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Preface

This book is intended to aid students in their study of MATLAB™/SIMULINK™
for use in solving control problems. Specifically, 16 labs for an introductory control
course have been developed at the Department of Automation and Applied
Informatics, Budapest University of Technology and Economics. This book is a
collection of these labs. This exercise book is a supplement to the textbook “Control
Engineering,” by László Keviczky, Ruth Bars, Jenő Hetthéssy, and Csilla Bányász
[1], which is used in the control course. Each chapter of this exercise book is related
to the corresponding chapter of the textbook.

The importance of accompanying textbooks by labs using CAD software was
recognized decades ago at the department. At that time, a set of FORTRAN
libraries supported the instruction both in control systems analysis and design. We
still believe that learning control theory is best motivated by applications and
simulations rather than by concepts alone. In fact, the use of MATLAB™ allows a
lot of theoretical concepts to be easily implemented. If students can immediately
show for themselves how certain concepts work in practice, they will go back to the
theoretical considerations with greater confidence and an improved ability to move
to the next field to study. Well, feedback is around us, anyway.

The problems discussed in this book are limited to linear, time-invariant control
systems. Both continuous-time and discrete-time systems are considered, with
deterministic inputs.

MATLAB™/SIMULINK™ is useful only for those students, who master the
tools offered. Though the application of MATLAB™ commands is simple and
straightforward, a systematic introduction together with control-related examples is
a must in our opinion. Time should be devoted to practicing fundamental
MATLAB™ facilities, alternative command sequences, and visualization capabil-
ities. An introductory lab is devoted to demonstrating the availability and power of
MATLAB™ in this respect.

Frequency functions and transfer functions form essential tools in classical
control theory. Interestingly enough, the frequency domain considerations gave a
remarkable impetus to the postmodern control era, as well. Three labs have been
devoted to discussing fundamental analysis of continuous-time systems including
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feedback and stability. As far as controller synthesis is concerned, three labs treat
YOULA-parameterized control design, as well as PID compensation and series
compensation for processes with dead time have also been elaborated. The case of
controlling unstable processes is also involved. The theoretical discussion of
state-space representations is supported by two labs offering a gentle introduction to
the subject, as well as demonstrating the efficient algorithms and MATLAB™
commands available for state variable feedback.

These days, controllers are implemented as digital controllers. As most of the
processes to be controlled are continuous time in nature, digital control needs
additional tools to cover sampled data systems. Just to support the development of a
proper view of discrete-time systems, an introductory lab has been added to this
topic. Two labs are devoted to discrete controller design. One of them shows
controller design using the YOULA parameterization, and the design of a SMITH

predictor as well as a deadbeat control as special cases of YOULA parameterization.
The second lab discusses discrete-time PID controller design. State feedback
control for discrete systems is also provided in a lab devoted to this topic.

Two labs deal with the polynomial design method for the compensation of
unstable processes, both for the continuous and the discrete case.

In the last lab, the modelling and simulation of a heating process provide a case
study.

Each lab is introduced by summarizing the basic concepts and definitions of the
topic discussed. The MATLAB™-related functions are discussed in detail. Labs
have been designed to be accomplished within a two-hour period, each. Solved
examples and reinforcement problems are intended to foster a better understanding.
Examples range from simple drills just to demonstrate the MATLAB™ commands
to more complex problems, and in most cases a short evaluation completes the lab.
It is supposed that the reader writes and runs the codes and evaluates the results. In
some cases, the plots are not included in the book, but the evaluation is given,
supposed that the reader, after having run the codes, sees the figures.

It is to be emphasized that this set of labs is not a substitute for a textbook in any
respect. The textbook of our introductory control course intends to give a deep and
comprehensive treatment of control-related subjects. The labs in this book are
intended to serve as pedagogical tools offering the student a chance for active
learning and experimenting. The present set of labs have been employed in
instruction for several semesters.

The authors hope that through active problem solving the students will under-
stand better the control principles and get practice how to apply them in analysis
and design of control systems.
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Chapter 1
Introduction to MATLAB

MATLAB™ is an interactive environment for scientific and engineering calcula-
tions, simulations, and data visualization. MATLAB™ provides a powerful plat-
form to solve mathematical and engineering problems related to matrix algebra,
differential equations, etc. The basic set of MATLAB™ operations can be extended
by toolboxes. A toolbox is a function library developed to support calculations in a
specific subject area. Such special subject areas include signal processing (Signal
Processing Toolbox), control engineering (Control System Toolbox), image pro-
cessing (Image Processing Toolbox), identification (Identification Toolbox), the
application of neural networks (Neural Network Toolbox), etc. The graphical
interface of SIMULINK™ provides possibilities for modelling and simulating
processes.

MATLAB™ works as an interpreter: it executes the commands row by row.
This mode generally results in slow operation. Programs written in MATLAB™
can be accelerated by using matrix operations. In this case there is no need to write
cycles: the inner code of MATLAB™ realizes these operations. As matrix opera-
tions in MATLAB™ are executed in optimized machine code, the runtime of these
programs is similar to that written in other programming languages (e.g. C++); in
the case of big matrices, the runtime is even shorter.

The commands can be MATLAB™ functions or so-called script files. An m–file
is a simple text file containing a sequence of MATLAB™ commands and it has the
.m extension. This series of commands can be executed by writing the name of the
file (without the extension). From the MATLAB™ m-files, C and C++ files or
function libraries (˝.lib˝, ˝.dll˝) can also be created using the MATLAB™ translator.
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L. Keviczky et al., Control Engineering: MATLAB Exercises,
Advanced Textbooks in Control and Signal Processing,
https://doi.org/10.1007/978-981-10-8321-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8321-1_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8321-1_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8321-1_1&amp;domain=pdf


1.1 Basic Operation of MATLAB™

The goal of this introduction is to enable the newcomer to use MATLAB™ as
quickly as possible. However, for detailed descriptions the user should consult the
MATLAB™ manuals. They can be found in electronic form in the ‘matlab/help’
directory. Also, on-line help is at the MATLAB™ user’s disposal.

helpdesk

The help command displays information about any command. For example:

help sqrt

A script file of MATLAB™ commands can be created. This is a text file with the
extension “.m”. This script file can be used as a new command (without the
extension).

Variable names: The maximum length is 31 characters (letters, numbers and
underscore). The first character must be a letter. Lower and upper cases are dis-
tinguished. Every variable is treated as a matrix. A scalar variable is a 1 by 1 matrix.

1.1.1 Data Entry

If data entry or any other statement/operation is not terminated by a semicolon, the
result of the statement will always be displayed. MATLAB™ can use several types
of variables. The type declaration is automatic.

Integer:

k=2

If the command is ended by a semicolon, then the result is not shown on the
display, e.g.:

J=-4;

Real:

s=3.6
F2=-12.6e-5

Complex:

z=3+4*i
r=5*exp(i*pi/3)
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Although i=sqrt(-1) is predefined, you may want to denote the unit imaginary
vector by another variable. You are allowed to do so, e.g. simply type

j=sqrt(-1)

Vectors:

x=[1, 2, 3] % row vector, its elements are separated by commas or spaces
q=[4; 5; 6] % column vector; its elements are separated by semicolons

A column vector can be formed from a raw vector by transposition

v=[4, 5, 6]' % the same as q

Remark be careful when using the transpose operation! For complex variables it
results in the complex conjugate:

i'
0 - 1.000i

Matrices:

A=[7, 8, 9; 5, 6, 7]
Here A is a 2 x 3 matrix, MATRIX ¼ ½row1; row2; : : : ; rowN�;

Special vectors and matrices:

u=1:3; % generates u ¼ ½1 2 3� as a row vector; » u ¼ start : stop

w=1:2:10; % generates w ¼ ½1 3 5 7 9�; » w ¼ start : increment : stop

E=eye(4)
E=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

B=eye(3,4)
B=

1 0 0 0

0 1 0 0

0 0 1 0

C=zeros(2,4)
C=

0 0 0 0

0 0 0 0
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D=ones(3,5)

D=

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Variable values:
Typing the name of a variable displays its value:

A

A=

7 8 9

5 6 7

A(2, 3)

ans =

7

The first index is the row number and the second index is the column number.
The answer is stored in the ans variable.

Changing one single value in v results in the printing of the entire vector v,
unless printing is suppressed by a semicolon:

v(2)= -6

v=

4

-6

6

Subscripting: A colon (:) can be used to access multiple elements of a matrix. It
can be used in several ways for accessing and setting matrix elements.

Start index : end index—means a part of the matrix
: a colon in the index means all the elements in a row or in a column

For vectors: v=[v(1)   v(2)   . . .   v(N)]
For matrices: M=[M(1,1)...M(1,m); M(2,1)...M(2,m);  ... ; M(n,1)...M(n,m)]
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Assume B is an 8 � 8 matrix, Then

B(1:5,3) is a column vector, [B(1,3); B(2,3); B(3,3); B(4,3);
B(5,3)]

B(2:3,4:5) is a matrix [B(2,4) B(2,5); B(3,4) B(3,5)]
B(:,3) assigns all the elements of the third column of B
B(2,:) assigns the second row of B
B(1:3,:) assigns the first three rows of B
A(2,1:2) % second row of matrix A, with its first and second elements
A(:,2) % all the elements in the second column

1.1.2 Workspace

The used variables are stored in a memory area called the workspace. The work-
space can be displayed by the following commands:

yjq
yjqu % displays also the size of the variables 
The size of the variables can be displayed by the commands length and size.

For vectors:
lng=length(v)

lng=
3

For matrices and vectors:
[m,n]=size(A)

m=

2 % number of rows

n=

3 % number of columns

The workspace can be saved, loaded and cleared:

save % saves the workspace to the default matlab.mat file.
save filename.mat % saves the workspace to filename.mat file.
clear % clears the workspace, deletes all the variables.
load % loads the default matlab.mat file from the workspace.
load filename.mat % loads the filename.mat file from the workspace.
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1.1.3 Arithmetic Operations

Addition and subtraction:

A=[1 2; 3 4];

B=A';

C=A+B;

C=

2 5

5 8

D=A-B

D=

0 -1

1 0

x=[-1 0 2]';

y=x-1 % Observe that all entries are affected!

y=

-2

-1

1

Multiplication:
Vector by scalar:

2*x

ans=

-2

0

4

Matrix by scalar:

3*A

ans=
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3 6

9 12

Inner (scalar) product:

s=x'*y

s=

4

y'*x

ans=

4

Outer product:

M=x*y'

M=

2 1 -1

0 0 0

-4 -2 2

y*x'

ans=

2 0 -4

1 0 -2

-1 0 2

Matrix by vector:

b=M*x

b=

-4

0

8

Division:

C/2

For matrices: B=A corresponds to B�A�1; AnB corresponds to A�1�B.

Powers: A^p, where A is a square matrix and p is a real constant, e.g.: the inverse
of A:
A^(-1), or equivalently one can use the command invðAÞ.
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1.1.4 Manipulations of Complex Numbers

c=4+2i
c =

4.0000 + 2.0000i
real(c)

ans =
4

imag(c)
ans =

2
abs(c)

ans =
4.4721

angle(c) %  the result is in radian
ans =

0.4636
To get the phase in degrees

angle(c)*180/pi

ans =

26.5651

1.1.5 Array Operations Element-by-Element

Element by element (:�) operations on arithmetic arrays constitute an important
class of operations. To indicate an array operation to be executed elementwise the
operator should be preceded by a point: a:�b ¼ ½að1Þ�bð1Þ; að2Þ�bð2Þ; :::;
aðnÞ�bðnÞ�. The sizes of the variables must be the same.

Example
a=[2 4 6]

b=[5 3 1]

a.*b

ans=

10 12 6

The command can be used for different operations, e.g. for division and powers:
:=; :^
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1.1.6 Elementary Mathematical Functions

(Use the on-line help for details and additional items)

abs absolute value or magnitude of a complex number
sqrt square root
real real part
imag imaginary part
conj complex conjugate
round round to nearest integer
fix round towards zero
floor round towards -infinity
ceil round towards +infinity
sign signum function
rem remainder
sin sine
cos cosine
tan tangent
asin arcsine
acos arccosine
atan arctangent
atan2 four quadrant arctangent
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
exp exponential base e
log natural logarithm
log10 log base 10
bessel BESSEL function
rat rational approximation
expm matrix exponential
logm matrix logarithm
sqrtm matrix square root

For example:

help sqrt

g=sqrt(2)
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1.1.7 Cell Array Data Type

A cell array is a matrix whose elements are also matrices. A cell array can be given
e.g. as follows:

ca={1, [1,2],[1,2,3]}

ca = [1] [1x2 double] [1x3 double]

ca{2}

ans = 1 2

1.1.8 Graphics Output

The most basic graphics command is plot.

plot(2,3) % plots the point given by the coordinates x=2, y=3.

Multiple points can be plotted by storing the coordinate values in vectors.
x=[1,2,3]
y=[0,2,1]
plot(x,y) % the points are connected with a line
plot(x,y,’*’) % only the points are plotted

This method can plot quite sophisticated curves, too.

Example
t=0:0.05:4*pi;

y=sin(t);

plot(t,y)

title('Sine function'),

xlabel('Time'),ylabel('sin(t)'),grid on;

where the title; xlabel; ylabel and grid commands are optional.
Plotting more curves in the same coordinate system:

y1=3*sin(2*t);

plot(t,y,'r',t,y1,'b'); % r - red; b - blue

The typeface and colour for plotting (optional) can be given as follows: »
plotðt; y; ’@#’Þ, where ‘@’ means line type:
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� solid
�� dashed
: dotted
: point
þ plus
� star
o circle
x x-mark

and '#' means colour as follows:

r red
g green
b blue
w white
y yellow

1.1.9 Polynomials

To define a polynomial, e.g. P xð Þ ¼ 2x5 � 3x4 þ 5x3 � x2 � 10x simply introduce
a vector containing the coefficients of the polynomial:

p=[2 -3 5 -1 -10 0]

The roots of the polynomial, i.e. the solutions of the equation P xð Þ ¼ 0 can be
calculated by the command roots.

xi=roots(p)

xi =

0

0.4756 + 1.7910i

0.4756 - 1.7910i

1.5119

-0.9630

It can be seen that this polynomial has three real and two complex roots.
Complex roots always appear in conjugate pairs.

From the roots p1; p2; . . .; pn of a polynomial, the coefficients of the polynomial

P xð Þ ¼ x� p1ð Þ x� p2ð Þ. . . x� pnð Þ can be calculated by
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p1=poly(xi)

p1 =

1.0000 -1.5000 2.5000 -0.5000 -5.0000 0

The command poly results in a polynomial with a leading coefficient of 1,
therefore to get the original polynomial we have to multiply by 2.

2*p1

It can be seen that we have obtained the original polynomial.

Let us graph the polynomial P xð Þ in the region [−1.5,2].

x=[-1.5:0.01:2]

y=p(1)*x.^5+p(2)*x.^4+p(3)*x.^3+p(4)*x.^2+p(5)*x+p(6);

plot(x,y),grid

In Fig. 1.1, it can be seen that the crosspoints of the function with the x axis
coincide with the real roots.

Consider now the following matrix:

M=[3 5; 7 -1]

The eigenvalues of M can be computed by the command eig.

e=eig(M)

e =

7.2450

-5.2450

Taking the above values as the roots of a polynomial, that polynomial can be
calculated by the command poly

poly(e)

ans =

1 -2 -38

-1.5 -1 -0.5 0 0.5 1 1.5 2
-40

-20

0

20

40Fig. 1.1 Plotting a
polynomial
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The above polynomial x2 � 2x� 38 is the characteristic polynomial ofM, which
is defined as det xI �Mð Þ. The characteristic polynomial can be directly calculated
from M:

poly(M)
ans =

1 -2 -38

As can be seen, sometimes commands can be called in different ways.
MATLAB™ help of the particular command will provide all the possibilities for
how to call it.

1.1.10 Writing MATLAB™ Programs

In the simplest mode of using MATLAB™, we write the commands to be executed
in the command window of MATLAB™. For solving more complex tasks, this is a
long procedure difficult to implement. MATLAB™ provides several possibilities
for writing programs. There are two ways to produce programs: in the form of a
script file or in the form of a function file. These programs are simple text files
which contain MATLAB™ commands as rows. The extension of the files is .m,
therefore they are called m-files. The m-files can be written in any text editor, but it
is preferable to use the text editor of MATLAB, as it provides several helps for
formatting and finding and correcting errors.

A script file program contains MATLAB commands. It can be run in several
ways. We can write the name of the file without an extension in the command
window, then by the command Run from the menu or by pressing button F5 (which
also saves the modified file) we can run the file. The variables used in the script file
appear in the global workspace, so their values can be seen from the command
window. As an example, let us write a simple script file and run it. Let us create it:
File–>New-Script (or m-file).

a=2
bscript=2*a+1

Let us save the file with the name myscript.m. Let us run it. If we run the m-file
from the MATLAB™ command window, then in the Current Folder window we
have to set the place, where has the m-file is to be saved (the path can also be set).
We can see the result on the screen. The command whos ckecks that the variable
bscript has been created.
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A function can be created using the function m-file. The function may have one
or more input and output parameters, and it uses local variables. The first row of the
m-file contains the key word function. Let us create a function m-file.

function y=myfunction(x)

bfunction=3*x

y=bfunction+2

Let us save the file with the name myfunction.m. Call the function from the
MATLAB™ command editor:

myfunction(4)

Using the command whos we can check that the global workspace does not
contain the local variable bfunction. The functions can be embedded in each other
in a file, but only the upper function block can be reached from outside.

From the menu, a number of debug devices are available to facilitate pro-
gramming (Breakpoint, Step, Continue).

1.2 Introduction to the MATLAB™ Control System
Toolbox

The Control System Toolbox extends the toolset of MATLAB™ so as to carry out
the analysis, modeling, and design of control systems. The toolbox provides a
repertory of algorithms and functions for these purposes, written mainly in the
m-file format.

1.2.1 The Use of Functions of the Control System Toolbox

Consider a single-input, single-output (SISO), continuous-time, linear, time
invariant (LTI) system defined by its transfer function (Fig. 1.2.):

Using MATLAB™, we can calculate the step response of a system with the
transfer function HðsÞ ¼ 2

s2 þ 2sþ 4 ¼ num
den . The step response is defined as the output

y tð Þ of the system applying a unit step function input u tð Þ ¼ 1 tð Þ assuming zero
initial conditions.

U s( )

u t( ) y t( )
Y s( )

H s( ) = Y s( )
U s( ) =

num
den

Fig. 1.2 An LTI system
defined by its transfer
function
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The transfer function can be defined in MATLAB™ by its numerator and
denominator as polynomials: num ¼ 2, den ¼ s2 þ 2sþ 4. The polynomials are
given by their coefficients put in a vector in descending order of s:

num=2

den=[1 2 4]

The step response can be displayed directly by the MATLAB™ step command
(Fig. 1.3.):

step(num,den);

Note that it is equivalent to use the compact form

step(2,[1 2 4]);

The time scale is automatically selected by MATLAB™.
Expanding the above command by a left-hand side argument it is possible to

store the values of the step response function (the output signal, the state variables
and the time vector) in an array:

[y,x,t]=step(num,den)

or more simply if only the values of the output signal are requested:

y=step(num,den)

It has to be mentioned that when calling MATLAB™ functions the number of
arguments in both sides may vary. The left-hand side output variables in the first
activation of the step function are the output variables. y is the output of the step
response, t gives the time points where it has been calculated, while x provides the
so-called inner or state variables. Let us observe that in this case the output signal is
not plotted. The values stored in a variable can be displayed by typing the name of
the variable.

Fig. 1.3 Step response
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y

The result is a column vector whose elements are the calculated values at the
sampled points of the step response function. It can be seen from the figure that
MATLAB™ has chosen the time interval 0� t� 6 based on the system’s
dynamical properties (zeros, poles). The sampling time applied by MATLAB™ can
be calculated from the time interval and the size of the vector y:

n=length(y)

n = 109

T=6/n

T = 0.055

The calculated sampling time is thus T¼6=109¼ 0:055 s.

The help command shows further possible forms of using the step command:

help step

It can be seen, then, that there are other ways to use the step command. E.g. if
the time interval 0� t� 10 and the sampling time T ¼ 0:1 are explicitly selected by

t=0:0.1:10

the following form can be employed:

y=step(num,den,t)

The output vector can now be displayed with the plot command:

plot(t,y);

or adding the grid option to support the easy reading of the plot

plot(t,y),grid on;

As far as the visualization is concerned, the plot command uses linear inter-
polation between the calculated samples. To avoid this interpolation, the command

plot(t,y,'.');

displays only the calculated samples.
The obtained y vector can be used for further calculations. The maximum of the

step response (more precisely the largest calculated sample) can be determined by
command max:
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ym=max(y)

ym = 0.5815

The steady state value of the step response is obtained by the dcgain command:

ys=dcgain(num,den)

ys = 0.5

and the percentage overshoot of the output is

yovrsht=(ym-ys)/ys*100

yovrsht = 16.2971

1.2.2 LTI Model Structures (sys Forms)

In order to simplify the commands the Control System Toolbox can also use
data-structures. There are three basic forms to describe linear time-invariant (LTI)
systems in MATLAB™:

Transfer function form: HtfðsÞ ¼ sm þ bm�1sm�1 þ ...þ b2s2 þ b1sþ b0
ansn þ an�1sn�1 þ ...þ a2s2 þ a1sþ a0

¼ 2
s2 þ 3sþ 2

Zero-pole-gain form: HzpkðsÞ ¼ k ðs�z1Þðs�z2Þ...ðs�zmÞ
ðs�p1Þðs�p2Þ...ðs�pnÞ ¼ 2

ðsþ 1Þðsþ 2Þ
State space form:

_x¼ Axþbu

y¼ cTxþdu
; A¼ �3 �1

2 0

� �
; b¼ 1

0

� �
; cT ¼ 0 1½ �; d ¼ 0

Using the MATLAB commands tf; zpk and ss, the LTI system can be given in
an LTI data-structure.

Defining the LTI sys structure

Let the transfer function of the system be HðsÞ ¼ 2
s2 þ 3sþ 2 ¼ 2

ðsþ 1Þðsþ 2Þ.
The transfer function form is given as

num=2

den=[1, 3, 2]

H=tf(num,den)
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The transfer function is:

or directly

Htf=tf(2,[1, 3, 2])

Defining the zero-pole-gain form:

Hzpk=zpk([],[-1, -2],2)

The zero/pole/gain form is:

The state space form can be given by

A=[-3, -1; 2, 0]; B=[1; 0]; C=[0, 1]; D=0;
Hss=ss(A,B,C,D)

The models can be converted into each other:

H=zpk(H)
H=ss(H)
H=tf(H)

The LTI models possess several properties. These properties can be obtained
using the command get.

get(Htf)
get(Hzpk)
get(Hss)

The LTI sys model parameters can be obtained by using the commands tfdata,
zpkdata, ssdata. The LTI data structure can be used also in case of Multi-Input
Multi-Output (MIMO) systems, therefore it stores some parameters in cell array
form. The parameters can be accessed in vector format if we put the flag ‘v’ in the
command.
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]pwo.fgp_?vhfcvc*J.)x)+
num = 0     0     2
den = 1     3     2

]|.r.m_?|rmfcvc*J.)x)+
]C.D.E.F_?uufcvc*J+ % here flag 'v' is omitted.

Symbolic data entry

The transfer function can be defined even more simply by symbolic data entry. Let
us give the s variable of the LAPLACE transform by a special command:

s=zpk('s')
H=1/(s^2+3*s+2)

The transfer function appears in zero-pole-gain form.
If the variable s is given in the form

s=tf('s')

then the transfer functions defined with this variable will be obtained in tf form,
i.e. in polynomial-polynomial form.

Arithmetic operations can be applied to data given in LTI sys structures as well.
The most frequently used operations are: +, -,*, /, \, ′, inv, ^. For example
the resulting transfer function of a closed loop system can be calculated by the
following symbolic relation:

Hcl=H/(1+H)

The possible simplifications are executed by the command minreal.

Hcl=minreal(Hcl

Among the LTI sys structures a hierarchical sequence order is defined: tf ->zpk
->ss. If in a command or in a calculation the operands are LTI models of different
forms, then the result is always in the form which is higher in the hierarchy. For
example, the result of

Htf*Hzpk

is obtained in the zpk form.

1.2.3 Time Domain Analysis

The Control System Toolbox contains several commands that provide basic tools for
time domain analysis. Let us analyse the system

H sð Þ ¼ 2
s2 þ 2sþ 4
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H=2/(s^2+2*s+4)

Define the time vector to be

t=0:0.1:10;

Step response: All previously discussed versions of the step command can be
used. Additionally the following forms can also be applied:

step(H);
[y,t,x]=step(H);

Let us remark that when using the LTI sys structure the order of the output
parameters differ from the order when using the (num, den) polynomial form:

[y,x,t]=step(num,den);

Impulse response: The impulse response is the response of the system to a DIRAC

delta input.

impulse(H);
yi=impulse(H,t);
plot(t,yi)

The system’s behaviour can also be analysed for nonzero initial conditions.
Nonzero initial conditions can only be taken into account if state space models are
used. Accordingly, to apply the initial command, the system has to be transformed
into a state space representation.

H=ss(H)
x0=[1, -2]
[y,t,x]=initial(H,x0);
plot(t,y),grid on

Note that these commands yield x as a matrix having as many columns as
dictated by the number of the state variables (two in this case), and as many rows as
dictated by the time instants (109 in this case). Just to check:

size(x)
ans = 109 2

The state trajectory can also be calculated and plotted. The first column of x
contains the first state variable, while the second state variable will show up in the
second column. The notation ‘:’ means that all elements of a vector are chosen. The
state trajectory plots a state variable versus the other one.

x1=x(:,1); x2=x(:,2);
plot(x1,x2)
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Output response to an arbitrary input: The output can be calculated as a response
for any input signal.

Let us determine the output signal if the input is the following sinusoidal signal:
u tð Þ ¼ 2 sin 3tð Þ
usin=2*sin(3*t);
ysin=lsim(H,usin,t);

Plot the input and the output in the same diagram (input: red, output: blue).

plot(t,usin,'r',t,ysin,'b'), grid;

1.2.4 Frequency Domain Analysis

The system’s behaviour can also be analysed in the frequency domain.
The BODE diagram can be calculated by the bode command. There are several

ways to use this command. The gain and phase shift of the system can be calculated
at a given frequency. Let us calculate the gain and the phase shift of system H at the
frequency x ¼ 5:

w=5;
[gain,phase]=bode(H,w);

The result is gain ¼ 0:0860; phase ¼ �154:5367.
These calculations can be repeated for several frequencies. The command bode

can be activated to calculate the absolute value and the phase angle of the frequency
function at several frequencies by one call. The BODE diagram can be displayed (see
Fig. 1.4) by

bode(H),grid

In this case, MATLAB™ automatically calculates a frequency vector based on
the system dynamics.

The frequency scale is logarithmic, as in this case a big frequency range can be
taken into account. The calculations can be repeated for a selected frequency range.
A logarithmic frequency vector can be generated by the logspace command

w=logspace(-1,1,200);

This command creates 200 logarithmically equidistant frequency points between
10�1 ¼ 0:1 and 101 ¼ 10.

The values of the BODE diagram can be calculated at these frequency points as

[gain,phase]=bode(H,w);
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Since the LTI structure can be used also in the case of MIMO systems, the
parameters gain and phase are given in 3 dimensional array format. This can be
transformed to vector form by the operation (:). Let us compare the following two
commands:

gain
gain(:)

NYQUIST diagram: At a given frequency the gain and the phase angle provide a
vector (a point) in the complex plane. These vectors are plotted in the complex
plane and their points are connected while the frequency is changing in a given
range (Fig. 1.5).

The NYQUIST diagram is produced by the command

nyquist(H);

The command margin evaluates the main characteristics of the frequency
function. It is an important tool to check the stability margins of a system.

margin(H);

(Frequency functions will be analyzed in more detail in Sect. 2.3.)

Fig. 1.4 BODE diagram
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1.2.5 Zeros, Poles

The roots of the denominator of the transfer function are the poles of the system.

[num,den]=tfdata(H,'v');
poles=roots(den);

The roots of the numerator of the transfer function are the zeros of the system.

zeros=roots(num);

The zeros and the poles can be immediately obtained from the zpk model:

[z,p,k]=zpkdata(H,'v');

The zeros and the poles can be plotted in the complex plane:

subplot(111);
pzmap(H);

The damp command lists all the poles and (in the case of complex pole-pairs)
the natural frequencies and damping factors:

damp(H);

The gain of the system (its steady state value in the case of a step input) can be
calculated

K=dcgain(H);

Fig. 1.5 NYQUIST diagram
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1.2.6 LTI Viewer

A linear system can be analysed in detail by LTI Viewer, which is a graphical user
interface for analysing the system response in the time domain and in the frequency
domain. The systems can be analysed from the menu or using the right mouse
button:

ltiview

or

ltiview('bode',H);

To demonstrate the application of LTI Viewer, we will first analyse a so called
first-order lag element which can be described by a first-order differential equation.
Its transfer function, differential equation, and step response can be obtained by the
following relations.

First-order lag element:
The transfer function is the ratio of the LAPLACE transforms of the output and the
input signals.

Y sð Þ
U sð Þ ¼ H sð Þ ¼ A

1þ sT
; or 1þ sTð ÞY sð Þ ¼ AU sð Þ:

Hence the differential equation is

y tð Þþ T _y tð Þ ¼ Au tð Þ

and its solution for a unit step input is

y tð Þ ¼ A 1� e�t=T
� �

1 tð Þ:

The step response can be obtained in several ways using MATLAB™.
Possibilities for simulation include the following:

a. by solving the differential equation:

T=10; A=5; t=0:0.1:50; y1=A*(1-exp(-t/T)); plot(t,y1);
grid;

b. on the basis of the transfer function:

y2=step(A,[T 1],t); plot(t,y1,t,y2)

c. using the LTI description:

s=tf('s'); P1=A/(1+T*s); y3=step(P1,t);
plot(t,y1,t,y2,t,y3)
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d. using the block orientated SIMULINK™ program (see Sect. 1.3.).

It can be seen that the curves of the step responses calculated in the three
different ways coincide.

With LTI Viewer a system can be imported and then analysed with its different
characteristic functions. Let us consider the previous LTI model:

P1=A/(1+T*s)

The transfer function is

ltiview

Select File/Import
Import from Workspace
Select P1
OK
RightClick, Select ‘Plot Types’:

Step
Impulse
Bode
Nyquist
Pole/Zero

…

Checking the points of the curves: Left Click on the curve
Analysing several systems in parallel:

P2=5/(1+20*s), P3=5/(1+50*s);

Back to the LTI viewer:
Import P1, P2, P3
Right Click, Select Systems: automatic order of the colours: blue, green, red
The system dynamics can be seen for the different time constants in the time-

and the frequency domain and on the complex plane.
Let us now analyse the behaviour and characteristic functions of the so called

second-order oscillating element, which can be described by a second-order dif-
ferential equation.

P4=1/(s^2+s+1), P5=1/(s^2+0.5*s+1);ltiview

Let us add a zero to the second-order system and analyse its effect on the
characteristic functions of the system.
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s=zpk('s');
P6=8/6*(s+6)/(s+2)/(s+4),P7=8/3*(s+3)/(s+2)/(s+4);
ltiview
P8=8*(s+1)/(s+2)/(s+4);P9=-8/3*(s-3)/(s+2)/(s+4);
ltiview

1.3 SIMULINK™

SIMULINK™ is a graphics software package supporting block-oriented system
analysis. SIMULINK™ has two phases, model definition and model analysis. First
a model has to be defined, then it can be analysed by running a simulation.
SIMULINK™ represents dynamical systems with block diagrams. Defining a
system is much like drawing a block diagram. Instead of drawing the individual
blocks, blocks are copied from libraries of blocks. The standard block library is
organized into several subsystems, grouping blocks according to their behaviour.
Blocks can be copied from these or any other libraries or models into your model.
The SIMULINK™ block library can be opened from the MATLAB™ command
window by entering the command simulink. This command displays a new window
containing icons for the subsystem blocks. To construct your model, select New
from the File menu of SIMULINK to open a new empty window in which you can
build your model. Open one or more libraries and drag some blocks into your active
window, then release the button. To connect two blocks use the left mouse button to
click on either the output or input port of one block, drag to the other block’s input
or output port to draw a connecting line, and then release the button. By clicking on
the block with the right button you can duplicate it. The blocks can be increased,
decreased, and rotated. Open the blocks by double clicking to change some of their
internal parameters. Save the system by selecting Save from the File menu.
Figure 1.6. shows the SIMULINK™ diagram of a control system.

Run a simulation by selecting Start from the Simulation menu or by clicking on
the Run icon (►). Simulation parameters can also be changed. You can monitor the
behavior of your system with a Scope or you can use the To Workspace block to

Fig. 1.6 SIMULINK™ diagram of a control system
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send data to the MATLAB™ workspace and perform MATLAB™ functions (e.g.
plot) on the results. Parameters of the blocks can be referred also by variables
defined in MATLAB™. Simulation of SIMULINK™ models involves the
numerical integration of sets of ordinary differential equations. SIMULINK™
provides a number of integration algorithms for the simulation of such equations.
The appropriate choice of method and the careful selection of simulation parameters
are important considerations for obtaining accurate results. To get yourself famil-
iarized with the flavour of the options offered by SIMULINK™ consider the fol-
lowing example.

Create a new file and copy various blocks (Fig. 1.6). The block parameters
should then be changed to the required value. Change the Simulation
–>Parameters–>Stop time parameter to 50 from the menu. SIMULINK™ uses the
variables defined in the MATLAB™ workspace.

H sð Þ: Control System Toolbox –>LTI system : H
Creating difference: Simulink–>Math–>Sum: +–
Dead-time, delay: Simulink–>Continuous–>Transport Delay: 1
Gain: Simulink–>Math–>Gain: 1.5
Step input: Simulink–>Sources–>Step
Scope: Simulink–>Sinks–>Scope
Clock: Simulink–>Sources–>ClockOutput, time: Simulink–>Sinks–>To Workspace:
t; y

The result can be analysed directly by the Scope block or it can be sent back to
the MATLAB™ workspace by the To Workspace output block. The results can be
further processed and displayed graphically. Change the Gain parameter between
0.5 and 2. Determine the critical value of the gain, where steady oscillations do
appear in the control system.

The results of the simulation can be sent to the MATLAB™ workspace through
the Scope block as well. Let us set the parameters of the graphical window of the
Scope as follows:

Under the ‘properties’ menu
Data history: Save data to workspace –>Variable name: ty (tu for the control

signal)
Matrix format
So the values of the time vector t and the output vector y can be obtained easily

after the simulation, and then some properties (as e.g. the overshoot, settling time,
maximum value of the control signal, etc.) can be determined.

t=ty(:,1)
y=ty(:,2)
plot(t,y),grid on
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Chapter 2
Description of Continuous Systems
in the Time-, Operator- and Frequency
Domains

The behaviour of linear systems can be described in the time-, in the LAPLACE

operator-, and in the frequency domain. The most straightforward information about
the operation of practical systems is obtained by analysis in the time domain. The
analysis in the frequency domain gives deeper insight into important properties of
the systems. The design of control systems is frequently executed based on con-
siderations in the frequency domain. In the LAPLACE operator domain the calcula-
tions related to the performance of the system become simpler than in the time
domain. These domains can be converted to each other (Fig. 2.1).

2.1 Relationship Between the Time- and the Frequency
Domain

A signal can be investigated in the frequency and in the time domain. Investigation
in the frequency domain means that the signal is considered as a sum of sinusoidal
components. Let us approximate a periodical rectangular signal by the sum of 4
sinusoidal signals. The odd coefficients of the frequency spectrum (FOURIER
expansion) of the signal are: 4=p; 4=3p; 4=5p; 4=7p. The approximation can be
calculated by the MATLAB™ commands

w0=1; Ts=0.2;

t=0:Ts:51;

y=4/pi*(sin(w0*t)+ sin(3*w0*t)/3+ sin(5*w0*t)/5+

sin(7*w0*t)/7);

figure(1),plot(t,y);
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It can be seen that the approximation is already good with only 4 components
(Fig. 2.2).

Let us plot the absolute value of the spectrum of the signal.
The command fft determines the FOURIER transform of the signal.

Yf=fft(y);

n=length(t);nh=floor(n/2);

Yf=Yf(1:nh+1);

w=2*pi*(1:nh+1)/(n*Ts);

figure(2),plot(w,abs(Yf))

It can be seen that the spectrum (Fig. 2.3) contains values only at odd
frequencies.

Fig. 2.1 Domains of
calculations
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1.5Fig. 2.2 A periodic signal
approximated by 4 Fourier
components
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2.2 LAPLACE and Inverse LAPLACE Transformations

Analysing the behaviour of linear systems in the LAPLACE operator domain using
LAPLACE transformation and the inverse LAPLACE transformation is easier than
analysis in the time domain. LAPLACE transforms of the most frequently applied
input signals:

d tð Þ $ 1 ; 1 tð Þ $ 1=s and t $ 1=s2:

Determine the step response of a system (Fig. 2.4).
In the LAPLACE operator domain the output signal is obtained by multiplication,

Y sð Þ ¼ H sð ÞU sð Þ, where Y sð Þ ¼ L y tð Þf g is the LAPLACE transform of the output
signal y tð Þ and H sð Þ is the transfer function of the system, which is defined as the

ratio of the LAPLACE transforms of the output and the input signal: H sð Þ ¼ Y sð Þ
U sð Þ. The

output signal is obtained by applying the inverse LAPLACE transformation:
y tð Þ ¼ L�1 Y sð Þf g.

Let us calculate the step response of the system given by the transfer function

H sð Þ ¼ �2s3 � 9s2 � 5sþ 18

sþ 2ð Þ sþ 3ð Þ2 :
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160Fig. 2.3 Frequency spectrum

u t( )

U s( )
y t( )
Y s( )

H s( )
Fig. 2.4 System described
by its transfer function
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The input signal is a unit step, whose LAPLACE transform is U sð Þ ¼ L 1 tð Þf g ¼ 1
s.

The LAPLACE transform of the output signal is

Y sð Þ ¼ U sð ÞH sð Þ ¼ 1
s
�2s3 � 9s2 � 5sþ 18

sþ 2ð Þ sþ 3ð Þ2

The output signal y tð Þ in the time domain can be obtained by inverse LAPLACE

transformation. The LAPLACE transform of the signal is expanded to a sum of
components whose LAPLACE transforms are known. The most common elements are

k�!L
�1

k 1 tð Þ ; t� 0

r
sþ p

�!L
�1

re�pt

r

sþ pð Þ2 �!
L�1

rte�pt

This form can be obtained by the partial fractional expansion of the LAPLACE

transform of the output signal. In MATLAB™ this is executed by the command
residue.

First give the LAPLACE transform of the output signal by the polynomials of its
numerator and denominator.

s=zpk('s')

Y=(-2*s^3-9*s^2+-5*s+18)/(s*(s+2)*(s+3)*(s+3))

[num,den]=tfdata(Y,'v')

The polynomials can be given directly, as well.

num=[-2 -9 -5 18]

den=poly([-3 -3 -2 0])

Expansion in terms of partial fractions:

[r,p,k]=residue(num,den)

r = 1.0000

2.0000

-4.0000

1.0000

p = -3.0000

-3.0000
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-2.0000

0

k = []

That means the result in the LAPLACE operator domain is

Y sð Þ ¼ r 1ð Þ
s� p 1ð Þ þ

r 2ð Þ
s� p 2ð Þ½ �2 þ r 3ð Þ

s� p 3ð Þ þ k ¼ 1
sþ 3

þ 2

sþ 3ð Þ2 �
4

sþ 2
þ 1

s

and in the time domain,

y tð Þ ¼ e�3t þ 2te�3t � 4e�2t þ 1 tð Þ; t� 0

Let us observe the structure corresponding to the double pole in the vectors r and
p in the partial fractional representation of the LAPLACE transform of the output
signal and in the expression of the output signal in the time domain. The number of
partial fractions belonging to a multiple pole is equal to the multiplicity of the pole.

Based on the analytical expression above the time function can be given in
numerical form as

t=0:0.05:6;

y=r(1)*exp(p(1)*t)+r(2)*t.*exp(p(2)*t)+r(3)*exp(p(3)*t) +r(4)*exp(p(4)

*t);

In the second term on the right side the point besides t means that the operation
is to be executed on the elements of the vector.

The values of y tð Þ can be determined numerically even more simply.

yi=impulse(Y,t);

plot(t,y,t,yi),grid;

In the figure only one curve is seen, as the two curves coincide exactly.
Exercise:
Determine the inverse LAPLACE transform when there are conjugate complex

poles.

