%), the relative condenser loss reduces
to {2.40%, 2.61%, 2.70%} ,while the relative amount of power produced,
ẆSE/Ẇmax, increases to {34.5%, 37.5%, 38.7%}.

In summary, most of the heat available from the fuel, Δh̄R, is supplied to
the steam cycle, and converted to work with the thermal efficiency of that cy-
cle. Improving the thermal efficiency of the cycle leads to better conversion of
the thermal energy of the hot combustion gas. Modern combined cycle power
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plants, in which high temperatures are reached, have a thermal efficiency of
close to 60%.

It must be noted, though, that the combustion process and the subsequent
heat transfer process are accompanied by a substantial work loss, due to
irreversible combustion and heat transfer. The combustion irreversibility is
due to the uncontrolled reorganization of the molecules in the reaction, which
involves movement of electrons. In fuel cells the paths of the electrons are
controlled, and combustion entropy is avoided. Thus they promise to harvest
larger portions of the theoretically available work. However, also in fuel cells
irreversible processes occur, which reduce their efficiencies, see Chapter 26.

Problems

25.1. Combustion Analysis
One kmol of ethane (C2H6) is burned with an unknown amount of air. An
analysis of the combustion products reveals that the combustion is complete,
and there are 3 kmol of free O2 in the products. Determine the air-fuel ratio
and the percentage of theoretical air.

25.2. Combustion Analysis
Octane (C8H18) is burned with dry air. The mole fractions of the products
on a dry basis are 9.21 percent CO2, 0.61 percent CO, 7.06 percent O2, and
83.12 percent N2.

Determine the air–fuel ratio and the percentage of theoretical air used.

25.3. Dewpoint Temperature
In a closed system, 3 kg of C4H10 (butane) is burned with 75 kg of saturated
moist air at 30 ◦C, 90 kPa. Determine the air-fuel ratio and the dewpoint
temperature of the combustion product when the products are at 0.5 bar.

25.4. Dewpoint Temperature
A mass flow of 5 kg

s of C12H26 (dodecane) is burned with a mass flow of

150 kg
s of moist air at 30 ◦C, 90 kPa with relative humidity of 80%. Deter-

mine the relative amount of excess air, and the dewpoint temperature of the
combustion product when the products are at 0.7 bar.

25.5. Combustion of Liquid Fuel Mixture
A liquid mixture of 90mol octane (C8H18) and 10mol ethyl alcohol
(C2H5OH) at 25 ◦C, 1 atm is burned isobarically at 150% theoretical air with
dry air at 25 ◦C. Heat is transferred to the surroundings and the final product
temperature is 25 ◦C.

1. Determine the mole numbers of the combustion products.
2. Determine the amount of liquid water in the product.
3. Determine the heat transferred to the surroundings.
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25.6. Incomplete Combustion
When hydrocarbon fuels are burnt with less than theoretical air, the products
may contain carbon monoxide, carbon (as soot) and hydrogen. When there is
only little deficiency of oxygen, all hydrogen in the fuel will form water, but
some carbon monoxide will exist. This is due to reaction kinetics: water and
carbon monoxide are formed earlier in the combustion process, while carbon
dioxide is formed later from the reaction between CO and O2.

Benzene gas, C6H6 at 25 ◦C is burned in a steady flow process with 95%
of theoretical air that enters at 25 ◦C as well. The products leave at 1000K.
Determine the mole fraction of CO in the product and the heat transfer from
the combustion chamber.

25.7. Soot Formation
2 mole of propylene gas (C3H6) react with 6 moles of oxygen gas (O2) to form
a mixture of water (H2O), carbon dioxide (CO2), carbon monoxide (CO) and
soot (i.e., pure carbon, C). Determine the mole numbers of the products.

25.8. Non-adiabatic Flame Temperature of Acetylene
Acetylene gas (C2H2) at 25

◦C is burned with 30% excess air at 27 ◦C, com-
bustion is complete. The combustion chamber loses 75 kJ of heat per mole of
fuel. Determine the temperature of the combustion products.

25.9. Adiabatic Combustion of Methanol
Liquid methanol (CH3OH) at 25 ◦C is burned adiabatically with excess air
that enters the combustion chamber at a temperature of 47 ◦C, combustion is
complete. The temperature of the combustion products is 1500K. Determine
the relative amount of excess air.

25.10. Combustion
Liquid Ethanol (C2H5OH) at 25 ◦C, 1 atm is burned isobarically with 50%
excess air (dry air) at 25 ◦C. Heat is transferred to the surroundings and the
final product temperature is 600K.

1. Determine the mole fractions of the combustion products.
2. Determine the heat transferred to the surroundings for a mass flow of

ethanol of 15 kg/ h.

25.11. Combustion of Dodecane
Dodecane (C12H26) is burned adiabatically with 150% excess air.

Determine the balanced reaction equation and compute the upper heating
value.

25.12. Combustion of Ethane
Consider the combustion of ethane (C2H6) with 100% of excess air at a
pressure of 1.74 bar. Consider the air as dry air.

1. Set up the chemical equation.
2. Compute the higher and the lower heating value.
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3. Compute the dewpoint of the combustion products.
4. Compute the heat of reaction at the dewpoint.

25.13. Combustion of Diesel Fuel
Diesel fuel (modelled as dodecane, C12H26, enthalpy of formation at 25 ◦C:
h̄0
f = −291.01 kJ

mol) is burned in an adiabatic steady-flow combustion chamber
with 50% excess air. Fuel and air enter at 25 ◦C. The hot combustion gas
flows through an heat exchanger where heat is transferred to an environment
at 750K, the combustion gas leaves the heat exchanger at 800K. Assume
complete combustion and determine the required mass flow rate of diesel fuel
to supply heat at a rate of 3000 kW. Compute the production of entropy in
the combustion chamber and in the heat exchanger.

25.14. Combustion: Heat and Entropy Generation
In a technical process, a mass flow of 2 kg

s of liquid ethyl alcohol C2H5OH is
burned with 50% excess air; both incoming flows are at standard conditions
(1 bar, 25 ◦C). The exhaust leaves at 500K. Determine the heat provided
by this process, and the entropy generation rate, assuming that the heat is
received at 500K.

25.15. Isochoric Combustion
Consider the adiabatic combustion of methyl alcohol vapor CH3OH with the
stoichiometric amount of air in an 0.8 litre combustion chamber. Initially, the
mixture is at 25 ◦C and 98 kPa.

Determine the maximum pressure that can occur in the combustion cham-
ber if the combustion takes place at constant volume.

25.16. Combustion Analysis
An equimolar mixture of carbon monoxide (CO) and methane (CH4) is
burned with 200% theoretical air (dry air). The mole flow of fuel is 2 kmol

s .
Fuel stream and air enter the combustor at 25 ◦C, 1 atm, and the reactants
leave at 127 ◦C. Determine:

1. The air fuel ratio on per mass basis.
2. The dew point of the products.
3. The heat transfer out of the combustion chamber.
4. Entropy generation and work loss.
5. The work to isothermally separate the CO2 from the exhaust gas.

25.17. Combustion: Ammonia as a Fuel
By means of catalysts, gaseous ammonia (NH3) reacts with oxygen (O2) to
water (H2O) and molecular nitrogen (N2). Consider the oxidation of ammonia
with with 200% excess air (dry) at a pressure of 3 bar.

1. Set up the combustion equation.
2. Determine the dewpoint of the combustion products.
3. Determine the heat of reaction per mole of NH3 at 25 ◦C for the cases that

all product water is liquid, or all water is vapor, respectively.
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25.18. Combustion Plant: Heat and Entropy Generation
In a technical process, a mass flow of 20 g

s of liquid ethyl alcohol C2H5OH is
burned with 100% excess air; both incoming flows are at standard conditions
(1 bar, 25 ◦C). The process produces a power of 300 kW, and the exhaust
leaves the plant at standard conditions.

1. Determine the heat rejection rate of the plant.
2. Determine the entropy generation rate, assuming that the plant rejects

waste heat into the environment at 25 ◦C.

Hint: start with a good sketch.



