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Prefaces to First Edition

Book One

The time that statistical analyses, including analysis of variance and regression

analyses, were analyzed by statistical analysts has gone for good, thanks to the

availability of user-friendly statistical software. The teaching department, the

educations committee, and the scientific committee of the Albert Schweitzer

Hospital, Dordrecht, the Netherlands, are pleased to announce that since November

2009, the entire staff and personnel are able to perform statistical analyses with the

help of SPSS Statistical Software in their offices through the institution’s intranet.
It is our experience as master’s and doctorate class teachers of the European

College of Pharmaceutical Medicine (EC Socrates Project) that students are eager

to master adequate command of statistical software for carrying out their own

statistical analyses. However, students often lack adequate knowledge of basic

principles, and this carries the risk of fallacies. Computers cannot think and can

only execute commands as given. As an example, regression analysis usually

applies independent and dependent variables, often interpreted as causal factors

and outcome factors. For example, gender and age may determine the type of

operation or the type of surgeon. The type of surgeon does not determine the age

and gender. Yet, software programs have no difficulty to use nonsense determi-

nants, and the investigator in charge of the analysis has to decide what is caused by

what, because a computer cannot do a thing like that, although it is essential to the

analysis.

It is our experience that a pocket calculator is very helpful for the purpose of

studying the basic principles. Also, a number of statistical methods can be

performed more easily on a pocket calculator, than using a software program.

Advantages of the pocket calculator method include the following:

1. You better understand what you are doing. The statistical software program is

kind of a black box program.

2. The pocket calculator works faster, because far less steps have to be taken.
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3. The pocket calculator works faster, because averages can be used.

4. With statistical software all individual data have to be included separately, a

time-consuming activity in case of large data files.

Also, some analytical methods, for example, power calculations and required

sample size calculations, are difficult on a statistical software program and easy on

a pocket calculator. This book reviews the pocket calculator methods together with

practical examples, both hypothesized and real patient data. The book was pro-

duced together with the similarly sized book SPSS for Starters from the same

authors (edited by Springer, Dordrecht 2010). The two books complement one

another. However, they can be studied separately as well.

Lyon, France Ton J. Cleophas

December 2010 Aeilko H. Zwinderman

Book Two

The small book Statistical Analysis of Clinical Data on a Pocket Calculator edited
in 2011 presented 20 chapters of cookbook-like step-by-step analyses of clinical

data and was written for clinical investigators and medical students as a basic

approach to the understanding and carrying out of medical statistics. It addressed

subjects like the following:

1. Statistical tests for continuous/binary data

2. Power and sample size assessments

3. Calculation of confidence intervals

4. Calculating variabilities

5. Adjustments for multiple testing

6. Reliability assessments of qualitative and quantitative diagnostic tests

This book is a logical continuation and reviews additional pocket calculator

methods that are important to data analysis:

1. Logarithmic and invert logarithmic transformations

2. Binary partitioning

3. Propensity score matching

4. Mean and hot deck imputations

5. Precision assessments of diagnostic tests

6. Robust variabilities

These methods are, generally, difficult on a statistical software program and easy

on a pocket calculator. We should add that pocket calculators work faster, because

summary statistics are used. Also you better understand what you are doing. Pocket

calculators are wonderful: they enable you to test instantly without the need to

download a statistical software program.

vi Prefaces to First Edition



The methods can also help you make use of methodologies for which there is

little software, like Bhattacharya modeling, fuzzy models, Markov models, binary

partitioning, etc.

We do hope that Statistical Analysis of Clinical Data on a Pocket Calculator 1
and 2 will enhance your understanding and carrying out of medical statistics and

help you dig deeper into the fascinating world of statistical data analysis. We

recommend to those completing the current books to study, as a next step, the

two books entitled SPSS for Starters 1 and 2 from the same authors.

Lyon, France Ton J. Cleophas

March 2012 Aeilko H. Zwinderman
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Preface to Second Edition

We as authors were, initially, pretty unsure, whether, in the current era of

computer analyses, a work based on pocket calculator analyses of clinical data

would be appreciated by medical and health professionals and students. However,

within the first two years of publication, over thirty thousand e-copies were sold.

From readers’ comments we came to realize that statistical software programs had

been experienced as black box programs producing lots of p-values, but little

answers to scientific questions, and that many readers had not been happy with

that situation.

The pocket calculator analyses appeared to be, particularly, appreciated, because

they enabled readers for the first time to understand the scientific methods of

statistical reasoning and hypothesis testing. So much so that it started something

like a new dimension in their professional world.

The reason for a rewrite was to give updated and upgraded versions of the

forty chapters from the first editions, including the valuable comments of readers.

Like in the textbook complementary to the current work, entitled SPSS for
Starters and 2nd Levelers (Springer Heidelberg 2015, from the same authors),

an improved structure of the chapters was produced, including background, main

purpose, scientific question, schematic overview of data files, and reference

sections. In addition, for the analysis of more complex data, twenty novel

chapters were written. We will show that, also here, a pocket calculator can be

very helpful.

For convenience the chapters have been reclassified according to the most basic

difference in data characteristics: continuous outcome data (34 chapters) and binary

outcome data (26 chapters). Both hypothesized and real data examples are used to

explain the sixty pocket calculator methods described. The arithmetic is of a no-

more-than high-school level.

Lyon, France Ton J. Cleophas

October 2015 Aeilko H. Zwinderman
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Part I

Continuous Outcome Data



Chapter 1

Data Spread, Standard Deviations

1 General Purpose

Repeated measures have a central tendency (averages, two averages, regression lines),

and a tendency to depart from the expected central values. In order to estimate the

magnitude of the departures from the averages an index is needed. Why not simply

add-updepartures?However, thisdoesnotwork,becausegenerally thevalueshigher and

lower than the averages tend to even out, and the results would be zero. A pragmatic

solution was taken by statisticians around the world. They decided to square the depar-

tures first, and then add-up. The add-up sum of the squared departures is called the

variance. The square root of the variance is called the standard deviation. This chapter

shows how pocket calculators can be used for computation of standard deviations.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Is the standard deviation an adequate index for spread in the data?

4 Data Example

Standard deviations (SDs) are often used for summarizing the spread of the data

from a sample. If the spread in the data is small, then the same will be true for the

standard deviation. Underneath the calculation is illustrated with the help of a data

example.

55

54

51

55

53

53

54

52+

Mean . . .. ¼> . . ./8 ¼ 53.375

SD¼

55 (55-53.375)2

54 (54-53.375)2

51 (51-53.375)2

55 (55-53.375)2

53 (53-53.375)2

53 (53-53.375)2

54 (54-53.375)2

52 (52-53.375)2+

SD¼ . . .. . .. . .. . . ¼> . . ... / (n-1) ¼> √. . ..¼> 1.407885953

5 Calculate Standard Deviations

Each scientific pocket calculator has a mode for data-analysis. It is helpful to

calculate in a few minutes the mean and standard deviation of a sample.

Calculate standard deviation: mean ¼ 53.375 SD ¼ 1.407885953

4 1 Data Spread, Standard Deviations



The next steps are required:

Casio fx-825 scientific

On . . . .mode....shift.. . .AC.. . .55.. . .M+.. . .54.. . .M+.. . .51.. . .M+.. . .55.. . .

M+.. . .53.. . .M+.. . .53.. . ..M+.. . .54.. . .M+.. . .52.. . .M+.. . .shift. . .[x].. . .shift.. . .

σxn-1
----------------------------------------------------------------

Texas TI-30 scientific

On.. . .55.. . .Σ+.. . .54.. . .Σ+.. . .51.. . .Σ+.. . .55.. . . Σ+. . ..53.. . .Σ+.. . .53.. . .Σ
+....54.. . . Σ+.. . .52.. . .Σ+.. . .2nd.. . .x.. . .2nd.. . .σxn-1
----------------------------------------------------------------

Sigma AK 222 and Commodoor

On . . . 2ndf . . . on . . . 55 . . . M+ . . . 54 . . . M+ . . . 51 . . . M+ . . . 55 . . . M+ . . . 53 . . . M+

. . . 53 . . . M+ . . . 54 . . . M+ . . . 52 . . . M+ . . . x¼>M . . . MR

----------------------------------------------------------------

Calculator: Electronic Calculator

On.. . .mode.. . .2.. . .55.. . .M+.. . .54.. . .M+.. . .51.. . .M+.. . .55.. . .M+.. . .53.. . .M

+.. . .53....M+.. . .54.. . .M+.. . .52.. . .M+.. . .Shift.. . .S-var.. . .1.. . .¼.. . .

(mean).. . .Shift.. . .S-var.. . . 3.. . .(sd)

6 Conclusion

Repeated measures have a central tendency and tendency to depart from the

expected central values. In order to estimate the magnitude of the departures from

the averages an index is needed. The add-up sum of the squared departures is used

for the purpose, and is called the variance. The square root of the variance is called

the standard deviation. This chapter shows how pocket calculators can be used for

computation of standard deviations. Sometimes, data files are skewed, and mean

values do not mean too much. Instead the modus (the frequentest value) or the

median (the value in the middle) are more meaningful (see Chap. 27).

Example:

What is the mean value, what is the SD?

5

4

5

4

5

4

5

4
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7 Note

More background, theoretical and mathematical information of means, variances,

standard deviations, and standard errors (of the mean) is given in Statistics applied

to clinical studies 5th edition, Chap. 1, Springer Heidelberg Germany, 2012, from

the same authors.
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Chapter 2

Data Summaries, Histograms, Wide
and Narrow Gaussian Curves

1 General Purpose

In order to summarize continuous data, either histograms can be plotted or Gaussian

curves can be drawn. This chapter is to assess how to summarize your data with the

help of a pocket calculator.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.

3 Primary Scientific Question

How can histograms, otherwise called frequency distributions, and wide and narrow

Gaussian curves be used for summarizing continuous data?
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4 Hypothesized Data Example

Based on the same data, but with different meaning. The wide one summarizes the

data of our trial. The narrow one summarizes the mean of many trials similar to our

trial. It can be mathematically proven that this is so.

Continuous data can be plotted in the form of a histogram (upper graph). The

upper graph is assumed to present individual cholesterol reductions after one week

drug treatment in 1000 patients. The bar in the middle is observed most frequently.

The bars on either side grow gradually shorter. The graph, thus, pretty well exhibits

two main characteristics of your data namely the place of the mean and the

distribution of the individual data against the mean. On the x-axis, frequently called

z-axis in statistics, it has individual data. On the y-axis it has “how often”. This

graph adequately represents the data. It is, however, not adequate for statistical

analyses. The lower graph pictures a Gaussian curve, otherwise called normal

(distribution) curve. On the x-axis we have, again, the individual data, expressed

either in absolute data or in SDs (standard deviations) distant from the mean. See

Chap. 1 for calculation information of SDs. On the y-axis the bars have been

replaced with a continuous line. It is now impossible to determine from the graph

how many patients had a particular outcome. Instead, important inferences can be

made. For example, the total area under the curve (AUC) represents:

100 % of the data,

AUC left from mean represents 50 % of the data,

left from �1 SDs it has 15.9 % of the data,

left from �2 SDs it has 2.5 % of the data,

between +2 SDs and �2 SDs we have 95 % of the data

(the 95 % confidence interval of the data).

It is remarkable that the patterns of Gaussian curves from biological data are

countless, but that all of them, nonetheless, display the above percentages. This is

something like a present from heaven, and it enables to make use of the Gaussian

curves for making predictions from your data about future data. However, in order

to statistically test your data, we will have to go one step further.

8 2 Data Summaries, Histograms, Wide and Narrow Gaussian Curves
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The figure underneath gives two Gaussian curves, a narrow and a wide one. Both

are based on the same data, but with different meaning. The wide one summarizes the

data of our trial. The narrow one summarizes the mean of many trials similar to our

trial. It can be mathematically proven that this is so. However this is beyond scope of

the current text. Still, it is easy to conceive that the distribution of all means of many

similar trials is narrower and has fewer outliers than the distribution of the actual data

from our trial, and that it will center around the mean of our trial, because our trial is

assumed to be representative for the entire population. Now why should the mean of

many trials be equal to the mean of our trial. The truth is, we have no certainty, but

neither do we have any argument to have the overall mean on the left of right side of

the measured mean of our data. You may find it hard to believe, but the narrow curve

with standard errors of the mean (SEMs), or, simply, SEs on the x-axis can be

effectively used for testing important statistical hypotheses, like

1. no difference between new and standard treatment,

2. a real difference,

3. the new treatment is better than the standard treatment,

4. the two treatments are equivalent.

thus, mean� 2 SDs (or more precisely 1.96 SDs) represents 95 % of the AUC of

the wide distribution, otherwise called the 95 % confidence interval of the data,

which means that 95 % of the data of the sample are within. The SEM-curve

(narrow one) is narrower than the SD-curve (wide one), because SEM ¼ SD=
ffiffiffi

n
p

with n¼ sample size. Mean� 2 SEMs (or more precisely 1.96 SEMs) represents

95 % of the means of many trials similar to our trial.

SEM¼ SD =
ffiffiffi

n
p
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5 Importance of SEM-Graphs in Statistics

Why is this SEM approach so important in statistics. Statistics makes use of mean

values and their standard error to test the null hypotheses of finding no difference

from zero in your sample. When we reject a null hypothesis at p< 0.05, it literally

means that there is <5 % chance that the mean value of our sample crosses the area

of the null hypothesis where we say there is no difference. It does not mean that

many individual data may not go beyond that boundary. Actually, it is just a matter

of agreement. But it works well.

6 Drawing a Gaussian Curve without a Computer

The mathematical equation of a Gaussian curve is (e¼Euler’s constant¼ 2.718)

y¼ e-1/2 (x^2)

x¼ (individual values) / (standard deviation)

x^2¼ x2

at x¼ 0! y¼ 1

at x¼ 1! y¼ 0.607

at x¼ 2! y¼ 0.135

at x¼ 3! y¼ 0.011

0.011

0.135

0.607

1

-3 -2 -1 mean 1 2 3 4 5

probability distribution

SDs

With the help of the above equation, various y-values can, thus, be computed,

and in this way a standard Gaussian curve can be drawn.
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7 Conclusion

In order to summarize continuous data, either histograms can be plotted or Gaussian

curves can be drawn. Gaussian curves can be drawn with the help of the Gaussian

curve equation y¼ e-1/2 (x ^2).. The above procedure is only entirely correct with

larger samples like 100 or so. With small samples data tend to produce somewhat

larger spread, and normal distributions turn into t-distributions (see the Chap. 8).

But as a first step, before any analysis, histograms and Gaussian curves are

convenient even with small samples.

8 Note

More background, theoretical and mathematical information of histograms and

Gaussian curves is given in Statistics applied to clinical studies 5th edition,

Chap. 1, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 3

Null-Hypothesis Testing with Graphs

1 General Purpose

Because biological processes are full of variations, statistics will give no certainties
only chances. What chances? Chances that hypotheses are true/untrue. What

hypotheses? For example:

1. our mean effect is not different from a 0 effect,

2. it is really different from a 0 effect,

3. it is worse than a 0 effect,

where 0 effect means that your new treatment or any other intervention doesnot

work. Statistics is about estimating such chances/testing such hypotheses. Please

note that trials often calculate differences between a test treatment and a control

treatment, and, subsequently, test whether this difference is larger than 0. A simple

way to reduce a study of two groups of data, and, thus, two means to a single mean

and single distribution of data, is to take the difference between the two means and

compare it with 0.

In the Chap.2 we explained that the data of a trial can be described in the form of

a normal distribution graph with SEMs on the x-axis, and that this method is

adequate for testing various statistical hypotheses. We will now focus on a very

important hypothesis, the null-hypothesis. What it literally means is: no difference

from a 0 effect: the mean value of our sample is not different from the value 0. We

will try and make a graph of this null-hypothesis, and then assess whether our result

is significantly different from the null-hypothesis.

© Springer International Publishing Switzerland 2016
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2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.

3 Primary Scientific Question

Is the result of our study significant different from the null-hypothesis?

4 Data Example

Let us assume that 1000 patients will be treated with a cholesterol lowering agent.

After one week of treatment all cholesterol reductions are summarized with a mean

reduction and its standard error. In order to make a graph of our result as compared

to the null-hypothesis, our results have to be standardized first.

Mean� Standard Error

is divided by its own standard error

Mean/Standard Error� Standard Error/Standard Error ¼
Mean/Standard Error� 1

The unit of the standardized results is not mmol/l anymore, but something else.

We will call it SEM units (otherwise often called z-values or t-values).

In our example the result is given:

Mean� Standard Error ¼
3� 1 SEM units

The mathematical equation of the Gaussian curve of our data is obtained from

the equation (see also Chap. 2, e¼Euler’s constant¼ 2.718).

y ¼ e�1=2 x2ð Þ
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x¼Mean/Standard Error

x^2¼ x2

at x¼ 0! y¼ 1

at x¼ 1! y¼ 0.607

at x¼ 2! y¼ 0.135

at x¼ 3! y¼ 0.011

The above values can be plotted, and the underneath Gaussian curve H0

(hypothesis 0) will be obtained. It is, actually, a graph of the null-hypothesis.

-3 -2 -1 0 1 2 3 4 5
SEMs

H0

H1

PROBABILITY
DISTRIBUTION

It is now easy to, subsequently, draw a curve of the null-hypothesis H1 (hypoth-

esis 1). It is equally wide and high as the H0 curve, but with an overall mean value

of 3 instead of 0. This null-hypothesis is now used to test whether your result is

significantly different from zero, meaning that your cholesterol treatment is

efficaceous. The following statistical reasoning is used.

As explained in the Chap.2, the Gaussian curve H1 with SEMs on the x-axis

is not only a kind of summary of your data, it is also the summary of many trials

similar to our trial.

H1 ¼ graph based on the data of our trial with SEMs on the x-axis.

H0 ¼ the same graph with mean 0.

Now we will make a giant leap from our data to the entire population (we can do

so, because our data are representative).

H1 ¼ also the summary of many trials similar to ours.

H0 ¼ summary of many trials similar to ours but with an overall mean effect

of zero.
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We can’t prove anything, but we can calculate chances/probabilities. A mean

result of 3 is far distant from 0: suppose it belongs to H0. Only 5 % of the H0 trials

are >2 SEMs distant from 0. Our mean result is, indeed, > 2 SEMs distant from

0, namely 3 SEMs. This means, that the chance that our result belongs to the H0

trials is<5 %, because the AUC (area under the curve)>2 SEMs and<�2 SEMs is

only 5 % of the entire AUC (Chap. 2). We conclude that we have< 5 % of finding

this result, and decide that we will reject this small chance.

Any study result larger than 2 SEMs or smaller than – 2 SEMs is in the small tails

of the H0 curve, and, if your treatment does not work, you will have less than 5 %

chance of being in the tails. Our result is, obviously, in the tails, and, so, we may

conclude that we can reject the null-hypothesis of no difference from zero with a

probability of< 5 %. By doing so you are committing an error. Your mean result is

in the AUC of H0. Yet you conclude that it is significantly different from H0. But

your error is only 5 %, and, at the same time, you have 95 % chance that you did not

commit an error. Worldwide statisticians have agreed that this level of error is

acceptable. The small AUCs in the right and left end tails, covering 5 % of the entire

AUC of the H0, is, usually, called alpha (α). It is also called the type I error, or the

chance of finding a difference where there is none.

5 Examples of a Negative Trial and a Trial with Borderline
Result

-2 0.9 20

H0

H1

SEMs

In the above graph the mean of the trial is 0.9 SEMs distant from 0. This result is not

on right side of 2 SEMs. The null-hypothesis H0 can, therefore, not be rejected. The

AUC (area under the curve) right from 0.9¼ not 5 %, but rather 35 % or so of the

entire AUC. And so p¼ 0.35 (35 %).
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α/2

In the above graph the mean is 2 SEMs distant from 0. Alpha level of

rejection¼ 2. The AUC right from 2 is only 5 % of the entire AUC. We will reject

H0 at p¼ 0.05 or 5 %. A p-value of 5 % is, however, a borderline result. We will

have, at least, 5 % chance that our conclusion is untrue, and 50 % chance of a type II

error (see Chap. 11).

6 Conclusion

Because biological processes are full of variations, statistics will give no certainties,
only chances. What chances? Chances that hypotheses are true/untrue. What

hypotheses?: e.g.:

our mean effect is not different from a 0 effect,

a test treatment and a control treatment differ more than zero.

This chapter shows that it is pretty easy to draw a curve of your data and the

corresponding null-hypothesis H0. This null-hypothesis can, then, be used to test,

whether your result is significantly different from zero, meaning that, e.g., your

cholesterol treatment was efficaceous.
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7 Note

More background, theoretical and mathematical information of null-hypothesis

testing is given in Statistics applied to clinical studies 5th edition, Chaps. 1–3,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 4

Null-Hypothesis Testing with the T-Table

1 General Purpose

In the previous chapter we discussed that the patterns of Gaussian curve from

biological data have a constant frequency distribution and that this phenomenon

is used for making predictions from your data to future data. However, this is only

entirely true with large samples like samples> 100. In practice many studies

involve rather small samples and in order for your data from small samples to

adequately fit a theoretical frequency distribution we have to replace the Gaussian

normal distribution with multiple Gaussian t-distributions which are a little bit

wider.

In the twenties the USA government employed wives of workless citizens in the

Work Project Administration US. With the help of Monte Carlo Models, and a

pocket calculator not yet available at that time, the numerical characteristics of the

best fit Gaussian curves for any sample size was calculated. These characteristics

were summarized in the famous t-table, which is still the basis of any statistical

software program. This chapter is to assess how the t-table can be used for null-

hypothesis testing.
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The above graph shows members of the family of t-distributions: with n¼ 5 the

distribution is wide, with n¼ 10 and n¼ 100 this is increasingly less so. This

chapter is to show how the t-table can be used for testing null-hypotheses of no

effects in your data.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Is the result of our study significant different from the null-hypothesis? At what

level of statistical significance?

4 Data Example

2.101

H0

H1

SEMs
-3 -2 -1 0 1 2 3 4 5

PROBABILITY
DISTRIBUTION

The above graph gives an example of experimental data is given with sample size

(n)¼ 19 and mean result¼ 2.9 SEMs (SEM-units), and a t-distributed instead of

normal frequency distribution. Any result larger than approximately 2 SEMs is

statistically significantly different from 0 SEMs at p< 0.05. However, our mean of

2.9 SEMs is pretty far away in the <5 % tail, and, so, the chance of being so far

away may be a lot smaller than 5 %. Our p-values may be a lot smaller than 0.05.

The t-table can be more precise regarding the level of significance, and is given

underneath.

4 Data Example 21



5 T-Table

The t-table has a left-end column giving degrees of freedom (�sample sizes), and

two top rows with p-values (areas under the curve¼ p-values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with nature.

A t-value of 2.9 with 18� of freedom (19 patients and 1 group means we have

19–1¼ 18� of freedom) indicates that we will need the row no. 18 of the table. The

t-value 2.9 is left from 3.197 and right from 2.878. Now look right up to the second

22 4 Null-Hypothesis Testing with the T-Table
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of the two upper rows: we are right from 0.01 and left from 0.005. The p-value

equals <0.01.

6 Conclusion

In the previous chapter we discussed that the patterns of Gaussian curves from

biological data have a constant frequency distribution and that this phenomenon is

used for making predictions from your data to future data. However, this is only

entirely true with large samples, like samples >100. In practice, many studies

involve rather small samples, and in order for your data from small samples to

adequately fit a theoretical frequency distribution we have to replace the Gaussian

normal distribution with multiple Gaussian-like t-distributions which are a little bit

wider. The t-table summarizes the numerical characteristics of these frequency

distributions of any size. It helps us to predict precisely the chance and level of a

statistically significant effect. E.g., a p value< 0.002 means that we have less than

0.2 % of finding such a result if there would be no effect in your data. In clinical

term this indicates that your treatment was very efficaceous, and that the chance that

this conclusion is erroneous will be less than 0.2 %, at least, if your null-hypothesis

is true.

7 Note

More background, theoretical and mathematical information of null-hypothesis

testing is given Statistics applied to clinical studies 5th edition, Chaps. 1–3,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 5

One-Sample Continuous Data (One-Sample
T-Test, One-Sample Wilcoxon Test)

1 General Purpose

Studies where a single outcome per patient is compared to zero may be analyzed

with the one-sample t-test (see also Chap. 4). The t-test is only adequate, if the data
can be assumed to follow a Gaussian-like frequency distribution. For non-

Gaussian-like data the one-sample Wilcoxon test will be appropriate.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Are the one-sample t-test and one-sample Wilcoxon test adequate for testing

whether the result of a one-sample study is significantly different from a zero

result?

4 Data Example, One-Sample T-test

In 10 patients the mean blood pressure reduction after treatment is calculated with

the accompanying p-value. A p-value< 0.05 indicates, that there is less than 5 %

probability that such a decrease will be observed purely by the play of chance.

There is, thus,> 95 % chance that the decrease is the result of a real blood pressure

lowering effect of the treatment. We call such a decrease statistically significant.

Patient number mm Hg decrease

1 3

2 4

3 �2

4 3

5 1

6 �3

7 4

8 3

9 2

10 1

Is this decrease statistically significant?

Mean decrease ¼ 1.6 mm Hg

SD ¼ 2.4129 mm Hg

From the standard deviation (SD) the standard error (SE) can be calculated using

the equation

SE ¼ SD/√ n (n¼ sample size)

SE ¼ 2.4129/√ 10¼ 0.7636

De t-value (t) is the test-statistic of the t-test, and is calculated as follows:

t ¼ 1:6 = 0:7636 ¼ 2:095

Because the sample size is 10, the test has here 10–1¼ 9� of freedom.

The t-table underneath shows that with 9� of freedom the t-value should

be> 2.262 in order to obtain a two-tail result significantly different from zero at

p< 0.05. With a t-value of 2.095 the level equals: 0.05< p< 0.10. This result is

close to statistically significant, and is called a trend to significance.
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5 T-Table

The underneath t-table has a left-end column giving degrees of freedom (� sample

sizes), and two top rows with p-values (areas under the curve¼ p-values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simulataneously. The t-table is, furthermore, full of t-values, that, with

1 degrees of freedom, are equal to z-values (Chap.36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, but

in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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6 Data Example, One-Sample Wilcoxon Test

Patient number mm Hg Decrease Smaller one of two add-up sums

1 3 6.5

2 4 9.5

3 �2 3.5 3.5

4 3 6.5

5 1 1.5

6 �3 6.5 6.5

7 4 9.5

8 3 6.5

9 2 3.5

10 1 1.5

The example of the previous section will be applied once more for a Wilcoxon

analysis. We will first put the differences from zero in ascending order. The patients

5 and 10 are equal (1 mm Hg different from zero), we will give them rank number

1.5 instead of 1 and 2. Patient 3 and 9 are equal (have equal distances from zero),

and will be given rank number 3.5 instead of 3 and 4.

The patients 1, 4, 6, and 8 are again equal and will be given rank number 6.5

instead of 5, 6, 7, 8. When each patient has been given an appropriate rank number,

all of the positive and all of the negative rank numbers will be added up, and the

smaller number of the two will be used for estimating the level of statistical

significance. Our add-up sum of negative outcome values is the smaller number,

and adds the values of the patients 3 and 6, and equals 3.5 + 6.5¼ 10. According to

the underneath Wilcoxon table with 10 number of paires the add-up value of

10 indicates that our p-value equals< 0.10. This result is very similar to the result

of the above t-test. Again a trend to significance is observed at 0.05< P< 0.10.

Wilcoxon Test Table

Number of pairs P< 0.10 P< 0.05 P< 0.01

7 3 2 0

8 5 2 0

9 8 6 2

10 10 8 3

11 13 11 5

12 17 14 7

13 20 17 10

14 25 21 13

15 30 25 16

16 35 30 19

The first column in the above Wilcoxon test table gives the numbers of patients

in your file. Rank numbers of positive and negative differences from zero are
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separately added up. The second, third, and fourth columns give the smaller one of

the two add-up sums required for statistical significance of increasing levels.

7 Conclusion

Studies where one outcome in one patient is compared with zero can be analyzed

with the one-sample t-test. The t-test is adequate, if the data can be assumed to

follow a Gaussian-like frequency distribution. For non-Gaussian-like data the

one-sample Wilcoxon test is appropriate. The example given shows that levels of

statistical significance of the two tests are very similar.

8 Note

More background, theoretical and mathematical information of testing null-

hypothesis testing with t-tests and Wilcoxon tests is given in Statistics applied to

clinical studies 5th edition, Chap. 1, Springer Heidelberg Germany, 2012, from the

same authors.
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Chapter 6

Paired Continuous Data (Paired T-Test,
Wilcoxon Signed Rank Test)

1 General Purpose

Studies where two outcomes in one patient are compared with one another, are

often called crossover studies, and the observations are called paired observations.

As paired observations are usually more similar than unpaired observations,

special tests are required in order to adjust for a positive correlation between the

paired observations.

2 Schematic Overview of Type of Data File

Outcome 1 Outcome 2

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

Is the first outcome significantly different from second one.

4 Data Example

The underneath study assesses whether some sleeping pill is more efficacious than a

placebo. The hours of sleep is the outcome value.

Patient number Outcome 1 Outcome 2 Individual Differences

1 6.0 5.1 0.9

2 7.1 8.0 �0.9

3 8.1 3.8 4.3

4 7.5 4.7 3.1

5 6.4 5.2 1.2

6 7.9 5.4 2.5

7 6.8 4.3 2.5

8 6.6 6.0 0.6

9 7.3 3.7 3.8

10 5.6 6.2 �0.6

Outcome¼ hours of sleep after treatment

5 Analysis: Paired T-Test

Rows may be more convenient than columns, if you use a pocket calculator,

because you read the data like you read the lines of a textbook. Two rows of

observations in 10 persons are given underneath:

Observations 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

Observations 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Individual differences:

0.9, �0.9, 4.3, 3.1, 1.2, 2.5, 2.5, 0.6, 3.8, �0.6

A. not significant

B. 0.05< p< 0.10

C. P< 0.05

D. P< 0.01
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Is there a significant difference between the observations 1 and 2, and which

level of significance is correct (P¼ p-value, SD¼ standard deviation) ?

Mean difference ¼ 1.59

SDs are calculated as demonstrated in the Chap. 1.

SD of mean difference ¼ √ (SD1
2 + SD2

2)

¼ 1.789 (SD¼ standard deviation)

SE¼ SD/√10 ¼ 0.567 (SE¼ standard error)

t¼ 1.59/0.567 ¼ 2.81

We have here (10–1)¼ 9 degrees of freedom, because we have 10 patients and

1 group of patients. According to the underneath t-table the p-value equals< 0.05,

and we can conclude that a significant difference between the two observations is in

the data: the values of row 1 are significantly higher than those of row 2. The answer

C is correct.

6 T-Table

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p-values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing

your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement

with nature.
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A t-value of 2.81 with 9 degrees of freedom indicates, that we will need the 9th

row of the t-values. The upper row of the table gives the area under the curve of the

Gaussian-like t-distribution. The t-value 2.81 is left from 3.250, and right from

2.262. Now look right up at the upper row: we are right from 0.05. The p-value

is< 0.05.

7 Alternative Analysis: Wilcoxon Signed Rank Test

The t-tests as reviewed in the previous section are suitable for studies with

Gaussian-like data distributions. However, if there are outliers, then the t-tests

will not be adequately sensitive, and non-parametric tests will have to be applied.

We should add that non-parametric tests are also adequate for testing normally

distributed data. And, so, these tests are, actually, universal, and are, therefore,

absolutely recommended.

34 6 Paired Continuous Data (Paired T-Test, Wilcoxon Signed Rank Test)



Calculate the p-value using the Wilcoxon signed rank test.

Observations 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

Observations 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Individual differences:

0.9, �0.9, 4.3, 3.1, 1.2, 2.5, 2.5, 0.6, 3.6, �0.6

Rank numbers:

3.5, 3.5, 10, 7, 5, 8, 6, 2, 9, 1

A. not significant

B. 0.05< p< 0.10

C. p< 0.05

D. p< 0.01

Is there a significant difference between observations 1 and 2? Which signifi-

cance level is correct?

The individual differences are given a rank number dependent on their magnitude

of difference. If two differences are identical, and if they have for example the rank

numbers 3 and 4, then an average rank number is given to both of them, which means

3.5 and 3.5. Next, all positive and all negative rank numbers have to be added up

separately. We will find 4.5 and 50.5. According to the Wilcoxon table underneath,

with 10 numbers of pairs, the smaller one of the two add-up numbers must be smaller

than 8 in order to be able to speak of a p-value< 0.05. This is true in our example.

8 Wilcoxon Test Table

Wilcoxon Test Table

Number of pairs P< 0.05 P< 0.01

7 2 0

8 2 0

9 6 2

10 8 3

11 11 5

12 14 7

13 17 10

14 21 13

15 25 16

16 30 19
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The first column gives the numbers of pairs in your paired data file. Rank

numbers of positive and negative differences are separately added up. The second

and third columns give the smaller one of the two add-up sums required for

statistical significance.

As demonstrated in the above table, also according to the non-parametric

Wilcoxon’s test the outcome one is significantly larger than the outcome two.

The p-value of difference here equals p< 0.05. We should add that

non-parametric tests take into account more than the t-test, namely, that Non-

gaussian-like data are accounted for. If you account more, then you will prove

less. That’s why the p-value may be somewhat larger.

9 Conclusion

The significant effects indicate that the null-hypothesis of no difference between the

two outcome can be rejected. The treatment 1 performs better than the treatment

2. It may be prudent to use the non-parametric tests, if normality is doubtful like in

the current small data example given. Paired t-tests and Wilcoxon signed rank tests

need, just like multivariate data, more than a single outcome variable. However,

they cannot assess the effect of predictors on the outcomes, because they do not

allow for predictor variables. They can only test the significance of difference

between the outcomes.