Y sð Þ ¼ 2
s2 þ 2sþ 1:25

:

Find an analytical expression for the signal y tð Þ.
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2.3 The Frequency Function

A basic property of a stable linear system is that for a sinusoidal input, it responds
with a sinusoidal signal of the same frequency in steady (quasi-stationary) state.
Applying the input signal

u tð Þ ¼ Au sin xtþuuð Þ t� 0,

the output signal is obtained as the sum of a quasi-stationary and a transient
component.

y tð Þ ¼ ysteady tð Þþ ytransient tð Þ

The output signal in quasi-stationary state (Fig. 2.5) is

ysteady tð Þ ¼ Ay sin xtþuy

� �

The frequency function defines the amplitude ratio Ay=Au and the phase shift
uy � uu as a function of frequency. Using the amplitude ratio and the phase shift
within one single function the frequency function is derived as a complex function.
It can be proven that formally the frequency function can be obtained from the
transfer function by substituting s ¼ jx.

H jxð Þ ¼ H sð Þjs¼jx¼ M xð Þ eju xð Þ

M xð Þ is the amplitude function (the absolute value of the frequency function)
and u xð Þ is the phase function.

M xð Þ ¼ H jxð Þj j ¼ Ay xð Þ
Au xð Þ ; u xð Þ ¼ arg H jxð Þf g ¼ uy xð Þ � uu xð Þ

The frequency function can be depicted in a given frequency range by plotting
M xð Þ and u xð Þ versus the frequency. The frequency scale is logarithmic. This
technique gives the BODE diagram. A second possibility is to plot the points cor-
responding to pairs of M xð Þ and u xð Þ of the frequency function calculated for
various values of x in the complex plane, while x varies from zero to infinity.
Connecting these points results in the contour of the so-called NYQUIST diagram.

Fig. 2.5 System response to a sinusoidal input
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2.3.1 Calculation and Visualization of the Frequency
Function

Suppose the transfer function of a system is

H sð Þ ¼ 10
s2 þ 2sþ 10

:

Determine its output signal if the input signal is u tð Þ ¼ Au sin x tð Þ;
Au ¼ 1; x ¼ 3.

num=10

den=[1, 2, 10]

H=tf(num,den)

t=0:0.05:10;

u=sin(3*t);

y=lsim(H,u,t);

Plot both the input (red) and output (blue) in the same diagram:

plot(t,u,'r',t,y,'b'), grid;

In steady, quasi-stationary state, after the decrease of the transient, the output
signal is sinusoidal, its frequency is the same as that of the input signal, but its
amplitude and phase angle differ from those of the input signal. Their values depend
on the frequency. From the figure one sees (M 3ð Þ ¼ 1:64; u ¼ �80�). The gain
and the phase angle can be calculated from the frequency function H s ¼ jxð Þ. In
MATLAB™, the command bode can be employed to calculate these values at a
given frequency or over a given frequency range. E.g. at x ¼ 3,

[M,fi]=bode(H,3);

The values of the gain and the phase angle can be obtained from the complex
frequency function as well.

H jxð Þ ¼ 10

jxð Þ2 þ 2jxþ 10
¼ 10

10� x2 þ 2jx

H j3ð Þ ¼ 10
10� 32 þ 2j3

¼ 10
1þ 6j
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H3=10/(1+6j)

M=abs(H3)

fi=angle(H3)*180/pi

Let us repeat the calculations if the frequency of the input signal is changed to
x ¼ 10. It can be seen that the values of the gain and the phase angle have changed.

The command bode plots the amplitude and the phase angle versus the
frequency.

bode(H);

Check on the curve if at frequency x ¼ 3 the gain and the phase angle are equal
to the previously calculated values. The gain is given in decibels. The value of the
gain M 3ð Þ ¼ 1:64 in decibels is

20*log10(1.64)

The scale on the amplitude curve can be set from decibels to absolute values. Let
us right click with the mouse on the white background of the amplitude diagram of
the BODE diagram, then set on the appearing menu window Properties, Units,
magnitude in –> absolute. Then the gain corresponding to the given frequency can
be read directly from the amplitude diagram.

2.3.2 Plotting the BODE and the NYQUIST Diagrams

The bode command shows the amplitudes of the BODE diagram in decibels and the
phase angles in degrees. The frequency scale is logarithmic.

bode(H)

Let us calculate the amplitude and the phase values in vector format and then
plot the diagram.

[gain,phase,w]=bode(H)

The bode command determines automatically the points of the frequency vector
based on the poles and zeros of the system. These values are provided in the vector
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w on the left side of the command. If we would like to calculate the frequency
function over a different frequency range, the frequency vector can be given by the
command logspace which determines a row vector with logarithmically equidis-
tant frequency points.

w=logspace(-1,2,200)

The first two parameters of logspace give the lower and the upper points of
the frequency range in powers of 10. The above command calculates 200 loga-
rithmically equidistant points between the lower point 10�1 ¼ 0:1 and the upper
point 102 ¼ 100 (without giving the third variable, the command employees 50
points). If, e.g. the upper point of the frequency range is 300, the command is called
in the following form:

w=logspace(-1,log10(300),200)

Let us repeat the calculation of the BODE diagram with this frequency vector.

[gain,phase]=bode(H,w)

(Remark: the variables on the right side of a MATLAB™ command are the input
variables, while the variables on the left side are the output variables.)

The LTI sys structure generates three dimensional matrices (because of the
possible MIMO systems). With the (:) operator the results can be transformed to
vector form.

gain=gain(:),phase=phase(:)

The amplitude and the phase diagrams can be plotted in different windows of the
screen by the command subplot. (E.g. subplot(211) generates 2 � 1 windows on
the screen and refers to the first one.)

Plot the amplitude and the phase angle in linear scale, and the frequency with
logarithmic scale by calling the command semilogx. This command is used sim-
ilarly to plot.

subplot(211),semilogx(w,gain)

subplot(212),semilogx(w,phase)
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Generally the amplitude is plotted in logarithmic scale, using the command
loglog.

subplot(211),loglog(w,gain)

subplot(212),semilogx(w,phase)

On the amplitude scale, the powers of 10 do appear. To convert the values to
decibels use the following commands.

subplot(211),semilogx(w,20*log10(gain)),grid

subplot(212),semilogx(w,phase),grid

The BODE diagram is advantageous when multiplying two transfer functions
(calculating the resulting transfer functions of serially connected elements).
Because of the logarithmic scale the BODE diagrams are just added. In most cases,
approximate BODE diagrams, given by the asymptotes of the magnitude curve,
provide a good approximation of the frequency characteristics. By sketching these
approximate curves, a quick evaluation of the system’s behaviour can be made.

The NYQUIST diagram plots the points of the frequency function in the complex
plane. Its shape characterizes the system. The important properties of the system
can be determined by analysing it.

nyquist(H)

Calling the command without variables on the left side plots the NYQUIST dia-
gram extending the curve with points calculated for negative frequencies. This is
the so called entire or total NYQUIST diagram.

The real and the imaginary components can be calculated from the values of the
amplitudes and the phase angles.

re=real(gain.*exp(j*phase*pi/180));

im=imag(gain.*exp(j*phase*pi/180));

The real and imaginary values belonging to the different frequency values can
also be calculated directly, with the command nyquist.

[re,im]=nyquist(H,w);

re=re(:);im=im(:);
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Then the NYQUIST diagram for positive frequencies can be plotted.

plot(re,im)

To supplement the curve with the part belonging to negative frequencies, it has
to be throwing back to the real axis.

re2=[re;flipud(re)]

im2=[im;flipud(-im)]

plot(re2,im2)

2.4 Operations with Basic Elements

In a control system, the basic connections of elements are the series connection,
parallel connection, and feedback. With block diagram algebra a complex system
can be built with these basic connections.

Given the following two systems with their transfer functions:

H1 sð Þ ¼ 10sþ 1
sþ 1

and H2 sð Þ ¼ s
10sþ 1ð Þ 5sþ 1ð Þ

Determine the resulting transfer functions

– of the serially connected systems,
– of the parallel connected systems,
– when H1 is fed back through a unity gain element (negative feedback)
– when H1 is fed back through H2 (negative feedback)

Let us define two systems in MATLAB™.

s=zpk('s')

H1=(10*s+1)/(s+1)

H2=s/((10*s+1)*(5*s+1))

Serially connected systems (Fig. 2.6):

H1 s( ) H2 s( ) H s( ) = H1 s( )H2 s( )
Fig. 2.6 Serially connected
systems
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The resulting transfer function:

H=H1*H2

The series command also calculates the resulting transfer function of a series
connection:

H=series(H1,H2)

0.2 s (s+0.1)

---------------------

(s+1) (s+0.2) (s+0.1)

It can be seen that the numerator and the denominator have common roots
(zeros, poles) which can be cancelled using the command minreal.

H=minreal(H)

0.2 s

-------------

(s+1) (s+0.2)

Parallel connected systems (Fig. 2.7):
The resulting transfer function:

H=H1+H2

10 (s+0.06876) (s^2 + 0.3332 s + 0.02909)

-----------------------------------------

(s+1) (s+0.2) (s+0.1)

Negative feedback through unit gain (Fig. 2.8):

H1 s( )

H1 s( ) +H s( ) =

H2 s( )

H2 s( )

Fig. 2.7 Parallel connection

1( )H s H s( ) =
H1 s( )
H1 s( )1+

Fig. 2.8 Negative feedback
through unit gain
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The resulting transfer function:

H=H1/(1+H1)

The command feedback can also be applied to calculate the resulting transfer
function. The second parameter is the transfer function in the feedback path, the
third parameter shows that the feedback is negative.

H=feedback(H1,1,-1)

(or H=feedback(H1,1), the basic definition is negative feedback.)

H=minreal(H)

0.90909 (s+0.1)

---------------

(s+0.1818)

Negative feedback (Fig. 2.9):
The resulting transfer function:

H=H1/(1+H1*H2)

With the command feedback:

H=feedback(H1,H2,-1)

H=minreal(H)

10 (s+0.1) (s+0.2)
--------------------
(s+1.239) (s+0.1615)

1( )H s

2 ( )H s

H s( ) =
H1 s( )

H1 s( )H2 s( )1+

Fig. 2.9 Negative feedback
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2.5 Basic Elements of a Linear System

A linear system generally can be given in the following time constant form:

H sð Þ ¼ K
si

Qc
1 1þ ssj
� �Qd

1 1þ 2fjsojsþ s2s2oj
� �

Qe
1 1þ sTj
� �Q f

1 1þ 2njTojsþ s2T2
oj

� � e�sTd

where K is the gain, i is the number of the integrators, Td is the dead-time, so and To
are time constants, and f and n are the damping factors.

In the sequel the time- and frequency characteristics of the most important
elements will be analysed. These are the proportional, integrating, differentiating,
dead-time, and lag elements, and more complex elements obtained by series con-
nections of these basic elements.

2.5.1 Proportional (P) Element

H sð Þ ¼ HP sð Þ ¼ K

The gain is K, the phase angle is zero at all frequencies.

2.5.2 Integrating (I) Element

H sð Þ ¼ HI sð Þ ¼ K
s

Here i ¼ 1: the system contains an integrator. The integrator has a “memory”: its
output value depends on the values of the past inputs. Its output can be constant
only if the input value is zero. Let us investigate the properties of a pure integrator
given by a transfer function HI sð Þ for gains K ¼ 1 and K ¼ 5.

H1 sð Þ ¼ 1
s

and H2 sð Þ ¼ 5
s
:

engct % clear all the previously defined variables.
u?|rm*)u)+ % define the symbolic s LAPLACE variable in zpk form.
J3?31u
J4?71u
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The step response:

figure(1), step(H1,'r',H2,'g'), grid

BODE diagram:

figure(2), bode(H1,'r',H2,'g'), grid

NYQUIST diagram:

figure(3), nyquist (H1,'r',H2,'g'),grid

It can be seen that the step response increases linearly. The amplitude of the
frequency function at low frequencies is infinity. Its phase angle is −90° for all
frequencies.

2.5.3 First-Order Lag Element (PT1)

H sð Þ ¼ HT sð Þ ¼ K
1þ Ts

Determine the step response and the BODE and NYQUIST diagrams of the PT1
element given by the transfer function

H sð Þ ¼ 2
1þ 10s

:

Define the system by

H=2/(1+10*s)

or

H=tf(2,[10, 1])

The step response:

t=0:0.1:50;

y=step(H,t);

plot(t,y),grid
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or simply

step(H)

Let us investigate the effect of the parameters K and T on the system response.
The steady value of the output signal, y t ! 1ð Þ, can be calculated by the final

value theorem of the LAPLACE transformation:

y t ! 1ð Þ ¼ lim
s!0

sY sð Þ ¼ lim
s!0

sH sð ÞU sð Þ,

where U sð Þ is the LAPLACE transform of the input signal. For unit step input,

y t ! 1ð Þ ¼ lim
s!0

s H sð ÞU sð Þ ¼ lim
s!0

s H sð Þ 1
s
¼ lim

s!0
H sð Þ

In the case of the considered system,

y t ! 1ð Þ ¼ 2
1þ 10s

����
s¼0

¼ 2:

With MATLAB™:

yinf=dcgain(H)

Investigate the effect of the time constant parameter T on the transient behaviour.
Repeat the command

y=step(2,[T 1],t);

for several different values of T .
The transfer function of the system can be given in zero-pole form as well:

H1 sð Þ ¼ kp
s� p

¼ 2
10 0:1þ sð Þ ¼

0:2
sþ 0:1

,
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where

p ¼ � 1
T

and kp ¼ k
T

The absolute value of the pole gives the break-point frequency of the approxi-
mating BODE amplitude-frequency diagram.

The steady-state value of the step response

y t ! 1ð Þ ¼ lim
s!0

H sð Þ

coincides with the low frequency value of the BODE amplitude-frequency function.
The BODE and NYQUIST diagrams of the system are obtained by the following

commands:

bode(H);

nyquist(H);

The characteristic functions of the following first-order, second-order and
third-order (PT1, PT2, PT3) elements can be calculated similarly.

H1 ¼ 2
1þ 10s

; H2 ¼ 2
1þ 10sð Þ 1þ 2sð Þ ; H3 ¼ 2

1þ 10sð Þ 1þ 2sð Þ 1þ sð Þ

(1—is in red, 2—is in green, 3—is in blue)

H1=2/(1+10*s)

H2=2/((1+10*s)*(1+2*s))

H3=2/((1+10*s)*(1+2*s)*(1+s))

Step responses:

figure(1), step(H1,'r',H2,'g',H3,'b'),grid

BODE diagrams:

figure(2), bode(H1,'r',H2,'g',H3,'b'), grid
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NYQUIST diagrams:

figure(3), nyquist(H1,'r',H2,'g',H3,'b'),grid

With more lags the step response is slower.
Remark: in the figure window the marked part of the plots can be enlarged by

command zoom.
As it was shown previously, the characteristic functions of several elements can

be investigated simultaneously also by the LTI Viewer.

2.5.4 Second-Order Oscillating (n) Element

H sð Þ ¼ Hn sð Þ ¼ 1
s2T2

o þ 2nTosþ 1

Let us investigate the system:

H sð Þ ¼ 1
9s2 þ 2sþ 1

¼ 1
s2T2

o þ 2nTosþ 1

where xo ¼ 1
To

is the natural frequency and n is the damping factor (To ¼ 1
xo

¼ 3,
n ¼ 1=3).

num=1;

den=[9, 2, 1]

H=tf(num,den)

The poles of the system are calculated by the command roots,

roots(den)

or by the command damp:

damp(H)

The conjugate complex poles can be given in the following form:
p1 ¼ aþ jb; p2 ¼ a� jb.

The overshoot vt of the step response is calculated by
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x2
o ¼ a2 þ b2 ; n ¼ � a

xo
and vt ¼ e

�npffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
¼ e�

pa
b :

The oscillation frequency is

xp ¼ b ¼ xo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q

The time of the first maximum of the step response (the peak time) is
Tp ¼ p=xp ¼ p=b.

kszi=1/3

vt=exp(-kszi*pi/sqrt(1-kszi*kszi))

The step response can be obtained as follows:

[y,t]=step(H);

plot(t,y), grid

The maximum value of the step response:

ym=max(y)

Its steady state value:

ys=dcgain(H)

The overshoot can be calculated also as

yo=(ym-ys)/ys

Let us analyse the step responses, the BODE diagram and the NYQUIST diagram,
for several values of the damping factor: n ¼ 0:3; 0:7; 1; 2.

kszi1=0.3, kszi2=0.7, kszi3=1, kszi4=2

T0=3

H1=1/(s*s*T0*T0+2*kszi1*T0*s+1)

H2=1/(s*s*T0*T0+2*kszi2*T0*s+1)

H3=1/(s*s*T0*T0+2*kszi3*T0*s+1)

H4=1/(s*s*T0*T0+2*kszi4*T0*s+1)
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The step responses:

figure(1), step(H1,'r',H2,'g',H3,'b',H4,'m'),grid

The BODE diagrams:

figure(2), bode(H1,'r',H2,'g',H3,'b',H4,'m'),grid

The NYQUIST diagrams:

figure(3), nyquist(H1,'r',H2,'g',H3,'b',H4,'m'),grid

The pole-zero configurations:

figure(4), pzmap (H1,'r',H2,'g',H3,'b',H4,'m')

The poles can be obtained also with command damp:

damp(H1)

damp(H2)

damp(H3)

damp(H4)

It can be seen that for damping factor n ¼ 0:3 the step response is the most
oscillating, the maximum amplification in the BODE amplitude diagram is the
highest, and the NYQUIST diagram crossing the imaginary axis gives the biggest
magnitude for this case. The poles are complex conjugates. The imaginary value of
the complex conjugate poles providing the frequency of oscillation in the time
response is also the highest. High amplification in the BODE amplitude diagram
indicates a high overshoot in the step response. If this should be avoided, no high
amplification is allowed in the BODE amplitude diagram. The damping factor n ¼
0:7 provides a slight overshoot. Control systems can be designed for similar
behaviour. For n ¼ 1 the system has two coinciding real poles. In the case of n[ 1
there are two different real poles, and the step response is aperiodic. There is no
overshoot in the step response and no amplification in the BODE amplitude diagram.
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2.5.5 Differentiating (D and DT) Elements

The transfer function of the ideal differentiating element is H sð Þ ¼ sTd.

H=s

bode(H)

step(H)

??? Error using ==> rfinputs

Not supported for non-proper models.

MATLAB™ can not evaluate the system responses as the element is non real-
izable, its transfer function is non-proper, the degree of its numerator is higher than
that of its denominator. Its step response is the DIRAC delta.

The differentiating effect can be realized only together with lag elements.

H1 sð Þ ¼ 2s
1þ 10s

; H2 sð Þ ¼ 2s
1þ 10sð Þ 1þ 2sð Þ

Give the step responses, the BODE and the NYQUIST diagrams of these elements.

H1=(2*s)/(1+10*s)

H2=(2*s)/((1+10*s)*(1+2*s))

Step responses:

figure(1); step(H1,'r',H2,'b'),grid

BODE diagrams:

figure(2), bode(H1,'r',H2, 'b'),grid

NYQUIST diagrams:

figure(3), nyquist(H1,'r',H2, 'b'),grid

It can be seen that a differentiating element behaves as a high pass filter. It
supresses the DC (low frequency) component of a signal and amplifies the high
frequency components.
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2.5.6 The Effect of Zeros

Suppose the transfer function is given in the following form. The roots of the
numerator are the zeros of the transfer function.

H sð Þ ¼ k s� z1ð Þ s� z2ð Þ. . . s� zmð Þ
D sð Þ

Let us analyse how the zeros affect the step response and the frequency response
in case of the following transfer function:

H sð Þ ¼ 1þ s s
1þ sð Þ 1þ 10sð Þ

The time constant s in the numerator (the zero is �1=s) changes between −12
and 12. In the case of a positive zero (which is located in the right half-plane of the
complex plane) the system is called a non-minimum phase system.

s=tf('s')

D=(1+s)*(1+10*s)

tau=[-12 -4 0 4 12]

for i=1:5,H(i)=(s*tau(i)+1)/D,end

figure(1),step(H(1),'r',H(2),'g',H(3),'k',H(4),'m',H(5),'b')

The step responses are seen in Fig. 2.10. Note that in the case of a non-minimum
phase system, they behave unexpectedly. E.g. in the case of one right-side zero the
step response starts in the opposite direction related to the steady state value, then it

Fig. 2.10 Zeros affect the
step response
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changes direction and reaches the steady state value. Inserting a zero in the system
results in an accelerated time response.

BODE and NYQUIST diagrams:

figure(2),bode(H(1),'r',H(2),'g',H(3),'k',H(4),'m',H(5),'b)

figure(3),nyquist(H(1),'r',H(2),'g',H(3),'k',H(4),'m',H(5),'b)

Let us evaluate the effect of a zero in the frequency domain, how it influences the
BODE and the NYQUIST diagrams.

2.5.7 Dead-Time Element

Its transfer function is

HH sð Þ ¼ H sð Þe�sTd

Its description in the time and in the LAPLACE operator domain is

y tð Þ ! y t � Tdð Þ; Y sð Þ ! Y sð Þe�sTd

In the frequency domain, this is

e�jxTdj j ¼ 1; arg e�jxTdf g ¼ �xTd (in radians).

Its gain is calculated as HHj j ¼ Hj j, and its phase angle is arg HHð Þ ¼
arg Hð Þ � xTd.

Let us analyse the frequency functions of the elements

H1 sð Þ ¼ 1
1þ 10s

and H2 sð Þ ¼ 1
1þ 10sð Þ e

�2s:

The amplitude and the phase angle of the dead-time element are

H1j j ¼ H2j j , gain2 ¼ gain1

arg H2ð Þ ¼ arg H1ð Þ � xTd , phase2 ¼ phase1� w�Td

Td=2

H1=1/(1+10*s)

num1=1

den1=[10, 1]
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Now when calculating the BODE diagram, use the polynomial form given by the
num and den numerator and denominator polynomials.

First let us generate the frequency vector.

w=logspace(-2,2,500);

[gain1,phase1]=bode(H1,w);

Change the gain1, phase1 values to vector form.

gain1=gain1(:);phase1=phase1(:);

phasedelay=180/pi*Td*w';

The bode command calculates the phase angle in degrees. The phase delay
u ¼ �xTd of the dead-time element is obtained in radians. Therefore it has to be
converted to degrees.

The amplitude and the phase angle considering the dead-time can be obtained as
follows:

gain2=gain1;

phase2=phase1-phasedelay;

subplot(211),loglog(w, gain1,'r',w, gain2,'b'),grid;

subplot(212),semilogx(w, phase1,'r',w, phase2,'b'),grid

The linearity of the course of the phase angle can be seen better if drawing it
command plot is used instead of semilogx.

figure(2),subplot(111),plot(w,phase1,'r',w,phase2,'b'),grid

Now let us plot the NYQUIST diagram. First calculate the real and imaginary
values of the frequency function.

h1= gain1.*exp(j*phase1*pi/180);

h2= gain2.*exp(j*phase2*pi/180);

figure(2),plot(real(h1),imag(h1),'r',real(h2),imag(h2),'b')

The behaviour in the high frequency domain could be seen better if a bigger
frequency range is given with the command logspace.

The behaviour of a dead-time element in the time domain can be investigated
better in SIMULINK™, as the time-delay is offered as a single building block.
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The transfer function of the dead-time element is not a rational function.
Nevertheless it can be approximated by a non-minimum phase rational fraction
where the first elements of its TAYLOR expansion are the same as those of the
exponential transfer function characterizing the dead-time. These rational functions
are called PADE functions. The higher the degree of the PADE function, the better is
the approximation. It has to be mentioned that with this approximation the step
response starts with +1 or –1 instead of zero. In MATLAB™, the command pade
calculates the approximation.

Demonstrating the use of PADE approximation, use a 5-th order approximation.

HH sð Þ ¼ e�sTd ffi HPADE sð Þ
pade(Td,5);

As there is no output parameter, now this command shows graphically the step
response.

[numd,dend]=pade(Td,5)

Hd=tf(numd,dend)

Hd=zpk(Hd)

H2=H1*Hd

The step responses:

figure(1), step(H1,'r',H2,'g'),grid

The BODE diagram:

figure(2), bode(H1,'r',H2,'g'),grid

The NYQUIST diagram:

figure(3), nyquist(H1,'r',H2,'g')

It should be emphasized that in the frequency domain it is better to consider the
phase modifying effect of the dead-time than to employ the PADE approximation. In
the time domain the analysis can be executed better by running the simulation in
SIMULINK™.
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Problem: Let us investigate how good is the PADE approximation in the above
case of a first-order lag element with dead-time. Build a SIMULINK™ program
using the “transport delay” block, and using the fifth-order PADE rational function.
Compare the step responses.

2.5.8 Evaluation of the Characteristics of the Elements,
the Effects of Poles and Zeros

The values of the step responses in steady state (t ! 1) and the values of the
amplitude response of the frequency function for x ! 0 are the same.

NYQUIST diagrams of proportional elements at x ¼ 0 start from a point of the
positive real axis, which characterizes the gain of the element. The NYQUIST diagram
of an integrating element at x ¼ 0 starts from infinity in the direction of the
negative imaginary axis. The NYQUIST diagram of a double integrating element
starts from infinity in the direction of the negative real axis. NYQUIST diagrams of
derivative elements start from the zero point of the complex plane in the direction of
the positive imaginary axis. In case of a transfer function containing only lags (no
zeros), the NYQUIST diagram covers as many quarters in the complex plane as there
are time lags. The zeros deteriorate the monotonic change of the phase angle. The
BODE amplitude diagram of a proportional element starts parallel to the frequency
axis with zero phase angle, the BODE amplitude diagram of a system containing one
integrator starts with a slope of –20 dB/decade with a �90

�
phase angle, whereas

the BODE diagram of a system with two integrators starts with a slope of −40 dB/
decade and �180

�
phase angle. Time lags break down the slope of the BODE

amplitude diagram by −20 dB/decade, while zeros make the slope go up by
+20 dB/decade.

A time constant is the reciprocal of the pole. If the pole is located far away from
the origin at the left side of the real axis, this means a fast transient behaviour. In the
frequency domain it affects the frequency function at higher frequencies.
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Chapter 3
State-Space Representation
of Continuous Systems

In the time domain, linear systems can be characterized by their input and output
signals. Far more information is obtained, however, if there are also considered
those (mostly internal) signals whose value remains unchanged in case a step-like
change is applied in the input signal. These signals represent information deter-
mined by the history of the development of the system and they do not exhibit
sudden changes in their character. The set of these signals are called state variables
(or states for short) and the models employing states are called state-space models
(SSM). Using an SSM, the set A; b; cT; df g exhibits an SISO system representation
with input u, output y and state vector x in the model

_x ¼ Axþ bu

y ¼ cTxþ du

where the matrices A; b; cT; df g are parameter matrices describing the system.
Formally, SSM describe linear systems with n first-order differential equations and
the SSM consists of a set of these first-order differential equations as one single first
order vector differential equation and an output equation. The state equation is a
differential equation (so it needs to be solved), while the output equation is only a
linear combination using the states and the input signal (Note that in the state-space
model A is an n� n quadratic matrix, b is an n� 1 column vector, cT is a 1� n row
vector, and d is an 1� 1 dimension constant.).

3.1 State Transformation

It is well known that there are infinitely many of input-output equivalent SSM
associated with a given transfer function. MATLAB™ offers one possible way to
get a SSM, using the command tf2ss (‘transfer function to state space’).
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Example 3.1.1 Start our discussion with the transfer function

H sð Þ ¼ 1
s2 þ 3sþ 2

¼ 1
sþ 2ð Þ sþ 1ð Þ

and transform it to an SSM:

s = zpk('s')
H = 1/(s*s + 3*s + 2)
H = ss(H)

a =
x1 x2

x1 -1 1
x2 0 -2

b =
u1

x1 0
x2 1

c =
x1 x2

y1 1 0

d =
u1

y1 0

The step response can be obtained by

step(H);

The parameter matrices can also be retrieved from the LTI form:

[A,b,c,d] = ssdata(H)

and the step response can also be obtained from the parameter matrices:

step(A,b,c,d);

Further on, the parameter matrices can be retrieved from the polynomial form,
as well:
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num = 1,den = [1 3 2]

[A1,b1,c1,d1] = tf2ss(num,den)

A1 =

-3 -2

1 0

b1 =

1

0

c1 =

0 1

d1 =

0

It can be seen that the two state space representations are different from each
other. Still they give the same input-output transfer function. Just to check this,
derive the transfer functions from the state models:

Hchk = ss(A,b,c,d);Hchk = zpk(Hchk)
Hchk1 = ss(A1,b1,c1,d1);Hchk1 = zpk(Hchk1)

The polynomial form of the transfer function can be obtained from the state
space form as

[num,den] = ss2tf(A1,b1,c1,d1)

From a given SSM, another different representation can be generated using a
coordinate transformation in the state space. The state variables in the new
coordinate-system can be obtained by a linear transformation (called a similarity
transformation). In more detail, assuming T to be a non-singular quadratic trans-
formation matrix and z the new state variable of the transformed system, the sim-
ilarity transformation can be summarized in the following set of equations:

_z ¼ ~Azþ ~bu

y ¼ ~cTzþ ~du

where

z ¼ Tx ) x ¼ T�1z
~A ¼ TAT�1; ~b ¼ Tb;~cT ¼ cTT�1; ~d ¼ d

Note, that if T is constructed so that the column vectors of T�1 are the eigen-

vectors of A, the resulting matrix ~A will be a diagonal. In this case, the
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transformation is called a canonical transformation and the transformed state model
is said to be in parallel canonical form.

Example 3.1.2 Find the canonical form of the system introduced in Example 3.1.1.

To properly build up the transformation matrix first determine the eigenvectors and
deposit them in a V matrix:

[V,ev] = eig(A1)

V =

-0.8944 0.7071

0.4472 -0.7071

ev =

-2 0

0 -1

Then apply the relations derived for the similarity transformation:

Ti = V; T = inv(V)

Ap = T*A1*Ti

bp = T*b1

cp = c1*Ti

dp = d1

It can be seen that Ap is a diagonal, as expected.
The above steps can be replaced by the following more compact comands:

[Ap,bp,cp,dp] = ss2ss(A1,b1,c1,d1,inv(V))

or

[Ap,bp,cp,dp] = canon(A1,b1,c1,d1,'modal')

Ap =

-2 0

0 -1

bp =

-2.2361

-1.4142

cp =

0.4472 -0.7071

dp =

0
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3.2 Solution of the State Equation by Analytical Methods

3.2.1 Solution of the State Equation in the Time Domain

x tð Þ ¼ eAtx 0ð Þþ
Z t

0

eA t�sð Þb u sð Þds ¼ eAtx 0ð Þþ xu tð Þ

where xo tð Þ is the response to the initial conditions and xu tð Þ the response to the
input signal.

As eAt is defined by its TAYLOR series by

eAt ¼ IþAtþ 1
2

Atð Þ2 þ . . .þ 1
n!

Atð Þn þ . . .

it can be obtained in closed analytical form if A is a diagonal matrix. In this case, for
typical input signals, like a unit step, the system response can be easily calculated.
So it is worthwhile to transform both the system equations and the initial conditions
to canonical form, then to derive the solution in this form, and finally to transform
the results back into the original coordinate system.

Example 3.2.1 Let the initial conditions for the system introduced in Example 3.1.1

be given by x1 0ð Þ ¼ 1; x2 0ð Þ ¼ 2, or in vector form x 0ð Þ ¼ 1
2

� �
¼ x0. Assume an

input as a unit step: u tð Þ ¼ 1 tð Þ. Find x tð Þ for t[ 0 in analytical form. Using a
canonical transformation, the initial conditions for the state variables can be
obtained as

x0 = [1 2]'
z0 = T*x0

where the transformation matrix calculated in Example 3.1.2 has been applied

T =

-2.2361 -2.2361

-1.4142 -2.8284

The transformed initial conditions are

z0 =

-6.7082

-7.0711
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Then for the first component of the state vector of the canonical form we have:

zo tð Þ ¼ eAp�t
�6:7082

�7:0711

� �
¼ e

�2t 0

0 �t

� �
�6:7082

�7:0711

� �
¼ e�2t 0

0 e�t

� � �6:7082

�7:0711

� �
¼ �6:7082e�2t

�7:0711e�t

� �

while the first component of the state vector of the original system turns out to be:

xo tð Þ ¼ T�1z tð Þ ¼ �0:8944 0:7071
0:4472 �0:7071

� � �6:7082e�2t

�7:0711e�t

� �
¼ 6e�2t � 5e�t

�3e�2t þ 5e�t

� �
:

The canonical state response for the unit step input becomes:

zo tð Þ ¼
Z t

0

eAp t�sð Þ bp u sð Þds ¼
Z t

0

e�2 t�sð Þ 0
0 e� t�sð Þ

� � �2:2361
�1:4142

� �
1 sð Þds

which gives

zo tð Þ ¼
�2:2361

Rt
0
e�2 t�sð Þds

�1:4142
Rt
0
e� t�sð Þds

2
6664

3
7775 ¼

�2:2361e�2t
Rt
0
e2sds

�1:4142e�t
Rt
0
esds

2
6664

3
7775 ¼ �1:11805 1� e�2tð Þ

�1:4142 1� e�tð Þ

� �

Transforming back to the original state coordinates yields

x tð Þ ¼ T�1z tð Þ ¼ �0:8944 0:7071
0:4472 �0:7071

� � �1:11805 1� e�2tð Þ
�1:4142 1� e�tð Þ

� �

¼ 1� e�2t � 1þ e�t

�0:5 1� e�2tð Þþ 1� e�t

� �

which leads to

x tð Þ ¼ e�2t þ e�t

0:5þ 0:5e�2t � e�t

� �

The overall state response then is the sum of the response to the initial conditions
and the response to the input signal. The output signal of the system is simply
determined by y ¼ cTx. Note the output can be calculated from the original or from
the transformed state variables.
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Example 3.2.2 For the problem discussed in Example 3.1.1, find the value of the
state variables at t ¼ 5 s. The initial values of the state variables are x1 0ð Þ ¼ 1 and

x2 0ð Þ ¼ 2, or in vector form, x 0ð Þ ¼ 1
2

� �
¼ x0. The input signal is zero. Using the

MATLAB™ commands

A = [-3 -2;1 0]

t = 5;

x0 = [1 2]'

x5 = expm(A*t)*x0

results in

x5 =

-0.0334

0.0336

The state response for the initial conditions can also be calculated using the
initial command:

b = [1;0]; c = [0 1];d = 0;

Hv = ss(A,b,c,d)

[y,t,x] = initial(Hv,x0)

plot(t,x(:,1),t,x(:,2)),grid

Beyond the state variables as function of time they can be plotted as state
trajectories, e.g. x1 as a function of x2:

plot(x(:,1),x(:,2)),grid

A state trajectory allows us to think about the dynamic behaviour of the system.

3.2.2 Solution of the State Equation in the LAPLACE

Operator Domain

The LAPLACE transform of the state vector is given by

x sð Þ ¼ sI � Að Þ�1x 0ð Þþ sI � Að Þ�1bU sð Þ

while the output signal is

Y sð Þ ¼ cT sI � Að Þ�1bþ d
h i

U sð Þ:
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The transfer function then turns out to be

P sð Þ ¼ Y sð Þ
U sð Þ ¼ cT sI � Að Þ�1bþ d

Remark No matter which state representation form of the system we start from, the
transfer function is the same.

Example 3.2.3 Find the transfer function of the system introduced in Example
3.1.1.

The parameter matrices of the system are

A =

-3 -2

1 0

b =

1

0

c =

0 1

d =

0

Calculating the transfer function results in

P sð Þ ¼ cT sI � Að Þ�1bþ d ¼ 0 1½ � sþ 3 2
�1 s

� ��1
1
0

� �
þ 0 ¼ 1

s2 þ 3sþ 2
.

MATLAB™ simply follows the analytical expression:

I = [1 0;0 1]
H = c1*inv(s*I-A1)*b1 + d1

or simply employes the ss2tf command:

[num,den] = ss2tf(A,b,c,d)

Problem Show that the same result is obtained if the canonical forms are used.

Problem Solve Example 3.2.1 in the LAPLACE operator domain.
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3.3 Controllability, Observability

Controllability (more precisely, state controllability) is a notion to answer the
question whether all the states can or can not be controlled by the input signal
arbitrarily and independently from each other. The output controllability gives an
answer to the question if the output signal can be controlled by the input signal
arbitrarily or not. Observability tells if the initial value of the state variables can or
can not be determined based on an input-output record of a certain time period.

3.3.1 Determination of Controllability and Observability
Assuming Canonical Form

Controllability and observability can be determined directly if the canonical forms
are available. An SISO linear system is (state) controllable if in its diagonal para-
meter matrix Ap all the values along the main diagonal (the eigenvalues) are
different from each other and all the values in the vector bp are different from zero.
An SISO linear system is observable if in its diagonal parameter matrix Ap all the
values along the main diagonal (the eigenvalues) are different from each other and
all the values in the vector cp are different from zero.

Example 3.3.1 Define the system parameter matrices as follows:

A = [-1 -0.5 0.5; 2 -3 0; 2 -1 -2]
b = [2;3;1]
c = [0 0 1]
d = 0
H = ss(A,b,c,d)

Find the canonical form of the system and check its controllability and
observability.

To get the canonical form, first find the eigenvectors of the parameter matrix A
and collect them into a matrix V:

[V,ev] = eig(A)

where eV gives the eigenvalues.
A canonical transformation applies the inverse of V as a transformation matrix:

Ti = V; T = inv(V)
Ap = T*A*Ti
bp = T*b
cp = c*Ti
dp = d

Note that Ap is diagonal, as was expected.
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The above results can also be obtained using more compact MATLAB™

commands:

[Ap,bp,cp,dp] = ss2ss(A,b,c,d,inv(V))

or

[Ap,bp,cp,dp] = canon(A,b,c,d,'modal')

As a result the canonical representation becomes:

_x1
_x2
_x3

2
64

3
75 ¼

�1 0 0

0 �3 0

0 0 �2

2
64

3
75

x1
x2
x3

2
64

3
75þ

1:73

0

�2:23

2
64

3
75u

y ¼ 0:57 �0:707 0½ �
x1
x2
x3

2
64

3
75þ 0 u

Draw the block diagram of the system (Fig. 3.1). This is a parallel represen-
tation of the system. Notice that the gain is obtained by b1c1 ¼ 1:73 � 0:57 ¼ 1. It is

( )

( )

( )

( )

( )

( ) ( )

( )

∫

∫

−2

∫

−1

−3

u t

x1 tx 1 t

y ty

x3 tx 3 t

x 2 t x2 t

1.73

0.707

0.57

2.23

Fig. 3.1 Block diagram of a not fully state controllable and non-observable system
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clear that any b1 and c1 satisfying b1c1 ¼ 1 gives identical I/O equivalent state
space representations.

The above parallel structure allows us to directly read the observability and
controllability conditions. Namely x3 is not observable (there is no information on
x3 in y) and x2 is not controllable. The output signal is controllable as it is influ-
enced by the input signal u through the state x1.

3.3.2 Determination of Controllability and Observability
from Arbitrary (Non-canonical) Representations

Controllability and observability are analytically handled by checking the rank of
the appropriate KALMAN controllability and observability matrices (see Sect. 3.4 of
the textbook [1]).

The controllability matrix is built up as follows:

Mc ¼ b Ab . . . An�1 b
� �

:

A state-space representation is state controllable if the rank of the above matrix
is n. Also, a state-space representation is output controllable if the row vector

mT
c ¼ cTb cTAb . . . cTAn�1b

� � ¼ cTMc

has at least one nonzero element (the rank of this matrix is equal to the number of
the output signals).

The observability matrix is built up as follows: Mo ¼
cT

cTA
..
.

cTAn�1

2
664

3
775.

A state-space representation is observable if the rank of the above matrix is n.

Example 3.3.2 Check the controllability and observability of the system introduced
in Example 3.3.1. Note that this is a third order state-space representation (n = 3).

The controllability matrix can be obtained by MATLAB™ using command ctrb as

Mc = ctrb(A,b)

or using the LTI structure:

Mc = ctrb(H)

The system is state controllable if the rank of Mc turns out to be n ¼ 3.

rank(Co)
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It is seen that this representation is not controllable, as rank Mcð Þ ¼ 2\n ¼ 3.
To check the output controllability use the following command:

rank(c*Mc)

As this value is 1, which is equal to the number of outputs (1), the system is
output controllable.

To check the observability with MATLAB™ use the command obsv:

Mo = obsv(A,c)
Mo = obsv(H)
rank(Mo)

As rank Moð Þ ¼ 2\n ¼ 3, the system is not observable.
Find the transfer function of the system.

