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Preface

There are many books that are excellent sources of knowledge about
individual statistical tools (survival models, general linear models, etc.), but
the art of data analysis is about choosing and using multiple tools. In the
words of Chatfield [100, p. 420] “. . . students typically know the technical de-
tails of regression for example, but not necessarily when and how to apply it.
This argues the need for a better balance in the literature and in statistical
teaching between techniques and problem solving strategies.” Whether ana-
lyzing risk factors, adjusting for biases in observational studies, or developing
predictive models, there are common problems that few regression texts ad-
dress. For example, there are missing data in the majority of datasets one is
likely to encounter (other than those used in textbooks!) but most regression
texts do not include methods for dealing with such data effectively, and most
texts on missing data do not cover regression modeling.

This book links standard regression modeling approaches with

• methods for relaxing linearity assumptions that still allow one to easily
obtain predictions and confidence limits for future observations, and to do
formal hypothesis tests,

• non-additive modeling approaches not requiring the assumption that
interactions are always linear × linear,

• methods for imputing missing data and for penalizing variances for incom-
plete data,

• methods for handling large numbers of predictors without resorting to
problematic stepwise variable selection techniques,

• data reduction methods (unsupervised learning methods, some of which
are based on multivariate psychometric techniques too seldom used in
statistics) that help with the problem of“too many variables to analyze and
not enough observations” as well as making the model more interpretable
when there are predictor variables containing overlapping information,

• methods for quantifying predictive accuracy of a fitted model,
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• powerful model validation techniques based on the bootstrap that allow the
analyst to estimate predictive accuracy nearly unbiasedly without holding
back data from the model development process, and

• graphical methods for understanding complex models.

On the last point, this text has special emphasis on what could be called
“presentation graphics for fitted models” to help make regression analyses
more palatable to non-statisticians. For example, nomograms have long been
used to make equations portable, but they are not drawn routinely because
doing so is very labor-intensive. An R function called nomogram in the package
described below draws nomograms from a regression fit, and these diagrams
can be used to communicate modeling results as well as to obtain predicted
values manually even in the presence of complex variable transformations.

Most of the methods in this text apply to all regression models, but special
emphasis is given to some of the most popular ones: multiple regression using
least squares and its generalized least squares extension for serial (repeated
measurement) data, the binary logistic model, models for ordinal responses,
parametric survival regression models, and the Cox semiparametric survival
model. There is also a chapter on nonparametric transform-both-sides regres-
sion. Emphasis is given to detailed case studies for these methods as well as
for data reduction, imputation, model simplification, and other tasks. Ex-
cept for the case study on survival of Titanic passengers, all examples are
from biomedical research. However, the methods presented here have broad
application to other areas including economics, epidemiology, sociology, psy-
chology, engineering, and predicting consumer behavior and other business
outcomes.

This text is intended for Masters or PhD level graduate students who
have had a general introductory probability and statistics course and who
are well versed in ordinary multiple regression and intermediate algebra. The
book is also intended to serve as a reference for data analysts and statistical
methodologists. Readers without a strong background in applied statistics
may wish to first study one of the many introductory applied statistics and
regression texts that are available. The author’s course notes Biostatistics
for Biomedical Research on the text’s web site covers basic regression and
many other topics. The paper by Nick and Hardin [476] also provides a good
introduction to multivariable modeling and interpretation. There are many
excellent intermediate level texts on regression analysis. One of them is by
Fox, which also has a companion software-based text [200, 201]. For readers
interested in medical or epidemiologic research, Steyerberg’s excellent text
Clinical Prediction Models [586] is an ideal companion for Regression Modeling
Strategies. Steyerberg’s book provides further explanations, examples, and
simulations of many of the methods presented here. And no text on regression
modeling should fail to mention the seminal work of John Nelder [450].

The overall philosophy of this book is summarized by the following state-
ments.
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• Satisfaction of model assumptions improves precision and increases statis-
tical power.

• It is more productive to make a model fit step by step (e.g., transformation
estimation) than to postulate a simple model and find out what went
wrong.

• Graphical methods should be married to formal inference.
• Overfitting occurs frequently, so data reduction and model validation are

important.
• In most research projects, the cost of data collection far outweighs the cost

of data analysis, so it is important to use the most efficient and accurate
modeling techniques, to avoid categorizing continuous variables, and to
not remove data from the estimation sample just to be able to validate the
model.

• The bootstrap is a breakthrough for statistical modeling, and the analyst
should use it for many steps of the modeling strategy, including deriva-
tion of distribution-free confidence intervals and estimation of optimism
in model fit that takes into account variations caused by the modeling
strategy.

• Imputation of missing data is better than discarding incomplete observa-
tions.

• Variance often dominates bias, so biased methods such as penalized max-
imum likelihood estimation yield models that have a greater chance of
accurately predicting future observations.

• Software without multiple facilities for assessing and fixing model fit may
only seem to be user-friendly.

• Carefully fitting an improper model is better than badly fitting (and over-
fitting) a well-chosen one.

• Methods that work for all types of regression models are the most valuable.
• Using the data to guide the data analysis is almost as dangerous as not

doing so.
• There are benefits to modeling by deciding how many degrees of freedom

(i.e., number of regression parameters) can be“spent,”deciding where they
should be spent, and then spending them.

On the last point, the author believes that significance tests and P -values
are problematic, especially when making modeling decisions. Judging by the
increased emphasis on confidence intervals in scientific journals there is reason
to believe that hypothesis testing is gradually being de-emphasized. Yet the
reader will notice that this text contains many P -values. How does that make
sense when, for example, the text recommends against simplifying a model
when a test of linearity is not significant? First, some readers may wish to
emphasize hypothesis testing in general, and some hypotheses have special
interest, such as in pharmacology where one may be interested in whether
the effect of a drug is linear in log dose. Second, many of the more interesting
hypothesis tests in the text are tests of complexity (nonlinearity, interaction)
of the overall model. Null hypotheses of linearity of effects in particular are
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frequently rejected, providing formal evidence that the analyst’s investment
of time to use more than simple statistical models was warranted.