Chapter 26

Thermodynamics of Fuel Cells

26.1 Fuel Cells

We have seen before that entropy generation in combustion, and subsequent
heat transfer, leads to considerable irreversible work losses. The combustion
loss can be attributed to the uncontrolled movement of electrons as new
molecules are formed in the reaction. Fuel cells offer a process in which the
electron movement is controlled, and thus no combustion losses occur. The
performance of real life fuel cells is diminished by irreversible losses due to
resistance, reaction activation and mass flow restrictions, and these will be
discussed after the basic discussion of fuel cells and their efficiencies.

In fuel cells an electrochemical process allows to directly convert the energy
stored in a fuel into electrical energy. There are many types of fuel cells that
consume different fuels, e.g. direct methanol fuel cells, direct carbon fuel
cells, and hydrogen fuel cells. Large parts of the discussion below are valid
for all types, however, when it comes to evaluation of the equations, we shall
consider only hydrogen fuel cells with the overall reaction

H2 +
1

2
O2 � H2O . (26.1)

Figure 26.1 shows a schematic of a hydrogen fuel cell. Hydrogen and oxy-
gen (pure or with air) are supplied to the two sides of the fuel cell in transport
channels, and enter gas diffusion layers (GDL) through which they travel to-
wards the catalyst layer. The GDL shields the gas from the electrolyte, and
contributes to the management of water flows within the cell. The electro-
chemical reactions take place in the catalyst layers at anode and cathode.
These are separated by an electrolyte through which electrons cannot pass.
The electrons move from anode to cathode through the electrical device (with
resistance Rd) and provide the power Ẇ to run the device. At the same time
ions move through the electrolyte.

The reactions at anode and cathode, and the transport processes through
the electrolyte depend on the type of electrolyte.

H. Struchtrup, Thermodynamics and Energy Conversion, 563
DOI: 10.1007/978-3-662-43715-5_26, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 26.1 Schematic of a fuel cell

Figure 26.2 sketches the reactions for an acidic electrolyte, e.g., phosphoric

acid (PO
(3−)
4 + 3H++ water), or polyelectrolyte membranes (PEM), which

are polymers with sulfuric acid groups (polymer +SO−
3 +H++ water). At the

anode, the incoming hydrogen is split into electrons, e−, and protons, H+.
The protons travel through the electrolyte to the cathode, while the electrons
pass through the device. At the cathode, protons, electrons and the incoming
oxygen react to water, which must be removed from the electrolyte.

In alkaline electrolyte fuel cells, see Fig. 26.3, the electrolyte is a base,
e.g., potassium hydroxide (K+ +OH−+ water). At the anode, the incoming
hydrogen reacts with hydroxide, OH−, to form water and electrons, which
travel through the electrical device to the cathode. At the cathode, the elec-
trons and the incoming oxygen react with water to form hydroxide, that then
travels through the electrolyte to the anode, while half of the water produced
at the anode travels through the electrolyte to replenish the water consumed
in the cathode reaction.

In both types of fuel cells, the ion and electron movement is forced by the
electric potential V between cathode and anode.

26.2 Fuel Cell Potential

For the thermodynamic analysis of fuel cells, it is not necessary to distinguish
between acidic and alkaline fuel cells. We consider the mass and energy flows
as in Fig. 26.1, and apply the first and second law, which read for steady
state operation
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∑

α,out

ṅαh̄α −
∑

α,in

ṅαh̄α = Q̇− Ẇ , (26.2)

∑

α,out

ṅαs̄α −
∑

α,in

ṅαs̄α − Q̇

T
= Ṡgen ≥ 0 . (26.3)

For most of our discussion, the system to be considered is just the fuel cell.
For the evaluation we shall assume that all inflows and outflows take place at
the homogeneous fuel cell temperature T . Additional irreversible processes
(external losses) might occur outside the fuel cell, e.g., in the heating of the
incoming oxygen and hydrogen, or in the heat transfer Q̇ between the fuel
cell and its exterior environment.

Combining the two laws by elimination of the heat Q̇ yields

Ẇ =
∑

α,in

ṅαḡα −
∑

α,out

ṅαḡα − T Ṡgen . (26.4)

In order to guarantee sufficient supply of fuel and oxidizer to the gas diffusion
layers at all locations along the gas channels, one normally will have excess
hydrogen and oxygen which are circulated back to the inlet (at least the
hydrogen).

The rate of reactions taking place is denoted by Λ so that the incoming
and outgoing mole flows are related to the reaction rate by

ṅin
H2

− ṅout
H2

= Λ , ṅin
O2

− ṅout
O2

=
1

2
Λ , ṅout

H2O = Λ . (26.5)

For each reaction there are two electrons traveling through the electrical
device which corresponds to the electrical current

I = 2FΛ . (26.6)

Here F = 96485 Cb
mol denotes Faraday’s constant (Michael Faraday, 1791-

1867), which gives the absolute value of the electrical charge per mole of
electrons.

The electrical power consumed by the external device is Ẇ = V I = RdI
2

and thus, with Λ = I
2F ,

Ẇ = V I = − I

2F
ΔḡR − T Ṡgen , (26.7)

where ΔḡR is the Gibbs free energy of reaction at T . The fuel cell potential
follows as

V = −ΔḡR
2F

− T Ṡgen

I
. (26.8)

The last term,
TṠgen

I = Vover is the overpotential, i.e., the potential loss due
to irreversible processes within the fuel cell. In Section 25.11 it was shown
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that the Gibbs free energy of reaction is the maximum amount of work that
can be obtained per mole of fuel. This work could be obtained from a fully
reversible fuel cell, where Vover = 0.

When the electron circuit is interrupted, reactions cannot take place, and
accordingly no irreversible processes occur. In this case one measures the
open circuit voltage between anode and cathode,1

V0 = −ΔḡR
2F

. (26.9)

At standard reference conditions, the open circuit potential of a hydrogen
fuel cell is V0 = 1.23V . Higher voltages, and thus higher powers, are obtained
by connecting several cells in series, to form fuel cell stacks.

26.3 Fuel Cell Efficiency

Efficiencies of engines are normally defined as

η =
gain

expense
, (26.10)

where for power producing heat engines the gain is the power produced, and
the expense is the heat put into the engine through the combustion of fuel,
nuclear reactions, etc. Fuel cells are not heat engines, and thus the question
arises how to best define their efficiency. The gain is the power produced,
hence this is a question of defining the expense.

For comparison of heat engines and fuel cells the following definition is of-
ten used: In a combustion process one could obtain the heat Q̇C = −ΛΔh̄R =
− I

2F Δh̄R. Considering this heat as the expense, one defines the “thermal ef-
ficiency” of a fuel cell as

ηFCth =
Ẇ

Q̇C

=
−ΔḡR − 2F

I T Ṡgen

−Δh̄R
. (26.11)

With this definition, the perfect—i.e., reversible—fuel cell has the efficiency

ηFCth =
−ΔḡR

−Δh̄R
=

− (Δh̄R − TΔs̄R
)

−Δh̄R
= 1− TΔs̄R

Δh̄R
. (26.12)

For all fuels Δh̄R < 0, but there is no definite sign for the entropy of reaction
Δs̄R. For the hydrogen reaction,Δs̄R < 0 and thus ηFCth < 1 for reversible fuel
cells (irreversible fuel cells have even smaller efficiencies, of course). However,
there are reactions, in particular the reaction between carbon and oxygen,
C +O2 � CO2, in direct carbon fuel cells, for which the entropy of reaction

1 There is no current, so that I = 0 and Ẇ = 0.
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is positive, Δs̄R > 0, so that ηFCth as given in (26.11) becomes larger than
unity. A proper efficiency measure should always assume values between zero
and unity. It follows that the efficiency definition (26.11) is not suitable for
the evaluation of fuel cells.

In order to understand why this efficiency measure can be above unity, one
needs to consider that, according to the second law, the heat exchanged with
the surroundings for the reversible fuel cell is TΔs̄R. If TΔs̄R < 0, heat is
rejected into the surroundings, but if TΔs̄R > 0, heat is imported from the
surroundings.

One should not be surprised that this efficiency definition leads to prob-
lems, since the heat of reaction, −Δh̄R, is not relevant in the thermodynamics
of fuel cells, as is apparent in that it does not appear in the discussion of fuel
cell power and voltage. Heat of reaction is a quantity relevant only for com-
bustion systems.