[num,den] = ss2tf(A,b,c,d)

or in zero-pole form:

Hzpk = zpk(H)
[z,p,k] = zpkdata(H,'v')

Retrieve the zero-pole-gain information from the zero-pole form:

z =

-3.0000

-2.0000

p =

-3.0000

-2.0000

-1.0000

k =

1.0000

Note the double pole-zero cancellation in the transfer function.

Hzpk = minreal(Hzpk)

Using transfer function representation information gets lost, because the transfer
function only reflects information on the controllable and observable subsystem of
the complete state-space representation.

The residue command allows us to get the parallel transfer function form:

[num,den] = tfdata (H,'v')
[r,p,k] = residue(num,den)
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H sð Þ ¼ 0
sþ 3

þ 0
sþ 2

þ 1
sþ 1

Note that the transfer function 1
sþ 1 only partly describes the system represented

by the state-space equations. This subsystem, is the (state) controllable and
observable part of the system.

Example 3.3.3 Consider the following third order system:

H sð Þ ¼ 8

sþ 2ð Þ3 :

The number of the states will be 3, however, as the system has repeated poles,
these poles are not independent from each other, it is expected that the state model
will not be controllable and will not be observable.

num = 8;

den = [1 6 12 8];

[A,b,c,d] = tf2ss(num,den)

[V,ev] = eig(A)

V =

0.8729 -0.8729 -0.8729

-0.4364 0.4364 0.4364

0.2182 -0.2182 -0.2182

eV =

-2.0000 0 0

0 -2.0000 0

0 0 -2.0000

It is seen the V eigenvectors are not linearly independent, consequently no
canonical form can be obtained using similarity transformation. The following
block diagram (Fig. 3.2) of the system helps us to come up with a close-to-parallel
state-space representation.

Fig. 3.2 State block diagram of a system with multiple poles
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The related state equation:

_x1
_x2
_x3

2
64

3
75 ¼

�2 0 0

1 �2 0

0 1 �2

2
64

3
75

x1
x2
x3

2
64

3
75þ

8

0

0

2
64

3
75u

y ¼ 0 0 1½ �
x1
x2
x3

2
64

3
75þ 0 u

It is seen that in matrix A the poles show up along the main diagonal, however
additional unity values accompany the pure diagonal form. This form is called
JORDAN form.

Example 3.3.4 Consider the following closed-loop system (Fig. 3.3).
The process to be controlled is a first-order lag given by the transfer function:

H2 sð Þ ¼ 5
10sþ 1

¼ 0:5
sþ 0:1

This first-order lag can be equivalently redrawn as an integrator with a constant
feedback (Fig. 3.4). Define the state variables as the output of the integrators in the
complete system. The state equations can then be easily derived as

_x1
_x2

� �
¼ �5:1 0:5

�1 0

� �
x1
x2

� �
þ 5

1

� �
u

y ¼ 1 0½ � x1
x2

� �
þ 0 u

Check the controllability and observability of the above state-space represen-
tation of the closed-loop system.

1

s

10

y(t)u(t)

-
2x

1x0.5

0.1s +
2x

Fig. 3.3 Block diagram of a control system
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The parameter matrices in MATLAB™ are given as

A = [-5.1 0.5;-1 0]

b = [5; 1]

c = [1 0]

d = 0

The rank of the controllability and observability matrices is calculated as

rank(ctrb(A,b))

ans = 1

The system is not (state) controllable,

rank(c*ctrb(A,b))

ans = 1

but the system is output controllable.

rank(obsv(A,c))

ans = 2

The system is observable.
The reason why the system is not controllable can be seen by analysing the

dynamics of the regulator, namely the zero of the regulator cancels the pole of the
process, so one state variable becomes “invisible”.

1

s

10

y(t)u(t)

2x

1x1

s
2x

0.1

1x0.5

Fig. 3.4 Block diagram of the control system showing the state variables
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H = ss(A,b,c,d)

H = zpk(H)

5 (s + 0.1)

----------------

(s + 5) (s + 0.1)

H = minreal(H)

5

-----

(s + 5)
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Chapter 4
Negative Feedback

Feedback is the most important structure in control systems. The regulator gets
information about the value of the controlled variable through feedback. Feedback
significantly modifies the performance of the system.

4.1 Quality Characteristics and the Properties
of Negative Feedback

The performance of a system controlled by negative feedback can be characterised
numerically by its quality characteristics.

4.1.1 Requirements Set for Control Systems

Generally the following requirements are set for closed-loop control systems.
Stability: Stable operation of the control system is a basic requirement. Stability

can be formulated in several ways. Bounded Input–Bounded Output (BIBO) sta-
bility means that the system provides a bounded output as a response to any and all
bounded inputs. The system is asymptotically stable if its transients decay.

Robustness: The performance of a closed-loop system should not be sensitive to
the inaccuracy of the available information about the process. Stability has to be
guaranteed even if the parameters of the system are not known accurately or their
values change within a given range around their nominal values.
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Static behaviour: Another important requirement is the static accuracy of the
system, i.e. its accuracy in steady state. Static requirements set for the steady state
of the control system can include:

– Reference signal tracking. The tracking error should be below the prescribed
value.

– Disturbance rejection: In steady state the control system should eliminate the
effect of disturbances.

Static accuracy depends on the structure of the system and also on the input
signals.

Transient response: The transient response is an important dynamic feature of a
control system. The characteristic properties of the transient response can be given
in the time domain by the characteristics of the transient response of the system in
the case of a step reference signal or disturbance. The prescriptions for the transient
response are the following:

– Overshoot of the output signal.
– Settling time: During the settling time the controlled variable approximates its

steady value within 1–2%. Generally a small overshoot within 5–10% of the
steady state value, can be tolerated, but there are processes where aperiodic
transients are required.

Error integrals: In more complex control problems restrictions can be prescribed
for the whole course of the output and the control signal. E.g. the quadratic integral
values of the error signal should be minimised and the value of the control signal
restricted.

Example 4.1 Analyse the effect of negative feedback and determine the quality
properties of a closed-loop control circuit. The transfer function of the open-loop is

L(s) ¼ 4
(10sþ 1)(4sþ 1)

¼ num
den

Unity negative feedback is applied (Fig. 4.1). The resulting transfer function of
the closed loop is:

TðsÞ ¼ L
1þ L

¼ num
numþ den

( )L s
e(t) y(t)r(t)

- Y(s)E(s)
( )T s

y(t)r(t)

Y(s)

Fig. 4.1 Negative feedback
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s = zpk('s')
L = 4/((10*s + 1)*(5*s + 1))
T = L/(1 + L)
T = minreal(T)

The command minreal is used to cancel the common poles and zeros.
The resulting (overall) transfer function can also be calculated by the command

feedback. The second input parameter gives the transfer function in the feedback
path.

T = feedback(L,1)

Let us compare the step responses of the open- and of the closed-loop (Fig. 4.2).

step(L,'b',T,'r'),grid on

It is evident that the closed-loop behaviour differs from that of the open-loop.
The static and transient properties of the system were influenced significantly by the
feedback. Let us determine the quality properties of the feedback system. The static
value ðt ! 1Þ can be read from the figure. For the open-loop this value is 4, while
in case of the closed-loop this is a bit less than 1. These values can be calculated
more accurately by

ysL = dcgain(L)
ysT = dcgain(T)

ysL = 4
ysT = 0.8

Fig. 4.2 Open- and closed-loop step responses
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In control systems, reference signal tracking is one of the most important system
characteristics. It is seen that in the case of negative feedback, a closed-loop system
in steady state approximates the value of the reference signal. Let us calculate the
steady state error.

esL = 1-ysL
esT = 1-ysT

esL = -3
esT = 0.2

In the figure it is also seen that the transient behaviour also has changed. The
settling process became faster (the settling time can be read from Fig. 4.2).

tsL ffi 45; tsT ffi 20:

There is an overshoot in closed-loop response, which can be calculated by

y = step(T)
ym = max(y)
yt = (ym-ysT)/ysT

The value of the overshoot is 18%.
Plot the BODE diagrams of the open-loop and the closed-loop in one diagram

(Fig. 4.3).

bode(L,'b',T,'r'),grid on

Fig. 4.3 BODE diagrams of the open- and the closed-loop
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It can be seen that the BODE amplitude diagram of the closed-loop is approxi-
mately 1 in the low frequency domain, while in the high frequency domain it
coincides approximately with the diagram of the open-loop.

Example 4.2 The transfer function of the closed-loop is

T(s) ¼ 1
(1þ 10s)(1þ s)

Determine the linear error area from its step response.
The system is given by

T = 1/((10*s + 1)*(s + 1))

Plot the sampled points of its step response (Fig. 4.4).
The distance between two consecutive points is the sampling time Ts.

Ts = 0.5;
t = 0:Ts:60;
y = step(T,t);
plot(t,y,'.');grid on

The linear error area can be calculated by evaluating the integral

I1 ¼ lim
t!1

Z t

0

eðsÞ ds;

which can be calculated by using the relation

I1 ¼ A
Xn
j¼1

Tj �
Xm
k¼1

sk

 !
:

Fig. 4.4 Step response
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(See formula (4.51) in the textbook [1]). Here A is the static gain and s and T are
the time constants of the numerator and the denominator, respectively. So
I1 ¼ 10þ 1 ¼ 11.

With MATLAB™ the value of the integral can be determined using the rect-
angle rule: I1 ¼ 1� y(0)½ �Ts þ 1� y(1)½ �Ts þ . . .þ 1� y(N)½ �Ts.

Summation is executed by the command sum for the elements of the vector,
which gives a good approximation to I1.

I1 k = sum((1-y)*Ts)

I1 k = 11.2232

The result will be more accurate if the sampling time is smaller. Repeat the
calculation for Ts ¼ 0:05. The quadratic error integral can be evaluated similarly.

I2 ¼ lim
t!1

Z t

0

e2ðsÞ ds

I2 k = sum((1-y).*(1-y)*Ts)

I2 k = 6.2045

4.1.2 Demonstrating the Basic Properties of Negative
Feedback

The effects of feedback can be described by the following properties:

(a) it modifies the transient behaviour;
(b) it improves reference signal tracking;
(c) it may stabilise an unstable process;
(d) it improves disturbance rejection;
(e) it improves the insensitivity to parameter changes;
(f) it has a linearizing effect;
(g) it can be used to approximate the inverse of a transfer function.

4.2 Resulting Transfer Functions

The usual block diagram of a control system is given in Fig. 4.5.
A filter F(s) is not always applied. The disturbance sometimes is taken into

consideration only at the output or at the input of the process. The behaviour of the
system can be described by 6 different resulting transfer functions.
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Example 4.3 In a control system the process is given by the transfer function
P(s) ¼ 1

(1þ 10s)(1þ s), the transfer function of the regulator is C(s) ¼ 5 1þ 10s
10s and the

filter is F(s) ¼ 1
1þ s (See the topic of regulator design in Sect. 8.2.3.).

Let us determine the following 6 resulting transfer functions:

Y (s)
R(s)

;
Y (s)
Yz(s)

;
Y (s)
Yni(s)

U(s)
R(s)

;
U(s)
Yz(s)

;
U(s)
Yni(s)

P = 1/((10*s + 1)*(1 + s))
C = 0.5*(0.5*s + 1)/s
F = 1/(1 + s)
L = minreal(C*P);
N = 1+L;
HYR = F*L/N;HYR = minreal(HYR)
HUR = F*C/N;HUR = minreal(HUR)
HYYz = -L/N;HYYz = minreal(HYYz)
HUYz = -C/N;HUYz = minreal(HUYz)
HYYni = P/N;HYYni = minreal(HYYni)
HUYni = 1/N;HUYni = minreal(HUYni)
H = [HYR,HYYz,HYYni;HUR,HUYz,HUYni];

Plot the step responses (Fig. 4.6) and the BODE diagrams. It can be seen that the
different transfer functions cause different dynamics. The rejection of the effect of
the step disturbance is faster than the dynamics of step reference signal tracking. In
design, the dynamics of the reference signal tracking and the dynamics of the
disturbance rejection can be influenced by the appropriate choice of the regulator
C(s) and the prefilter F(s).

t = 0:0.1:10;
figure (1),step(H,t),grid on
figure (2),bode(H),grid on

( )C s- ( )P s( )F s
( )r t

( )R s
1( )r t

1( )R s

( )e t ( )u t
( )U s

ni ( )y t no ( )y t

( )y t

( )Y s
z ( )y t

z ( )Y s

Fig. 4.5 Block diagram of a control system
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4.3 The Effect of the Poles of the Excitation Signal
and the Effect of the Poles of the Open Loop on Steady
State Behaviour

Let us consider an exponentially decreasing input signal with time con-
stant Ta ¼ 10, i.e. its pole is pa ¼ �1=Ta ¼ �0:1. The input signal is
r(t) ¼ e�t=Ta ¼ e�t pa . Its LAPLACE transform is R(s) ¼ 1= s� pað Þ. The open loop
can be given by a second-order lag element with gain K ¼ 5. Let us analyse the
reference signal transfer properties of the closed loop, if the transfer function of the
open loop contains the pole of the reference signal and has no smaller pole which
would cause a slower response. Analyse the response also for the case when the
open loop does not contain the pole of the reference signal.

Fig. 4.6 Step responses of different signals in a control system
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s = zpk('s')
Ta = 10; K = 5
L = K/((Ta*s + 1)*(s + 1))
L1 = K/((2*Ta*s + 1)*(s + 1))
L2 = K/((0.5*Ta*s + 1)*(s + 1))
T = L/(1 + L);
T1 = L1/(1 + L1);
T2 = L2/(1 + L2);
t = 0:0.01:50;
r = exp(-t/Ta);
y = lsim(T,r,t);
y1 = lsim(T1,r,t);
y2 = lsim(T2,r,t);
figure (1); plot(t,r,'b',t,y,'r');
figure (2); plot(t,r,'b',t,y1,'r',t,y2,'g')

It can be seen that the output signal of the closed loop tracks accurately the input
signal only if the transfer function of the open loop contains the pole of the ref-
erence signal (Figs. 4.7 and 4.8). A special case of tracking is when p ¼ 0 is the
pole of the reference signal, i.e. the input is the step reference signal, whose
LAPLACE transform is 1=s. In the transfer function of the open loop, a pole at zero
represents an integrator. As in our example the open loop does not contain the pole
of the step input (there is no integrator in the loop), there will be a steady state error
(Fig. 4.9).

r = ones(1,length(t));
y = lsim(T,r,t);
figure (3); plot(t,r,'b',t,y,'r');

Fig. 4.7 Tracking of an
exponential signal
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4.4 Properties of the Static Response

The steady state response of a feedback system (closed loop) depends on the type
number of the system. ‘Type number’ means the number of integrators in the open
loop. The table below gives the steady state error for different reference signals and
different type numbers.

Type number 0 1 2

Unit step reference signal j ¼ 1 1
1þK

0 0

Ramp reference signal j ¼ 2 1 1=K 0

Quadratic reference signal j ¼ 3 1 1 1=K

Fig. 4.8 Tracking of an
exponential signal

Fig. 4.9 Steady state error in
step response
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Example 4.4 The loop transfer function of a system is

L(s) ¼ K
(1þ s)(1þ 5s)

¼ 10
(1þ s)(1þ 5s)

Analyse the behaviour of the open- and the closed-loop.

s = zpk('s')
L = 10/((1 + s)*(5*s + 1))
T = feedback(L,1)

Determine the steady state values of the step responses of the open- and of the
closed loop. According to the finite value theorem of the LAPLACE transformation
for unit step input

r(t) ¼ 1(t); R(s) ¼ 1
s

y(t ! 1) ¼ lim
s!0

s R(s)H(s) ¼ lim
s!0

s
1
s
H(s) ¼ lim

s!0
H(s)

The steady state values of the step responses of the open- and of the closed-loop
are then

yopen-loop(t ! 1) ¼ lim
s!0

L(s) ¼ K ¼ 10

yclosed-loop(t ! 1) ¼ lim
s!0

T(s) ¼ yopen-loop(t ! 1)
1þ yopen-loop(t ! 1)

¼ K
1þK

¼ 10
1þ 10

The value of the steady state error is: e(t ! 1) ¼ 1� yopen-loop(t ! 1) ¼
1

1þK ¼ 1
11

Plot the step responses of the open- and the closed-loop in the same diagram:

step(L,'r',T,'b')

The steady values can be read from the diagrams or can be calculated with the
command dcgain.

yos = dcgain(L)
ycs = dcgain(T)

Also plot the BODE diagrams of the open and the closed loop in the same
diagram.

bode(L,'r',T,'b')

Determine the value of the steady state error for K ¼ 1; 20; 100.
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1 10 1s s+ +

Fig. 4.10 Control system of
type number 1

Fig. 4.11 The system tracks
the ramp signal with steady
error

Example 4.5 Determine the steady state error of the system given in Fig. 4.10 for
unit step, ramp and parabolic reference signals.

The system contains one integrator, therefore its type number is 1. On the basis
of the table above the steady error is

for step reference signal: e(1) ¼ 0
for ramp reference signal: e(1) ¼ 1=K ¼ 1=ð2 � 2=10Þ ¼ 2:5
for parabolic reference signal: e(1) ¼ 1

Check the steady error value for a ramp reference signal by simulation
(Fig. 4.11)!

s = zpk('s')
C = 2*(1 + 10*s)/(10*s)
P = 2/(s + 1)^2/(10*s + 1)
L = minreal(C*P)
T = L/(1 + L); T = minreal(T)
t = 0:0.1:20;
r = t;
y = lsim(T,r,t);
plot(t,r,t,y); grid

4.5 Relation Between the Frequency Functions
of the Open- and Closed-Loop

The nonlinear relation T(s) ¼ L(s)=[1þ L(s)] describing the resulting transfer
function of a control system based on negative feedback determines the behaviour
of the control system. Let us analyse how this relation maps the complex plane L to
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the complex plane T. Plot the absolute value of the frequency function of the closed
loop: M ¼ LðjxÞ= 1þ LðjxÞ½ �j j.

As �1 is a singularity of the mapping, the neighbourhood of this point is
investigated. Write the following program as an m-file.

res = 0.01; Mlimit = 5;

x = -3:res:1;

y = -2:res:2;

Mm = zeros(length(y),length(x));

for kx = 1:length(x)

for ky = 1:length(y)

L = x(kx) + y(ky)*i;

T = L/(1 + L);

M = abs(T);

if M > Mlimit M = Mlimit;

end

Mm(ky,kx) = M;

end

end

surf(x,y, Mm), shading INTERP, colormap('jet'), view(0,90)

In window figure in menu ‘tools’ with option ‘rotate 3D’ the 3D surface can be
visualised from an arbitrary viewpoint. The value of M should be restricted to
ensure the visualisability of the picture. For fixed values of M, the contour lines are
circles (Fig. 4.12).

Fig. 4.12 Conform mapping of space L into space T
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4.6 Relation Between the Overshoot of the Step Response
and the Amplification of the Frequency Function

The maximum of the amplitude-frequency function of the closed-loop depends on
how closely the NYQUIST curve of the open-loop approaches the point �1 of the
complex plane. On the BODE diagram this maximum means the amplification of the
absolute value. Big amplification in the frequency domain means high overshoot in
the time domain in the step response. The relationship between these values is not
simple, as in the time domain the output signal is calculated by convolution, which
means that the maximum overshoot in the time domain depends not only on the
maximum value of the amplification in the frequency domain, but also on the
amplifications on the other frequencies.

Example 4.6 Let us analyse, in the case of a second order oscillating element, how
a change of the damping factor influences the overshoot in the time domain and the
amplification of the amplitude in the frequency domain. Plot the values of the
overshoot of the step response ym and the maximum amplitude of the frequency
response Mm versus the damping factor (Fig. 4.13).

s = zpk('s')

T0 = 1;

kszi = [0.2:0.1:1];

t = 0:0.01:30;

w = logspace(-1,1,500);

for k = 1:length(kszi),

T = 1/(s*s*T0*T0 + 2*T0*s*kszi(k) + 1);

y = step(T,t);

ym(k) = max(y);

M = bode(T,w);

Mm(k) = max(M);

figure (2); hold on; plot(t,y)

figure (3); loglog(w,M(:)); hold on;

end

figure (1);plot(kszi,ym,'r',kszi,Mm,'b'),

grid on

It can be seen that if the amplification in the frequency domain is higher, the
overshoot in the time domain is also higher (Figs. 4.14 and 4.15). This holds
exactly only for the given system and input signal, but shows well the important
relations.
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Fig. 4.14 Step responses of a
second order oscillating
element

Fig. 4.15 BODE amplitude
diagrams of a second order
oscillating element
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Fig. 4.13 The damping
factor influences the
overshoot and the BODE

amplification
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4.7 The Sensitivity Function

An important goal of a control system is to ensure acceptable behaviour also in case
of changes in the parameters of the process model. In practical circumstances
parameter changes can be the consequences of several effects. Warming of the
system, ageing of its elements, change of humidity of the environment, etc., may
influence significantly the behaviour of the system.

The effect of parameter changes can be investigated using the sensitivity func-
tion. The transfer function of the process can be given as the sum of the nominal
transfer function and its change: P(s) ¼ Po(s)þDP(s). The sensitivity function
S gives the ratio of the relative change of the resulting (overall) transfer function
and the relative change of the transfer function of the process. So it characterises
how much change is caused in the resulting transfer function if the process
parameters change. The resulting transfer function T of the control system between
the output and the reference signal is also called the complementary sensitivity
function.

S ¼ DT=T
DP=P

¼ 1
1þCP

; T ¼ CP
1þCP

; Sþ T ¼ 1:

Example 4.7 The system is a second-order oscillating element with transfer func-
tion PðsÞ ¼ 1

1þ 2nT1sþ s2T2
1
. Its time constant is T1 ¼ 5 and the damping factor is

n ¼ 0:7.
The transfer function of the regulator is C(s) ¼ 1

10s. Unity negative feedback is
applied. Let us analyse how sensitive is the behaviour of the control system to the
changes of the time constant and the damping factor. Let us analyse the dynamics of
the control system if the time constant changes to T1 ¼ 10 and the damping factor
to n ¼ 0:2.

For both cases plot the BODE amplitude diagrams of the sensitivity function and
of the relative change of the process in one diagram.

s = zpk('s')
w = logspace(-3,1,500);
T0 = 5;kszi0 = 0.7;
T1 = 10;kszi1 = 0.2;
P0 = 1/(1 + 2*kszi0*T0*s + T0^2*s^2)
C = 0.1/s
L0 = C*P0
S = 1/(1 + L0)
P1 = 1/(1 + 2*kszi0*T1*s + T1^2*s^2)
P2 = 1/(1 + 2*kszi1*T0*s + T0^2*s^2)
deltaP1 = minreal((P1-P0)/P0,0.001)
deltaP2 = minreal((P2-P0)/P0,0.001)
M = bode(S,w);
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M1 = bode(deltaP1,w);
M2 = bode(deltaP2,w);
figure (1)
loglog(w,M(:),w,M1(:))
figure (2)
loglog(w,M(:),w,M2(:))
t = 0:0.1:100;
figure (3)
step(P0,t,P1,t)
figure (4)
step(P0,t,P2,t)

Figure 4.16 shows that decreasing the damping factor, the relative change of the
process is significant in the frequency range where the sensitivity function shows
also amplification. A closed-loop control system will react strongly to this change.

Fig. 4.16 Sensitivity
function and the relative
change in the damping factor

Fig. 4.17 Sensitivity
function and the relative
change in the time constant
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The step response is shown in Fig. 4.18. Figure 4.17 shows the frequency function
of the relative change of the process in the case of a change of the time constant.
This curve is below the frequency function of the sensitivity function. The control
system will be less sensitive to this parameter change (Fig. 4.19).

Fig. 4.18 Step responses in cases of two damping factors

Fig. 4.19 Step responses in cases of two time constants
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4.8 Control Structures

The most used control structure is realized by negative feedback where the regulator
and the process are serially connected. This structure can be modified, supple-
mented with further elements to meet more sophisticated control aims (e.g.
improvement of disturbance rejection).

4.8.1 Feedforward

Disturbance rejection can be improved if not only the output signal is used for
control, but intermediate measurable signals are also employed to influence the
control process. In these intermediate signals, the effect of the disturbance may
show up earlier than in the output signal. In feedforward control, a measurable
disturbance signal is measured and fed forward to influence the actuating signal.

Let us build a SIMULINK™ block-diagram to demonstrate feedforward control
(Fig. 4.20).

Example 4.8 Let us simulate the behaviour of the system if P ¼ 1
(2sþ 1)(0:5sþ 1),

C ¼ 2sþ 1
s , Pn ¼ 1

sþ 1.

P = 1/((2*s + 1)*(0.5*s + 1))
C = (2*s + 1)/s
Pn = 1/(s + 1)

Fig. 4.20 SIMULINK™ block diagram of feedforward control
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The input signal is: r(t) ¼ 1(t).
The disturbance is: yn(t) ¼ 1(t � 10).
Let us compare the behaviour of the control system without and with

feedforward.
Without feedforward (Fig. 4.21):

Cn = 0

Feedforward is perfect if the effect of the disturbance through the feedforward
regulator CnðsÞ cancels the effect of the disturbance, i.e. PnðsÞþCnðsÞPðsÞ ¼ 0,

hence CnðsÞ ¼ �PnðsÞ
PðsÞ .

Cn = -Pn/P
- (s + 0.5) (s + 2)
——————————————————

(s + 1)

This transfer function is non-realizable as the degree of its numerator is higher
than the degree of its denominator. Therefore an additional high frequency pole (a
small time constant) is added to this transfer function.

Cn ¼ � 10(sþ 0:5)(sþ 2)
(sþ 1)(sþ 10)

Cn = -Pn/P/(0.1*s + 1)

Disturbance elimination will not be perfect, but the effect of the disturbance is
decreased significantly (Fig. 4.22). Feedforward can be applied if the disturbance is
measurable.

Fig. 4.21 Tracking and
disturbance rejection without
feedforward
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4.8.2 Cascade Control

Cascade control can be applied if the process can be separated into several serially
connected parts and the output signals of each part can be measured (Fig. 4.23).

For the first element of the system an inner control system can be built. For this
inner circuit connected serially to the second part of the system an outer controller
is designed (Fig. 4.24). The inner circuit can be fast, ensuring also fast disturbance
rejection of the inner disturbance acting between the two parts of the system. The
controller in the outer circuit can be designed for good reference signal tracking and
rejection of the effect of the outer disturbance.

Fig. 4.22 Tracking and
disturbance rejection with
feedforward

P1 s( )P2 s( )
u t( ) y t( )

y2 t( ) y1 t( )

Fig. 4.23 A process separated to two serially connected parts with measurable inner signal

2 ( )C s
-

( )r t
2 ( )P s 1( )P s

2 ( )y t

1( )y t
1( )C s

2 ( )T s

-

( )bP s

2ny 1ny

Fig. 4.24 Block diagram of cascade control
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Example 4.9 The system to be controlled consists of two serially connected parts
with transfer functions

P1 ¼ 1
1þ 10s

and P2 ¼ 1
1þ s

:

The advantage of cascade control is significant if the system consists of a faster
and a slower part and the slower part with the bigger time constant is in the outer
circuit. Here this condition is fulfilled.

Let us design a fast control in the inner circuit, which ensures fast rejection of the
effect of the inner disturbance. Then design a regulator for the outer circuit which
ensures tracking of the step reference signal without steady error and rejection of
the outer disturbance.

In the inner control circuit, let us choose a proportional regulator (C2 = 10).

P2 = 1/(s + 1)
C2 = 10
T2 = C2*P2/(1 + C2*P2);T2 = minreal(T2)
step(P2,'b',T2,'r'),grid

On the left side of Fig. 4.25 it can be seen that the behaviour of the inner circuit
has become fast, but there is a static error.

In the outer control circuit an integrator has to be used in the regulator to
decrease the steady state error to zero. With a regulator C1 the big time constant of
the PI part of the system is cancelled and instead an integrating effect is introduced.

Let C1(s) ¼ 5(1þ 10s)
s . (Regulator design using considerations in the frequency

domain, the so called PID compensation is discussed in Chap. 8.)

P1 = 1/(10*s + 1)
Pb = T2*P1
C1 = 5*(10*s + 1)/s
T = C1*Pb/(1 + C1*Pb); T = minreal(T)
figure (1),step(T),grid

Fig. 4.25 Behaviour of the inner loop and of the output signal in cascade control
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On the right side of Fig. 4.25 it can be seen that the output response is fast and
the static error is zero.

Let us investigate the behaviour of the cascade control circuit in the
SIMULINK™ environment (Fig. 4.26).

Set the reference signal and the disturbances to the following values:

r(t) ¼ 1(t); yn2 = 1(t � 1Þ; yn1 = 1(t � 2Þ

Set the simulation time to 3 s. In Fig. 4.27 it can be seen that the control system
tracks the reference signal and eliminates the effects of both the inner and the outer
disturbances.

StepYn2 StepYn1

Step2

Scope

C1

LTI System3

P1

LTI System2

P2

LTI System1

C2

LTI System

Fig. 4.26 SIMULINK™ block diagram of cascade control

Fig. 4.27 Simulation of
cascade control for tracking
and disturbance rejection
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Chapter 5
Stability of Linear Control Systems

A general notion of stability says that a system is stable if after being removed from
a stable state, the system returns to the original state provided no external input is
applied. Another general notion of stability is called BIBO stability, i.e. bounded
output is obtained as a response to any and all bounded inputs.

Consider the closed-loop system given in Fig. 5.1. The open-loop transfer
function is L(s) and a unity feedback is applied around L(s).

The resulting transfer function of the closed-loop system is:

T(s) ¼ L(s)
1þ L(s)

It is well known that all the components of the transient response will decay once
the roots of the closed-loop characteristic equation 1þ L(s) ¼ 0 are located in the
left half-plane side of the complex plane. The characteristic equation contains the
denominator polynomial of the closed-loop transfer function above. Consequently,
the roots of the characteristic equation are identical to the poles of the closed-loop
system. Note that using state-space representations, this statement is only valid for
systems which are both controllable and observable.

5.1 BIBO Stability

The BIBO stability criterion can be used to check the stability of linear systems. In
practice a natural choice is to apply a unit step excitation as a bounded input.

Example 5.1.1 Assume we have the following closed-loop transfer function:

T(s) ¼ sþ 5
s5 � 3s4 þ 4s3 þ 10s2 þ 5s� 10

:
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Applying a unit step input, check the stability of the closed-loop system. Use
MATLAB™ commands, such as

num=[1, 5]
den=[1, -3, 4, 10, 5, -10]
T=tf(num,den)
step(T)

It can be seen that the step response will not be bounded, meaning that the
closed-loop system is unstable.

5.2 Stability Analysis Based on the Location
of the Closed-Loop Poles

One way to obtain the system output in analytical form is to derive the partial
fraction expansion form of the LAPLACE transform of the transfer function. Then the
analytical solution of the output signal in the time domain is simply obtained by
performing an inverse LAPLACE transformation. In more detail, the LAPLACE trans-
form of the output signal is the sum of the components that take the form ri

s�pi
, where

pi denotes a system pole. Consequently, the system’s stability can be determined
based on the location of the system poles. A system turns out to be stable once all
the poles are located in the left half-plane. Moreover, it can be seen whether
oscillating components are expected to show up, as is indicated by the existence of
complex conjugate poles in the left half-plane.

Example 5.2.1 Check the stability of the system introduced in Example 5.1.1.
Check the location of the poles in this analysis:

poles=roots(den)
poles =
2.1150 + 2.1652i
2.1150 - 2.1652i

-0.9824 + 0.7214i
-0.9824 - 0.7214i
0.7348

Fig. 5.1 Block diagram of a closed-loop control system
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or in another form

[zeros,poles,KonstGain]=zpkdata(T,'v')

Either way, it can be seen that the system has poles in the right half-plane.
Alternatively, the pzmap command shows the location of both the zeros and

poles in graphical mode:

pzmap(T)

Note that complex poles produce oscillations in the output response. However, this
can only barely be seen because of the dominant exponential growth.

5.3 Stability Analysis Using the ROUTH-HURWITZ

Criterion

The poles of the closed-loop characteristic equation can be calculated analytically
only for polynomials of degree less than five. If MATLAB™ is not available,
higher degree equations need to be solved, which can only be solved numerically. If
dead-time is included in the open-loop, the equation takes a transcendental form,
causing further difficulties for the solution.

If the system is free of dead-time, methods have been developed to judge the
stability based on relations between the roots and coefficients of the characteristic
equation.

In the sequel assume that the closed-loop characteristic equation is given in the
following form:

AðsÞ ¼ ans
n þ an�1s

n�1 þ . . .þ a1sþ ao ¼ an s� p1ð Þ s� p2ð Þ. . . s� pnð Þ ¼ 0

5.3.1 Stability Analysis Using the ROUTH Scheme

Set up the following (so called ROUTH scheme) from the coefficients of the char-
acteristic equation:

an an�2 an�4 an�6 . . .
an�1 an�3 an�5 an�7 . . .
bn�2 bn�4 bn�6 bn�8 . . .
cn�3 cn�5 cn�7 cn�9 . . .

..

.

where
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bn�2 ¼ an�1an�2 � anan�3

an�1
; bn�4 ¼ an�1an�4 � anan�5

an�1
; bn�6 ¼ an�1an�6 � anan�7

an�1
; . . .

cn�3 ¼ bn�2an�3 � an�1bn�4

bn�2
; cn�5 ¼ bn�2an�5 � an�1bn�6

bn�2
; . . .

It can be seen that the length of the consecutive rows is getting shorter and
shorter. For a characteristic equation of order n, the scheme consists of n + 1 rows.
Elements with negative indices should be interpreted as elements whose value is
zero.

The system is stable if all the coefficients of the characteristic equation are
positive and all the elements in the first (leftmost) column of the ROUTH scheme are
also positive. If there are changes in sign along the first column, the number of the
sign changes equals the number of poles in the right half-plane (i.e. the number of
unstable poles).

Example 5.3.1 The transfer function of a loop transfer function is

L(s) ¼ K
(1þ 10s)(1þ 5s)(1þ s)(1þ 0:5s)

:

Find the critical value of the gain K (loop gain) yielding a stable closed-loop
system. Consider first the characteristic equation. Start with defining L(s):

s=tf('s')

den=(1+10*s)*(1+5*s)*(1+s)*(1+0.5*s)

25 s^4 + 82.5 s^3 + 73 s^2 + 16.5 s + 1

The closed-loop characteristic equation becomes

1þ L(s) ¼ 0 ¼ 25s4 þ 82:5s3 þ 73s2 þ 16:5sþ 1þK

The coefficients in the ROUTH scheme are:

a4 ¼ 25; a3 ¼ 82:5; a2 ¼ 73; a1 ¼ 16:5; ao ¼ 1þK;

b2 ¼ a3a2 � a4a1
a3

¼ 82:5 � 73� 25 � 16:5
82:5

¼ 68;

bo ¼ a3ao � a4a�1

a3
¼ 82:5(1þK)� 0

82:5
¼ 1þK;

c1 ¼ b2a1 � a3bo
b2

¼ 68 � 16:5� 82:5(1þK)
68

¼ 16:5� 1:2132(1þK); and

do ¼ c1bo � b2c�1

c1
¼ bo ¼ 1þK:
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The ROUTH scheme can then be constructed:

25 73 1þK
82:5 16:5
68 1þK

16:5� 1:2132(1þK) 0
1þK

For stability, all the values in the first column must be positive. This is fulfilled
when �1\K\12:6.

5.3.2 Stability Analysis Based on the HURWITZ Determinant

Using the coefficients of the characteristic equation construct the following (so
called HURWITZ) determinant:

an�1 an�3 an�5 an�7 . . .
an an�2 an�4 an�6 . . .
0 an�1 an�3 an�5 . . .
0 an an�2 an�4 . . .
0 0 an�1 an�3 . . .

..

.
. . .

������������

������������
Elements with negative indices will be taken to have the value zero.
The system is stable if all the coefficients of the characteristic equation are

positive and all the sub-determinants along the main diagonal of the HURWITZ

determinant are positive: Di [ 0.

Example 5.3.2 Solve the problem discussed in Example 5.3.1 using the method of
the HURWITZ determinant. Start with building up the HURWITZ determinant:

82:5 16:5 0 0
25 73 1þK 0
0 82:5 16:5 0
0 25 73 1þK

��������
��������

The sub-determinants along the main diagonal are

D1 ¼ 82:5[ 0; D2 ¼ 82:5 � 73� 16:5 � 25 ¼ 5610[ 0;

D3 ¼ �(1þK)82:52 þ 16:5 � 5610[ 0; and

D4 ¼ (1þKÞD3 [ 0
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The stability conditions from D3 and D4 are directly read: �1\K\12:6
Note that K ¼ �1 would mean positive feedback and this result is obtained also

for ao [ 0.

An additional problem:

In a closed-loop control system, the open-loop transfer function is

L(s) ¼ K
1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ :

(a) Find the critical value (maximum for closed-loop stability) of the gain K, if
T1 ¼ 1, T2 ¼ 0:4, T3 ¼ 0:1:

(b) Find the critical value of K, if T1 ¼ T2 ¼ T3 ¼ T .
(c) What pair of K and T3 guarantee closed-loop stability if T1 ¼ 1 and T2 ¼ 0:4?

Plot the function Kkrit ¼ f T3ð Þ. Show that if T3 ! 0 or if T3 ! 1, the closed-loop
system remains stable even for an infinitely large loop gain.

Solve this problem using either the ROUTH scheme or the HURWITZ determinant.

5.4 Stability Analysis Based on the Root-Locus Method

The root-locus method is a grapho-analytical method to show the poles of the
closed-loop system as one parameter (typically the loop gain) in the system varies
from zero to infinity. Note that a zero loop gain means an open-loop system.

If the poles of the characteristic equation are sitting on the imaginary axis, the
closed-loop system is just about to be unstable (borderline stability). The root-locus
method can not only determine closed-loop stability, but can also yield information
on the dynamics of the closed-loop system. Root-locus points on the negative real
axis suggest aperiodic transients in the time domain, and root-locus stages with
complex poles in the left half-plane indicate oscillatory behaviour with damping.

MATLAB™ offers the rlocus command to draw the root-locus. Another
MATLAB™ command (rlocfind) is to be used to find the gain belonging to a given
point of the root-locus. rlocfind puts up a crosshair cursor in the graphics window
which is used to select a pole location on an existing root locus.

Example 5.4.1 Draw the root-locus of a system given by the open-loop transfer
function

L(s) ¼ K
(1þ 10s)(1þ 5s)(1þ s)(1þ 0:5s)

and find the critical value of the loop gain.
Set up the system with K ¼ 1, then draw the root-locus. Then read the gain at the

point where the root-locus is crossing the imaginary axis.
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s=zpk('s')
L=1/((1+10*s)*(1+5*s)*(1+s)*(1+0.5*s))
rlocus(L)
rlocfind(L)

Now a left click on the critical point provides the value of the critical gain. Also, the
exact coordinates of the selected point are shown. To derive an appropriate result it
is worthwhile to zoom on the vicinity of the critical point before rlocfind is
employed.

selected_point =

0.0003 + 0.4466i

ans = 12.5753

The root-locus is shown in Fig. 5.2. Show the step response of the closed-loop
system at the critical value of the loop gain:

K=ans
t=0:0.01:40;
step(K*L/(1+K*L),t)

It can be seen that the system output exhibits oscillations with constant amplitude.

Example 5.4.2 Consider a system with the following loop transfer function:

L1(s) ¼ k
sðsþ 2Þðsþ 4Þ

Sketch the root-locus and find the critical loop gain. Then study the root-locus
after an additional zero is introduced in the loop transfer function.

L2;3(s) ¼ kðsþ aÞ
sðsþ 2Þðsþ 4Þ ;

Fig. 5.2 Root-locus of a
fourth-order system
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where a takes the values of 3 or 1.
Discuss the stability issues of the extended system.

L1=1/(s*(s+2)*(s+4))
L2=L1*(s+3)
L3=L1*(s+1)
figure(1),rlocus(L1)
figure(2),rlocus(L2)
figure(3),rlocus(L3)

The root-locus for L1 is shown in Fig. 5.3. To find the critical value of the loop gain
zoom and use the command

rlocfind(L1)

Apply ‘Select a point in the graphics window’ offered by MATLAB™, which
results in

selected_point =

0.0006 + 2.8252i

ans =

47.9006

This critical value of k just obtained can also be checked by analytical tools.
It is seen that the inserted zero attracts one branch of the root-locus and the

closed-loop becomes structurally stable in both cases (L2;3 in Figs. 5.4 and 5.5).