The rapid development of Bayesian modeling methods and rise in their use
is exciting. Full Bayesian modeling greatly reduces the need for the approxi-
mations made for confidence intervals and distributions of test statistics, and
Bayesian methods formalize the still rather ad hoc frequentist approach to
penalized maximum likelihood estimation by using skeptical prior distribu-
tions to obtain well-defined posterior distributions that automatically deal
with shrinkage. The Bayesian approach also provides a formal mechanism for
incorporating information external to the data. Although Bayesian methods
are beyond the scope of this text, the text is Bayesian in spirit by emphasizing
the careful use of subject matter expertise while building statistical models.

The text emphasizes predictive modeling, but as discussed in Chapter 1,
developing good predictions goes hand in hand with accurate estimation of
effects and with hypothesis testing (when appropriate). Besides emphasis
on multivariable modeling, the text includes a Chapter 17 introducing sur-
vival analysis and methods for analyzing various types of single and multiple
events. This book does not provide examples of analyses of one common
type of response variable, namely, cost and related measures of resource con-
sumption. However, least squares modeling presented in Chapter 15.1, the
robust rank-based methods presented in Chapters 13, 15, and 20, and the
transform-both-sides regression models discussed in Chapter 16 are very ap-
plicable and robust for modeling economic outcomes. See [167] and [260] for
example analyses of such dependent variables using, respectively, the Cox
model and nonparametric additive regression. The central Web site for this
book (see the Appendix) has much more material on the use of the Cox model
for analyzing costs.

This text does not address some important study design issues that if not
respected can doom a predictive modeling or estimation project to failure.
See Laupacis, Sekar, and Stiell [378] for a list of some of these issues.

Heavy use is made of the S language used by R. R is the focus because
it is an elegant object-oriented system in which it is easy to implement new
statistical ideas. Many R users around the world have done so, and their work
has benefited many of the procedures described here. R also has a uniform
syntax for specifying statistical models (with respect to categorical predictors,
interactions, etc.), no matter which type of model is being fitted [96].

The free, open-source statistical software system R has been adopted by
analysts and research statisticians worldwide. Its capabilities are growing
exponentially because of the involvement of an ever-growing community of
statisticians who are adding new tools to the base R system through con-
tributed packages. All of the functions used in this text are available in R.
See the book’s Web site for updated information about software availability.

Readers who don’t use R or any other statistical software environment will
still find the statistical methods and case studies in this text useful, and it is
hoped that the code that is presented will make the statistical methods more
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concrete. At the very least, the code demonstrates that all of the methods
presented in the text are feasible.

This text does not teach analysts how to use R. For that, the reader may
wish to see reading recommendations on www.r-project.org as well as Venables
and Ripley [635] (which is also an excellent companion to this text) and the
many other excellent texts on R. See the Appendix for more information.

In addition to powerful features that are built into R, this text uses a
package of freely available R functions called rms written by the author. rms
tracks modeling details related to the expanded X or design matrix. It is a
series of over 200 functions for model fitting, testing, estimation, validation,
graphics, prediction, and typesetting by storing enhanced model design at-
tributes in the fit. rms includes functions for least squares and penalized least
squares multiple regression modeling in addition to functions for binary and
ordinal regression, generalized least squares for analyzing serial data, quan-
tile regression, and survival analysis that are emphasized in this text. Other
freely available miscellaneous R functions used in the text are found in the
Hmisc package also written by the author. Functions in Hmisc include facilities
for data reduction, imputation, power and sample size calculation, advanced
table making, recoding variables, importing and inspecting data, and general
graphics. Consult the Appendix for information on obtaining Hmisc and rms.

The author and his colleagues have written SAS macros for fitting re-
stricted cubic splines and for other basic operations. See the Appendix for
more information. It is unfair not to mention some excellent capabilities of
other statistical packages such as Stata (which has also been extended to
provide regression splines and other modeling tools), but the extendability
and graphics of R makes it especially attractive for all aspects of the compre-
hensive modeling strategy presented in this book.

Portions of Chapters 4 and 20 were published as reference [269]. Some of
Chapter 13 was published as reference [272].

The author may be contacted by electronic mail at f.harrell@

vanderbilt.edu and would appreciate being informed of unclear points, er-
rors, and omissions in this book. Suggestions for improvements and for future
topics are also welcome. As described in the Web site, instructors may con-
tact the author to obtain copies of quizzes and extra assignments (both with
answers) related to much of the material in the earlier chapters, and to obtain
full solutions (with graphical output) to the majority of assignments in the
text.

Major changes since the first edition include the following:

1. Creation of a now mature R package, rms, that replaces and greatly ex-
tends the Design library used in the first edition

2. Conversion of all of the book’s code to R

3. Conversion of the book source into knitr [677] reproducible documents
4. All code from the text is executable and is on the web site
5. Use of color graphics and use of the ggplot2 graphics package [667]

6. Scanned images were re-drawn

http://f.harrell@vanderbilt.edu
http://f.harrell@vanderbilt.edu
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7. New text about problems with dichotomization of continuous variables
and with classification (as opposed to prediction)

8. Expanded material on multiple imputation and predictive mean match-
ing and emphasis on multiple imputation (using the Hmisc aregImpute

function) instead of single imputation
9. Addition of redundancy analysis

10. Added a new section in Chapter 5 on bootstrap confidence intervals for
rankings of predictors

11. Replacement of the U.S. presidential election data with analyses of a new
diabetes dataset from NHANES using ordinal and quantile regression

12. More emphasis on semiparametric ordinal regression models for contin-
uous Y , as direct competitors of ordinary multiple regression, with a
detailed case study

13. A new chapter on generalized least squares for analysis of serial response
data

14. The case study in imputation and data reduction was completely reworked
and now focuses only on data reduction, with the addition of sparse prin-
cipal components

15. More information about indexes of predictive accuracy
16. Augmentation of the chapter on maximum likelihood to include more

flexible ways of testing contrasts as well as new methods for obtaining
simultaneous confidence intervals

17. Binary logistic regression case study 1 was completely re-worked, now
providing examples of model selection and model approximation accuracy

18. Single imputation was dropped from binary logistic case study 2
19. The case study in transform-both-sides regression modeling has been re-

worked using simulated data where true transformations are known, and
a new example of the smearing estimator was added

20. Addition of 225 references, most of them published 2001–2014
21. New guidance on minimum sample sizes needed by some of the models
22. De-emphasis of bootstrap bumping [610] for obtaining simultaneous con-

fidence regions, in favor of a general multiplicity approach [307].