A more meaningful efficiency is the ratio of the actual power produced by
the fuel cell and the maximum power that could be obtained from the fuel,
in a fully reversible process. This leads to the second law efficiency,

ηIIFC =
Ẇ

Ẇrev

=
V

V0
= 1− T Ṡgen

(−ΔḡR)
I
2F

, (26.13)

which is always positive, and becomes unity only when all irreversibilities
vanish.

When only the fuel cell is considered, ΔḡR is to be evaluated at the fuel
cell temperature T . The following table shows the Gibbs free energy, the open
circuit voltage V0, and the ratio −ΔḡR

−Δh̄R
of the hydrogen fuel cell as a function

of temperature (product water is liquid for T = 25 ◦C, 80 ◦C and vapor for
higher temperatures2) at standard pressure p0:

T −ΔḡR V0 = −ΔḡR
2F

−ΔḡR
−Δh̄R

25 ◦C 237.2 kJ
mol 1.23V 0.83

80 ◦C 228.2 kJ
mol 1.18V 0.80

100 ◦C 225.2 kJ
mol 1.17V 0.79

200 ◦C 220.4 kJ
mol 1.14V 0.77

400 ◦C 210.3 kJ
mol 1.09V 0.74

600 ◦C 199.6 kJ
mol 1.04V 0.70

800 ◦C 188.6 kJ
mol 0.98V 0.66

1000 ◦C 177.6 kJ
mol 0.92V 0.62

All three quantities decrease with increasing temperature. Thus, if one con-
siders a fuel cell alone, one will gain more work at lower temperatures. High
temperature fuel cells, e.g. solid oxide fuel cells, operate at temperatures be-
tween 700 and 1000 ◦C, and thus have lower open circuit voltages than low

2 For the Gibbs free enthalpy, this makes no difference!
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temperature fuel cells. However, due to the high temperatures, the activation
losses (see below) are lower, and expensive catalysts are not required. More-
over, the heat rejected from high temperature fuel cells can be used to drive
heat engines in a combined cycle to produce additional power. If the heat is
barely rejected into the environment, there is an external loss.

In other words, fuel cells must be imbedded into a system, where the fuel
cell is at the center, but additional systems for extracting work, heating and
cooling must be considered as well. In order to clarify this, Fig. 26.4 shows a
(reversible) fuel cell operating at temperature T as part of a fully reversible
external system, where the incoming fuel and oxidizer are heated to T by
a series of infinitesimal Carnot heat pumps, the heat Q̇FC rejected from
the fuel cell drives a Carnot heat engine, and the exhaust is cooled through
infinitesimal Carnot heat engines so that it leaves at T0. Of course, other
fully reversible set-ups are possible, e.g., some heat could be exchanged be-
tween the incoming reactant streams and the product stream, using reversible
counter-flow heat exchangers. Heat is only exchanged at environmental tem-
perature, and since all incoming and outgoing mass flows are at T0 and since
the system exchanges heat only at T0, and when all flows are at p0, the work
produced per mole of fuel is given by (25.18),

Ẇrev = ẆFC + ẆC = −ṅfuelΔḡR (T0, p0) = − I

2F
ΔḡR (T0, p0) . (26.14)

Thus, the obvious definition of a second law efficiency for a fuel consuming
system is the relative amount of the work that is actually produced from the
available work, i.e.,

ηIIsystem =
Ẇ

Ẇrev

= 1− T0Ṡgen

Ẇrev

= 1− T0Ṡgen

−ṅfuelΔḡR (T0, p0)
. (26.15)
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Fig. 26.4 Fuel cell embedded into a fully reversible system of Carnot heat engines
and Carnot heat pumps. Heat is only exchanged at environmental temperature T0.



570 26 Thermodynamics of Fuel Cells

This definition can be used for the evaluation of any fuel consuming power
generation device that is embedded in the environmental at T0. The relation
between the second law efficiency and the thermal efficiency is

ηIIsystem =
Ẇ

Ẇrev

=
Ẇ

Q̇C

Q̇C

Ẇrev

= ηthηheat
Δh̄R (T0, p0)

ΔḡR (T0, p0)
. (26.16)

Here we introduced the heat utilization factor

ηheat =
Q̇C

−ṅfuelΔh̄R (T0, p0)
(26.17)

to account for losses in heat exchanger and exhaust; Q̇C is the heat actually
transmitted into the heat engine, while −Δh̄R is the available heat.

To finish this section we present and criticize a misleading figure that is
sometimes found in the fuel cell literature. Figure 26.5 shows the thermal

efficiency (26.11) of a reversible hydrogen fuel cell, ηFCth = ΔḡR(T )

Δh̄R(T )
, and the

efficiency of a Carnot heat engine, ηC = 1− T0

T , both plotted over temperature

T . The Carnot efficiency ηC grows with temperature, while ΔḡR(T )

Δh̄R(T )
decreases.

The figure seems to imply that at higher temperatures fuel cell efficiency
might not be as good as the efficiency of a heat engine.
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ΔḡR(T )

Δh̄R(T )

1 ¡ T0

T

T0

T

‘e
ffi

ci
en

cy
’

Fig. 26.5 A misleading figure . . . see the discussion in the text

This interpretation is misleading for two reasons: (a) As discussed above, a
high temperature fuel cell must be seen as one element in a larger system that
includes heat engines to convert the high temperature heat rejected from the
fuel cell and its exhaust. (b) The Carnot efficiency is relevant only for heat
engines operating between two reservoirs at constant temperatures T, T0. A
heat engine that is driven by the reaction of a fuel does not belong into that
category, and thus the Carnot efficiency is not necessarily relevant for a fuel
driven engine process.
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The proper efficiency measure to compare fuel cell systems and heat en-
gines is the second law efficiency ηIIsystem, Eq. (26.15), which relates the actual
work produced to the maximum amount that could be produced in a fully re-
versible process. For real engines, this efficiency is below unity, due to entropy
generation in irreversible processes. As discussed in Sec. 25.12, combustion
engines suffer from losses in combustion, heat transfer, friction and mixing.
Fuel cells suffer from a different array of irreversible losses that will be dis-
cussed below. Whether or not a fuel cell system will have a higher efficiency
than a combustion system depends on the details of the design, materials
used, and the processes within the system.

26.4 Nernst Equation

The Nernst equation describes how the Gibbs free energy of reaction, and
thus open circuit voltage and power generation of a fuel cell, depends on the
pressures of the reactant and product streams. Indeed, so far we have only
considered the temperature dependence of ΔḡR and implicitly assumed that
the flows are at reference pressure. Now we consider the more general case,
where the in- and outflows have different pressures pα.

To simplify the argument, we assume that all streams are ideal gases, so
that s̄α (T, pα) = s̄0α (T )− R̄ ln pα

p0
. As always, s̄0α (T ) is the tabulated entropy

at reference pressure p0. We recall the definitions ΔḡR = Δh̄R − TΔs̄R with
Δh̄R =

∑
α γαh̄α (T ) and Δs̄R =

∑
α γαs̄α (T, pα). This gives the Nernst

equation

ΔḡR (T, pα) = ΔḡR (T, p0) + R̄T ln
∏

α

(
pα
p0

)γα

, (26.18)

where the argument (T, pα) indicates that the in- and outflows are all at the
same temperature T , but at different pressures pα.

For a hydrogen fuel cell in which the product is steam, the Nernst equation
gives the open circuit potential

V0 =
1

2F

[

−ΔḡR (T, p0) + R̄T ln
pH2

√
pO2

pH2O
√
p0

]

. (26.19)

If the product water is liquid, the entropy of the water is independent of
pressure due to incompressibility, s̄H20 (T, pH2O) = s̄H20 (T ), and the open
circuit potential is

V0 =
1

2F

[

−ΔḡR (T, p0) + R̄T ln
pH2

√
pO2√

p0
3

]

. (26.20)
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These two equations show that the open circuit voltage can be increased by
supplying fuel (H2) and oxidizer (O2) at elevated pressures.When the product
is steam, lowering the steam pressure increases the open circuit voltage.