10 Note

The theories of null-hypotheses and frequency distributions and additional exam-

ples of paired t-tests and Wilcoxon signed rank tests are reviewed in Statistics

applied to clinical studies 5th edition, Chaps. 1 and 2, Springer Heidelberg Ger-

many, 2012, from the same authors.
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Chapter 7

Unpaired Continuous Data (Unpaired T-Test,
Mann-Whitney)

1 General Purpose

For the study of two outcomes often two parallel groups of similar age, gender and

other characteristics are applied, and the studies are called parallel-group studies,

and the two groups are called independent of one another. This study gives

examples of parallel-group analyses.

2 Schematic Overview of Type of Data File

Outcome Parallel-group (1,2)

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 2

. 2

. 2

. 2

. 2

. 2

. 2
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3 Primary Scientific Question

Are unpaired t-tests or Mann-Whitney tests appropriate for testing, whether the

outcome of the first group is significantly different from that of the second group?

4 Data Example

The underneath study assesses in 20 patients whether some sleeping pill (parallel-

group 1) is more efficacious than a placebo (parallel-group 2). The hours of sleep is

the outcome value.

Outcome Outcome

parallel-group 1 parallel-group 2

6,0 5,1

7,1 8,0

8,1 3,8

7,5 4,7

6,4 5,2

7,9 5,4

6,8 4,3

6,6 6,0

7,3 3,7

5,6 6,2

Outcome¼ hours of sleep after treatment

5 Unpaired T-Test

Two age- and gender- matched parallel-groups are compared with one another. For

the calculation of SDs see the Chap. 1.

group 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

group 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Mean group 1 ¼ 6.93 SD ¼ 0.806 SE ¼ SD/√10 ¼ 0.255

Mean Group 2 ¼ 5.21 SD ¼ 1.299 SE ¼ SD/√10 ¼ 0.411
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A. not significant

B. 0.05 < p < 0.10

C. p < 0.05

D. p < 0.01

Is there a significant difference between the two groups, which level of significance

is correct?

Mean standard deviation (SD)

6.93 0.806

5.21 - 1.299 pepe

1.72
pooled SE ¼ √ 0:8062

10
þ 1:2992

10

� �
¼ 0.483.

The t-value¼ (6.93� 5.21) / 0.483¼ 3.56.

20–2¼ 18 degrees of freedom, because we have 20 patients and 2 groups.

According to the t-table of page 16 the p-value is< 0.01, and we can conclude

that that a very significant difference exists between the two groups. The values of

group 1 are higher than those of group 2. The answer D is correct.

6 T-Table

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p - values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap.36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with

nature.
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A t-value of 3.56 with 18 degrees of freedom indicates, that we will need the

18th row of t-values. The upper row of the table gives the area under the curve of

the Gaussian-like t-distribution. The t-value 3.56 is left from 4.297, right from

3.250. Now look right up at the upper row: we are right from 0.01. The p-value

equals <0.01. The hours of sleep during the sleeping pill are significantly better

than those during placebo.
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7 Mann-Whitney test

Like the Wilcoxon test, being the non-parametric alternative for the paired t-test,

the Mann-Whitney test is the non-parametric alternative for the unpaired t-test.

Also this test is applicable for all kinds of data, and, therefore, particularly, to be

recommended for investigators with little affection to medical statistics.

Calculate the p-value of the difference between two groups of 10 patients with

the help of this test.

group 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6,

group 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

A. not significant

B. 0.05 < p < 0.10

C. p < 0.05

D. p < 0.01

Is there a significant difference between the two groups? What significance level

is correct?

All values are ranked together in ascending order of magnitude. The values from

group 1 are printed thin, those from group 2 are printed fat. Add a rank number to

each value. If there are identical values, for example, the rank numbers 9 and

10, then replace those rank numbers with average rank numbers, 9.5 and 9.5.

Subsequently, all fat printed rank numbers are added up, and so are the thin printed

rank numbers. We will find the values 142.5 for fat print, and 67.5 for thin print.

According to the underneath Mann-Whitney table. the difference should be

larger than 71 in order for the significance level of difference to be <0.05. We

find a difference of 75, which means that there is a p-value <0.05 and that the

difference between the two groups is, thus, significant.

3.7 1

3.8 2

4.3 3

4.4 4

5.1 5

5.2 6

5.4 7

5.6 8

6.0 9.5

6.0 9.5

6.2 11

6.4 12

6.6 13
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6.8 14

7.1 15

7.3 16

7.5 17

7.9 18

8.0 19

8.1 20

The Mann-Whitney test tables are given underneath. The values are the minimal

differences that are statistically significant with a p-value <0.01 (upper table), and

p< 0.05 (lower table). The upper row gives the size of Group 1, the left column the

size of Group 2.

8 Mann-Whitney Table P< 0.01

P< 0.01 levels
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9 Mann-Whitney Table P< 0.05

P< 0.05 levels

10 Conclusion

For the study of two outcomes two parallel groups of similar age, gender and other

characteristics are often applied, and the studies are called parallel-group studies,

and the two groups are called independent of one another. Unpaired tests, like the

unpaired t-test and Mann-Whitney test are appropriate for analysis.

11 Note

The theories of null-hypotheses and frequency distributions and additional exam-

ples of unpaired t-tests and Mann-Whitney tests are reviewed in Statistics applied to

clinical studies 5th edition, Chaps. 1 and 2, entitled “Hypotheses data stratification”

and “The analysis of efficacy data”, Springer Heidelberg Germany, 2012, from the

same authors.
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Chapter 8

Linear Regression (Regression Coefficient,
Correlation Coefficient and Their Standard
Errors)

1 General Purpose

coronary artery
diameter coronary artery risk

plasma cholesterolplasma cholesterol

hours of sleep

worse better
      treatment

Similarly to unpaired t-tests and Mann-Whitney tests (Chap. 7), linear regression

can be used to test whether there is a significant difference between two unpaired

treatment modalities. To see how it works, picture the above linear regression of

cholesterol levels and diameters of coronary arteries. It shows that the higher the

cholesterol, the narrower the coronary arteries. Cholesterol levels are drawn on the

x-axis, coronary diameters on the y-axis, and the best fit regression line about the

data can be calculated. If coronary artery risk is measured on the y-axis instead of

coronary artery diameter, then a positive correlation will be observed (right graph).

Instead of a continuous variable on the x-axis, a binary variable can be adequately

used, such as two treatment modalities, e.g. a worse and better treatment. With

hours of sleep on the y-axis, a nice linear regression analysis can be performed: the

better the sleeping treatment, the larger the numbers of sleeping hours. The treat-

ment modality is called the x-variable. Other terms for the x-variable are indepen-

dent variable, exposure variable, and predictor variable. The hours of sleep is called
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the y-variable, otherwise called the dependent or outcome variable. This chapter is

to show how a linear simple linear analysis works.

2 Schematic Overview of Type of Data File

Outcome binary predictor

. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

Can linear regression be applied to demonstrate, whether, in an unpaired two group

study, one treatment is significantly more efficaceous than the other treatment.

4 Data Example

In a parallel-group study of 20 patients 10 are treated with a sleeping pill, 10 with a

placebo. The data file is given underneath.

Outcome group (1, 2)

6.0 1

7.1 1

8.1 1

7.5 1

6.4 1

7.9 1

6.8 1
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6.6 1

7.3 1

5.6 1

5.1 2

8.0 2

3.8 2

4.7 2

5.2 2

5.4 2

4.3 2

6.0 2

3.7 2

6.2 2

The group variable has 1 for sleeping pill group, 2 for the placebo.

The outcome variable is hours of sleep after treatment.

5 Analysis: Linear Regression

The equation of a linear regression model is given by

y ¼ a þ bx;

with y named the dependent variable and x the independent variable.

The line drawn from this linear function provides the best fit line for the data

given, where y¼ socalled dependent, and x¼ independent variable, b¼ regression

coefficient, a ¼ intercept:

a and b from the equation y ¼ a+bx can be calculated.

b ¼ regression coefficient ¼
X

x-xð Þ y-yð ÞX
x-xð Þ2

a ¼ intercept ¼ y-bx

r ¼ correlation coefficient ¼ another important determinant and looks a lot like b.

r ¼
X

x-xð Þ y-yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x-xð Þ2

X
y-yð Þ2

q

r¼measure for the strength of association between the y and x-data. The stronger

the association, the better y predicts x, with +1 and -1 as respectively maximal and

minimal r-values.

If b and r are statistically significantly larger than 0, then x is a significant

predictor of y, and in the example given, this would mean, that there is a significant
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difference between the groups 1 and 2. One group performs better than the other,

and, so, one treatment is better than the other.

6 Electronic Calculator for Linear Regression

We will use Electronic Calculator (see Chap. 1) for computations. First, we will

calculate the b and r values.

Command:

click ON....click MODE....press 3....press 1....press SHIFT, MODE,

and again 1....press ¼....start entering the data. . .. [1, 6,0]. . ..[1,

7,1]. . ..[1, 8,1] etc.. . .

In order to obtain the b value, press: shift, S-VAR, ►, ►, 2, ¼ .

In order to obtain the r value, press: shift, S-VAR, ►, ►, 3, ¼ .

The b value equals 1.70, the r value equals -0.643.

We wish to assess whether these two values are significantly larger than 0.

The standard error of r ¼ (1� r2) / √ (n� 2)

The r-value is a kind of summary-value of data, and follows a t-distribution, and

can, thus, be tested with a t-test.

t¼ | r / (its standard error) |

t¼ 0.643� 5.539

t¼ 3.56

This value is much larger than 1.96, and, thus, r is significantly larger / smaller

than 0. The t-value of b can be demonstrated to be equally 3.56.

7 T-Table

In the above study we have 20 outcome values and 2 groups. According to the

underneath t-table, with 20-2 degrees of freedom (see 18th row of t-values), a

t-value of 3.56 will be close to 3.610. This means, that the treatment 1 is better than

the treatment 0 at a p-value close to 0.002. The t-table is briefly explained in the

legends underneath the t-table. It is more fully explained in the Chaps. 4, 5, 6 and 7.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve ¼ p - values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simulataneously. The t-table is, furthermore, full of t-values, that, with

1 degrees of freedom, are equal to z-values (Chap. 36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, but

in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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8 Conclusion

We can conclude that the correlation and regression coefficients, r and b, are very

significant with p-values close to 0.002. This demonstrates that the sleeping scores

after active treatment are generally larger than after placebo treatment. The signif-

icant correlation between the treatment modality and the numbers of sleeping hours

can be interpreted as a significant difference in treatment efficacy of the two

treatment modalities. An interesting thing about linear regression is that the linear

regression equation can be used for estimating from future x-values the best fit

predictions of y-values. In our example we only have two x-values, but if you have

more of them, the size of your dependent variable can pretty well be predicted from

measured x-values, particularly, if your level of statistical significance is very high

(r values close to +1 or -1). R values > 95 % are, actually, applied for validating

quantitative diagnostic tests (see also Chap. 25).

9 Note

More examples of linear regression analyses are given in Statistics applied to

clinical studies 5th edition, Chaps. 14 and 15, Springer Heidelberg Germany,

2012, from the same authors.
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Chapter 9

Kendall-Tau Regression for Ordinal Data

1 General Purpose

Linear regressions (Chaps. 8 and 10) are adequate for outcomes with continuous

data, otherwise called scale data. Continuous data have a stepping pattern, where

the steps have equal intervals. If, in a regression model, the outcome data have a

stepping pattern, but the intervals are not equal, then the term ordinal data is more

appropriate for such data, and regression testing of ranks is more appropriate. The

data need to be tested according to the magnitude of their rank numbers. This

chapter is to assess how rank testing of regression models performs as compared to

traditional linear regression.

2 Schematic Overview of Type of Data File

Rank number exposure Rank number outcome

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

Is rank testing of linear by linear data adequately sensitive for testing linear data

where the order of data may be more important than the magnitude itself. The latter

type of data is usually called ordinal data.

4 Data Example

In a short stay hospital the numbers hospitalization days were used to predict the

numbers of medical complications. It was assumed, that, the longer the stay, the

more risk of multiple complications.

Patient no. 1 2 3 4 5 6 7 8

Days in hospital 8 9 10 2 3 4 5 16

Numbers if complications 5 20 16 2 1 3 6 12

A traditional linear regression of the above data will produce a correlation

coefficient of 0.695 with a p-value of 0.056, which is not statistically significant.

From the above 8 patients the underneath rank numbers different in magnitude

can be obtained:

Rank numbers of days in hospital 5 6 7 1 2 3 4 8

Rank numbers of complications 4 8 7 2 1 3 5 6

Rank numbers of days in hospital in ascending order 1 2 3 4 5 6 7 8

Corresponding rank numbers of complications 2 1 3 5 4 8 7 6
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The above graph (with days in hospital on the x-axis and numbers of complica-

tions on the y-axis), shows, that, although the numbers of complications tend to

increase with the numbers of hospital days their relationship is far from linear.

However, the data are not continuous, but ranks, and rank testing is the appropriate

analysis.

5 Rank Correlation Testing

We wish to know, whether the rank correlation between days in hospital and

numbers of complication is statistically significant.

1 2 3 4 5 6 7 8

2 1 3 5 4 8 7 6

In the above second row right from 2 we have 6 values larger than 2,

right from 1 we have also 6 values larger than 1,

right from 3 we have also 5 values larger than 3,

....

....

If we add-up all these values, we will end up with a value of 23.
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In the above second row right from 2 we have 1 value smaller than 2,

right from 1 we have also 0 values smaller than 1,

right from 3 we have also 0 values smaller than 3,

....

....

If we add-up all these values, we will end up with a value of 5.

The rank correlation coefficient Tau ¼ (23–5) / [½ n (n� 1)]

¼ 0.64.

As Tau runs from 0 to 1 (or rather �1 to 1), a value of 0, 64 indicates a pretty

strong correlation coefficient. However, in order to test whether this correlation

coefficient is significantly different from 0, we need to test it against its standard

error, using a z-test (see also Chap. 37).

z ¼ (|Tau| �1) / √ [n (n� 1) (2n + 5) / 18]

z ¼17 / 8.08

z ¼2.10

Z-values are equal to t-values with 1 degrees of freedom, and can be found in

the bottom row of the t-table.

6 T-Table

Our above z-value, 2.10. is >1.960. According to the underneath t-table (bottom

row) a z-value>1.960, corresponding with a two-tail p-value of <0.05 (look right

up at the 2nd upper area under the curve row), indicates, that a significant correla-

tion between the x- and y-variable. The days in hospital is closer to numbers of

complications than could happen by chance at p-value slightly <0.05, and the

association between the two variables is, thus, statistically significant.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p� values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values (Chap. 36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms,

but in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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7 Conclusion

The Kendall-Tau regression assesses just like the traditional linear regression the

level of linear relationships between two variables. However, Kendall-Tau provides

a slightly less sensitive result. The traditional linear model (as described in the

Chaps. 8 and 10) of the rank data produces an r-value of 0.857 and a p-value of

0.007. Why so? Unlike traditional linear regression, Kendall-Tau takes into account

that the intervals between the rank values may not be identical. Also, just like in the

non-parametric tests for comparing treatment groups and treatment modalities

(Chaps. 6, 7, and 34), if an analysis method takes into account more, it will usually

produce less spectacular _results. More in general, if you account more, you will

prove less.

8 Note

More background, theoretical and mathematical information of rank testing are

given in the Chaps 5, 6, and 7 of this work, and in the Chaps. 1, 2, 4, 9, 13, SPSS for

starters and 2nd levelers 2nd edition, Springer Heidelberg Germany, 2015, from the

same authors.
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Chapter 10

Paired Continuous Data, Analysis with Help
of Correlation Coefficients

1 General Purpose

The t-value obtained from an unpaired analysis of paired data produces biased

results. This is, because the level of correlation between unpaired data is assumed to

be zero, and this may not be true for paired observations. Particularly, repeated

measurements in one subject produces usually results more similar than those from

single measurements in separate subjects. Repeated measurements, thus, tends to

produce a positive correlation. However, this is not always true. Negative correla-

tions will be observed, if completely different treatment effects are examined in one

subject. This is, because the responders to one treatment are more at risk of being

non-responder to the other treatment and vice versa. Indeed, correlations is a very

basic phenomenon in statistical analyses, and it almost entirely determines the

results of regression analyses.

This chapter is to examine the performance of correlation coefficients (r-values

or R-values) for testing paired data, alternative to the traditional paired t-test and

Wilcoxon test. The advantage is, that correlation coefficients unmask, how the level

of correlation between repeated measures affect the overall uncertainty in crossover

study, and other repeated measures studies.

2 Schematic Overview of Type of Data File

Outcome 1 Outcome 2

. .

. .

. .

. .

(continued)
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Outcome 1 Outcome 2

. .

. .

. .

. .

. .

3 Primary Scientific Question

Can analysis with help of correlation coefficients be used to test in a crossover study

whether the first outcome significantly different from second one?

4 Data Example

In a crossover study 10 patients are treated with a sleeping pill and a placebo. The

first 11 patients of the 20 patient data file is given underneath.

Outcome 1 Outcome 2

6.0 5.1

7.1 8.0

8.1 3.8

7.5 4.7

6.4 5.2

7.9 5.4

6.8 4.3

6.6 6.0

7.3 3.7

5.6 6.2

Outcome¼ hours of sleep after treatment

5 Unpaired T-Test of Paired Data, the Wrong Analysis

outcome 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6
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outcome 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Mean group 1¼ 6.93 SD¼ 0.806 SE¼ SD/√10¼ 0.255

Mean Group 2¼ 5.21 SD¼ 1.299 SE¼ SD/√10¼ 0.411

Is there a significant difference between the two groups, which level of signif-

icance is correct (SD¼ standard deviation, SE¼ standard error of the mean)?

Mean standard deviation (SD)

6.93 0.806

5.21 - 1.299

1.72
pooled SE ¼ √ 0:8062

10
þ 1:2992

10

� �
¼ 0.483.

The t-value¼ (6.93� 5.21) / 0.483¼ 3.56.

6 Paired T-Test of Paired Data

Observations 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

Observations 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Individual differences:

0.9, -0.9, 4.3, 3.1, 1.2, 2.5, 2.5, 0.6, 3.8, -0.6

A. not significant

B. 0.05< p< 0.10

C. P< 0.05

D. P< 0.01

Is there a significant difference between the observations 1 and 2, and which

level of significance is correct?

Mean difference ¼ 1.59

SD of mean difference ¼ 1.789 (SD¼ standard deviation)

SE¼ SD/√10 ¼ 0.566 (SE¼ standard error)

t¼ 1,59 / 0,566 ¼ 2.81
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This t-value of 2.81 is a lot smaller than the one from the above unpaired t-test

(3.56). Obviously, the correlation between the first and second observations is

negative. We will first calculate the level of correlation, r, and then use the

underneath 2nd equation for adjustment of the overestimated t-value instead of

the first equation.

Standard error unpaired differences ¼ √ SD1
2þSD2

2ð Þ
n

Standard error paired differences ¼ √ SD1
2þSD2

2� 2 r SD1:SD2ð Þ
n

7 Linear Regression for Adjustment of Erroneous T-Value
from Sect. 5

The equation of a linear regression model is given by

y ¼ a þ bx;

with y named the dependent variable and x the independent variable.

The line drawn from this linear function provides the best fit for the data given,

where y¼ so-called dependent, and x¼ independent variable, b¼ regression

coefficient, a¼ intercept:

a and b from the equation y¼ a + bx can be calculated.

b¼ regression coefficient ¼
X

x� xð Þ y� yð ÞX
x� xð Þ2

a¼ intercept ¼ y� bx

r¼ correlation coefficient¼ another important determinant and looks a lot like b.

r ¼
X

x� xð Þ y� yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x� xð Þ2

X
y� yð Þ2

q
r¼measure for the strength of association between y and x-data. The stronger the

association, the better y predicts x, with +1 and �1 as maximal and minimal

r-values.

We will use the Electronic Calculator (see Chap. 1).

Command:

click ON....click MODE....press 3....press 1....press SHIFT, MODE,

and again 1....press¼....start entering the data. . .. [1, 6,0]. . ..[1,

7,1]. . ..[1, 8,1] etc.. . .

In order to obtain the b value, press: shift, S-VAR, ►, ►, 2, ¼ .

In order to obtain the r value, press: shift, S-VAR, ►, ►, 3, ¼ .
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The b value equals 1.70, the r value equals �0.643.

Standard error paired differences (* is symbol of multiplication)

¼ √ SD1
2þSD2

2� 2 r SD1:SD2ð Þ
√ n

¼ √ 0:8062þ 1:2992þ 1, 286 * 0:806 * 1:299ð Þ
√10

¼ 0.607

Adjusted t-value ¼ 1.72 / 0.607

¼2.83

This adjusted t-value is approximately equal to the t-value obtained from the

paired t-test in above Sect. 6. The small difference is due to shortening of the final

digits during calculations.

8 T-Table

According to 9th row of the underneath t-table (10 subjects in one group means

9 degrees of freedom), with t¼ 2.83, the t-value is between 2.821 and 3.250. The

corresponding p-values can be observed in the second top row. It is between 0.02

and 0.01, and, thus, < 0.02.

The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p-values), one-tail mean-

ing that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with1 degrees of

freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with nature.
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9 Conclusion

The t-value obtained from an unpaired analysis of paired data produces biased

results. This is, because the level of correlation between unpaired data is assumed to

be zero, and repeated measurements tend to produce a positive correlation. How-

ever, negative correlations may sometimes also be observed, if the responders to

one treatment are more at risk of being non-responder to a subsequent treatment and

vice versa. This chapter examines the use of correlation coefficients for testing

paired data, as an alternative to the traditional paired t-test and Wilcoxon test

(Chap. 5). The advantage of is that this method unmasks, how the level of corre-

lation between repeated measures affects the overall uncertainty in a study.
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Correlations is a phenomenon of major importance in statistical analyses, and must

always taken into account.

10 Note

More examples of t-tests and linear regression analyses are given in Statistics

applied to clinical studies 5th edition, Chaps. 1, 2, 14 and 15, Springer Heidelberg

Germany, 2012, from the same authors.
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Chapter 11

Power Equations

1 General Purpose

Power can be described as statistical conclusive force. It can be defined as the

chance of finding a difference where there is one. Other chances are the chance of

finding no difference where there is one (type II error) and the chance of finding a

difference where there is none (type I) error (Chap. 3). A study result is often

expressed in the form of the mean result and its standard deviation (SD) or standard

error (SE). With the mean result getting larger and the standard error getting

smaller, the study will obtain increasing power. This chapter is to show how to

compute from a study’s mean and standard error its statistical power.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

What is the power of a study with its mean study result and its standard error given.

4 Power Assessment

Important hypotheses are hypothesis 0 (H0, no difference from a 0 effect), and

hypothesis 1 (H1, real difference from a 0 effect). For the purpose of power

assessment, we will, particularly, emphasize hypothesis 1. The underneath figure

shows graphs of H0 and H1.

-3 -2 -1 0 1 2 3 4 5

H1

2.101

SEMs

H0

H1 is a graph based on a 2-group trial with a sample size of 20. Mean� SEMs

are on the x-axis (commonly called z-axis here). H0 is the same graph with mean

0. H1 is also the summary of the means many trials similar to ours. H0 is also the

summary of the means many trials similar to ours, but with an overall mean effect

of 0. If the hypothesis 0 is true, then the mean of our study is part of H0, if the

hypothesis 1 is true, then the mean of our study is part of H1. So, the mean of our

study may be part of H0, or of H1. We can’t prove anything, but we can calculate

the chance of either of these possibilities.

A mean result of 2.9 is far distant from 0. Suppose, it belongs to H0. Only 5 % of

the H0 trials> 2.1 SEMs distant from 0. The chance, that it belongs to H0 is, thus,<
5 %. Reject this small possibility. Now, suppose the result belongs to H1.

Up to 30 % of the H1 trials are< 2.1 SEMs distant from 0. These 30 % cannot

reject null hypothesis of no effect. The trials right from 2.1 SEMs (corresponding

with 70 % of the area under the curve (AUC)) can do so.
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We can conclude from all of the above considerations: if H0 is true, we will

have< 5 % chance to find it; if H1 is true, we will have 70 % chance to find it. And

so, we will decide to reject the null hypothesis of no effect at p< 0.05, and to do so

with a power of 70 %.

5 Data Example

A blood pressure study shows a mean decrease in blood pressure of 10.8 mm Hg

with a standard error of 3.0 mm Hg. Results from study samples are often given in

grams, liters, Euros, mm Hg etc. For the calculation of power we have to first

standardize our study result, which means that the mean result has to be divided by

its own standard error (SE or SEM):

Mean� SE ¼
mean /SE� SE/SE ¼
t-value� 1.

All of the t-values, as found in the t-table, can be looked at as the standardized

mean results of all kinds of studies. In our blood pressure study the t-value¼ 10.8 /

3.0¼ 3.6. The unit of the t-value is not mm Hg, but rather SE-units or SEM-units.

The question is: what power will the study have, if we assume a type I error

(alpha)¼ 5 % and a sample size of n¼ 20.

The question is: what will the power of this study be, if we assume a type I error

(alpha) of 5 %, and a sample size of n¼ 20.

A. 90 %< power< 95 %,

B. power> 80 %,

C. power< 75 %,

D. power> 75 %.

n¼ 20 indicates 20–2¼ 18 degrees of freedom in the case of 2 groups of

10 patients.

We will use the following power equation (prob¼ probability, z¼ value on the

z-line (the x-axis of the t-distribution)

Power ¼ 1� prob z < t� t1
� �

t ¼ the t-value of your results,

t1 ¼ the t –value, that matches a p-value of 0.05¼ 2.1;

t ¼ 3.6; t1¼ 2.1; t-t1¼ 1.5;

prob (z< t� t1) ¼ beta¼ type II error¼ between 0.05 and 0.1

1-beta¼ power ¼ between 0.9 and 0.95¼ between 90 and 95 %.

5 Data Example 67



So, there is a very good power here. Explanation of the above calculation is

given in the next few lines.

6 T-Table

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p-values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with nature.

The current chapter shows how the t-table can also be applied for computing

statistical power.

With a t-value of 3.6 as shown in the previous section, and 18 degrees of

freedom, the term (t� t1) equals 1.5. This value is between 1.330 and 1.734.

Look right up at the upper top row for finding beta (type II error¼ the chance of

finding no difference where there is one). We have two top rows here, one for

one-tail testing one for two-tail testing. Power is always tested one-tail. We are

between 0.1 and 0.05 (10 and 5 %). This is an adequate estimate of the type II error.

The power, thus, equals (100 %� beta)¼ between 90 and 95 % in our example.
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7 Conclusion

Power can be defined as the chance of finding an effect (or a difference from zero),

where there is one. It is equal to 1 minus the type II error (¼1� β). A study result is

often expressed in the form of the mean result and its standard deviation (SD) or

standard error (SE or SEM). With the mean result getting larger and the standard

error getting smaller, the study will obtain increasing power. This chapter shows,

how to compute a study’s statistical power from its mean and standard error.
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8 Note

More background, theoretical and mathematical information of power assessments

is given in Statistics applied to clinical studies 5th edition, Chap. 6, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 12

Sample Size Calculations

1 General Purpose

When writing a study protocol, just pulling the sample size out of a hat gives rise to

(1) ethical, (2) scientific, and (3) financial problems, because

1. too many patients may be given a potentially inferior treatment,

2. negative studies require repetition of the research,

3. costs are involved in too large or too small studies.

An essential part of preparing clinical studies is the question, how many subjects

need to be studied in order to answer the studies’ objectives. This chapter provides
equations that can be used for the purpose.

2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

What sample size do we need in order to produce a study with a statistically

significant result?

4 Data Example, Continuous Data, Power 50 %

An essential part of clinical studies is the question, how many subject need to be

studied in order to answer the studies’ objectives. As an example, we will use an

intended study that has an expected mean effect of 5, and a standard deviation

(SD) of 15.

What required sample size do we need in order to obtain a significant result, or,

in other words, to obtain a p-value of at least 0.05.

A. 16,

B. 36,

C. 64,

D. 100.

A suitable equation to assess this question can be constructed as follows. With a

study’s t-value of 2.0 SEM-units (SEM¼ standard error of the mean), a significant

p-value of 0.05 will be obtained. This should not be difficult for you to understand,

when you think of the 95 % confidence interval of the mean of a study being

between – 2 and + 2 SEM-units (Chap. 13).

We assume

t-value ¼ 2 SEMs

¼ (mean study result) / (standard error)

¼ (mean study result) / (standard deviation /√n)

(n¼ study’s sample size)

From the above equation it can be derived that

√n ¼ 2 � standard deviation (SD) / (mean study result)

n ¼ required sample size

¼ 4 � (SD/(mean study result))2

¼ 4 � (15 / 5) 2¼ 36

Answer B is correct.

You are testing here whether a result of 5 is significantly different from a result

of 0. Often two groups of data are compared and the standard deviations of the two

groups have to be pooled (see Chap. 7). As stated above, with a t-value of 2.0 SEMs

a significant result of p¼ 0.05 will be obtained. However, the power of this study is
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only 50 %, indicating, that you will have a power of only 50 % (¼ the chance of an

insignificant result the next time you perform a similar study).

5 Data Example, Continuous Data, Power 80 %

What is the required sample size of a study with an expected mean result of 5, and

SD of 15, and, that should have a p-value of at least 0.05 and a power of at least

80 % (power index¼ (z α + z β)
2¼ 7.8).

A. 140,

B. 70,

C. 280,

D. 420.

An adequate equation is the following.

Required sample size ¼ power index � (SD/mean)2

¼ 7.8 � (15 / 5) 2¼ 70

If you wish to have a power in your study of 80 % instead of 50 %, you will need

a larger sample size. With a power of only 50 % your required sample size was only

36.

6 Data Example, Continuous Data, Power 80 %,
Two Groups

What is the required sample size of a study with two groups and a mean difference

of 5 and SDs of 15 per Group, and that will have a p-value of at least 0.05 and a

power of at least 80 % (Power index¼ (z α+ z β)
2¼ 7.8).

A. 140,

B. 70,

C. 280,

D. 420.

The suitable equation is given underneath.

Required sample size ¼ power index � (pooled SD)2 / (mean difference)2.

(pooled SD)2 ¼ SD1
2 + SD2

2.

Required sample size ¼ 7.8 � (152+ 152) / 52¼ 140.

The required sample size is 140 patients per group. And so, with two groups you

will need considerably larger samples than you will with 1 group.
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7 Conclusion

When writing a study protocol, just pulling the sample size out of a hat gives rise to

(1) ethical, (2) scientific, and (3) financial problems. An essential part of preparing

clinical studies is the question, how many subject need to be studied in order to

answer the studies’ objectives. Equations are provided, that can be used for the

purpose.

8 Note

More background, theoretical and mathematical information of sample size require-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 6, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 13

Confidence Intervals

1 General Purpose

The 95% confidence interval of a study represents an interval covering 95% of the

means of many studies similar to that of our study. It tells you something about what

you can expect from future data: if you repeat the study, you will be 95% sure that

your mean outcome will be within the 95% confidence interval. The chapter shows

how it can be calculated.

2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

Can the 95% confidence intervals be used as an alternative to statistical significance

testing? What are the advantages?

4 Data Example, Continuous Outcome Data

The 95% confidence interval of a study represents an interval covering 95% of the

means of many studies similar to that of our study. It tells you something about what

you can expect from future data: if you repeat the study, you will be 95% sure that

the outcome will be within the 95% confidence interval. The 95% confidence of a

study is found by the equation

95% confidence interval ¼ mean� 2 x standard error (SE)

The SE is equal to the standard deviation (SD) / √n, where n¼ the sample size of

your study. The SD can be calculated from the procedure reviewed in the Chap. 2.

With an SD of 1.407885953 and a sample size of n¼ 8,

your SE ¼ 1.407885953 / √ 8

¼ 0.4977,

with a mean value of your study of 53.375,
with a 95% confidence interval ¼ 53.375� 2� 0.4977

¼ between 52.3796 and 54.3704.

The mean study results are often reported together with 95% confidence inter-

vals. They are also the basis for equivalence studies and noninferiority studies,

which will be reviewed in the Chaps. 14 and 15. Also for study results expressed in

the form of numbers of events, proportion of deaths, odds ratios of events, etc.,

95 % confidence intervals can be readily calculated.

We should add that the equation

95% confidence interval ¼ mean� 2� standard error (SE),

is a pretty rough approximation, and that a more precise estimate would be the

equation

95% confidence interval ¼ mean� t1� standard error (SE),

where t1¼ the critical t-value corresponding to a two-sided p-value of 0.05.
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5 T-Table and 95% Confidence Intervals

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p-values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with nature.
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In the fifth column of t-values of the above t-table all of the t1-values are given.

For example, with a sample of 120 the t1-value equals 1.980, with a sample size of

close to 8 the t1-value rise to 2.306.

6 Data Example, Binary Outcome Data

What is the standard error (SE) of a study with events in 10% of the patients, and a

sample size of 100 (n). Ten % events means a proportion of events of 0.1. The

standard deviation (SD) of this proportion is defined by the equation

√ [proportion� (1� proportion)] ¼ √ (0.1� 0.9)¼ √ 0.09¼ 0.3,

the standard error ¼ standard deviation/√n,
¼ 0.3/10¼ 0.03,

the 95 % confidence interval is given by

proportion given� 1.960� 0.03 ¼ 0.1� 1.960� 0.03,

¼ 0.1� 0.06,

¼ between 0.04 and 0.16.

7 Conclusion

The 95% confidence interval of a study represents an interval covering 95% of the

means of many studies similar to that of our study. It tells you something about what

you can expect from future data: if you repeat the study, you will be 95% sure that

your mean outcome will be within the 95% confidence interval. The 95% confi-

dence interval can be used as an alternative to statistical significance testing. The

advantages are that the intervals picture expected mean results of future data, and

that they can be applied for studying therapeutic equivalence and noninferiority

(Chaps. 14 and 15).