Acknowledgments

A good deal of the writing of the first edition of this book was done during
my 17 years on the faculty of Duke University. I wish to thank my close col-
league Kerry Lee for providing many valuable ideas, fruitful collaborations,
and well-organized lecture notes from which I have greatly benefited over the
past years. Terry Therneau of Mayo Clinic has given me many of his wonderful
ideas for many years, and has written state-of-the-art R software for survival
analysis that forms the core of survival analysis software in my rms package.
Michael Symons of the Department of Biostatistics of the University of North



Preface xiii

Carolina at Chapel Hill and Timothy Morgan of the Division of Public Health
Sciences at Wake Forest University School of Medicine also provided course
materials, some of which motivated portions of this text. My former clini-
cal colleagues in the Cardiology Division at Duke University, Robert Califf,
Phillip Harris, Mark Hlatky, Dan Mark, David Pryor, and Robert Rosati,
for many years provided valuable motivation, feedback, and ideas through
our interaction on clinical problems. Besides Kerry Lee, statistical colleagues
L. Richard Smith, Lawrence Muhlbaier, and Elizabeth DeLong clarified my
thinking and gave me new ideas on numerous occasions. Charlotte Nelson
and Carlos Alzola frequently helped me debug S routines when they thought
they were just analyzing data.

Former students Bercedis Peterson, James Herndon, Robert McMahon,
and Yuan-Li Shen have provided many insights into logistic and survival mod-
eling. Associations with Doug Wagner and William Knaus of the University
of Virginia, Ken Offord of Mayo Clinic, David Naftel of the University of Al-
abama in Birmingham, Phil Miller of Washington University, and Phil Good-
man of the University of Nevada Reno have provided many valuable ideas and
motivations for this work, as have Michael Schemper of Vienna University,
Janez Stare of Ljubljana University, Slovenia, Ewout Steyerberg of Erasmus
University, Rotterdam, Karel Moons of Utrecht University, and Drew Levy of
Genentech. Richard Goldstein, along with several anonymous reviewers, pro-
vided many helpful criticisms of a previous version of this manuscript that
resulted in significant improvements, and critical reading by Bob Edson (VA
Cooperative Studies Program, Palo Alto) resulted in many error corrections.
Thanks to Brian Ripley of the University of Oxford for providing many help-
ful software tools and statistical insights that greatly aided in the production
of this book, and to Bill Venables of CSIRO Australia for wisdom, both sta-
tistical and otherwise. This work would also not have been possible without
the S environment developed by Rick Becker, John Chambers, Allan Wilks,
and the R language developed by Ross Ihaka and Robert Gentleman.

Work for the second edition was done in the excellent academic environ-
ment of Vanderbilt University, where biostatistical and biomedical colleagues
and graduate students provided new insights and stimulating discussions.
Thanks to Nick Cox, Durham University, UK, who provided from his careful
reading of the first edition a very large number of improvements and correc-
tions that were incorporated into the second. Four anonymous reviewers of
the second edition also made numerous suggestions that improved the text.

Nashville, TN, USA Frank E. Harrell, Jr.
July 2015





Contents

Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Hypothesis Testing, Estimation, and Prediction . . . . . . . . . . . 1
1.2 Examples of Uses of Predictive Multivariable Modeling . . . . . 3
1.3 Prediction vs. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Planning for Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Emphasizing Continuous Variables . . . . . . . . . . . . . . . 8
1.5 Choice of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 General Aspects of Fitting Regression Models . . . . . . . . . . . . 13
2.1 Notation for Multivariable Regression Models . . . . . . . . . . . . . 13
2.2 Model Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Interpreting Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Nominal Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Example: Inference for a Simple Model . . . . . . . . . . . . 17

2.4 Relaxing Linearity Assumption for Continuous Predictors . . 18
2.4.1 Avoiding Categorization . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Simple Nonlinear Terms . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Splines for Estimating Shape of Regression

Function and Determining Predictor
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Cubic Spline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.5 Restricted Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.6 Choosing Number and Position of Knots . . . . . . . . . . 26
2.4.7 Nonparametric Regression . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.8 Advantages of Regression Splines over

Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xv



xvi Contents

2.5 Recursive Partitioning: Tree-Based Models . . . . . . . . . . . . . . . . 30
2.6 Multiple Degree of Freedom Tests of Association . . . . . . . . . . 31
2.7 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Regression Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 Modeling and Testing Complex Interactions . . . . . . . 36
2.7.3 Fitting Ordinal Predictors . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.4 Distributional Assumptions . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Types of Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Prelude to Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Missing Values for Different Types of Response Variables . . . 47
3.4 Problems with Simple Alternatives to Imputation . . . . . . . . . 47
3.5 Strategies for Developing an Imputation Model . . . . . . . . . . . . 49
3.6 Single Conditional Mean Imputation . . . . . . . . . . . . . . . . . . . . . 52
3.7 Predictive Mean Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.1 The aregImpute and Other Chained Equations
Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.10 Summary and Rough Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.11 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Multivariable Modeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 Prespecification of Predictor Complexity Without

Later Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Checking Assumptions of Multiple Predictors

Simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Sample Size, Overfitting, and Limits on Number

of Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.1 Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.2 Variable Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7.3 Transformation and Scaling Variables Without

Using Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7.4 Simultaneous Transformation and Imputation . . . . . . 83
4.7.5 Simple Scoring of Variable Clusters . . . . . . . . . . . . . . . 85
4.7.6 Simplifying Cluster Scores . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.7 How Much Data Reduction Is Necessary? . . . . . . . . . 87



Contents xvii

4.8 Other Approaches to Predictive Modeling . . . . . . . . . . . . . . . . 89
4.9 Overly Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10 Comparing Two Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 Improving the Practice of Multivariable Prediction . . . . . . . . 94
4.12 Summary: Possible Modeling Strategies . . . . . . . . . . . . . . . . . . 94