Example 5.4.3 Consider the open-loop transfer function:

L(s) ¼ k(sþ 4)(sþ 6)
s(sþ 2)(sþ 8)

Fig. 5.3 Root-locus of a
third-order system
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Sketch the root-locus and evaluate the dynamic behaviour of the closed-loop
system:

L=((s+4)*(s+6))/(s*(s+2)*(s+8))
rlocus(L)

The root-locus is shown in Fig. 5.6. Crossing the real axis can be obtained using
rlocfindðLÞ: �1:2 and �4:8865, and the corresponding loop-gain values are 0.4857
and 44.48, respectively. The closed-loop system is structurally stable, specifically
for 0:4857\k\44:48 the transient response will be determined by the complex
conjugate closed-loop poles. Otherwise the transient response is aperiodic. Having
two zeros and three poles, as the loop-gain grows to infinity one branch of the
root-locus tends to go to infinity and the other two will converge to the finite zeros.
Also, a point on the real axis is part of the root-locus once the total number of the
zeros and poles located to the right from this point of the real axis is odd. A set of
these point defines a complete region of the real axis.

Fig. 5.4 Root-locus of a
third-order system with a zero

Fig. 5.5 Root-locus of a
third-order system with a zero
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Example 5.4.4 Let the transfer function of the loop transfer function be:

L(s) ¼ k(sþ 2)
(s�3)(sþ 5)(sþ 8).

The open-loop is unstable as a consequence of an open-loop pole in the right
half-plane. Can we stabilize the closed-loop system by applying feedback with a
proper loop gain?

Draw the root-locus first:

L=(s+2)/((s-3)*(s+5)*(s+8))
rlocus(L)

The root-locus in Fig. 5.7 shows that all the poles of the closed-loop system will be
in the left half-plane if the loop gain exceeds a certain (critical) value. Clearly, the
closed-loop system can be stabilized once a sufficiently large loop gain is selected.
The critical value of the loop gain can be determined using rlocfindðLÞ just as
before. The critical loop gain will turn out to be 60.

Fig. 5.6 Root-locus of a
system with 3 poles and 2
zeros

Fig. 5.7 Root-locus of a
system with an unstable pole
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Note that several root-locus curves can be drawn in the same figure. The
root-locus can be drawn also for gain values given in a vector. The root-locus points
and the coherent gains also can be obtained. The MATLAB™ commands are

rlocus(L,K)
rlocus(L1,L2,…)
rlocus(L1,'r',L2,'g:',L3,'mx')
[R,K]=rlocus(L)

5.5 NYQUIST Stability Criterion

Having designed a closed-loop control system, stability is the most important
attribute to be checked. Typically, we check the stability of a closed-loop system
based on the behaviour of the open-loop system. Several methods exist to perform
this step. The NYQUIST stability criterion clarifies the stability issues of the

closed-loop system given by T(s) ¼ Y(s)
R(s) ¼

L(s)
1þ L(s) based on the analysis of the

frequency function of the open-loop transfer function L(s) ¼ Y(s)
E(s) (Fig. 5.8).

(a) To check the closed-loop stability, a simplified version of the NYQUIST crite-
rion can be employed if the open-loop transfer function has no unstable pole
(pole with positive real part). The closed-loop system is then stable if the
complete NYQUIST diagram of the open-loop system does not encircle the point
(� 1þ 0j) of the complex plane.

(b) To check the closed-loop stability, the generalized NYQUIST criterion is to be
employed if the open-loop transfer function has unstable poles (poles with
positive real part). The closed-loop system is then stable if the number times
(� 1þ 0j) is encircled by the complete NYQUIST diagram of the open-loop
system is equal to the number of unstable poles of the open-loop transfer
function. The number of times a point encircled (the winding number) is
considered to be positive when the path is traversed counter-clockwise. Note
that the simplified NYQUIST criterion is a special case of the generalized
NYQUIST criterion.

Fig. 5.8 Scheme of a
closed-loop system
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5.5.1 The Simplified NYQUIST Stability Criterion

Example 5.5.1 Assume the open-loop transfer function is given by

L(s) ¼ 10
(1 + 10s)(1 + s).

Use negative unity feedback. Check the stability of the closed-loop system using
the simplified NYQUIST criterion:

s=zpk('s')
L=10/((1+10*s)*(1+s))
[z,p,k]=zpkdata(L,'v')

It can be seen that the open-loop system has no unstable pole, thus the simplified
NYQUIST criterion is applicable.

nyquist(L),grid

The NYQUIST diagram does not encircle the point (� 1þ 0j), so the closed-loop
system is stable. Furthermore, we can conclude that the closed-loop system is
structurally stable.

5.5.2 The Generalized NYQUIST Stability Criterion

Example 5.5.2 Suppose given the open-loop transfer function

L(s) ¼ --5
(1�10s)(1 + 0.1s).

Use negative unity feedback. Check the stability of the closed-loop system using
the generalized NYQUIST criterion:

s=zpk('s')
L=-5/((1-10*s)*(1+0.1*s))
[z,p,k]=zpkdata(L,'v')

Note that the open-loop system is unstable p2 ¼ 0:1ð Þ.
nyquist(L)

The complete NYQUIST diagram winds around (� 1þ 0j) in the positive sense (i.e.,
counter-clockwise). Consequently, the closed-loop system is stable.

Check this result by calculating the closed-loop poles:

T=feedback(L,1)
step(T)
[z,p,k]=zpkdata(T,'v')
pzmap(T)
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Repeat this analysis when changing the sign of the open-loop poles:

L(s) ¼ �5
(1 + 10s)(1� 0.1s)

Look how the NYQUIST diagram will encircle (� 1þ 0j). Will the closed-loop
system be stable?

Example 5.5.3 Consider the open-loop transfer function L(s) ¼ k 1�s
(1 + s)(1 + 0.5s).

Negative unity feedback is applied. Find those values of the loop gain k which
results in stable closed-loop system.

(a) To start with, assume k ¼ 1:

L=(1-s)/((1+s)*(1+0.5*s))
[z,p,k]=zpkdata(L,'v')

All poles being stable allows us to use the simplified NYQUIST criterion.

nyquist(L); grid

Find k as the NYQUIST diagram crosses the real axis ðk ¼ �0:666Þ. Apply the zoom
command or use the zoom option from the menu to read off this value. Increasing
k will magnify the NYQUIST plot in the sense that all the points of the NYQUIST

diagram will have an increased distance from the origin. The closed-loop system
comes to borderline stability if the NYQUIST diagram crosses the real axis at �1. To
achieve this, k ¼ 1=0:666 ¼ 1:5 is to be applied. So the closed-loop system will be
stable for 0\k\1:5 (if k is positive).

(b) Assume k ¼ �1:

nyquist(-L), grid

Find again the stability region as before. Here k[ � 1 will be obtained.
Summing up the two conditions, we have �1\k\1:5 for the closed-loop

stability.

5.6 Phase Margin, Gain Margin, Modulus Margin,
Delay Margin

Beyond the fact that a system is stable, we are also interested in seeing how far we
are from the borderline of stability. Several measures exist to characterize how far a
stable system is from being unstable.
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5.6.1 Phase Margin, Gain Margin

The phase margin defines the value of the phase angle needed to decrease the phase
at the cut-off frequency to achieve borderline stability. The phase margin can be
expressed analytically:

ut ¼ u xcð Þþ 180�

where xc is the cut-off frequency defined by

xc is such that LðjxÞj jx¼xc
¼ 1

A closed-loop system is stable if the phase margin is positive. For example,
if u ¼ �120� at the cut-off frequency, the phase margin is
ut ¼ u xcð Þþ 180� ¼ �120� þ 180� ¼ 60�. This means that the closed-loop system
is stable. For design purposes, 60� for the phase margin is a typical prescription.

The gain margin gt is the factor by which the loop gain is to be multiplied to
push a closed-loop system to borderline stability, i.e.

gt ¼ 1
L xpð Þj j ; where xp: uðxÞx¼xp

¼ �180�

Here xp is that frequency where the phase angle is �180�. The closed-loop
system is stable if the gain margin exceeds 1. A reasonable design prescription for
the gain margin is around 2. MATLAB™ offers the margin command both to
calculate and plot the phase and gain margin values.

Example 5.6.1 Given the open-loop transfer function:

L(s) ¼ 1
(0.5 + s) s2 þ 2sþ 1ð Þ ;

Apply negative unity feedback. What can we say about the stability? Find the
phase margin (pm) and the gain margin (gm), as well as the cut-off frequency wc.

s=zpk('s')
L=1/((0.5+s)*(s^2+2*s+1))

(a) Method_1: Use the margin command

[gm,pm,wg,wc]=margin(L)
gm=4.5001

pm=72.227

wg=1.4142

wc=0.5675
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Here wg is the frequency at which the phase shift of the open-loop frequency
function is �180�.

To get a graphical evaluation (see Fig. 5.9) we have:

margin(L)

Note that if a graphical evaluation is selected, the gain margin Gm is given in
decibels.

Gm=20*log10(gm)

(b) Method_2: use the BODE and NYQUIST diagrams

nyquist(L)

Read the crossing of the NYQUIST plot with the negative real axis. The gain margin is

gt ¼ gm ¼ 1
L jxpð Þj j ¼

1
0:22

¼ 4:5

bode(L)

Read the phase angle at the 0 dB (unity) gain (it is −108°). The phase margin is
then obtained as ut ¼ u xcð Þþ 180� ¼ �108� þ 180� ¼ 72�.

The gain margin can be read off from the BODE diagram, just check the gain at
xp. Clicking on the white background of the BODE diagram, select, using the right
button Properties->Units->Magnitude in—absolute. The gain margin can be seen

to be gt ¼ gm ¼ 1
L(jxp)j j ¼

1
0:22

¼ 4:5.

Fig. 5.9 Characteristic points
of the BODE diagram
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(c) Method_3: Read from a frequency-amplitude-phase table

Store the calculated points in a table then read the margins:

w=logspace(-1,1,100);
[num,den]=tfdata(L,'v')
[mag,phase]=bode(num,den,w);
Tabl=[mag, phase,w']

Mag phase w

1.1123 -99.5242 0.5094

1.0643 -103.0406 0.5337

>> 1.0158 -106.6104 0.5591<< �wc

0.9669 -110.2286 0.5857

0.2449 -176.7848 1.3530

>> 0.2211 -180.1658 1.4175<< �wg

0.1991 -183.4774 1.4850

0.1789 -186.7160 1.5557

[mag,phase]=bode(L,w);
Tabl=[mag(:), phase(:), w']

LTI structure is interpreted for MIMO linear systems. This is why mag and
phase are variables of three dimensions. In the case of SISO systems, the “:”
operator converts the three dimensional structures to vector structures.

The phase margin can be calculated from the data in the table. To get the phase
margin first the phase at the cut-off frequency should be read (the cut-off frequency
is w ¼ wc ¼ 0:5591), then this phase value should be added to 180°: pm ¼
180� 106:6 ¼ 73:4. The gain margin turns out to be gm ¼ 1=0:221 ¼ 4:52,
where 0:221 is the gain value belonging to the xp frequency.

Now investigate how a change in the loop gain will change the open-loop and
closed-loop properties. To start, multiply the loop-transfer function by the gain
margin 4.5.

Lk=4.5*L
nyquist(Lk)
Tk=Lk/(1+Lk)
step(Tk)
pzmap(Tk)

Modify the loop gain to 4.4 and then 4.6. For a loop gain like 4.6, one pole moves
to the right half-plane, and the step response will diverge to infinity.
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As far as the root-locus is concerned

rlocus(L)

allows sketching the critical value for the loop gain.

5.6.2 Delay Margin

The delay margin is the smallest value of the dead-time needed to push the system
to borderline stability. It can be calculated as follows:

Tmin ¼ ut

xc
¼ pm

wc

½rad�
½rad/s� :

Example 5.6.2 Find the delay margin for the system discussed in Example 5.6.1.

Tmin=(72*pi/180)/0.56
Tmin = 2.24

So a dead-time of 2.24 s can be inserted into the open-loop system to get
borderline stability for the closed-loop system.

5.6.3 Modulus Margin

The modulus margin qm is the minimum distance between the NYQUIST diagram and
the point ð�1þ 0jÞ. In other words, drawing a circle around the point ð�1þ 0jÞ, the
modulus margin will be the radius of the circle just touching the NYQUIST diagram.
A practical specification for the modulus margin is qm [ 0:5. Alternatively, the
modulus margin is identical to the reciprocal of the maximum of the absolute value
of the sensitivity function.

qm ¼ 1
max
x

S(jxÞj j ¼ min
x

1þ LðjxÞj j

Example 5.6.3 Find the modulus margin of the system discussed in Example 5.6.1.

M=bode(L+1)
ro=min(M)

ro = 0.6317
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5.7 Robust Stability

A closed-loop is robustly stable if it remains stable in spite of uncertainities in the
process to be controlled.

For a process with nominal model P̂, suppose that its real transfer function is

P. Then the relative uncertainty is ‘ ¼ P�P̂
P̂
. Robust closed-loop stability is achieved

if ‘ðjxÞj j\ 1bTm

�� �� holds for all frequencies, where bTm is the maximum value of the

complementary sensitivity function of the nominal closed-loop system. Note that
the complementary sensitivity function equals the overall transfer function of the
closed-loop system between the process output and the reference input. (See
Eq. 5.44 in the textbook [1].)

Example 5.7.1 Consider the transfer function of a nominal process:

P̂(s) ¼ 1
(1 + s)(1 + 5s)(1 + 10s).

The time constants and the gain of the real process, however differ from those of
the nominal transfer function:

P(s) ¼ 1:2
(1 + 2s)(1 + 6s)(1 + 12s)

:

The following series regulator has been designed for the nominal process:

C(s) ¼ 2:5
1þ 10s
10s

1þ 5s
1þ s

:

Check the stability of the closed-loop system containing the real process driven
by the series regulator designed for the nominal process. The open-loop transfer
function with the nominal process is determined by

L(s) ¼ C(s)P̂(s) ¼ 0:25

s(1 + s)2
:

Check whether the condition of robust stability is satisfied:

s=zpk('s')
Pk=1/((1+s)*(1+5*s)*(1+10*s))
P=1.2/((1+2*s)*(1+6*s)*(1+12*s))
L=0.25/(s*(1+s)*(1+s))
T=L/(1+L)
T=minreal(T)
l=(P-Pk)/Pk
l=minreal(l)
w=logspace(-2,1,200);
[magT,phaseT]=bode(T,w);
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Tmax=max(magT(:))
[magl,phasel]=bode(l,w);
loglog(w,magl(:),'r',w,1/Tmax,'bx')

Figure 5.10 shows that the frequency function of the relative uncertainty runs
below the value of 1=Tmax in the whole frequency range, so the condition for
robust stability holds. The step responses of the nominal (solid line) and real (dotted
line) system (Fig. 5.11) differ. The transient of the real system exhibits a higher
overshoot, but it remains stable.

The MATLAB™ commands to calculate the step responses are:

C=2.5*(1+10*s)*(1+5s)/((10*s)*(1+s))
L1=C*P
T1=L1/(1+L1)
t=0:0.1:40;
y=step(T,t);
y1=step(T1,t);
plot(t,y,t,y1), grid

Fig. 5.10 Uncertainty
function

Fig. 5.11 Step responses of
the nominal and the real
closed-loop system
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5.8 Internal Stability

A closed-loop system is internally stable (in the BIBO sense) if upon applying any
bounded external excitation, all the internal signals in the system remain bounded.
The reference signal, the disturbance acting at the input and the disturbance at the
output of the process and the measurement noise signal are considered as external
excitations.

For internal stability, all the entries in the transfer function matrix Tt must
be stable:

Tt ¼
CP

1þCP
P

1þCP
C

1þCP
1

1þCP

" #

Example 5.8.1 Consider the unstable process P(s) ¼ 10
s� 1

Can we stabilize (in the internal sense) the closed-loop system using a regulator

given by CðsÞ ¼ s� 1
s

?

Find the transfer functions involved by using the Tt matrix:

s=zpk('s')
P=10/(s-1)
C=(s-1)/s
L=C*P, L=minreal(L)
T11=L/(1+L); T11=minreal(T11)
T12=P/(1+L); T12=minreal(T12)
T21=C/(1+L); T21=minreal(T21)
T22=1/(1+L); T22=minreal(T22)

The results give:
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10
------;
(s+10)

10 s
------------;
(s-1)(s+10)
(s-1)

------;
(s+10)

s
------.
(s+10)

It can be seen that one of the transfer functions (T12) has a pole in the right
half-plane, thus the system is internally unstable.

Note that direct cancellation of an unstable pole is not an accepted design
procedure, as it results in unstable internal behaviour.

Example 5.8.2 Recap the design problem introduced in the previous example:

PðsÞ ¼ 10
s� 1

.

Can we stabilize (in the internal sense) the closed-loop system using a regulator

by CðsÞ ¼ sþ 1
s

?

Find the transfer functions involved by using the Tt matrix.

s=zpk('s')
P=10/(s-1)
C=(s+1)/s
L=C*P;L=minreal(L)
T11=L/(1+L);T11=minreal(T11)
T12=P/(1+L);T12=minreal(T12)
T21=C/(1+L);T21=minreal(T21)
T22=1/(1+L);T22=minreal(T22)

The elements of the transfer function matrix are:
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10 (s+1)
-------------------; 
(s+1.298) (s+7.702)

10 s
-------------------;
(s+1.298) (s+7.702)

(s+1)(s-1)
-------------------;
(s+1.298) (s+7.702)

s (s-1)
-------------------.
(s+1.298) (s+7.702)

The poles of each transfer function have negative real parts, so the closed-loop
system has become internally stable.
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Chapter 6
Design in the Frequency Domain

A closed loop control system has to meet several prescribed quality specifications.
These specifications can be formulated in the time domain and also in the frequency
domain. The behaviour of the closed loop control system can be evaluated on the
basis of the frequency function of the open loop. The characteristics of the open
loop frequency function in the low-, middle- and high frequency ranges determine
the quality characteristics of the closed loop system.

– For good reference signal tracking, LðjxÞj j should be large in the low frequency
range.

– For effective rejection of measurement noise, LðjxÞj j should be small in the high
frequency range.

– For faster performance, the cut-off frequency xc should be as large as possible.
– To ensure stability, the cut-off frequency should be located at that part of the

BODE amplitude diagram where the slope of its asymptote is −20 dB/decade.
– The overshoot of the step response will be within 10%, if the phase margin is

about 60�.

These requirements are partly contradictory. Different prescriptions have to be
given for different frequency ranges. The requirements can be fulfilled by appro-
priate shaping of the frequency characteristics. Figure 6.1 shows a typical open
loop amplitude-frequency function.

Example 6.1 Let us consider a system whose loop frequency function shows
similar performance to Fig. 6.1. Analyse the static response, reference signal
tracking, disturbance rejection and transient behaviour of the closed loop system.

LðsÞ ¼ CðsÞPðsÞ ¼ 0:01ð20sþ 1Þ= s2ðsþ 1Þ� �
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Fig. 6.1 Formulation of the quality specifications in the frequency domain

Plot the BODE diagram of the open loop.

s=zpk('s')
L=0.01*(20*s+1)/(s*s*(s+1))
T=L/(1+L),T = minreal(T)
figure(1),bode(L),grid

The BODE diagram is shown in Fig. 6.2. Analyse the behaviour of the system for
reference signal tracking and disturbance rejection. Let us take a reference signal
containing two components: a low and a high frequency sinusoidal signal.

r(t) ¼ ra(t)þ rm(t) ¼ sin xatð Þþ 0:5 sin xmtð Þ

Let xa be a low frequency which is located in the first part of the BODE diagram
of slope −40 dB/decade, and xm be on the second part on the high frequency part
with the same slope: xa ¼ 0:05; xm ¼ 2. Plot the input and the output signal!

t=0:0.1:500;
wa=0.05; wm=2;
r=sin(wa*t)+0.5*sin(wm*t);
y=lsim(T,r,t);
figure(2);
subplot(211); plot(t,r);
subplot(212); plot(t,y);
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Fig. 6.2 Open-loop frequency function
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Fig. 6.3 The system attenuates the high frequency component

In Fig. 6.3 it can be seen that the system with such frequency characteristics tracks
the low frequency component of the input signal and attenuates the high frequency
component (the upper curve in the figure is the input signal, and the lower curve is
the output signal).

The transient behaviour can be analysed on the step response of the closed loop
system.

figure(3),step(T),grid

The overshoot depends on the phase margin, which can read from the BODE dia-
gram (*60°). The settling time depends on the cut-off frequency xc.

Example 6.2 Let us analyse the relationship between the cut-off frequency and the
settling time. Choose now a faster L1 system than the system L in Example 6.1. The
cut-off frequency of system L1 is higher than that of system L.
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Fig. 6.4 BODE diagrams of two systems

Fig. 6.5 Higher cut-off frequency means faster step response
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L1(s) ¼ 2sþ 1
s2(0:1sþ 1)

L1=(2*s+1)/(s*s*(0.1*s+1))
T1=L1/(1+L1),T1=minreal(T1)
figure(1),bode(L,'b',L1,'r'),grid
figure(3),step(T,'b',T1,'r'),grid

It can be seen (Figs. 6.4 and 6.5) that higher cut-off frequency means a faster time
response.

The cut-off frequency of the first system is xc � 0:2 and that of the second
system is xc � 2. The settling time for the first system is ts � 50 s, while for the
second system it is ts � 5 s (The settling time can be estimated by the relation
3=xc\ts\10=xc).

As the open loop contains two integrators, the control system tracks the step and
also the ramp input accurately, without steady error. Show this by simulation!
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Chapter 7
Control of Stable Continuous Processes,
YOULA Parameterization

YOULA parameterization can be used to control stable processes. The block diagram
of a common control system is shown in Fig. 7.1. With the appropriate regulator
design, a closed loop control based on negative feedback ensures reference signal
tracking, rejection of the effects of input and output disturbances, and also atten-
uation of the measurement noise.

Denote by Q the resulting transfer function between the control signal (manip-
ulated variable) u and the reference signal r.

U sð Þ
R sð Þ ¼ C

1þCP
¼ Q

The resulting transfer function between the output signal y and the reference
signal r, supposing that the other input signals are zero, is T ¼ QP. Therefore if P is
stable, any stable Q ensures a stable closed loop control circuit.

The parameter Q (which is a transfer function) is called the YOULA parameter.
The series regulator C sð Þ can be expressed also using the Q sð Þ parameter:

C sð Þ ¼ Q
1� QP

Let us remark that the resulting transfer function T ¼ QP is linear in the
parameter Q, whereas in the regulator C, it is nonlinear. The aim of regulator design
is to fulfill the prescribed quality specifications set for the control system. Because
of the linearity of the relation, the design of Q is simpler than the design of C.

In a closed loop control system the resulting transfer functions can be expressed
also by the YOULA parameter Q.

The servo (tracking) property (reference signal => output signal): T ¼ QP (this
is the complementary sensitivity function)

Disturbance rejection (output disturbance => output signal, or reference
signal => error signal):
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S ¼ 1
1þCP

¼ 1þCP� CP
1þCP

¼ 1� CP
1þCP

¼ 1� QP ðsensitivity functionÞ

and T þ S ¼ 1 is fulfilled.

Relations between the output and the input signals:

The input signals are the reference signal and the output disturbance: r, yn ¼ yno.
The output signals are the control signal, the error signal and the output signal: u, e, y.

u
e
y

2
4

3
5 ¼

Q �Q
1� QP � 1� QPð Þ
QP 1� QP

2
4

3
5 r

yn

� �
¼

Q �Q
S �S
T S

2
4

3
5 r

yn

� �

The aim is always to ensure T => 1 (good servo property) over a wide frequency
range, and S => 0 (good disturbance rejection). In the ideal case T ¼ 1 and S ¼ 0.

y ¼ Trþ Syn =[ r or e ¼ Sr � Syn =[ 0:

Regarding reference signal tracking Fig. 7.2 is equivalent to Fig. 7.1.
The best reference signal tracking is obtained if Q is the inverse of the transfer

function of the process, i.e. Q ¼ P�1.
But this open loop control structure does not ensure disturbance rejection.

Supplement this circuit with the inner model according to Fig. 7.3 (here only the
output disturbance is shown). This is the so called Internal Model Control (IMC)
structure.

C P
yr e

−

u

zy

niy noy

Fig. 7.1 Block diagram of a control system

CP

C
Q

+
=
1

P
yr u

noyniy

Fig. 7.2 Demonstration of the YOULA parameter

124 7 Control of Stable Continuous Processes, YOULA Parameterization



If there is no disturbance and the internal model is exactly the same as the
process, then the value of the feedback signal is zero, and reference signal tracking
is determined by the forward path of the open loop. Feedback will ensure distur-
bance rejection and eliminating the effect of plant-model mismatch.

If the model is perfect, then e ¼ yn, and then the input of element Q is
r � e ¼ r � yn. Thus

u ¼ Q r � ynð Þ
y ¼ Puþ yn ¼ PQ r � PQ yn þ yn ¼ T r � T yn þ yn ¼ T rþ 1� Tð Þ yn:

The block diagram in Fig. 7.3 can be redrawn according to Fig. 7.4.
Figure 7.4 is equivalent to the usual feedback control system shown in Fig. 7.5

and also in Fig. 7.1.
The series regulator C sð Þ can be expressed with the YOULA parameter Q sð Þ, as

was shown previously:

C sð Þ ¼ Q
1� QP

:

)(sP
-

( )Q s

ny

r e yu

( )P s

( )Q s

YOULA 
PARAMETER PROCESS

INTERNAL MODEL

- ε

CONTROLLER

+

+

Fig. 7.3 Supplementing the control circuit with internal model control

–

r

+
Q

P

P
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Fig. 7.4 Equivalent control
scheme
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The two structures (Figs. 7.3 and 7.5)—as a YP regulator—give results equiv-
alent to the closed loop circuit.

Generally ideal reference signal tracking can not be realized, since the transfer
function of the process can not always be inverted. Dead-time is non-invertible, as
its inverse is not realizable. A transfer function can not be inverted if the degree of
its denominator polynomial is higher than the degree of its numerator polynomial,
as in this case the inverse is not realizable. A non-minimum phase transfer function,
which contains zeros in the right half-plane is not invertible either, as its inversion
would introduce unstable poles in the transfer function of the regulator.

Let us express P sð Þ, the transfer function of the process, as the product of its
invertible part Pþ sð Þ and non-invertible �P� sð Þ part. �P� sð Þ ¼ P� sð Þe�sTd contains
the non-invertible part of the process transfer function and the dead-time. The gain
of P� sð Þ should be 1 to ensure accurate reference tracking in the control system:
P� s ¼ 0ð Þ ¼ 1.

P sð Þ ¼ Pþ sð Þ�P� sð Þ

When realizing the control system the YOULA parameter performs the inverse of
the invertible part only (Fig. 7.6): Q ¼ P�1

þ .
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Fig. 7.5 Equivalent usual feedback control scheme

Fig. 7.6 The YOULA parameter is the inverse of the invertible part of the process
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The dynamics of reference signal tracking and disturbance rejection are the same
in this structure.

YðsÞ
RðsÞ

����
yn¼0

¼ P ðsÞ and
YðsÞ
YnðsÞ

����
r¼0

¼ 1� P ðsÞ

It is often required that the dynamics of tracking be different than the dynamics of
disturbance rejection, for example, that the disturbance rejection should be faster than
the reference signal tracking. This is expressed also as that the one-degree-of-freedom
(1DOF) control should be converted to two-degree-of-freedom (2DOF) control.

This can be ensured by using filters Rr sð Þ and Rn sð Þ according to Fig. 7.7. The
gain of the filters should be unity to ensure the correct static values.

In this structure, the dynamics of the reference signal tracking and that of the
disturbance rejection are obtained by the following:

YðsÞ
RðsÞ

����
yn¼0

¼ RrðsÞP ðsÞ and
YðsÞ
YnðsÞ

����
r¼0

¼ 1� RnðsÞP ðsÞ:

A further role of the filters is that they modify the maximum value of the control
signal u (the manipulated variable), so it can be ensured that it will not exceed its
limit. The filters may have also a robustification effect. With their appropriate
choice, the control system could be made less sensitive to plant-model mismatch.

Figure 7.7 can be redrawn according to Fig. 7.8. The YOULA parameter now is
Q ¼ RnP�1

þ .
With further restructuring, a conventional feedback structure is obtained

(Fig. 7.9), where the series regulator is expressed in the form:

C ¼ RnP�1
þ

1�Rn�P�
¼ Q

1�QP.
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Fig. 7.7 Introducing filters in the control scheme
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With these filters, the relations between the signals can be expressed as

u
e
y

2
4

3
5 ¼

Rr
Rn
Q �Q

Rr
Rn

1� QPð Þ � 1� QPð Þ
Rr
Rn
QP 1� QP

2
64

3
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yn

� �
¼

Rr
Rn
Q �Q
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S �S
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T S

2
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75 r
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� �

Summarizing: YOULA parameterization gives a method for regulator design
(determines the Q parameter in IMC structure, or regulator C in feedback struc-
ture). For the design the transfer function of the process has to be separated into
the invertible and non-invertible components and furthermore the transfer functions
of the reference and disturbance filters have to be given.

Examples First let us consider processes without dead-time.
Write a MATLAB™ program, where the inputs are Pþ and P�, the invertible

and non-invertible components of the process, respectively, and the filters Rr and
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Fig. 7.9 Equivalent control scheme
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Rn. The program calculates and plots the output and control signals for unit step
reference signal and zero output disturbance, and then the output and the control
signals for zero reference signal and unit step output disturbance.

Let us save the program with the name Youla cont.

% Youla_cont: Youla continuous basic program
display('..... Q='),Q=minreal(Rn/Pp,0.0001)
display('..... C='),C=minreal(Q/(1-Q*P),0.0001)
display('..... Tr='),Tr=minreal((Rr/Rn)*Q*P,0.0001)
display('..... Ur='),Ur=minreal((Rr/Rn)*Q,0.0001)
pause;
t=0:0.1:50;
figure(1)
y=step(Tr,t); subplot(211),plot(t,y),grid;
u=step(Ur,t); subplot(212),plot(t,u),grid;
pause;
display('.....Sn='),Sn=minreal((1-Q*P),0.0001);
display('.....Un'),Un=-Q;
figure(2)
y=step(Sn,t); subplot(211),plot(t,y),grid;
u=step(Un,t); subplot(212),plot(t,u),grid;

Example 7.1 Consider Example 7.2 of the textbook [1].
The process to be controlled is a second-order proportional system given by the

transfer function

P ¼ 1þ 5sð Þ 1þ 6sð Þ
1þ 10sð Þ 1þ 8sð Þ ¼ Pþ

This system is invertible, so P� ¼ 1.
The filters are Rr ¼ 1

1þ 4s and Rn ¼ 1
1þ 2s.

Give the data in MATLAB™.

s=zpk('s')
P=((1+5*s)*(1+6*s))/((1+10*s)*(1+8*s))
Pp=P
Rr=1/(1+4*s)
Rn=1/(1+2*s)

Then call the program Youla cont.

Youla_cont
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The calculated Q and C are

It can be seen that the regulator C contains an integrator, so the control system
will track the reference signal without steady error.

The left side of Fig. 7.10 gives the output and the control signals for reference
signal tracking, while the right side of the figure shows these signals for the output
disturbance. It is seen that the disturbance rejection is faster than the reference
signal tracking.

Example 7.2 The process is of non-minimum phase with one zero in the right
half-plane. Its transfer function is

P ¼ 1� s
1þ sð Þ 1þ 2sð Þ

Its step response is shown in Fig. 7.11. It can be seen that the response starts
downwards, then turns and reaches the steady state value determined by unit gain.

Let us separate the transfer function of the process into its invertible and
non-invertible components: P� ¼ 1� s (its gain, which is its value at, s ¼ 0 is 1)

Pþ ¼ 1
1þ sð Þ 1þ 2sð Þ

The filters have to be of second-order to ensure the realizability of Q and C, and
also of ratio Rr=Rn.

Fig. 7.10 Output and control signals
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Put Rr ¼ 1
1þ sð Þ2 and Rn ¼ 1

1þ 0:5sð Þ 1þ sð Þ.

Give the data in MATLAB™.

s=zpk('s')
P=(1-s)/((1+s)*(1+2*s))
Pp=1/((1+s)*(1+2*s))
Rr=1/(1+s)^2
Rn=1/((1+0.5*s)*(1+s))

Then call the Youla cont program.

Youla_cont

It can be seen that the control system operates appropriately (Fig. 7.12). The left
side of the figure gives the output and the control signals for reference signal
tracking, while the right side shows these signals for the output disturbance.
(Without the separation of the transfer function of the process with the original
algorithm the control has unstable behaviour.) The settling time of the control
system is about the half of that of the process itself.

Example 7.3 Let us consider now a process with dead-time, where the value of the
dead-time is bigger than the values of the time constants in the lag elements. In such
cases a YOULA parameterized regulator results in a significantly faster control
system than PID control (see Chap. 8).

Fig. 7.11 Step response of a non-minimumphase process
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The transfer function of the process is: P sð Þ ¼ 1
1þ 5sð Þ 1þ 10sð Þ e

�30s.

Design a YOULA parameterized regulator for this process. Separate the transfer
function into invertible and non-invertible parts:

Pþ ¼ 1
1þ 5sð Þ 1þ 10sð Þ and �P� ¼ P�e�30s ¼ 1 � e�30s

The filters have to be of second order to ensure realizable Q and Rr=Rn transfer
functions.

Let us first choose two identical filters, Rr ¼ Rn ¼ 1
1þ sð Þ2, then put

Rr ¼ 1
1þ sð Þ2 and Rn ¼ 1

1þ 25sð Þ 1þ sð Þ.

Analyse the reference signal tracking and disturbance rejection of the control
system for unit step reference signal and disturbance, first when the system and its
model are the same, then when there is plant-model mismatch: the dead-time of the
process is 40 s, and the dead-time in the model, which is the basis of regulator
design is 30 s.

The simulation is executed in SIMULINK™, as in MATLAB™ the dead-time
could be considered only approximately.

Give the data in MATLAB™ and the commands calculating the YOULA

parameter and the filters.

s=zpk('s')
Pp=1/((1+5*s)*(1+10*s))
Rr1=1/(1+s)^2
Rn1=1/(1+s)^2
Rr2=Rr1;
Rn2=1/((1+25*s)*(1+s))
Q1=minreal(Rn1/Pp,0.0001)
Q2=minreal(Rn2/Pp,0.0001)
F1=1;

Fig. 7.12 Output and control signals
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F2=minreal(Rr2/Rn2,0.0001)

Build the SIMULINK™ block diagram according to the IMC structure (Fig. 7.13).
SIMULINK™ takes over the referred variables given in MATLAB™.
The reference signal is a unit step acting at t = 0, the output disturbance is a step

with amplitude 0.5 which acts at time t = 100. Figure 7.14 shows the output signals
of the two filter choices. The control signals could be also plotted.

Figure 7.15 shows the output signals in the case of plant-model mismatch. With
the filters of smaller time constants the control system becomes unstable, but with
the bigger time constants in the filters the control remains stable.

Let us remark that in case of a sampled-data system, the realization of a regulator
containing dead-time does not present a problem, and so the simulation can be
executed easily also in MATLAB™ (see Sect. 12.1).
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Fig. 7.13 SIMULINK™ block diagram of the YOULA parameterized control system

Fig. 7.14 The output signal for step reference signal and step disturbance
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Fig. 7.15 In case of dead time mismatch a well selected filter stabilizes the behavior
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Chapter 8
PID Regulator Design

8.1 Characteristics of PID Elements

8.1.1 Characteristics of the PI Element

The transfer function of an ideal PI element is CðsÞ ¼ AP
1þ sTI
sTI

¼ AP 1þ 1
sTI

� �
: Plot

its step response in case of TI ¼ 10 and AP ¼ 2.

s=tf('s')

C=2*(1+s*10)/(s*10);

step(C),grid

It can be seen that the initial jump of the curve is AP ¼ 2 (which can be cal-
culated by limit values for t ! 0 or s ! 1). The slope of the curve depends on the
time constant TI ¼ 10 (Fig. 8.1).

Let us draw the BODE diagram of the element (Fig. 8.2).

bode(C),grid

In the low frequency range the BODE amplitude diagram can be approximated by
a straight line of slope −20 dB/decade, then from frequency 1=TI ¼ 0:1 with a
horizontal straight line (Fig. 8.2).
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Fig. 8.1 Step response of a PI element

Fig. 8.2 BODE diagram of a PI element
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8.1.2 Characteristics of the PD Element

The transfer function of the ideal PD element is C sð Þ ¼ 1þ sTD. Plot its step
response in case of TD ¼ 10;

s=tf('s')

C=1+s*10;

step(C)

MATLAB™ respond with an error message, as the regulator is non-realizable:
the degree of its numerator is higher than the degree of its denominator. Its step
response is DIRAC delta, which can not be handled numerically.

??? Error using ==> rfinputs

Not supported for non-proper models.

The transfer function of a non ideal PD element is

CðsÞ ¼ AP 1þ ss
1þ sT

� �
¼ AP

1þ sTD
1þ sT

� �
; TD ¼ T þ s[ T:

Plot its step response and BODE diagram.

C=(1+s*10)/(1+2*s)

figure(1),step(C)

figure(2),bode(C)

It can be seen that the step response in point t ¼ 0 starts at 5 and in steady state
approximates 1 (Fig. 8.3). The ratio of the initial and final values gives the
overexcitation, which ensures acceleration in the control system. The BODE diagram
is shown in Fig. 8.4. Between the frequencies 0.1 and 0.5 the amplitude diagram
can be approximated by a straight line of slope +20 dB/decade. This regulator is
also called phase lead regulator as its phase angle is positive over the whole
frequency range.

8.1.3 Characteristics of the PID Element

A PID regulator can be built of a proportional element (P), an integrating element
(I) and a differentiating element (D). For regulator design in the frequency domain
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the series form is more advantageous: the transfer function of the regulator is
approximated by serially connected PI and PD elements (see formula (8.8) in the
textbook [1]).

Fig. 8.3 Step response of a PD element

Fig. 8.4 BODE diagram of a PD element
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CðsÞ ¼ AP
sTI þ 1
sTI

sTD þ 1
sT þ 1

Plot the step response and the BODE diagram of the element.

C=(10*s+1)/(10*s)*(s+1)/(0.5*s+1)

t=0:0.1:15;

step(C,t),grid

bode(C),grid

In the step response (Fig. 8.5), at the beginning the differentiating effect that is
responsible for acceleration is dominant, whereas for later times the integrating
effect is dominant. The initial low frequency part of the BODE amplitude diagram
(Fig. 8.6) can be approximated by an asymptote of slope −20 dB/decade, and the
middle frequency part by an asymptote of slope +20 dB/decade.

8.2 Design of a PID Regulator

Consider the closed loop control system shown in Fig. 8.7, with P sð Þ being the
transfer function of the process (plant) to be controlled, and C sð Þ the transfer
function of the regulator.

Fig. 8.5 Step response of a PID element
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For the given process, a series regulator is to be designed which ensures the
fulfilment of the quality specifications.

8.2.1 Design Considerations

The following requirements are set for a closed loop control system:

– Stability;
– Static response (reference signal tracking, disturbance rejection);
– Transient response (overshoot in the output signal, settling time);
– Robustness;
– Limitation of the control signal.

Quality specifications (requirements) can be formulated in the frequency domain as
well (see also Chap. 6). The overshoot of the step response of the closed loop is
related to the maximum amplification of the amplitude-frequency function of the
closed loop, and also to the phase margin calculated from the frequency function of

Fig. 8.6 BODE diagram of a PID element

( )C s ( )P s
e(t) y(t)u(t)r(t)

- Y(s)U(s)E(s)R(s)

Fig. 8.7 Control system
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the open loop. If the phase margin is about 60�, the overshoot will be about 10%.
The settling time depends on the cut-off frequency, and can be approximated by
3
xc

� ts � 10
xc
.

In practice the manipulated variable, the control signal, is restricted: its value
should not exceed a given limit.

The structure and the parameters of the regulator have to be chosen considering
the design specifications.

In more complex control problems several restrictions can be imposed on the
output and control signals. For example, the integral of the quadratic error and also
that of the control signal have to be minimized. The restrictions can be non-linear
and also can be contradictory. In general, the parameters of the regulator can be
determined by optimization procedures.

In the sequel a simple practical method will be presented for regulator design
(also called compensation), when the phase margin is prescribed. The design is
based on the frequency function of the open loop, and from the properties of the
open loop consequences are drawn for the behaviour of the closed loop.