8 Note

More background, theoretical and mathematical information of confidence inter-

vals are given in the Chaps. 14 and 15 of this volume.
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Chapter 14

Equivalence Testing Instead of Null-
Hypothesis Testing

1 General Purpose

A negative study is not equal to an equivalent study. The former can not reject the

null-hypothesis of no effect, while the latter assesses whether its 95 % confidence

interval is between prior boundaries, defining an area of undisputed clinical rele-

vance. Equivalence testing is important, if you expect a new treatment to be equally

efficaceous as the standard treatment. This new treatment may still be better suitable

for practice, if it has fewer adverse effects or other ancillary advantages. For the

purpose of equivalence testing we need to set boundaries of equivalence prior to the

study. After the study we check whether the 95 % confidence interval of the study is

1. entirely within the boundaries (equivalence is demonstrated),

2. partly within (equivalence is unsure),

3. entirely without (equivalence is ruled out).

Study Statistical equivalence
(1-8)

1. Yes
2. Yes
3. Yes

5. Yes
6. Yes
7. Yes not equivalent

not equivalent

equivalent
uncertain

uncertain

uncertain

equivalent

true difference

equivalent
4. No

−D +DO

8. No

significance
demonstrated

demonstrated
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The above figure gives between brackets both the 95 % confidence intervals of

8 studies, and the defined boundaries of equivalence (�D and +D boundary):

The studies 1–8:

1 and 7 are completely without the boundaries (no equivalence),

2, 6 and 8 are partly without the boundaries (equivalence is unsure),

3–5 are entirely within the boundaries (equivalence is demonstrated).

Particularly, the studies 3 and 5 are remarkable, because they show simulta-

neously the presence of clinical equivalence and of a statistically significant

difference from a zero effect.

2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

How can 95 % confidence intervals be adequately used to assess studies for

therapeutic equivalence.

4 Data Example

As a data example, in a blood pressure study a difference between the new and

standard treatment between �25 and +25 mm Hg is assumed to be smaller than

clinically relevant. The boundary of equivalence is, thus, set between �25 and

+25 mm Hg. This boundary should be a priori defined in the study protocol.
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Then, the study is carried out, and the new and the standard treatment produce a

mean reduction in blood pressure of 9.9 and 8.4 mm Hg (parallel-group study of

20 patients) with standard errors of 7.0 and 6.9 mm Hg.

The mean difference ¼ 9.9 minus 8.4 mm Hg

¼1.5 mm Hg

The standard errors of the mean differences are 7.0 and 6.9 mm Hg

The pooled standard error ¼ √ (7.02 + 6.92) mm Hg

¼ √ 96.61 mm Hg

¼ 9.83 mm Hg

The 95 % confidence interval of this study ¼ 1.5� 2.0 � 9.83 mm Hg

¼ between �18.16 and +21.16 mm

Hg

This result is entirely within the a priori defined boundary of equivalence, which

means that equivalence is demonstrated in this study.

5 Conclusion

A negative study is not equal to an equivalent study. The former assesses the null-

hypothesis of no effect, while the latter assesses, whether its 95 % confidence

interval is between a priori defined boundaries, defining an area of undisputed

clinical relevance. Equivalence testing is important, if you expect a new treatment

to be equally efficaceous as the standard treatment. This new treatment may still be

better suitable for practice, if it has fewer adverse effects or other ancillary

advantages. For the purpose of equivalence testing we need to set boundaries of

equivalence prior to the study. The boundaries of equivalence must be in the

protocol, and equivalence after the study has been completed is impossible. In an

equivalence study, after the study has been completed, you should check, whether

the 95 % confidence interval of the study is entirely within the a priori defined

boundaries of equivalence. The boundaries have been defined on clinical, not

statistical grounds.

In the current chapter, a study with continuous outcome data is used as an

example. When studying binary outcome data, the result is often expressed as the

proportion responders, e.g., 0.4 or 40 % responders. The calculation of the standard

error with binary outcomes is explained in the Chap. 37. Briefly, with a proportion

of 0.4 responders and a study sample size of 100, the standard error equals

SE ¼ √[(0.4x0.6)/100]¼ 0.049

The confidence interval of this study ¼ 0.4� 1.960 � 0.049

¼ between 0.304 and 0.496
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If the prior boundaries of equivalence were defined as being a proportion of

responders between 0.25 and 0.50, then this study demonstrates the presence of

equivalence.

6 Note

More background, theoretical and mathematical information of equivalence testing

is given in Statistics applied to clinical studies 5th edition, Chap. 5, Springer

Heidelberg Germany, from the same authors.
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Chapter 15

Noninferiority Testing Instead
of Null-Hypothesis Testing

1 General Purpose

Just like equivalence studies (Chap. 14), noninferiority studies are very popular in

modern clinical research, with many treatments at hand, and with new compounds

being mostly only slightly different from the old ones. Unlike equivalence studies,

noninferiority studies have, instead of two boundaries with an interval of equiva-

lence in between, a single boundary. Noninferiority studies have been criticized for

their wide margin of inferiority, making it, virtually, impossible to reject

noninferiority.

The underneath graph shows the possible results in the form of confidence

intervals of three noninferiority trials that have the same boundary or margin of

noninferiority. This chapter is to provide a procedure to adequately analyze

noninferiority trials.

study 1

study 2

study 2

95 % confidence interval of study Inferiority

Non-inferiority

95 % confidence interval of study Uncertain

95 % confidence interval of study

margin of noninferiority
z-axis (SEMs)
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2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

Is a novel treatment, if not significantly better than a standard treatment, significantly

noninferior as compared to the standard treatment.

4 Data Example

As an example, two parallel-groups of patients with rheumatoid arthritis are treated

with either a standard or a new nonsteroidal anti-inflammatory drug (NSAID). The

reduction of gamma globuline levels (g/l) after treatment is used as the primary

estimate of treatment success. The underneath three steps constitute an adequate

procedure for noninferiority analysis.

5 Step 1

(1) the Margin of Noninferiority,

(2) the Required Sample Size,

(3) the Expected P-Value and Power
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(1)

The left boundaries of the 95 % confidence intervals of previously published

studies of the standard NSAID versus various alternative NSAIDS were never

lower than –8 g/l. And, so, the margin was set at �8 g/l.

(2)

Based on a pilot-study with the novel compound the expected mean difference

was 0 g/l with an expected standard deviation of 32 g/l. This would mean a

required sample size of

n¼ power index � (SD/(margin�mean))2

n¼ 7.8 � (32/(�8�0))2¼ 125 patients per group.

A power index of 7.8 takes care that noninferiority is demonstrated with a power

of about 80% in this study (see also Chap. 11).

(3)

The mean difference between the new and standard NSAID was calculated to be

3.0 g/l with a standard error (SE) of 4.6 g/l. This means that the t-value of the

study equaled t¼ (margin�mean)/SE¼ (�8 �3)/4.6¼�2.39 SE-units or

SEM-units.

This t-value corresponds with a p-value of <0.05 (see Chap. 4). Non-inferiority

is, thus, demonstrated at p< 0.05.

6 Step 2

Testing the Significance of Difference Between the New and the Standard

Treatment

The mean difference between the new and standard treatment equaled 3.0 g/l

with an SE of 4.6 g/l. The 95% confidence of this result is 3.0� 2*4.6, and is

between -6.2 and 12.2 g/l (*¼ sign of multiplication). This interval does cross the

zero value on the z-axis, which means no significant difference from zero

(p> 0.05).

7 Step 3

Testing the Significance of Difference Between the New Treatment And a Placebo

A similarly sized published trial of the standard treatment versus placebo

produced a t-value of 2.83, and, thus a p-value of 0.0047. The t-value of the current

trial equals 3.0/4.6¼ 0.65 SE-units. The add-up sum 2.83 + 0.65¼ 3.48 is an

7 Step 3 85

http://dx.doi.org/10.1007/978-3-319-27104-0_11
http://dx.doi.org/10.1007/978-3-319-27104-0_4


adequate estimate of the t-value for the comparison of the new treatment versus

placebo. A t-value of 3.48 corresponds with a p-value of< 0.001 (see Chap. 4). This

would mean that the new treatment is significantly better than placebo at p< 0.001.

8 Conclusion

We can now conclude that

(1) noninferiority is demonstrated at p< 0.05,

(2) a significant difference between the new and standard treatment is rejected at

p> 0.05,

(3) the new treatment is significantly better than placebo at p< 0.001.

Non-inferiority has, thus, been unequivocally demonstrated in this study.

Also studies with binary outcomes have 95% confidence intervals (as shown

in the Chap. 13), and can, thus, be tested for noninferiority.

9 Note

More background, theoretical and mathematical information of noninferiority

testing is given in Statistics applied to clinical studies 5th edition, Chap. 63,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 16

Superiority Testing Instead of Null-
Hypothesis Testing

1 General Purpose

For this chapter some knowledge of power equations is required. This is given in the

Chaps. 11 and 50. Superiority testing of a study means testing whether the study

meets its a priori defined expected power. Many therapeutic studies may be able to

reject their null-hypotheses, and, are, thus, statistically significant, but they do not

meet their expected power. Although p-values are widely reported, power is rarely

given in the report. This may be a problem in practice, since lack of power indicates

that the treatments are less efficaceous than expected. Superiority testing assesses

whether the eventual power of a study is in agreement with the power as stated in

the protocol of the study. This chapter shows how superiority can be assessed.

2 Schematic Overview of Type of Data File

Outcome predictor

. .
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3 Primary Scientific Question

Is the expected power level as assessed prior to a study in agreement with the power

level obtained.

4 Data Example

The expected power of a study of a 10 patient crossover study is 90 %. The results

of the study are given underneath:

observation 1:

6.0, 7.1, 8.1, 7.5, 6.4, 7.9, 6.8, 6.6, 7.3, 5.6

observation 2:

5.1, 8.0, 3.8, 4.4, 5.2, 5.4, 4.3, 6.0, 3.7, 6.2

Individual differences

0.9, -0.9, 4.3, 3.1, 1.2, 2.5, 2.5, 0.6, 3.8, -0.6

Is there a significant difference between the observation 1 and 2, and which level

of significance is correct?

Mean difference ¼ 1.59

SD of mean difference ¼ 1.789

SE¼ SD/√10 ¼ 0.566

t¼ 1.59/0.566 ¼ 2.809

10 – 1¼ 9 degrees of freedom (10 patients and 1 group of patients).

Look at the underneath t-table to find the p-value, and assess the presence of

superiority.
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5 T-Table

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p – values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees

of freedom, are equal to z-values (Chap. 36). The t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, but in so-called

SEM-units (Standard error of the mean units), that are obtained by dividing your

mean result by its own standard error. With many degrees of freedom (large

samples) the curve will be a little bit narrower, and more in agreement with nature.
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The ninth row of t-values shows that our t-value is between 2.262 and 2.821.

This would mean a p-value between 0.05 and 0.02. There is, thus, a significant

difference between observation 1 and 2. However, is the expected power obtained

or is this study underpowered. The t-table is helpful to calculate the t-value required

for a power of 90 %: it mean a beta-value (type II error value) of 10 % (¼ 0.1). Look

at the upper row of the t-table.

If

beta ¼ 0.1, then

zbeta for 9 degrees of freedom

¼ 1.383.

The t-value required for a power of 90 %

¼ 1.383 + t1, where t1 is the 0.05

¼ 1.383 + 2.262

¼ 3.645.

The required t-value is much larger than the obtained t-value of 2.809, and, so,

the study does not meet its expected power. The treatment is less efficaceous than

expected.

If the investigators had required a power of 60 %, then the superiority testing

would be as follows.

beta ¼ 0.40

z ¼ 0.261

The t-value required for a power of 60 %

¼ 0.261 + t1, where t1 is the 0.05

¼ 0.261 + 2.262

¼ 2.523.

This t-value is smaller than the obtained t-value of 2.809, and, so, the study

would have met an expected power of 60 %.

6 Conclusion

Superiority testing of a study means testing whether the study meets its a priori

defined expected power. Many therapeutic studies may be able to reject their null-

hypotheses, and, are, thus, statistically significant, but they do not meet their

expected power. Superiority testing assesses whether the eventual power of a

study is in agreement with the power as stated in the sample size calculation of

the study. This chapter shows that with the help of the t-table the presence of

superiority can be readily assessed.

90 16 Superiority Testing Instead of Null-Hypothesis Testing



We should note that the terms z-value and t-values are often used interchange-

ably, but strictly the z-value is the test statistic of the z-test, and the t-value is the

test statistic of the t-test. The bottom row of the t-able is equal to the z-table.

7 Note

More background, theoretical and mathematical information, and alternative

approaches to superiority testing is given in Statistics applied to clinical studies

5th edition, Chap. 62, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 17

Missing Data Imputation

1 General Purpose

Missing data in clinical research data is often a real problem. As an example, a

35 patient data file of 3 variables consists of 3 � 35¼ 105 values if the data are

complete. With only 5 values missing (1 value missing per patient) 5 patients will

not have complete data, and are rather useless for the analysis. This is not 5 % but

15 % of this small study population of 35 patients. An analysis of the remaining

85 % patients is likely not to be powerful to demonstrate the effects we wished to

assess. This illustrates the necessity of data imputation.

2 Schematic Overview of Type of Data File
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3 Primary Scientific Question

Is mean and hot deck imputation capable of improving sensitivity of testing data

files by increasing their fit to some analytical model.

4 Data Example

Four methods of data imputation are available; (1) mean imputation, (2) hot deck

imputation, (3) regression imputation, (4) multiple imputations. In the current

chapter the methods (1) and (2) will be given. The methods (3) and (4) are described

in Statistics applied to clinical studies 5th edition, Chap. 22, Springer Heidelberg

Germany, 2012, from the same authors as the current work. A condition for any

type of data imputation is that the missing data are not clustered but randomly

distributed in the data file. A data example a 35 patient study crossover study of the

effects of age and traditional laxative efficacy (numbers of stools per month) on the

performance of a novel laxative is in the underneath table.

New lax Bisacodyl Age

24,00 8,00 25,00

30,00 13,00 30,00

25,00 15,00 25,00

35,00 10,00 31,00

39,00 9,00

30,00 10,00 33,00

27,00 8,00 22,00

14,00 5,00 18,00

39,00 13,00 14,00

42,00 30,00

41,00 11,00 36,00

38,00 11,00 30,00

39,00 12,00 27,00

37,00 10,00 38,00

47,00 18,00 40,00

13,00 31,00

36,00 12,00 25,00

12,00 4,00 24,00

26,00 10,00 27,00

20,00 8,00 20,00

43,00 16,00 35,00

31,00 15,00 29,00

40,00 14,00 32,00

31,00 30,00

(continued)
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New lax Bisacodyl Age

36,00 12,00 40,00

21,00 6,00 31,00

44,00 19,00 41,00

11,00 5,00 26,00

27,00 8,00 24,00

24,00 9,00 30,00

40,00 15,00

32,00 7,00 31,00

10,00 6,00 23,00

37,00 14,00 43,00

19,00 7,00 30,00

Five values of the above table are missing. The underneath table gives the results

of mean imputation of these data. The missing values are imputed by the mean

values of the different variables.

New lax Bisacodyl Age

24,00 8,00 25,00

30,00 13,00 30,00

25,00 15,00 25,00

35,00 10,00 31,00

39,00 9,00 29,00

30,00 10,00 33,00

27,00 8,00 22,00

14,00 5,00 18,00

39,00 13,00 14,00

42,00 11,00 30,00

41,00 11,00 36,00

38,00 11,00 30,00

39,00 12,00 27,00

37,00 10,00 38,00

47,00 18,00 40,00

30,00 13,00 31,00

36,00 12,00 25,00

12,00 4,00 24,00

26,00 10,00 27,00

20,00 8,00 20,00

43,00 16,00 35,00

31,00 15,00 29,00

40,00 14,00 32,00

31,00 11,00 30,00

36,00 12,00 40,00

21,00 6,00 31,00

44,00 19,00 41,00

(continued)
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New lax Bisacodyl Age

11,00 5,00 26,00

27,00 8,00 24,00

24,00 9,00 30,00

40,00 15,00 29,00

32,00 7,00 31,00

10,00 6,00 23,00

37,00 14,00 43,00

19,00 7,00 30,00

The underneath table gives the results of the second method, hot deck imputa-

tion. The missing data are imputed by those of the closest neighbour observed: the

missing value is imputed with the value of an individual whose non-missing data

are closest to those of the patient with the missing value.

New lax Bisacodyl Age

24,00 8,00 25,00

30,00 13,00 30,00

25,00 15,00 25,00

35,00 10,00 31,00

39,00 9,00 30,00

30,00 10,00 33,00

27,00 8,00 22,00

14,00 5,00 18,00

39,00 13,00 14,00

42,00 14,00 30,00

41,00 11,00 36,00

38,00 11,00 30,00

39,00 12,00 27,00

37,00 10,00 38,00

47,00 18,00 40,00

30,00 13,00 31,00

36,00 12,00 25,00

12,00 4,00 24,00

26,00 10,00 27,00

20,00 8,00 20,00

43,00 16,00 35,00

31,00 15,00 29,00

40,00 14,00 32,00

31,00 15,00 30,00

36,00 12,00 40,00

21,00 6,00 31,00

44,00 19,00 41,00

11,00 5,00 26,00

27,00 8,00 24,00

(continued)
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New lax Bisacodyl Age

24,00 9,00 30,00

40,00 15,00 32,00

32,00 7,00 31,00

10,00 6,00 23,00

37,00 14,00 43,00

19,00 7,00 30,00

5 Conclusion

Imputed data are of course not real data, but constructed values that should increase

the sensitivity of testing. Regression imputation is more sensitive than mean and hot

deck imputation, but it often overstates sensitivity. Probably, the best method for

data imputation is multiple imputations (4), because this method works as a device

for representing missing data uncertainty. However, a pocket calculator is unable to

perform the analysis, and a statistical software package like SPSS statistical soft-

ware is required.

6 Note

More background, theoretical and mathematical information of missing data and

data imputations is given in Statistics applied to clinical studies 5th edition,

Chap. 22, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 18

Bonferroni Adjustments

1 General Purpose

The unpaired t-test can be used to test the hypothesis that the means of two parallel-

group are not different (Chap. 7). When the experimental design involves multiple

groups, and, thus, multiple tests, it will increase the chance of finding differences.

This is, simply, due to the play of chance, rather than a real effect. Multiple testing

without any adjustment for this increased chance is called data dredging, and is the

source of multiple type I errors (chances of finding a difference where there is

none). The Bonferroni adjusted t-test (and many other methods) are appropriate for

adjusting the increased risk of type I errors. This chapter will assess how it works.

2 Schematic Overview of Type of Data File
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3 Primary Scientific Question

In a parallel-group study of three or more treatments, does Bonferroni t-test

adequately adjust the increased risk of type I errors?

4 Bonferroni T-Test, Data Example

The underneath example studies three groups of patients treated with different

hemoglobin improving compounds. The mean increases of hemoglobin are given.

Sample size Mean hemoglobin Standard deviation

mmol/l mmol/l

Group1 16 8.725 0.8445

Group 2 10 10.6300 1.2841

Group 3 15 12.3000 0.9419

An overall analysis of variance test produced a p-value of< 0.01. The conclu-

sion is that we have a significant difference in the data, but we will need additional

testing to find out, exactly where the difference is:

between group 1 and 2,

between group 1 and 3, or

between group 2 and 3.

The easiest way is to perform a t-test for each comparison. It produces a highly

significant difference at p< 0.01 between group 1 versus 3 with no significant

differences between the other comparisons. This highly significant result is, how-

ever, unadjusted for multiple comparisons. If one analyzes a set of data with three

t-tests, each using a 5 % critical value for concluding that there is a significant

difference, then there is about 3� 5¼ 15 % chance of finding a significant differ-

ence at least once. This mechanism is called the Bonferroni inequality. Bonferroni

recommended a solution for the inequality, and proposed to follow in case of three

t-tests to use a smaller critical level for concluding that there is a significant

difference:

With 1t-test: critical level¼ 5 %

With 2t-tests: critical level¼ (5 %) /2¼ 2,5 %

With 3t-tests: critical level¼ (5 %) /3¼ 1.67 %.

a more general version of the equation is given underneath:

In case of k comparisons and an overall critical level (¼ null-hypothesis rejec-

tion level) of α the rejection p-value will become

α � 2= k k� 1ð Þð Þ
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E.g. with k¼ 3, and α¼ 0.05 (5 %)

0:05 � 2

3 3� 1ð Þ ¼ 0:0166:

In the given example a p-value of 0.0166 is still larger than 0.01, and, so, the

difference observed remained statistically significant, but using a cut-off p-value of

0.0166, instead of 0.05, means that the difference is not highly significant anymore.

5 Bonferroni T-Test Over-conservative

With k-values not too large, this method performs well. However, if k is large

(k> 5), then this Bonferroni correction will rapidly lead to very small rejection

p-values, and is, therefore, called over-conservative. E.g., with 10 comparisons the

rejection p-value will be only 0.05� 2/(10� 9)¼ 0.001, which is a value hard to be

obtained in a small study. Actually, a more realistic rejection p-value may be larger,

because in most multiple test studies a positive correlation between multiple

treatment comparisons exists. It means that multiple tests in one study are much

more at risk of similar results than multiple tests in different studies (see also

Chap. 10). The chance of twice a p-value of 0.05 may, therefore, not be 0.025,

but, rather, something in between, like 0.035.

6 Conclusion

Bonferroni adjustment is adequate for adjusting the increased type I error of

multiple testing, and can easily be performed with the help of a pocket calculator.

Alternative methods include Tukey’s honestly significant difference (HSD)

method, Student-Newman-Keuls method, the method of Dunnett, and many

more. They are, however, computationally more laborious, and require specific

statistical tables. Statistical software programs like SPSS or SAS are helpful.

Bonferroni adjustments increase the risk of type II errors (β-values) of not

finding a difference which does exist. This is illustrated in the underneath figure:

with α¼ 0.05 (left vertical interrupted line), β is about 30 % of the area under the

curve. With α¼ 0.167 (adjusted for three tests as demonstrated in the above Sect. 4)

(right vertical interrupted line), β has risen to about 50 %. This rise caused loss of

power from about 70 % to about only 50 % ((1�β)-values), (see also Chap. 11 for

additional explanation of power assessments). H0¼ null-hypothesis,

H1¼ alternative hypothesis, SEM¼ standard error of the mean.

6 Conclusion 101

http://dx.doi.org/10.1007/978-3-319-27104-0_10
http://dx.doi.org/10.1007/978-3-319-27104-0_11


-2 -1 0 1 2 3 4 5
SEMs

PROBABILITY
DISTRIBUTION

H1

H0

-3

a

b 1-b

In the current chapter only continuous outcome data are adjusted for multiple

testing. However, binary data can equally be assessed using the Bonferroni

equation.

7 Note

More background, theoretical and mathematical information of multiple compari-

sons and false positive studies are given in Statistics applied to clinical studies 5th

edition, Chaps. 8 and 9, Springer Heidelberg Germany, from the same authors.
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Chapter 19

Unpaired Analysis of Variance

1 General Purpose

Unpaired t-tests are for assessing two parallel groups of similar age, gender and

other characteristics treated differently. However, if you wish to compare three

different treatments, three parallel groups are required, and unpaired t-tests can no

longer be applied. Instead, unpaired analysis of variance (ANOVA), otherwise

called one-way ANOVA must be used for analysis.

2 Schematic Overview of Type of Data File

Outcome Treatment group (1, 2, 3, ....)
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3 Primary Scientific Question

How can one-way ANOVA evaluate the difference between three treatments.

4 Variations Expressed as the Sums of Squares

With unpaired ANOVA of 3 treatment groups variations between the data are split:

Total variation

| |

Between group variation within group variation

Variations is expressed as the sums of squares (SS) and can be added up to obtain

total variation. We wish to assess whether the between-group variation is large

compared to the within-group variation. This approach may be hard to understand,

but the underneath simple example shows the essentials of it (n¼ number of

patients, SD¼ standard deviation).

Group n patients mean SD

1 n – –

2 n – –

3 n – –

Grand mean¼ (mean 1 + 2 + 3) / 3

SS beween-groups¼ n (mean1 � grand mean)2 + n (mean2 � grand mean)2 + . . ..
SS within-groups¼ (n�1)(SD1

2) + (n�1) (SD2
2) + . . ...

The F-test (Fisher-test) is used for testing (dfs¼ degrees of freedom):

F ¼ SS between-groups=dfs

SS within-groups=dfs
¼ SS between-groups= 3� 1ð Þ

SS within-groups = 3n� 3ð Þ:

The F-table gives the p-value.

We should note, that, with differently sized groups, weighted grand means are

required: weighted mean¼ (n1 mean1 + n2 mean2) / (n1 + n2).

5 Real Data Example

Effect of 3 compounds on Hb

Group n patients mean SD

1 16 8.7125 0.8445

2 16 10.6300 1.2841

3 16 12.3000 0.9419

Grand mean¼ (mean 1 + 2 + 3) / 3¼ 10.4926
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SS between-groups ¼ 16 8:7125� 10:4926ð Þ2 þ 16 10:6300� 10:4926ð Þ2 . . . :
SS within-groups ¼ 15� 0:84452þ 15� 1:28412þ . . . . . . ::

F ¼ 49:9
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This value is much larger than the critical F-value producing a p< 0.05, because,

with 2 (numerator) and 45 (denominator) degrees of freedom the critical F-value

should be between 3.32 and 3.97. The difference between the three treatment is,

thus, very significant. A table of critical F-values is given on the next page. The

internet provides, however, many critical F-value calculators, that are more precise.

We should add that, in case 2 groups, the F-value produced by ANOVA equals the

t-test squared (F¼ t2). T-statistics is, indeed, a simple form of analysis of variance.

6 Conclusion

The above examples show how one-way ANOVA can be used to test the signifi-

cance of difference between three treatments. However, it does not tell us whether

treatment 1 is better than 2, 2 better than 3, or 1 better than 3, or any combinations

of these effects. For that purpose post hoc tests are required comparing the treat-

ments one by one. Unpaired t-tests should be appropriate for the purpose.

7 Note

More background, theoretical and mathematical information of unpaired and paired

ANOVA is given Statistics applied to clinical studies 5th edition, Chap. 2, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 20

Paired Analysis of Variance

1 General Purpose

Paired t-tests are for assessing the effect of two treatments in a single group of

patients. However, if you wish to compare three treatments, the paired t-tests can no

longer be applied. Instead, paired analysis of variance (ANOVA), otherwise called

repeated-measures ANOVA must be used for analysis.

2 Schematic Overview of Type of Data File

Patient no

Outcome Outcome Outcome

Treatment 1 Treatment 2 Treatment 3

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
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3 Primary Scientific Question

How can repeated-measures ANOVA evaluate the different effect of three different

treatments.

4 Variations Expressed as the Sums of Squares

With paired ANOVA of three treatments every single patient is treated three times.

The data are split:

Total variation

| |

Between-subject variation Within-subject variation

| |

Between-treatment variation Residual variation (random)

Variations is expressed as the sums of squares (SS), and can be added up to obtain

the total variation in the data. We will assess, whether the between-treatment variation

is large compared to the residual variation. Repeated-measure ANOVA is sometimes

called two-way ANOVA (balanced, without replications), (SD¼ standard deviation).

Subject Treatment 1 Treatment 2 Treatment 3 SD2

1 – – – –

2 – – – –

3 – – – –

4 – – – –

Treatment mean – – –

Grand mean¼ (treatment mean 1 + 2 + 3) / 3¼ . . ...

SS within-subject¼ SD1
2 + SD2

2 + SD3
2

SS treatment¼ (treatment mean 1�grand mean)2 + (treatment mean 2�grand

mean)2 + . . ...
SS residual¼ SS within-subject � SS treatment

The F-test (Fisher-test) is used for testing (dfs¼ degrees of freedom):

F ¼ SS treatment =dfs

SS residual = dfs
¼ SS treatment = 3� 1ð Þ

SS residual = 3� 1ð Þ 4� 1ð Þ
The F-table gives the P-value.
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5 Real Data Example

The effect of 3 treatments on vascular resistance is assessed in four persons.

Person Treatment 1 Treatment 2 Treatment 3 SD2

1 22.2 5.4 10.6 147.95

2 17.0 6.3 6.2 77.05

3 14.1 8.5 9.3 18.35

4 17.0 10.7 12.3 21.45

Treatment mean 17.58 7.73 9.60

Grand mean¼ 11.63

SS within-subject¼ 147.95 + 77.05 + ..

SS treatment¼ (17.58� 11.63)2 + (7.73� 11.63)2 + ..

SS residual¼ SS within-subject� SS treatment.

F¼ 14.31.

This value is much larger than the critical F-value producing a p< 0.05, because

with 2 (numerator) degrees of freedom and 2� 3¼ 6 (denominator) degrees of

freedom the critical F-value should be around 7.26. The difference between the

effects of the three treatments is, thus, very significant. The table of critical F-values

is given on the next page. The internet provides, however, many critical F-value

calculators, that are more precise than the table given.

We should add that, in case of 2 treatments the F-value produced by the ANOVA

equals the t-value squared (F¼ t2). T-statistics is, indeed, a simple form of analysis

of variance.
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6 Conclusion

The above examples show how repeated-measures ANOVA can be used to test the

significance of difference between three treatments in a single group of patients.

However, it does not tell us whether treatment 1 is better than 2, treatment 2 better

than 3, or treatment 1 better than 3, or any combinations of these effects. For that

purpose post hoc tests are required, comparing the treatments one by one. Paired

t-tests should be appropriate for the purpose.

7 Note

More background, theoretical and mathematical information of unpaired and paired

ANOVA is given Statistics applied to clinical studies 5th edition, Chap. 2, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 21

Variability Analysis for One or Two Samples

1 General Purpose

In some clinical studies, the spread of the data may be more relevant than the

average of the data. E.g., when we assess how a drug reaches various organs,

variability of drug concentrations is important, as in some cases too little and in

other cases dangerously high levels get through. Also, variabilities in drug response

may be important. For example, the spread of glucose levels of a slow-release-

insulin is important. This chapter assesses how to estimate the spread of one and

two data-samples.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Is the spread in a data set larger than required, is the difference in variabilities

between two data samples statistically significant.

4 One Sample Variability Analysis

For testing whether the standard deviation (or variance) of a sample is significantly

different from the standard deviation (or variance) to be expected, the chi-square

test with multiple degrees of freedom is adequate. The test statistic (the chi-square-

value¼ χ2 –value) is calculated according to

χ2 ¼ n� 1ð Þs2
σ2

for n� 1 degrees of freedom

n¼ sample size, s¼ standard deviation, s2¼ variance sample, σ¼ expected

standard deviation, σ2¼ expected variance).

For example, the aminoglycoside compound gentamicin has a small therapeutic

index. The standard deviation of 50 measurements is used as a criterion for

variability. Adequate variability will be accepted, if the standard deviation is less

than 7 μg/l. In our sample a standard deviation of 9 μg/l is observed. The test

procedure is given.

χ2 ¼ 50� 1ð Þ 92=72 ¼ 81

The underneath chi-square table has an upper row with areas under the curve, a left-

end column with degrees of freedom, and a whole lot of chi-square values. It shows

that, for 50–1¼ 49 degrees of freedom (close to 50 df row), we will find that a

chi-square value 76.154 will produce a p-value< 0.01. This sample’s standard

deviation is significantly larger than that required. This means that the variability

in plasma gentamicin concentrations is larger than acceptable.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

(continued)
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df

Two-tailed P-value

0.10 0.05 0.01 0.001

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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5 Two Sample Variability Test

F-tests can be applied to test if the variabilities of two samples are significantly

different from one another. The division sum of the samples’ variances (larger

variance / smaller variance) is used for the analysis. For example, two formulas of

gentamicin produce the following standard deviations of plasma concentrations.

Patients (n) Standard deviation (SD) (μg/l)
formula-A 10 3.0

formula-B 15 2.0

F-value ¼ SDA
2=SDB

2

¼ 3:02=2:02

¼ 9=4 ¼ 2:25

with degrees of freedom (dfs) for

formula-A of 10� 1 ¼ 9

formula-B of 15� 1 ¼ 14

The table of critical F-values producing a p< 0.05 is on the next page. It shows that

with 9 and 14 degrees of freedom respectively in the numerator and denominator an

F-value around 3.12 or more is required in order to reject the null – hypothesis.

Our F-value is only 2.25, and, so, the p-value is> 0.05, and the null-hypothesis

cannot be rejected. No significant difference between the two formulas can be

demonstrated.
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6 Conclusion

In some clinical studies, the spread of the data may be more relevant than the

average of the data. For example, the spread of glucose levels of a slow-release-

insulin is important. This chapter assesses how the spread of one and two data-

samples can be estimated. In the Chap. 22 statistical tests for variability assessments

with three or more samples will be given.

7 Note

More background, theoretical and mathematical information of variability assess-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 44, Springer

Heidelberg Germany, 2012, from the same authors.

7 Note 119

http://dx.doi.org/10.1007/978-3-319-27104-0_22


Chapter 22

Variability Analysis for Three or More
Samples

1 General Purpose

In some clinical studies, the spread of the data may be more relevant than the

average of the data. E.g., when we assess how a drug reaches various organs,

variability of drug concentrations is important, as in some cases too little and in

other cases dangerously high levels get through. Also, variabilities in drug response

may be important. For example, the spread of glucose levels of a slow-release-

insulin is important. In Chap. 21, the chi-square test for one sample and the F-test

for two samples have been explained. In this chapter we will explain the Bartlett’s
test which is suitable for comparing three or more samples.

2 Schematic Overview of Type of Data File

Outcome Treatment group (1, 2, 3, ....)

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

Is the difference in variabilities between three or more samples statistically

significant.

4 Data Example (Bartlett’s Test)

The Bartlett’s test, appropriate for comparing multiple samples for differences in

variabilities, uses the underneath equation (χ2¼ chi-square value).