4.12.1 Developing Predictive Models . . . . . . . . . . . . . . . . . . . . 95
4.12.2 Developing Models for Effect Estimation . . . . . . . . . . 98
4.12.3 Developing Models for Hypothesis Testing . . . . . . . . . 99

4.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Describing, Resampling, Validating, and Simplifying
the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1 Describing the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Interpreting Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Indexes of Model Performance . . . . . . . . . . . . . . . . . . . 104

5.2 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Which Quantities Should Be Used in Validation? . . . 110
5.3.3 Data-Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.4 Improvements on Data-Splitting: Resampling . . . . . . 112
5.3.5 Validation Using the Bootstrap . . . . . . . . . . . . . . . . . . 114

5.4 Bootstrapping Ranks of Predictors . . . . . . . . . . . . . . . . . . . . . . . 117
5.5 Simplifying the Final Model by Approximating It . . . . . . . . . . 118

5.5.1 Difficulties Using Full Models . . . . . . . . . . . . . . . . . . . . 118
5.5.2 Approximating the Full Model . . . . . . . . . . . . . . . . . . . 119

5.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.7 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 R Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1 The R Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 User-Contributed Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 The rms Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4 Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Modeling Longitudinal Responses using Generalized
Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1 Notation and Data Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Model Specification for Effects on E(Y ) . . . . . . . . . . . . . . . . . . 144
7.3 Modeling Within-Subject Dependence . . . . . . . . . . . . . . . . . . . . 144
7.4 Parameter Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . 147
7.5 Common Correlation Structures . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.6 Checking Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xviii Contents

7.7 Sample Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.8 R Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.9 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.9.1 Graphical Exploration of Data . . . . . . . . . . . . . . . . . . . 150
7.9.2 Using Generalized Least Squares . . . . . . . . . . . . . . . . . 151

7.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Case Study in Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 How Many Parameters Can Be Estimated? . . . . . . . . . . . . . . . 164
8.3 Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.4 Variable Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5 Transformation and Single Imputation Using transcan . . . . . 167
8.6 Data Reduction Using Principal Components . . . . . . . . . . . . . 170

8.6.1 Sparse Principal Components . . . . . . . . . . . . . . . . . . . . 175
8.7 Transformation Using Nonparametric Smoothers . . . . . . . . . . 176
8.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9 Overview of Maximum Likelihood Estimation . . . . . . . . . . . . 181
9.1 General Notions—Simple Cases . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.2 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2.1 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.2.2 Wald Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.3 Score Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.4 Normal Distribution—One Sample . . . . . . . . . . . . . . . 187

9.3 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.3.1 Global Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.3.2 Testing a Subset of the Parameters . . . . . . . . . . . . . . . 190
9.3.3 Tests Based on Contrasts . . . . . . . . . . . . . . . . . . . . . . . . 192
9.3.4 Which Test Statistics to Use When . . . . . . . . . . . . . . . 193
9.3.5 Example: Binomial—Comparing Two

Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.4 Iterative ML Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Robust Estimation of the Covariance Matrix . . . . . . . . . . . . . . 196
9.6 Wald, Score, and Likelihood-Based Confidence Intervals . . . . 198

9.6.1 Simultaneous Wald Confidence Regions . . . . . . . . . . . 199
9.7 Bootstrap Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.8 Further Use of the Log Likelihood . . . . . . . . . . . . . . . . . . . . . . . 203

9.8.1 Rating Two Models, Penalizing for Complexity . . . . . 203
9.8.2 Testing Whether One Model Is Better

than Another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9.8.3 Unitless Index of Predictive Ability . . . . . . . . . . . . . . . 205
9.8.4 Unitless Index of Adequacy of a Subset

of Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.9 Weighted Maximum Likelihood Estimation . . . . . . . . . . . . . . . 208
9.10 Penalized Maximum Likelihood Estimation . . . . . . . . . . . . . . . 209



Contents xix

9.11 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

10 Binary Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

10.1.1 Model Assumptions and Interpretation
of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.1.2 Odds Ratio, Risk Ratio, and Risk Difference . . . . . . . 224
10.1.3 Detailed Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.1.4 Design Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

10.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.2.1 Maximum Likelihood Estimates . . . . . . . . . . . . . . . . . . 231
10.2.2 Estimation of Odds Ratios and Probabilities . . . . . . . 232
10.2.3 Minimum Sample Size Requirement . . . . . . . . . . . . . . 233

10.3 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.4 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.5 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.6 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.7 Overly Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.8 Quantifying Predictive Ability . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.9 Validating the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
10.10 Describing the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
10.11 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
10.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

11 Binary Logistic Regression Case Study 1 . . . . . . . . . . . . . . . . . 275
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11.3 Data Transformations and Single Imputation . . . . . . . . . . . . . 276
11.4 Regression on Original Variables, Principal Components

and Pretransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.5 Description of Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11.6 Backwards Step-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
11.7 Model Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12 Logistic Model Case Study 2: Survival of Titanic
Passengers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
12.2 Exploring Trends with Nonparametric Regression . . . . . . . . . . 294
12.3 Binary Logistic Model With Casewise Deletion

of Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.4 Examining Missing Data Patterns . . . . . . . . . . . . . . . . . . . . . . . 302
12.5 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
12.6 Summarizing the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . 307



xx Contents

13 Ordinal Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
13.2 Ordinality Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
13.3 Proportional Odds Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

13.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
13.3.2 Assumptions and Interpretation of Parameters . . . . . 313
13.3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
13.3.4 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
13.3.5 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 315
13.3.6 Quantifying Predictive Ability . . . . . . . . . . . . . . . . . . . 318
13.3.7 Describing the Fitted Model . . . . . . . . . . . . . . . . . . . . . 318
13.3.8 Validating the Fitted Model . . . . . . . . . . . . . . . . . . . . . 318
13.3.9 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

13.4 Continuation Ratio Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
13.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
13.4.2 Assumptions and Interpretation of Parameters . . . . . 320
13.4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
13.4.4 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
13.4.5 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 321
13.4.6 Extended CR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
13.4.7 Role of Penalization in Extended CR Model . . . . . . . 322
13.4.8 Validating the Fitted Model . . . . . . . . . . . . . . . . . . . . . 322
13.4.9 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