When the requirement is to track the step reference signal accurately, without
steady state error, a PI regulator is employed. This requirement can be fulfilled by
using an integrating effect in the open loop. With a PD regulator, the control system
can be accelerated. If both the accuracy and the settling time should be improved, a
PID regulator is employed. The PD element causes a significant increase of the
initial value of the control signal, which is responsible for the acceleration.

The regulator is designed considering the model of the process and the quality
specifications. A usual technique is pole cancellation, when the zeros of the transfer
function of the regulator cancel the unfavourable poles of the process, and so a
desired dynamics is ensured in the closed loop control circuit. For the pole can-
cellation technique, it is advantageous to give the transfer function of the regulator
in product form.

In a PID regulator there are 4 parameters: kc ¼ AP; TI; TD; T . When designing a
regulator with the pole cancellation technique, these parameters are chosen as
follows: TI should be equal to the biggest time constant (the pole with the lowest
frequency), and TD should be equal to the second biggest time constant. Thus the
zeros introduced by the regulator cancel the poles of the process. The parameter T is
given in the form T ¼ TD

np
, where np is the ratio of pole replacement, which indicates

how far away the PD element pushes the compensated pole of the system. A good
experimental rule is to choose the value of np in the range 2–10. If it is higher, the
control system will be faster, but at the cost of a higher maximum of the control
signal. As the value of kc does not influence the phase of the open loop frequency
function, this parameter can be used to set the value of the prescribed phase margin.

The steps of regulator design with P, PI, PD and PID regulators are shown for
compensating the process given by the transfer function
PðsÞ ¼ 1=½ð1þ 10sÞ ð1þ sÞ ð1þ 0:2sÞ�.
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Design series P, PI, PD and PID regulators to ensure a phase margin of about
60°. Give the quality characteristics of the compensated system. Calculate and draw
the output and the control signals for a unit step reference signal.

8.2.2 Design of a P Regulator

The regulator is given as C sð Þ ¼ kc. So only the value of kc has to be determined.
Give the transfer function of the process.

s=zpk('s')

P=1/((1+10*s)*(1+s)*(1+0.2*s))

First let kc ¼ 1.

kc=1

C=kc

L=C*P

Draw the BODE diagram of the open loop and determine its characteristic values
(phase margin, gain margin, and cut-off frequency) using the command margin.

margin(L)

The system has significant phase and gain margins. The phase angle decreases
monotonically from zero to �270�, so by changing the gain the required phase
margin could be set. The gain of the regulator will be the reciprocal of the gain
belonging to the phase value u ¼ ut � 180�. This can be read off the BODE diagram
of the open loop, or calculated from a table containing the corresponding frequency,
gain and phase values, or found by using command margin.

As the calculation of the gain margin gt is similar to the calculation of kc (e.g. if
ut ¼ 60�Þ.

kc ¼ 1
.

LðjxÞj ju¼�120� and gt ¼ 1
.

LðjxÞj ju¼�180� ;

therefor kc can also be found using the command margin. The input parameter of
the command margin can be a transfer function given in LTI sys structure, or the
gain, phase and frequency vector calculated by the command bode. The command
margin calculates the gain margin from the gain belonging to the phase value
�180�. If the phase angles are decreased by the value of the required phase margin,
then margin will calculate gt as the reciprocal of the gain belonging to the given
phase margin.
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[mag,phase,w]=bode(L);

gt=margin(mag,phase-60,w)

kc=gt

So the regulator is CPðsÞ ¼ kc ¼ 7:51. The parameter kc can also be calculated
from the table below containing the corresponding data of the frequency function.

Table=[mag(:), phase(:), w]

mag phase w

0.2756 -95.0730 0.3290

0.1960 -107.0164 0.4520

0.1340 -119.7735 0.6210

0.0873 -133.4679 0.8532

The parameter kc is calculated as the reciprocal of the gain corresponding to the
phase angle �120�, and the corresponding frequency is the cut-off frequency:
kc ¼ 1=0:134 ¼ 7:4627, xc ¼ 0:621.

Refining the resolution of the frequency vector w, the two methods give the
same result.

Similarly to the method using the table above, kc can be found also from the
BODE diagram.

bode(L)

Change the scale of the amplitude curve from decibels to absolute: clicking on
the white background of the BODE amplitude diagram, choose with the right mouse
button Properties –> Units –> Magnitude in—absolute. Find phase angle −120°
in the phase diagram then read off the gain belonging to this frequency from the
BODE amplitude diagram. The reciprocal of this gain will be kc, i.e.
kc ¼ 1

L jxð Þj ju¼�120�
¼ 1

0:134 ¼ 7:46:

Check the behaviour of the system.

C=kc

L=kc*L

Check the parameters characterizing the stability margins (the gain margin and
phase margin).

margin(L)

[gt,pm,wg,wc]=margin(L)

The phase margin is indeed 60�. The cut-off frequency is xc ¼ 0:6245.
Calculate the resulting transfer function of the closed loop system.

T=L/(L+1)
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The calculations may result in coinciding zero-pole pairs, which can be can-
celled using the command minreal.

T=minreal(T)

Or, in one step,
T=minreal(L/(1+L))

The same result is obtained using the command feedback.

T=feedback(L,1)

Plot the BODE diagrams of the open and the closed loop on one diagram.

bode(L,'r',T,'b')

It can be seen that in the low frequency range the amplitude diagram of the
closed loop is approximately 1, and in the high frequency range the two curves are
approximately the same.

Plot the step response of the closed loop.

step(T)

Calculate its values.
t=0:0.05:10;

y=step(T,t);

The maximum value of the step response:

ym=max(y)

The steady state value of the step response:

ys=dcgain(T)

From these values the overshoot can be calculated as

yt=(ym-ys)/ys

The error in steady state:

es=1-ys

Let us analyse the behaviour of the control signal uðtÞ. This is important because
this is the input of the process, and it is not allowed to exceed the given limits. Let
us calculate the resulting transfer function between the control signal and the ref-
erence signal.
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U=minreal(C/(1+L))

or

U=feedback(C,P)

For a step reference signal:

ut=step(U,t);

plot(t,ut)

The constraint is generally imposed as the maximum value of the control signal.

um=max(ut)

8.2.3 Design of P, PI, PD and PID Regulators

PI, PD and PID regulators can be designed similarly. Let us apply the pole can-
cellation technique. The table below summarizes the structure of the regulators and
the characteristic values of the control systems with the different regulators. Let us
generate a new m-file for regulator design. The program calculates the gain kc of
that regulator which ensures a phase margin of 60°, then evaluates the characteristic
parameters of the control system. In the table yt denotes the overshoot of the output
signal, es is the value of the static error for unit step reference signal, um denotes
the maximum value of the control signal, and ts gives the settling time.

To write a MATLAB™ program, let us generate a new m-file. This text file can
be opened in the file menu of MATLAB™ with the extension “.m”. Write the
MATLAB™ commands into the empty file. Then save it: Save As, C:/Matlab/work/
myfile.m.

To call the program simply write the name of the program, without its extension,
in the command window of MATLAB™.

myfile

The following MATLAB™ program realizes the regulator design.
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clear; s=zpk('s'); 
P=1/((1+10*s)*(1+s)*(1+0.2*s))
Cp=1; Cpi=(1+10*s)/(10*s)
Cpd=(1+s)/(1+0.2*s)
Cpid=Cpi*Cpd
[mag,phase,w]=bode(Cp*P);
kp=margin(mag,phase-60,w)
Cp=kp*Cp;

[mag,phase,w]=bode(Cpi*P);
kpi=margin(mag,phase-60,w);
Cpi=kpi*Cpi;

[mag,phase,w]=bode(Cpd*P);
kpd=margin(mag,phase-60,w);
Cpd=kpd*Cpd;

[mag,phase,w]=bode(Cpid*P);
kpid=margin(mag,phase-60,w);
Cpid=kpid*Cpid;

Lp=Cp*P;
Lpi=minreal(Cpi*P,0.0001)
Lpd=minreal(Cpd*P,0.0001)
Lpid=minreal(Cpid*P,0.0001)
%Resulting transfer functions:
Tp=Lp/(1+Lp);
% or Tp=feedback(Lp,1);
Tpi=Lpi/(1+Lpi);
Tpd=Lpd/(1+Lpd);
Tpid=Lpid/(1+Lpid);
%Transfer functions of U(s):
Up=Cp/(1+Lp);
Upi=Cpi/(1+Lpi);
Upd=Cpd/(1+Lpi);

Upid=Cpid/(1+Lpid);
t=0:0.05:10;

figure(1),step(Tp,'r',Tpi,'b'
,Tpd,'g',Tpid,'m',t)
figure(2),step(Up,'r',Upi,'b'
,t)
figure(3),step(Upd,'g',Upid,'m'
,t)

yp=step(Tp,t);
ypi=step(Tpi,t);
ypd=step(Tpd,t);
ypid=step(Tpid,t);

ysp=dcgain(Tp)
yspi=dcgain(Tpi)
yspd=dcgain(Tpd)
yspid=dcgain(Tpid)
ep=1-ysp
epi=1-yspi
epd=1-yspd
epid=1-yspid

ytp=(max(yp)-ysp)/ysp
ytpi=(max(ypi)-yspi)/yspi
ytpd=(max(ypd)-yspd)/yspd
ytpid=(max(ypid)-yspid)/yspid
up=step(Up,t);
upi=step(Upi,t);
upd=step(Upd,t);
upid=step(Upid,t);
upim=max(upi)
updm=max(upd)
upidm=max(upid)

The step responses are shown in Fig. 8.8. The control signals for the P and PI
controls are given in Fig. 8.9. The control signals for the PD and PID controls are
shown in Fig. 8.10.

The following table summarizes the structure and the parameters of different
regulators given in the MATLAB™ example, and presents the characteristic values
of the closed system.

CðsÞ LðsÞ ¼ CðsÞPðsÞ kc xc yt es um � ts

No control
case

1
ð1þ 10sÞ ð1þ sÞ ð1þ 0:2sÞ

0 0 0.5 2 12

P kc kc
ð1þ 10sÞ ð1þ sÞ ð1þ 0:2sÞ

7.51 0.62 0.153 0.117 7.5 8

PI kc 1þ 10s
10s

kc
sð1þ sÞ ð1þ 0:2sÞ

5.04 0.46 0.078 0 5.16 9

PD kc 1þ s
1þ 0:2s

kc
ð1þ 10sÞð1þ 0:2sÞ2

16.5 1.51 0.103 0.057 82.7 2

PID kc
ð1þ 10sÞð1þ sÞ
10s ð1þ 0:2sÞ

kc
sð1þ 0:2sÞ2

14.3 1.33 0.076 0 71.3 2
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The requirements imposed on the control system are a fast settling process and
good reference signal tracking. In Fig. 8.8 it can be seen that P compensation does
not fulfill these conditions. The settling is slow and the output signal does not reach

Fig. 8.8 Step responses of the control system in case of P, PI, PD and PID controllers

Fig. 8.9 The control signals in case of P and PI controllers
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the required value y 1ð Þ ¼ 1. With PI compensation the static error has been
decreased to zero, but the settling process is slow. The PD compensation acceler-
ates the control system, but there is a static error. The reason for this acceleration
(Fig. 8.10) is the significant increase of the control signal uðtÞ. With the PID
regulator the system became fast and the static error is zero.

The behaviour of the control system can also be analysed by building a
SIMULINK™ block diagram and running it with the given process and with the
designed regulators.

8.2.4 Regulator Design for a Second-Order Oscillating
Element

The process is given by the following transfer function:

PðsÞ ¼ A0

ðs� p1Þ ðs� p2Þ ¼
A

s2T2
o þ 2nTosþ 1

, where p1;2 ¼ a� jb

The poles are complex conjugates. The breakpoint frequency of the BODE dia-
gram is xo ¼ 1=To. Here the slope of the approximate BODE amplitude diagram
changes from 0 to −40 dB/decade. In this case a possible PID pole cancellation
technique can be, if the time constants of both the PI and the PD elements are
chosen to be the reciprocals of the natural frequency, i.e. TI ¼ To and TD ¼ To, so

Fig. 8.10 The control signals in case of PD and PID controllers
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CðsÞ ¼ kc
1þ Tos

s
1þ Tos
1þ T1s

:

Another possibility is to employ a pure integrating element as a regulator, whose
gain is set to ensure a phase margin of about 60�. Let us remark that for a small
damping factor n, the prescribed phase margin alone will not always ensure the
appropriate transient response. It is necessary to arrange that in the vicinity of the
cut-off frequency the BODE amplitude diagram does not move close to the 0 dB axis.

8.2.5 Applying Experimental Tuning Rules

Besides the discussed regulator design methods, there are several practical regulator
tuning methods. The most frequently used methods which give rules of thumb for
the parameter tuning of the PID regulator based on the model of the process are:

– The ZIEGLER-NICHOLS rules
– The OPPELT method
– The CHIEN-HRONES-RESWICK method
– The STREJC method
– The ÅSTRÖM relay method
– The ÅSTRÖM-HÄGGLUND method.

The rules of thumb are given in the textbook [1].

8.3 PID Regulator Design for a Dead-Time System

Compensating a system containing dead-time is more complicated than for a system
without dead-time, as the transfer function of the dead-time element can not be
represented accurately by a rational function. The phase shift caused by the
dead-time has to be taken into consideration in regulator design.

Let us consider the control system given in Fig. 8.11.
Here PðsÞ ¼ Pþ ðsÞe�sTd , where Pþ ðsÞ is the transfer function of the process

without the dead-time and Td denotes the dead-time, CðsÞ is the transfer function of
the regulator, and LðsÞ ¼ CðsÞPðsÞ is the loop transfer function.

( )C s ( )P s
e(t) y(t)u(t)r(t)

- Y(s)U(s)E(s)R(s)

Fig. 8.11 Control system

8.2 Design of a PID Regulator 149



Consider the following example:

PðsÞ ¼ Pþ ðsÞ e�sTd ¼ e�s

1þ 20s
:

The transfer function of the regulator CðsÞ has to be chosen to ensure the
fulfilment of the quality specifications.

Prescriptions: For a step reference signal, the static error for reference signal
tracking should be zero, and the overshoot of the output signal should be below
10%. These requirements can be ensured using a PI regulator:
CðsÞ ¼ kcð1þ 20sÞ=s.

The loop transfer function is

LðsÞ ¼ CðsÞPðsÞ ¼ kc
1þ 20s

s
e�s

1þ 20s
¼ kc

e�s

s
:

The constant kc is chosen to ensure a phase margin of about 60�.
The amplitude of the frequency function of the process is calculated from its part

without the dead-time:

PðjxÞj j ¼ Pþ ðjxÞe�jx Tdj j ¼ Pþ ðjxÞj j, as e�jxTdj j ¼ 1
The phase angle is

arg PðjxÞf g ¼ arg Pþ ðjxÞf gþ arg e�jxTd
� � ¼ arg Pþ ðjxÞf g � x Td

Regulator design in theMATLAB™ environment can be executed in twoways. In
the first way, in the frequency domain the phase angle of the process without the
dead-time is calculated, and then it is modified by �x Td, the phase angle of the
dead-time element. The disadvantage of this method is that the simulation can not be
done in the MATLAB™ environment alone, analysis in SIMULINK™ is also
required. In the second way the dead-time is approximated by a rational function. For
the approximate process the regulator design can be executed according to themethod
applied for rational functions (see Sect. 8.2 in textbook [1]). With this method, the
behaviour of the system can be analysed in the MATLAB™ environment.

Let us emphasize that the first method is preferred.

8.3.1 Regulator Design for a Dead-Time System
Considering the Phase Shift

Let us design a PI regulator for the process given in Sect. 8.3. Write Pþ ðsÞ = P.

s=zpk('s')

P=1/(1+20*s)

Td=1
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kc=1

C=kc*(1+20*s)/s

The transfer function of the open loop is

L=C*P,L=minreal(L)

The amplitude-frequency function of the open loop coincides with the amplitude
of the system without dead-time. Its phase angle is modified by a linear term. To
execute the calculations a frequency vector w has to be defined, which contains the
cut-off frequency. In many cases the command bode itself calculates the frequency
vector.

[mag,phase,w]=bode(L);

If this frequency vector is not satisfactory, the user has to define it so that it
ensures a frequency range which is wide enough. This can be done using the
knowledge of the process or by trial and error.

w=logspace(-1,1,100)'

[mag,phase]=bode(L,w);

magd=mag(:);

phased=phase(:)-w*Td*180/pi;

The gain kc can be calculated in two ways.

1. Method 1: with the command margin.

The gain margin for a phase angle −120° is found by

gm=margin(magd,phased-60,w)

This will be the value of gain a kc:

kc=gm

0.5235

2. Method 2: using a table.

Tabl=[phased, magd, w]

-116.5943 2.1544 0.4642

-117.8607 2.0565 0.4863

-119.1873 1.9630 0.5094

>> -120.5770 1.8738 0. 5337 <<

-122.0330 1.7886 0.5591

-123.5583 1.7074 0.5857
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The value of magd at phased ¼ �120 is 1.8738.
Hence kc ¼ 1=1:8738 and xc ¼ 0:5337.

kc=1/1.8738

0.5337

Let us calculate the regulator transfer function again:

C=kc*(1+20*s)/s

L=C*P,L=minreal(L)

Check the phase margin.

[mag,phase]=bode(L,w);

magd=mag(:);

phased=phase(:)-w*Td*180/pi;

margin(magd,phased,w)

Figure 8.12 shows the BODE diagram of the open loop and the phase margin. In
this simple case, the calculation can also be executed analytically. The transfer
function of the open loop is 1=s, its phase angle is �90� over the whole frequency
range. At the prescribed phase margin of 60�, the phase angle is �120�. That means
that the dead-time can add �30�, i.e. �xcTd ¼ �p=6. Hence xc ¼ p=6 ¼ 0:5236.
From the condition 1 ¼ kce�jx=jxj j the gain is calculated as kc ¼ xc ¼ 0:5236,
which is close to the result obtained previously from the table.

Fig. 8.12 BODE diagram of the open loop
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The behaviour of the system can be analysed with the SIMULINK™ model shown
in Fig. 8.14. With SIMULINK™, the dead-time can be simulated easily with the
Transport Delay block. Set its parameter to the value Td, and the transfer function of
the process to P. Figure 8.13 shows the step response of the control system.

The result of the simulation can be sent to the MATLAB™ surface for further
analysis and graphical representation. This can be done in two ways: with the To
Workspace block, or with the Scope block. In the To Workspace block the name of
the variable that will be used in MATLAB™ has to be set, its type has to be given
as Matrix. Then the signals can be plotted using MATLAB™:

plot(t,y),grid

In MATLAB™ the results of the simulation can also be analysed and plotted
from Scope blocks. Set the parameters of the graphical window of Scope as follows:

Fig. 8.13 Step response of the control system

Fig. 8.14 SIMULINK™ model of a control system with dead time in the process
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Under the properties menu,

Data history: Save data to workspace
Variable name: ty (tu in the case of the control signal)
Matrix format

So the vectors of the time t and the output y can be obtained easily after the
simulation. Then the quality characteristics (overshoot, settling time, maximum
value of the control signal) can be determined.

t=ty(:,1)

y=ty(:,2)

plot(t,y),grid

8.3.2 Regulator Design for a Dead-Time System Using PADE

Approximation

The transfer function of a dead-time element can be approximated by the PADE
rational function, PPade sð Þ ffi e�sTd . (The first few terms of the TAYLOR series of the
PADE rational function are the same as those of the transfer function of the dead-time
element.)

P sð Þ ¼ Pþ sð Þ e�sTd ffi Pþ sð ÞPPade sð Þ

In MATLAB™, the command pade calculates the approximation for the given
degree. For example, for the 5th degree:

s=zpk('s')

P=1/(1+20*s)

Td=1

kc=1

C=kc*(1+20*s)/s

[numpade,denpade]=pade(Td,5)

Ppade=tf(numpade,denpade)

Ppade=zpk(Ppade)

Pd=P*Ppade

From this point on, the steps of the regulator design are the same as for a system
without dead-time.

L=C*Pd,L=minreal(L)
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The gain kc is calculated by

[mag,phase,w]=bode(L);

kc= margin(mag,phase-60,w)

0.5212

C=kc*(1+20*s)/s; L=kc*L;

T=L/(1+L); T=minreal(T)

The settling time can be evaluated with the command step. The step response
can be compared with the result obtained with SIMULINK™ (Fig. 8.15).

step(T,20),grid

It can be seen that the step responses obtained by the two methods are
approximately the same.

It has to be emphasized that the method given in Sect. 8.3.1 is more accurate
than the method using the PADE approximation. With the PADE approximation, the
transfer functions of the open and the closed loop are complicated because of the
high degree approximation. The advantage of PADE approximation is that the design
method is the same as for systems without dead-time.

Fig. 8.15 Step response calculated with PADE approximation of the dead time
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8.4 Control of an Unstable System

8.4.1 Control of an Unstable System with a P Regulator

An unstable process is given by the transfer function PðsÞ ¼ 20=½ðsþ 2Þ ðs� 5Þ� .
Let us analyse whether the process can be stabilized with a proportional regulator
CðsÞ ¼ kc or not.

s=zpk('s')

P=20/((s+2)*(s-5))

figure(1); grid on; nyquist(P);

figure(2); grid on; bode(P);

figure(3);rlocus(P);

The transfer function of the process has a pole in the right half-plane. According
to the general NYQUIST stability criterion the control system can be stabilized with
the given regulator, if the NYQUIST diagram of the open loop encircles �1þ j0
counter-clockwise as many times as the number of the poles of the process in the
right half-plane. Figure 8.16 shows that the control system can not be stabilized, as
the NYQUIST diagram encircles �1þ j0 clockwise. The BODE diagram shows that the
phase margin is negative. The same result is obtained by calculating the roots of the
characteristic equation s2 � 3s� 10þ kc ¼ 0. The necessary condition of stability
is that the coefficients are of the same sign, which is not fulfilled. The root locus
(0\kc\1) gives the same result. At each value of the gain, at least one root of the
characteristic equation lies in the right half-plane.

Let us consider the process given by P sð Þ ¼ 5= s� 2ð Þ sþ 5ð Þ½ � . Can this pro-
cess be stabilized with a proportional C sð Þ ¼ kc regulator?

clear

s=zpk('s')

Fig. 8.16 NYQUIST and BODE diagrams of an unstable process controlled by P regulator
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P=5/((s-2)*(s+5))

figure(1);grid on;nyquist(P);

figure(2); grid on; bode(P);

figure(3); rlocus(P);

As can be seen from Fig. 8.17, the NYQUIST diagram may encircle the point
�1þ j0 counter-clockwise. This can be arranged by increasing the gain. For kc [ 2
the curve encircles the point �1þ j0, so the control system becomes stable. The
BODE diagram shows that the phase margin can be positive.

Let us choose the gain kc to ensure that the cut-off frequency is located where the
phase margin is of maximum value. First analyse the behaviour of the open loop for
kc ¼ 1.

C=1

L=C*P

[mag,phase,w]=bode(L);

Method 1: using the table

T=[phase(:), mag(:), w]

-158.1444 0.3559 1.7433

-155.9825 0.3066 2.2122

-154.7797 0.2530 2.8072

>> -154.6231 0.2259 3.1623 <<

-154.7797 0.1994 3.5622

-155.9825 0.1501 4.5204

The BODE phase curve reaches its maximum at phase = 154.62, mag = 0.2259,
x ¼ 3:16. With a proportional regulator, the maximum reachable phase margin is

Fig. 8.17 Nyquist and Bode diagrams of an unstable process controlled by P regulator
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ut¼ 180��154:6�¼ 25:8�. In this case the gain has to be chosen as
kc ¼ 1=0:045 ¼ 4:42.

kc=4.42

Method 2: The maximum value can be calculated with the command max.

[maxphase,index]=max(phase)

kc=1/mag(index)

Calculate the regulator again:

C=kc;

L=C*P;

With margin, the phase margin can be checked graphically.

margin(L);

The phase margin of the system is small, ut ¼ 25:4� (60� would be required).
Plot the step response of the closed loop (Fig. 8.18.).

Fig. 8.18 Step response of P control of an unstable process with maximum phase margin
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T=feedback(L,1)

step(T), grid

Stable behaviour has been reached, but there is a quite big overshoot and there is
a significant static error. Applying a PID regulator the performance of the control
system could be improved.

8.4.2 Control of an Unstable System with a PID Regulator

To decrease the static error, let us design a PID regulator.

C sð Þ ¼ kc
sþ 2
s

sþ 5
sþ 50

:

The unstable pole p1 ¼ 2 can not be cancelled by a zero, as the parameters
generally are obtained from measured data, and the system would become unstable
even in the case of a small difference between the pole and the cancelling zero. On
the other hand with pole cancellation of the unstable pole the inner stability can not
be ensured, as the unstable pole would appear in the resulting transfer function
between the output and the inner disturbance signals. The unstable pole could be
compensated by a stable PI element. To accelerate the system the stable pole
p1 ¼ �5 is shifted to a higher frequency by a PD element (p ¼ �50, the pole shift
ratio is 10). The gain kc is chosen again to ensure the maximum phase margin.

Clear all the variables and close the graphic windows.

clear all, close all

s=zpk('s')

P=5/((s-2)*(s+5))

C=((s+2)*(s+5))/(s*(s+50))

L=C*P

L=minreal(L)

bode(L)

[mag,phase,w]=bode(L);

Determine the gain for the maximum phase:

[maxphase,index]=max(phase)

kc=1/mag(index)

The gain is kc ¼ 152, and the phase margin ut ¼ 180þmaxphase ¼ 58�.
Check the behaviour of the control system.

C=kc*((s+2)*(s+5))/(s*(s+50))

L=C*P, L=minreal(L)

margin(L)
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The obtained phase margin is really 60� (Fig. 8.19).
Determine the step response of the closed loop and the control signal (Fig. 8.20).

Fig. 8.19 BODE diagram of PID control of an unstable process with phase margin of 60°

Fig. 8.20 The output and the control signals
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T= L/(1+L), T=minreal(T)

The static error has been decreased to zero.

es=1-dcgain(T)

es = 1.2212e-015

The resulting transfer function between the control signal and the reference
signal is

U=C/(1+L), U=minreal(U)

subplot(211),step(T)

subplot(212),step(U)

u=step(U)

um=max(u)

The maximum value um of the control signal is high. This value can be
decreased by decreasing the pole shift ratio.

8.5 Handling of Constraints

Let us analyse the behaviour of the PI regulator designed in Sect. 8.2.3 when there
are constraints.

P sð Þ ¼ 1
1þ 10sð Þ 1þ sð Þ 1þ 0:2sð Þ ; C sð Þ ¼ 5:04

1þ 10s
10 s

The maximum value of the control signal is um ¼ 5:04. In practical applica-
tions limitations do exist for the control signal. Such limitations may originate from
several sources. The manipulator which provides the control signal to the process
input generally can not produce a higher value than its given maximum. Limitation
is applied also at the process input when the process should be protected against too
big, harmful interventions.

In the case of PI regulators, the FOXBORO regulator provides a simple solution
for handling limitations. The regulator is realized by a saturation block fed back
with positive feedback by a first order lag element (see Fig. 8.22). Without the
saturation the proportional path has gain 1. The resulting transfer function of this
circuit provides a PI regulator (Fig. 8.21).

If the regulator works in the linear range, then this relationship holds, otherwise
its output is limited. Compare the simple limitation at the process input realized by
cutting the input signal with the effect of the FOXBORO regulator. The comparison
of the regulators is executed in the SIMULINK™ environment.
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s=zpk('s')

P=1/((1+10*s)*(1+s)*(1+0.2*s))

kc=5.04

C=kc*(1+10*s)/(10*s)

Cf=1/(1+10*s)

Build the SIMULINK™ block diagram shown in Fig. 8.22.
Set the lower and upper limits of blocks saturation (SIMULINK™ –

> Discontinuities –> Saturation) (Upper limit and Lower limit) to u1 and �u1. Set
the simulation time to 50.

u1=2

I

1( )
1fC s

sT
=

+

≡
( )u t ( )u t( )e t ( )e t

+
+

I

I

1( ) sTC s
sT

+=

Fig. 8.21 FOXBORO regulator

Fig. 8.22 SIMULINK™ diagram of a control system handling saturation by FOXBORO
regulator
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In the case of saturation, the course of the output signal with the FOXBORO
regulator is more advantageous, the overshoot is smaller, and the settling time is
also smaller (Fig. 8.23).

The reason is that with the conventional PI control shown in the upper part of
Fig. 8.22 at t ¼ 0, a control signal of value 5.04 does appear, the saturating element
limits this value, and at the output of the regulator the value of the signal will be 2.
The saturation quasi “opens” the circuit until the feedback signal brings the satu-
rating element outside of the range of saturation. The output of the integrating
element of the PI regulator “winds up”, and therefore the saturating element
remains in the saturation range for a longer time. In the FOXBORO regulator the
saturation acts on the process and on the dynamic part of the regulator located in its
feedback path in the same way, therefore the disadvantageous windup phenomenon
does not show up here.

Fig. 8.23 Step responses in
case of saturation

8.5 Handling of Constraints 163



Chapter 9
State Feedback Control

Consider first continuous systems. The state space representation of a continuous,
linear, time invariant single input–single output system can be given by parameter
matrices A; b, c, d in the following form:

_x ¼ Axþ bu

y ¼ cTxþ du

(The upper index T indicates transpose, i.e. cT is a row vector.) The equations
above (the state equation and the output equation) determine the transfer function
between the u input signal and the y output signal, which is calculated by

PðsÞ ¼ YðsÞ
UðsÞ ¼ cTðsI � AÞ�1bþ d

The system model characterized by the four parameters A; b; c; df g is called
the state model.

The poles of the model are the roots of the characteristic equation

det(sI � A) ¼ 0:

In most practical cases, d ¼ 0.
By state feedback, the control signal is obtained from the state variables feeding

them back to the input through the constant elements of the vector kT:

u ¼ krr� kTx:

The state feedback control shown in Fig. 9.1 modifies both the static and the
dynamic response of the system between the reference signal r and the output
signal y.
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In the feedback, let us consider the feedback (row) vector kT, and in the forward
path suppose a compensation factor kr. The control signal is obtained as
u ¼ krr� kTx. The equations of the closed loop control system are as follows (here
d is also considered, its value is generally zero):

_x ¼ A� bkT
� �

xþ krbr

y ¼ cT � dkT
� �

xþ dkrr

By introducing the notation Ak ¼ A� bkT, bk ¼ krb, ck ¼ c� dk, dk ¼ dkr,
we have

_x ¼ Akxþ bkr

y ¼ cTkxþ dkr

and the characteristic equation is

det sI � Akð Þ ¼ det sI � Aþ bkT
� � ¼ 0:

Comparing the characteristic equations of the open and of the closed loops, it
can be seen that the poles of the open loop depend only on A, while the poles of the
closed loop depend on three parameters A; b; kf g. The performance of the closed
loop is prescribed by the required location of its poles in the complex plane. What
has to be found is a state feedback vector k that ensures that the roots of the
characteristic equation are in the required locations.

9.1 State Feedback with Pole Placement

The design of state feedback is executed in three steps:

– choose the desired location of the poles of the closed loop system;
– for SISO systems the state feedback vector k can be determined by the

ACKERMANN formula (textbook [1], Sect. 9.1), in MATLAB™ by using the
command acker.

– determine the compensation factor kr to fulfill the static requirements.

Fig. 9.1 State feedback
control
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Example 9.1 Consider the system given by the following transfer function:

PðsÞ ¼ 6
ðsþ 1Þðsþ 2Þðsþ 3Þ

The static gain of the system is 1, its poles are −1, −2, −3. Give the system in
MATLAB™ with its poles, then transform it to state space form.

num=6;
den=poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)

The command tf2ss gives the controllability canonical form of the state
equation.

A ¼
�6 �11 �6
1 0 0
0 1 0

2
4

3
5; b ¼

1
0
0

2
4

3
5; cT ¼ 0 0 6½ �; d ¼ 0

Choose the pk poles of the closed loop by

pk=[-6;-3+i*4;-3-i*4]

(The conjugate complex poles can be considered as the poles of a second order
oscillating system. The damping factor n is calculated from the angle u of the
vector of the poles, n ¼ cos u ¼ 3=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16

p ¼ 0:6).
Let us remark that the system can be accelerated by shifting its poles to the left in

the complex plane. Analyse the required behaviour of the step response with these
prescribed poles.

First let the numerator be the constant 1, and let the denominator be the char-
acteristic polynomial.

numk=1
denk=poly(pk)
H=tf(numk,denk)
H=zpk(H)
g0=dcgain(H)

To get a system with unit gain, normalize the system by its static gain. Compare
the step responses of the original and the prescribed system.

Hn=H/g0
step(P,'b',Hn,'r'); grid

In Fig. 9.2 it can be seen that with this pole prescription the system can be
accelerated significantly.

Then using the ACKERMANN formula determine the state feedback vector that
shifts the poles pTo ¼ �1 �2 �3½ � of the open loop to the required locations
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pTk ¼ �6 �3þ 4j �3� 4j½ � of the closed loop. The analytical form of the
ACKERMANN formula is

kT ¼ 1; 0; . . .; 0½ �M�1
c R Að Þ;

where Mc is the controllability matrix of the open loop, R sð Þ is the characteristic
equation of the closed loop (which is determined by its prescribed poles), andR Að Þ
is the value of this polynomial at A. In MATLAB™ all this is executed by one
command:

k=acker(A,b,pk)

k = 6 50 144

Tk=ss(A-b*k,b,c,d)

Tk=zpk(Tk)

step(Tk,6)

In Fig. 9.3 it can be seen that by shifting the poles to the left, the transients of the
step response decay faster, but the static value is not satisfactory. To ensure a static
gain of value 1, a compensation factor kr is calculated.

kr=1/dcgain(Tk)

kr =

25.0000

Tk1=kr*Tk

Fig. 9.2 With pole
prescription the system can be
accelerated
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or

Tk1=ss(A-b*k,kr*b,c,d),Tk=zpk(Tk)

150

----------------------

(s+6) (s^2 + 6s + 25)

step(Tk1,'b')

In Fig. 9.4 it can be seen that setting the state feedback vector kT and the
compensation factor kr, the settling process is fast and there is no static error. The
dynamic properties have also been improved by this pole placement.

Fig. 9.3 Step response of
state feedback

Fig. 9.4 Static error can be
compensated
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It should be mentioned that the choice of the state feedback vector kT is not
unique, it depends on the form of the state space representation. Let us check the
value of the state feedback vector when the state space representation of the process
is given in a different form.

s=zpk('s')

P=6/((s+1)*(s+2)*(s+3))

[A1,b1,c1,d1]=ssdata(P)

k1=acker(A1,b1,pk)
k1 = 40.8248 13.0639 2.4495

A different state representation yields a different state feedback vector. But the
transfer functions of the two different representations are the same, yielding the
same step responses.

Tk1=ss(A1-b1*k1,b1,c1,d1)

kr1= 1/dcgain(Tk1)

T1=zpk(T1)*kr1
150

-------------------

(s+6) (s^2 + 6s + 25)

Example 9.2 With state feedback, unstable processes can be stabilized easily. The
state feedback constants are calculated by prescribing stable closed loop poles.

Consider the transfer function of an unstable process containing one pole in the
right half-plane:

PðsÞ ¼ �6
ðs� 1Þðsþ 2Þðsþ 3Þ

Suppose that the prescribed poles of the closed loop are

pk=[-6;-3+i*4;-3-i*4]

Determine the state feedback vector and plot the step response of the closed
loop. The MATLAB™ commands to do this are

num=-6;
den=poly([1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
pk=[-6;-3+i*4;-3-i*4]
k=acker(A,b,pk)
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Tk=ss(A-b*k,b,c,d)
kr=1/dcgain(Tk)
Tk1=ss(A-b*k,kr*b,c,d)
step(Tk1,6)

and the state feedback vector is then

k = 8 60 156

Figure 9.5 shows the step response which ensures a performance corresponding
to the prescribed poles.

9.2 Introducing an Integrator into the Feedback Loop

The properties of state feedback control are analogous to the effect of serial PD
compensation, resulting in acceleration of the control circuit. The static accuracy is
ensured by a gain factor acting outside of the feedback circuit. This gain factor is
determined by the knowledge of the system parameters. This means that this gain is
sensitive to the accuracy of the knowledge of the parameters. Furthermore, the
effect of the disturbances can not be compensated with elements outside of the
feedback circuit. Therefore to ensure the static accuracy—similarly to design
considerations in the frequency domain—it is expedient to introduce an integrator
into the control circuit.

The state equation of the process is extended by the state variable xi, which is the
integral of the output signal y (Fig. 9.6).

Fig. 9.5 Step response of a
state feedback control system
with an unstable process
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The state equation of the extended system is

_x

_xi

� �
¼ A 0

cT 0

� �
x

xi

� �
þ b

0

� �
u ¼ Ab xb þ bb u

y ¼ cT 0
� � x

xi

� �
þ du ¼ cTb xb þ du

So the number of the state variables is increased by 1. For state feedback design,
the number of the prescribed poles should also increase by 1. The state feedback
vector kTb is calculated now for the extended state equation with state matrices Ab

and bb, for the prescribed poles pb, using the ACKERMANN formula. These poles will
be the prescribed poles of the characteristic equation det sI � Ab þ bbkTb

� � ¼ 0.
Figure 9.7 shows the extended state feedback system. The integrator is located

after the error signal.
Supposing a single input–single output SISO system and d ¼ 0 the state equa-

tion of the closed loop system is written as

_xz ¼ _x
_xi

� �
¼ A� bkT bki

�cT 0

� �
x
xi

� �
þ 0

1

� �
r ¼ Az xz þ bz r

y ¼ cT 0
� � x

xi

� �
þ 0 � r ¼ cTz xz þ 0 � r

Fig. 9.6 An additional state variable is introduced as integral of the output variable

Fig. 9.7 Block diagram of the extended state feedback system
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Example 9.3 Extend the process given in Example 9.1 with an integrating state
variable.

num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)

The parameter matrices of the extended system are

nulvec=[0;0;0];

Ab=[A nulvec;c 0]

bb=[b;0]
Ab =

-6 -11 -6 0

1 0 0 0

0 1 0 0

0 0 6 0

bb =

1

0

0

0

Let the poles of the closed loop system be

pb=[-9 -6 -3+i*4 -3-i*4];

Determine the state feedback vector:

kb=acker(Ab,bb,pb)
kb =

15 158 693 225

The first three elements of the extended state feedback vector realize the state
feedback from the original state variables, while the fourth element, ki, belongs to
the artificially introduced integrator:

k=kb(1:3)

ki=kb(4)
k =
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15 158 693

The state matrices of the closed loop system are

Az=[A-b*k b*ki;-c 0]

bz=[nulvec;1]

cz=[c 0]

dz=0;
Az =

-21 -169 -699 225

1 0 0 0

0 1 0 0

0 0 -6 0

bz =

0

0

0

1

cz =

0 0 6 0

dz=0

The step response of the closed loop (Fig. 9.8) is found by

t=0:0.1:6;
step(Az,bz,cz,dz,1,t),grid

Fig. 9.8 Step response of the
closed loop
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It can be seen that the dynamic and static behaviour of the closed loop system is
appropriate.

9.3 State Estimation

In practical applications, the instrumentation of the processes includes possibilities
for measurement of several variables. Sensors measure the output signal, but
generally not all the state variables are available for measurement. In this case the
control with state feedback has to be supplemented with the estimation of the
non-measurable state variables. The block scheme of a state estimator is shown in
Fig. 9.9. The estimator contains the model of the system. It is assumed that d ¼ 0.
If the system is known, the parameter matrices of the model are the same as the
parameter matrices of the system. The difference between the output of the system
and the model constitutes an error signal. This error signal is fed back to the
summing point at the derivatives of the estimated variables to modify their values.
The aim is to ensure that the estimated state variables move quickly to follow the
movement of the real state variables. The state estimation circuit forms a closed
loop whose input signal is y, the output signal of the process. The poles of the
estimation circuit can be prescribed. An important requirement is that the dynamics
of the estimation circuit should be much faster than the dynamics of the process.
The gain l of the estimation circuit can be calculated by the ACKERMANN formula. It
can be seen in the figure that the behaviour of the estimation circuit is influenced by

Fig. 9.9 Block diagram of state estimation
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the parameter matrices Â and ĉT. (For simplicity, A, b and cT are used in the
formulas.)

Let us suppose that the parameter matrices of the process and of the model are
the same (e ¼ 0). The free motion of the system states is to be estimated, i.e. the
motion of the state variables starting from their initial values supposing a zero input
signal. The output disturbance is zero. Based on Fig. 9.9, the estimated state
variables can be calculated according to the following relation:

_̂x ¼ A x̂þ b uþ l cT x� x̂ð Þ ¼ A� l cT
� �

x̂þ l y:

Let us introduce the error signal e ¼ x� x̂. The derivative of the error signal is
obtained if the equation given for the estimated state variables is subtracted from the
equation of the original state variables.