χ2 ¼ n1 þ n2 þ n3 � 3ð Þln s2 � n1 � 1ð Þln s21 þ n2 � 1ð Þln s22 þ n3 � 1ð Þln s23
� �

where

n1¼ size sample 1

s1
2¼ variance sample 1

s2 ¼ pooled variance ¼ n1�1ð Þs2
1
þ n2�1ð Þs2

2
þ n3�1ð Þs2

3

n1þn2þn3�3
¼

ln¼ natural logarithm

As an example, blood glucose variabilities are assessed in a parallel-group study

of three insulin treatment regimens. For that purpose three different groups of

patients are treated with different insulin regimens. Variabilities of blood glucose

levels are estimated by group-variances (ln¼ natural logarithm):

Group size (n) Variance [(mmol/l)2]

Group 1 100 8.0

Group 2 100 14.0

Group 3 100 18.0

Pooled variance ¼ 99� 8:0 þ 99� 14:0 þ 99� 18:0

297
¼ 13:333

χ2 ¼ 297� ln13:333� 99� ln 8:0� 99� ln 14:0� 99� ln 18:0 ¼
297� 2:58776� 99� 2:079� 99� 2:639� 99� 2:890 ¼
768:58� 753:19 ¼
15:37

We have three separate groups, and, so, 3–1¼ 2 degrees of freedom. The under-

neath chi-square table has an upper row with areas under the curve, a left-end

column with degrees of freedom, and a whole lot of chi-square values. It shows that

with a chi-square value of 15.37 a very significant difference between the three

variances is demonstrated at p< 0.001. If the three groups are representative
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comparable samples, then we may conclude, that these three insulin regimens do

not produce the same spread of glucose levels.

Chi-squared distribution

Two-tailed P-value

df 0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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5 Conclusion

An alternative to the Bartlett’s test is the Levene’s test. The Levene’s test is less
sensitive than the Bartlett’s test to departures from normality. If there is a strong

evidence that the data do in fact come from a normal, or nearly normal, distribution,

then Bartlett’s test has a better performance. Levene’s test requires a lot of arith-

metic, and is usually performed using statistical software. E.g., it is routinely used

by SPSS when performing an unpaired t-test or one-way ANOVA (analysis of

variance) (see also Cleophas, Zwinderman, SPSS for Starters, part 1, Springer

New York, 2010, Chaps. 4 and 8).

We should add that assessing significance of differences between 3 or more

variances does not answer which of the samples produced the best outcome. Just

like with analysis of variance (Chap. 19), separate post hoc one by one analyses are

required.

6 Note

More background, theoretical and mathematical information of variability assess-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 44, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 23

Confounding

1 General Purpose

1
10

10
males

females20
20

0 1

treatment efficacy (units)

treatment
modality

2

3

In the above study the treatment effects are better in the males than they are in the

females. This difference in efficacy does not influence the overall assessment as

long as the numbers of males and females in the treatment comparison are equally

distributed. If, however, many females received the new treatment, and many males

received the control treatment, a peculiar effect on the overall data analysis is

observed as demonstrated by the difference in magnitudes of the circles in the

above figure: the overall regression line will become close to horizontal, giving rise

to the erroneous conclusion that no difference in efficacy exists between treatment

and control. This phenomenon is called confounding, and may have a profound

effect on the outcome of the study. This chapter shows how to assess confounded

studies with continuous outcome data. Confounded studies with binary outcome

data are reviewed in the Chap. 40.
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2 Schematic Overview of Type of Data File

Outcome Predictor (treatment modality)

. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

How can confounded studies be assessed.

4 Confounding Assessed with Subclassification

Confounding can be assessed by the method of subclassification. In the above

example an overall mean difference between the two treatment modalities is

calculated.

For treatment zero

Mean effect� standard error (SE) ¼ 1.5 units� 0.5 units

For treatment one

Mean effect� SE ¼ 2.5 units� 0.6 units

The mean difference of the two treatments

¼1.0 units� pooled standard error

¼1.0� √ (0.52 + 0.62)

¼1.0� 0.61

The t-value as calculated ¼ 1.0 / 0.61¼ 1.639
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With 100-2 (100 patients, 2 groups)¼ 98 degrees of freedom the p-value of

difference is calculated.

The above t-table has a left-end column giving degrees of freedom (� sample

sizes), and two top rows with p-values (areas under the curve¼ p - values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees of

freedom, are equal to z-values (Chap. 36). The t-values are to be understood as mean

results of studies, but not expressed in mmol/l, kilograms, but in so-called SEM-units

(Standard error of the mean units), that are obtained by dividing your mean result by

its own standard error. With many degrees of freedom (large samples) the curve will

be a little bit narrower, and more in agreement with nature.
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We have 98 degrees of freedom, and, so, we will need the rows between

60 and 120 to estimate the area under curve of a t-value of 1.639. A t-value larger

than 1.980 is required for an area under curve significantly different from zero

(¼ p-value< 0.05). Our area under the curve of 1.639 is much larger than 0.05. We

cannot reject the null-hypothesis of no difference in the data here.

In order to assess the possibility of confounding, a weighted mean has to be

calculated. The underneath equation is adequate for the purpose.

Weighted mean ¼ Differencemales=its SE
2 þ Differencefemales=its SE

2

1=SE2
males þ 1=SE2

females

For the males we find means of 2.0 and 3.0 units, for the females 1.0 and 2.0 units.

The mean difference for the males and females separately are 1.0 and 1.0 as

expected from the above figure. However, the pooled standard errors are different,

for the males 0.4, and for the females 0.3 units.

According to the above equation a weighted t-value is calculated

Weighted mean ¼ 1:0=0:42 þ 1:0=0:32ð Þ
1=0:42 þ 1=0:32ð Þ

¼ 1.0

Weighted SE2 ¼ 1= 1=0:42 þ 1=0:32
� �

¼ 0.0576

Weighted SE ¼ 0.24

t-value ¼ 1.0/0.24 ¼ 4.16

According to the above t-table with 98 degrees of freedom a t-value of 4.16 is

much larger than the critical t-value producing a p< 0.05. Our result is very

significant: p-value¼<0.001.

The weighted mean is equal to the unweighted mean. However, its SE is much

smaller. It means that after adjustment for confounding a very significant difference

is observed.

5 Conclusion

Other methods for assessing confounding include multiple regression analysis and

propensity score assessments. Particularly, with more than a single confounder

these two methods are unavoidable. Propensity score assessments is covered in

the Chap. 32.
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6 Note

More background, theoretical and mathematical information of confounding is

given in Statistics applied to clinical studies 5th edition, Chap. 28, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 24

Propensity Scores and Propensity Score
Matching for Assessing Multiple
Confounders

1 General Purpose

In the Chap. 23 methods for assessing confounders were reviewed. Propensity score

are ideal for assessing confounding, particularly, if multiple confounders are in a

study. E.g., age and cardiovascular risk factors may not be similarly distributed in

two treatment groups of a parallel-group study. Propensity score matching is used to

make observational data look like randomized controlled trial data. This chapter

assesses propensity score and propernsity score matching.

2 Schematic Overview of Type of Data File

Outcome Treatment modality Propensity scores

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, Clinical Data Analysis on a Pocket Calculator,
DOI 10.1007/978-3-319-27104-0_24

131

http://dx.doi.org/10.1007/978-3-319-27104-0_23


3 Primary Scientific Question

Is propensity score and propensity score matching adequate for assessing studies

with multiple confounders.

4 Propensity Scores

A propensity (prop) score for age can be defined as the risk ratio (or rather odds

ratio) of receiving treatment 1 compared to that of treatment 2 if you are old in

this study.

Treatment-1 Treatment-2 odds treatment-1 / odds

treatment-2

n¼ 100 n¼ 100 (OR)

1. Age> 65 63 76 0.54 (63/76 / 37/24)

2. Age< 65 37 24 1.85 ( ¼ OR2¼ 1/OR1)

3. Diabetes 20 33 0.51

4. Not diabetes 80 67 1.96

5. Smoker 50 80 0.25

6. Not smoker 50 20 4.00

7. Hypertension 51 65 0.65

8. Not hypertension 49 35 1.78

10. Not cholesterol 39 22 2.27

The odds ratios can be tested for statistical significance (see Chap. 2, odds

ratios), and those that are statistically significant can, then, be used for calculating

a combined propensity-score for all of the inequal characteristics by multiplying the

significant odds ratios, and, then, calculating from this product the combined

propensity-score¼ combined “risk ratio” (¼ combined OR / (1+ combined OR).

y¼ yes, n¼ no, combined OR¼OR1 x OR3 x OR5 x OR7 x OR9.

Old Diab Smoker Hypert Cholesterol Combined OR Combined

propensity

score

Patient 1 y y n y y 7.99 0.889

2 n n n y y 105.27 0.991

3 y n n y y 22.80 0.958

4 y y y y y 0.4999 0.333

5 n n y

6 y y y

7 . . ..
8 . . ..
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Each patient has his / her own propensity score based on and adjusted for the

significantly larger chance of receiving one treatment versus the other treatment.

Usually, propensity score adjustment for confounders is accomplished by divid-

ing the patients into four subgroups, but for the purpose of simplicity we here use

2 subgroups, those with high and those with low propensity scores.

Confounding is assessed by the method of subclassification. In the above

example an overall mean difference between the two treatment modalities is

calculated.

For treatment zero

Mean effect� standard error (SE) ¼ 1.5 units� 0.5 units

For treatment one

Mean effect� SE ¼ 2.5 units� 0.6 units

The mean difference of the two treatments

¼1.0 units� pooled standard error

¼1.0� √ (0.52 + 0.62)

¼1.0� 0.61

The t-value as calculated ¼ 1.0/0.61¼ 1.639

The underneath t-table is helpful to determine a p-value.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simulataneously. The t-table is, furthermore, full of t-values, that, with

1 degrees of freedom, are equal to z-values (Chap. 36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, but

in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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With 200–2 (200 patients, 2 groups)¼ 198 degrees of freedom, a t-value> 1.96

is required to obtain a two-sided p< 0.05. It can be observed that our

p-value> 0.05. It is even> 0.10.

In order to assess the possibility of confounding, a weighted mean has to be

calculated. The underneath equation is adequate for the purpose (prop

score¼ propensity score).

Weighted mean ¼ Differencehigh prop score = its SE2 þ Differencelow prop score= its SE2

1= SE2
high prop score þ 1= SE2

low prop score

For the high prop score we find means of 2.0 and 3.0 units, for the low prop score

1.0 and 2.0 units. The mean difference separately are 1.0 and 1.0 as expected.

However, the pooled standard errors are different, for the males 0.4, and for the

females 0.3 units.

According to the above equation a weighted t-value is calculated

Weighted mean ¼ 1:0=0:42 þ 1:0=0:32
� �

1=0:42 þ 1=0:32
� �

¼ 1.0

Weighted SE2 ¼ 1/(1/0.42 + 1/0.32)

¼ 0.0576

Weighted SE ¼ 0.24

t-value ¼ 1.0/0.24¼ 4.16

With 98 degrees of freedom, and a t-value of 4.16 means a two sided

p-value< 0.001 is obtained.

The weighted mean is equal to the unweighted mean. However, its SE is much

smaller. It means that after adjustment for the prop scores a very significant

difference is observed. Instead of subclassification, also linear regression with the

propensity scores as covariate is a common way to deal with propensity scores.

However, this is hard on a pocket calculator.

5 Propensity Score Matching

In the study of 200 patients each patient has his/her own propensity score. We

select for each patient in group 1 a patient from group 2 with the same propensity

score.
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The above graph is an example of the nearest neighbor watching method for

matching patients with similar propensity scores. Each square represents one

patient. In random order the first patient from group 1 is selected. Then, he/she is

matched to the patient of group 2 with the nearest propensity score. We will

continue until there are no longer similar propensity scores. Group 1 has to be

summarized above the x-axis, group 2 below it. The patients with dissimilar

propensity scores that cannot be matched, have to be removed from the analysis.

This procedure will end up sampling two new groups that are entirely symmetric

on their subgroup variables, and can, thus, be simply analyzed as two groups in a

randomized trial. In the given example two matched groups of 71 patients were left

for comparison of the treatments. They can be analyzed for treatment differences

using unpaired t-tests (Chap. 7) or chi-square tests (Chap. 38), without the need to

further account confounding anymore.

6 Conclusion

Propensity score are for assessing studies with multiple confounding variables,

e.g., age and cardiovascular risk factors, factors that are likely not to be similarly

distributed in two treatment groups of a parallel-group study. Propensity score
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matching is used to make observational data look like randomized controlled trial

data. This chapter assesses propensity score and propernsity score matching.

7 Note

More background, theoretical and mathematical information of propensity scores is

given in Statistics applied to clinical studies 5th edition, Chap. 29, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 25

Interaction

1 General Purpose

The medical concept of interaction is synonymous to the terms heterogeneity and

synergism. Interaction must be distinguished from confounding. In a trial with

interaction effects the parallel groups have similar characteristics. However, there

are subsets of patients that have an unusually high or low response. The figure

below gives an example of a study in which males seem to respond better to the

treatment 1 than females. With confounding things are different. For whatever

reason the randomization has failed, the parallel groups have asymmetric charac-

teristics. E.g., in a placebo-controlled trial of two parallel-groups asymmetry of

age may be a confounder. The control group is significantly older than the

treatment group, and this can easily explain the treatment difference as demon-

strated in the previous chapter. This chapter uses simply t-tests for assessing

interactions.
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2 Schematic Overview of Type of Data File

Outcome Exposure 1 Exposure 2

. . .
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. . .

. . .

. . .
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. . .

. . .

. . .

3 Primary Scientific Question

Can t-tests adequately demonstrate interaction between the effect on the outcome of

two exposure variables.
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4 Data Example of Interaction

A parallel-group study of verapamil versus metoprolol for the treatment of parox-

ysmal atrial tachycardias is given below. The numbers of episodes of paroxysmal

atrial tachycardias per patient are the outcome variable.

VERAPAMIL METOPROLOL

MALES 52 28

48 35

43 34

50 32

43 34

44 27

46 31

46 27

43 29

49 25

464 302 766

FEMALES 38 43

42 34

42 33

35 42

33 41

38 37

39 37

34 40

33 36

34 35

368 378 746

832 680

Overall metoprolol seems to perform better. However, this is only true only for

one subgroup (males). SD¼ standard deviation, SE¼ standard error.

Males Females

Mean verapamil (SD) 46.4 (3.23866) 36.8 (3.489667)

Mean metoprolol (SD) 30.2 (3.48966)- 37.8 (3.489667)-

Difference means (SE) 16.2 (1.50554) �1.0 (1.5606)

Difference between males and females 17.2 (SE1
2 + SE1

2¼ 2.166)

t-value¼ 17.2/2.166¼ 8. . ..
p < 0.0001

We conclude, that there is a significant difference between the males and

females, and, thus, a significant interaction between gender and treat-efficacy.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p - values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simulataneously. The t-table is, furthermore, full of t-values, that, with

1 degrees of freedom, are equal to z-values (Chap. 36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, but

in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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With 40–2¼ 38 degrees of freedom (close to 40), and a t-value¼ 17.2/

2.166¼ 8. . .. and thus larger than 3.551, the two-tail p -value is< 0.001.

5 Conclusion

T-tests can readily be applied for assessing interactions between the effects on the

outcome of two exposure variables. Interaction can also be assessed with analysis of

variance and regression modeling. These two methods are the methods of choice in

case you expect more than a single interaction in your data. They should be carried

out on a computer.

6 Note

More background, theoretical and mathematical information of interaction assess-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 30, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 26

Accuracy and Reliability Assessments

1 General Purpose

Clinical research is impossible without valid diagnostic tests. The methods for

validating qualitative diagnostic tests, having binary outcomes, include sensitivity

/ specificity assessments and ROC (receiver operated characteristic) curves

(Chaps. 52 and 53). In contrast, the methods for validating quantitative diagnostic
tests, having continuous outcomes, have not been agreed upon. This chapter

assesses pocket calculator methods for the purpose.

2 Schematic Overview of Type of Data File

Gold standard test New test

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

Is a new diagnostic test adequately accurate and adequately reliable.

4 Testing Accuracy with R2-Values

Linear regression is often used for that purpose. The underneath figure gives an

example. The regression equation is given by y¼ a + b x (a¼ intercept,

b¼ regression coefficient). More information of linear regression is given in the

Chap. 8. In the underneath example given, the x-axis-data, ultrasound estimates, are

a very significant predictor of the y-axis-data, the electromagnetic measurements.

However, the prediction, despite the high level of statistical significance, is very

imprecise. E.g., if x¼ 6, then y may be 10 or 21, and, if x¼ 7, then y may be 19, 31

or 32.

2
0

10

20

30

40

50

4 6 8 10 12 14
Ultrasound measurement (mm/s)

Electronic measurement (mm/s)

16 18 20

Probably, the best accuracy assessment is to test whether the 95 % confidence

interval of the a-value (the intercept) is significantly different from 0, and whether

the 95 % confidence interval of the b-value (the regression coefficient is signifi-

cantly different from 1. However, second best and more easy on a pocket calculator

is to test the data for a squared correlation coefficient (r2)> 95 %. This method

assumes a diagnostic test with the best fit equation y¼ a + b x, rather than y¼ x. A

diagnostic test with the former best fit equation, like in the above example, is not

necessarily useless, and could be approved as a valid test, if it is precise, that means,
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if the x-data precisely predict the (y�a)/b- data rather than the y-data. If we apply

such a test, then the result of the x-data will, of course, have to be transformed into

a+ b x in order to find the y-data.

We will use Electronic Calculator (see Chap. 1) for computations. First, we will

calculate the b and r values.

Command:

click ON....click MODE....press 3....press 1....press SHIFT, MODE, and again 1....

press¼ ....start entering the data. . .. [x-datum1 y-datum1]. . ..[x-datum2

y-datum2]. . ..[..........] etc.. . .

In order to obtain the r value, press: shift, S-VAR, ►, ►, 3, ¼ .

The r-value equals 0.6. . .
The r2 -value equals 0.36. . .

This r2-value is much smaller than 0.95. It means that this diagnostic test can not

be validated as being adequately accurate.

5 Testing Reliability with Duplicate Standard Deviations

The reliability, otherwise called reproducibility, of diagnostic tests is another

important quality criterion. A diagnostic test is very unreliable, if it is not well-

reproducible. Underneath a first data example is given.

test 1 test 2 difference (difference)2

result

1 11 �10 100

10 0 10 100

2 11 �9 81

12 2 10 100

11 1 10 100

1 12 �11 121

mean

6.17 6.17 0 100.3

Duplicate standard deviation ¼√(1/2�mean of (difference)2)

¼√ (1/2� 100.3)

¼7.08

The proportional duplicate standard deviation

¼ duplicate standard deviation

overallmean
� 100%

¼ 7:08
6:17 �100%

¼115 %
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An adequate reliability is obtained with a proportional duplicate standard devi-

ation of 10–20 %. In the current example, although the mean difference between the

two tests equals zero, there is, thus, a very poor reproducibility.

Underneath a second example is given. The question is, is this test well

reproducible?

test 1 test 2

result

6.2 5.1

7.0 7.8

8.1 3.9

7.5 5.5

6.5 6.6

Analysis:

Test 1 Test 2 Difference Difference2

Result

6.2 5.1 1.1 1.21

7.0 7.8 �0.8 0.64

8.1 3.9 4.2 17.64

7.5 5.5 2.0 4.0

6.5 6.6 �0.1 0.01

Mean

7.06 5.78 4.7

grand mean 6.42

Duplicate standard deviation ¼√(½� 4.7)

¼1.553

Proportional duplicate standard deviation %

¼ duplicate standard deviation� 100%
overall mean

¼ 1:553
6:42 � 100%

¼24 %

A good reproducibility is between 10 and 20 %. In the above example repro-

ducibility is, thus, almost good.

6 Conclusion

In the current chapter two methods for validation of diagnostic methods with

continuous data easily performed with the help of a pocket calculator are described.

Many more methods exists. For accuracy assessments paired t-tests, Bland-Altman
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plots and the complex linear regession models of Passing-Bablok and Deming are

available. For reliability repeatability coefficients and intraclass correlations are

possible (see underneath “Note” section). These method is generally more labori-

ous, particularly, with large samples, but available through S-plus, Analyse-it, EP

Evaluator, and MedCalc and other software programs.

7 Note

More background, theoretical and mathematical information of validity assess-

ments of diagnostic tests with continuous outcomes is given in Statistics applied

to clinical studies 5th edition, the Chaps. 45 and 50, Springer Heidelberg Germany,

2012, from the same authors.
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Chapter 27

Robust Tests for Imperfect Data

1 General Purpose

Robust tests are wonderful for imperfect data, because they often produce signif-

icant results, when standard tests don’t. They may be able to handle major outliers

in data files without largely changing the overall test results.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, Clinical Data Analysis on a Pocket Calculator,
DOI 10.1007/978-3-319-27104-0_27

151



3 Primary Scientific Question

With data imperfect due to major outliers, can robust tests provide significant

effects, if traditional tests don’t.

4 Data Example

Frailty score-improvements after physiotherapy of 33 patients are measured in a

study. The data are in the second column of underneath data.

Patient Score-

improvement

Deviation from

median

Trimmed

data

Winsorized

data

1 �8.00 11 �1.00

2 �8.00 11 �1.00

3 �8.00 7 �1.00

4 �4.00 7 �1.00

5 �4.00 7 �1.00

6 �4.00 7 �1.00

7 �4.00 7 �1.00

8 �1.00 4 �1.00 �1.00

9 0.00 3 0.00 0.00

10 0.00 3 0.00 0.00

11 0.00 3 0.00 0.00

12 1.00 2 1.00 1.00

13 1.00 2 1.00 1.00

14 2.00 1 2.00 2.00

15 2.00 1 2.00 2.00

16 2.00 1 2.00 2.00

17 3.00 median 3.00 3.00

18 3.00 0 3.00 3.00

19 3.00 0 3.00 3.00

20 3.00 0 3.00 3.00

21 4.00 1 4.00 4.00

22 4.00 1 4.00 4.00

23 4.00 1 4.00 4.00

24 4.00 1 4.00 4.00

25 5.00 2 5.00 5.00

26 5.00 2 5.00 5.00

27 5.00 2 5.00

28 5.00 2 5.00

29 6.00 3 5.00

30 6.00 3 5.00

31 6.00 3 5.00

32 7.00 4 5.00

33 8.00 5 5.00
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The data suggest the presence of some central tendency: the values 3.00 and 5.00

are observed more frequently than the rest. However, the one sample t-test shows a

mean difference from zero of 1.45 scores with a p-value of 0.067. Thus, not

statistically significant.

5 T-Test for Medians and Median Absolute
Deviations (MADs)

Underneath are descriptives of the above data that are appropriate for robust testing

are given.

Mean 1.455

standard deviation 4.409

standard error 0.768

mean after replacing outcome 1st patient with 0.00 1.697

mean after replacing outcome first 3 patients with 0.00 2.182

median 3.000

MAD 2.500

mean of the Winsorized data 1.364

standard deviation of the Winsorized data 3.880

MAD¼median absolute deviation¼ the median value of the sorted deviations

from the median of a data file.

If the mean does not accurately reflect the central tendency of the data e.g. in

case of outliers (highly unusual values), then the median (value in the middle) or the

mode (value most frequently observed) may be a better alternative to summarizing

the data and making predictions from them.

Median ¼ 3:00

The above example shows in the third column the deviations from the median, and

the table gives the median of the deviations from median (MAD¼median absolute

deviation).

MAD ¼ 2:50

If we assume, that the data, though imperfect, are from a normal distribution, then the

standard deviation of this normal distribution can be approximated from the equation

standard deviationmedian ¼ 1:426 �MAD ¼ 3:565

standard errormedian ¼ 3:565=√n ¼ 3:565=√33 ¼ 0:6206
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A t-test is, subsequently, performed, and produces a very significant effect: phys-

iotherapy is really helpful.

t ¼ median=standard errormedian ¼ 3:00=0:6206 ¼ 4:834:

The underneath t-table is used for determining the p-value. For 32 (¼33� 1)

degrees of freedom, and a t-value >3.646 means a p-value of <0.001 (two-tail).

The t-table has a left-end column giving degrees of freedom (� sample sizes), and

two top rows with p-values (areas under the curve¼ p – values), one-tail meaning

that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with 1 degrees of
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freedom, are equal to z-values (Chap. 36). The t-values are to be understood as mean

results of studies, but not expressed in mmol/l, kilograms, but in so-called SEM-units

(Standard error of the mean units), that are obtained by dividing your mean result by

its own standard error. With many degrees of freedom (large samples) the curve will

be a little bit narrower, and more in agreement with nature.

6 T-Test for Winsorized Variances

The terminology comes from Winsor’s principle: all observed distributions are

Gaussian in the middle. First, we have to trim the data, e.g., by 20 % on either

side (see data file, fourth column). Then, we have to fill up their trimmed values

with Winsorized scores, which are the smallest and largest untrimmed scores (data

file, fifth column). The mean is, then, calculated, as well as the standard deviation

and standard error, and a t-test is performed for null hypothesis testing.

Winsorized mean ¼ 1.364

Winsorized standard deviation ¼ 3.880

Winsorized standard error ¼ 3.880 / √n
¼ 3.880 / √ 33

¼ 0.675

t-test

t ¼ Winsorized mean / Winsorized standard error

t ¼ 2.021

With 32 (¼33�1) degrees of freedom and a t-value> 2.2042 means a

p-value< 0.05 (two-sided).

p-value < 0:05

7 Mood’s Test (One Sample Wilcoxon’s Test)

�8.00 �8.00 �8.00 �4.00 �4.00 �4.00 �1.00 0.00 0.00 0.00 1.00 . . ..
�8.00 �8.00 �8.00 �6.00 �6.00 �6.00 �4.50 �4.00 �4.00 �4.00 �3.50

�8.00 �8.00 �6.00 �6.00 �6.00 �4.50 �4.00 �4.00 �4.00 �3.50

�8.00 �6.00 �6.00 �6.00 �4.50 �4.00 �4.00 �4.00 �3.50

�4.00 �4.00 �4.00 �2.50 �2.00 �2.00 �2.00 �1.50

�4.00 �4.00 �2.50 �2.00 �2.00 �2.00 �1.50

�4.00 �2.50 �2.00 �2.00 �2.00 �1.50

�1.00 �0.50 �0.50 �0.50 0.00

0.00 0.00 0.00 0.50

0.00 0.00 0.50

0.00 0.50

1.00

. . ..

. . ..
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The Mood’s test is, sometimes, called the one sample Wilcoxon’s test. The

above table shows how it works. Paired averages [(vertical value + horizontal

value)/2] are calculated. If the data are equally distributed around an average of

0, then we will have half of the average being positive, half negative.

We observe 1122 paired averages,

1122/2¼ 561 should be positive,

349 positive paired averages are found.

A chi-square test is performed

chi-square value¼ (Observed � expected numbers)2/Expected

numbers

chi-square value¼ (349–561)2 / 349¼ 128.729

p< 0.001 with 1 degree of freedom

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values. It

shows that, for 1 degrees of freedom, and chi-square values>10.827, we will find a

p-value <0.001.

Chi-squared distribution

Two-tailed P-value

df 0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

(continued)
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Two-tailed P-value

df 0.10 0.05 0.01 0.001

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

8 Conclusion

The above three robust tests produced p-values of <0.001, <0.05, and <0.001,

while the one sample t-test was not statistically significant. Robust tests are

wonderful for imperfect data, because they often produce significant results,

when standard tests don’t.

9 Note

More background, theoretical and mathematical information of robust tests is given

in SPSS for Starters part 2, Chap. 20, Springer Heidelberg Germany, 2012, from the

same authors.
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Chapter 28

Non-linear Modeling on a Pocket Calculator

1 General Purpose

Non-linear relationships in clinical research are often linear after logarithmic trans-

formations. Odds ratios, log likelihood ratios, Markov models and many regression

models are models that make use of it. An example with real data is given. We have

to add that logarithmic transformation is not always successful, and that alternative

methods are available like Box Cox transformation, and computationally intensive

methods like spline and Loess modeling (see Chap. 24. In: Statistics Applied to

Clinical Studies, Springer New York, 5th edition, 2012, and Chap. 14 of SPSS for

Starters Part 2, Springer New York, 2012, both from the same authors). However,

these methods generally require statistical software and can not be executed on a

pocket calculator. This chapter assesses simply logarithmic transformation of the

outcome variable for linearization of survival data.

2 Schematic Overview of Type of Data File

Outcome Predictor

. .

. .

. .

. .

. .

. .

. .

. .

(continued)
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Outcome Predictor

. .

3 Primary Scientific Question

Can logarithmic transformation of survival data linearize survival patterns.

4 Data Example

The underneath figure shows the survivals of 240 patients with small cell

carcinomas.

240

200

160

120

80

40

0 2 4 6 8 10 12 14 16
Time (months)

numbers alive

The underneath figure shows the natural logarithms of these survivals. It can be

observed that logarithmic transformation of the numbers of patients alive readily

produces a close to linear pattern.
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In numbers alive

p < 0.00015

4

3

2

1

0 2 4 6 8 10 12 14 16
Time (months)

The equation of the above regression line of the data y¼ a + bx with

a¼ intercept and b¼ regression coefficient can be calculated from a pocket

calculator.

5 Calculation of Linear Regression Parameters
from a Pocket Calculator

Some pocket calculators offer linear regression. An example is given (see also

Chap. 8).

x-values y-values

Temp (�C) Atmospheric pressure (hpa)

10 1003

15 1005

20 1010

25 1011

30 1014

Electronic Calculator (see Chap. 1) can be used for the purpose.

Press:

on. . ..mode. . ..3. . ..1. . ..10. . ., . . ..1003. . ..M+ . . ..15. . .., . . .. 1005. . .. M+ . . ...
etc. . ...M+....shift....s-var....►....►....1.....a is given. . ..shift....s-var ....►....►
....2.....b is given. . .. shift....s-var....►....►....3.....r is given. . ..
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Interpretation of a, b and r.: a is the intercept of the best fit regression line with

equation y¼ a + bx; b is the regression coefficient, otherwise called direction

coefficient of the regression line; r is Pearson’s correlation coefficient, it runs

from �1 to +1, 0 means no relationships between x and y, �1 and +1 mean a

very strong negative and positive relationship respectively.

6 Conclusion

Non-linear relationships in clinical research are often linear after logarithmic trans-

formations. Odds ratios, log likelihood ratios, Markov models and many regression

models are models that make use of it. An example with real data is given. We have

to add that logarithmic transformation is not always successful, and that alternative

methods are available. However, these alternative methods, generally, require

statistical software, and can not be executed on a pocket calculator.

7 Note

More background, theoretical and mathematical information is given in Statistics

Applied to Clinical Studies, Springer New York, 5th edition, Chap. 24, 2012, and

SPSS for Starters Part 2, Springer New York, 2012, Chap. 14, both from the same

authors.
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Chapter 29

Fuzzy Modeling for Imprecise
and Incomplete Data

1 General Purpose

Fuzzy modeling is a methodology that works with partial truths: it can answer

questions to which the answers are “yes” and “no” at different times or partly “yes”

and “no” at the same time. It can be used to match any type of data, particularly

incomplete and imprecise data, and it is able to improve precision of such data. It

can be applied with any type of statistical distribution and it is, particularly, suitable

for uncommon and unexpected non linear relationships. This chapter assesses the

use of fuzzy modeling of clinical data.

2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

Is fuzzy modeling able to provide improved precision of imprecise clinical data.

4 Fuzzy Terms

4.1 Universal Space

Defined range of input values, defined range of output values.

4.2 Fuzzy Memberships

The universal spaces are divided into equally sized parts called membership

functions

4.3 Linguistic Membership Names

Each fuzzy membership is given a name, otherwise called linguistic term.

4.4 Triangular Fuzzy Sets

A common way of drawing the membership function with on the x-axis the input

values, on the y-axis the membership grade for each input value.

4.5 Fuzzy Plots

Graphs summarizing the fuzzy memberships of (for example) the input values.

4.6 Linguistic Rules

The relationships between the fuzzy memberships of the input data and those of the

output data (the method of calculation is shown in the underneath examples).

164 29 Fuzzy Modeling for Imprecise and Incomplete Data



5 Data Example 1

Underneath are the quantal pharmacodynamic effects of different induction dos-

ages of thiopental on numbers of responding subjects.

Input values output values fuzzy-modeled output

induction dosage of thiopental numbers of responders numbers of responders

(mg/kg) (n) (n)

1 4 4

1. 5 5

2 6 8

2.5 9 10

3 12 12

3.5 17 14

4 17 16

4.5 12 14

5 9 12

The effects of different induction dosages of thiopental on numbers of

responding subjects are in the above table, left two columns. The right column

gives the fuzzy-modeled output. The figures below show that the un-modeled curve

(upper curve) fits the data less well than does the modeled (lower curve).
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We fuzzy-model the input and output relationships (figures below).

First of all, we create linguistic rules for the input and output data.

For that purpose we divide the universal space of the input variable into fuzzy

memberships with linguistic membership names:

input-zero, -small, -medium, -big, -superbig.

Then we do the same for the output variable:

output-zero, -small, -medium, -big.

Subsequently, we create linguistic rules.
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The above figure shows that input-zero consists of the values 1 and 1.5.

The value 1 (100 % membership) has 4 as outcome value (100 % membership of

output-zero).
The value 1.5 (50 % membership) has 5 as outcome value (75 % membership of

output-zero, 25 % of output-small).

The input-zero produces 100%x100%+50%x75%¼ 137.5 % membership to

output-zero, and 50%� 25%¼ 12.5 % membership to output-small, and so, out-

put-zero is the most important output contributor here, and we forget about the

small contribution of output-small.
Input-small is more complex, it consists of the values 1.5, and 2.0, and 2.5.

The value 1.5 (50 % membership) has 5 as outcome value (75 % membership of

output-zero, 25 % membership of output-small).
The value 2.0 (100 % membership) has 6 as outcome value (50 % membership of

outcome-zero, and 50 % membership of output-small).
The value 2.5 (50 % membership) has 9 as outcome value (75 % membership of

output-small and 25 % of output-medium).

The input-small produces 50 %� 75 %+100 %� 50 %¼ 87.5 % membership to

output-zero, 50 %� 25 %+100 %� 50 %+50 %� 75 %¼ 100 % membership to

output-small, and 50 %� 25 %¼ 12.5 % membership to output-medium. And so, the
output-small is the most important contributor here, and we forget about the other two.