26.5 Mass Transfer Losses

The pressure considered in the Nernst equation above are the pressures at
which the inflows are supplied, and the outflows are removed, that is the
pressures in the transport channels. The transport of reactants and prod-
ucts through the porous gas diffusion layers leads to friction losses, and thus
generation of entropy as discussed in Sec. 9.7. Entropy generation and over-
potential associated with this loss will be determined next.

The flow through the porous medium can be described by Darcy’s law
(9.30) which we can write for mole flows as

ṅα = K (pα,1 − pα,2) , (26.21)

where flow goes from pα,1 to pα,2; K is an overall transport parameter.
For ideal gases, the corresponding entropy generation rate (9.29) can be

written in the equivalent forms3

Ṡgen = −ṅαR̄ ln
pα,2
pα,1

= −ṅαR̄ ln

[

1− ṅα

Kpα,1

]

= ṅαR̄ ln

[

1 +
ṅα

Kpα,2

]

.

(26.22)
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Fig. 26.6 Pressures in a fuel cell

The relevant mole flows and pressures for a hydrogen fuel cell are depicted
in Fig. 26.6, where pα denotes the pressures in the gas channels, and p̃α
denotes the pressures at the catalyst layers. Note that hydrogen and oxygen
flow from the channels to the catalyst layer, while water flows in the opposite
direction. The mole flows are related to current as
3 Check the differences between these forms carefully!
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ṅH2 =
I

2F
= KH2 (pH2 − p̃H2) ,

ṅO2 =
I

4F
= KO2 (pO2 − p̃O2) , (26.23)

ṅH2O =
I

2F
= KH2O (p̃H2O − pH2O) .

Thus, the respective entropy generation rates for the flows are

ṠH2
gen = − I

2F
R̄ ln

[

1− I

IH2

]

,

ṠO2
gen = − I

4F
R̄ ln

[

1− I

IO2

]

, (26.24)

ṠH2O
gen =

I

2F
R̄ ln

[

1 +
I

IH2O

]

.

For compact notation we used the abbreviation Iα = 2FKαpα/ |γα| for the
so-called limiting currents. Note that all pressures in these are taken in the
supply channels. The different forms of the expressions are due the fact that
H2 and O2 are entering the device, while the water leaves; all three expressions
are positive.

In the fuel cell literature, one sometimes finds these contributions to loss,
or overpotential, subsumed into just one expression of the form

Ṡmass
gen = −IB ln

[

1− I

Ilimit

]

, (26.25)

where B and Ilimit are suitable parameters that describe the overall mass
transfer losses. With this, the fuel cell potential (26.30) assumes the form

V = −ΔḡR (T, pα)

2F
−BT ln

[

1− I

Ilimit

]−1

−
[
T Ṡgen

I

]

other

. (26.26)

Here, the last term refers to other contributions to entropy generation which
will be discussed below.

In acidic fuel cells, water is produced at the cathode, and must be removed.
In low temperature fuel cells the produced water is liquid, and might clog
the pores of the gas diffusion layer, and even the gas channels. This reduces
the transport parameter K and the limiting current Ilimit. The air flow that
provides the oxygen must be dry enough, so that the product water can evap-
orate into the exhaust. The use of excess air increases the water intake, and
also guarantees sufficient oxygen pressures everywhere (see Nernst equation).

It is worth noting that the Nernst equation and the entropy generation
terms for transport can be combined to give the fuel cell potential as4

4 This simple exercise is left to the reader.
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V = −ΔḡR (T, p̃α)

2F
−
[
T Ṡgen

I

]

other

. (26.27)

This form of the equation shows that it is really the pressures p̃α at the
catalyst layers that are important. These however cannot be controlled, rather
they depend on the pressures pα in the gas channels and the current I as
expressed in (26.23). This dependence is explicit in the form (26.26), which
therefore must be used.

26.6 Resistance Losses

The ions travelling through the electrolyte between anode and cathode, and
the electrons forming the electrical current that provides electrical power, ex-
perience resistance in the media they move in. The overall internal resistance
of the fuel cell is denoted by Ri.

Electrical resistance is an irreversible process, and we proceed by deter-
mining the corresponding entropy generation, for a resistor at steady state.
The resistor consumes work in form of electrical power Ẇ = −V I = −RiI

2,
where I is the current and V is the voltage. The temperature of the resistor
is T , and first and second law reduce to

0 = Q̇− Ẇ , − Q̇

T
= Ṡgen ≥ 0 , (26.28)

respectively. As done often before, first and second law are combined by
eliminating the heat, which here gives5

Ṡgen = − Q̇

T
= −Ẇ

T
=

V I

T
=

RiI
2

T
≥ 0 . (26.29)

Electrical resistance produces entropy by downgrading electrical work to heat.
Thus, the voltage (26.8) of a fuel cell with resistance Ri is

V = −ΔḡR (T, pα)

2F
−RiI −BT ln

[

1− I

Ilimit

]−1

−
[
T Ṡgen

I

]

other

, (26.30)

where the last term refers to other contributions to entropy generation.
In PEM fuel cells, a particular contribution to resistance loss is the drying-

out of the membrane. The protons travelling from anode to cathode drag some
water along, and this water is removed together with the product water. Thus,
the membrane becomes somewhat dryer at the anode, and this reduces its
conductivity, i.e., increases the membrane resistance. A common method to

5 Also here, the entropy generation can be considered as the product of a force
(the potential V ) and a flux (the current I). The linear relation between flux and
force, I = V/R, guarantees positive entropy generation.
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deal with this problem is to moisturize the incoming hydrogen fuel, so that
new water is available at the anode.

26.7 Activation Overpotential

The third main cause for overpotential in fuel cells is activation loss. This
irreversible effect is related to finite reaction rates and activation barriers
at the reaction sites. The following discussion is based in part on the ideas
discussed in Sec. 24.

At interfaces between different substances one observes electric poten-
tials, due to different charge distribution at the interface. Figure 26.7 shows
schematically the electric double layers that result at the interfaces between
catalyst layers and electrolyte at anode and cathode in a fuel cell. For the
sake of simplicity, the electrolyte at the interface is assumed to be electrically
neutral.

The upper part of the figure shows anode and cathode potentials at open
circuit, denoted as Va,0 and Vc,0, with respect to an arbitrary reference, chosen
such that the anode potential is negative and the cathode potential is positive.
The overall cell potential at open circuit is V0 = Vc,0 − Va,0.

The lower part of the figure sketches the conditions at closed circuit: a
current flows and negative charges are removed from the anode, which be-
comes less negative, Va−Va,0 > 0. On the other side, the additional electrons
weaken the cathode potential, Vc − Vc,0 < 0.

Due to reactions, new electrons are produced constantly at the anode, and
consumed at the cathode. When the current is low, the electrons withdrawn
are replaced through reactions, and the resulting change in the potentials is
small. When the current is large, at the anode electrons are not replaced fast
enough by reactions, and at the cathodes electrons are not consumed fast
enough, so that the absolute values of the potentials drop. Thus, the overall
potential of the cell, V = Vc − Va, depends on the rate of reactions relative
to the current drawn.

The activation overpotentials for anode and cathode are defined as

ηa = Va − Va,0 , ηc = Vc,0 − Vc , (26.31)

so that they both are positive, and the total overpotential is

η = ηa + ηc = V0 − V . (26.32)

From the above discussion follows that the activation overpotential η should
be small for small current, and large for large current. We proceed to find
the relation between overpotential η and current I.

The anode and cathode potentials are related to the Gibbs free energies
of reaction at anode and cathode as
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Fig. 26.7 Interface potentials and cell potential in a fuel cell. Top: open circuit.
Bottom: closed circuit.