_x� _̂x¼_e ¼ A e� l cTe ¼ A� l cT
� �

e ¼ Aee ¼ A e� l y� ŷð Þ

The estimation circuit can be redrawn as Fig. 9.10.
The parameters of the estimation circuit (the elements of the vector l) can be

calculated by the ACKERMANN formula prescribing the roots of the characteristic
equation of the closed estimation circuit.

L=acker(A',c',Pe)'

Here Pe is the vector of the prescribed poles of the estimation circuit. The
estimation circuit has to be faster than the process, and faster than the control
system with state feedback. (Transposition is required to reconcile the dimensions
of the matrices and the vectors.)

Example 9.4 The process is the third order proportional system investigated also in
Example 9.1 (without the extension by the integrating state variable). Let the initial
conditions of all the three state variables have the value 1. The reference signal and
the disturbance signal are zero. Give the poles of the estimation circuit as

Fig. 9.10 The redrawn estimation circuit
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Pe=[-7 -7 -7]

The state estimation vector is obtained as lT ¼ �17:3333 7:6667 2:5000½ �.
The MATLAB™ program below gives the course in time of the real state variables
of the system which have to be estimated, then calculates the vector l of the
estimation circuit. Then according to Fig. 9.10 it simulates the evolution in time of
the state estimation exciting the estimation circuit with the signal y as the input of
the circuit. The program plots in one diagram the real state variables and their
estimation, as well as the output signal and its estimated value.

clear
clc
num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
sys1=ss(A,b,c,d)
x0=[1;1;1]
t=0:0.05:6;
[y,t,x]=initial(sys1,x0,t);
figure(1)
plot(t,x),grid
Pe=[-7 -7 -7]
L=acker(A',c',Pe)
Aest=A-L'*c
sysest=ss(Aest,L',c,d)
x0est=[0;0;0]
[yest,t,xest]=lsim(sysest,y,t,x0est)
figure(2)
plot(t,x,t,xest),grid
figure(3)
plot(t,x(:,1),t,xest(:,1)),grid
figure(4)
plot(t,y,t,yest),grid

Plot the evolution in time of the first state variable and its estimated value
(Fig. 9.11). The simulation shows that the state variables become settled quickly.

plot(t,[x(:,1),xest(:,1)]),grid

Prescribing appropriate poles of the estimation circuit, the settling process can be
further accelerated and the transients of the estimation can be influenced.

Build the state estimation circuit also in SIMULINK™. The process and its
model are built from the blocks State-Space of the Continuous library, and the
Matrix Gain block of the library Math Operations. The separation of parameter c is
needed because not only the output signal, but also the state variables have to be
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reached. The parameter b is also separated from the state model block, as the
derivatives of the state variables are modified, so the derivatives have to be also
available. (So in the State-Space blocks in the SIMULINK™ model (Fig. 9.12), the
parameters B and C are the identity matrices of the appropriate dimensions, and the
parameter d is a zero matrix. The process and its model can be the same, if the
process is known.) In the SIMULINK™ diagram shown in Fig. 9.12, the changes in
the real and the estimated state variables can be followed not only as the effect of
the unknown initial conditions, but also for the input and the disturbance signals. In
the example, after determining the state equation of the process and the calculation
of the vector l of the estimation circuit, the SIMULINK™ block can be run. In the
figure the parameters set for the State-Space blocks and the Matrix Gain blocks are
shown. Running the program, it can be observed in Scope that the estimated state
variables quickly follow the real state variables. As the variables are connected also
to Workspace blocks, the real and the estimated state variables can be plotted from
the MATLAB™ surface as well. For the course in time of the first state variable and
of its estimation, the result is the same as given in Fig. 9.11.

plot(t,x,t,xest),grid

Problem Set the values of the initial conditions to zero and the value of the output
disturbance to 1. Running the simulation, it can be seen that there is a static
deviation between the real and the estimated state variables. The input signal excites
the real and the estimation circuit the same way, therefore this excitation will not
distort the state estimation. But the output disturbance excites them differently, and
therefore a static error will appear in the estimation. To eliminate this deviation the
disturbance signal should be described by its state variables, then the state equation
should be enhanced by the state variables of the disturbance. Then the state esti-
mation could be executed for the extended system (but this extension will no be not
dealt with in more detail here).

xest(1)

x(1)

Fig. 9.11 Time course of the
first state variable and its
estimation
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9.4 State Feedback with State Estimation

State estimation (observer) and state feedback can be executed independently of
each other (separation principle, textbook [1], Chap. 9). If the state variables are not
available, then state feedback control can be realized by feeding back the estimated
state variables with the state feedback vector k calculated for the original state
variables. An important principle is that the dynamics of the state feedback circuit
should be faster than the process dynamics, and the dynamics of the estimation
circuit should be faster than the dynamics of the state feedback circuit to ensure that
the state feedback would consider estimated state variables which approach quickly
and well the state variables of the real system.

The block diagram of the state feedback system using an observer is given in
Fig. 9.13. On the basis of the figure, the state equation of the system is

_x
_̂x

� �
¼ A �bkT

lcT A� lcT � bkT

" #
x

x̂

� �
þ bkr

bkr

� �
r

y ¼ cT 0
� � x

x̂

� �
þ 0 � r

Workspace

Workspace 1

Workspace 2

Fig. 9.12 SIMULINK™ diagram of state estimation
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Example 9.5 Let us approximate the state variables of Example 9.1 by the esti-
mated state variables calculated in Example 9.4, then feed back the approximate
state variables by the state feedback constants calculated in Example 9.1. Plot in
one diagram the step response of the output signals for the case when the feedback
is taken from the original, and for the case where it is taken from the estimated state
variables. The reference signal is a unit step and the initial conditions are
0:2 0:2 0:2½ �. The initial conditions of the observer states are supposed to be
zeros.

The MATLAB™ program is

clear;clc
num =6;
den =poly([-1,-2,-3])
P=tf(num,den)
[A,b,c,d]=tf2ss(num,den)
sys1=ss(A,b,c,d)
%process
pk=[-6;-3+i*4;-3-i*4]
k=acker(A,b,pk)

Fig. 9.13 State feedback from the estimated state variables
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sys2=ss(A-b*k,b,c,d)
kr=1/dcgain(sys2)
sys3=ss(A-b*k,b*kr,c,d)
%state feedback system
x0=[0.2;0.2;0.2]
t=0:0.05:3;
[y1,t,x] = initial(sys3,x0,t);
y2=step(sys3,t);
y=y1+y2;
%Output of the state feedback system
pe=[-7 -7 -7]
L=acker(A',c',pe)
Abvcs=[A -b*k;L'*c A-L'*c-b*k]
bbvcs=[b*kr;b*kr]
cbvcs=[c zeros(1,3)]
dbvcs=0
sys4=ss(Abvcs,bbvcs,cbvcs,dbvcs)
x0est=[0;0;0]
x0bvcs=[x0;x0est]
[y3,t,x3] = initial(sys4,x0bvcs,t);
y4=step(sys4,t);
y5=y3+y4;
%Output of the state feedback system from the estimated
%state variables
figure(1)
plot(t,y,t,y5),grid
figure(2)
plot(t,x3),grid
%The real and the estimated state variables
figure(3)
plot(t,x3(:,1),t,x3(:,4)),grid
figure(4)
plot(t,x3(:,2),t,x3(:,5)),grid
figure(5)
plot(t,x3(:,3),t,x3(:,6)),grid

Figure 9.14 gives the output signals of the state feedback systems when the
feedback is taken from the original, and when it is taken from the estimated state
variables. The overshoot is higher in the case when the feedback is taken from the
estimated state variables. Figure 9.15 shows the first state variable and its
estimation.
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Figure 9.16 gives the SIMULINK™ block diagram of the control system.
Running it for the given initial conditions and for unit step reference signal the
obtained results coincide with the results obtained in MATLAB™. With the output
disturbance, a static error does appear in the estimation of the state variables and
also in the output signal.

Fig. 9.14 Output signals
with feedback from the real
and from the estimated state
variables

Fig. 9.15 The time course of
the first state variable and its
estimation
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Problem Build a SIMULINK™ block diagram when extending the system with the
integrating state variable with state estimation and state feedback from the estimated
state variables. Simulate the behaviour of the control system for unit step reference
signal with the initial conditions given before. Analyse the disturbance rejection
properties of the system in the case of an output disturbance.

K*u

k

K*u

c1

K*u

c

K*u

b

t

To Workspace2 x

To Workspace1

xbecs

To Workspace

Subtract1

Subtract

Step1

Step

x' = Ax+Bu
y = Cx+Du

State-Space1
A, eye(3), eye(3), zeros(3,3)

x' = Ax+Bu
y = Cx+Du

State-Space
A, eye(3), eye(3), zeros(3,3)

Scope1

Scope

K*u

L'

kr

Gain

Clock

Add1

Add

Fig. 9.16 SIMULINK™ diagram of state feedback taken from the estimated state variables
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Chapter 10
General Polynomial Method
for Regulator Design

The theoretical considerations of Chap. 10 of the textbook [1] are summarized here
to support the introduction of the variable names in the corresponding MATLAB™
programs.

Process: P = B
A

Regulator: C = Y
X

Resulting transfer function: T ¼ CP
1þCP ¼

Y
X
B
A

1þ Y
X
B
A
¼ Y B

Y BþX A ¼ Y B
R , where the

characteristic polynomial of the closed loop is RðsÞ ¼ XðsÞAðsÞþYðsÞBðsÞ and
the characteristic equation is RðsÞ ¼ XðsÞAðsÞþYðsÞBðsÞ ¼ 0.

Sensitivity function: S ¼ 1
1þCP ¼ 1

1þ Y
X
B
A
¼ X A

Y BþX A ¼ X A
R

Let the order of the system be n, i.e. degf Ag = n. A realizable regulator CðsÞ is
to be given, which

– yields the given characteristic polynomial RðsÞ. The regulator is determined by
solving the DIOPHANTINE equation XðsÞAðsÞþYðsÞBðsÞ ¼ RðsÞ

– at the initial time instant t ¼ 0 for a unit step reference signal it provides a
control signal value uð0Þ 6¼ 0, i.e. deg fXg = deg fYg.
An important remark is that in the resulting transfer function of the closed-loop

TðsÞ ¼ YðsÞBðsÞ
RðsÞ

– RðsÞ is a given polynomial determined by the designer.
– YðsÞ is calculated by solving the DIOPHANTINE equation

XðsÞAðsÞþYðsÞBðsÞ ¼ RðsÞ.
– BðsÞ is given: it is the numerator of the transfer function of the process.

Let us choose the degree of the characteristic polynomial XðsÞAðsÞþ
YðsÞBðsÞ ¼ RðsÞ to be degfRg = 2n� 1. Then the DIOPHANTINE equation always
has a solution and the degree of the regulator is n� 1ð Þ.
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Example 10.1 Repeating Example 10.1 of the textbook [1] the transfer function of
the unstable process is P sð Þ = �1

s�2. Then n = 1 and the degree of the regulator is 0,
CðsÞ = Y

X = K
1 = K. Let the first order characteristic polynomial be RðsÞ ¼ sþ 2

(The unstable pole of the process is reflected in the imaginary axis). Then from the
solution of the DIOPHANTINE equation XðsÞAðsÞþYðsÞBðsÞ ¼ 1 ðs� 2Þþ
Kð�1Þ ¼ RðsÞ ¼ sþ 2, the gain K ¼ �4 is obtained for the regulator.

s=zpk('s')

P=-1/(s-2)

C=-4

T=C*P/(1+C*P), T=minreal(T)

step(T),grid

In Fig. 10.1 it can be seen that with the designed regulator the unstable process
has been stabilized, the characteristic equation of the closed loop is indeed
RðsÞ ¼ sþ 2. But there is a significant static error: lim

t!1 yðtÞ ¼ 2. With a constant

FðsÞ ¼ 0:5 precompensator the static error becomes zero (Fig. 10.2).

step(0.5*T),grid

Let us remark that the resulting transfer function of the closed loop with the

precompensator is TeðsÞ ¼ FðsÞ YðsÞBðsÞRðsÞ . With the precompensator FðsÞ, the effect of
the zeros in the numerator of TðsÞ can also be compensated. If the transfer function

Fig. 10.1 Step response of a
control system with unstable
process
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FðsÞ is not a constant, the dynamics of reference signal tracking and the dynamics
of output disturbance rejection will be different, the control system will become of
two-degree-of-freedom (2DOF).

Example 10.2 Take into consideration that the stable poles of the process (which
are included in the polynomial Aþ ) and its inverse stable zeros (included in the
polynomial Bþ ) can be cancelled with the regulator. (A� and B� denote the
non-cancellable factors.) The transfer function of the process can be given by
P = Bþ

Aþ
B�
A�
, and the regulator transfer function is expressed as C = Aþ

Bþ
Y
AX.

Following the notations of the textbook [1] the polynomials are factored as
PðsÞ ¼ Pþ ðsÞP�ðsÞ where the roots of Pþ sð Þ are located in the left half-plane.

The resulting transfer function of the closed loop is

T ¼ CP
1þCP

¼
Aþ
Bþ

Y
X

Bþ
Aþ

B�
A�

1þ Aþ
Bþ

Y
X

Bþ
Aþ

B�
A�

¼
Y
X

B�
A�

1þ Y
X

B�
A�

¼ Y B�
X A� þYB�

¼ Y B�
R ;

where X A� þY B� ¼ R. The sensitivity function is

S ¼ 1
1þCP

¼ 1

1þ Aþ
Bþ

Y
X

Bþ
Aþ

B�
A�

¼ 1

1þ Y
X

B�
A�

¼ X A�
X A� þY B�

¼ X A�
R ¼ 1� T:

If the transfer function of the process is P sð Þ = sþ 7
ðs�2Þ ðsþ 10Þ, then Bþ = sþ 7,

B� = 1, Aþ = sþ 10 and A� = s� 2. The DIOPHANTINE equation X A� þY B� ¼
R with Y

X ¼ K
1 can be of first degree. Let us choose RðsÞ ¼ sþ 2 as the charac-

teristic polynomial. So X A� þY B� ¼ R and K ¼ 4. The regulator is
C = Aþ

Bþ
Y
X = sþ 10

sþ 7 K = 4 sþ 10
sþ 7 .

Fig. 10.2 The
precompensator ensures
accurate settling
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Steps of the MATLAB™ simulation:

C=4*(s+10)/(s+7)

P=(s+7)/(s-2)/(s+10)

T=C*P/(1+C*P)

T=minreal(T)

step(T),grid

Figure 10.3 shows that the regulator stabilizes the unstable process. The static
error can be eliminated by a precompensator.

Example 10.3 Consider the plant given by the transfer function PðsÞ = ðs�5Þ ðsþ 7Þ
ðs�2Þ ðsþ 10Þ.

Here Bþ = sþ 7, B� = s� 5, Aþ = sþ 10 and A� = s� 2. Let one root of the
characteristic polynomial be again s ¼ �2, and the other s ¼ �6. The characteristic
polynomial is now RðsÞ ¼ K ðsþ 2Þðsþ 6Þ, so Y

X ¼ s�z
s�p and the characteristic

equation can be written as X A� þY B� ¼ R

ðs� pÞ ðs� 2Þþ ðs� zÞ ðs� 5Þ ¼ RðsÞ ¼ K ðsþ 2Þðsþ 6Þ

Comparing the coefficients K = 2, z¼70=3, p¼�139=3; and the regulator is

C = Aþ
Bþ

Y
X = sþ 10

sþ 7
s�70=3
sþ 139=3.

Fig. 10.3 Step response of a
control system with unstable
process
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Steps of the simulation in MATLAB™:

s=zpk('s')

P=(s-5)*(s+7)/(s-2)/(s+10)

C=(s+10)*(s-70/3)/(s+7)/(s+139/3)

T=C*P/(1+C*P)

T=minreal(T)

0.5(s-5)(s-23.33)

– – – – – – – – – – – – –

(s+6)(s+2)

figure(1)

step(T),grid

The step response of the control system is shown in Fig. 10.4. If we would like
to eliminate the static error and decrease the under sweeping that resulted because
of the non-minimum phase feature of the process, the precompensator can be
extended by a filter allocating a pole e.g. to s ¼ �1: FðsÞ ¼ 1

ðsþ 1ÞTð0Þ, where T 0ð Þ is
the static gain of the system without the precompensator. The MATLAB™ code for
this is

F= 1/(dcgain(T)*(s+1))

figure(2)

step(F*T,6),grid

Fig. 10.4 Step response of a
control system with unstable
and non-minimumphase
process
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It can be seen that with the filter introducing the pole at s ¼ �1 the under-
sweeping has been decreased significantly, but the settling time has been increased
(Fig. 10.5). The control signal is given in Fig. 10.6.

U=F*C/(1+C*P)

figure(3)

step(U,6),grid

Fig. 10.5 Step response of a
control system with unstable
and non-minimumphase
process with precompensator

Fig. 10.6 The control signal
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Refining the design of the precompensator the behaviour of the control system
can be improved further.

Example 10.4 As was seen in Example 10.3, the regulator contains fixed and
calculated components. The fixed components result from cancellation of the stable
process poles and the inverse stable zeros; the calculated components result from
the solution of the DIOPHANTINE equation. There are practical cases when it is
favourable to include a further given component in the regulator. As was seen in
Example 4.2, Sect. 4.4 of the textbook [1], if the requirement is to follow an
exponential reference signal then a zero in the regulator corresponding to the pole
of the exponential signal would ensure tracking without error. Similarly, a pole at
s ¼ 0 in the regulator forces an integrating effect in the regulator. Let the structure
of the regulator be C ¼ Aþ

Bþ
Y
X

Yd
Xd
, where Yd and X d are polynomials representing the

given zeros and poles, respectively. Now the characteristic polynomial is
X X dA� þY YdB� ¼ R. To ensure the solvability of the DIOPHANTINE equation
considering the degrees of polynomials A� and B�, the degrees of Yd, X d and R
should be chosen according to quite complex conditions.

Let us consider the process P sð Þ ¼ s�5ð Þ sþ 7ð Þ
s�2ð Þ sþ 10ð Þ analysed in Example 10.3. Here

Bþ ¼ sþ 7, B� ¼ s� 5, Aþ ¼ sþ 10 and A� ¼ s� 2. Apply an integrator in
the regulator, Xd ¼ s and Yd ¼ 1. The characteristic polynomial is
X X dA� þY YdB� ¼ R.

In this example the essence of polynomial design is summarized in three points:

– An integrator is introduced in the loop transfer function because of the required
static accuracy.

– The performance of the closed loop as the aim of the design is specified by
prescribing the poles of the closed loop transfer function, i.e. prescribing the
characteristic equation of the closed loop.

– The degrees of the polynomials in the numerator and the denominator of the
regulator should be the same, otherwise the regulator would be non-realizable,
or at the instant when the error appears it would not produce a control signal
which is proportional to the value of the error.

In our example for introducing an integrator let be Xd ¼ s and Yd ¼ 1.
Suppose the degrees of the numerator and the denominator of the regulator are the

same. deg Aþf gþ degfYg ¼ deg Bþf gþ degfXgþ 1; in our case 1þ degfYg ¼
1þ degfXgþ 1.

If the degree of X is zero, then the degree of Y is 1.
Let the prescribed roots of the characteristic equation be −2 and −6.
The characteristic equation is then

sxoðs� 2Þþ ðyo þ sy1Þðs� 5Þ ¼ aðsþ 2Þðsþ 6Þ:
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The solution of the DIOPHANTINE equation taking a ¼ 1 is xo ¼ 231=31, yo ¼
�12=5 and y1 ¼ �6. So the transfer function of the stabilizing regulator is

CðsÞ ¼ �0:80519ðsþ 0:4Þðsþ 10Þ
sðsþ 7Þ

The step response of the control system is shown in Fig. 10.7. The dynamics and
the overshoot can be modified by the polynomials X d and Yd.

Fig. 10.7 Step response of
the control system with a
controller containing
integrator
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Chapter 11
Analysis of Sampled-Data Systems

11.1 Discrete-Time Systems

11.1.1 z-Transforms

In sampled-data systems, the signals are handled and stored in digital form. In these
systems continuous-time signals are sampled periodically at sampling instants and
their processing takes place in the discrete-time domain. Thus, the signals available
in continuous-time control systems should be sampled and converted to digital
form. Denote the sampling time by Ts. Then the digital form of a sampled
continuous-time signal yðtÞ can be represented by a train of impulses as follows:

yd k½ � ¼ y t ¼ kTsð Þ
¼ yð0ÞdðtÞþ y Tsð Þd t � Tsð Þþ y 2Tsð Þd t � 2Tsð Þþ yð3TsÞd t � 3Tsð Þþ � � � :

The LAPLACE transform of y t ¼ kTsð Þ ¼ yd k½ � is

YdðsÞ ¼ yð0Þþ y Tsð Þe�sTs þ y 2Tsð Þe�2sTs þ y 3Tsð Þe�3sTs þ � � � :

Introduce the notations z ¼ esTs and z�1 ¼ e�sTs , where z ¼ esTs is the operator
of the z-transformation. Then z�1 can be interpreted as a backward shift operator.
Using the introduced notation, we have

YdðzÞ ¼ yð0Þþ y Tsð Þz�1 þ y 2Tsð Þz�2 þ y 3Tsð Þz�3 þ � � � ¼
X1
k¼0

y kTsð Þz�k:
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Example 11.1 Suppose given the z-transform of a signal as follows:

YdðzÞ ¼ 2z2 � z
z2 � zþ 0:24

; Ts ¼ 0:5:

Use MATLAB™ to determine the first 5 samples of the inverse z-transform of
this signal.

(a) Numerical calculation

num=[2, -1, 0]
den=[1, -1, 0.24]
yd=dimpulse(num,den,5)
plot(yd,'*')
plot(1:5,yd,'*')

The data for this example can also be given in symbolic form using the LTI sys
structure. Similarly to the way s was defined, a z variable can be defined by z ¼ esTs .
However, first the sampling time Ts should be specified:

Ts=0.5
z=tf('z',Ts)
Y=(2*z^2-z)/(z*z-z+0.24)

One advantage of using the LTI sys structure is that formally identical commands
can be applied both for continuous-time and discrete-time systems. In the case of
zero sampling time sys:Ts MATLAB™ considers the system as a continuous-time
system, otherwise as a discrete-time system. The help command describes the exact
usage of the impulse command:

help impulse

IMPULSEðSYS;TFINALÞ simulates the impulse response of the system in the time
range from t ¼ 0 till the final time t ¼ TFINAL ¼ 2. TFINAL ¼ 2 is the time required
by the conditions of Ts ¼ 0:5 and number of the samples (5). The impulse com-
mand essentially divides the numerator by the denominator and this is the way it
provides the samples of the impulse response:

impulse(Y,2);
yd=impulse(Y,2);
plot(Ts*(0:4),yd,'*');

(b) Partial fraction expansion

Partial fractional form allows recognizing the components in the discrete
time-domain. Then these components can simply be added up.
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E.g. if an exponential component looks like

yðtÞ ¼ e�at; Yd nTs½ � ¼ e�anTs�!z z
z� e�aTs

;

then the partial fraction form contains components as follows:

Yd zð Þ ¼ num
den

¼ z
num1
den

¼ z ko þ r1
z� p1

þ r2
z� p2

� �

Then using the MATLAB™ command residue,

num1=[2, -1]

den=[1, -1, 0.24]

[r,p,k0]=residue(num1,den)

r =

1

1

p =

0.6000

0.4000

k0 =

[]

Ts=0.5

YdðzÞ ¼ z
r1

z� p1
þ r2

z� p2

� �
¼ z

1
z� 0:6

þ 1
z� 0:4

� �
¼ z

z� 0:6
þ z

z� 0:4

yd k½ � ¼ y kTsð Þf g ¼ eakTs þ ebkTs
� �

; where eaTs ¼ 0:6; ebTs ¼ 0:4

a=log(0.6)/Ts

b=log(0.4)/Ts

(In MATLAB™ the command log means the calculation of the mathematical ln
function.)

a ¼ ln 0:6ð Þ
Ts

¼ �1:02; b ¼ ln 0:4ð Þ
Ts

¼ �1:83

y tð Þ ¼ e�1:02t þ e�1:83t; t� 0:
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t=[0:Ts:2]'
yd=exp(a*t)+exp(b*t)
plot(t,yd,'*');

11.1.2 Discrete-Time Impulse Response and Pulse Transfer
Function

The discrete-time (pulse) transfer function describes the relation between the
sampled output of a continuous-time process and the input of a holding unit driving
the process (see Fig. 11.1). In practice, typically zero order holding (ZOH) units
realized by analog-to-digital (A/D) converters are applied.

Example 11.2 Find the discrete-time pulse transfer function of the continuous
process given by

P sð Þ ¼ 1
1þ 5sð Þ 1þ 10sð Þ ; Ts ¼ 2:5

supposing zero-order holding.

s=zpk('s')
Ps=1/((1+5*s)*(1+10*s))

Alternatively, the process can also be displayed in pole-zero form:

PðsÞ ¼ 0:02
sþ 0:2ð Þ sþ 0:1ð Þ

[zerof,polef,kf]=zpkdata(Ps,'v')

The process poles are: −0.2 and −0.1. Note that the process has no zeros.
MATLAB™ offers the c2d (read as continuous-to-discrete) command to derive

the discrete-time pulse transfer function: sysd ¼ c2dðsysc; ts;methodÞ, where
ts stands for the sampling time and method defines the type of the holding unit.
The default method is ‘zoh’, i.e. zero-order holding, so it can be omitted.

)(sP
AD /u[k] y(t)u(t) y[k] ( )

( )
( )

Y z
G z

U z
=

U(z) Y(z)Y(s)ZOH ≡
U(s)

U(z) Y(z)

Fig. 11.1 Sampling and holding
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Ts=2.5;
Gz=c2d(Ps,Ts,'zoh')

or alternatively:

Gz=c2d(Ps,Ts)

GðzÞ ¼ 0:048929
ðzþ 0:7788Þ

ðz� 0:7788Þðz� 0:6065Þ

Type

[zerod,poled,kd]= zpkdata(Gz,'v')

to get the discrete-time zeros and poles. The discrete-time poles are 0.7788 and
0.6065, while the discrete-time zero is −0.7788. Note that the discrete-time poles
can be obtained from the continuous-time poles using the relation z ¼ esTs :

exp(-0.2*2.5)
0.6065

Similarly

exp(polef*Ts)

can be used. Note that no similar simple relation exists between the continuous-time
and discrete-time zeros.

Also note, that while the continuous-time process in the example has no zero, the
discrete form still has one. This is because the sampling procedure results in sub-
sidiary zeros. Processes of lag type exhibit several zeros, namely the number of
discrete-time zeros will be less by one than the number of discrete-time poles.

11.1.3 Initial Value and Final Value Theorems

Once its z-transform is given, the initial value of a discrete-time signal can be
calculated by:

lim
k!0

y kTsð Þ ¼ lim
z!1YðzÞ;

while the final value is obtained by

lim
k!1

y kTsð Þ ¼ lim
z!1

1� z�1� �
YðzÞ:
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Apply a discrete-time unit step to drive the process of the previous example. The
z-transform of the discrete-time unit step is z=ðz� 1Þ. Find the initial and final
values of the sampled output.

YðzÞ ¼ z
z� 1

GðzÞ

The initial value of the sampled output can be obtained by lim
z!1YðzÞ, which

happens to be zero in this case (the degree of the denominator is higher than the
degree of the numerator). The final value of the sampled output is obtained by
substituting z ¼ 1 into GðzÞ. This relation is in full harmony with finding the
steady-state value of a step response produced by a continuous-time transfer
function. MATLAB™ offers the dcgain command to find the dc gain both for
continuous-time and discrete-time linear systems. For discrete-time systems
ddcgainðnumd; dendÞ can also be used. As far as the dcgain command is con-
cerned, the sampling time will decide whether the system is of continuous-time or
discrete-time.

Ps.Ts
Gz.Ts
A=dcgain(Ps)
Ad=dcgain(Gz)

As expected, both gains—A (CT) and Ad (DT)—will turn out to be 1.

11.1.4 Stability of Sampled-Data Systems

Discrete-time systems are stable if their poles (roots of the characteristic equation)
are within the unit circle in the complex plane.

Example 11.3 Check the stability of the discrete-time system given by the fol-
lowing pulse transfer function:

GðzÞ ¼ z2 � 0:3z� 0:1
z3 þ 3z2 þ 2:5zþ 1

; Ts ¼ 1

Define the discrete-time system for MATLAB™:

z=tf('z')
Gz=(z*z-0.3*z-0.1)/(z^3+3*z^2+2.5*z+1)

Consider the zeros and poles:

[zerod,poled,kd]=zpkdata(Gz,'v')
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Fig. 11.2 Pole-zero
configuration of the pulse
transfer function
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Fig. 11.3 The step response
shows instability

The magnitude of the poles:

abs(poled)
ans =

2.0000

0.7071

0.7071

Since one pole is outside the unit circle, the system is unstable. Alternatively,
this can be shown in graphical form as well (Fig. 11.2).

pzmap(Gz)

The zgrid command draws the unit circle together with the lines belonging to
identical damping values and natural frequencies.

Stability can be checked in the time-domain by displaying the unit step response
(see Fig. 11.3).

step(Gz),grid
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Here the output is not bounded, so the system is unstable. Note that though
MATLAB™ displays the samples together with zero-order holding, the impulse
response of a discrete-time system consists of samples only.

11.2 Analysis of Closed-Loop Sampled-Data Systems

Closed-loop discrete-time systems may exhibit unexpected behaviour, as the system
is essentially in open-loop between two samples. Also, the holding unit is an
additional factor to modify the closed-loop behaviour. In the case of fast sampling,
the continuous-time and discrete-time behaviours are not too far from each other.
The following example illustrates the fundamental operation of a closed-loop
sampled-data system.

Example 11.4 Assume that the continuous-time process to be controlled is an
integrator given by the transfer function 1=s. Unit negative feedback is applied (see
Fig. 11.4) with sampling time Ts. A proportional controller with gain K provides
the control signal. To convert the discrete-time control input train to a
continuous-time signal, a zero-order holding unit is employed.

Analyze the dynamic behaviour of the closed-loop system and check the stability
of the closed-loop system. Derive the difference equation of the closed-loop system
and calculate the first 5 samples of the process output. Assume a unit step reference
signal. Select K ¼ 1 and repeat the analysis for various sampling times like
Ts ¼ 0:5, 1, 1.5 and 3. Calculate the impulse response transfer function for the
closed-loop system and find an analytical form of the sampled output.

Figure 11.5 illustrates the nature of the error signal e and the output signal y.
The difference equation between the sampled output and the error signal is:

y kTs½ � ¼ y ðk � 1ÞTs½ � þKTse ðk � 1ÞTs½ �
¼ y ðk � 1ÞTs½ � þKTs r ðk � 1ÞTs½ � � y ðk � 1ÞTs½ �f g

Here it has been taken into account that the error signal e is the difference
between the reference signal r and the sampled output y. Rearranging this equation
results in

K 1

s

AD /

DA /

u[k]e[k] y(t)u(t)

y[k]

r[k]

-

( )
( )

( )

Y z
G z

U z
=

U(z)

Y(z)

Y(s)ZOH

Fig. 11.4 Sampled control system
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y kTs½ � ¼ 1� KTsð Þy ðk � 1ÞTs½ � þKTsr ðk � 1ÞTs½ �

or, further

y kTs½ � � y ðk � 1ÞTs½ �
Ts

þKy ðk � 1ÞTs½ � ¼ Kr ðk � 1ÞTs½ �;

which is the discretized version of the following differential equation as Ts ! 0:

dyðtÞ
dt

þKyðtÞ ¼ KrðtÞ:

The continuous-time system is structurally stable, however, the discrete-time
system exhibits various natures as the sampling time changes. The sequence of the
output samples can be evaluated as follows:

For Ts ¼ 0:5: 0; 0.5; 0.75; 0.875; 0.9375; Stable, asymptotically
converges to 1.

For Ts ¼ 1: 0; 1; 1; 1; 1; 1; Finite settling time.
For Ts ¼ 1:5: 0; 1.5; 0.75; 1.125; 0.9375; Stable, but oscillates.
For Ts ¼ 3: 0; 3; −3; 9; −15; Unstable.

Note that (unlike the continuous-time version of this problem) the discrete-time
version will not be structurally stable.

The pulse transfer function of the closed-loop system is

TðzÞ ¼ YðzÞ
RðzÞ ¼

KTs
z�1

1þ KTs
z�1

¼ KTs
z� 1� KTsð Þ :

The poles of the closed-loop system remain within the unit circle if

Fig. 11.5 Illustrating the error and the output signals
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z1j j ¼ 1� KTsj j\1:

The above condition can also be written as

0\KTs\2

Introducing a new variable by b ¼ 1� KTs ¼ e�aTs , we have

YðzÞ ¼ z
z� 1

KTs
z� b

:

The partial fraction expansion is

YðzÞ ¼ KTsz
a

z� 1
þ b

z� b

� �
¼ z

z� 1
� z
z� b

where a ¼ 1
1� b

and

b ¼ 1
b� 1

:

Finally, the inverse z-transformation gives

y kTs½ � ¼ 1 kTs½ � � e�akTs ¼ 1 kTs½ � � e�aTs
� �k¼ 1 kTs½ � � bk:

Just to check this relation, assume K ¼ 1 and Ts ¼ 0:5:

b ¼ 1� K Ts ¼ 0:5:

y 0½ � ¼ 0; y Ts½ � ¼ 1� 0:51 ¼ 0:5; y 2Ts½ � ¼ 1� 0:52 ¼ 0:75;
y 3Ts½ � ¼ 1� 0:53 ¼ 0:875:

Zero-Order
Hold

t

To Workspace1

y

To Workspace

Step
Scope

1
s

Integrator

1

Gain

Clock

Add

Fig. 11.6 SIMULINK™ diagram of the system
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Alternatively, a SIMULINK™ program by Fig. 11.6 can be set up to illustrate
the above calculations. Figure 11.7 shows the output for Ts ¼ 0:5 (curve 1), Ts ¼ 1
(curve 2) and Ts ¼ 1:5 (curve 3).

11.3 State Space Equation of Sampled-Data Systems

The concept of the state-space model is valid for sampled-data systems, as well.
The number of states describing the system dynamics is equal to the order of the
difference equation representing the system. As learned earlier for continuous-time
systems, several input-output equivalent state models can be derived for
discrete-time systems, too.

11.3.1 Discretization of the Continuous-Time State
Equation

Start with the solution of the continuous-time state-equation:

x tð Þ ¼ eA t�t0ð Þx 0ð Þþ
Z t

to

eA t�sð Þbu sð Þds

Use a zero order holding unit. Enforce the integration between two consequtive
sampling instants: to ¼ kTs and t ¼ kþ 1ð ÞTs. Within this region the input signal is
constant: u sð Þ ¼ constant ¼ u kTsð Þ. Assume that the A matrix is invertible. Then

0 2 4 6 8 10
0

0.5

1

1.5

1

2
3

Fig. 11.7 The output signal
for different sampling times
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x kþ 1ð ÞTs½ � ¼ eATsx kTsð ÞþA�1 eATs � I
� �

bu kTsð Þ:

Using the notation u kTsð Þ ¼ u k½ � and x kþ 1ð ÞTs½ � ¼ x kþ 1½ �, the sampled ver-
sion of the state equation takes the following form:

x kþ 1½ � ¼ Fx k½ � þ gu k½ �
y k½ � ¼ cTx k½ � þ du k½ �

where

F ¼ eATs and g ¼ A�1 eATs � I
� �

b:

Note that there is no change in the parameters cT and d as the system is trans-
formed to discrete form.

Example 11.5 Derive the state equation for the system introduced in Example 11.2.
Define the transfer function of the continuous-time process, and for sampling
employ sampling time Ts ¼ 2:5.

P sð Þ ¼ 1
1þ 5sð Þ 1þ 10sð Þ

The related MATLAB™ commands are:

s=zpk('s')
Ps=1/((1+5*s)*(1+10*s))
Sysc=ss(Ps)
[A,b,c,d]=ssdata(Sysc)
Ts=2.5
Sysd=c2d(Sysc,Ts,'zoh')
[F,g,c1,d1]=ssdata(Sysd)
%check
F1=expm(A*Ts)
g1=inv(A)*(expm(A*Ts)-eye(2))*b
c2=c
d2=d
% display the continuous-time and
% the discrete-time step responses
step(Sysc,Sysd)
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Summing up the results, the parameter matrices of the continuous-time system are:

A = -0.1000 1.0000

0 -0.2000

b = 0

0.1250

c = 0.1600 0

d = 0

while the parameter matrices of the discretized system are:

F = 0.7788 1.7227

0 0.6065

g = 0.3058

0.2459

c1 = 0.1600 0

d1 = 0

Application of the analytical relationships leads to the same result.

11.3.2 Derivation of the Discrete State Equation
from the Pulse Transfer Function

Several state representations can be derived from the pulse transfer function.

Example 11.6 Consider the system introduced in Example 11.5. The related
MATLAB™ program is:

% starting from a zero-pole-gain form
s=zpk('s')
Ps=1/((1+5*s)*(1+10*s))
Ts=2.5
z=zpk('z',Ts)
Pz=c2d(Ps,Ts)
Sysz=ss(Pz)
[F,g,c,d]=ssdata(Sysz)
% starting from a polinom/polinom form
s=tf('s')
Ps=1/((1+5*s)*(1+10*s))
Ts=2.5
Pz1=c2d(Ps,Ts)
Sysz1=ss(Pz1)
[F1,g1,c1,d1]=ssdata(Sysz1)
% canonical form
Sysz2=canon(Sysz1,'modal')
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[F2,g2,c2,d2]=ssdata(Sysz2)
figure(1)
step(Sysz,Sysz1,Sysz2)

Summarizing the results:

0.048929 (z+0.7788)

Pz= ---------------------

(z-0.7788) (z-0.6065)

F = 0.6065 1.1770

0 0.7788

g = 0

0.2500

c = 0.2304 0.1957

d = 0

0.04893 z + 0.03811

Pz1= ----------------------

z^2 - 1.385 z + 0.4724

F1 = 1.3853 -0.4724

1.0000 0

g1 = 0.2500

0

c1 = 0.1957 0.1524

d1 = 0

Parameter matrices of the canonical form:

F2 = 0.7788 0

0 0.6065

g2 = 2.6862

-2.2815

c2 = 0.1647 0.1725

d2 = 0

The parameter matrices belonging to different interpretations are not identical,
though the pulse transfer function behind these interpretations is unique. The sec-
ond interpretation is the so called controllability form.
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Investigate the system response to various initial conditions. Set x 0½ � ¼ 1 1½ �T
and consider the first state-space representation.

The MATLAB™ program is

s=zpk('s')
Ps=1/((1+5*s)*(1+10*s))
Ts=2.5
z=zpk('z',Ts)
Pz=c2d(Ps,Ts)
Sysz=ss(Pz)
[F,g,c,d]=ssdata(Sysz)
x0=[1;1]
tfinal=30;
figure(2)
[y,t,x]=initial(Sysz,x0,tfinal)
stairs(t,x),grid

The state variables versus the time are shown in Fig. 11.8.

Fig. 11.8 The time course of
the state variables in the
sampled system
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Chapter 12
Discrete Regulator Design for Stable
Processes

12.1 Design of a YOULA Parameterized Regulator

The YOULA parameterized control can be applied also to sampled systems. The
regulator design is similar to the procedure discussed in Chap. 7. In sampled data
systems, the realization of the regulator for processes with dead-time does not cause
any problems.

The sampled system is given by its pulse transfer function G. The pulse transfer
function of the process has to be separated into the cancellable Gþ and the
non-cancellable G� components. The discrete dead-time is denoted by d.

G ¼ GþG�z�d

In the case of lag elements there is always a z�1 term, so the discrete dead-time
d is calculated as the ratio of the real, physical dead-time Td and the sampling time
Ts plus one, i.e., d ¼ entier Td=Tsð Þþ 1. Preferably choose the sampling time so that
the ratio Td=Ts is an integer.

Rr is the pulse transfer function of the reference model (reference filter) and Rn is
the pulse transfer function of the disturbance filter.

The expression of the YOULA parameter is: Q ¼ RnG�1
þ .

The block diagram of the YOULA parameterized discrete control system in IMC
form is given in Fig. 12.1. (An equivalent circuit is shown in Fig. 12.3 of the
textbook [1].)