13.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
13.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

14 Case Study in Ordinal Regression, Data Reduction,
and Penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
14.1 Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
14.2 Variable Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
14.3 Developing Cluster Summary Scores . . . . . . . . . . . . . . . . . . . . . 330
14.4 Assessing Ordinality of Y for each X , and Unadjusted

Checking of PO and CR Assumptions . . . . . . . . . . . . . . . . . . . . 333
14.5 A Tentative Full Proportional Odds Model . . . . . . . . . . . . . . . 333
14.6 Residual Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
14.7 Graphical Assessment of Fit of CR Model . . . . . . . . . . . . . . . . 338
14.8 Extended Continuation Ratio Model . . . . . . . . . . . . . . . . . . . . . 340
14.9 Penalized Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
14.10 Using Approximations to Simplify the Model . . . . . . . . . . . . . 348
14.11 Validating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
14.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
14.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357



Contents xxi

15 Regression Models for Continuous Y and Case Study
in Ordinal Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
15.1 The Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
15.2 Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
15.3 Ordinal Regression Models for Continuous Y . . . . . . . . . . . . . . 361

15.3.1 Minimum Sample Size Requirement . . . . . . . . . . . . . . 363
15.4 Comparison of Assumptions of Various Models . . . . . . . . . . . . 364
15.5 Dataset and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 365

15.5.1 Checking Assumptions of OLS and Other Models . . . 368
15.6 Ordinal Regression Applied to HbA1c . . . . . . . . . . . . . . . . . . . . 370

15.6.1 Checking Fit for Various Models Using Age . . . . . . . . 370
15.6.2 Examination of BMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
15.6.3 Consideration of All Body Size Measurements . . . . . . 375

16 Transform-Both-Sides Regression . . . . . . . . . . . . . . . . . . . . . . . . . 389
16.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
16.2 Generalized Additive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
16.3 Nonparametric Estimation of Y -Transformation . . . . . . . . . . . 390
16.4 Obtaining Estimates on the Original Scale . . . . . . . . . . . . . . . . 391
16.5 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
16.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

17 Introduction to Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 399
17.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
17.2 Censoring, Delayed Entry, and Truncation . . . . . . . . . . . . . . . . 401
17.3 Notation, Survival, and Hazard Functions . . . . . . . . . . . . . . . . 402
17.4 Homogeneous Failure Time Distributions . . . . . . . . . . . . . . . . . 407
17.5 Nonparametric Estimation of S and Λ . . . . . . . . . . . . . . . . . . . 409

17.5.1 Kaplan–Meier Estimator . . . . . . . . . . . . . . . . . . . . . . . . 409
17.5.2 Altschuler–Nelson Estimator . . . . . . . . . . . . . . . . . . . . . 413

17.6 Analysis of Multiple Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 413
17.6.1 Competing Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
17.6.2 Competing Dependent Risks . . . . . . . . . . . . . . . . . . . . . 414
17.6.3 State Transitions and Multiple Types of Nonfatal

Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
17.6.4 Joint Analysis of Time and Severity of an Event . . . . 417
17.6.5 Analysis of Multiple Events . . . . . . . . . . . . . . . . . . . . . . 417

17.7 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
17.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
17.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

18 Parametric Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
18.1 Homogeneous Models (No Predictors) . . . . . . . . . . . . . . . . . . . . 423

18.1.1 Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
18.1.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
18.1.3 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 426



xxii Contents

18.2 Parametric Proportional Hazards Models . . . . . . . . . . . . . . . . . 427
18.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
18.2.2 Model Assumptions and Interpretation

of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
18.2.3 Hazard Ratio, Risk Ratio, and Risk Difference . . . . . 430
18.2.4 Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
18.2.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
18.2.6 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 434

18.3 Accelerated Failure Time Models . . . . . . . . . . . . . . . . . . . . . . . . 436
18.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
18.3.2 Model Assumptions and Interpretation

of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
18.3.3 Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
18.3.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
18.3.5 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
18.3.6 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . 440
18.3.7 Validating the Fitted Model . . . . . . . . . . . . . . . . . . . . . 446

18.4 Buckley–James Regression Model . . . . . . . . . . . . . . . . . . . . . . . . 447
18.5 Design Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
18.6 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
18.7 Quantifying Predictive Ability . . . . . . . . . . . . . . . . . . . . . . . . . . 447
18.8 Time-Dependent Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
18.9 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
18.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
18.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

19 Case Study in Parametric Survival Modeling and Model
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
19.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
19.2 Checking Adequacy of Log-Normal Accelerated Failure

Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
19.3 Summarizing the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . 466
19.4 Internal Validation of the Fitted Model Using

the Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
19.5 Approximating the Full Model . . . . . . . . . . . . . . . . . . . . . . . . . . 469
19.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

20 Cox Proportional Hazards Regression Model . . . . . . . . . . . . . 475
20.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

20.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
20.1.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
20.1.3 Estimation of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
20.1.4 Model Assumptions and Interpretation

of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
20.1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478



Contents xxiii

20.1.6 Design Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
20.1.7 Extending the Model by Stratification . . . . . . . . . . . . 481

20.2 Estimation of Survival Probability and Secondary
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

20.3 Sample Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
20.4 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
20.5 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
20.6 Assessment of Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

20.6.1 Regression Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 487
20.6.2 Proportional Hazards Assumption . . . . . . . . . . . . . . . . 494

20.7 What to Do When PH Fails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
20.8 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
20.9 Overly Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 504
20.10 Quantifying Predictive Ability . . . . . . . . . . . . . . . . . . . . . . . . . . 504
20.11 Validating the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

20.11.1 Validation of Model Calibration . . . . . . . . . . . . . . . . . . 506
20.11.2 Validation of Discrimination and Other Statistical

Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
20.12 Describing the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
20.13 R Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
20.14 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

21 Case Study in Cox Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
21.1 Choosing the Number of Parameters and Fitting

the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
21.2 Checking Proportional Hazards . . . . . . . . . . . . . . . . . . . . . . . . . 525
21.3 Testing Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
21.4 Describing Predictor Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
21.5 Validating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
21.6 Presenting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
21.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

A Datasets, R Packages, and Internet Resources . . . . . . . . . . . . . 535

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571





Typographical Conventions

Boxed numbers in the margins such as 1 correspond to numbers at the end
of chapters in sections named “Further Reading.” Bracketed numbers and
numeric superscripts in the text refer to the bibliography, while alphabetic
superscripts indicate footnotes.