Va =
Δḡa
2F

=
1

2F
(−ḡH2 + 2ḡH+ + 2ḡe−) , (26.33)

Vc = −Δḡc
2F

= − 1

2F

(

−1

2
ḡO2 − 2ḡH+ − 2ḡe− + ḡH2O

)

. (26.34)

The cell potential is, with ΔḡR = Δḡa +Δḡc,

V = Vc − Va = −ΔḡR
2F

= − 1

2F

(

−ḡH2 −
1

2
ḡO2 + ḡH2O

)

. (26.35)

Adapting the results from Sec. 24.4, we write the entropy generation rate
for the anode reaction as

Ṡgen,a = −Λ

T

[
ḡf (Va, T )− ḡb (Va, T ) + R̄T ln

∏
Xγα

α

]
, (26.36)

where ḡf (Va, T ) and ḡb (Va, T ) are activation barriers for the reactions, with
Δḡa = ḡb− ḡf . At open circuit the entropy generation vanishes, which implies
the law of mass action in the form

ḡf (Va,0, T )− ḡb (Va,0, T ) + R̄T ln
∏

X
γα
α,0 = 0 . (26.37)
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By subtracting this from the entropy generation, and multiplying with T/I
we find the anode overpotential as

ηa =
T Ṡgen,a

I

=
1

2F

[(

ḡf (Va,0, T )− ḡf (Va, T ) + R̄T ln
∏

reactants

X
|γα|
α

X
|γα|
α,0

)

(26.38)

−
⎛

⎝ḡb (Va,0, T )− ḡb (Va, T ) + R̄T ln
∏

products

X
γα
α

X
γα
α,0

⎞

⎠

⎤

⎦ .

The overpotential is larger the further the system is away from equilibrium.
The activation barriers ḡf (Va, T ) and ḡb (Va, T ) depend on the current, and
we proceed with their determination.

As a first step we note that the above equation (26.38) is satisfied by

ḡf (Va,0, T )− ḡf (Va, T ) + R̄T ln
∏

reactants

X
|γα|
α

X
|γα|
α,0

= 2F (1− βa) ηa ,

ḡb (Va,0, T )− ḡb (Va, T ) + R̄T ln
∏

products

X
γα
α

X
γα
α,0

= −2Fβaηa , (26.39)

for arbitrary coefficients βa. For interpretation we can say that the parameter
βa distributes the overpotential ηa between the forward and the backward
reactions. In principle, βa could be a complicated function of current, tem-
perature and other parameters, but experimental measurements show that it
is a constant.

Reaction rates and current are related as

I = 2FΛ = 2F (rf − rb) , (26.40)

where rf and rb are the forward and backward reaction rates, respectively.
From the results of Chapter 24 we can write the reaction rates as

rf = k0 exp

[

− ḡf (Va, T )

R̄T

] ∏

reactants

X |γα|
α ,

(26.41)

rb = k0 exp

[

− ḡb (Va, T )

R̄T

] ∏

products

Xγα
α ,

where k0 is a rate constant. We introduce the exchange current I0 as the
current associated with the number of reactions taking place at open circuit
in either direction; recall that forward and backward reaction rates are equal
at open circuit. For the anode
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I0,a = 2Frf (Va,0) = 2Frb (Va,0) , (26.42)

or, in more detail,

I0,a = 2Fk0 exp

[

− ḡf (Va,0, T )

R̄T

] ∏

reactants

X
|γα|
α,0 (26.43)

= 2Fk0 exp

[

− ḡb (Va,0, T )

R̄T

] ∏

products

X
γα
α,0 .

With this, we can write the total current as

I = I0,a
2F [rf − rb]

I0,a

= I0,a

(

exp

[
ḡf (Va,0, T )− ḡf (Va, T )

R̄T
+ ln

∏

reactants

X
|γα|
α

X
|γα|
α,0

]

(26.44)

− exp

⎡

⎣ ḡb (Va,0, T )− ḡb (Va, T )

R̄T
+ ln

∏

products

X
γα
α

X
γα
α,0

⎤

⎦

⎞

⎠ .

The expressions in the exponentials are just those that occur in the 2nd law
expression for the overpotential (26.38). Replacing them with (26.39) finally
leads to the desired relation between current and overpotential, the Butler-
Volmer equation (Max Volmer, 1885-1965; John Butler, 1899-1977):

I = I0,a

(

exp

[
2F (1− βa) ηa

R̄T

]

− exp

[

−2Fβaηa
R̄T

])

. (26.45)

Due to the sign conventions used here, the Butler-Volmer equation for the
cathode is obtained simply by switching signs, as

I = I0,c

(

exp

[
2Fβcηc
R̄T

]

− exp

[

−2F (1− βc) ηc
R̄T

])

. (26.46)

For large overpotentials the exponential with negative argument can be
ignored against the exponential with positive argument; in this limit the
Butler-Volmer equation reduces to the so-called Tafel equation (Julius Tafel,
1862-1918), e.g., for the anode,

ηa =
R̄T

2F (1− βa)
ln

I

I0,a
for

2F (1− βa) ηa
R̄T

� 1 . (26.47)

Figure 26.8 shows the Butler-Volmer and the Tafel equation in a logarith-
mic plot (Tafel plot), that is overvoltage η as function of ln I. The curves
are plotted for a constant value for the parameter β. Both curves coincide at
larger η, where the approximation (26.47) is valid. The overpotential can be
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measured (not shown), and the resulting curve agrees with the prediction of
the Butler-Volmer equation when β and I0 are adjusted properly. Indeed, β
and I0 can be read of the experimental Tafel plot as slope and intercept as
indicated in the figure.

Tafel

Butler-Volmer

R̄T

2F (1 ¡ ¯)

ln I0

´

ln I

slope

Fig. 26.8 Tafel plot: η (ln I) according to the Butler-Volmer equation (continuous
line) and the Tafel equation (dashed). Both equations agree for large η.

According to the Butler-Volmer equation the activation overpotential will
be smaller for large exchange currents I0. For an efficient fuel cell one must
aim to make the exchange current large. According to (26.43), the exchange
current depends on an activation energy and on temperature. It grows with
temperature, so that activation losses are smaller for high temperature fuel
cells. The activation barriers ḡf , ḡb depend strongly on the electrode material:
good catalysts have low activation energies and thus low overpotential. For
a hydrogen electrode at T0, the following data for the exchange current per
unit area can be found in the literature:

lead: Î0 = 2.5× 10−13 A
cm2 ,

nickel: Î0 = 6× 10−6 A
cm2 ,

platinum: Î0 = 5× 10−4 A
cm2 ,

palladium: Î0 = 4× 10−3 A
cm2 .

The data indicates that expensive catalysts must be used at low tempera-
tures. The most common catalyst for low temperature fuel cells is platinum.
No catalysts are required for high temperature fuel cells. The total exchange
current of a fuel cell is proportional to the surface of the catalyst layer,
I0 = Î0Acatalyst. To reach sufficient catalyst area, the catalyst must be dis-
tributed well within the catalyst layer, e.g., as extremely small spheres.

In hydrogen fuel cells, typically the reaction at the anode is considerably
slower than the reaction at the cathode. Then, the activation overpotential
at the cathode is small and can be ignored against the anode overpotential.
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We end the discussion with a short look on the activation energies for
forward and backward reactions, for which the reaction rates can be written
as

rf = I0,a exp

[
2F (1− β) ηa

R̄T

]

, rb = I0,a exp

[

−2Fβηa
R̄T

]

. (26.48)

These equations imply that the overpotential leads to a change in energy
barriers and reaction rates. Figure 26.9 illustrates the influence of the over-
potential on the energy landscape, similar to Fig. 24.2 and the discussion
around it.

ḡfḡf,0

Δḡ0

Δḡ

ḡbḡb,0

2F¯´

2F (1¡¯)´

closed circuit
open circuit

Fig. 26.9 Energy landscape for open circuit and closed circuit cell

26.8 Voltage/Current and Power/Current Diagrams

Summarizing the results of the last sections, the fuel cell potential is

V = −ΔḡR
2F

−RiI −BT ln

[

1− I

Ilimit

]−1

− η (I) , (26.49)

where the first term is the open circuit potential, and the following three
terms describe the irreversible losses due to resistance, mass transfer and
activation. Figure 26.10 compares the actual potential (continuous) with the
open circuit potential (grey), and also shows the individual losses, all in
dimensionless quantities where the open circuit potential is unity.

The activation loss (short dashes) causes the sharp drop of the potential
for small currents, it grows only slightly for larger currents. The resistance
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Fig. 26.10 Fuel cell potential (continuous), open circuit potential (grey), resistance
loss (dashes), mass transfer loss (long dashes), activation loss (short dashes) as
functions of current; T/T0 = 1
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Fig. 26.11 Same as Fig. 26.10, but higher temperature; T/T0 = 3

loss (dashes) grows linearly with current and causes the linear drop of the
potential in the middle. The mass transfer loss (long dashes) is relatively
small until the current approaches the limiting current which causes a sharp
increase, and the sudden drop of the potential.