If the disturbance is zero and the process and its model are the same, then the
feedback signal is zero, and the reference signal tracking is realized according to

y ¼ RrG�z�d r:
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For reference signal tracking without static error, the static gain of G� and Rr

should be 1, i.e. G� z ¼ 1ð Þ ¼ 1 and Rr z ¼ 1ð Þ ¼ 1. The resulting transfer function
for the disturbance input is

y ¼ 1� RnG�z�d
� �

yn:

To ensure a zero steady output value in case of a step disturbance (total dis-
turbance rejection) the static gain of Rn should be also 1, i.e. Rn z ¼ 1ð Þ ¼ 1.

The zero of the process which is outside of the unit circle should not be can-
celled, as this would result in an unstable pole in the regulator. Also it is not
expedient to cancel zeros which are on the left side of the unit circle, as this would
introduce a pole in the regulator which would cause intersampling oscillations in
the control system. (This phenomenon will be analysed in more detail in the dis-
cussion of dead-beat control.)

Example 12.1 Consider the dead-time process analysed in Example 7.3.
The transfer function of the process is

P sð Þ ¼ 1
1þ 5sð Þ 1þ 10sð Þ e

�30s:

The sampling time is Ts ¼ 1 s.
Design a YOULA parameterized regulator for this process. First the filters are

chosen to provide a delay of one sampling time. Then analyse how is the behaviour
of the control system modified if the filters are obtained by sampling the continuous
filters given by the transfer function Rr sð Þ ¼ Rn sð Þ ¼ 1

1þ sð Þ2.

Write a MATLAB™ program whose input data are the invertible and
non-invertible factors Gþ and G� of the pulse transfer function of the process, and
the filters are Rr and Rn. The program has to calculate and plot the output and
control signals of the control system for unit step reference signal and zero output
disturbance, then the output and the control signals for zero reference signal and
unit step output disturbance.

1
nR G−

+
−

r y
ny

r

n

R

R
dG G z−+ −

−

u

dG G z−+ −

Fig. 12.1 Block diagram of the YOULA parameterized discrete control system
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Save the program with the name Youla discrete.

% Youla_discrete: Youla discrete basic program
display('…..Q='),Q=minreal(Rn/Gp,0.0001)
display('…..C='),C=minreal(Q/(1-Q*G),0.0001)
display('…..L='),L=minreal(C*G,0.0001)
display('…..Tr='),Tr=minreal((Rr/Rn)*Q*G,0.0001)
display('…..Ur='),Ur=minreal((Rr/Rn)*Q,0.0001)
pause
t=0:Ts:50;
figure(1)
yr=step(Tr,t);
subplot(211), plot(t,yr,'*'),grid
ur=step(Ur,t);
subplot(212), stairs(t,ur),grid
pause;
display('…..Sn='),Sn=minreal((1-Q*G),0.0001)
display('…..Un='),Un=minreal(-C*(1-Q*G),0.0001)
pause
figure(2)
yn=step(Sn,t);
subplot(211),plot(t,yn,'*'),grid;
un=step(Un,t);
subplot(212),stairs(t,un),grid;

Give the process in MATLAB™.

clear; clc; s=zpk('s')
P=1/((1+5*s)*(1+10*s))
Ts=1; z=zpk('z',Ts); G1=c2d(P,Ts)
G=G1*z^(-30)

The pulse transfer function G zð Þ considering also the dead-time is

0.0090559 (z+0.9048)
------------------- z�30

(z-0.9048) (z-0.8187)

Separate the pulse transfer function of the process into cancellable and
non-cancellable factors. First suppose that the whole dynamics can be cancelled.

Gm=1; %G-

Gp=G1/Gm %G+

Set the filters as

Rr=1/z; Rn=1/z;
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Call the Youla discrete program.

Youla_discrete

Figure 12.2 gives the output signal (upper figure) and the control signal (lower
figure) for unit step reference signal. Figure 12.3 shows the output and the control
signals for unit step output disturbance. It is a strange phenomenon that the
oscillating control signal (on the lower figures) results in a calm output signal. The
explanation is that the simulation is executed only at the sampling points.
Simulating the real continuous process decreasing oscillations can be observed
between the sampling points.

Build the SIMULINK™ block diagram corresponding to Fig. 12.1. Let the
process be considered with its continuous model (Fig. 12.4). Running the simula-
tion it can be seen that really there are oscillations between the sampling points
(Fig. 12.5).

Fig. 12.2 Output and control
signals for step reference
signal

Fig. 12.3 Output and control
signals for step output
disturbance signal
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In the following the non-cancellable part contains a zero on the left side of the
unit circle.

The separation is as follows:

G� ¼ 1þ 0:9048z�1

1:9048
; Gþ ¼ 0:0090559 � 1:9048

1� 0:9048z�1ð Þ 1� 0:8187z�1ð Þ :

With MATLAB commands:

Gm =(1+0.9048*z^(-1))/1.9048
Gp = minreal(G1/Gm,0.0001)

Then call the program:

Youla_discrete

Fig. 12.4 SIMULINK™ diagram for the YOULA parameterized control system

Fig. 12.5 Oscillations
between the sampling points
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Figure 12.6 shows the output and the control signal for unit step reference
signal. The signals for a disturbance input are shown in Fig. 12.7. The control
signal reaches a steady value after two jumps, and the output signal shows calm
behaviour. Running the SIMULINK™ model it can be seen that at the output of the
continuous process there are no oscillations between the sampling points.

Investigate the operation of the control system with second order filters.

Rr=c2d(1/(1+s)^2,Ts);Rn=Rr;

Then run the program again.

Youla_discrete

In Figs. 12.8 and 12.9 it can be seen that the dynamics of the settling process has
changed, it became a bit slower.

Fig. 12.6 Output and control
signals for step reference
signal with appropriate
separation of G

Fig. 12.7 Output and control
signals for step output
disturbance with appropriate
separation of G
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The role of filters on the one hand is to influence the dynamic behaviour of the
control system. If the two filters are different, the dynamics of reference signal
tracking and that of disturbance rejection will be different. In this case it is called
two-degree-of-freedom (2DOF) control. On the other hand, applying the filters, the
maximum value of the control signal becomes smaller, as can be seen in Figs. 12.6,
12.7, 12.8 and 12.9. The filters also influence the robustness of the control system.
If the process and its model are not exactly the same, i.e. there is a plant-model
mismatch, by choosing the appropriate filters generally robust behaviour of the
control system can be achieved, i.e. the behaviour of the control system can be
acceptable even if the model is not accurate.

Problem Analyse the reference signal tracking and disturbance rejection properties
of the control system if the dynamics of the two filters differs.

Fig. 12.8 Output and control
signals for step reference
signal with filters

Fig. 12.9 Output and control
signals for step output
disturbance with filters
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Execute the simulation with the SIMULINK™ model, both for the case where
the process and its model are the same and also if there is a mismatch between
them. In the latter case let the dead-time of the system be 40 s, while the dead-time
of the model is 30 s. Find filters which ensure acceptable behaviour even in this
case.

Example 12.2 Consider Example 12.1 in the text book [1]. Simulate the behaviour
of the control system in MATLAB™.

The process is a sampled first order lag element with dead-time.

The pulse transfer function of the process is: G zð Þ ¼ 0:2
z� 0:8

z�3 ¼ Gþ G� z�d .

The pulse transfer functions of the filters are: Rr zð Þ ¼ 0:8z�1

1� 0:2z�1 andRn zð Þ ¼ 0:5z�1

1� 0:5z�1
.

Embedded filters: Gr ¼ Gn ¼ 1 .

Separation of the process: Gþ zð Þ ¼ 0:2z�1

1� 0:8z�1 andG� zð Þ ¼ 1 .

The YOULA parameter: Q ¼ RnG
�1
þ ¼ 2:5 1� 0:8z�1ð Þ

1� 0:5z�1
.

The series regulator: C ¼ RnG�1
þ

1� RnG�z�3 ¼
2:5 1� 0:8z�1ð Þ

1� 0:5z�1 � 0:5z�4
.

Specify the data of the process and the filters in MATLAB™.

z=zpk('z');

Gp=0.2*z^(-1)/(1-0.8*z^(-1)); % G+

Gm=1; % G-

d=3;

G1=minreal(Gp*Gm,0.0001);

G=G1*z^(-d);

Rr=0.8*z^(-1)/(1-0.2*z^(-1));

Rn=0.5*z^(-1)/(1-0.5*z^(-1));

Give a fictive sampling time: Ts=1;
Then call the program Youla discrete:

Youla_discrete

Figure 12.10 shows the dynamics of the reference signal tracking, while
Fig. 12.11 gives the dynamics of the disturbance rejection.
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12.2 Control of a Dead-Time System with a SMITH

Predictor

If the process contains a large dead-time, applying a PID regulator, the control
system will be slow (this behaviour was demonstrated in the design of a continuous
regulator in Chap. 8). To accelerate the control system, a YOULA parameterized
regulator can be used, or the SMITH predictor regulator developed earlier, around
1950. The design of a SMITH predictor brings up the question, whether the usual
control system of a process with dead-time could be made equivalent to a control
system where the dead-time appears outside of the closed loop (Fig. 12.12).

Fig. 12.10 The dynamics of
reference signal tracking

Fig. 12.11 The dynamics of
disturbance rejection
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Writing the equivalence of the resulting transfer functions of the two systems
yields

Cs sð ÞPþ sð Þe�sTd

1þCs sð ÞPþ sð Þe�sTd
¼ Cþ sð ÞPþ sð Þ

1þCþ sð ÞPþ sð Þ e
�sTd

Cs sð Þ 1þCþ sð ÞPþ sð Þ½ � ¼ Cþ sð Þ 1þCs sð ÞPþ sð Þe�sTd½ �

whence

Cs sð Þ ¼ Cþ sð Þ
1þ 1� e�sTdð ÞCþ sð ÞPþ sð Þ

is the transfer function of the SMITH predictor.
The regulator Cþ sð Þ is designed for the process without dead-time. This

control system will be fast. Then the practically applicable regulator is calculated
according to the relation above, giving the transfer function of the SMITH predictor.
(Let us remark that the signal of the process output before the dead-time is not
available.)

It is seen that the dead-time appears in the expression of the regulator.
Theoretically, a SMITH predictor can be used both for continuous and sampled

systems, but as the realization of dead-time in continuous systems is difficult and
can be solved only approximately, therefore this algorithm generally is applied only
in discrete systems. In sampled systems, dead-time means the shift of the signal and
therefore it is simply realizable.

The pulse transfer function of the discrete SMITH predictor is

Cs zð Þ ¼ Cþ zð Þ
1þ 1� z�dð ÞCþ zð ÞGþ zð Þ

where Gþ zð Þ is the pulse transfer function of the process without the dead-time,
and d is the discrete dead-time.

Example 12.3 Design a SMITH predictor regulator for a proportional process con-
taining three time lags and dead-time. The transfer function of the continuous
process is

P sð Þ ¼ Pþ sð Þ e�sTd ¼ K e�sTd

1þ sT1ð Þ 1þ sT2ð Þ 1þ sT3ð Þ ,

with parameters K ¼ 5, T1 ¼ 10, T2 ¼ 4, T3 ¼ 1 and Td ¼ 10.

( )sC s ( ) dsTP s e−+
e(t) y(t)u(t)r(t)

-
( )C s+ ( )P s+

e(t) y(t)u(t)r(t)

-
dsTe−

Fig. 12.12 The idea of SMITH predictor
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Design the regulator Cþ sð Þ to ensure a phase margin of about 60°. The maxi-
mum value of the control signal should not exceed the value umax = 10.

K=5; T1=10; T2=4; T3=1; Td=10; ft=60;

Define the variable ‘s' by

s=zpk('s');

Use the LTI structures of the Control System Toolbox (Pþ sð Þ = Ps)

Ps=1/((1+s*T1)*(1+s*T2)*(1+s*T3))

First Step: Design of the Cþ zð Þ Discrete Regulator

A good practical rule for the choice of the sampling time is that it should be smaller
than the smallest time constant of the process. (For simulation tasks it could be
chosen to be about one tenth of the smallest time constant, for control purposes it is
appropriate if the sampling time is chosen around one half or one third of the
smallest time constant; at most it can be equal to it. Besides, it is expedient to
choose the sampling time in such a way that the ratio of the dead-time and the
sampling time is an integer.)

Ts=0.5;

The regulator Cþ zð Þ is designed in the frequency domain according to the low
frequency approximation method described in Chap. 13.

The pulse transfer function of the sampled continuous process with a zero-order
holding (Gþ zð Þ = Gz) is

Gz=c2d(Ps,Ts)

The resulting pulse transfer function is

Gþ zð Þ ¼ 0:0004416
zþ 0:2254ð Þ zþ 3:167ð Þ

z� 0:9512ð Þ z� 0:8825ð Þ z� 0:6065ð Þ :

The PID regulator based on pole cancellation is designed according to Chap. 13.
The pole of Gþ zð Þ belonging to the biggest time constant, p1 ¼ e�Ts=T1 ¼

0:9512 is cancelled and instead an integrator is introduced (PI), and the pole
belonging to the second biggest time constant p2 ¼ �0:8825 is also cancelled, and
instead an ideal differentiating effect is introduced (PD). So the pulse transfer
function of the regulator is
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Cþ zð Þ ¼ kc
z� 0:9512

z� 1
z� 0:8825

z
:

The constant kc in the regulator is designed to set the prescribed phase margin. In
the first step, let its value be 1.

p1=exp(-Ts/T1)
p2=exp(-Ts/T2)
kc=1;
Cz=zpk([p1 p2],[0 1],kc,Ts)

The pulse transfer function of the open loop is

Lz=Cz*Gz

Executing the simplifications:

Lz=minreal(Lz)

The value of kc can be read from the graphical surface of ltiview viewer. Its value
will be the reciprocal of the gain belonging to the phase angle �120�.

ltiview('bode',Lz);

or kc can be calculated directly with command margin,

[mag,phase,w]=bode(Lz);
kc=margin(mag,phase-60,w);

The gain is kc ¼ 33:46.
Calculate again the transfer functions:

Cz=kc*Cz;
Lz=kc*Lz;

Check the phase margin:

margin(Lz)

Calculate and plot the output and control signals of the discrete system.

Hz=Lz/(1+Lz)
Uz=Cz/(1+Lz)
subplot(211); step(Hz)
subplot(212); step(Uz)
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Second Step: Calculation of the Pulse Transfer Function Csm zð Þ of the SMITH

Predictor

Csm zð Þ ¼ Cþ ðzÞ
1þ 1� z�dð ÞCþ zð ÞGþ zð Þ

where d ¼ Td=Ts

z=tf('z',Ts);
d=Td/Ts
Csm=Cz/(1+(1-z^(-d))*Cz*Gz)
Csm=minreal(Csm,0.0001)

The behaviour of a hybrid (discrete–continuous) system can be analysed in the
SIMULINK™ environment. Build the SIMULINK™ model (Fig. 12.13.). The
model takes the parameters Csm; Ps from the MATLAB™ surface. The sampling
time is set at the zero order hold element. The hold element can be left out of the
circuit, as when connecting the discrete and continuous blocks SIMULINK™
automatically employes a zero order hold. Set the value of the dead-time. Execute
the simulation till 30 s. The result of the simulation can be seen on the scopes, but
the simulation data can be reached also in MATLAB™. Double clicking on the
Scope blocks, choose the option Parameters (the second icon from the left). Then
on the option Data History mark Save data to workspace, then set the Variable
name to ty and tu, respectively on the scopes with format Array. After running the
SIMULINK™ model, the signals can be plotted from MATLAB™ with the fol-
lowing commands:

subplot(211);plot(ty(:,1),ty(:,2));grid;
subplot(212);stairs(tu(:,1),tu(:,2));grid;

Determine the overshoot and the settling time of the output signal and check the
maximum value of the control signal. The output and the control signals are shown
in Fig. 12.14. The control is much faster than it would be with a series PID
regulator designed for the process with dead-time.

Fig. 12.13 SIMULINK™ diagram of SMITH predictor
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Observe that the control signal is the same as the control signal obtained in the
first step of the design for the case of the process without dead-time. The output
signal is the same as the output signal of the control without the dead-time, but
shifted by the dead-time.

Problem Design a SMITH predictor regulator for the second order process with
dead-time given in Example 12.1. For the process without dead-time design a PID
regulator with phase margin of 60°.

Remark The SMITH prediktor is a special case of the YOULA parameterization. It
does not apply filters.

Problem Determine the expression of the YOULA parameter corresponding to the
SMITH predictor.

Problem With the SIMULINK™ model execute simulations for the case of a
plant-model mismatch. Change the parameters of the continuous process (static
gain, time constants, dead-time one by one and also together) by ±10%. The
regulator was designed for the original, nominal process. Evaluate the simulation
results.

12.3 Design of a Dead-Beat Regulator

The structure of the control system is shown in Fig. 12.15.
In sampled-data (discrete) control systems, the regulator is an intelligent device,

typically it is a microprocessor based Programmable Logic Regulator (PLC)
device. The task of the PLC is the realization of a control algorithm, and handling
of signals related to the operation of the regulator (filtering, A/D and D/A con-
verters, interfaces). With software realization, besides PID control there is the
possibility of applying several special control algorithms. Such algorithms are the

Fig. 12.14 The output and
control signals in SMITH

predictor
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discrete PID regulator, the YOULA parameterized regulator and the SMITH predictor.
Another discrete control algorithm is the dead beat regulator, which ensures the
accurate settling of the output signal within a given finite number of the sampling
periods. First analyse the method applying it to stable processes without dead-time
(Td ¼ 0), and the reference signal is supposed to be a unit step. Let us remark that
dead beat regulator can be designed also for cases when these conditions are not
fulfilled.

In the sequel the solution is shown in three steps. In the first step the fastest
control is designed, the requirement is to settle the process output to the desired
value in one sampling step. It will be seen that settling in one step can be ensured,
but the control signal values can be extremely high, furthermore, in most cases
intersampling oscillations do appear. In the second step, the cancellable and
non-cancellable zeros will be separated to avoid oscillations in the pulse transfer of
the process. It will be seen that the oscillations can be avoided by increasing the
prescribed settling time. If after that the design process still results in control signals
that are too high, then in the third step, the design procedure can be refined by
introducing a design polynomial, increasing the settling time, but still keeping it
finite.

The design is executed in the z domain. An interesting feature of the method is
that it eliminated some non-desired time domain properties of the system (oscil-
lations, high overexcitation) taking into consideration properties in the z domain.
The basic task is the design of the discrete regulator.

First the hybrid (continuous-discrete) problem is converted to a pure discrete
problem by determining the pulse transfer function G zð Þ, which is the discrete
equivalent of the connected D/A converter and holding element and continuous
process given by its transfer function P sð Þ. The sampling time Ts also has to be
given. Then the pulse transfer function C zð Þ of the regulator is designed and the
behaviour of the closed loop control system is analysed.

The main point of the design is that we prescribe the behaviour of the closed
loop giving its closed loop pulse transfer function T zð Þ. In the case of dead beat
control the resulting transfer function ensures the settling after a unit step reference

( )C z ( )P s
/D A

ZOH

DA /

u[k]e[k] y(t)u(t)

y[k]

r[k]
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( )
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U(z)

Y(z)
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Fig. 12.15 Block diagram of a sampled control system
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signal during a given number of sampling steps, i.e. T zð Þ ¼ z�d , where d is the
discrete dead-time, namely d ¼ entier Td=Tsð Þþ 1.

C zð ÞG zð Þ
1þC zð ÞG zð Þ ¼ T zð Þ

Hence C zð Þ, the pulse transfer function of the regulator, is

C zð Þ ¼ T zð Þ
G zð Þ 1� T zð Þ½ � :

Example 12.4 Consider the continuous process given by the transfer function

P sð Þ ¼ 1
1þ 5sð Þ 1þ 10sð Þ

The sampling time is Ts ¼ 1 s.
First define the s and z variables.

Ts=1;
s=zpk('s');
z= zpk ('z',Ts);
Ps=1/((1+5*s)*(1+10*s))

To have an idea what the requirement of settling in one sampling period means
draw the step response of the process.

step(Ps);

Calculate the pulse transfer function of the process:

Gz=c2d(Ps,Ts)

The obtained pulse transfer function is

G zð Þ ¼ B zð Þ
A zð Þ ¼ 0:0090559

zþ 0:9048ð Þ
z� 0:8187ð Þ z� 0:9048ð Þ

The discrete poles are transformed from the continuous poles according to the
relationship zi ¼ epiTs ¼ e�Ts=Ti . A discrete zero also appeared.

First design a one step dead-beat regulator. The resulting transfer function
between the output signal and the reference signal should be

T zð Þ ¼ z�1:
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The regulator is obtained as

C zð Þ ¼ 1
G zð Þ z� 1ð Þ :

Tz=1/z
Cz=Tz/(Gz*(1-Tz))
Cz=minreal(Cz)

The pulse transfer function of the regulator is

C zð Þ ¼ 110:425
z� 0:8187ð Þ z� 0:9048ð Þ

zþ 0:9048ð Þ z� 1ð Þ :

Analyse the behaviour of the control system in discrete time. The step response
really shows a one step delay.

step(Cz*Gz/(1+Cz*Gz))

If we want to get an accurate picture of the behaviour of the system, the
behaviour of the continuous process should be analysed considering also the output
signal values between the sampling points. The simulation is not so straightforward
in the MATLAB™ environment, but it is easy with SIMULINK™. Start
SIMULINK™ and build the model shown in Fig. 12.16.

simulink

Create a new model file (with extension .mdl) and copy the individual blocks
from the block libraries. Change the values of the parameters to the required values.
From the menu set the Simulation –> Parameters –> Stop time parameter to 8.
SIMULINK™ uses the parameters defined in MATLAB™.

Fig. 12.16 SIMULINK™ diagram of a sampled control system
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The individual blocks are taken from the following block libraries:

C zð Þ, P sð Þ: Control System Toolbox –> LTI system
Zero order hold: Simulink –> Discrete –> Zero-Order-Hold
Subtraction: Simulink –> Math –> Sum
Step input: Simulink –> Sources –> Step
Scope: Simulink –> Sinks –> Scope.

The zero order hold element can be left out of the block diagram. The results can
be seen on the Scope blocks.

The results can be transformed to MATLAB™ by double clicking on the Scope
blocks, choosing the option Parameters, and then indicating on Data History the
option Save data to workspace. Set Variable name ty and tu, respectively, with
Array format.

After running the SIMULINK™ model, the signals can be plotted from the
MATLAB™ environment by the following commands

subplot(211);plot(ty(:,1), ty(:,2));grid;

subplot(212);stairs(tu(:,1), tu(:,2));grid;

The simulation result shown in Fig. 12.17 demonstrates that there are oscilla-
tions between the sampling points. The reason for the oscillations is that the reg-
ulator compensated the numerator B zð Þ of the process, and therefore it has a pole
which causes oscillations in the signal u k½ �. If the pulse transfer of the process is

Fig. 12.17 Output and control signals in dead-beat control
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written in the form G zð Þ ¼ B zð Þ=A zð Þ, then the pulse transfer function of the

regulator is C zð Þ ¼ A zð Þ
B zð Þ z�1ð Þ, and the loop transfer function is the pulse transfer

function of an integrator.

L zð Þ ¼ C zð ÞG zð Þ ¼ A zð Þ
B zð Þ z� 1ð Þ �

B zð Þ
A zð Þ ¼

1
z� 1

It can be seen that the zeros of the process appear in the regulator as poles. The
pulse transfer function G zð Þ contains one zero, z1 ¼ �0:9048, which appears in the
regulator as a pole. Analyse this in more detail.

C1z=1/(z+0.9048)
step(C1z)

It is seen that this component causes the oscillations. In the continuous domain
as z1 ¼ e�sTs , s1 ¼ �ln zð Þ=Ts
s1=log(-0.9048)

s1 = -0.1000 + 3.1416i

This corresponds to complex conjugate pole pairs with a small damping factor,
the oscillation frequency is p=Ts ¼ 3:14, just the twice the sampling frequency.
Obviously this is not a real zero, it appeared due to sampling, therefore it does not
have to be compensated. The Appendix demonstrates how the complex conjugate
pole pairs are transformed to the z domain.

(As a demonstration let us analyse the step responses of the following pulse
transfer functions.

P1z=0.5/(z-0.5); step(P1z);
P2z=1.5/(z+0.5); step(P2z);
P3z=2.5/(z+1.5); step(P3z);

It can be seen that the output of the first system shows an aperiodic settling
process corresponding to the response of a first order lag element. The output of the
second system presents decreasing oscillations, while the third system is unstable.
The constants were chosen to ensure unit static gain. The regulator should not
cancel the “bad” zeros of the process, i.e. those which are outside of the unit circle
or lie in the unfavourable area of the unit circle. The unfavourable area, as will be
seen in the Appendix, is the area outside of a “heart shape curve”, which includes
also the negative real zeros inside the unit circle.)

Let us separate the numerator of the pulse transfer function of the process into
cancellable and non-cancellable components.

B zð Þ ¼ Bþ zð Þ B� zð Þ

Bþ zð Þ contains the cancellable roots and B� zð Þ those which are not cancellable.
If a zero in B zð Þ is not cancelled, than it will appear in the resulting pulse transfer of
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the control system between the output signal and the reference signal.
A requirement is to track the step reference signal without steady error. Therefore
the static gain of B� zð Þ should be 1, i.e. B� zð Þjz¼1¼ 1.

In the next step a regulator is designed which does not compensate the zero
which would cause the oscillation. In the design, the dead-time d of the process is
also considered. In the sequel, the pulse transfer functions are given with the z�1

shift operator.
The required pulse transfer function is given in the following form:

T z�1� � ¼ B� z�1� �
z�d

The pulse transfer function of the process is

G z�1� � ¼ Bþ z�1ð ÞB� z�1ð Þ
A z�1ð Þ z�d:

The resulting transfer function between the output and the reference signal is

C z�1ð ÞG z�1ð Þ
1þC z�1ð ÞG z�1ð Þ ¼ T z�1

� � ¼ B� z�1
� � � z�d

Hence the pulse transfer function of the regulator:

C z�1
� � ¼ B� z�1ð Þ � z�d

G z�1ð Þ 1� B� z�1ð Þ � z�d½ � ¼
T z�1ð Þ

G z�1ð Þ 1� T z�1ð Þ½ � ,

or, considering the decomposition of G zð Þ,

C z�1
� � ¼ A z�1ð Þ

Bþ z�1ð Þ 1� B� z�1ð Þ � z�d½ �

Apply the regulator design for our example avoiding intersampling oscillations.
The separation of the numerator is

B� z�1ð Þ ¼ 1þ 0:9048z�1ð Þ= 1þ 0:9048ð Þ; Bþ z�1ð Þ ¼ 0:0090559 � 1þ 0:9048ð Þ and
d ¼ 1.

This is calculated by

Bm =1+0.9048*z^(-1)
Bmn=Bm/dcgain(Bm)
Bpn=Gz.k*dcgain(Bm)
Tz=Bmn/z
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Cz=Tz/(Gz*(1-Tz))
Cz=minreal(Cz,0.001)

The regulator pulse transfer function is then

57.972(z-0.9048)(z-0.8187)

--------------------------

(z+0.475)(z-1)

Simulate again the behaviour with the SIMULINK™ model. The output and the
control signal are shown in Fig. 12.18.

It can be seen that there are no oscillations and at the same time the control
signal became more moderate, with smaller maximum value. The control system
became slower, now the output signal reaches the steady value in two sampling
periods. As the overexcitation is still about 50, this value may exceed the possi-
bilities of the applied actuator. Therefore a method has to be sought to decrease
further the overexcitation while keeping the finite settling time.

Supplement the control algorithm with a design filter polynomial, which calmly
“guides” the finite time settling process. For example, choosing the design
polynomial

Fig. 12.18 Output and
control signals in dead-beat
control avoiding
inter-sampling oscillations

12.3 Design of a Dead-Beat Regulator 229



F zð Þ ¼ 1
3
þ z�1

3
þ z�2

3

its smoothing effect can be observed looking at its step response.

Fz=(1+z^(-1)+z^(-2))/3
step(Fz)

With the design polynomial the design criterion is

T z�1� � ¼ F zð Þ � B� z�1� � � z�d

For zero static error, the static gain of the design polynomial should be 1, i.e.
F z ¼ 1ð Þ ¼ 1.

The regulator is

C z�1� � ¼ F z�1ð ÞB� z�1ð Þ � z�d

G z�1ð Þ 1� F z�1ð ÞB� z�1ð Þ � z�d½ � ¼
A z�1ð ÞF z�1ð Þ

Bþ z�1ð Þ 1� F z�1ð ÞB� z�1ð Þ � z�d½ �

Tz=Fz*Bmn/z
Cz=Tz/(Gz*(1-Tz))
Cz=minreal(Cz,0.001)

Fig. 12.19 With a design
filter the settling process is
modified
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Running the SIMULINK™ diagram it can be seen that the settling time has been
increased and the maximum value of the control signal has become lower
(Fig. 12.19).

Add a dead-time Td ¼ 1 to the process and simulate the behaviour of the control
system

Td=1
d=Td/Ts+1
Tz=Bmn/(z^d)
Cz=Tz/(Gz*(1-Tz))
Cz=minreal(Cz,0.001)

Put a delay block (Simulink –> Continuous –> Transport Delay) in the
SIMULINK™ model and set its parameter to Td. Similarly to the previous dis-
cussion with a different F zð Þ design polynomial the control system could fulfill
more flexible specifications.

Appendix

Let us assume that a continuous system can be characterized by a dominant pole
pair, so it can be considered as a second order oscillating system. For a given
damping factor n for different time constants the poles are located on straight lines
which start from the origin of the complex plain and close angle cosu ¼ n with the
negative real axis. With sampling these straight lines are mapped into “heart shape
curves” on the complex plain. These mapping is illustrated by the following pro-
gram. The location of the poles ensures acceptable transients if the damping factor
is above a given value (e.g. n� 0:6).

The conjugate complex poles with a given damping factor in the continuous
domain. In the s domain with constant damping factor n we get s ¼ rþ jx straight
lines going through the origin, as r takes different values. For a given value of r,

x ¼ r
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
. In the discrete domain according to mapping z ¼ esTs ‘heart shape

curves’ are obtained. To demonstrate this, write the following MATLAB code:

szigma=0:0.01:1.6;
kszi=0.4;
Ts=1;
z=exp(Ts*(-szigma+j*sqrt(1-kszi*kszi)*szigma/kszi));
plot(real(z),imag(z),real(z),-imag(z)),grid;

Those roots of B zð Þ which lie inside the closed curve (where the damping is
bigger than on the contour) are the roots of Bþ zð Þ, while those roots which lie on
the curve or outside of it are the roots of B� zð Þ.
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Chapter 13
Design of Discrete PID Regulators

In a sampled-data control circuit the regulator can be designed in the frequency
domain taking into account that by sampling and applying a zero order hold the
system behaves as if additional dead-time had occurred in the system.

This can be demonstrated by the following example. A first order proportional
lag element is excited with a sinusoidal signal. Its output is sampled with sampling
time 1 s, then a zero order hold is applied. Plot the input signal, and the outputs of
both the continuous and the sampled system in the same diagram (Fig. 13.1).

The continuous output signal in quasi-stationary state is also a sinusoidal signal
of the same frequency as that of the input signal, but differs from it in amplitude and
phase angle. Seemingly the sampled signal is delayed compared to the continuous
output signal, and its basic harmonic is delayed by about half of the sampling time.

Analyse this phenomenon in the frequency domain. Compare the frequency
function of the continuous lag element with the frequency function of the sampled
element with zero order hold (Fig. 13.2).

The pulse transfer function of the sampled system with A ¼ 1 is

GðzÞ ¼ 1� e�Ts=T1

z� e�Ts=T1

where Ts is the sampling time. The frequency function is obtained by substituting
z ¼ ejxTs . Approximate the exponential terms with their TAYLOR series:

G z ¼ ejxTs
� � ¼ 1� e�Ts=T1

ejxTs � e�Ts=T1

�
1� 1� Ts

T1
þ 1

2
Ts
T1

� �2
� � � �

� �

1þ jxTs � xTsð Þ2
2 þ � � � � 1� Ts

T1
þ 1

2
Ts
T1

� �2
� � � �

� �
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If Ts\T1 and xTs\1, the higher powers of Ts=T1 and xTs can be neglected, and
then the frequency function of the sampled system is approximately the same as the
frequency function of the continuous system.

G z ¼ ejxTs
� � � Ts=T1

jxTs þ Ts=T1
¼ 1

1þ jxT1

The neglected terms can be taken into account by an additional Tj dead-time
whose value is estimated between Ts=2 and Ts.

G z ¼ ejxTs
� � � 1

1þ jxT1
e�jxTj :

Fig. 13.1 Sampling and holding introduces an artificial additional dead time

A
1 sT1

A
1 sT1

Ts Ts

+ +
zero order

hold

Sampled-data systemContinuous system

Fig. 13.2 Continuous and sampled system
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13.1 Comparing the Frequency Characteristics
of Continuous and Discrete Systems

Compare the frequency functions of a continuous system with that of its corre-
sponding sampled system.

Example 13.1 Let A ¼ 1, T1 ¼ 0:1 and the sampling time Ts ¼ 0:1 .

PðsÞ ¼ 1
1þ 0:1s

s=zpk('s')
Ps=1/(1+0.1*s)
Ts=0.1;
Gz=c2d(Ps,Ts)

GðzÞ ¼ 0:63212
z� 0:3679

w=logspace(-1,2,200);
[mags,phases]=bode(Ps,w);
[magz,phasez]=bode(Gz,w);
subplot(211), loglog(w, mags(:),'b',w,magz(:),'r'),grid;
PhasesWithDel=phases(:)-w'*(Ts/2)*180/pi;
subplot(212)
semilogx(w,phases(:),'b',w,phasez(:),'r',w,
PhasesWithDel,'g')
grid

It can be seen that the amplitude-frequency curve of the sampled system cal-
culated from the pulse transfer function (red) follows well the amplitude-frequency
curve of the continuous system (blue) up to x ¼ 1=Ts ¼ 10 (Fig. 13.3). At higher
frequencies the deviation is high: the approximation can not be accepted. In the
phase angle the deviation is observable also in the low frequency range, at x ¼
1=Ts ¼ 1 it is already about 0.5 rad, nevertheless the continuous phase angle
extended by the angle of the additional dead-time (green) provides a good
approximation of the phase angle of the sampled system (red).

It can be seen that the amplitude of the discrete frequency function (red) beyond
frequency x ¼ p=Ts ¼ 31:4 differs significantly from the amplitude of the con-
tinuous frequency function.

The additional dead-time resulting from sampling and holding changes the
structural properties of the original system, even if it is very small. For instance a
structurally stable continuous system will not still have this property after sampling.
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13.2 Design of a Discrete PID Regulator

The structure of a sampled control system is given in Fig. 13.4. This is a hybrid
system as at some points the signals are continuous, while at others discrete signals
appear.

In the figure, PðsÞ is the transfer function of the continuous process, and CðzÞ is
the pulse transfer function of the discrete regulator to be designed. The quality
specifications set for the control system prescribe the required static and dynamic
properties of the system.

A continuous PID type regulator can be designed for the continuous process
enhanced by the dead-time resulting as the effect of sampling. Then the continuous
regulator is transformed to a discrete algorithm.

But it is expedient to design directly a discrete regulator of PID type for the
pulse transfer function GðzÞ of the process, obtained from the sampled form of the
continuous process PðsÞ, which considers also the zero order hold. The design can
use the pole cancellation technique. The unfavourable poles of the process are
cancelled by the zeros of the regulator, and instead more favourable poles are
introduced.
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Fig. 13.3 Comparing the BODE diagrams of the continuous and the sampled systems
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13.2.1 Discrete PID Regulators

The denominator of pulse transfer functions of lag elements contains factors of form
z� e�Ts=T1
� �

z� e�Ts=T2
� �

. . .

The discrete P, PI, P and PID algorithms can be given by the following pulse
transfer functions:

P regulator: CðzÞ ¼ A

PI regulator: CðzÞ ¼ A
z� e�Ts=T1

z� 1

(The biggest time constant can be cancelled and instead an integrating effect is
introduced.)
Its difference equation is: u½k� ¼ Ae½k� � Aexp �Ts=T1ð Þ e½k � 1� þ u½k � 1�;
where u½k� is the control signal and e½k� is the actual value of the error signal.

PD regulator: CðzÞ ¼ A
z� e�Ts=T2

z� e�Ts=T�
2

; where T�
2\T2:

(An unfavourable time constant of the process can be cancelled and instead a
smaller time constant is introduced.)

Ideal PD regulator: CðzÞ ¼ A
z� e�Ts=T2

z

Its difference equation is: u½k� ¼ Ae½k� � Aexp �Ts=T1ð Þ e½k � 1�.
(Unlike the continuous PD algorithm a discrete ideal PD effect is realizable, as here
the overexcitation is a finite value.)

PID regulator with ideal PD effect: CðzÞ ¼ A
z� e�Ts=T1
� �

z� e�Ts=T2
� �

ðz� 1Þ z
Its difference equation is:

u k½ � ¼ Ae k½ � � A exp �Ts=T1ð Þþ exp �Ts=T1ð Þð Þ e k � 1½ �
þA exp �Ts=T1ð Þ exp �Ts=T1ð Þð Þ e k � 2½ � þ u k � 1½ �

PID regulator with non-ideal PD effect: CðzÞ ¼ A
z� e�Ts=T1
� �

z� e�Ts=T2
� �

ðz� 1Þ z� e�Ts=T�
2

� �
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Its difference equation is

u k½ � ¼ Ae k½ � � A exp �Ts=T1ð Þþ exp �Ts=T2ð Þ½ �e k � 1½ � þA exp �Ts=T1ð Þexp �Ts=T2ð Þ½ �e k � 2½ �
þ 1þ exp �Ts=T�

2

� �� 	
u k � 1½ � � exp �Ts=T�

2

� �
u k � 2½ �

Remark: Multiple PI and PD effects can also be applied if the limit given for the
control signal u is not exceeded.

The difference equation of the controller is a recursive relation which can be
realized in real time.

13.2.2 Behaviour of the Basic Regulators

Example 13.2 Analyse the step responses of the individual regulators.

PI regulator:

Ts=1;

z=zpk('z',Ts)

Ti=10; Ts=1; A=2;

pdi=exp(-Ts/Ti)

pdi =

0.9048

Cpi=A*(z-pdi)/(z-1)

step(Cpi,15),grid

The step response is shown in Fig. 13.5.

PD regulator:

Fig. 13.5 Step response of
the discrete PI regulator
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Td=10;
pdd=exp(-Ts/Td)
Cpd=A*(z-pdd)/z
step(Cpd,15),grid

This regulator provides a big overexcitation value at the first sampling point,
which results in an acceleration effect (Fig. 13.6).

If a gradually decreasing accelerating signal is required as in the continuous case
then a discrete pole has also to be added analogously to the continuous case
(Fig. 13.7).

Fig. 13.6 Step response of
the discrete ideal PD regulator

Fig. 13.7 Step response of
the discrete PD regulator
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Td=10;Td1=1;
pdd1=exp(-Ts/Td1)
Cpd1=A*(z-pdd)/(z-pdd1)
step(Cpd1,15),grid

PID regulator:

Cpid=Cpi*Cpd
Cpid1=Cpi*Cpd1
step(Cpid,15)
step(Cpid,Cpid1,15),grid

It can be seen that with the discrete PID regulator algorithms similar effects can
be reached as with the continuous PID algorithms (Fig. 13.8).

The zeros of the regulator cancel the unfavourable poles of the process. The gain
A of the regulator is chosen to ensure the required phase margin (generally *60°)
based on the BODE diagram of the discrete open loop system. The BODE diagram can
be calculated by the MATLAB™ command dbode, or if the system is given in LTI
form, then with the command bode. The frequency range has to be considered until
the point 1=Ts: the low frequency approximation of discrete systems is valid up to
this value. The cut-off frequency will be obtained to be about xc � 1= 2 Td þ Tsð Þ½ �,
where Td is the dead-time of the continuous process. (From sampling the process
the additional dead-time is about Ts=2, the regulator algorithm adds a further Ts=2.)
Regarding regulator design, only the low frequency range is of interest, where
otherwise the frequency diagram of the discrete system approximates the contin-
uous one.

As the PID control algorithms do not compensate the zeros of the process, there
will no intersampling oscillations. For the control signal restrictions are given. It has
to be checked if the control signal exceeds the given limit or not.