R language commands and names of R functions and packages are set in
typewriter font, as are most variable names.

R code blocks are set off with a shadowbox, and R output that is not directly
using LATEX appears in a box that is framed on three sides.

In the S language upon which R is based, x ← y is read “x gets the value of
y.” The assignment operator ←, used in the text for aesthetic reasons (as are
≤ and ≥), is entered by the user as <-. Comments begin with #, subscripts
use brackets ([ ]), and the missing value is denoted by NA (not available).

In ordinary text and mathematical expressions, [logical variable] and [logical
expression] imply a value of 1 if the logical variable or expression is true, and
0 otherwise.
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Chapter 1

Introduction

1.1 Hypothesis Testing, Estimation, and Prediction

Statistics comprises among other areas study design, hypothesis testing,
estimation, and prediction. This text aims at the last area, by presenting
methods that enable an analyst to develop models that will make accurate
predictions of responses for future observations. Prediction could be consid-
ered a superset of hypothesis testing and estimation, so the methods presented
here will also assist the analyst in those areas. It is worth pausing to explain
how this is so.

In traditional hypothesis testing one often chooses a null hypothesis de-
fined as the absence of some effect. For example, in testing whether a vari-
able such as cholesterol is a risk factor for sudden death, one might test the
null hypothesis that an increase in cholesterol does not increase the risk of
death. Hypothesis testing can easily be done within the context of a statistical
model, but a model is not required. When one only wishes to assess whether
an effect is zero, P -values may be computed using permutation or rank (non-
parametric) tests while making only minimal assumptions. But there are still
reasons for preferring a model-based approach over techniques that only yield
P -values.

1. Permutation and rank tests do not easily give rise to estimates of magni-
tudes of effects.

2. These tests cannot be readily extended to incorporate complexities such
as cluster sampling or repeated measurements within subjects.

3. Once the analyst is familiar with a model, that model may be used to carry
out many different statistical tests; there is no need to learn specific for-
mulas to handle the special cases. The two-sample t-test is a special case
of the ordinary multiple regression model having as its sole X variable
a dummy variable indicating group membership. The Wilcoxon-Mann-
Whitney test is a special case of the proportional odds ordinal logistic

© Springer International Publishing Switzerland 2015
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2 1 Introduction

model.664 The analysis of variance (multiple group) test and the Kruskal–
Wallis test can easily be obtained from these two regression models by
using more than one dummy predictor variable.

Even without complexities such as repeated measurements, problems can
arise when many hypotheses are to be tested. Testing too many hypotheses
is related to fitting too many predictors in a regression model. One commonly
hears the statement that “the dataset was too small to allow modeling, so we
just did hypothesis tests.” It is unlikely that the resulting inferences would be
reliable. If the sample size is insufficient for modeling it is often insufficient
for tests or estimation. This is especially true when one desires to publish
an estimate of the effect corresponding to the hypothesis yielding the small-
est P -value. Ordinary point estimates are known to be badly biased when
the quantity to be estimated was determined by “data dredging.” This can
be remedied by the same kind of shrinkage used in multivariable modeling
(Section 9.10).

Statistical estimation is usually model-based. For example, one might use a
survival regression model to estimate the relative effect of increasing choles-
terol from 200 to 250 mg/dl on the hazard of death. Variables other than
cholesterol may also be in the regression model, to allow estimation of the
effect of increasing cholesterol, holding other risk factors constant. But ac-
curate estimation of the cholesterol effect will depend on how cholesterol as
well as each of the adjustment variables is assumed to relate to the hazard
of death. If linear relationships are incorrectly assumed, estimates will be
inaccurate. Accurate estimation also depends on avoiding overfitting the ad-
justment variables. If the dataset contains 200 subjects, 30 of whom died, and
if one adjusted for 15 “confounding” variables, the estimates would be “over-
adjusted” for the effects of the 15 variables, as some of their apparent effects
would actually result from spurious associations with the response variable
(time until death). The overadjustment would reduce the cholesterol effect.
The resulting unreliability of estimates equals the degree to which the overall
model fails to validate on an independent sample.

It is often useful to think of effect estimates as differences between two
predicted values from a model. This way, one can account for nonlinearities
and interactions. For example, if cholesterol is represented nonlinearly in a
logistic regression model, predicted values on the “linear combination of X ’s
scale”are predicted log odds of an event. The increase in log odds from raising
cholesterol from 200 to 250 mg/dl is the difference in predicted values, where
cholesterol is set to 250 and then to 200, and all other variables are held
constant. The point estimate of the 250:200 mg/dl odds ratio is the anti-log
of this difference. If cholesterol is represented nonlinearly in the model, it
does not matter how many terms in the model involve cholesterol as long as
the overall predicted values are obtained.
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Thus when one develops a reasonable multivariable predictive model, hy-
pothesis testing and estimation of effects are byproducts of the fitted model.
So predictive modeling is often desirable even when prediction is not the main
goal.

1.2 Examples of Uses of Predictive Multivariable
Modeling

There is an endless variety of uses for multivariable models. Predictive mod-
els have long been used in business to forecast financial performance and
to model consumer purchasing and loan pay-back behavior. In ecology, re-
gression models are used to predict the probability that a fish species will
disappear from a lake. Survival models have been used to predict product
life (e.g., time to burn-out of an mechanical part, time until saturation of a
disposable diaper). Models are commonly used in discrimination litigation in
an attempt to determine whether race or sex is used as the basis for hiring
or promotion, after taking other personnel characteristics into account.