These curves agree qualitatively with curves found in the specialist litera-
ture on fuel cells. The relative contribution of the different losses depends on
design and materials, and on temperature.

Figure 26.11 shows the same curves at a higher temperature. Now the
activation losses are reduced, but the mass transfer losses are increased. It
should be noted that low and high temperature fuel cells are fundamentally
different in materials, physical processes and design, and thus this is only a
qualitative comparison.
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The power-current characteristic is shown in Fig. 26.12, based on the same
data as the first voltage curve, Fig. 26.10. A reversible fuel cell would deliver
the power V0I (continuous), but due to the various losses, the power curve
exhibits a maximum, and drops to zero at the limiting current. In order to
minimize the losses, a fuel cell should operate at currents well left of the
maximum, where the losses are relatively small. Note that the power loss is
the difference between the actual power curve and the reversible curve, and
grows non-linearly with current!

Ẇ

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

I

Fig. 26.12 Fuel cell power (continuous), reversible power (grey), resistance loss
(dashes), mass transfer loss (long dashes), activation loss (short dashes)–all as func-
tion of current drawn

26.9 Crossover Losses

Even when the circuit is open, the observed potential lies below the open
circuit potential (which describes reversible operation). The common expla-
nation for this drop is the occurrence of electron crossover losses, due to
electrons that find a path through the electrolyte and travel from anode to
electrode without delivering electrical work. Thus, there is a certain number
of net reactions taking place which do not contribute to the useful current
Iused. The overall current I = 2FΛ, where Λ is the fuel consumption rate,
can be split into the useful current and the crossover current Ilost, so that
the voltage-current relation reads

V =−ΔḡR
2F

−Ri (Iused + Ilost)−BT ln

[

1− Iused + Ilost
Ilimit

]−1

−η (Iused + Ilost) .

(26.50)
When plotted over the useful current for constant Ilost, the current scale is
merely shifted, Fig. 26.13 shows an example.

Additional losses can occur due to fuel and oxidizer entering the electrolyte,
and reacting directly, without flow of electrons involved. This does not affect
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Fig. 26.13 Same as Fig. 26.10, but with crossover loss Iloss

the potential V of the fuel cell, nor the power drawn which still is Ẇ = V I,
but leads to additional heat developed by the fuel cell, and additional fuel
consumption.

If the reaction rate of these reactions is Λc, the corresponding heat to be
removed from the fuel cell is Q̇c = −ΛcΔh̄R. This heat, if unused, leads to
external entropy generation, and waste of fuel.

The work potential of the fuel consumed in crossover is −ΛcΔḡR, and, since
this potential is not used, this is just the entropy generated in fuel crossover,
T Ṡc

gen = −ΛcΔḡR. The relation between power and entropy generation is

Ẇ = −ΛΔḡR−T Ṡgen where Λ counts all reactions, i.e., the fuel consumption.
Accounting explicitly for the loss due to crossover, we have

ẆFC = −ΛΔḡR + ΛcΔḡR − T Ṡgen = −ΛIΔḡR − T ṠI
gen , (26.51)

where ΛI = Λ − Λc = I
2F is the reaction rate for electrochemical reactions.

Moreover, T ṠI
gen denotes the power loss due to all mechanisms discussed

above, excluding crossover loss. Thus, the expressions for fuel cell work of
the previous sections remain valid. Fuel crossover does not affect the voltage-
current curve, but leads to increased fuel consumption, and increased heat
transfer from the cell.

The influence of crossover is best seen in the second law efficiency for the
fuel cell. The reversible work available from the fuel is Ẇrev = −ΛΔḡR where
the reaction rate Λ measures the amount of fuel used. With ΛI = Λ−Λc the
second law efficiency becomes

ηII =
ẆFC

Ẇrev

= 1− Λc

ΛI + Λc
− T Ṡgen

(ΛI + Λc) (−ΔḡR)
. (26.52)
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26.10 Electrolyzers

In fuel cells, hydrogen and oxygen combine to produce electrical energy and
water. In electrolyzers, the opposite takes place: electrical energy is used to
split water into hydrogen and oxygen. Figure 26.14 shows the basic reactions
taking place, and indicates the flows of hydrogen, oxygen, water, protons,
and electrons.

2H+ + 2e¡ ! H2

H2

H2O

O2

e¡

H+

V

I

H2O ! 2H+ + 2e¡ +
1
2
O2

Fig. 26.14 Reactions and flows in an electrolyzer

The power consumption of the electrolyzer is ẆE = −VEI and the amount
of hydrogen produced is equal to the reaction rate Λ = I/2F . Thus, the
work required for the production per moler of hydrogen, wH2 , is directly
proportional to the electrolyzer potential,

wH2 =
ẆE

Λ
= −2FVE . (26.53)

Since all flows are just in opposite direction as in a fuel cell, the potential
and power consumption for an electrolyzer follow from the equations for fuel
cells simply by inverting the sign of the electrical current. Then, from (26.49),
the electrolyzer potential becomes

VE = −ΔḡR
2F

−Ri (−I)−BT ln

[

1− −I

Ilimit

]−1

− η (−I) , (26.54)

where η (−I) solves the Butler-Volmer equation for negative current,
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−I = I0

[

exp

[
2F (1− β) η

R̄T

]

− exp

[

−2Fβη

R̄T

]]

; (26.55)

obviously, η (−I) = −ηE (I) must be negative.
With the positive activation potential ηE , the electrolyzer equations be-

come

VE = −ΔḡR
2F

+RiI +BT ln

[

1 +
I

Ilimit

]

+ ηE , (26.56)

I = I0

[

exp

[
2FβηE
R̄T

]

− exp

[

−2F (1− β) ηE
R̄T

]]

. (26.57)

Irreversible processes due to internal resistance, mass transfer, and activation
lead to an increase of the potential above the open circuit potential V0 =
−ΔḡR

2F . The proper second-law efficiency measure for an electrolyzer is

ηIIE =
V0

VE
≤ 1 . (26.58)

Figure 26.15 compares the voltage-current curves for fuel cell and elec-
trolyzer to the open circuit potential. The gap between the curves is the loss
to irreversible processes.
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Fig. 26.15 Voltage-current curves for fuel cell and electrolyzer

26.11 Hydrogen

A common method to produce hydrogen is steam methane reforming, in
which hydrogen (H2) is split from natural gas (that is mainly methane, CH4)
according to the overall reaction CH4+2H2O ↔ 4H2+CO2. Larger quantities
of H2 are produced this way for NH3 production (see Sec. 23.10). This process
generates CO2 and thus is not carbon neutral. If the natural gas is used in
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a combined cycle power plant with thermal efficiency of 60% (Sec. 13.6),
there will be less CO2 produced per kWh of electricity than if H2 from steam
methane reforming is used in a fuel cell.

By means of electrolyzers, hydrogen can be produced from any primary
source of electrical power, including carbon neutral power sources like nuclear,
solar, wind, or tidal. As opposed to electricity, hydrogen can be stored and
distributed in pipelines and tanks, and therefore offers a means to store power
produced from intermittent sources (solar, wind, tidal).

The stored hydrogen can be reconverted into electricity either in traditional
combustion systems (e.g. combined cycle power plants, Atkinson cycle), or
in fuel cells. The latter offer an elegant and efficient means to use power
produced by stationary non-carbon power plants (solar, wind, . . . ) for trans-
portation (cars, trucks, busses, trains, . . . ). The use of hydrogen produced by
carbon neutral energy sources could play a role in the future energy system,
which must aim to reduce the emission of greenhouse gases, including carbon
dioxide.

Due to irreversibilities, only a portion of the energy fed into the electrolyzer
is retrieved from the fuel cell. Moreover, one needs to account for the efficiency
of processes required to store and distribute the hydrogen. Indeed, at normal
conditions hydrogen is a gas which, due to its low molar mass, assumes a
relatively large specific volume. In particular for use as transportation fuel,
the hydrogen needs to be compacted, either by compression of the gas, or
by liquefaction. The (irreversible) processes involved can be described by a
storage and distribution efficiency measure ηIISD.