For the other input memberships similar linguistic rules are determined:

Input-medium! output-medium
Input-big! output-big
Input-superbig! output-medium

We are, particularly interested in the modeling capacity of fuzzy logic in order to

improve the precision of pharmacodynamic modeling.

The modeled output value of input value 1 is found as follows.

Value 1 is 100 % member of input-zero, meaning that according to the above

linguistic rules it is also associated with a 100 % membership of output-zero
corresponding with a value of 4.
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Value 1.5 is 50 % member of input-zero and 50 % input-small. This means it is

50 % associated with the output-zero and –small corresponding with values of

50 %� (4 + 8)¼ 6.

For all of the input values modeled output values can be found in this way. The

table of the current section, right column shows the results.

6 Data Example 2

In the underneath example the fuzzy-modeled output has been given. Try and

fuzzy-model the data for yourself. Time-response effect of single oral dose of

120mg propranolol on peripheral arterial flow.

Input values output values fuzzy-modeled output

Hours after oral Administra-

tion of 120 mg propranolol

peripheral arterial flow

(ml/100 ml tissue/min)

peripheral arterial flow

(ml/100 ml tissue/min)

1 20 20

2 12 14

3 9 8

4 6 6

5 5 4

6 4 4

7 5 4

8 6 6

9 9 8

10 12 14

11 20 20
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Pharmacodynamic relationship between the time after oral administration of

120 mg of propranolol (x-axis, hours) and absolute change in fore arm flow (y-axis,

ml/100 ml tissue/min) are in the above graphs. The un-modeled curve (upper curve)

fits the data slightly less well than does the modeled (lower curve).

6 Data Example 2 169



7 Conclusion

Fuzzy modeling is a methodology that works with partial truths: it can answer

questions to which the answers are “yes” and “no” at different times or partly “yes”

and “no” at the same time. This chapter assesses the use of fuzzy modeling of

clinical data. The examples given show that the fuzzy models better fit the data than

do the un-modeled data. The figures were drawn with SPSS module regression

(curve estimation).

8 Note

More background, theoretical and mathematical information of fuzzy modeling is

given in Statistics applied to clinical studies 5th edition, Chap. 59, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 30

Bhattacharya Modeling for Unmasking
Hidden Gaussian Curves

1 General Purpose

Bhattacharya modeling can be used for unmasking Gaussian curves in the data. It

should with the help of log transformed frequency scores of data histograms enable

to identify Gaussian subsets in the data. It can also be applied to produce a better

Gaussian fit to a data file than the usual mean and standard deviation does. This

chapter assesses how it can be used to identify Gaussian data subsets, and provide

models better fitting the data, than the traditional methods do.

2 Schematic Overview of Type of Data File

Outcome
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3 Primary Scientific Question

Can Bhattacharya modeling be applied for determining normal values of diagnostic

tests and their confidence intervals, and for searching subsets in the data.

4 Data Example
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The above graph gives an example of the frequency distributions of vascular lab

scores of a population of 787 patients at risk of peripheral vascular disease. The

continuous Gaussian curves are calculated from the mean� standard deviation, the

interrupted Gaussian curves from Bhattacharya modeling. The pattern of the his-

togram is suggestive of certain subsets in this population. The underneath table left

two columns give the scores and frequencies. The frequencies are log (logarithmic)

transformed (third column) (see also 27 and 43), and, then, the differences between

two subsequent log transformed scores are calculated (fourth column).

Score frequency log delta log

2 1 0.000 0.000

4 5 0.699 0.699

6 13 1.114 0.415

8 25 1.398 0.284

10 37 1.568 0.170

12 41 1.613 0.045

14 43 1.633 0.020
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16 50 1.699 �0.018

18 48 1.681 �0.111

20 37 1.570 0.021

22 39 1.591 0.117

24 51 1.708 0.000

26 51 1.708 �0.009

28 50 1.699 �0.027

30 47 1.672 �0.049

32 42 1.623 �0.146

34 30 1.477 �0.176

36 28 1.447 �0.030

38 16 1.204 �0.243

40 20 1.301 0.097

42 28 1.447 0.146

44 26 1.415 �0.032

46 25 1.398 �0.017

48 17 1.230 �0.168

50 10 1.000 �0.230

52 6 0.778 �0.222

The underneath graph shows the plot of the scores against the delta log terms.

Three straight lines are identified. The equations of these lines can be calculated

(using linear regression) or extrapolated from the graph below.

1. y¼ 0.944� 0.078 x

2. y¼ 0.692� 0.026 x

3. y¼ 2.166� 0.048 x

The characteristics of the corresponding Gaussian curves can be calculated as

follows.

1. mean¼�0.944/�0.078¼ 12.10, standard deviation¼ 1/0.078¼ 12.82

2. mean¼�0.692/�0.026¼ 26.62, standard deviation¼ 1/0.026¼ 38.46

3. mean¼�2.166/�0.048¼ 45.13, standard deviation¼ 1/0.048¼ 20.83.

In the underneath graph the above three Gaussian curves as given are drawn as

interrupted curves. Here the scores from the above graph have been plotted against

the delta log terms as calculated from the frequencies from the above graph.

4 Data Example 173



0,00

-0,250

0,000

0,250

0,500

0,750

d
el
ta
lo
g

10,00 20,00 30,00

score

40,00 50,00 60,00

5 Conclusion

We conclude that Bhattacharya modeling with the help of log transformed fre-

quency scores of data histograms enables to identify Gaussian subsets in the data. It

can also be applied to produce a better Gaussian fit to a data file than the usual mean

and standard deviation does (Chapter 59. In: Statistics Applied to Clinical Studies,

Springer New York, 5th edition, 2012, from the same authors).

6 Note

More background, theoretical and mathematical information of Bhattacharya

modeling is given in the Statistics applied to clinical studies 5th edition, Chap. 26

and 59, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 31

Item Response Modeling Instead of Classical
Linear Analysis of Questionnaires

1 General Purpose

Item response modeling is used for analyzing psychometric data, quality of life

data, and can even be used analyzing diagnostic tests. It may provide better

precision than does the classical linear analysis. This chapter assesses how it works.

2 Schematic Overview of Type of Data File

Outcome (answer pattern)

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Are item response models more sensitive than classical linear methods for making

predictions from psychological/QOL questionnaires, and diagnostic tests.

4 Example

One of the estimators of quality of life (QOL) is “feeling happy”. Five yes/no

questions indicate increasing levels of daily happiness: (1) 0 hours happy,

(2) 6 hours happy, (3) 12 hours happy, (4) 18 hours happy, (5) 24 hours happy.

Usually, with five yes/no questions in a domain the individual result is given in the

form of a score, here, e.g., a score from 0 to 5 dependent on the number of positive

answers given per person. However, with many questionnaires different questions

represent different levels of difficulty or different levels of benefit etc. This can be

included in the analysis using item response modeling.

A summary of a 5-item quality of life data of 1000 anginal patients is given

below.

No. response

pattern

Response pattern (1¼ yes, 2¼ no)

to items 1 to 5

Observed

Frequencies

1. 11111 0

2. 11112 0

3. 11121 0

4. 11122 1

5. 11211 2

6. 11212 3

7. 11221 5

8. 11222 8

9. 12111 12

10. 12112 15

11. 12121 18

12. 12122 19

13. 12211 20

14. 12212 21

15. 12221 21

16. 12222 21

17. 21111 20

18. 21112 19

19. 21121 18

20. 21122 15

21. 21211 12

22. 21212 9
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23. 21221 5

24. 21222 3

25. 22111 4

26. 22112 0

27. 22121 0

28. 22122 0

29. 22211 0

30. 22212 0

31. 22221 0

32. 22222 0_____+

271

VAR0001

The above table shows how 5 questions can be used to produce 32 different

answer patterns. The above graph figure shows a histogram of the answer patterns

with the type of pattern on the x-axis and “how often” n the y-axis. A Gaussian like

distribution frequency is observed. A score around 15 is observed most frequently,

and can be interpreted as the mean score of the study. Low scores indicate little

QOL. High scores indicate high QOL. Underneath the areas under the curve

(AUCs) of the histogram is also given. The larger the AUCs, which run from

0.004 to 1.000 (0.4–100 %), the better the QOL.
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Response pattern AUC (area under the curve)

4 1/271 ¼0.004 (¼4 %)

5 3 ¼0.011

6 6 ¼0.022

7 11 ¼0.041

8 19 ¼0.070

9 31 ¼0.114

10 46 ¼0.170

11 64 ¼0.236

12 83 ¼0.306

13 103 ¼0.380

14 124 ¼0.458

15 145 ¼0.535

16 166 ¼0.613

17 186 ¼0.686

18 205 ¼0.756

19 223 ¼0.823

20 238 ¼0.878

21 250 ¼0.923

22 259 ¼0.956

23 264 ¼0.974

24 267 ¼0.985

25 271 ¼1.000 (¼100 %)

Item response models are more sensitive than classical linear methods for

making predictions from psychological/QOL questionnaires, and diagnostic tests.

The above example shows that instead of a 6 point score running from 0 to 5 in the

classical score, the item response model enabled to provide 32 scores, running from

a QOL of 0.4 % to one of 100 %. A condition for item response modeling to be

successfully applied is, of course, that the data should somewhat fit the Gaussian

distribution.

5 Conclusion

Item response models are more sensitive than classical linear methods for making

predictions from psychological/QOL questionnaires, and diagnostic tests.

Item response modeling is not in SPSS, but the LTA-2 software program of

Uebersax is a free software program for the purpose. It works with the areas under

the curve of statistically modeled best fit Gaussian curves of the data rather than a

histogram of the data, but, otherwise, it is similar to the pocket calculator method.
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6 Note

More background, theoretical and mathematical information of item response

modeling is given in Statistics applied to clinical studies 5th edition, Chap. 39,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 32

Meta-analysis of Continuous Data

1 General Purpose

Meta-analyses can be defined as systematic reviews with pooled data. Because the

separate studies in a meta-analysis have different sample sizes for the overall results

a weighted average has to be calculated. Heterogeneity in a meta-analysis means

that the differences in the results between the studies are larger than could happen

by chance. The calculation of the overall result and the test for heterogeneity is

demonstrated underneath.

2 Schematic Overview of Type of Data File

Outcome Predictor Patient characteristic

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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3 Primary Scientific Question

How do we assess pooled results of multiple studies, how do we assess heteroge-

neity between the studies.

4 Data Example, Pooling

A meta-analysis of the difference in systolic blood pressures (mm Hg) between

patients treated with potassium and those with placebo. Diff¼ difference in systolic

blood pressure between patients on potassium and placebo, var¼ variance¼ (stan-

dard error)2

N diff

(systolic)

standard

error

1/var diff/var diff2/var

1. McGregor 1982
23 �7.0 3.1 0.104 �0.728 5.096

2. Siani 1987 37 �14.0 4.0 0.063 �0.875 12.348

3. Svetkey 1987 101 �6.4 1.9 0.272 �1.773 11.346

4. Krishna 1989 10 �5.5 3.8 0.069 �0.380 2.087

5. Obel 1989 48 �41.0 2.6 0.148 �6.065 248.788

6. Patki 1990 37 �12.1 2.6 0.148 �1.791 21.669

7. Fotherby 1992 18 �10.0 3.8 0.069 �0.693 6.900

8. Brancati 1996 87 �6.9 1.2 0.694 �4.792 33.041

9. Gu 2001 150 �5.0 1.4 0.510 �2.551 12.750

10. Sarkkinen 2011 45 �11.3 4.8 0.043 �0.490 5.091

+

2.125 �20.138 359.516

Pooled difference ¼ �20.138/2.125 ¼ �9.48 mm Hg

Chi-square value for pooled data ¼ (�20.138)2 / 2.125 ¼ 206.91

According to the chi-square table the p-value for 1 degree of freedom¼<0.001

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values.

Chi-squared distribution

Two-tailed P-value

df 0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

(continued)
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Two-tailed P-value

df 0.10 0.05 0.01 0.001

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

5 Data Example, Assessing Heterogeneity

The above example will now be assessed for heterogeneity.
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Heterogeneity of this meta-analysis is tested by the fixed effect model.

Heterogeneity chi-square value ¼ 359.516-206.91

¼ 152.6,

With 9 degrees of freedom the p –value

¼ <0.001.

Although the meta-analysis shows a significantly lower systolic blood pressure

in patients with potassium treatment than those with placebo, this result has a

limited meaning, since the studies are significantly heterogeneous. For heterogene-

ity testing it is tested whether there is a greater inequalities between the results of

the separate trials than is compatible with the play of chance. Additional tests for

heterogeneity testing are available (Cleophas and Zwinderman, Meta-analysis. In:

Statistics Applied to Clinical Studies, Springer New York, 2012, 5th edition, pp

365–388). However, when there is heterogeneity, a careful investigation of its

potential cause is often more important than a lot of additional statistical tests.

6 Conclusion

Meta-analyses are systematic reviews of multiple published studies with pooled

data. Because the separate studies have different sample sizes a weighted average

has to be calculated. Heterogeneity in a meta-analysis means that the differences in

the results between the studies are larger than could happen by chance. With a

significant heterogeneity the meaning of the pooled data is generally little.

Additional tests for heterogeneity testing are available in Statistics Applied to

Clinical Studies 5th edition, Chaps 32–34, Springer New York, 2012). However,

with significant heterogeneity in a meta-analysis, a careful investigation of its

potential cause is more important than lots of statistical tests.

7 Note

More background, theoretical and mathematical information of meta-analysis given

in Statistics applied to clinical studies 5th edition, Chaps. 32–34, Springer Heidel-

berg Germany, 2012, from the same authors.
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Chapter 33

Goodness of Fit Tests for Identifying
Nonnormal Data

1 General Purpose

Goodness of fit for assessing normal distribution of a data file is an important

requirement for normal and t-distributed tests to be sensitive for statistical testing

the data. Data files that lack goodness of fit can be analyzed using distribution free

methods, like Monte Carlo modeling and neural network modeling (SPSS for

Starters, Part 2 from the same authors, Chaps. 18 and 19, Springer New York,

2012, from the same authors).

The chi-square and the Kolmogorov-Smirnov goodness of fit tests are pretty

much similar, but one uses the differences between all observed and expected

observations, while the other uses the single largest difference between observed

and expected observations, and, so, results may not be identical. One test may,

however, very well be used as a complementary test or contrast test to the other.

2 Schematic Overview of Type of Data File

Outcome
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Outcome

.

3 Primary Scientific Question

Can goodness of fit tests adequately identify nonnormal/non-t-distributed data.

4 Chi-Square Goodness of Fit Test, Data Example

20%

20%

20%

20%

20%

-0.84 -0.25 0.25  0.84 Z

With the help of the t-table the areas under the curve (AUCs) of 5 intervals of the

null-hypothesis of a normal frequency distribution can be computed. The cut-off

results (z-values) for the 5 intervals with an AUC of 20 % are �0.84, �0.25, 0.25,

and 0.84 (AUC¼ area under the curve). These cut-off results can, subsequently, be

used for chi-square goodness of fit testing. A data example is given.

In random not-too-small populations body-weights follow a normal distribution.

Is this also true for the body-weights of 50 patients treated with a weight reducing

compound?

Individual weight (kgs)

85 57 60 81 89 63 52 65 77 64

89 86 90 60 57 61 95 78 66 92

50 56 95 60 82 55 61 81 61 53

63 75 50 98 63 77 50 62 79 69

76 66 97 67 54 93 70 80 67 73
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As the area under the curve (AUC) of a normal distribution curve is divided into

5 equiprobable intervals of 20 % each, we will expect approximately 10 patients per

interval. From the data a mean and standard error (SE) of 71 and 15 kg are

calculated. In order to compute the numbers of patients of our example in each

interval, we will use the underneath equation.

z ¼ standardized result ¼ unstandardized result�mean result
SE

For example for the cut-off value of �0.84 the unstandardized result of 58.40 kg

can be computed.

�0.84¼ (unstandardized result� 71)/15

unstandardized results¼ (15��8.84) + 71¼�58.40 kg.

All of the unstandardized results (kgs) are given underneath:

�1.... 58.40. . . 67.25. . . 74.25. . . 83.60. . . 1
As they are equiprobable,

As they are equiprobable,
we expect per interval: 10 pts      │ 10 pts    │ 10 pts      │ 10 pts   │ 10pts 
We do, however, observe
the following numbers: 10 pts      │  16 pts    │ 3 pts      │ 10 pts  │ 11pts

The chi-square value is calculated according to

X observed number� expected numberð Þ2
expected number

¼ 8:6

This chi-square table is given underneath. It has an upper row with areas under the

curve, a left-end column with degrees of freedom, and a whole lot of chi-square

values.
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The chi-square value of 8.6 means that for the given degrees of freedom of

5–1¼ 4 (there are 5 different intervals) the null-hypothesis of no-difference-

between-observed-and-expected can not be rejected. However, our p-value

is<0.10, and, so, there is a trend of a difference. The data may not be entirely

normal, as expected. This may be due to lack of randomness.
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5 Kolmogorov-Smirnov Goodness of Fit Test,
Data Example

12.2 %
21.4%

54.7%

21.4%
12.2%

-2.25 -0.75 0.75 2.25 Z

With the help of the t-table the areas under the curve (AUCs) of again 5 intervals of

the null-hypothesis of a normal frequency distribution can be computed. The cut-off

results (z-values) for the 5 intervals are calculated to be �2.25, �0.75, 0.75, and

2.25. The corresponding AUCs are given in the above graph (AUC¼ area under the

curve).

In random not-too-small populations plasma cholesterol levels follow a normal

distribution. Is this also true for the plasma cholesterol levels of the underneath

patients treated with a cholesterol reducing compound? A data sample of

750 patients is given.

Cholesterol (mmol/l) <4.01 4.01–5.87 5.87–7.73 7.73–9.59 >9.59

Numbers of pts 13 158 437 122 20

The cut-off results for the 5 intervals must be standardized to find the expected

normal distribution for these data according to

z ¼ standardized cut-off result ¼ unstandardized result�mean result
SE

With a calculated mean (SE) of 6.80 (1.24) we must compute the unstandardized

results corresponding with the z-values �2.25, �0.75, 0.75 and 2.25. For example,

with z¼�2.25, the unstandardized z-value is calculated.

�2.25 ¼ (unstandardized result� 6.80)/1.24

unstandardized result

¼ (1.24��2.25) + 6.80¼ 4.01 mmol/l.

Similarly all unstandardized z-values are computed.

With 750 cholesterol-values in total the expected frequencies of cholesterol-

values in the subsequent intervals are

12.2� 750¼ 9.2

21.4� 750¼ 160.8
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54.7� 750¼ 410.1

21.4� 750¼ 160.8

12.2� 750¼ 9.2

The observed and expected frequencies are, then, listed cumulatively

(cumul¼ cumulative):

Frequency cumul relative expected cumul relative cumul

observed (cumul/

750)

(cumul/

750)

observed-

expected

13 13 0.0173 9.2 9.1 0.0122 0.0051

158 171 0.2280 160.98 170.0 0.2266 0.0014

437 608 0.8107 410.1 580.1 0.7734 0.0373

122 730 0.9733 160.8 740.9 0.9878 0.0145

20 750 1.000 9.2 750 1.000 0.0000

According to the Kolmogorov-Smirnov table below, the largest cumulative

difference between observed and expected should be smaller than 1.36 /

√n¼ 1.36 /
ffiffiffiffiffiffiffiffi
750

p ¼ 0.0497, while we find 0.0373. This means that these data are

well normally distributed.

Level of statistical significance for maximum difference between cumulative

observed and expected frequency (n¼ sample size)

Areas under the curve

n 0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.828

4 0.494 0.525 0.564 0.624 0.733

5 0.446 0.474 0.510 0.565 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.463

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.392

17 0.250 0.266 0.286 0.318 0.381

18 0.244 0.259 0.278 0.309 0.371

19 0.237 0.252 0.272 0.301 0.363

20 0.231 0.246 0.264 0.294 0.356
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25 0.21 0.22 0.24 0.27 0.32

30 0.19 0.20 0.22 0.24 0.29

35 0.18 0.19 0.21 0.23 0.27

Over 35 1.07 1.14 1.22 1.36 1.63

√n √n √n √n √n

6 Conclusion

Goodness of fit for assessing normal distribution of a data file is an important

requirement for normal and t-distributed tests to be sensitive for statistically testing

the data. The chi-square and the Kolmogorov-Smirnov goodness of fit tests are

adequate for the purpose, and are pretty much similar, but results need not be

identical.

7 Note

More background, theoretical and mathematical information of goodness if fit

testing is given in Statistics applied to clinical studies 5th edition, Chap. 42,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 34

Non-parametric Tests for Three or More
Samples (Friedman and Kruskal-Wallis)

1 General Purpose

The Friedman test is used for comparing three or more repeated measures that are not

normally distributed, and is a non-parametric test, and extension of the Wilcoxon

signed rank test (Chap. 6). The Kruskal-Wallis test compares multiple groups that are

unpaired and not normally distributed, and is also a non-parametric test, and exten-

sion of the Mann–Whitney test (Chap. 7). This chapter assesses both methodologies,

that are adequate for non-normal data, but can also be used with normal data.

2 Schematic Overview of Type of Data File

Outcome from treat 1 From treat 2 From treat 3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

treat¼ treatment modality
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3 Primary Scientific Question

How do we use the Friedman and Kruskal – Wallis tests for, respectively, testing

repeated measures in one group, and single measures in multiple groups, if the

assumption of normality is doubtful.

4 Friedman Test for Paired Observations

The underneath data are paired comparisons to test effect of 2 dosages of a sleeping

drug versus placebo on hours of sleep

Hours of sleep

Patient dose 1 dose 2 placebo dose 1 dose 2 placebo

(hours) (ranks)

1 6.1 6.8 5.2 2 3 1

2 7.0 7.0 7.9 1.5 1.5 3

3. 8.2 9.0 3.9 2 3 1

4. 7.6 7.8 4.7 2 3 1

5. 6.5 6.6 5.3 2 3 1

6. 8.4 8.0 5.4 3 2 1

7. 6.9 7.3 4.2 2 3 1

8. 6.7 7.0 6.1 2 3 1

9. 7.4 7.5 3.8 2 3 1

10. 5.8 5.8 6.3 1.5 1.5 3

The data are ranked for each patient in ascending order of hours of sleep. If the

hours are equal, then an average ranknumber is given. Then, for each treatment the

squared ranksum is calculated: for dose 1 it equals (2 + 1.5 + 2 + 2 + 2 + 3 + 2 + 2 + 2

+ 1.5)2¼ 400, for dose 2 it is 676, for placebo it is 196. The following equation is

used:

chi-square ¼ 12

nk kþ 1ð Þ ranksumdose1
2 þ ranksumdose2

2 þ ranksumplacebo
2

� �

� 3n kþ 1ð Þ;

where n ¼ the number of patients and k ¼ the number of treatments.

The chi-square value as calculated is 7.2. The degrees of freedom is 3� 1 ¼ 2.

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values. It

shows that, for 2 degrees of freedom, a chi-square> 5.991 is required to reject the

null-hypothesis of no effect at p< 0.05.
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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Post-hoc subgroups analyses (using Wilcoxon’s tests) are required to find out

exactly where the difference is situated, between group 1 and 2, between group

1 and 3, or between group 2 and 3 or between two or more groups. The subject of

post-hoc testing will be further discussed in the Chaps. 18, 19, and 20.

5 Kruskal-Wallis Test for Unpaired Observations

The underneath data show three-samples of patients treated with placebo or 2 dif-

ferent NSAIDs (non steroidal anti-inflammatory drugs). The outcome variable is

the fall in plasma globulin concentration (g/l). Group 1 patients are printed in

italics, group 2 in normal standard letters, and group 3 in fat prints.

Globulin concentration (g/l) ranknumber

�17 1
�16 2
�5 3
�3 4
�2 5
16 6
18 7
26 8

27 9

28 10.5
28 10.5

29 12

30 14

30 14
30 14
31 16

32 17

33 18

34 19

35 20

36 21

38 22.5

38 22.5

39 24.5

39 24.5

40 26

41 27

42 28

45 29.5

45 29.5
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Three groups of patients with rheumatoid arthritis are treated with a placebo or

one of two different NSAIDS. The fall in plasma globulin (g/l) is used to estimate

the effect of treatments. First, we will give a ranknumber to every patient dependent

on his/her magnitude of fall. If two or three patients have the same fall, they are

given an average ranknumber. Then, we calculate the sum of the ranks for the three

groups. For group 1 this amounts to 1 + 2 + 3 + 4 + 5 + 6 + 7 + 10.5 + 14 + 14¼ 66.5,

for group 2 to 175.5, group 3 to 488.5. Then we use the equation:

chi-square ¼ 12

30 30� 1ð Þ

�
ranksumgroup1

2

10
þ ranksumgroup2

2

10

þ ranksumgroup3
2
�

10
� 3 30� 1ð Þ;

where the number 30 equals all values, 10 the patient number per group.

The chi-square-value equals 7744.3. This value is very large, indicating that the

null-hypothesis of no difference in the data can be rejected. In this example the

calculated chi-square value is much larger than the rejection chi-square for (3–1)

degrees of freedom and, therefore, we conclude that there is a significant difference

between the three treatments at p< 0.0001 (see the above chi-square table).

Post-hoc subgroup analyses (using Man-Whitney tests) are required to find out

exactly where the difference is situated, between group 1 and 2, between group

1 and 3, or between group 2 and 3 or between two or more groups. The subject of

post-hoc testing have been discussed in the Chaps. 18, 19, and 20.

6 Conclusion

For the analysis of efficacy data we test null-hypotheses. The t-test (Chaps. 6 and 7)

is appropriate for two parallel-groups or two paired samples. Analysis of variance

(ANOVA) (Chaps. 19 and 20) is appropriate for analyzing more than two groups /

treatments. For data that do not follow a normal frequency distribution,

non-parametric tests are available: for paired data the Wilcoxon signed rank

(Chap. 6) or Friedman tests (current chapter), for unpaired data the Mann–Whitney

test (Chap. 7) or Kruskal-Wallis tests (this chapter) are adequate.

7 Note

More background, theoretical and mathematical information of Friedman and

Kruskal-Wallis tests are given in Statistics applied to clinical studies 5th edition,

Chap. 2, Springer Heidelberg Germany, 2012, from the same authors.

7 Note 197

http://dx.doi.org/10.1007/978-3-319-27104-0_18
http://dx.doi.org/10.1007/978-3-319-27104-0_19
http://dx.doi.org/10.1007/978-3-319-27104-0_20
http://dx.doi.org/10.1007/978-3-319-27104-0_6
http://dx.doi.org/10.1007/978-3-319-27104-0_7
http://dx.doi.org/10.1007/978-3-319-27104-0_19
http://dx.doi.org/10.1007/978-3-319-27104-0_20
http://dx.doi.org/10.1007/978-3-319-27104-0_6
http://dx.doi.org/10.1007/978-3-319-27104-0_7


Part II

Binary Outcome Data



Chapter 35

Data Spread: Standard Deviations, One
Sample Z-Test, One Sample Binomial Test

1 General Purpose

With continuous outcome data (Chap. 1), the standard deviation is generally used to

estimate the spread in a data sample. The standard deviation is, then, used for multiple

purposes like null-hypothesis testing and the computation of confidence intervals.

With binary outcome data things are different. Instead of a mean value the number of

responders is calculated as a “kind of” mean value. In a data sample with binary

outcome (yes-no outcome), the spread is estimated with the equation, √(p(1� p),

where p¼ the proportion of responders, otherwise called the (yes-data fraction versus

all data). This chapter assesses how these estimators can be used in practice for

testing null-hypotheses and confidence intervals of binary outcome data.

2 Schematic Overview of Type of Data File

Outcome binary

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

How do we compute the standard deviation of a binary data set.

4 The Computation of the Proportion of Responders
and Its Standard Deviation (SD)

Why is SD of the proportion responders¼ √(p(1� p)? The proportion of responders

can be looked at as the “mean” of a yes/no data set.

Proportion¼mean of yes/no data.

For example, mean of the 6 values [1, 0, 1, 0, 0, 1] is 3/6 yes¼ 50 %¼ proportion p.

SD of continuous data ¼ √ [Σ (a� ā)2/n, where n¼ sample size.

SD of proportional data ¼ √ [p(1� p)], where p¼ proportion, e.g., 5/15

What does SD of proportion¼ √[p(1� p)] mean in practice?

We assume for example: on average 10/15 in a random population say yes to the

question, are you sometimes sleepy through the day. Then, 10/15 saying yes will be

encountered most frequently.

The chance to find answer<10/15 or >10/15 gets gradually smaller.

5 10 15

The above graph has on the x-axis the numbers of patients saying yes, and on the

y-axis the chance of finding this number. The chance of 8/15 or less is only 15 %, the

chance of 7/15 or less only 2.5 %, the chance of 5/15 or less is only 1 %. With many

samples the above graph follows a normal frequency distribution, where the equation [√
[p(1� p)] is a very good approximation of its standard deviation. This is how nature

works, and it can even be proven to be true with the one sample binomial formula

requiring a hypergeometric distribution, but this is beyond the scope of the currentwork.

5 One Sample Z-Test

Out of a sample of 100 patients only 10 patients were yes-responders. And, so, the

proportion of yes responders is 10 %¼ 0.1. For testing, whether this is significantly

different from 0 responders, a standard error of the response is required.
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The standard error (SE) can be calculated from the standard deviation according to:

SE ¼ SD/n, where n ¼ sample size.

SE ¼ √[p(1� p)]/√100
¼ √(0.1� 0.9)/10

¼ 0.03

the z-value is the test statistic and equals [proportion/(its SE)]¼ 0.1/0.03¼ 3.33

The bottom row of the underneath t-table gives p-values from the z-values. With a

z-value of 3.33, the p-value, two-tail as usual, should be<0.001. This would mean that

the 10 % yes responders is significantly better than a zero response would have been.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p-values), one-tail mean-

ing that only one end of the curve, two-tail meaning that both ends are assessed

simultaneously. The t-table is, furthermore, full of t-values, that, with1 degrees of

freedom, are equal to z-values. The z-values and t-values are to be understood as

mean results of studies, but not expressed in mmol/l, kilograms, or proportions of

responders, but in so-called SEM-units (Standard error of the mean units), that are

obtained by dividing your mean result by its own standard error. For continuous

outcome data, with many degrees of freedom (large samples) the curve will be a

little bit narrower, and more in agreement with nature. For binary outcome data,

nature has determined that the curves will always be as narrow as can be, according

to the row at the bottom.

6 Computing the 95 % Confidence Intervals of a Data Set

The example is taken from the Chap. 13. What is the standard error (SE) of a study

with events in 10 % of the patients, and a sample size of 100 (n). Ten percent events

means a proportion of events of 0.1. The standard deviation (SD) of this proportion

is defined by the equation

√ [proportion� (1� proportion)] ¼ √ (0.1� 0.9)¼ √ 0.09¼ 0.3,

the standard error ¼ standard deviation / √n,
¼ 0.3 / 10¼ 0.03,

the 95 % confidence interval is given by

proportion given � 1.960� 0.03 ¼ 0.1� 1.960� 0.03,

¼ 0.1� 0.06,

¼ between 0.04 and 0.16.

The 95 % confidence intervals can be used for multiple purposes, for example

for noninferiority testing (Chap. 15), and equivalence testing (Chap. 14).

7 Conclusion

With binary outcome data, instead of a mean value the number of responders is

calculated as a “kind of” mean value. The spread is estimated with the equation, √(p
(1� p), where p¼ the proportion of responders, otherwise called the (yes-data

fraction from all data), in a data sample. This chapter assesses how these estimators

can be used in practice for testing null-hypotheses and confidence intervals of

binary data.
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8 Note

More background, theoretical and mathematical information of standard deviations

of binary data is given in Statistics applied to clinical studies 5th edition, Chap. 3,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 36

Z-Test for Cross-Tabs

1 General Purpose

If, as shown in the previous chapter, multiple similar a selective samples of binary

data have a normal frequency distribution, then t-tests, like the ones for continuous

data (Chap. 7), should be OK for their analysis. Consequently, if we compare two

binary samples, for example the outcomes of two treatment modalities, then a two

sample t-test should be OK for statistical testing. The two sample t-test for binary

outcomes is called the two sample z-test. This chapter shows how it works.

2 Schematic Overview of Type of Data File

Outcome (binary) predictor (binary)

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Is the two sample z-test adequate for comparing the differences in numbers of

responders to two different treatment modalities.

4 Data Example, Two Group Z-Test

Two groups of patients are assessed for being sleepy through the day. We wish to

estimate whether group 1 is more sleepy than group 2. The underneath cross-tab

gives the data.

Sleepiness no sleepiness

Treatment 1 (group 1) 5 (a) 10 (b)

Treatment 2 (group 2) 9 (c) 6 (d)

z ¼ difference between proportions of sleepers per group dð Þ
pooled standard error difference

z ¼ d

pooled SE
¼ 9=15� 5=15ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
1 þ SE2

2

� �

q

SE1 or SEM1ð Þ ¼ ffip p1 1� p1ð Þ
n1

where p1 ¼ 5=15 etc::::::::;

z¼ 1.45, not statistically significant from zero, because for a two- tail p – value

<0.05 a z-value of at least 1.96 is required. This means that no significant differ-

ence between the two groups is observed. The p-value of the z-test can be obtained

by using the bottom row of the underneath t-table.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values. The z-values and t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, or

proportions of responders, but in so-called SEM-units (Standard error of the mean

units), that are obtained by dividing your mean result by its own standard error. For

continuous outcome data, with many degrees of freedom (large samples) the curve

will be a little bit narrower, and more in agreement with nature. For binary outcome
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data, nature has determined that the curves will always be as narrow as can be,

according to the row at the bottom.

5 Single Group Z-Test

A single group z-test is also possible (see also Chap. 35). For example, in 10 patients

we have 4 responders. We question whether 4 responders is significantly more than

0 responders.

z ¼ proportion/(its SE)

SE ¼ √ [(4/10� (1� 4/10))/n]

¼ √ (0.24/10)

z ¼ 0.4/√ (0.24/10)

z ¼ 0.4/0.1549

z ¼ 2.582

According to the bottom row of the t-table the p-value is <0.01. A proportion of

0.4 is, thus, significantly larger than a proportion of 0.0.