Multivariable models are used extensively in medicine, epidemiology, bio-
statistics, health services research, pharmaceutical research, and related
fields. The author has worked primarily in these fields, so most of the ex-
amples in this text come from those areas. In medicine, two of the major
areas of application are diagnosis and prognosis. There models are used to
predict the probability that a certain type of patient will be shown to have a
specific disease, or to predict the time course of an already diagnosed disease.
In observational studies in which one desires to compare patient outcomes
between two or more treatments, multivariable modeling is very important
because of the biases caused by nonrandom treatment assignment. Here the
simultaneous effects of several uncontrolled variables must be controlled (held
constant mathematically if using a regression model) so that the effect of the
factor of interest can be more purely estimated. A newer technique for more
aggressively adjusting for nonrandom treatment assignment, the propensity
score,116, 530 provides yet another opportunity for multivariable modeling (see
Section 10.1.4). The propensity score is merely the predicted value from a
multivariable model where the response variable is the exposure or the treat-
ment actually used. The estimated propensity score is then used in a second
step as an adjustment variable in the model for the response of interest.

It is not widely recognized that multivariable modeling is extremely valu-
able even in well-designed randomized experiments. Such studies are often
designed to make relative comparisons of two or more treatments, using odds
ratios, hazard ratios, and other measures of relative effects. But to be able
to estimate absolute effects one must develop a multivariable model of the
response variable. This model can predict, for example, the probability that a
patient on treatment A with characteristicsX will survive five years, or it can
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predict the life expectancy for this patient. By making the same prediction
for a patient on treatment B with the same characteristics, one can estimate
the absolute difference in probabilities or life expectancies. This approach
recognizes that low-risk patients must have less absolute benefit of treatment
(lower change in outcome probability) than high-risk patients,351 a fact that
has been ignored in many clinical trials. Another reason for multivariable
modeling in randomized clinical trials is that when the basic response model
is nonlinear (e.g., logistic, Cox, parametric survival models), the unadjusted
estimate of the treatment effect is not correct if there is moderate heterogene-
ity of subjects, even with perfect balance of baseline characteristics across
the treatment groups.a9, 24, 198, 588 So even when investigators are interested
in simple comparisons of two groups’ responses, multivariable modeling can
be advantageous and sometimes mandatory.

Cost-effectiveness analysis is becoming increasingly used in health care re-
search, and the “effectiveness” (denominator of the cost-effectiveness ratio)
is always a measure of absolute effectiveness. As absolute effectiveness varies
dramatically with the risk profiles of subjects, it must be estimated for indi-
vidual subjects using a multivariable model90, 344.

1.3 Prediction vs. Classification

For problems ranging from bioinformatics to marketing, many analysts desire
to develop “classifiers” instead of developing predictive models. Consider an
optimum case for classifier development, in which the response variable is
binary, the two levels represent a sharp dichotomy with no gray zone (e.g.,
complete success vs. total failure with no possibility of a partial success), the
user of the classifier is forced to make one of the two choices, the cost of
misclassification is the same for every future observation, and the ratio of the
cost of a false positive to that of a false negative equals the (often hidden)
ratio implied by the analyst’s classification rule. Even if all of those condi-
tions are met, classification is still inferior to probability modeling for driving
the development of a predictive instrument or for estimation or hypothesis
testing. It is far better to use the full information in the data to develop a
probability model, then develop classification rules on the basis of estimated
probabilities. At the least, this forces the analyst to use a proper accuracy
score219 in finding or weighting data features.

When the dependent variable is ordinal or continuous, classification through
forced up-front dichotomization in an attempt to simplify the problem results
in arbitrariness and major information loss even when the optimum cut point

a For example, unadjusted odds ratios from 2 × 2 tables are different from adjusted
odds ratios when there is variation in subjects’ risk factors within each treatment
group, even when the distribution of the risk factors is identical between the two
groups.
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(the median) is used. Dichtomizing the outcome at a different point may re-
quire a many-fold increase in sample size to make up for the lost informa-
tion187. In the area of medical diagnosis, it is often the case that the disease
is really on a continuum, and predicting the severity of disease (rather than
just its presence or absence) will greatly increase power and precision, not to
mention making the result less arbitrary.

It is important to note that two-group classification represents an artificial
forced choice. It is not often the case that the user of the classifier needs to
be limited to two possible actions. The best option for many subjects may
be to refuse to make a decision or to obtain more data (e.g., order another
medical diagnostic test). A gray zone can be helpful, and predictions include
gray zones automatically.

Unlike prediction (e.g., of absolute risk), classification implicitly uses util-
ity functions (also called loss or cost functions, e.g., cost of a false positive
classification). Implicit utility functions are highly problematic. First, it is
well known that the utility function depends on variables that are not pre-
dictive of outcome and are not collected (e.g., subjects’ preferences) that
are available only at the decision point. Second, the approach assumes every
subject has the same utility functionb. Third, the analyst presumptuously
assumes that the subject’s utility coincides with his own.

Formal decision analysis uses subject-specific utilities and optimum predic-
tions based on all available data62, 74, 183, 210, 219, 642c. It follows that receiver

b Simple examples to the contrary are the less weight given to a false negative diagno-
sis of cancer in the elderly and the aversion of some subjects to surgery or chemother-
apy.
c To make an optimal decision you need to know all relevant data about an individual
(used to estimate the probability of an outcome), and the utility (cost, loss function)
of making each decision. Sensitivity and specificity do not provide this information.
For example, if one estimated that the probability of a disease given age, sex, and
symptoms is 0.1 and the “cost”of a false positive equaled the “cost” of a false negative,
one would act as if the person does not have the disease. Given other utilities, one
would make different decisions. If the utilities are unknown, one gives the best estimate
of the probability of the outcome to the decision maker and let her incorporate her
own unspoken utilities in making an optimum decision for her.

Besides the fact that cutoffs that are not individualized do not apply to individuals,
only to groups, individual decision making does not utilize sensitivity and specificity.
For an individual we can compute Prob(Y = 1|X = x); we don’t care about Prob(Y =
1|X > c), and an individual having X = x would be quite puzzled if she were given
Prob(X > c|future unknown Y) when she already knows X = x so X is no longer a
random variable.