Fig. 13.8 Step response of
the discrete PID regulator
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13.2.3 Regulator Design for a Prescribed Phase Margin

Example 13.3 The continuous process is given by the transfer function

PðsÞ ¼ e�s

ð1þ 10sÞð1þ 5sÞ ¼ Pþ ðsÞe�s

The system has a dead-time term of Td ¼ 1 s. The sampling time is Ts ¼ 1 s.
Design a series discrete regulator to meet the following design specifications:

– Phase margin *60°
– Settling time should be minimal
– The closed loop system should follow a unit step reference signal without steady

error (type 1 system).

First define the continuous process without the dead-time (Pþ ðsÞ = Ps):

s=zpk('s');
Ps=1/((1+10*s)*(1+5*s));

Determine the discrete process model assuming zero order hold (without the
dead-time) (Gþ ðzÞ = Gz).

Gþ zð Þ ¼ 1� z�1� �Z Pþ sð Þ
s


 �

Ts=1
Gz=c2d(Ps,Ts,'zoh')

Note that it is not necessary to include the default ‘zoh’ string.
Add the dead-time to the process by multiplying Gþ ðzÞ with z�1, since

Z e�sf g ¼ z�1.
The variable z can be defined similarly to the s variable. Here the sampling time

should also be given.

z=zpk('z',Ts)
Gz=Gz/z

GðzÞ ¼ z�1 Gþ ðzÞ ¼ 1
z
Gþ ðzÞ ¼ 0:00905

ðzþ 0:9048Þ
ðz� 0:9048Þ ðz� 0:8187Þ z

The zeros and poles of the discrete system are

[zd,pd,kd]=zpkdata(Gz,'v')

PI compensating term is necessary to achieve the steady state zero error
requirement. PD term is used to accelerate the system response. The PI and PD
break frequencies are chosen according to the time constants (poles) of the
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continuous process. TI is chosen equal to the largest time constant of the process
and TD is equal to the second largest time constant. The parameter TD1 is deter-
mined from the given np pole shift ratio, TD1 ¼ TD=np ¼ 5=5 ¼ 1. In the contin-
uous case the regulator would be the following:

CðsÞ ¼ kc
sTI þ 1
sTI

sTD þ 1
sTD1 þ 1

¼ kc
ð10sþ 1Þð5sþ 1Þ

10sðsþ 1Þ :

The discrete equivalent of these breakpoint frequencies can be calculated on the
basis of the transformation z ¼ esTs both for the zeros and the poles of the regulator:

PI break frequency at: 0:1 ) e�Ts=TI ¼ e�1=10 ¼ e�0:1 ¼ 0:9048 :

PD break frequency at: 0:2 ) e�Ts=TD ¼ e�1=5 ¼ e�0:2 ¼ 0:8187:

PD1 break frequency at: 1 ) e�Ts=TD1 ¼ e�1=1 ¼ e�1 ¼ 0:3679 :

The discrete regulator is

CðzÞ ¼ kc
z� 0:9048

z� 1
z� 0:8187
z� 0:3679

The kc parameter is calculated to set the 60° phase margin.
First assume kc ¼ 1:

kc=1;
Cz=((z-0.9048)*(z-0.8187))/((z-1)*(z-0.3679))

or directly with the poles of the pulse transfer function of the process

Cz=((z-pd(1))*(z-pd(2)))/((z-1)*(z-exp(-1)))

Calculate the discrete loop pulse transfer function LðzÞ ¼ CðzÞGðzÞ.
Lz=Cz*Gz
Lz=minreal(Lz, 0.001)

The command minreal cancels a coinciding zero-pole pair, if their deviation is
less than the given accuracy. If the accuracy is not given, MATLAB™ considers the
preliminarily defined variable eps as an accuracy limit.

eps

For the calculation of the BODE diagram, define the following frequency vector:

w=logspace(-2,0,200);

The lower point of the frequency range is less than the reciprocal of the biggest
time constant of the process, and its upper point is the reciprocal of the sampling
time. The low frequency approximation is valid up to this point.
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[mag,phase]=bode(Lz,w);
T=[mag(:), phase(:), w']

(The frequency vector has to be transposed in order to get a column vector.)

T =

0.1350 -118.8508 0.1979

0.1318 -119.5194 0.2026

>>0.1287 -120.2031 0.2073<<

0.1256 -120.9023 0.2121

0.1226 -121.6194 0.2171

The value of kc can be read from the table. It is seen that a phase shift of about
�120� (required by the specification of phase margin of 60°) is achieved at a
magnitude of 0.1287. Consequently kc has to be chosen as 1/0.1287 = 7.77.

kc=1/0.1287

Verify now the system behaviour. Check the value of the phase margin by the
command margin.

Cz=kc*Cz;
Lz=kc*Lz;
figure(1)
margin(Lz);

Plot the output and the control signal at the sampling points for a step reference
signal.

figure(2)
step(Lz/(1+Lz)),grid
figure(3)
step(Cz/(1+Lz)),grid

Let us remark that MATLAB™ calculates the values of the signals only at the
sampling points. The control signal is constant between two sampling points. By
running a simulation in SIMULINK™ the behaviour of the signals is obtained also
between the sampling points. Then the simulation step is smaller than the
sampling time.

Repeat the design using an ideal PD element. CPDðzÞ ¼ kc
z�z2
z . Now the regu-

lator is:

CðzÞ ¼ kc
z� 0:9048

z� 1
� z� 0:8187

z

In this case, a phase margin of 60° can be ensured with regulator gain
kc ¼ 1=0:0656 ¼ 15:24. Repeating the simulation the output signal and the control
signal are shown in Fig. 13.9. It is seen that with the non-ideal PID regulator the
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maximum value of the control signal is smaller than in the case of the ideal PID
regulator and the settling time is longer. The control signal starts from the value kc.
If there is a limit for the control signal, saturation can be avoided by appropriate
modification of the pole shift ratio.

The closed loop performance can be investigated by the SIMULINK™ model
shown in Fig. 13.10.

simulink

Create a new model (:mdl) file and copy the various blocks from the block
libraries. In the upper part of the Simulink Library Browser window there is a
search option. Writing here the name of the searched block, it finds it in the
appropriate library, and then it can be dragged with the mouse to the model file.
(Step, Sum, LTI system, Zero-Order Hold, Transport Delay, Scope). The blocks can
be searched also in the libraries.

Fig. 13.9 Output and control signals of a control system with PID regulator

Fig. 13.10 SIMULINK™ block diagram of a sampled control system
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Step input: Simulink –> Sources –> Step, Step time: 0
Sum: Simulink –> Math –> Sum: +−
Linear system: Control System Toolbox –> LTI System: Cz, Ps
Dead-time: Simulink –> Continuous –> Transport Delay: Time delay: 1
Zero order hold: Simulink –> Discrete –> Zero-Order-Hold: Sampling time: Ts
Scope: Simulink –> Sinks –> Scope

The parameters of the blocks can be changed to the desired values (mouse
double click).

Let us remark that the Zero-Order-Hold block can be omitted between the
discrete regulator block and the continuous process block, as SIMULINK™ holds
the output of the discrete block until the next sampling point.

The simulation can be started by menu Start –> Simulation, or by icon Run (►).
The results can be visualized by double clicking the Scope blocks. Set the simu-
lation time from 10 to 25.

The Scope block can also be used to transfer the simulation results to the
MATLAB™ workspace (Fig. 13.10). Change the parameters in the Scope graphic
window in the Parameters menu.

Data history:

Save data to workspace: x
Variable name: ty for the output signal and tu for the control signal.
Format: Array

Running the simulation again in MATLAB™ variables ty (and tu) are created.
This is a matrix, whose first column is the time vector and the second column is the
output signal.

So after the simulation, the time vector t and the output vector y are obtained.
From these vectors the quality measures can be determined (overshoot, settling
time, maximum value of the control signal, etc.).

t=ty(:,1), y=ty(:,2)

Fig. 13.11 Output and
control signals in the sampled
control system
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Plot the output signal yðtÞ and the control signal uðtÞ, which is the output of the
hold element (Fig. 13.11). The control signal uðtÞ is a stair-like signal, which can be
plotted by using the command stairs.

subplot(211),plot(ty(:,1),ty(:,2)),grid
subplot(212),stairs(tu(:,1),tu(:,2)),grid

(Let us remark that switching the signals in the SIMULINK™ diagram to the
block To Workspace (Sinks library) the data directly appear in a MATLAB™

data file.)
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Chapter 14
State Feedback in Sampled Systems

Let us analyse state feedback control in sampled systems. In continuous systems the
poles of the closed loop system can be set to prescribed values by feeding back the
state variables of the process to the input of the process (see Chap. 9). State
feedback can be applied similarly to sampled systems.

14.1 State Feedback with Pole Placement

The state equation of the sampled system is (see Chap. 11 in the textbook [1]):

x kþ 1½ � ¼ Fx k½ � þ g u k½ �
y k½ � ¼ cTx k½ � þ d u k½ �

The poles of the system in the z domain are the roots of the characteristic
equation

det z I � Fð Þ ¼ 0:

The aim of the control is the acceleration of the dynamic behaviour (or stabi-
lization of an unstable process). One method of compensation is state feedback.
Prescribing the poles of the closed loop defines the rate of acceleration.

The control signal is obtained by feedback of the discrete state variables:

u k½ � ¼ �kTx k½ �
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The state equation of the closed loop system is

x kþ 1½ � ¼ F� g kT
� �

x k½ �

The prescribed characteristic polynomial of the closed loop is:

Rd zð Þ ¼ det zI � F� g kT
� �� � ¼ z� pd1ð Þ z� pd2ð Þ. . . z� pdnð Þ

where pd1; pd2; . . . ; pdn are the prescribed poles of the closed loop system in the z
domain.

The controllability matrix of the process is

Mc ¼ g Fg . . . Fn�1g
� �

:

According to the ACKERMANN formula the state feedback vector k is calculated
from the state matrices F, g of the process and from the characteristic polynomial
belonging to the prescribed poles of the closed loop, as follows:

kT ¼ 1 . . . 0 0½ �M�1
c Rd Fð Þ;

where Rd Fð Þ is the characteristic polynomial of the closed loop by the substitution
z ¼ F.

The state feedback vector k is calculated in MATLAB™ with the command
ackerðF; g;RdÞ.
k=acker(F,g,Rd)

Rd is a vector containing the prescribed poles of the feedback system [the roots
of the equation Rd zð Þ ¼ 0]. If the prescribed poles are given in continuous time,
their corresponding discrete values can be determined by the transformation
z ¼ esTs , where Ts is the sampling time.

Example 14.1 The continuous process is given by a third order lag element. Its
transfer function is

P sð Þ ¼ 6
sþ 1ð Þ sþ 2ð Þ sþ 3ð Þ ¼

1
1þ sð Þ 1þ 0:5sð Þ 1þ 0:333sð Þ

(a) Give the continuous state equations of the process, then with sampling time
Ts ¼ 0:2 determine the discrete state equation supposing zero order hold.

(b) Design a state feedback control, prescribing the poles of the discrete closed
loop. The poles are given in continuous time, then they are transformed to
discrete time with the transformation z ¼ esTs .
Let the prescribed continuous poles be Rc ¼ �6 �3þ 4j �3� 4j½ �.

(c) Analyse the behaviour of the system for initial conditions, and for reference
signal tracking and disturbance rejection.
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Solution The state equation of the continuous process:

po=[-1 -2 -3]

[A,b,c,d]=tf2ss(6,poly(po))

Hc=ss(A,b,c,d)

A =

-6 -11 -6

1 0 0

0 1 0

b =

1

0

0

c =

0 0 6

d =

0

The sampling time:

Ts = 0.2

Transformation to discrete state equation:
Hd=c2d(Hc,Ts,'zoh')

[F,g,cd,dd]=ssdata(Hd)

F =

0.1977 -1.2693 -0.6483

0.1081 0.8461 -0.0807

0.0135 0.1888 0.9940

g =

0.1081

0.0135

0.0010

cd =

0 0 6

dd = 0

The prescribed continuous poles for the closed loop system:

Rc=[-6; -3+i*4; -3-i*4]
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Their corresponding discrete values with the given sampling time:

Rd=exp(Rc*Ts)

The obtained values are
Rd =

0.3012

0.3824 + 0.3937i

0.3824 - 0.3937i

Apply the ACKERMANN formula to determine the state feedback vector.

k=acker(F,g,Rd)
k =

4.2463 32.4319 77.4220

The parameter matrices of the state equation of the closed loop:

Fc=F-g*k; gc=g;cc=cd;dc=dd;
Tk=ss(Fc,gc,cc,dc,Ts)

The static gain:

kr=1/dcgain(Tk)
kr = 13.9037

The state parameter matrices of the closed-loop compensated with the static
gain:

Fck=Fc;gck=kr*gc;cck=cc;dck=dc;
Tk1=ss(Fck,gck,cck,dck,Ts)

The step response of the closed loop (Fig. 14.1.):

step(Tk1,3)

Remark The static gain can be calculated also according to the following consid-
erations. With state feedback we would like to arrange that for a step reference
signal r, the output signal y in steady state is equal to the constant value of the
reference signal. Then the derivatives of the state variables are zeros. The reference
signal acts on the input of the control system through the correction factor kr. The
relation is given for the case of a single input—single output (SISO) system. In
steady state the values of the state variables at the sampling point nþ 1 is the same
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as at the point n, and the steady value of the output signal is the same as the
reference signal.

x1 ¼ Fx1 þ g u1
u1 ¼ krr � k x1
y1 ¼ cTx1 ¼ r ; r 6¼ 0

whence

x1 ¼ I � Fþ g kT
� ��1

g krr

y1 ¼ cT I � Fþ g kT
� ��1

g krr ¼ r

and the correction factor is expressed as

kr ¼ 1
.

cT I � Fþ g kT
� ��1

g
h i

In our example

kr=1/(cd*inv(eye(3)-F+g*k)*g)

kr = 13.9037

The result is the same as obtained before.

Fig. 14.1 Step response of the sampled control system
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Problem Build the SIMULINK™ diagram of the control system. Analyse the
behaviour of the system for initial conditions, for step reference signal and for
output disturbance. Analyse the behaviour between the sampling points also.

Remark The static compensation ensures the accurate tracking of the reference
signal in steady state, but does not eliminate the static error of disturbance rejection.
To ensure this the state model should be enhanced with the state variables of the
disturbance, and state feedback should be designed again for the enhanced system.
Another possibility is extension of the system with an integrator and designing state
feedback to the enhanced system.

14.2 State Feedback with Extension with Integrator

In order to track accurately the step reference signal and to decrease the effect of the
disturbance it is expedient to include an integrator in the control circuit. Extend the
state space model of the process with an additional state variable which is the
integral of the output signal (Fig. 14.2). (A discrete equivalent of the system given
in Fig. 9.6 is created.)

The difference equation of the integrator is

xi kþ 1½ � ¼ xi k½ � þ Tsy k½ � ¼ xi k½ � þ Ts cTx k½ �:

The extended state equation is

x kþ 1½ �
xi kþ 1½ �

� �
¼ F 0

Ts cT 1

� �
x k½ �
xi k½ �

� �
þ g

0

� �
u k½ � ¼ Fb xb k½ � þ gb u k½ �

y k½ � ¼ cT 0
� � x k½ �

xi k½ �
� �

þ d u k½ � ¼ cTbxb k½ � þ du k½ �

(The indices b refer to the extended state variables and parameter matrices.)
The state feedback of the extended system can be built according to Fig. 9.7,

with the discrete system and the discrete integrator. As the number of the state
variables has been increased by one, the number of the prescribed poles has to be
also increased by one. The state feedback vector kTb which ensures the prescribed
poles pb, the roots of det sI � Fb þ gbk

T
b

� � ¼ 0, is calculated by the ACKERMANN

formula with the extended parameter matrices Fb and gb.

Ts z
1

1 z1
y k  xi k 

Fig. 14.2 Discrete integrator
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The vector kTe containing the first n elements of kTb gives the state feedback
coefficients of the original state variables. The constant ki which gives the feedback
of the integrator is the last, nþ 1-th element of kTb .

For an SISO system supposing d ¼ 0 the state equation of the closed loop
system can be given by the following vector-matrix equation:

x kþ 1½ �
xi kþ 1½ �

� �
¼ F� g kTe g ki

�Ts cT 1

" #
x k½ �
xi k½ �

� �
þ 0

Ts

� �
r k½ �

y k½ � ¼ cT 0
� � x k½ �

xi k½ �

� �
þ 0 � r k½ �

Example 14.2 Let us extend the system given in Example 14.1 with an integrator
and realize state feedback to the extended system. Analyse the course of the output
signal for step reference input signal.

The MATLAB™ program is

clear
clc
po=[-1 -2 -3]
[A,b,c,d]=tf2ss(6,poly(po));
Hc=ss(A,b,c,d);
Ts=0.2
% The discrete state equation
Hd=c2d(Hc,Ts,'zoh');
[F,g,cd,dd]=ssdata(Hd)
% Extension by integrator
Fb=[F zeros(3,1);Ts*cd 1];
gb=[g;0];
cb=[c 0];
Hdb=ss(Fb,gb,cb,d,Ts)
% The prescribed poles
Rb=[-9 -6 -3+i*4 -3-i*4]
Rd=exp(Rb*Ts)
% The state feedback vector
k=acker(Fb,gb,Rd)
kk=k(1:3);
ki=k(4)
% State equation of the closed loop
Fc=[F-g*kk g*ki;-Ts*c 1]
gc=[zeros(3,1);Ts]
cc=cb
dc=0
Hdc=ss(Fc,gc,cc,dc,Ts)
step(Hdc)
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The extended state equation:

Fb = 0.1977 -1.2693 -0.6483 0

0.1081 0.8461 -0.0807 0

0.0135 0.1888 0.9940 0

0 0 1.2000 1.0000

gb = 0.1081

0.0135

0.0010

0

cb = 0 0 6 0

The state feedback vector:

k = 6.7401 60.9170 260.8297 58.0271

The step response of the closed loop is shown in Fig. 14.3.
The SIMULINK™ block diagram of the control system extended with the

integrator is shown in Fig. 14.4. The state equation block is taken from the discrete
block library. The state variables have to be measurable. In the figure the setting of

Fig. 14.3 Step response of the sampled state feedback control system extended with integrator
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the parameters is indicated. Simulate the behaviour of the system by running the
SIMULINK™ program for the initial conditions, for a step reference signal and for
a disturbance acting at the input of the process. Let Bz=[0 1 0]′. In Fig. 14.5 it
can be seen, that the control system tracks the reference signal without steady error,
and rejects the effect of the step disturbance of amplitude 0.2 acting at the time point
t ¼ 6 s.

Problem Supplement the SIMULINK™ model with the state space model of the
continuous process. Analyse the course of the output signal also between the
sampling points.

Fig. 14.4 SIMULINK™ block diagram of the discrete control system

Fig. 14.5 Time course of the output signal

14.2 State Feedback with Extension with Integrator 255



14.3 State Estimation

If the state variables are not measurable, they have to be estimated. The observer
can be applied for state estimation. The discretized form of the circuit shown in
Fig. 9.9 is realized. If the process is known, its model is built. Figure 14.6 shows
the SIMULINK™ block diagram of the state estimation of the discrete system.

The process and its model are excited by the same input signal. Comparing the
output signals of the process and the model an error signal is obtained which is used
to set the state variables of the model through the parameter l (see textbook [1]).
The values of the estimated state variables will approach quickly and follow the
values of the real state variables, if the dynamics of the estimation circuit is much
faster than the dynamics of the process. The poles of the estimation circuit can be
prescribed and then applying the ACKERMANN formula vector l can be determined.

Example 14.3 Consider the process of the proportional system with three time lags
investigated in Example 14.1. The initial values of all the three state variables are 1.
The reference signal and the disturbance signal are zero. Suppose the prescribed
poles of the estimation circuit are real and of the same value, and ensure faster
transients as the smallest time constant of the state feedback system (in case of
conjugate complex poles let us consider the reciprocal of the absolute value).

Prescribe the poles of the continuous closed loop system:

Rc=[-6; -3+i*4; -3-i*4]

Set the poles of the continuous state estimation circuit:

Fc=[-7 -7 -7]

Fig. 14.6 SIMULINK™ diagram for state estimation in discrete system
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The poles of the discrete state estimation circuit are

Fd=exp(Ts*Fc)

The parameters of the estimation circuit (the elements of vector l, in
MATLAB™ L) in the discrete system are determined by the command

L=acker(F',c',Fd)'

The MATLAB™ program for the discrete version of the algorithm of Fig. 9.10
is

po=[-1,-2,-3]
[A,b,c,d]=tf2ss(6,poly(po))
Hc=ss(A,b,c,d)
Ts=0.2
Hd=c2d(Hc,Ts,'zoh')
[F,g,cd,dd]=ssdata(Hd)
% prescribed poles of the continuous estimation
Pc=[-7 -7 -7]
% poles of the discrete state estimation
Pd=exp(Pc*Ts)
% parameters of estimation circuit (elements of vector L)
L=acker(F',cd',Pd)'
Fest=F-L*cd
sysest=ss(Fest,L,cd,dd,Ts)
x0=[1;1;1]
t=0:Ts:6;
[y,t,x]=initial(Hd,x0,t);
figure(1)
stairs(t,x),grid
x0est=[0;0;0]
[yest,t,xest]=lsim(sysest,y,t,x0est);
figure(2)
stairs(t,xest),grid
figure(3)
stairs(t,x(:,1))
hold
stairs(t,xest(:,1)),grid
figure(4)
stairs(t,y),grid
hold
stairs(t,yest)

The state estimation vector:
L' = -0.7709 0.2062 0.2163
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The simulation shows the fast settling of the state variables. Plot the real and the
estimated first state variable in the same diagram (Fig. 14.7).

Running the SIMULINK™ model yields a similar result.

Problem Supplement the SIMULINK™ model with the state space model of the
continuous process. Analyse the course of the output signal also between the
sampling points.

14.4 State Feedback from the Estimated State Variables

State feedback control can be realized from the estimated state variables with the
same feedback constants that are calculated for feedback from the original, real state
variables (the separation principle). The control system operates well if the pre-
scribed poles of the estimation circuit ensure faster behaviour of the estimation
circuit than that of the feedback control circuit. The SIMULINK™ diagram of state
feedback from the estimated state variables is shown in Fig. 14.8.

Example 14.4 The proportional process with three time lags given in
Example 14.1. is sampled with sampling time Ts=0.2. The initial value of all the
three state variables is 1. The state variables are estimated, then the control signal is

Fig. 14.7 The time course of the real and estimated first state variables
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produced by feeding back the estimated state variables. Static compensation is
applied. The prescribed poles for estimation in the continuous system are set by
Fc=[-7-7 -7]. The prescribed poles for the closed loop continuous system are
set by Rc=[-6; -3+i*4; -3-i*4]. The reference signal is a unit step. Let us
simulate the output signal.

Fig. 14.8 Discrete state feedback from the estimated state variables

Fig. 14.9 Settling of the output signal for step reference signal and initial conditions
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The values of the parameters are:
kr=13.9037; k=4.2463 32.4319 77.422;

L=-0.7709 0.2062 0.2163

The result of running SIMULINK™ is shown in Fig. 14.9.

Problem Compare the result with the time response obtained for the case without
state estimation. Analyse the behaviour of the system if there is also an input
disturbance. Extend the SIMULINK™ block scheme with the continuous state
model of the process. Analyse the behaviour of the output signal also between the
sampling points. Write a MATLAB™ program for analysing the behaviour of the
system with state feedback from the estimated state variables (for the continuous
case see Example 9.5).
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Chapter 15
General Polynomial Method to Design
Discrete Regulators

Polynomial design is an important method of regulator design. The main idea is that
the transfer function of the closed loop control system is prescribed as the aim of the
control, then the regulator is calculated using the knowledge of the process. The
principle seems simple, nevertheless the calculation of the regulator necessitates the
solution of a polynomial (DIOPHANTINE) equation, whose solvability sometimes
requires the fulfilment of complicated conditions. Handling the unstable poles and
inverse unstable zeros of the process requires further considerations. In Chap. 10,
the design method was shown for continuous systems, and some examples
demonstrated its application. For continuous systems the method can be applied
only to systems without dead-time. For discrete (sampled) systems, polynomial
design can be applied also to systems with dead-time.

Let the pulse transfer function of the process be

G z�1� � ¼ B
A z�d ¼ BþB�

AþA�
z�d ¼ Bþ

Aþ

� � B�
A�

� �
z�d ¼ GþG� z�d:

Here Aþ contains the stable, while A� contains the unstable poles of the
process. Bþ contains the stable, compensable, while B� contains the unstable, non
compensable zeros.

The pulse transfer function of the regulator is sought in the following form:

C z�1� � ¼ Y
X ¼ Aþ Yd Y0

Bþ X d X0

Here Yd and X d are given polynomials. In the design the polynomials Y0 and X0

have to be determined so as to ensure that the poles of the closed loop control
system have the prescribed values.
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The characteristic equation is

1þCG ¼ 1þ Aþ Yd Y0

Bþ X d X0
BþB�
AþA�

z�d ¼ 0

or

XdX0A� þYdY0B�z�d ¼ R ¼ 0:

The roots of the characteristic polynomial R are the prescribed values. For stable
behaviour they have to be located inside the unit circle.

Choose the values Yd ¼ 1 and X d ¼ 1. Let us remark that if the polynomial
X d ¼ 1� z�1 is chosen, then an integrator is introduced into the regulator.

Suppose that the degrees of the numerator and of the denominator of the reg-
ulator are the same. Let the degree of the denominator of the regulator be less by 1
than the degree of the denominator of the process. The numerator and denominator
of the regulator are obtained by solving the DIOPHANTINE equation.

Let us consider the MATLAB™ simulation of some examples discussed in this
chapter of the textbook [1].

Example 15.1 The pulse transfer function of the unstable process is: G ¼ B
A ¼ �0:2

z�1:2.

Find a regulator in the form C ¼ Y=X which stabilizes the process through
prescribing the characteristic polynomial R ¼ z� 0:2 ¼ 0. The regulator is sup-
posed to be of order n� 1 ¼ 0. C ¼ Y=X ¼ K=1. Solving the characteristic
equation AX þBY ¼ R,

z� 1:2ð Þ � 0:2K ¼ z� 0:2:

The regulator is C ¼ K ¼ �5. (Let us remark that here Yd ¼ 1 and X d ¼ 1 were
chosen.)

Simulate the behaviour of the closed loop with MATLAB™:

z=zpk('z');
Gz=-0.2/(z-1.2);
Cz=-5;
Lz=Gz*Cz;
Lz=minreal(Gz*Cz);
Tz=Lz/(1+Lz);Tz=minreal(Tz)
subplot(211),step(Tz,10); grid
subplot(212),
step(Cz/(1+Lz),10);grid

The step response of the controlled output signal and the regulator output are
shown in Fig. 15.1. The closed loop is stable but there is a static error. This can be
compensated by a prefilter, or by an extra integrator in the regulator design phase.
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In this system there are only discrete time pulse transfer functions, therefore the
simulation can be executed without specifying the sampling time.

Example 15.2 (Example 15.3 in the textbook [1])
The pulse transfer function of the unstable process containing also dead-time is:

G z�1� � ¼ B z�1ð Þ
A z�1ð Þ ¼

�0:2z�1

1� 1:2z�1 z
�1 ¼ �0:2

z z� 1:2ð Þ

Find a stabilizing regulator C ¼ Y=X prescribing the characteristic polynomial

R zð Þ ¼ 1� 0:2z�1ð Þ2. Formally the process is of second order, therefore a char-
acteristic polynomial of second degree is chosen. The regulator is chosen to be of
first degree.

C ¼ Y
X ¼ yo

1þ xoz�1 ¼
yoz

zþ xo
:

The DIOPHANTINE equation is

1� 1:2z�1� �
1þ xoz

�1� �� 0:2yoz�2 ¼ 1� 0:2z�1� �2
:

Its solution yields yo ¼ �5 and xo ¼ 0:8. So the regulator is

Fig. 15.1 Output and control signals for step reference input
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C z�1� � ¼ �5
1þ 0:8z�1 ¼

�5z
zþ 0:8

:

The MATLAB™ simulation results from the following code:

z=zpk('z');
Gz=-0.2/z/(z-1.2);
Cz=-5*z/(z+0.8)
Lz=Gz*Cz; Lz=minreal(Lz);
Tz=Lz/(1+Lz);Tz=minreal(Tz);
subplot(211),step(Tz,50),grid
Uz=Cz/(1+Lz)
subplot(212),step(Uz,50),grid

Figure 15.2 shows the output and the control signals for a unit step reference
signal. The control system is stable, but there is a static error.

Problem Introduce an integrator in the regulator. Write the DIOPHANTINE equation
and determine the parameters and the pulse transfer function of the regulator.

Fig. 15.2 Output and control signals for step reference input
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Chapter 16
Case Study

When analysing a process its model has to be established so that it describes
correctly the static and dynamic behaviour of the outputs as responses to the given
inputs and gives also the evolution in time of the state variables as the response to
the initial values and the inputs.

To build the model the real operation of the system is taken into account. It has
to be understood as deeply as possible. One analyses in which operating range of
the input signal can the system be considered linear, or in which range of the
operating points can it be linearized. The real operation is described then by
mathematical equations (generally by differential equations or state equations). The
values of the parameters in the equations have to be given. The parameters are
known or have to be determined by measurements or by identification.
Identification is a procedure where the values of the parameters are estimated from
the data of input-output measurements.

On the basis of the model the output signals and the state variables of the system,
as responses to the input signals and initial conditions can be calculated or simu-
lated. Based on the model a regulator can be designed for the system to fulfil the
quality specifications.

In the sequel the process of establishing the model of a heating process will be
discussed (see also Sect. 2.6. in the textbook [1]).

16.1 Modelling and Analysing a Heat Process

Let us analyse the heat process of a system consisting of two heat sources. The
arrangement is shown in Fig. 16.1. The temperature changes in several pieces of
electrical equipment can be modelled by analysing the warming processes in two
embedded bodies [5]. For example the warming processes in slots of electrical
machines, where the copper winding is placed in the iron slots can be analysed on
the basis of this model.
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In the body of mass m2 and specific heat g2, power p2 is converted to heat. This
body encloses the body of mass m1 and specific heat g1, where the heat power is p1.
The surfaces where the two bodies are in contact with each other and with the external
environment are f1 and f2, with heat transfer coefficients h1 and h2, respectively. Let
us determine the change of temperatures 01 and 02 in the two bodies after switching
on the heat generation, supposing that earlier the temperature of the system was equal
to the environmental temperature 0o. So the input signals of the system are the
heating powers p1 and p2, the disturbance is the environmental temperature 0o, and
the output signals are 01 and 02, the temperatures of the two bodies.

The behaviour of the system can be described as follows. The temperature of the
two bodies starts growing after switching on the heat. One part of the generated heat
energy is stored in the heat capacity of the bodies, increasing their temperature,
while the second part—as the effect of the temperature difference—leaves, entering
the environment through the interfacial surface. It is supposed that the bodies are
homogeneous, because of their good heat transfer properties a temperature differ-
ence does not take place inside the bodies.

In the inner body the heat generated over a time period of Dt partly increases the
temperature of the body by D#1 degrees, and partly leaves for the outer body. The
heat transfer depends on the difference of the temperatures in the two bodies, on the
size of the interfacial surface, and on the heat transfer coefficient. In the outer body
the heat transfer generated by the heat power p2 is added to the amount of heat
coming from the inner body. This resulting heat partly increases the temperature of
the outer body by D#2 degrees, and partly goes into the environment.

p1

p2

p12

f2 ,h2

f1,h1
1

2

ϑ1,m1,g1

ϑ 2,m2 ,g2

ϑ o

p2o

Fig. 16.1 A heat process
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The heating of the two bodies can be described by the continuity equations,
Qin � Qout ¼ Qchange, where Q denotes the quantity of heat. When heating a body
this can be given as follows:

pDt ¼ mgD0;

where p is the sum of the in- and out flow powers. D0 is the temperature change in
the body through Dt time, m is the mass of the body, and g is the specific heat. In
the case of the two bodies

p1 � p12ð ÞDt ¼ m1g1D01
p2 þ p12 � p2oð ÞDt ¼ m2g2D02

where p12 ¼ h1f1 01 � 02ð Þ and p2o ¼ h1f1 02 � 0oð Þ. The heat flow between the
two bodies depends on the temperature difference, the surface f between the two
bodies, and the heat transfer coefficient h. Replacing the small changes D by dif-
ferentials, the following equations are obtained:

d01
dt

¼ � h1f1
m1g1

01 þ h1f1
m1g1

02 þ 1
m1g1

p1

d02
dt

¼ h1f1
m2g2

01 � h1f1 þ h2f2
m2g2

02 þ 1
m2g2

p2 þ h2f2
m2g2

0o:

To simplify the equations, introduce the following notation (analogous to the
notation in electrical systems):

R1 ¼ 1
h1f1

; R2 ¼ 1
h2f2

; G1 ¼ m1g1; G2 ¼ m2g2

d01
dt

¼ � 1
G1R1

01 þ 1
G1R1

02 þ 1
G1

p1

d02
dt

¼ 1
G2R1

01 � 1
G2

R1 þR2

R1R2
02 þ 1

G2
p2 þ 1

G2R2
0o

The input signals, output signals and state variables of the system are as follows.

Inputs : u1 ¼ p1; u2 ¼ p2; u3 ¼ 00
Outputs : y1 ¼ 01; y2 ¼ 02

State variables : x1 ¼ 01; x2 ¼ 02

Choosing values for the parameters R1 ¼ 1; R2 ¼ 1; G1 ¼ 1 and G2 ¼ 5, the
state equation of the system is

_x1 ¼ �x1 þ x2 þ u1
_x2 ¼ 0:2x1 � 0:4x2 þ 0:2u2 þ 0:3u3
y1 ¼ x1
y2 ¼ x2
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This is a system with three inputs and two outputs. A simplified case arises if
only one input and one output is considered. Let u ¼ p1 be the input of the system
(input heat power of the inner body) and let the output be y ¼ 02, the temperature of
the outer body. Take the power p2 as zero, so the outer body is not heated. The
outer environmental temperature 0o is considered as zero, which means the intro-
duction of relative temperature values. With these assumptions the state equation of
the system is

_x1 ¼ �x1 þ x2 þ u

_x2 ¼ 0:2x1 � 0:4x2
y ¼ x2

Analyse the behaviour of the system with MATLAB™.

_x1
_x2

� �
¼ �1 1

0:2 �0:4

� �
x1
x2

� �
þ 1

0

� �
u

y ¼ 0 1½ � x1
x2

� �
þ 0 u

A=[-1, 1;0.2, -0.4]

B=[1; 0]

C=[0, 1]

D=0

The characteristic equation of the system is

det sI � Að Þ ¼ sþ 1ð Þ sþ 0:4ð Þ � 1 � 0:2 ¼ s2 þ 1:4sþ 0:2:

The coefficients of this polynomial can be obtained also with the command poly.

karpol=poly(A)

1.0000 1.4000 0.2000

The roots of this polynomial are the poles of the system, which are also the
eigenvalues of A.

p=roots(karpol)

-1.2385

-0.1615

p=eig(A)
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The transfer function of the system is calculated by using
H sð Þ ¼ C sI � Að Þ�1BþD. The polynomials that are its numerator and denomi-
nator can be obtained by the command ss2tf.

[num,den]=ss2tf(A,B,C,D)

num = 0 -0.0000 0.2000

den = 1.0000 1.4000 0.2000

or by using the LTI sys structure:

H=ss(A,B,C,D)

In transfer function form, this is

Htf=tf(H)

0.2

-----------------

s^2 + 1.4 s + 0.2

In zero-pole form, this is

Hzpk=zpk(H)

0.2

-------------------

(s+1.239)(s+0.1615)

Analyse the behaviour of the system in the time domain. The input signal is a
unit step, u tð Þ ¼ 1 tð Þ and calculate and plot the output signal (Fig. 16.2).

Fig. 16.2 Step response
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step(H), grid

Give the output also in analytical form. The output can be calculated by using
the LAPLACE transformation.

Y sð Þ ¼ U sð ÞH sð Þ
y tð Þ ¼ L�1 U sð ÞH sð Þf g

The LAPLACE transform of the unit step is U sð Þ ¼ 1=s.

y tð Þ ¼ L�1 1
s

0:2
sþ 1:239ð Þ sþ 0:1615ð Þ

� �

It is known that

r
sþ p

!L
�1

re�pt

The inverse LAPLACE transform can be found based on the partial fractional
representation.

s=zpk('s')
Us=1/s
Ys=Us*Hzpk

Determine Y sð Þ in polynomial form.

[num,den]=tfdata(Ys,'v')

Expand in partial fractions:

[r,p,k]=residue(num,den)

r = 0.1499

-1.1499

1.0000

p = -1.2385

-0.1615

0

k = []

In the case of single roots,

Y sð Þ ¼ r 1ð Þ
s� p 1ð Þ þ

r 2ð Þ
s� p 2ð Þ þ

r 3ð Þ
s� p 3ð Þ þ k ¼ 0:1499

sþ 1:2385
� �1:1499
sþ 0:1615

þ 1
s
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The output signal in the time domain is

y tð Þ ¼ 0:1499e�1:2385t � 1:1499te�0:1615t þ 1 tð Þ for t� 0:

It can be seen that the output signal resulting as a response to the input signal
consists of two parts, a transient and a stationary part.

The first two components give the transient response which depends on the poles
of the system. The third component gives the stationary response which depends on
the poles of the input signal. Compare the outputs calculated in the two different
ways.

t=0:0.05:40;
y1=step(Hzpk,t);
y2=0.1499*exp(-1.2385*t)-1.1499*exp(-0.1615*t)+1;
plot(t,y1,'b',t,y2,'r'),grid

In Fig. 16.3 it can be seen that the two curves coincide. Analyse the behaviour of
the system for the input signal u tð Þ ¼ t2=2, t� 0. Its LAPLACE transform is
U sð Þ ¼ 1=s3. Determine the stationary and transient components of the output
signal. Give an analytical expression for the output signal.

Us=1/(s^3)
Ys=Us*Hzpk
[num,den]=tfdata(Ys,'v')
[r,p,k]=residue(num,den)

Fig. 16.3 Step response
calculated in two ways
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r = 0.0977

-44.0977

44.0000

-7.0000

1.0000

p = -1.2385

0.1615

0

0

0

k = []

The pole at p = 0 is a multiple pole of the system, therefore all of its powers
have to be taken into consideration in the LAPLACE transform of the output signal.

Y sð Þ ¼ X2 sð Þ ¼ 0:0977
sþ 1:2385

� 44:0977
sþ 0:1615

þ 44
s
� 7
s2

þ 1
s3

y tð Þ ¼ x2 tð Þ ¼ 0:0977e�1:2385t � 44:0977e�0:1615t þ 44� 7tþ 0:5t2

It can be seen that the first two components depend on the system dynamics (the
poles of the system), and the last three components depend on the excitation.
Separate these two components and plot them.

Ytranz sð Þ ¼ 0:0977
sþ 1:2385

� 44:0977
sþ 0:1615

; Ystac sð Þ ¼ 44
s
� 7
s2

þ 1
s3

Ytranz=r(1)/(s-p(1))+r(2)/(s-p(2))
Ystac=r(3)/s+r(4)/(s*s)+r(5)/(s*s*s)

The entire signal is obtained as the sum of the two components

Ytranz+Ystac

The inverse LAPLACE transform can be found also with the impulse command, as
the LAPLACE transform of the DIRAC delta is 1.

t=0:0.05:20;
y=impulse(Ys,t);
yt=impulse(Ytranz,t);
ys=impulse(Ystac,t);
plot(t,y,'r',t,yt,'b',t,ys,'g',t,yt+ys,'k')

272 16 Case Study



In Fig. 16.4 it can be seen that ytranz tð Þ is decreasing and finally reaches zero
(blue curve). The course of the stationary curve ystac tð Þ depends on the input signal
(green curve). The output signal y tð Þ (red curve) is obtained as the sum of these two
components.

Analyse the behaviour of the system for initial conditions. The system has two
state variables. Set their initial values to be 10 and −10.

x0=[10, -10]
[y,t,x]=initial(H,x0);

The variable y contains the values of the output signal, x contains the state
variables. Check the form of the state variables.

x

Separate the two columns. The colon: indicates all rows of the vector.

x1=x(:,1)
x2=x(:,2)

Plot the state trajectory.

plot(x1,x2),grid

Fig. 16.4 The output signal
is the sum of the stationary
and transient responses
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In Fig. 16.5 it is seen that the curve starts at (10, −10), the temperature increases
in the colder body, while decreasing in the warmer one, then after the transients
decay, both signals settle to the outer temperature, which is zero.

Problem Section 2.6 of the textbook [1] derives the models of a DC motor, of a tank
and of the inverted pendulum. Simulate these models using MATLAB™.

Fig. 16.5 State trajectory
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