6 Conclusion

As multiple similar a selective samples of binary data have a normal frequency

distribution, the t-tests like the ones for continuous data (Chap. 7) are OK for their

analysis. Consequently, for comparing two binary samples, for example the out-

comes of two treatment modalities, two sample t-test is OK for statistical testing.

The two sample t-test for binary outcomes is called the two sample z-test. This

chapter shows how it works.

7 Note

More background, theoretical and mathematical information is given in the Statis-

tics applied to clinical studies 5th edition, Springer Heidelberg Germany, Chap. 3,

2012, from the same authors.
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Chapter 37

Phi Tests for Nominal Data

1 General Purpose

Nominal data are the simplest type of data. Unlike ordinal data (Chap. 9) and

continuous data (Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, and 34), they are assumed not to

have a stepping function. Examples are genders, age classes, family names. Of

nominal data the simplest versions are the bifurcated data (binary data, dichoto-

mous data, yes no data). Chi-square tests can be used for analysis, but they do not

provide levels of association, which may be clinically rather relevant. As an

example, males and females may be assessed for successful exams.

success yes no

males 50(a) 25(b)

females 50(c) 25(d)

The value of [(a� d)� (b� c)] can be used to estimate the level of association.

In the above example the level of association is 0. The gender does not give the

faintest prediction of the chance of a successful exam.

success yes no

males 50(a) 0(b)

females 0(c) 50(d)

In the above example the level of association equals 1 (100 %). The outcome

predicts the chance of a successful exam with 100 % certainty. Phi’s, otherwise

called Cramer’s V’s, are used to calculate the precise level of association, being

between �1 and 1, and can be easily tested for statistical significance with the help

of a chi-square test.

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, Clinical Data Analysis on a Pocket Calculator,
DOI 10.1007/978-3-319-27104-0_37

211

http://dx.doi.org/10.1007/978-3-319-27104-0_9
http://dx.doi.org/10.1007/978-3-319-27104-0_1
http://dx.doi.org/10.1007/978-3-319-27104-0_2
http://dx.doi.org/10.1007/978-3-319-27104-0_3
http://dx.doi.org/10.1007/978-3-319-27104-0_4
http://dx.doi.org/10.1007/978-3-319-27104-0_5
http://dx.doi.org/10.1007/978-3-319-27104-0_6
http://dx.doi.org/10.1007/978-3-319-27104-0_7
http://dx.doi.org/10.1007/978-3-319-27104-0_8
http://dx.doi.org/10.1007/978-3-319-27104-0_9
http://dx.doi.org/10.1007/978-3-319-27104-0_10
http://dx.doi.org/10.1007/978-3-319-27104-0_11
http://dx.doi.org/10.1007/978-3-319-27104-0_12
http://dx.doi.org/10.1007/978-3-319-27104-0_13
http://dx.doi.org/10.1007/978-3-319-27104-0_14
http://dx.doi.org/10.1007/978-3-319-27104-0_15
http://dx.doi.org/10.1007/978-3-319-27104-0_16
http://dx.doi.org/10.1007/978-3-319-27104-0_17
http://dx.doi.org/10.1007/978-3-319-27104-0_18
http://dx.doi.org/10.1007/978-3-319-27104-0_19
http://dx.doi.org/10.1007/978-3-319-27104-0_20
http://dx.doi.org/10.1007/978-3-319-27104-0_21
http://dx.doi.org/10.1007/978-3-319-27104-0_22
http://dx.doi.org/10.1007/978-3-319-27104-0_23
http://dx.doi.org/10.1007/978-3-319-27104-0_24
http://dx.doi.org/10.1007/978-3-319-27104-0_25
http://dx.doi.org/10.1007/978-3-319-27104-0_26
http://dx.doi.org/10.1007/978-3-319-27104-0_27
http://dx.doi.org/10.1007/978-3-319-27104-0_28
http://dx.doi.org/10.1007/978-3-319-27104-0_29
http://dx.doi.org/10.1007/978-3-319-27104-0_30
http://dx.doi.org/10.1007/978-3-319-27104-0_31
http://dx.doi.org/10.1007/978-3-319-27104-0_32
http://dx.doi.org/10.1007/978-3-319-27104-0_33
http://dx.doi.org/10.1007/978-3-319-27104-0_34


2 Schematic Overview of Type of Data File

Predictor (binary) outcome (binary)

. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

In a data sample of binary variables, what is the level of association between a

binary predictor and another binary outcome variable.

4 Data Example

In a hospital many patients tend to fall out of bed. We wish to find out whether one

department performs better than the other.

fall out of bed yes no

department 1 15(a) 20(b)

department 2 15(c) 5(d)

phi ¼ (ad�bc)/√ (a + b)(c + d)(a + c)(b + d) ¼
¼ (300–75)/√ (35� 20� 30� 25) ¼
¼ 0.31

We can predict the chance of falling out of bed from the department by

0.31¼ 31 %. Knowing the department, you will be 31 % certain about the chance

of falling out of bed. Is this level of association statistically significant? this means

it 31 % significantly more than 0 %. This of course depends on the magnitude of the

samples.
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With very small samples it is hard to obtain statistical significance. The under-

neath chi-square equation is adequate for statistical testing.

chi-square ¼ phi2 � n, where n¼ (a + b + c + d)

¼ 0.312� 55

¼ 5.29

The underneath chi-square table shows areas under the curve in the top row, and

(df) degrees of freedom in the left-end column, and furthermore plenty of

chi-square values. The table shows, that a chi-square value of 5.29 with 1 df (degree

of freedom), ((2–1)� (2–1)¼ 1) is between 3.841 and 6.635. This means that the

p-value is between 0.05 and 0.01, and, thus,< 0.05. The association is significantly

better than an association of zero, no association at all, at p< 0.05.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

(continued)
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

5 Conclusion

Nominal data are the simplest type of data. Unlike ordinal data (Chap. 9) and

continuous data (Chaps. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, and 34), they have no stepping

function. Of nominal data the simplest versions are the bifurcated data (binary

data). Chi-square tests can be used for analysis (Chap. 38), but they do not provide

levels of association, which may be clinically rather relevant. Phi’s, otherwise

called Cramer’s V’s, are used to calculate the precise level of association, and can

be additionally tested for statistical significance with the help of a chi-square test.

6 Note

More background, theoretical and mathematical information of binary data is given

in Statistics applied to clinical studies 5th edition, Chap. 3, Springer Heidelberg

Germany, 2012, from the same authors.
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Chapter 38

Chi-square Tests

1 General Purpose

Z-tests (Chap. 36) are OK for comparing the effects of two treatment modalities on

numbers of responders to treatment, however, pretty laborious. Phi tests (Chap. 37)

provide levels of association (or interaction) between a treatment modality and the

number of responders, but no p-values. Often, we wish to know whether our result

or the difference between two results are significantly different from zero.

Chi-square tests make use of chi-square distributions (squared normal distribu-

tions), and produce p-values for the purpose, and these p-values are pretty much

similar to those of the z-tests, but they can be obtained more easily.

2 Schematic Overview of Type of Data File

Predictor (binary) Outcome (binary)

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

In a 2� 2 interaction cross-tab of binary data, like a study of two treatment

modalities and the chance of responding or not in the outcome, is there a significant

difference between the two treatment modalities and the outcome.

4 Data Example I

The underneath table shows two groups assessed for suffering from sleepiness

through the day after being treated with two different anti-sleepiness medications.

We wish to know whether there is a significant difference between the proportions

of subjects being sleepy.

Sleepiness no sleepiness______________________________

Group 1 5(a) 10(b) 15(a + b)

Group 2 9(c) 6(d) 15(c + d)______________________________

14(a + c) 16(b + d) 30(a + b + c + d)

The chi-square pocket calculator method is used for testing these data.

χ2 ¼ ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ ¼

30� 90ð Þ2 30ð Þ
15� 15� 16� 14

¼ 3600� 30

15� 15� 16� 14

¼ 108:000

50:400
¼ 2:143

The chi-square value equals 2.143. The underneath chi-square table can tell you,

whether or not the difference between the groups is statistically significant.
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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In summary, the chi-square table has an upper row with areas under the curve

(p-values), a left-end column with degrees of freedom, and a whole lot of chi-square

values.

The chi-square table has columns and rows. The upper row are the p-values. The

left-end column are the degrees of freedom (df), which are, here, largely in

agreement with the numbers of cells in a cross-tab. The simplest cross-tab has

4 cells, which means 2� 2¼ 4 cells. The table has been constructed such, that we

have here (2–1)� (2–1)¼ 1 degree of freedom. Look at the row with 1 degree of

freedom: a chi-square value of 2.143 is left from 2.706. Now look from here right

up at the upper row. The corresponding p-value is larger than 0.1 (10 %). There is,

thus, no significant difference in sleepiness between the two groups. The small

difference observed is due to the play of chance.

5 Data Example II

Two partnerships of internists have the intention to associate. However, in one of

the two a considerable number of internists has suffered from a burn-out.

burn out no burn out

partnership 1 3(a) 7(b) 10(a + b)

partnership 2 0(c) 10(d) 10(c + d)______________________________

3(a + c) 17(b + d) 20(a + b + c + d)

χ2 ¼ ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ ¼

30� 0ð Þ 2 20ð Þ
10� 10� 17� 3

¼ 900� 20

. . . . . . ::
¼ 3:529

According to the chi-square table of the previous page a p-value is found of <0.10.

This means that no significant difference is found, but a p-value between 0.05 and

0.10 is looked upon as a trend to significance. The difference may be due to some

avoidable or unavoidable cause. We should add, here, that values in a cell lower

than 5 is considered slightly inappropriate according to some, and another test like

the log likelihood ratio test (Chap. 46) is more safe.

6 Example for Practicing 1

Example 2� 2 table events no events

group 1 15(a) 20(b) 35(a + b)

group 2 15(c) 5(d) 20(c + d)

30(a + c) 25(b + d) 55(a + b + c + d)
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Pocket calculator

ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ

¼ p¼. . .

7 Example for Practicing 2

Another example 2� 2 table events no events

group 1 16(a) 26(b) 42(a + b)

group 2 5(c) 30(d) 35(c + d)

21(a + c) 56(b + d) 77(a + b + c + d)

Pocket calculator

ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ

¼ p¼. . .

8 Conclusion

Phi tests (previous chapter) provide levels of association (or interaction) between a

treatment modality and the number of responders, but no p-values. Often, we wish

to know whether our result is significantly different from a zero-result. Chi-square

tests make use of the chi-square distribution (squared normal distribution), and

produce p-values for the purpose. A p-value< 0.05 means that our result is better

than a zero-result with over 95 % certainty, or with less than 5 % chance of a type I

error (the chance of finding a difference where there is none). A pleasant thing

about the pocket-calculator-chi-square-test is, that it can be readily performed

during working hours by physicians, for the purpose of solving the scientific

questions of their daily life (Chaps. 58, and 59). This means no need for starting

a major statistical software program like SPSS, SAS, or R.

9 Note

More background, theoretical and mathematical information of chi-square tests is

given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer Heidel-

berg Germany, 2012, from the same authors.
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Chapter 39

Fisher Exact Tests Convenient for Small
Samples

1 General Purpose

Fisher-exact test is used as a test for the analysis of cross tabs, and as a contrast test

to the chi-square test (Chap. 38), and the z-test (Chap. 36), and, also, as a binary

outcome test for small samples, e.g., samples of n< 100. It, essentially, makes use

of faculties expressed as the sign “!”: e.g.,

[5!] indicating 5� 4� 3� 2� 1.

In the past, it was rather laborious with large data, but nowadays any pocket

calculator calculates largest faculties within seconds. E.g., using the Scientific

Calculator from the Chap. 1, you press 6 and then the 2ndF button, and the CE

button: In the display is 720, which is equal to

6!¼ 6� 5� 4� 3� 2� 1¼ 720.

This chapter assesses the performance of the faculty-based Fisher exact test as

compared to the traditional distribution-based methods.

2 Schematic Overview of Type of Data File

Outcome binary Predictor binary

. .

. .

. .

. .

. .

. .

(continued)
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Outcome binary Predictor binary

. .

. .

. .

3 Primary Scientific Question

Is the Fisher exact test a reliable alternative to the chi-square test and z-test.

4 Data Example

The underneath example shows two groups assessed for narcolepsia during the dag.

Sleepiness no sleepiness

____________________

Left treatment (left group) 5 (a) 10 (b)

Right treatment (right group) 9 (c) 6 (d)

Unlike the chi-square test a z-test, the Fisher test does not make use of chi-square

or normal frequency distributions to approximate the level of statistical signifi-

cance, but, instead, computes exact p-values like 0.05132 (rather than< 0.05). The

underneath computation is given.

p-value ¼ probability ¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þð Þ!
aþ bþ cþ dð Þ!a!b!c!d! ¼ 0.200

The chi-square value from the above data is in the previous chapter (Chap. 38),

and equals 2.143. A approximated p-value as obtained from the t-table is >0.10. A

more precise approximation can be obtained from the internet. E.g., the Quick P

Value from Chi-Square Score Calculator is helpful. The approximated p-value from

the internet¼ 0.143222. This is much larger than 0.05, but considerably smaller

than 0.200. Fisher-exact test may be OK, but it is, obviously, somewhat conserva-

tive as compared to the traditional chi-square test. This means that statistical

significance tends to be somewhat harder to obtain.
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5 Conclusion

Fisher-exact test is used as a test for the analysis of cross-tabs, and also as a contrast

test to the chi-square test (Chap. 38) and the z-test (Chap. 36). It is, particularly,

convenient for small samples, e.g., samples of n< 100.

The approximated p-value from the chi-square test and z-test tend to be smaller

than those of the Fisher-exact test. Consequently, statistical significance may be

somewhat harder to obtain with the Fisher-exact test.

6 Note

More background, theoretical and mathematical information of the Fisher-exact test

is given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 40

Confounding

1 General Purpose

In the Chaps. 23 and 24 confounding of continuous outcome data has been assessed.

Briefly, with confounding the treatment efficacies are better in one subgroup than

they are in the other. For binary data ( ¼ proportional data) this means that the

proportions of responders in one subgroups are better than they are in the other

subgroup. In the current chapter we will assess confounding of binary outcome data

instead of continuous outcome data.

2 Schematic Overview of Type of Data

Treatment modality outcome (binary)

(0 and 1) (1 and 2)

. .

. .

. .

. .
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3 Primary Scientific Question

Do treatment efficacies perform better in one subgroup than in the other.

4 Data Example, Demonstrating Confounding

The numbers of responders to two different treatments is assessed in a parallel-

group study of 384 patients.

responders non-responders total proportion SE (¼√[p(1�p)/n)]

males:

treat 1 36 50 86 36/

86¼ 0.42

√(0.42� 0.58/86)

¼ 0.05

treat 2 14 50 64 14/

64¼ 0.22

¼ 0.05

total 50 100 150

females:

treat 1 24 10 34 0.71 ¼0.08

treat 2 120 80 200 0.60 ¼0.03

total 144 90 234

together:

treat 1 60 60 120

treat 2 134 130 264

total 194 190 384

p¼ proportion, n¼ sample size, SE¼ standard error

For the males the treatments 1 and 2 perform significantly different, because

t ¼ difference of proportions/its pooled variance ¼
(0.42� 0.22)/(SEtreat 1

2 + SEtreat 2
2) ¼

0.20/0.07¼ 2.86.

With proportional data t-values are more often called z-values.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values. The z-values and t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, or

proportions of responders, but in so-called SEM-units (Standard error of the mean

units), that are obtained by dividing your mean result by its own standard error. For

continuous outcome data, with many degrees of freedom (large samples) the curve

will be a little bit narrower, and more in agreement with nature. For binary outcome
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data, nature has determined that the curves will always be as narrow as can be,

according to the row at the bottom.

A z-value of 2.86 is larger than 2.807, and, therefore, statistically significant

from zero with a two-tail p-value <0.05.

For the females the treatments 1 and 2 do not perform significantly differently,

because

z ¼ difference of proportions/its pooled variance ¼
(0.71� 0.60)/(SEtreat 1

2 + SEtreat 2
2) ¼

0.11/0.09¼ 1.22.

This difference is smaller than 1.960, and therefore, not statistically significantly

better than a difference of 0.

For the combined data, the treatments 1 and 2 do not perform significantly

differently from zero, because

z ¼ difference of proportions/its pooled variance ¼
(0.50� 0.51)/(SEtreat 1

2 + SEtreat 2
2) ¼

0.01/.... ¼ very small.

This difference is again not statistically significant from a difference of zero,

and, thus, the treatments do not perform significantly differently from one another.

5 Testing Confounding with a Z-Test

A weighted mean proportion is calculated, and tested (variance¼ SE2). The under-

neath differences indicate, respectively, the differences in the males and the

females.
difference=variance þ difference=variance

1= variance þ 1=variance
¼ 0:20= 0:052 þ 0:11= 0:092

1=0:052 þ 1=0:092

¼ 80þ 13:6

4000þ 123:5
¼ 93:6

523:5
¼ 0:18

This weighted mean proportion of 0.18 is much closer to 0.20 than to 0.11, and this

is due to the much larger sample size of females than that of the males. We will now

test the weighted mean proportion against its SE (standard error).

SE ¼ √ [1/(1/SE1
2 + 1/SE2

2)]¼ 0.044

z ¼ weighted mean/its SE¼ 0.18/0.044¼ 4.9

This z-value is larger than 3.291, and, therefore, produces a two-tail p-value of

<0.01, and, so, after adjustment for confounding between males and females, the

treatments 1 and 2 perform very significantly different from one another.
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6 Testing Confounding with a Mantel-Haenszl Test

The Mantel-Haenszl chi-square test is equivalent to the z-test.

males

observed expected variance ( n¼ 150)

36 (86� 50)/150¼ 28.7 86� 64� 50� 100/n2(n� 1)¼ 8.21

females

observed expected variance ( n¼ 234)

24 (34� 144)/234¼ 20.9 34� 200� 144� 90/n2(n� 1)¼ 6.91.

Chi-square¼ (28.7� 20.9)2/(var 1 + var 2)¼ 7.82/15.12¼ 4.02

With 1 degree of freedom the p-value should be< 0.01 (var¼ variance).

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values.

The chi-square value of 4.02 with one degree of freedom is larger than 3.841,

and, thus the two-tail p-value is <0.05.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

(continued)
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7 Conclusion

Both z-test and Mantel-Haenszl chi-square test results show that after adjustment

for confounding the non-significant difference between the effects of the treatments

1 and 2 turn into significant effects with p-values of <0.01 and <0.05.

8 Note

More background, theoretical and mathematical information of confounding

assessments can be found in Statistics applied top clinical studies 5th edition,

Chap. 28, Springer Heidelberg Germany, from the same authors.

df

Two-tailed P-value

0.10 0.05 0.01 0.001

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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Chapter 41

Interaction

1 General Purpose

In the Chap. 25 interaction of continuous outcome data has been assessed. The

efficacy of one treatment is better in one of the subgroups, and the efficacy of the

other treatment is better in the other subgroup. With interaction an overall data

analysis is pretty meaningless, and separate analyses of the subgroups must be

presented. Of course, with multiple treatments and subgroups interaction is possible

as well, but the analysis is much more complex. In the current chapter we will

demonstrate how to assess interaction of binary outcome data instead of continuous

outcome data.

2 Schematic Overview of Type of Data

Treatment modality outcome (binary)

(0 and 1) (1 and 2)

. .

. .

. .

. .

. .
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. .
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3 Primary Scientific Question

Does one treatment perform better in one subgroup and does the other treatment so

in the other subgroup.

4 Interaction, Example 1

We will use the example of the Chap. 40, Sect. 40.4, once more to assess the

presence of interaction between males and females on the outcome.

males females

proportion treat 1 0.42 0.71

SE 0.05 0.08

proportion treat 2 0.22 0.60

SE 0.05 0.03

�
�
Differences 0.20 0.11

pooled SE 0.07 0.09

Differences between males and females 0.20�0.11¼ 0.09 with a pooled SE of

√[(0.072) + (0.092)]¼ 0.11. Z-value¼ 0.09/0.11¼ 0.82. This z-value not statisti-

cally significantly different from zero (see the underneath t-table). It means that,

although confounding of genders has been demonstrated in these data (Chap. 40),

no interaction between the genders is in the data.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values (Chap. 36). The t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms,

but in so-called SEM-units (Standard error of the mean units), that are obtained by

dividing your mean result by its own standard error. With many degrees of freedom

(large samples) the curve will be a little bit narrower, and more in agreement with

nature.
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A z-value of 0.82 is a lot smaller than 1.960, and the corresponding two-tail

p-value is, thus, > 0.05, and not significant.

5 Interaction, Example 2

The hypothesized data from the above example have been slightly changed.

responders non-responders total proportion SE¼ √[p(1–p)/n)]
males:

treat 1 36 50 86 36/86¼ 0.42 √(0.42� 0.58/86)

¼0.05

treat 2 14 50 64 14/64¼ 0.22 ¼0.05

total 50 100 150

females:

treat 1 120 80 200 0.60 ¼0.03

treat 2 24 10 34 0.71 ¼0.08

total 144 90 234

p¼ proportion, n¼ sample size, SE¼ standard error

males females

proportion treat 1 0.42 0.60

SE 0.05 0.03

proportion treat 2 0.22 0.71

SE 0.05 0.08

�
�
Differences 0.20 �0.11

pooled SE 0.07 0.09

Difference in proportion between males and females 0.20 + 0.11¼ 0.31 with

a pooled SE of √[(0.072) + (0.092)]¼ 0.11. The z-value¼ 0.31/0.11¼ 2.82.

This z-value statistically larger than 1.960, the p-value is significantly different

from zero (see above t-table). It means that a significant interaction between

genders is in these data. In the males the treatment 1 performs better, in the females

the treatment 2.
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6 Conclusion

A two-sample t-test (or rather z-test) (see also Chap. 36) can be used to test whether

the differences in treatment efficacies of two subgroups are significantly different

from one another. The above example shows that a significant interaction between

genders can be demonstrated in such data. In the males the treatment 1 performed

better, in the females the treatment 2 did so.

7 Note

More background, theoretical and mathematical information of interaction assess-

ments can be found in Statistics applied top clinical studies 5th edition, Chap. 30,

Springer Heidelberg Germany, from the same authors.
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Chapter 42

Chi-Square Tests for Large Cross-Tabs

1 General Purpose

Chi-square tests are adequate for testing 2� 2 interaction cross-tabs of two treat-

ment modalities and two numbers of responders to treatment (Chap. 38). These tests

can, however, equally well, be applied for testing larger tables.

2 Schematic Overview of Type of Data File

Predictor (1–3. . .) outcome (binary)

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

In a 3� 2 interaction cross-tab, is there a significant difference between three

treatment modalities in numbers of responders to treatment?

4 Data Example One: 3� 2 Cross-Tab

In three different treatment groups of hypertensive patients the numbers of

responders (normotensive after treatment) is assessed.

Responders

yes no total

Treatment 1 60 40 100

Treatment 2 100 120 220

Treatment 3 80 60 140

total 240 220 460

The best estimate of expectation is calculated from the above data under the null-

hypothesis, that the results are not significantly different between the groups. E.g.,

estimate expected number of responders in treatment group 1 by dividing all

responders (240) by all observations (460), and multiply by observations in treat-

ment group 1 (100). Then, this estimate (the expected numbers E) is compared with

the actually observed numbers of responders (observed numbers O). The procedure

is illustrated below for responders and, also, non-responders in the treatment

1 group.

Expected (E) O�E (O�E)2/E

Responders

yes no

Treatment 1 (240/460)� 100 (220/460)� 100 . . . . . .
Treatment 2 . . . . . . . . . . . .
Treatment 3 . . . . . . . . . . . .

The add-up sum of the above three (O�E)2/E terms equal the chi-square value.

The p-value can be read from the chi-square table for 3 – 1¼ 2 degrees of freedom.

The above procedure is laborious, and a fastmethod producing the same result is

given underneath.

2402/460 ¼ 125.22

Subtract the above value from the add-up sum of the underneath values.

602/100 ¼ 36.00

1002/220 ¼ 45.45

802/140 ¼ 45.71
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The result equals 1.9. . .

The chi-square value ¼
1.9. . ./[(240/460)� (220/460)] ¼
7.19. . .

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values. The

chi-square table shows that with 3 – 1¼ 2 degrees of freedom (second row) 7.19. . .
is between 5.991 and 9.210, and, thus, that the corresponding p-value (in the

top-row) is between 0.05 and 0.01.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

(continued)
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df

Two-tailed P-value

0.10 0.05 0.01 0.001

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

Obviously, the three treatment modalities are significantly different from one

another. In order to find out, whether the significant effect is between the treatments

1 and 2, 2 and 3, or 1 and 3, subsequent post hoc tests must be performed using 2� 2

chi-square tests (Chap. 38). Bonferroni adjustments are to be recommended

(Chap. 18).

5 Data Example Two: Theoretical Distribution

A random sample of 200 subjects was assessed for sleepiness during the day. We

have been given demographic information (theoretical distribution) about the

prevalence of sleepiness in the population from which the sample was taken. We

wish to know whether the sample’s distribution is not different from that of the

population.

Expected Observed O�E

(theoretically)

1.sleepy 0.24 64 64� (0.24� 200)¼ 16

2.sleepy

rarely 0.60 124 124� (0.6� 200)¼ 4

3.sleepy

never 0.16 12 12� (0.16� 200)¼�20

(O�E)2/E

1.sleepy 162/(0.24� 200) ¼ 5.33

2.sleepy

rarely 42/(0.60� 200) ¼ 0.05

3.sleepy

never (�202)/(0.16� 200) ¼ 12.50

total 17.88

According to the chi-square value of 17.88 with 3 – 1¼ 2 degrees of freedom,

which is larger than 13.815, the p-value should <0.001 (see chi-square table in the

above Sect. 42.4). Many more sleepy people were in the observed population than
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expected from the theoretical distribution. And, so, they must have had some reason

for being so sleepy, that should be searched for properly.

6 Conclusion

Chi-square tests are adequate for testing 2� 2 interaction cross-tabs of two treat-

ment modalities and two numbers of responders to treatment. They can, however,

equally well be applied for testing larger tables. In clinical research 2� 2 tables are

far more commonly used than large tables, because clinicians are mostly interested

to find a single best treatment rather than a significant difference somewhere in

multiple treatments. After an overall assessment of a larger table, multiple

Bonferroni -adjusted subsequent 2� 2 tests are required to find out this single

best treatment. You may consider to skip the overall assessment and start with

2� 2 tests from the very beginning.

7 Note

More background, theoretical and mathematical information of large chi-square

tables are given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer

Heidelberg Germany, from the same authors.
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Chapter 43

Logarithmic Transformations, a Great Help
to Statistical Analyses

1 General Purpose

Non-linear relationships in clinical research are often linear after logarithmic trans-

formations. Also, logarithmic transformation normalizes skewed frequency distri-

butions and is used for the analysis of likelihood ratios. Basic knowledge of

logarithms is, therefore, convenient for a better understanding of many statistical

methods. Almost always natural logarithm (ln), otherwise called Naperian loga-

rithm, is used, i.e., logarithm to the base e. Log is logarithm to the base 10, ln is

logarithm to the base e (2.718281828). This chapter is for showing that knowledge

of logarithms is helpful for understanding many statistical methods.

2 Schematic Overview of Type of Data File

Outcome binary predictor binary

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

Is logarithmic transformation relevant for statistical modeling.

4 Theory and Basic Steps

log 10¼ 10 log 10¼ 1

log 100¼ 10 log 100¼ 2

log 1¼ 10 log 1¼ 0

antilog 1¼ 10

antilog 2¼ 100

antilog 0¼ 1

Casio fx-825 scientific, Scientific Calculator, Texas TI-30XA, Sigma,

Commodore

Press: 100. . ..log. . ..2
Press: 2. . ..2ndf. . ..log. . .100

Electronic Calculator, Kenko KK-82MS-5

Press: 100. . ..¼ . . ..log. . ..¼ . . ..2
Press: 2. . ..¼ . . ..shift. . .log. . ..100

ln e¼ e log e¼ 1

ln e2¼ e log e2¼ 2

ln 1¼ e log 1¼ 0

antiln 1¼ 2.718. . .
antiln 2¼ 7.389. . .
antiln 0¼ 1

Casio fx-825 scientific, Scientific Calculator, Texas TI-30XA, Sigma

Press: 7.389. . ..ln. . ..2
Press: 2. . ..2ndf. . ..ln. . .7389

Electronic Calculator, Kenko KK-82MS-5

Press: 7.389. . ..¼ . . ..ln. . ..¼ . . ..2
Press: 2. . ..¼ . . ..shift. . .ln. . ..7.389
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5 Example, Markov Model

In patients with diabetes mellitus (*¼ sign of multiplication):

After 1 year 10 % has beta-cell failure, and 90 % has not.

2 90 * 90¼ 81 % has not.

3 90 * 90 * 90¼ 73 % has not.

When will 50 % have beta-cell failure?

0.9x¼ 0.5

x log 0.9¼ log 0.5

x¼ log 0.5/log 0.9¼ 6.5788 years.

6 Example, Odds Ratios

events no events

numbers of patients

group 1 15(a) 20(b) 35(a + b)

group 2 15(c) 5(d) 20(c + d)

30(a + c) 25(b + d) 55(a + b + c + d)

The odds of an event¼ the number of patients in a group with an event divided

by the number without. In group 1 the odds of an event equals¼ a/b.

The odds ratio (OR) of group 1 compared to group 2

¼ (a/b)/(c/d)

¼ (15/20)/(15/5)

¼ 0.25

lnOR ¼ ln 0.25¼�1.386 (ln¼ natural logarithm)

The standard error (SE) of the above term

¼ √ (1/a + 1/b + 1/c + 1/d)

¼ √ (1/15 + 1/20 + 1/15 + 1/5)

¼ √ 0.38333

¼ 0.619

The odds ratio can be tested using the z-test.

The test-statistic ¼ z-value

¼ (ln odds ratio)/(SE ln odds ratio)

¼ �1.386/0.619

¼ �2.239
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The underneath t-table, bottom row, shows, that, if this value is smaller than

�1.96 or larger than +1.96, then the odds ratio is significantly different from 1 with

a two-tail p-value< 0.05. There is, thus, a significant difference in numbers of

events between the two groups.

The left-end column of the above t-table gives degrees of freedom (� sample

sizes), two top rows with p-values (areas under the curve), and, furthermore, the

t-table is full of t-values, that, with 1 degrees of freedom, become equal to

z-values.
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7 Conclusion

We conclude that basic knowledge of logarithms is convenient for a better under-

standing of many statistical methods. Odds ratio tests (Chap. 44), log likelihood

ratio tests (Chap. 46), Markov modeling (Chap. 55), and many regression models

use logarithmic transformations.

8 Note

More background, theoretical and mathematical information of logarithmic trans-

formations is given in the Chaps. 28, 30, 44, 45, 46, 47, 48, 49, and 55.
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Chapter 44

Odds Ratios, a Short-Cut for Analyzing
Cross-Tabs

1 General Purpose

The odds ratio test is just like the chi-square test (Chap. 38) applicable for testing

cross-tabs.

The advantage of the odds ratio test is, that an odds ratio value can be calculated.

The odds ratio value is, just like the relative risk, an estimate of the chance of

having had an event in group 1 as compared to that of having had it in group 2. An

odds ratio value of 1.000 indicates no difference between the two groups. This

chapter gives examples of odds ratio analyses.

2 Schematic Overview of Type of Data File

Outcome binary predictor binary
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3 Primary Scientific Question

How can the odds ratio method be applied for testing interaction in a 2� 2

contingency table, otherwise called 2� 2 cross-tab, and for estimating relative

risks of an event.

4 Example 1

events no events

numbers of patients

group 1 15(a) 20(b) 35(a + b)

group 2 15(c) 5(d) 20(c + d)

30(a + c) 25(b + d) 55(a + b + c + d)

-------------------------------

The odds of an event¼ the number of patients in a group with an event divided

by the number without. In group 1 the odds of an event equals¼ a/b.

The odds ratio (OR) of group 1 compared to group 2

¼ (a/b)/(c/d)

¼ (15/20)/(15/5)

¼ 0.25

lnOR ¼ ln 0.25¼�1.386 (ln¼ natural logarithm)

The standard error (SE) of the above term

¼ √ (1/a + 1/b + 1/c + 1/d)

¼ √ (1/15 + 1/20 + 1/15 + 1/5)

¼ √ 0.38333

¼ 0.619

The odds ratio can be tested using the z-test (Chap. 36).

The test-statistic ¼ z-value

¼ (lnOR)/SE

¼ �1.386/0.619

¼ �2.239

If this value is smaller than �2 or larger than +2 (or more precisely �1.96 and

+1.96), then the odds ratio is significantly different from 1 with two-tail p-value of

<0.05, as shown in the bottom row of the t-table of the next page. An odds ratio of

1 means that there is no difference in events between group 1 and group 2.
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The left-end column of the above t-table gives degrees of freedom (� sample

sizes), two top rows with p-values (areas under the curve), and furthermore full of

t-values, that, with 1 degrees of freedom, are equal to z-values.
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5 Example 2

events no events

number of patients

group 1 16(a) 26(b) 42(a + b)

group 2 5(c) 30(d) 35(c + d)

21(a + c) 56(b + d) 77(a + b + c + d)

Test with OR whether there is a significant difference between group 1 and 2.

See for procedure also example 1.

OR ¼ (16/26)/(5/30)

¼ 3.69

lnOR ¼ 1.3056 (ln¼ natural logarithm see the above example)

SE ¼ √ (1/16 + 1/26 + 1/5 + 1/30)

¼ √ 0.334333

¼ 0.578

z-value ¼ 1.3056/0.578

¼ 2.259

Because this value is larger than 2, a two-tail p-value of<0.05 is observed, 0.024

to be precise (numerous “p-calculator for z-values” sites in Google will help you

calculate a more precise p-value if required. However, the above t-table may be

sufficiently precise for your purposes.