With the second law efficiencies for electrolyzer, storage and distribution,
and fuel cell, the ratio between the power provided by the fuel cell, ẆFC ,
and the power ẆE which was consumed to produce the hydrogen in the
electrolyzer, is

ẆFC

ẆE

= ηIIFCη
II
SDηIIE . (26.59)

Typical values for these efficiencies are ηIIFC = 0.6, ηIISD = 0.75, ηIIE = 0.6,
so that only 27% of the energy provided at the source is finally recovered.
Doubtless, new materials and better designs will lead to efficiency improve-
ments in the future. Meanwhile, other storage concepts might have higher
efficiencies, e.g., batteries or pumped hydro.

Problems

26.1. Fuel Cell Potential
Compute the maximum voltage (reversible operation) for the fuel cell de-
picted below under the assumption that the oxygen supplied is five times the
stoichiometric amount. Assume isothermal operation and assume that the
water leaves as vapor.
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26.2. Fuel Cell Potential and Power
We can write the fuel cell voltage as V = V0 − VR − Vtr − η, where V0 is
the open circuit potential, VR = RI are the ohmic losses due to the internal
resistance R of the fuel cell, and Vtr = −BT ln (1− I/Ilimit) is the potential
drop due to mass transfer loss. Moreover the activation overpotential η is
related to the current I through the Butler-Volmer equation

I = I0

{

exp

[
2F (1− β) η

RuT

]

− exp

[

−2Fβη

RuT

]}

,

where the exchange current is modelled as (constant factor kI , activation
energy Ea)

I0 = kIT exp

[

− Ea

RuT

]

.

1. Introduce dimensionless quantities, and show that the dimensionless volt-
age can be written as

v = 1− ρi− γT̂ ln [1− εi]− η̂

with

i = T̂ exp

[

−ea

T̂

]{

exp

[
α (1− β) η̂

T̂

]

− exp

[

−αβη̂

T̂

]}

,

Identify the dimensionless quantities that appear in the above.
2. Chose α = 95, β = 0.6, γ = 0.04, ρ = 0.15, ε = 0.4, ea = 10, and

plot dimensionless voltage v and power w = vi for some values of the
dimensionless temperature T̂ between 1 and 5. Also plot the individual
voltage losses into the same diagram.

26.3. Electrolyzer
An electrolyzer can be considered as an “inverted fuel cell”: it consumes
electric power and produces hydrogen and oxygen gases. For the following,
ignore mass transfer contributions. Obviously, the current in the electrolyzer
flows in the opposite direction: replace I by −I in the fuel cell equations of
the previous problem. Show that now resistance and activation increase the
fuel cell potential. Use the same constants as for the fuel cell, and plot the
electrolyzer potential over the current, and also the power consumed as a
function of current.
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26.4. Direct Methanol Fuel Cell
In a direct methanol fuel cell, liquid methanol CH3OH reacts with oxygen
to form water and carbon dioxide. The half-reactions at anode and cathode
follow the equations

CH3OH+H2O �→ CO2 + 6H+ + 6e− and
3

2
O2 + 6H+ + 6e− �→ 3H2O

Determine the open circuit voltage at 330K. Assume methanol is an in-
compressible liquid with constant specific heat c̄CH3OH = 0.082 kJ

molK .

26.5. Borohydride Fuel Cell
The reactions in a direct borohydride fuel follow the equations

Anode: NaBH4 + 8OH− �→ NaBO2 + 6H2O+ 8e− ,
Cathode: O2 + 4H2O+ 8e− �→ 8OH− .
Determine the open circuit voltage at standard conditions (Remark: Ac-

tual devices operate at elevated temperatures). Assume that all participating
components enter or leave in separate streams. Use the following data:

NaBH4: h̄
0
f = −192 kJ

mol , s̄
0
f = 101 J

molK ; NaBO2: h̄
0
f = −960 kJ

mol , s̄
0
f =

83 J
molK .

26.6. Electrolyzer
Compute the voltage of a reversible electrolyzer that splits liquid water into
hydrogen and oxygen. Assume that all incoming and outgoing streams are at
reference pressure p0 = 1 atm and have a temperature of 360K.

26.7. Direct Carbon Fuel Cell
The anode and cathode reactions in a direct carbon fuel cell follow the equa-
tions

C + 2O2− �→ CO2 + 4e− and O2 + 4e− �→ 2O2−

Determine the open circuit voltage at 900K, which is the typical operating
temperature of actual DCFC’s. Assume carbon (graphite) is a incompressible
substance with specific heat cp = 0.71 J

kg K .

26.8. Magnesium Fuel Cell
The reactions in a Magnesium fuel cell with salt water electrolyte follow the
equations

Anode: 2Mg �→ 2Mg2+ + 4e−

Cathode: O2 + 2H2O+ 4e− �→ 4OH−

Electrolyte: 2Mg2+ + 4OH− �→ 2Mg (OH)2
Determine the open circuit voltage at standard conditions (Remark: Actual

devices operate at elevated temperatures).

26.9. Molten Carbonate Fuel Cell
Molton carbonate fuel cells (MCFC) employ a mixture of salt and molten
carbonate as electrolyte, and operate at temperatures around 900K.
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MCFC can work with carbon monoxide (CO) as fuel. Then the anode
reaction occurs in two steps, first the water gas shift reaction, followed by
reaction of the generated hydrogen with the carbonate ion, CO2−

3 . The reac-
tions occurring are:

Anode: CO + H2O �→ H2 +CO2 , H2 +CO2−
3 �→ H2O+CO2 ,

Cathode: 1
2O2 +CO2 + 2e− �→CO2−

3 .

1. Make a sketch of a fuel cell, where you indicate the relevant flows.
2. Determine the open circuit voltage at standard conditions and at 900K.
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overheated 171
Avogadro constant 15
azeotrope 508

B

barometric formula 29
Bernoulli’s equation 183
boiler, see steam generator
Brayton cycle 221

inverse 226
maximum work 224

optimal pressure ratio 224
regenerative 300
with intercooling and reheat 303

bubble tray column 500
Butler-Volmer equation 582
bypass turbofan engine 318

C

CAES 362
caloric equation of state 36
carbon capture and storage 481
Carnot

COP 89
cycle 155
efficiency 86
engine 86
heat engine 155
heat pump 89
heat pump cycle 158
refrigeration cycle 158
refrigerator 89
statements 86

cascade refrigeration system 276
Celsius scale 20
chemical constant 527
chemical potential 457

as driving force 464
ideal gas mixture 462
ideal mixture 462

chimney 309
Clapeyron equation 407
Clausius statement 64, 89
Clausius-Clapeyron equation 409
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closed system 11, 131
co-flow heat exchanger 200, 348
coefficient of performance 88, 217, 277
cogeneration 273
cold gas approximation 126
combined cycle

regenerative 305
combustion air 546
compressed air energy storage 362
compressed liquid 105

approximation 120
table 120

compressibility 381
compressor

adiabatic 186
irreversible 190
isentropic efficiency 190
isothermal 297
multi-stage 298
with intercooling 297

concentration 416
condensation 106, 115
condenser 211
continuum hypothesis 13
cooling fluids 217
cooling tower 211, 448
COP 88, 217
counter-flow heat exchanger 200, 349
critical point 106
crossover losses 586
cycle 153

p-v- and T-s-diagrams 154

D

Dalton’s law 420
Darcy’s law 185
degrees of freedom 496

open 126
dehumidification 442
deposition 106
desalination 473
dewpoint 437
Diesel cycle 165
diffuser

adiabatic 188
irreversible 191
isentropic efficiency 191

discharge 357

distillation 500
district heating 275
dry-bulb temperature 439
dual cycle 168

E

efficiency
air engine 313
Froude 313
fuel cell 571
heat engine 85
second law 237

electrochemical process 567
electrolyte 567
electrolyzer 588
energy

conversion 83
ideal gas 123
internal 36
kinetic 35
potential 35
total 35

enthalpy 43
ideal gas 123
measurement 379
of formation 523
of moist air 436

entropy 56, 70
and disorder 73
and life 74
balance 62
flux 59, 75
generation rate 56
ideal gas 123
in equilibrium 57
measurement 379
microscopic interpretation 70
of mixing 419

entropy generation 56
and work loss 85, 93, 236
at anode/cathode 580
by friction 65, 184
in chemical reaction 541
in closed system combustion 552
in compressed air storage 363
in flow devices 190
in fuel cell 576
in heat exchanger 351