6 Conclusion

The odds ratio test is, like the z-test (Chap. 36), and the chi-square test (Chap. 38)

applicable for testing cross-tabs. A nice thing about odds ratio tests is that, unlike

the other tests, they provide odds ratios, that can be interpreted as relative risks. E.

g., an odds ratio of 3.69 means that one group performs about 3.7 better than the

other. Odds ratio methods are easy and fast, and kind of short -cut for analyzing

cross-tabs.

7 Note

More background, theoretical and mathematical information of odds ratio tests is

given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer Heidel-

berg Germany, 2012, from the same authors.
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Chapter 45

Logodds, the Basis of Logistic Regression

1 General Purpose

Logistic regression is much similar to linear regression (see Chap. 8). The differ-

ence is the type of outcome variable, which is continuous with linear regression and

binary with logistic regression. In order for logistic regression to work, we need to

transform the binary outcome into the odds of responding, or rather the logodds of

responding. In a population

the odds of an infarction ¼ the number of patients with infarct
number of patients without:

The easiest way to understand the term odds is to think of it as though it is

the risk.

The odds or risk of an infarction is correlated with age: the older, the larger

the odds.

Now how does it correlate with age? As shown underneath it is not at all linear.

50

odds
infarction

60 70 80 age (years) 50

odds
infarction

60 70 80 age (years)

However, if we transform the underneath linear model
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y¼ a + bx

into a loglinear model

ln odds¼ a + b� (x¼ age),

then, all of a sudden, we will observe a close to linear relationship (the above right

graph). This present from heaven can be used for statistical testing. The current

chapter assesses how ln odds, often called logodds, can be used for testing studies

with binary outcome data, like numbers of responders to treatment yes or no.

2 Primary Scientific Question

How can we use logodds for modeling binary outcome data for the purpose of

making predictions from them.

3 Data Example

In a random population of subjects between 50 and 75, we register 5 year age

classes for each subject and follow them for 3 years. After that the numbers of

infarctions are counted per age class.

ageclass population size infarctions odds of infarct logodds

50–55 977 8 8/969 �4.80

55–60 1010 42 42/968 �3.14

60–65 999 67 67/932 �2.63

65–70 990 112 112/878 �2.06

70–75 1061 190 190/871 �1.52

For the pocket calculation of logodds, first, compute the above odds, and, then,

press the ln button. We will also use the pocket calculator to compute the intercept

and regression coefficient of the linear regression between the age class (x-variable)

and the logodds of infarction (y-variable). This linear regression is otherwise called

logistic regression.

We will use the Electronic Calculator (see Chap. 1) for computations. First, we

will calculate the b and r values.

Command:

click ON....click MODE....press 3....press 1....press SHIFT, MODE, and again 1....

press¼ ....start entering the data.... [55, �4.80]....[60, �3.14]....[65, �2.63]. . .
[70. �2.06]. . .[75, �1.52]
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In order to obtain the a value, press: shift, S-VAR, ►, ►, 1, ¼ .

In order to obtain the b value, press: shift, S-VAR, ►, ►, 2, ¼ .

The underneath values are obtained.

a¼�12.8

b¼ 0.15

logodds¼ a + b (age class)

Now, we can use the above equation for making predictions about the risk of

having an infarction in the upcoming 3 years in future subjects.

For someone 50–55 years the logodds of infarction ¼ �12.8 + 0.15 (55)

¼ �4.55

the odds of infarction ¼ 0.0106¼ 1.06 %

For someone 70–75 years the logodds of infarction ¼ �12.8 + 0.15 (75)

¼ �1.55

the odds of infarction ¼ 0.212¼ 21.2 %

The risk is pretty much similar to the odds, particularly, with small risks, and is

equal to risk¼ 1/(1 + 1/odds)

e.g., with odds ¼ 21.2 %

risk ¼ 1/(1 + 1/0.212)

¼ 0.175¼ 17.5 %.

4 Conclusion

Logistic regression is not in pocket calculators, but can be used even so if you

transform your outcome odds values into logodds values. We should add that

logistic regression is a magnificent methodology with plenty applications, most of

whom require the use of advanced statistical software. For example it can be used

not only for predictive models of age and infarction, but also for predictive models

with multiple predictors like risk factors and patient characteristics for risk man-

agement assessments. It also can be used for efficacy analysis of survival studies

and exploratory purposes. More information is given in the Chaps. 17, 19, 21, 49,

and 65, in Statistics applied to clinical studies 5th edition, Springer Heidelberg

Germany, 2012, from the same authors.
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5 Note

More background, theoretical and mathematical information of logistic regression

is given in SPSS for starters and 2nd levelers 2nd edition, Chap. 36, 37, 38, and 39,

Springer Heidelberg Germany, 2015, from the same authors.
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Chapter 46

Log Likelihood Ratio Tests for the Best
Precision

1 General Purpose

The sensitivity of the chi-square test (Chap. 38), and the odds ratio test (Chap. 44)

for testing cross-tabs is limited, and, not entirely, accurate, if the values in one or

more cells is smaller than 5. The log likelihood ratio test may be an adequate

alternative with generally better sensitivity, and, so, it must be absolutely consid-

ered. This chapter assesses how it works.

2 Schematic Overview of Type of Data File

Outcome

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

Is the log likelihood ratio test adequate and more sensitive for testing 2� 2

contingency table (cross-tabs, 2� 2 interaction tables) compared to standard

methods.

4 Example 1

A group of citizens is taking a pharmaceutical company to court for misrepresenting

the danger of fatal rhabdomyolysis due to statin treatment.

Patients with rhabdomyolysis patients without

company 1 (a) 309999 (b)

citizens 4 (c) 300289 (d)

pco¼ proportion given by the pharmaceutical company¼ a/(a + b)¼ 1/310000

pci¼ proportion given by the citizens¼ c/(c + d)¼ 4/300293

We make use of the z-test (Chap. 36) for testing log likelihood ratios.

As it can be shown that �2 log likelihood ratio equals z2, we can test the

significance of difference between the two proportions.

Log likelihood ratio ¼ 4 log
1=310000
4=300293 þ 300289 log

1�1=310000
1� 4=300293

¼ �2.641199

�2 log likelihood ratio ¼ �2��2.641199

¼ 5.2824 (p< 0.05, because z> 2).

¼ z 2

A z – value larger than 2 (actually 1.960, see bottom row of underneath t-table

for all z-values) means a significant difference in your data. Here the z-value equals

√ 5.2824¼ 2.29834. The “p-calculator for z-values” in Google tells you that a more

precise p – value¼ 0.0215, anyway much smaller than 0.05.

We should note here that both the odds ratio test and chi-square test produced a

non-significant result of these data (p> 0.05). Indeed, the log likelihood ratio test is

much more sensitive than the other tests for the same data, which might once in a

while be a blessing for desperate investigators.
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The above t-table gives in the left-end column degrees of freedom (df), (�
sample sizes), two top rows with p-values (areas under the curve), and furthermore

plenty t-values, that, with 1 degrees of freedom, have become equal to z-values.

We should emphasize, that, instead of the above t-table, the one-degree-of-free-

dom-row of the chi-square table can be used, because this row produces z2 – values.

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values. The

one-degree-of-freedom-row of the chi-square table has values equal to the squared

values of the bottom row of the t-table.
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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5 Example 2

Two group of 15 patients at risk for arrhythmias were assessed for the development

of torsade de points after calcium channel blockers treatment

Patients with torsade de points patients without

Calcium channel blocker 1 5 10

Calcium channel blocker 2 9 6

The proportion of patients with event from calcium channel blocker 1 is 5/15,

from blocker 2 it is 9/15.

Log likelihood ratio ¼ 9 log
5=15
9=15 þ 6 log

1�5=15
1�9=15

¼ �2.25

�2 log likelihood ratio ¼ 4.50

¼ z2

z – value ¼ √ 4.50¼ 2.1213

p – value <0.05, because z> 2.

The traditional chi-square test of these data was non-significant (p> 0.05),

(Chap. 38). You can check for yourself, that, with the odds ratio test (Chap. 44),

this will be equally so.

6 Example 3

Two groups of patients with stage IV New York Heart Association heart failure

were assessed for clinical admission while on two beta-blockers.

Patients with clinical admission patients without

Beta blocker 1 77 62

Beta blocker 2 103 46

The proportion of patients with event while on beta blocker 1 is 77/139, while on

beta blocker 2 it is 103/149.

Log likelihood ratio ¼ 103 log
77=139
103=149 þ 46 log

1�77=139
1�103=149

¼ �5.882

�2 log likelihood ratio ¼ 11.766

¼ z 2

z – value ¼ √ 11.766¼ 3.43016

p – value <0.002, because z> 3.090 (see the above t-table).

Both the odds ratio test and chi-square test were also significant. However, at

lower levels of significance, both p-values 0.01< p< 0.05.
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7 Conclusion

The sensitivity of the traditional tests for testing cross-tabs is limited, and, not

entirely, accurate, with cells smaller than 5. The log likelihood ratio test is an

adequate alternative with generally better sensitivity. It is lovely to use it, if your

traditional test can not reject the null hypothesis of your study with a p-value a bit

larger than 0.05. Your chance is big, that the current test will produce a p-value just

under 0.05.

8 Note

More background, theoretical and mathematical information of log likelihood ratio

tests is given in Statistics applied to clinical studies 5th edition, Chap. 4, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 47

Hierarchical Loglinear Models for Higher
Order Cross-Tabs

1 General Purpose

The Pearson chi-square test is traditionally used for analyzing two dimensional

contingency tables, otherwise called cross-tabs or interaction matrices (Chap. 38).

It can anwer questions like: is the risk of falling out of bed different between the

departments of surgery and internal medicine (Chaps. 37 and 38). The analysis is,

however, very limited, because only the interaction between the two variables, e.g.,

(1) falling out of bed (yes, no) and (2) department (one or the other) is assessed. In

contrast, in an observational data set we may be interested in the effects of the two

variables separately:

1. is there a significant difference between the numbers of patients falling out of

bed and the patients who don’t (the main effect of variable 1),

2. is there a difference between the numbers of patients being in one department

and those being in the other (the main effect of variable 2).

The Pearson test is unable to answer such questions. Hierarchical loglinear

modeling is a pretty novel methodology adequate for the purpose, but not yet

widely available. In SPSS versions 16–23 it is not in the menu, but only accessible

through syntax commands.

In order to simultaneously analyze, in a 2� 2 cross tab, the effects of the main

variable in addtion to their interaction, ANOVA (analysis of variance) might be

considered. In ANOVA with two predictor factors and one outcome, outcome

observations are often modeled as a linear combination of:

1 the grand mean

2 the main effect of the first predictor

3 the main effect of the second predictor

4 the interaction effect of the first and the second predictor.
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However, ANOVA requires continuous outcome variables and contingency

tables consist of counted data (numbers of responders, numbers of yes answers),

like numbers of patients falling out of bed. With cell-counts data, like interaction

matrices, traditional ANOVA is impossible, because the outcome-observations

must be modeled as the product of the above 4 effects, rather than their linear

add-up sum. The trick is to transform the multiplicative model into a linear model

using

logarithmic transformation (ln¼ natural logarithm is always used).

Outcome¼ 1*2*3*4 (*¼ symbol of multiplication)

Log outcome¼ log 1 + log 2 + log 3 + log 4

2 Schematic Overview of Type of Data File

Treatment modality Outcome

(1 and 2) (1 and 2)

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

Can hierarchical loglinear modeling simultaneously assess the effects of the main

variables in addition to their interaction?
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4 Data Example

A simple 2� 2 contingency table is given with two treatment groups as row

variable and the presence of sleeplessness as column variable. A loglinear analysis

is given underneath. Loglikelihood ratio tests are used for the computations (see

also the Chap. 46).

column 1 2

row 1 50 150 200

2 90 60 150

140 210 350

All counts have to be logarithmically transformed (ln 50¼ 3.912 etc.).

column 1 2

row 1 3.912 5.011 5.298

2 4.500 4.049 5.011

4.942 5.347 5.848

4.1 First Order Effects

Is there a significant main effect of the column variable (is the number of sleepy

people significantly different from that of non-sleepy people). Expected log fre-

quencies log(350/2)¼ 5.165. The loglikelihood ratio (LLR) chi-square test is used

for testing.

In this test �2 loglikelihood ratio should be larger than z2¼ 22¼ 4 in order to

obtain statistical significance at a p< 0.05 level, and z2¼ one-degree-of-freedom

chi-square value as explained in the Chap. 46).

�2 LLRcolumn ¼2 * (140*(4.942�5.165) + 210*(5.347�5.165))

¼140.0,

*¼ symbol of multiplication.

The underneath chi-square table has an upper row with areas under the curve

(p-values), a left-end column with degrees of freedom (df), and, furthermore, a

whole lot of chi-square values.

4 Data Example 265

http://dx.doi.org/10.1007/978-3-319-27104-0_46
http://dx.doi.org/10.1007/978-3-319-27104-0_46


Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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A chi-square value of 140, one degree of freedom, means that p is much<0.001.

Is there a significant main effect of the row variable (is the numbers of treatments

in group 1 significantly different from that of group 2). Expected log frequencies ¼
log (350/2)¼ 5.165.

�2 LLRrow ¼2 * (200*(5.298�5.165) + 150*(5.011�5.165))

¼7.0,

A chi-square value of 7.0 and 1df, means that p< 0.01.

4.2 Second Order Effects

Is there a significant interaction between the row and column variable. The

loglikelihood ratio (LLR) chi-square test is again used for testing.

�2 LLRcolumn x row ¼2 * [(200*(5.298�5.165) + 150*(5.011�5.165)

+140*(4.942�5.165) + 210 *(5.347�5.165)]

¼21.0,

1 df, p< 0.001.

The traditional Pearson chi-square test for “row x column” is similarly very

significant, although with a larger chi-square value. We will use the pocket calcu-

lator method (Chap. 38).

Pearson chi-squarecolumn x row

¼ [(50*60� 90*150)2 * 350]/(140*210*150*200)

¼43.75,

1 df, P< 0.0001.

*¼ symbol of multiplication.

The Pearson chi-square value is larger than the above second order log likeli-

hood ratio test. This is, because the former does not account first order effects. In

general, if you account more, then you will prove less.

5 Conclusion

The above example shows that logarithmic transformation of multiplicative models

for analyzing contingency tables can readily provide first and second statistics with

the help of log likelihood ratio tests. Also, in practice, higher order contingency

tables do exist. E.g, we may want to know, whether variables like ageclass, gender,

and other patient characteristics interact with the variables (1) and (2). Calculations

are, of course, increasingly complex, and a pocket calculator assessment is impos-

sible. In Chap. 52, SPSS for starters and second levelers 2nd edition, Springer
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Heidelberg Germany, 2015, from the same authors, examples of third, and fourth

order hierarchical loglinear models are given.

6 Note

More background, theoretical and mathematical information of hierarchical log

linear models is given in SPSS for starters and second levelers 2nd edition,

Chap. 52, Springer Heidelberg Germany, 2015, from the same authors.
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Chapter 48

McNemar’s Tests for Paired Cross-Tabs

1 General Purpose

The Chaps. 36, 37, 38, 39, 44, and 46 have reviewed methods for analyzing cross-

tabs of two groups of patients, otherwise called unpaired cross-tabs. Sometimes, a

single group of subjects is assessed twice, and, then, we will obtain a cross-tab

slightly different from the traditional unpaired cross-tabs. McNemar’s test must be

applied for analyzing these kinds of data.

2 Schematic Overview of Type of Data File

Outcome-1 binary outcome-2 binary

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

In a crossover study two diagnostic devices are assessed. We wish to know whether

one performs better than the other.

4 Data Example, Chi-Square McNemar’s Test

315 subjects are tested for hypertension using both an automated device (device-1)

and a sphygmomanometer (device-2).

_____________________________________

Device-1

+ � total

Device-2 + 184 54 238

� 14 63 77_______________________

Total 198 117 315

Chi� square McNemar ¼ 54� 14ð Þ2
54þ 14

¼ 23:5

184 subjects scored positive with both tests and 63 scored negative with both tests.

These 247 subjects, therefore, give us no information about which of the two tests is

more likely to score positive. The information we require is entirely contained in

the 68 subjects for whom the tests did not agree (the discordant pairs).

The above equation shows how the chi-square value is calculated. The

chi-square table (given underneath) finds the appropriate p-value. Like with 2� 2

unpaired cross-tabs, we will have 1 degree of freedom (df). The 1 degree of freedom

row of the chi-square table shows, that, with our result of 23.5 is a lot larger than

10.827, that the p-value will be a lot <0.001. We conclude, that the two devices

produced significantly different results at p< 0.001.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

(continued)
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The above chi-square table has an upper row with areas under the curve

(p-values), a left-end column with degrees of freedom (df), and a whole lot of

chi-square values.

5 Data Example, McNemar’s Z-Test

Instead of the above chi-square McNemar’s test, also a McNemar’s z-test can be

performed, and will produce identical results. Again 184 and 63 patients need not

be taken into account. The test works as follows.

df

Two-tailed P-value

0.10 0.05 0.01 0.001

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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z ¼ 54� 14ð Þ=√ 54þ 14ð Þ ¼ 4:85

A z-value> 1.960 means, that a significant difference between the two tests exists

at p< 0.05. The above z-value is a lot larger than 1.96. The underneath t-table

(bottom row) must be used for computing the p-value more precisely. A z-value of

4.85 is larger than 3.291, and, thus, the two tests are significantly from one another

at a two-tail p-value< 0.001.

The above t-table has a left-end column giving degrees of freedom (� sample

sizes), and two top rows with p-values (areas under the curve¼ p – values), one-tail
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meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values. The z-values and t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, or

proportions of responders, but in so-called SEM-units (Standard error of the mean

units), that are obtained by dividing your mean result by its own standard error. For

continuous outcome data, with many degrees of freedom (large samples) the curve

will be a little bit narrower, and more in agreement with nature. For binary outcome

data, nature has determined that the curves will always be as narrow as can be,

according to the row at the bottom.

6 Conclusion

Traditionally, 2� 2 cross-tabs consist of two unpaired groups of patients. Some-

times, however, a single group is assessed twice, and, then, we will obtain a cross-

tab slightly different from the traditional unpaired cross-tabs. McNemar’s tests are
helpful for analyzing these kinds of data. Either chi-square or z statistic can be used

for testing. McNemar’s tests are appropriate for the analysis of paired binary

outcome data, like the data from diagnostic or therapeutic crossover studies.

7 Note

More background, theoretical and mathematical information of McNemar’s tests is
given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer Heidel-

berg Germany, 2012, from the same authors.
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Chapter 49

McNemar’s Odds Ratios

1 General Purpose

The Chap. 44 has reviewed odds ratios (ORs) for analyzing cross-tabs of two

unpaired groups of patients. Sometimes a single group is assessed twice, and,

then, we will obtain a cross-tab slightly different from the traditional unpaired

cross-tabs. McNemar’s test must be applied for analyzing these kind of data

(Chap. 48). Just like the odds ratios obtained from unpaired cross-tabs, odds ratios

can be obtained from paired cross-tabs. It gives an estimate, in a crossover study of

two treatments or two diagnostic tests, of, how much better one is than the other.

2 Schematic Overview of Type of Data File

Outcome-1 binary outcome-2 binary

. .

. .

. .

. .

. .

. .

. .

. .

. .
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3 Primary Scientific Question

In a crossover study two diagnostic devices are assessed. We wish to know not only,

whether one performs better than the other, but also, how much better.

4 Data Example

Just like with the usual unpaired cross-tabs (Chap. 44), odds ratios can be calculated

from crossover data with a single group of patients tested twice instead of two

groups tested once. So far, we assessed two groups, and one treatment. Now, two

antihypertensive treatments will be assessed in a single group of patients.

OR¼ odds ratio, SE¼ standard error, and ln¼ natural logarithm.

normotension with drug 1

yes no

normotension yes (a) 65 (b) 28

with drug 2 no (c) 12 (d) 34

Here the OR¼ b/c, and the SE is not
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a
þ 1

b
þ 1

c
þ 1

d

� �

q

, but rather
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
b
þ 1

c

� �

q

:

OR ¼ 28/12

¼ 2.33

This would mean that one treatment is about 2.33 times better than the other.

lnOR ¼ ln 2.33

¼ 0.847

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
b
þ 1

c

� �

q ¼ 0.345

lnOR� 2 SE ¼ 0.847� 0.690

¼ between 0.157 and 1.537,

Turn the ln numbers into real numbers by the anti-ln button (the invert button, on

many calculators, called the 2ndF button) of your pocket calculator.

¼ between 1.16 and 4.65

¼ significantly different from 1.0.

A p-value can be calculated using the z-test with the help of the t-table.

z ¼ lnOR/SEM

¼ 0.847:0.345

¼ 2.455.
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The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are

assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values. The z-values and t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, or

proportions of responders, but in so-called SEM-units (Standard error of the mean

units), that are obtained by dividing your mean result by its own standard error. For

continuous outcome data, with many degrees of freedom (large samples) the curve

will be a little bit narrower, and more in agreement with nature. For binary outcome

data, nature has determined that the curves will always be as narrow as can be,

according to the row at the bottom.
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The bottom row of the above t-table shows that this z-value is 2.455, and, thus,

larger than 2.326. This means that the corresponding p-value of <0.02. The two

drugs, thus, produce significantly different results at p< 0.02.

We may, additionally, conclude that one drug is about 2.33 times better than the

other.

5 Conclusion

Odds ratios (ORs) are for analyzing cross-tabs of two unpaired groups of patients.

McNemar’s odds ratios are for analyzing unpaired cross-tabs obtained from

crossover data with binary outcome values. Just like the traditional odds ratios

they give an estimate of how much better one treatment or one diagnostic device is

than the other.

6 Note

More background, theoretical and mathematical information of McNemar’s odds
ratio testing is given in Statistics applied to clinical studies 5th edition, Chap. 3,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 50

Power Equations

1 General Purpose

Power can be described as statistical conclusive force. It can be defined as the

chance of finding a difference where there is one. Other chances are the chance of

finding no difference where there is one (type II error) and the chance of finding a

difference where there is none (type I) error. The result of a study with binary

outcome data is often expressed in the form of the proportion of the responders or

positive tests out of all patients/all tests, and its standard deviation (SD) or standard

error (SE). With the proportion getting larger and the standard error getting smaller,

the study obtains increasing power. This chapter is to show how to compute a

study’s statistical power from its main results.

2 Schematic Overview of Type of Data File

Outcome (binary or yes-no)

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

What is the power of a study with its proportion of responders and its standard error

given.

4 Data Example

Only 4 out of 10 patients were responders to antihypertensive treatment. Is this

result statistically significant. In other words is four responders significantly more

than 0 responders?

The proportion responders¼ 4/10¼ 0.4

The standard error of this proportion (SE) ¼ √ (p (1�p)/n)

with p¼ proportion and n¼ sample size

¼ √ (0.4� 0.6/10)

¼ √ (0.24/10)

¼ 0.1549

The t-test is used for test statistic.

t-value ¼ proportion/SE

¼ 0.4/0.1549

¼ 2.582

This t-value, often called z-value with binary outcomes, is larger than 1.960 and,

this means, that we can conclude that 4 out of 10 is significantly more than 0 out of

10 at p< 0.05 (see underneath t-table).

What is the power of this test? The equation below has to be applied.

Power ¼ 1� prob z < t� t1
� �

t ¼ the t-value of your results¼ 2.582

t1 ¼ the t – value, that matches a p-value of 0.05¼ 1.960;

t ¼ 2.582; t1¼ 1.960; t� t1¼ 0.622; this value is close to 0.674;

prob (z< t� t1) ¼ beta¼ type II error¼ close to 0.25, maybe 0.30

1-beta¼ power ¼ close to 0.70¼ close to 70 %.

A power of 70 % is not very much. We have a chance of a type II error of 30 %.

It, actually means, that, next time you perform the study, you will have about 30 %

chance of an unsignificant result.

Explanation of the above calculation is given in the next few lines. The t-table on

the next page is needed for the purpose. For binary outcome data only the bottom

row is needed. The t-values are often, simply, called z-values here. The t� t1 value
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of 0.622 is close to 0.674. Look right up at the top rows for finding beta (type II

error¼ the chance of finding no difference where there is one). We have two top

rows here, one for one-tail testing one for two-tail testing. Power is always tested

one-tail. Null-hypothesis testing is mostly tested two-tail. In the t-table, we are a bit

left from 0.25 (25 %), maybe 0.30 (30 %). This would be a pretty adequate estimate

of the type II error, otherwise called beta of this small study. The power equals

(100 % – beta)¼ close to 100 – 30 %¼ 70 %.

The t-table has a left-end column giving degrees of freedom (� sample sizes),

and two top rows with p-values (areas under the curve¼ p – values), one-tail

meaning that only one end of the curve, two-tail meaning that both ends are
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assessed simultaneously. The t-table is, furthermore, full of t-values, that, with 1
degrees of freedom, are equal to z-values. The z-values and t-values are to be

understood as mean results of studies, but not expressed in mmol/l, kilograms, or

proportions of responders, but in so-called SEM-units (Standard error of the mean

units), that are obtained by dividing your mean result by its own standard error. For

continuous outcome data, with many degrees of freedom (large samples) the curve

will be a little bit narrower, and more in agreement with nature. For binary outcome

data, nature has determined that the curves will always be as narrow as can be,

according to the row at the bottom.

5 Conclusion

Power can be defined as the chance of finding a difference, where there is one. It is

equal to 1 minus the type II error (¼ 1� β). A study result with binary outcome data

is often expressed in the form of proportion of responders and its standard deviation

(SD) or standard error (SE). With this proportion getting larger and the standard

error getting smaller, the study will obtain increasing power. This chapter shows,

how to compute a study’s statistical power from its proportion responders and

standard error. We recommend to read Chap. 11 for a better understanding of the

reasoning of the procedure in the current chapter.

6 Note

More background, theoretical and mathematical information of power assessments

is given in Statistics applied to clinical studies 5th edition, Chap. 6, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 51

Sample Size Calculations

1 General Purpose

Just like with continuous outcome data (Chap. 12), with binary outcome data an

essential part of the study protocol is the assessment of the question, how many

subject need to be studied in order to answer the studies’ objectives. This chapter
provides equations that can be used for the purpose.

2 Schematic Overview of Type of Data File

Outcome (yes, no)

.

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

What sample size do we need in order to produce a study with a statistically

significant result?

4 Data Example, Binary Data, Power 80 %

What is the required sample size of a study in which you expect an event in 10 % of

the patients and wish to have a power of 80 %.

10 % events means a proportion of events of 0.1.

The standard deviation (SD) of this proportion is defined by the equation

√ [proportion� (1� proportion)] ¼

√ (0.1� 0.9).

The suitable formula is given.

Required sample size ¼ power index� SD2/proportie2

¼ 7.8� (0.1� 0.9)/0.12

¼ 7.8� 9¼ 71.

We conclude that with 10 % events you will need about 71 patients in order to

obtain a significant number of events for a power of 80 % in your study.

5 Data Example, Binary Data, Power 80 %, Two Groups

What is the required sample size of a study of two groups in which you expect

A difference in events between the two groups of 10 %, and in which you wish to

have a power of 80 %.

10 % difference in events means a difference in proportions of events of 0.10.

Let us assume that in Group one 10 % will have an event and in Group two 20 %.

The standard deviations per group can be calculated.

For group 1: SD¼ √ [proportion� (1� proportion)] ¼ √ (0.1� 0.9)¼ 0.3

For group 2: SD¼ √ [proportion� (1� proportion)] ¼ √ (0.2� 0.8)¼ 0.4

The pooled standard deviation of both groups ¼ √ (SD1
2 + SD2

2)

¼ √ (0.32 + 0.42)

¼ √ 0.25¼ 0.5

The adequate equation is underneath.

Required sample size ¼ power index� (pooled SD)2/(difference in proportions)2

¼ 7.8� 0.52/0.12
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¼ 7.8� 25

¼ 195.

Obviously, with a difference of 10 % events between two groups we will need

about 195 patients per group in order to demonstrate a significant difference with a

power of 80 %.

6 Conclusion

The assessment of the sample size required to adequately answer a study’s objec-
tives is an essential part of the study protocol. This is true both for studies with

continuous (Chap. 12), and those with binary outcome data (the current chapter).

Equations are given for studies with binary outcome data.

7 Note

More background, theoretical and mathematical information of sample size assess-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 6, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 52

Accuracy Assessments

1 General Purpose

Sensitivity and specificity are measures of diagnostic accuracy of qualitative

diagnostic tests, and are obtained from data samples. Just like averages, they are

estimates and come with certain amounts of uncertainty. The STARDS (Standards

for Reporting Diagnostic Accuracy) working party recommends to include mea-

sures of uncertainty in any evaluation of a diagnostic test. This chapter assesses how

accuracy measures for qualitative diagnostic tests can be tested for uncertainty.

2 Schematic Overview of Type of Data File

Definitive diagnosis (yes-no) Diagnostic test (yes-no)
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3 Primary Scientific Question

How do we assess accuracy measures for qualitative diagnostic tests can be tested

for uncertainty.

4 Estimating Uncertainty of Sensitivity and Specificity

For the calculation of the standard errors (SEs) of sensitivity, specificity and

overall-validity we make use of the Gaussian curve assumption in the data.

Definitive diagnosis (n)

Yes No

Result diagnostic test Yes a b

No c d

Sensitivity¼ a/(a + c)¼ proportion true positives

Specificity¼ d/(b + d)¼ proportion true negatives

1�specificity¼ b/(b + d)

Proportion of patients with a definitive diagnosis¼ (a + c)/(a + b + c + d)

Overall validity¼ (a + d)/(a + b + c + d)

In order to make predictions from these estimates of validity their standard

deviations / errors are required. The standard deviation / error (SD/ SE) of a

proportion can be calculated.

SD ¼ √ p(1� p) where p¼ proportion.

SE ¼ √ [p(1� p)/n] where n¼ sample size

where p equals a/(a + c) for the sensitivity. Using the above equations de standard

errors can be readily obtained.

SE sensitivity ¼ √ ac/(a + c)3

SE specificity ¼ √ db/(d + b)3

SE 1�specificity ¼ √ db/(d + b)3

SE proportion of patients with a definitive diagnosis ¼ √ (a + b)(c + d)/(a + b + c + d)3

5 Example 1

Two hundred patients are evaluated the determine the sensitivity/specificity of

B-type Natriuretic Peptide (BNP) for making a diagnosis of heart failure.
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Heart failure (n)

Yes No

Result diagnostic test positive 70 (a) 35 (b)

negative 30 (c) 65 (d)

The sensitivity (a/(a + c)) and specificity (d/(b + d)) are calculated to be 0.70 and

0.65 respectively (70 and 65 %). In order for these estimates to be significantly

larger than 50 % their 95 % confidence interval should not cross the 50 % boundary.

The standard errors are calculated using the above equations. For sensitivity the

standard error is 0.0458, for specificity 0.0477. Under the assumption of Gaussian

curve distributions in the data the 95 % confidence intervals of the sensitivity and

specificity can be calculated according to:

95 % confidence interval of the sensitivity ¼ 0.70� 1.96� 0.0458

“ “ “ specificity ¼ 0.65� 1.96� 0.0477.

This means that the 95 % confidence interval of the sensitivity is between 61 %

and 79 %, for specificity it is between 56 % and 74 %. These results do not cross the

50 % boundary and fall, thus, entirely within the boundary of validity. The

diagnostic test can be accepted as being valid.

6 Example 2

Dimer tests have been widely used as screening tests for lung embolias.

Lung embolia (n)

Yes No

Dimer test Positive 2 (a) 18 (b)

Negative 1 (c) 182 (d)

The sensitivity (a/(a + c)) and specificity (d/(b + d)) are calculated to be 0.666

and 0.911 respectively (67 and 91 %). In order for these estimates to be significantly

larger than 50 % the 95 % confidence interval of them should again not cross the

50 % boundary.

The standard errors, as calculated according to the above equations, are for

sensitivity 0.272, for specificity 0.040. Under the assumption of Gaussian curve

distributions the 95 % confidence intervals of the sensitivity and specificity are

calculated according to:

95 % confidence interval of the sensitivity ¼ 0.67� 1.96� 0.272

“ “ “ specificity ¼ 0.91� 1.96� 0.040.

The 95 % confidence interval of the sensitivity is between 0.14 and 1.20 (14 and

120 %). The 95 % confidence interval of the specificity can be similarly calculated,

and is between 0.87 and 0.95 (87 and 95 %). The interval for the sensitivity is very
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wide and does not at all fall within the boundaries of 0.5–1.0 (50–100 %). Validity

of this test is, therefore, not really demonstrated. The appropriate conclusion of this

evaluation should be: based on this evaluation the diagnostic cannot be accepted as

being valid in spite of a sensitivity and specificity of respectively 67 and 91 %.

7 Conclusion

Sensitivity and specificity are measures of diagnostic accuracy of qualitative

diagnostic tests. Just like averages they are estimates and come with certain

amounts of uncertainty. This chapter assesses how accuracy measures for qualita-

tive diagnostic tests can be tested for uncertainty.

8 Note

More background, theoretical and mathematical information of accuracy assess-

ments of qualitative diagnostic tests is given in Statistics applied to clinical studies

5th edition, Chaps. 46 and 47, Springer Heidelberg Germany, 2012, from the same

authors.

290 52 Accuracy Assessments



Chapter 53

Reliability Assessments

1 General Purpose

The reproducibility, otherwise called reliability, of continuous data can be esti-

mated with duplicate standard deviations (Chap. 26). With binary data Cohen’s
kappas are used for the purpose. Reliability assessment of diagnostic procedures is

an important part of the validity assessment of scientific research. The current

chapter shows how it works.

2 Schematic Overview of Type of Data File

Outcome first test Outcome second test
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3 Primary Scientific Question

How can binary outcome data from a diagnostic test be tested for reproducibility,

otherwise called reliability.

4 Example

Positive (pos) or negative (neg) laboratory tests of 30 patients are assessed. All

patients are tested a second time in order to estimate the level of reproducibility of

the test.

1st time

___________

pos neg

2nd timepos 10 5 15

neg 4 11 15

____________________

14 16 30

If the test is not reproducible at all, then we will find twice the same result in

50 % of the patients, and a different result the second time in the other 50 % of the

patients.

Overall 30 tests have been carried out twice.

We observe 10 times 2� positive and

11 times 2� negative.

And, thus, twice the same is found in

21 patients which is considerable more than in half of the cases, which should

have been 15 times.

Minimal indicates the number of duplicate observations if reproducibility were

zero, maximal indicates the number of duplicate observations if the reproducibility

were 100 %.

Kappa ¼ observed�minimal
maximal�minimal

¼ 21�15
30�15

¼ 0.4

A kappa-value of 0.0 means that reproducibility is very poor.

A kappa of 1.0 would have meant excellent reproducibility.

In our example we observed a kappa of 0.4, which means reproducibility is very

moderate.

292 53 Reliability Assessments



5 Conclusion

The reproducibility, otherwise called reliability, of continuous data can be esti-

mated with duplicate standard deviations. With binary data Cohen’s kappas are

adequate for the purpose. Reliability assessment of diagnostic procedures is an

important part of the validity assessment of scientific research.

6 Note

More background, theoretical and mathematical information of reliability assess-

ments of binary diagnostic tests is given in Statistics applied to clinical studies 5th

edition, Chap. 45, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 54

Unmasking Fudged Data

1 General Purpose

Statistics is not good at detecting manipulated data. However, tests for randomness

is possible. For example, the chi-square goodness of fit and the Kolmogorov

Smirnov test are examples (Chap. 33). Data may, of course, be unrandom due to

extreme inclusion criteria or inadequate data cleaning. But data fudging is another

possibility. This chapter assesses the use of the final digits of the pattern of the

numerical results of your study as a possible method for detecting unrandom or

fudged data.

2 Schematic Overview of Type of Data File

Final digits of relative risks
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3 Primary Scientific Question

How can the final digits of results of the study results show unrandomnes in

your data.

4 Data Example

In a statin trial 96 risk ratios (RR’s) were the main results of the study. Often 9 or

1 were observed as final digits: for example risk ratios like 0.99 or 0.89 or 1.01 or

1.011. The accuracy of these risk ratios were checked according to the underneath

procedure.

Final digit of RR observed

frequency

expected

frequency

Σ(observed� expected)2/expected

0 24 9.6 21.6

1 39 9.6 90.0

2 3 9.6 4.5

3 0 9.6 9.6

4 0 9.6 9.6

5 0 9.6 9.6

6 0 9.6 9.6

7 1 9.6 7.7

8 2 9.6 6.0

9 27 9.6 31.5

Total 96 96.0 199.7

The above differences between observed and expected frequencies were tested

with the multiple groups chi-square test (see also Chap. 42). With

Σ observed� expectedð Þ2=expected ¼ 199:7, and 10 � 1

¼ 9 degrees of freedom;

the difference between observed and expected was much larger than could happen

by chance.

The underneath chi-square table has an upper row with areas under the curve

(p-values), a left-end column with degrees of freedom (df), and a whole lot of

chi-square values. It shows that, with 10 – 1¼ 9 degrees of freedom, our p-value

will be<0.001, if the chi-square value is>27.877. Our chi-square value was 199.7.
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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And, so, the probability <0.001 that such a large chi-square value would occur

by chance, and a chance finding can, thus, be rejected. We can conclude here, that

the frequency distribution of final digits were not random. The validity of this trial

is in jeopardy.

5 Conclusion

Statistics is not good at detecting manipulated data. But, the final digits of the

pattern of the numerical results of your study as a possible method for detecting

unrandom or fudged data.

6 Note

More background, theoretical and mathematical information of data unrandomness

is given in Statistics applied to clinical studies 5th edition, Chaps. 42 and

43, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 55

Markov modeling for Predicting Outside
the Range of Observations

1 General Purpose

Regression models are only valid within the range of the x-values observed in the

data. Markov modeling goes one step further, and aims at predicting outside the

range of x-values. Like with Cox regression it assumes an exponential-pattern in the

data which may be a strong assumption for complex human beings. This chapter

gives examples.

2 Schematic Overview of Type of Data File

Outcome binary Predictor binary Predictor binary Predictor binary

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
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3 Primary Scientific Question

Can Markov modeling adequately be used for making predictions outside the range

of observations.

4 Example 1

In patients with diabetes mellitus type II, sulfonureas are highly efficacious, but

they will, eventually, induce beta-cell failure. Beta-cell failure is defined as a

fasting plasma glucose >7.0 mmol/l. The question is, does the severity of diabetes

and/or the potency of the sulfonurea-compound influence the induction of beta-cell

failure? This was studied in 500 patients with diabetes type II.

at time 0 year 0/500 patients had beta-cell failure

at time 1 year 50/500 patients (¼ 10 % ) had beta-cell failure.

As after 1 year 90 % had no beta-cell failure, it is appropriate according to the

Markow model to extrapolate:

after 2 years 90 %� 90 % ¼ 81 % no beta-cell failure

after 3 years 90 %� 90 %� 90 % ¼ 73 % no beta-cell failure

after 6.58 years ¼ 50 % no beta-cell failure.

The calculation uses logarithmic transformation. We will use the example from

the Chap. 43. In patients with diabetes mellitus (*¼ sign of multiplication):

After 1 year 10 % has beta-cell failure, and 90 % has not.

2 90 * 90¼ 81 % has not.

3 90 * 90 * 90¼ 73 % has not.

When will 50 % have beta-cell failure?

0.9x¼ 0.5

x log 0.9¼ log 0.5

x¼ log 0.5/log 0.9¼ 6.5788 years.

For computation command in the Scientific Calculator the following.

Press 0.5....press log....press �button....press (....press 0.9....press log....press)....

press¼ .

The outcome displays 6.578813. . .

It will take around 6.6 years, before 50 % has beta-cell failure.
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5 Example 2

A second question was, does the severity of diabetes mellitus type II influence

induction of beta-cell failure. A cut-off level for severity often applied is a fasting

plasma glucose> 10 mmol/l. According to the Markov modeling approach the

question can be answered as follows:

250 patients had fasting plasma glucose< 10 mmol/l at diagnosis (Group-1)

250 patients had fasting plasma glucose> 10 mmol/l at diagnosis (Group-2)

If after 1 year sulfonureas (su) treatment, 10/250 of the patients from Group �1

had b-cell failure, and 40/250 of the patients from Group-2, which is significantly

different with an odds ratio of 0.22 ( p< 0.01, see Chap. 44 if you wish to check the

statistical test of this odds ratio).

(240/250)x¼ 0.5

x¼ log 0.5/log (24/25)

x¼ 16.9797..

(210/250)x¼ 0.5

x¼ log 0.5/log (21/25)

x¼ 3.9755..

The commands can be given as shown in the above section.

We conclude that:

in Group-1 it takes 17 years before 50 % of the patients develop beta-cell failure,

in Group-2 it takes 4 years before 50 % of the patients develop beta-cell failure.

6 Example 3

The next question is, does potency of su-compound influence induction of b-cell

failure?

250 patients started on amaryl (potent sulfonurea) at diagnosis (Group-A)

250 patients started on artosin (non-potent sulfonurea) at diagnosis (Group-B)

If after 1 year 25/250 of Group-A had beta-cell failure, and 25/250 of the group-

B, it is appropriate according to the Markov model to conclude that a non-potent

does not prevent beta-cell failure.
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7 Conclusion

Regression models are only valid within the range of the x-values observed in the

data. Markov modeling goes one step further, and aims at predicting outside the

range of x-values. Like with Cox regression it assumes an exponential-pattern.

Markov modeling, although its use is very common in long-term observational

studies remains highly speculative, because nature does not routinely follow math-

ematical models.

8 Note

More background, theoretical and mathematical information of is given in Statistics

applied to clinical studies 5th edition, Chap. 17, Springer Heidelberg Germany,

2012, and Machine learning in medicine a complete overview, Chap. 55, Springer

Heidelberg Germany, 2015, both from the same authors.
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Chapter 56

Binary Partitioning for CART (Classification
and Regression Tree) Methods

1 General Purpose

Binary partitioning is used to determine the best fit decision cut-off levels for a data

set with false positive and false negative patients. It serves a purpose similar to that

of the receiver operating characteristic (ROC) curve method (Cleophas and

Zwinderman, SPSS for starters and second levelers, Chap. 46, Springer,

New York, 2015), but, unlike ROC curves, it is adjusted for the magnitude of the

samples, and therefore more precise. A hypothesized example is given in the

underneath graph.

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, Clinical Data Analysis on a Pocket Calculator,
DOI 10.1007/978-3-319-27104-0_56

303



The above histogram gives a patients’ sample assessed for peripheral vascular

disease; “a” summarizes the patients with a positive test and the presence of

disease, “b” the patients with a negative test and the absence of disease, “c” and

“d” are the false positive and false negative patients respectively. With binary

partitioning, otherwise called the entropy method or CART (classification and

regression tree) method, the entire sample of patients is called the parent node,

which can, subsequently, be repeatedly split, partitioned if you will, into binary

internal nodes. Mostly, internal nodes contain false positive or false negative

patients, and are, thus, somewhat impure. The magnitude of their impurity is

assessed. This chapter shows how it works.

2 Schematic Overview of Type of Data File

Outcome binary predictor binary

. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

Can binary partitioning provide adequate cut-off levels for false positive and false

negative patients of a qualitative diagnostic test.
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4 Binary Partitioning, the Analysis

With binary partitioning, otherwise called the entropy method or CART (classifi-

cation and regression tree) method, the entire sample of patients (above graph) is

called the parent node, which can, subsequently, be repeatedly split into binary

internal nodes. Mostly, internal nodes contain false positive or negative patients,

and are, thus, impure. The magnitude of their impurity is assessed by the log

likelihood method (see also Chap. 46). Impurity equals the maximum log likelihood

of the y-axis-variable by assuming that the x-axis-variable follows a Gaussian (i.e.,

binomial) distribution and is expressed in units, sometimes called bits (a short-cut

for “binary digits”). All this sounds rather complex, but it works smoothly.

The x – axis variable for the right node¼ xr¼ a / (a + b),

for the left node¼ xl¼ d / (d + c).

If the impurity equals 1.0 bits, then it is maximal, if it equals 0.0, then it is

minimal.

Impurity node either right or left¼�x ln x� (1� x) ln (1� x),

where ln means natural logarithm.

The impurities of the right and left node are calculated separately. Then, a

weighted overall impurity of each cut-off level situation is calculated according

to (*¼ sign of multiplication):

Weighted impurity cut-off ¼
[(a + b)/(a + b + c + d) * impurity-right-node] +

[(d + c)/(a + b + c + d) * impurity-left-node].

Underneath, an overview is given of the calculated impurities at the different

cut-off levels. The cut-off percentage of 27 gives the smallest weighted impurity,

and is, thus, the best fit predictor for the presence of peripheral vascular disease.

Cut-off impurity right node impurity left node impurity weighted

22 % 0.5137 0.0000 0.3180

23 % 0.4392 0.0559 0.3063

24 % 0.4053 0.0982 0.2766

25 % 0.3468 0.1352 0.2711

26 % 0.1988 0.1688 0.1897

27 % 0.1352 0.2268 0.1830

28 % 0.0559 0.3025 0.1850

29 % 0.0559 0.3850 0.2375

30 % 0.0000 0.4690 0.2748

From the above calculation it can be concluded that a cut-off of 27 % is the best

fit decision cut-off level with fewest false positive and fewest false negative
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patients. The result was slightly different from that of the ROC curve analysis,

which produced a cut-off level of 26 %.

5 Conclusion

Binary partitioning is used to determine the best fit decision cut-off levels for a data

set with false positive and false negative patients. It serves a purpose similar to that

of the receiver operating characteristic (ROC) curve method., but, unlike ROC

curves, it is adjusted for the magnitude of the samples, and therefore more precise.

This chapter shows that the method works very well.

6 Note

More background, theoretical and mathematical information of binary partitioning

is given in Statistics applied to clinical studies 5th edition, Chap. 53, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 57

Meta-analysis of Binary Data

1 General Purpose

Meta-analyses can be defined as systematic reviews with pooled data. Because the

separate studies in a meta-analysis have different sample sizes for the overall

results, a weighted average has to be calculated. Heterogeneity in a meta-analysis

means, that the differences in the results between the studies are larger than could

happen by chance. The calculation of the overall result and the test for heteroge-

neity is demonstrated in the current chapter.

2 Schematic Overview of Type of Data File

Outcome predictor patient characteristic....
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3 Primary Scientific Question

How do we assess pooled results of multiple studies, how do we assess heteroge-

neity between the studies.

4 Data Example, Pooling

The underneath data show the results of 7 studies assessing chance of death and

infarction in patients with coronary collaterals compared to that in patients without.

Odds

Collaterals

odds no

collaterals

n odds

ratio

95 % ci z-value p

1.Monteiro

2003

6/29 11/24 70 0.45 0.15–1.40 �1.38 1.69

2.Nathou

2006

3/173 20/365 561 0.32 0.09–1.08 �1.84 0.066

3.Meier

2007

36/190 197/389 812 0.37 0.25–0.56 �4.87 0.0001

4.Sorajja

2007

7/112 15/184 318 0.77 0.30–1.94 �0.56 0.576

5.Regieli

2009

7/254 16/600 879 1.03 0.42–2.54 +0.07 0.944

6.Desch

2010

5/64 34/132 235 0.30 0.11–0.81 �2.38 0.018

7.Steg 2010 246/1676 42/209 2173 0.73 0.51–1.04 �1.72 0.085

In order to meta-analyze these data, the following calculations are required.

OR¼ odds ratio, lnOR¼ the natural logarithm of the odds ratio, var¼ variance.

OR lnOR var 1/var lnOR/var (lnOR)2//var

1.Monteiro 2003 0.45 �0.795 0.3337 2.997 �2.382 1.894

2.Nathou 2006 0.32 �1.150 0.3919 2.882 �2.935 3.375

3.Meier 2007 0.37 �0.983 0.04069 24.576 �24.158 23.748

4.Sorajja 2007 0.77 �0.266 0.2239 4.466 �1.188 0.3160

5.Regieli 2009 1.03 �1.194 0.2526 3.959 �4.727 5.644

6.Desch 2010 0.30 0.032 0.2110 4.739 0.152 0.005

7.Stege 2010 0.73 �0.314 0.0333 30.03 9.429 2.961

+

73.319 �44.667 37.943
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The pooled odds ratio is calculated from antiln of (�44.667/73.319)

¼ 0.54

(see Chap. 43 for the antiln (anti-logaritm) calculation).

The chi-square value for pooled data ¼ (�44.667)2 / 73.319¼ 27.2117

According to the underneath chi-square table for a chi-square value>10.827 and

1 degree of freedom, the p-value

¼ <0.001

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

(continued)
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5 Data Example, Assessing Heterogeneity

The above data will now be assessed for heterogeneity. Heterogeneity of this meta-

analysis is tested by the fixed effect model.

Heterogeneity chi-square value ¼ 37.943-27.2117

¼10.7317

With 6 degrees of freedom a chi-square value >10.645 the p – value

¼ 0.05< p< 0.10

Although the meta-analysis shows a significantly lower risk in patients with

collaterals than in those without, this result has a limited meaning, since there is a

trend to heterogeneity in these studies. For heterogeneity testing it is tested whether

the differences between the results of the separate trials are greater than compatible

with the play of chance. Additional tests for heterogeneity testing are available

(Cleophas and Zwinderman, Meta-analysis. In: Statistics Applied to Clinical Stud-

ies, Springer New York, 2012, 5th edition, pp 365–388). When there is heteroge-

neity in a meta-analysis, a careful investigation of its potential cause is often more

important than a lot of additional statistical tests.

6 Conclusion

Meta-analyses are systematic reviews of multiple published studies with pooled

data. Because the separate studies have different sample sizes a weighted average

has to be calculated. Heterogeneity in a meta-analysis means that the differences in

the results between the studies are larger than could happen by chance. With a

significant heterogeneity the meaning of the pooled data is generally little.

df

Two-tailed P-value

0.10 0.05 0.01 0.001

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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Additional tests for heterogeneity testing are available in Statistics Applied to

Clinical Studies 5th edition, Chaps 32–34, Springer New York, 2012). With

heterogeneity in a meta-analysis, a careful investigation of its potential cause is

important.

7 Note

More background, theoretical and mathematical information of meta-analysis given

in Statistics applied to clinical studies 5th edition, Chaps. 32–34, Springer Heidelberg

Germany, 2012, from the same authors.
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Chapter 58

Physicians’ Daily Life and the Scientific
Method

1 General Purpose

We assumed the numbers of unanswered questions in the physicians’ daily life

would be large. But just to get of impression, one of the authors of this work

(TC) recorded all of the unanswered answers he asked himself during a single busy

day. Excluding the questions with uncertain but generally accepted answers, he

included 9 questions.

During the hospital rounds 8.00–12.00 h.

1. Do I continue, stop or change antibiotics with fever relapse after 7 days

treatment?

2. Do I prescribe a secondary prevention of a venous thrombosis for 3, 6 months or

permanently?

3. Should I stop anticoagulant treatment or continue with a hemorrhagic compli-

cation in a patient with an acute lung embolia?

4. Is the rise in falling out of bed lately real or due to chance?

5. Do I perform a liver biopsy or wait and see with liver function disturbance

without obvious cause?

During the outpatient clinic 13.00–17.00 h.

6. Do I prescribe aspirin, hydroxy-carbamide or wait and see in a patient with a

thrombocytosis of 800� 1012 /l over 6 months?

7. Are fundic gland polyps much more common in females than in males?

During the staff meeting 17.00–18.00 h

8. Is the large number of physicians with burn out due to chance or the result of a

local problem?

9. Is the rise in patients’ letters of complaints a chance effect or a real effect to

worry about?
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Many of the above questions did not qualify for a simple statistical assessment,

but others did. The actual assessments, that were very clarifying for our purposes,

are given underneath.

2 Schematic Overview of Type of Data File

Outcome binary Predictor binary

. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

Does event analysis in different hospital departments and other patient subgroups

provide valuable information for making predictions about health risks and other

patient risks.

4 Example 1, Falling Out of Bed

If more patients fall out of bed than expected, a hospital department will put much

energy in finding the cause and providing better prevention. If, however, the scores

tend to rise, another approach is to first assess whether or not the rise is due to

chance, because daily life is full of variations. To do so the numbers of events

observed is compared the numbers of event in a sister department. The pocket

calculator method is a straightforward method for that purpose.
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Patients with fall out of bed patients without

department 1 16 (a) 26 (b) 42 (a + b)

department 2 5 (c) 30 (d) 35 (c + d)

21 (a + c) 56 (b + d) 77 (a + b + c + d)

Pocket calculator method:

chi-square ¼ ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ ¼ 5.456.

If the chi-square value (see also Chap. 38, and the underneath chi-square table) is

larger than 3.841, then a statistically significant difference between the two depart-

ments will be accepted at p< 0.05. This would mean that in this example, indeed,

the difference is larger than could be expected by chance and that a further

examination of the measures to prevent fall out of bed is warranted.

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

(continued)
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Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

5 Example 2, Evaluation of Fundic Gland Polyps

A physician has the impression that fundic gland polyps are more common in

females than it is in males. Instead of reporting this subjective finding, he decides

to follow the next two months every patient in his program.

patients with fundic gland polyps patients without

females 15 (a) 20 (b) 35 (a + b)

males 15 (c) 5 (d) 20 (c + d)

30 (a + c) 25 (b + d) 55 (a + b + c + d)

Pocket calculator method:

chi-square ¼ ad� bcð Þ2 aþ bþ cþ dð Þ
abð Þ cþ dð Þ bþ dð Þ aþ cð Þ ¼ 5.304

The calculated chi-square value is again larger than 3.841. The difference

between males and females is significant at p< 0.05. We can be for about 95 %

sure that the difference between the genders is real and not due to chance. The

physician can report to his colleagues that the difference in genders is to be taken

into account in future work-ups.

6 Example 3, Physicians with a Burn-Out

Two partnerships of specialists have the intention to associate. However, during

meetings, it was communicated that in one of the two partnerships there were three

specialists with burn-out. The meeting decided not to consider this as chance
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finding, but requested a statistical analysis of this finding under the assumption that

unknown factors in partnership 1 may place these specialists at an increased risk of

a burn-out.

physicians with burn out without burn out

partnership 1 3 (a) 7 (b) 10 (a + b)

partnership 2 0 (c) 10 (d) 10 (c + d)

__________

3 (a + c) 17(b + d) 20 (a + b + c + d)

pocket calculator method

chi-square ¼ ad�bcð Þ2 aþbþcþdð Þ
aþbð Þ cþdð Þ bþdð Þ aþcð Þ ¼

30�0ð Þ2 20ð Þ
10�10�17�3

¼ 900�20
......... ¼ 3:6

The chi-square value was between 2.706 and 3.841. This means that no signif-

icant difference between the two partnerships exists, but there is a trend to a

difference at p< 0.10. This was communicated back to the meeting and it was

decided to disregard the trend. Ten years later no further case of burn-out had been

observed.

7 Example 4, Patients’ Letters of Complaints

In a hospital the number of patients’ letters of complaints was twice the number in

the period before. The management was deeply worried and issued an in-depth

analysis of possible causes. One junior manager recommended that prior to this

laborious exercise it might be wise to first test whether the increase might be due to

chance rather than a real effect.

patients with letter of

complaints

patients

without

year 2006 10 (a) 1000 (b) 1010 (a + b)

year 2005 5 (c) 1000 (d) 1005 (c + d)

____________

15 (a + c) 2000 (b + d) 2015 (a + b + c

+ d)

chi-square ¼ ad� bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ cþ dð Þ bþ dð Þ aþ cð Þ = 1.64

The chi-square was smaller than 2.706, and so the difference could not be

ascribed to any effect to worry about but rather to chance. No further analysis of

the differences between 2006 and 2005 were performed.
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8 Conclusion

There are, of course, many questions in physicians’ daily life that are less straight-

forward and cannot be readily answered at the workplace with a pocket calculator.

E.g., the effects of subgroups and other covariates in a patient group will require

t-tests, analyses of variance, likelihood ratio tests, and regression models. Fortu-

nately, in the past 15 years user-friendly statistical software and self-assessment

programs have been developed that can help answering complex questions. The

complementary titles of this book, entitled Statistics applied to clinical studies 5th

edition, machine in medicine a complete overview, and SPSS for starters and

second levels, Springer Heidelberg Germany, 2012–2015, from the same authors,

are helpful for the purpose.

So far, few physicians have followed the scientific method for answering

practical questions they, simply, do not know the answer to. The scientific method
can be summarized in a nutshell: reformulate your question into a hypothesis, and
try and test this hypothesis against control observations.

9 Note

More background, theoretical and mathematical information of the scientific

method during daily life is given in Statistics applied to clinical studies 5th edition,

Chap. 60, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 59

Incident Analysis and the Scientific Method

1 General Purpose

The PRISMA (Prevention and Recovery System for Monitoring and Analysis) –, CIA

(Critical Incident Analysis) –, CIT (Critical Incident Technique) –, TRIPOD (tripod-

theory based method) – methods are modern approaches to incident – analysis. It is

unclearwhy the scientificmethod has been systematically ignored in incident – analysis.

As example the case of a fatal hemorrhage in a hospital during an observational period

of one year was used. In case of a fatal hemorrhage the physician in charge of the

analysis will first make an inventory of how many fatal hemorrhages of the same kind

have occurred in the period of one year. The number seems to be no less than ten. The

question is, is this number larger than could happen by chance. This chapter assesses the

use of z-tests and chi-square tests for answering the question of chance findings.

2 Schematic Overview of Type of Data File

Outcome binary

.

.

.

.

.

.

.

.
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3 Primary Scientific Question

In clinical facilities medical events are an important criterion of quality of care, and

careful analysis is non plus ultra. Can simple statistical tests be helpful for that

purpose.

4 Data Example, Test 1

As example the case of a fatal hemorrhage in a hospital during an observational

period of one year was used. In case of a fatal hemorrhage the physician in charge of

the analysis will first make an inventory of howmany fatal hemorrhages of the same

kind have occurred in the period of one year. The number seems to be ten.

The null - hypothesis is that 0 hemorrhages will occur per year, and the question

is whether 10 is significantly more than 0. A one – sample – z - test is used.

z ¼ (mean number)/(standard error) ¼ 10/√10 ¼ 3.16.

z – value is larger than 3.080 (see underneath t-table).

p – value is < 0.002.

The number 10 is, thus, much larger than a number that could occur by accident.

Here an avoidable error could very well be responsible. However, a null - hypoth-

esis of 0 hemorrhages is probably not correct, because a year without fatal hemor-

rhages, actually, never happens. Therefore, we will compare the number of fatal

hemorrhages in the given year with that of the year before. There were five fatal

hemorrhages then. The z - test produces the following result (see underneath

t-table).

T-Table
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The left-end column of the above t-table gives degrees of freedom (� sample

sizes), two top rows with p-values (areas under the curve), and the t-table is,

furthermore, full of t-values, that, with 1 degrees of freedom, become equal to

z-values.

z ¼ (10 – 5)/√ (10 + 5) ¼ 1.29

p – value ¼ not significant, because z is <1.96.

We can, however, question whether both years are representative for a longer

period of time. Epidemiological data have established that an incident-reduction of

70% is possible with optimal quality health care. We test whether 10 is significantly

different from (10 - (70%) x 10) ¼ 3. The z-test shows the following.
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z ¼ (10–3)/√(10+3) ¼ 1.94

p-value ¼ 0.05 < p < 0.10

It means, that here also no significant effect has been demonstrated. A more

sensitive mode of testing will be obtained, if we take into account the entire number

of admissions per year. In the given hospital there were 10,000 admissions in either

of the two years. A chi-square test can now be performed.

5 Data Example, Test 2

A chi-square test can now be performed according to the 2 x 2 contingency table in

the underneath table.

With one degree of freedom this value ought to have been at least 3.84 in order to

demonstrate whether a significant difference is in the data (chi-square table). And,

so, again there is no significant difference between the two years.

Rates of fatal hemorrhages in a hospital during two subsequent year of obser-

vation. According to the chi - square statistic < 3.84 the difference in rates is not

significant

Year 1    Year 2
Number fatal hemorrhages              10 5
Number control patients              9990     9995

Chi - square = (10 x 9995 + 5 x 9990)2 (20000) =    1.62
10 x 9990 x 5 x 9995

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values.

Chi-squared distribution

df

Two-tailed P-value

0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

(continued)
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6 Data Example, Test 3

Finally, a log – likelihood – ratio - test will be performed, a test which falls into the

category of exact - tests, and is, generally, still somewhat more sensitive (see also

Chap. 46). The result is in the table below. It is close to 3.84, but still somewhat

smaller.

Log likelihood ratio test of the data is below. Also this test is not significant with

a chi-square value smaller than 3.84

df

Two-tailed P-value

0.10 0.05 0.01 0.001

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45
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Log likelihood ratio ¼ 5 log
10=9990ð Þ
5=9995

+ 9995 log
1� 10=9990ð Þ
1� 5=9995

¼ 3.468200� 5.008856 ¼ �1.540656

Chi - square ¼ �2 log� likelihood� ratio ¼ 3.0813

log ¼ natural logarithm

Also the above test shows no significant difference between the frequencies of

deadly fatal hemorrhages in the two years of observation.

7 Data Example, Test 4

The analyst in charge takes the decision to perform one last test, making use of

epidemiological data that have shown that with optimal health care quality in a

facility similar to ours we may accept with 95% confidence that the number of fatal

hemorrhages will remain below 20 per 10,000 admissions. With 10 deadly bleed-

ings the 95% confidence interval can be calculated to be 5–18 (calculated from the

Internet “Confidence interval calculator for proportions”, http://faculty.vassar.edu).

This result is under 20. Also from this analysis it can be concluded that a profound

research of the fatal hemorrhages is not warranted. The number of hemorrhages

falls under the boundary of optimal quality care.

8 Conclusion

The scientific method is often defined as an evaluation of clinical data based on

appropriate statistical tests, rather than a description of the cases and their summa-

ries. The above example explains that the scientific method can be helpful in giving

a clue to which incidents are based on randomness and which are not so.

Many incident analysis software programs provide systematic approaches to the

explanation of a single incident at the workplace. Few such software programs have

followed the scientific method for assessing causal relationships between factors

and the resulting incident. The scientific method is in a nutshell: reformulate your
question into a hypothesis and try and test this hypothesis against control
observations.
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9 Note

More background, theoretical and mathematical information of incident analysis

and the scientific method is given in Statistics applied to clinical studies 5th edition,

Chap. 61, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 60

Cochran Q-Test for Large Paired Cross-Tabs

1 General Purpose

To analyze samples of more than 2 pairs of data, e.g., 3, 4 pairs, etc., McNemar’s
test (Chap. 48 and 49) can not be applied. For that purpose Cochran’s test or logistic
regression analysis is adequate (Chap. 45). The current chapter assesses how the

Cochran’s test works.

2 Schematic Overview of Type of Data File

Outcome (binary) predictor 1 Outcome predictor 2 Outcome predictor 3

. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, Clinical Data Analysis on a Pocket Calculator,
DOI 10.1007/978-3-319-27104-0_60

327



3 Primary Scientific Question

Is the Cochran Q-test able to tell the differences between three or more paired

observations of yes / no responders to three or more different treatments.

4 Cochran Q-Test for a Study with Three Paired Binary
Observations per Patient

The underneath table shows three paired observations in each single patient. The

paired property of these observations has to be taken into account because of the,

generally, positive correlation between paired observations. Cochran’s Q test is

appropriate for that purpose.

Responders and non-responders to three different treatments.

(treat¼ treatment, 1¼ responder, 0¼ non-responder)

Patient treat1 treat2 treat3

1 1 0 0

2 0 0 1

3 0 0 1

4 0 0 1

5 0 0 1

6 1 0 0

7 1 0 0

8 1 0 0

9 1 0 0

10 0 0 1

11 0 0 1

12 0 0 1+________________________

5 0 7

Grans mean columns

¼ 5 þ 0 þ 7ð Þ=3 ¼ 12=3 ¼ 4

Chi-square ¼ 3 3� 1ð Þ �
X

columns2=
X

rows
� �

X
columns2 ¼ 5� 4ð Þ2 þ 0� 4ð Þ2 þ 7� 4ð Þ2 ¼ 1þ 16þ 9

¼ 26
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∑ rows ¼
for row 1 (number treatments)� (number responders)¼ 3� 1 ¼ 2

for row 2 ¼ 2

for row 3 ¼ 2

for row 4 ¼ 2

for row 5 ¼ 2

for row 6 ¼ 2

for row 7 ¼ 2

for row 8 ¼ 2

for row 9 ¼ 2

for row 10 ¼ 2

for row 11 ¼ 2

for row 12 ¼ 2+

¼ 24

Chi-square¼ 6� 26/24¼ 6.5

With 3 treatments we have (3 – 1) degrees of freedom.

The underneath chi-square table has an upper row with areas under the curve, a

left-end column with degrees of freedom, and a whole lot of chi-square values. It

show that for 2 degrees of freedom, a chi-square value>5.991 means that p< 0.05.

A significant difference between the patterns of responding to the treatments 1, 2,

and 3.

Chi-squared distribution

Two-tailed P-value

df 0.10 0.05 0.01 0.001

1 2.706 3.841 6.635 10.827

2 4.605 5.991 9.210 13.815

3 6.251 7.851 11.345 16.266

4 7.779 9.488 13.277 18.466

5 9.236 11.070 15.086 20.515

6 10.645 12.592 16.812 22.457

7 12.017 14.067 18.475 24.321

8 13.362 15.507 20.090 26.124

9 14.684 16.919 21.666 27.877

10 15.987 18.307 23.209 29.588

11 17.275 19.675 24.725 31.264

12 18.549 21.026 26.217 32.909

13 19.812 22.362 27.688 34.527

14 21.064 23.685 29.141 36.124

15 22.307 24.996 30.578 37.698

16 23.542 26.296 32.000 39.252

17 24.769 27.587 33.409 40.791

18 25.989 28.869 34.805 42.312

(continued)

4 Cochran Q-Test for a Study with Three Paired Binary Observations per Patient 329



Two-tailed P-value

df 0.10 0.05 0.01 0.001

19 27.204 30.144 36.191 43.819

20 28.412 31.410 37.566 45.314

21 29.615 32.671 38.932 46.796

22 30.813 33.924 40.289 48.268

23 32.007 35.172 41.638 49.728

24 33.196 36.415 42.980 51.179

25 34.382 37.652 44.314 52.619

26 35.536 38.885 45.642 54.051

27 36.741 40.113 46.963 55.475

28 37.916 41.337 48.278 56.892

29 39.087 42.557 49.588 58.301

30 40.256 43.773 50.892 59.702

40 51.805 55.758 63.691 73.403

50 63.167 67.505 76.154 86.660

60 74.397 79.082 88.379 99.608

70 85.527 90.531 100.43 112.32

80 96.578 101.88 112.33 124.84

90 107.57 113.15 124.12 137.21

100 118.50 124.34 135.81 149.45

Mc Nemar tests (Chaps. 48 and 49) must be performed to find out, where the

differences are: between treatments 1 and 2, 2 and 3, and/or 1 and 3. Adjustment for

multiple testing is also required (Chap.18).

5 Conclusion

To analyze samples of more than 2 pairs of yes-no data, e.g., 3, 4 paired columns,

McNemar’s test can not be applied. For that purpose Cochran’s test or logistic

regression analysis is adequate. The current chapter assesses how the Cochran test

works. Like with paired analysis of variance (Chap. 20), Post hoc analyses, and

adjustment for multiple testing are required.

6 Note

More background, theoretical and mathematical information of Cochran Q-test is

given in Statistics applied to clinical studies 5th edition, Chap. 3, Springer Heidel-

berg Germany, 2012, from the same authors.
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