Index 593

in heat transfer 64, 68, 244
in inhomogeneous system 63
in mass transfer 184
in mixing 429
in mixing of streams 202
in resistor 578
in steam cycles 266
in uncontrolled expansion 70
reduces COP 88
reduces thermal efficiency 85

entropy of mixing
ideal gas 421
ideal mixture 425

equation of state
caloric 36, 103
entropy 103
ideal gas 23
incompressible liquid 128
incompressible solid 128
thermal 22, 103

equilibrium constant 527
equilibrium state, 17, 18, 393
equipartition of energy 126
Ericsson cycle 296
evaporation, 105, 106
evaporative cooling 445
exergy 251

balance 252
closed system 252
flow 246

exhaust water 548
externally reversible 93

F

Fahrenheit scale 20
feedwater heater

closed 262
open 260

filling 355, 360
first law of thermodynamics 33

closed system 34
combustion 549
for reversible process 41
open system 180

flame temperature 550
flow work 179
freezing 106, 503
friction 47, 65

Froude efficiency 313
fuel cell 567

efficiency 571
overpotential 570
potential 568
second law efficiency 572

fuels 545
fugacity 504
fugacity coefficient 504
fully reversible 93

G

gas constant 24
specific 123

gas liquefaction 278
gas refrigeration cycle 226
gas turbine cycle, see Brayton cycle
gauge pressure 14
Gibbs equation 59, 104, 371

for mixture 460
Gibbs free energy 374

of activation 539
Gibbs paradox 422
Gibbs phase rule 495
Gibbs-Duhem relation 461

H

Haber-Bosch process 528
heat 34, 39
heat engine 84
heat exchanger 187, 345

closed 200
co-flow 348
counter-flow 349
open 201

heat of mixing 419, 506
heat of reaction 521
heat pump 87
heat pump cycle 216
heat transfer 63

entropy generation 68, 244
reversible 68

heating value 522
Helmholtz free energy 373
Henry’s law 507
higher heating value 522
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humidification 444
humidity ratio 435
hydrogen 589
hydrogen fuel cell 567
hydrostatic pressure 28
hypersonic flow 331

I

ice 107
ice skating 409
ideal gas 123

cold gas approximation 126
energy 123
enthalpy 123
entropy 60, 123
entropy of mixing 421
equation of state 23
mixtures 420
monatomic 125
polyatomic 126
speed of sound 329
tables 124
temperature scale 21

ideal mixture 425
inhomogeneous state 15
internal combustion engine 159
internal energy 36

ideal gas 42
incompressible liquid/solid 42
measurement 378

internally reversible 93
irreversibility 93, 235
irreversible process 18, 39, 68, 73
isentropic 61, 135
isentropic efficiency 190
isobaric 134
isochoric 133
isothermal 137

J

Joule-Thomson coefficient 387

K

Kelvin-Planck statement 86, 89
kinetic energy 35

L

Laval nozzle 337
law of mass action 526

for ideal mixtures 526
for multiple reactions 531

laws of thermodynamics
first 33
second 55
third 524
zeroth 19

Le Chatelier principle
for ideal mixtures 530

Linde method 278
liquid

compressed 105, 120
incompressible 128
saturated 105

lower heating value 522

M

mass 14
balance 178
balance for reacting mixtures 520
conservation 178
flow 179
fraction 416

mass transfer loss 576
Maxwell relations 371
melting 106
mixing

adiabatic 447
reversible 476

mixing volume 418
mixture

composition 415
of ideal gases 420
properties 417

moist air 435
mole 15

fraction 416
number 416

mole balance 520
moving boundary work 37

N

Nernst equation 575
net heat 153
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net work 153
Newton’s law of cooling 67
nozzle

adiabatic 188
converging 334
converging-diverging 337
irreversible 191
isentropic efficiency 191
sub- and supersonic 333

O

one inlet, one exit system 182
open heat exchanger

open 201
open system 177

first law 180
mass balance 178
one inlet, one exit 182
power 183
reversible steady-flow work 183
second law 181
steady state 181

osmosis 469
inverse 473

osmotic
power generation 476
pressure 469

Otto cycle 162
overpotential 570
oxy-fuel process 482

P

p-T-diagram 107
p-V-diagram 37
p-v-diagram 110
p-v-T-surface 110
perpetual motion engine 91
Pfeffer tube 471
phase changes 105
phase diagram with azeotrope 508
phase diagrams 497
phase equilibrium 404, 495
phases 104
pipe flow 187
polytropic 138
potential energy 35
power 34, 36

open system 183

pressure 14, 27
barometric 29
hydrostatic 28

pressure retarded osmosis 479
pressure table 113
problem solving 24
process 17

adiabatic 40
adiabatic reversible 61
condensation 115
inhomogeneous 345
irreversible 18, 91
irreversible adiabatic 46, 69
isentropic 61, 135
isobaric 134
isochoric 133
isothermal 137
polytropic 138
quasi-static 17
reversible 18, 91
steady state 181
transient 345

properties
extensive 14
intensive 14
measurement 377
molar 15
specific 15
state 39

propulsive power 311
psychrometric chart 439
psychrometrics 435
pump 187

Q

quality 112
quasi-static process 17

R

R12, 217
R134a 217
ramjet 339
Rankine cycle 209

condenser 211
regenerative 259
with closed feedwater heater 262
with cogeneration 273
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with open feedwater heater 260
with reheat 212

Raoult’s law 496
reaction rate 538
real gases 127
refrigeration cycle 216, 226

cascade 276
flash chamber 277
heat exchanger 276

refrigerator 87
regenerative Brayton cycle 300
regenerator 250, 257, 300
reheat 212
relative humidity 436
relative pressure 136
relative volume 136
reversible mixing 476
reversible process 18, 57
reversible steady-flow work 183
rocket 338

S

safety valve 336
saturated

liquid 105, 108
liquid-vapor mixtures 111
solid 109
vapor 105

saturation
curve 106
p-T-diagram 107
pressure 106
pressure of solvent 500
pressure table 113
temperature 106
temperature of solvent 503
temperature table 113

scramjet 339
second law efficiency 237
second law of thermodynamics 55

closed system 62
combustion 549
isolated system 56
open system 181

separation work 429, 482
solar tower 306
solid

incompressible 128

solubility 507
space heating 241, 352
specific heat

at constant pressure 43, 123, 376
at constant volume 41, 123, 376
relation between 376

speed of sound 329
stability 397
state

equilibrium 17
identify 113
inhomogeneous 15
saturated 105
superheated 106

state properties 13, 39, 103
measurable 103

steam cycle, see Rankine cycle
steam generator 209

with regeneration 257
steam table 117
Stirling cycle

as Carnot engine 290
history 295
ideal 289
reverse 294
working principle 291

stirring 12
stoichiometric coefficients 519
sublimation 106
subsonic flow 331
superheated vapor 106, 117
supersonic flow 331
system

closed 11
open 177

T

T-S-diagram 60
T-s-diagram 110
Tafel equation 582
temperature 19

Celsius 20
Fahrenheit 20
ideal gas 21
thermodynamic 22, 90

temperature table 113
thermal

efficiency 85
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equation of state 22
expansion 382

thermodynamic
cycle 153
equilibrium 17, 55, 393
potentials 371
stability 397, 402
temperature 22

thermodynamic temperature 90
thermometer 20
third law of thermodynamics 524
throttle 188
thrust 311
trend to equilibrium 55
triple point 106, 496
turbine

adiabatic 186
irreversible 190
isentropic efficiency 190

turbofan engine 318
turbojet engine 314

V

vacuum pressure 14
van der Waals gas

constants 384

energy and entropy 386
equation of state 127, 383
inversion curve 388
phase equilibrium 406

vapor
saturated 105
saturation table 113
superheated 106, 117
table 117

vapor heat pump cycle 216
volume 13

of moist air 437

W

wet-bulb temperature 438
work 36

moving boundary 37
work loss 85, 93, 235

in steam power plant 556
work potential 245

of fuel 553

Z

zeroth law of thermodynamics 19
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