Even when group decision making is needed, sensitivity and specificity can be
bypassed. For mass marketing, for example, one can rank order individuals by the
estimated probability of buying the product, to create a lift curve. This is then used
to target the k most likely buyers where k is chosen to meet total program cost
constraints.
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operating characteristic curve (ROCd) analysis is misleading except for the
special case of mass one-time group decision making with unknown utilities
(e.g., launching a flu vaccination program).1

An analyst’s goal should be the development of the most accurate and
reliable predictive model or the best model on which to base estimation or
hypothesis testing. In the vast majority of cases, classification is the task of
the user of the predictive model, at the point in which utilities (costs) and
preferences are known.

1.4 Planning for Modeling

When undertaking the development of a model to predict a response, one
of the first questions the researcher must ask is “will this model actually be
used?” Many models are never used, for several reasons522 including: (1) it
was not deemed relevant to make predictions in the setting envisioned by
the authors; (2) potential users of the model did not trust the relationships,
weights, or variables used to make the predictions; and (3) the variables
necessary to make the predictions were not routinely available.

Once the researcher convinces herself that a predictive model is worth
developing, there are many study design issues to be addressed.18, 378 Models
are often developed using a “convenience sample,” that is, a dataset that was
not collected with such predictions in mind. The resulting models are often
fraught with difficulties such as the following.

1. The most important predictor or response variables may not have been
collected, tempting the researchers to make do with variables that do not
capture the real underlying processes.

2. The subjects appearing in the dataset are ill-defined, or they are not repre-
sentative of the population for which inferences are to be drawn; similarly,
the data collection sites may not represent the kind of variation in the
population of sites.

3. Key variables are missing in large numbers of subjects.
4. Data are not missing at random; for example, data may not have been

collected on subjects who dropped out of a study early, or on patients who
were too sick to be interviewed.

5. Operational definitions of some of the key variables were never made.
6. Observer variability studies may not have been done, so that the relia-

bility of measurements is unknown, or there are other kinds of important
measurement errors.

A predictive model will be more accurate, as well as useful, when data col-
lection is planned prospectively. That way one can design data collection

d The ROC curve is a plot of sensitivity vs. one minus specificity as one varies a
cutoff on a continuous predictor used to make a decision.
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instruments containing the necessary variables, and all terms can be given
standard definitions (for both descriptive and response variables) for use at
all data collection sites. Also, steps can be taken to minimize the amount of
missing data.

In the context of describing and modeling health outcomes, Iezzoni317 has
an excellent discussion of the dimensions of risk that should be captured by
variables included in the model. She lists these general areas that should be
quantified by predictor variables:

1. age,
2. sex,
3. acute clinical stability,
4. principal diagnosis,
5. severity of principal diagnosis,
6. extent and severity of comorbidities,
7. physical functional status,
8. psychological, cognitive, and psychosocial functioning,
9. cultural, ethnic, and socioeconomic attributes and behaviors,

10. health status and quality of life, and
11. patient attitudes and preferences for outcomes.

Some baseline covariates to be sure to capture in general include

1. a baseline measurement of the response variable,
2. the subject’s most recent status,
3. the subject’s trajectory as of time zero or past levels of a key variable,
4. variables explaining much of the variation in the response, and
5. more subtle predictors whose distributions strongly differ between the

levels of a key variable of interest in an observational study.

Many things can go wrong in statistical modeling, including the following.

1. The process generating the data is not stable.
2. The model is misspecified with regard to nonlinearities or interactions, or

there are predictors missing.
3. The model is misspecified in terms of the transformation of the response

variable or the model’s distributional assumptions.
4. The model contains discontinuities (e.g., by categorizing continuous predic-

tors or fitting regression shapes with sudden changes) that can be gamed
by users.

5. Correlations among subjects are not specified, or the correlation structure
is misspecified, resulting in inefficient parameter estimates and overconfi-
dent inference.

6. The model is overfitted, resulting in predictions that are too extreme or
positive associations that are false.
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7. The user of the model relies on predictions obtained by extrapolating to
combinations of predictor values well outside the range of the dataset used
to develop the model.

8. Accurate and discriminating predictions can lead to behavior changes that
make future predictions inaccurate.

1.4.1 Emphasizing Continuous Variables

When designing the data collection it is important to emphasize the use of
continuous variables over categorical ones. Some categorical variables are sub-
jective and hard to standardize, and on the average they do not contain the
same amount of statistical information as continuous variables. Above all, it
is unwise to categorize naturally continuous variables during data collection,e

as the original values can then not be recovered, and if another researcher
feels that the (arbitrary) cutoff values were incorrect, other cutoffs cannot
be substituted. Many researchers make the mistake of assuming that catego-
rizing a continuous variable will result in less measurement error. This is a
false assumption, for if a subject is placed in the wrong interval this will be
as much as a 100% error. Thus the magnitude of the error multiplied by the
probability of an error is no better with categorization.2

1.5 Choice of the Model

The actual method by which an underlying statistical model should be chosen
by the analyst is not well developed. A. P. Dawid is quoted in Lehmann397

as saying the following.

Where do probability models come from? To judge by the resounding silence
over this question on the part of most statisticians, it seems highly embarrass-
ing. In general, the theoretician is happy to accept that his abstract probability
triple (Ω,A, P ) was found under a gooseberry bush, while the applied statisti-
cian’s model “just growed”.3

In biostatistics, epidemiology, economics, psychology, sociology, and many
other fields it is seldom the case that subject matter knowledge exists that
would allow the analyst to pre-specify a model (e.g., Weibull or log-normal
survival model), a transformation for the response variable, and a structure

e An exception may be sensitive variables such as income level. Subjects may be more
willing to check a box corresponding to a wide interval containing their income. It
is unlikely that a reduction in the probability that a subject will inflate her income
will offset the loss of precision due to categorization of income, but there will be a
decrease in the number of refusals. This reduction in missing data can more than
offset the lack of precision.
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for how predictors appear in the model (e.g., transformations, addition of
nonlinear terms, interaction terms). Indeed, some authors question whether
the notion of a true model even exists in many cases.100 We are for bet-
ter or worse forced to develop models empirically in the majority of cases.
Fortunately, careful and objective validation of the accuracy of model pre-
dictions against observable responses can lend credence to a model, if a good
validation is not merely the result of overfitting (see Section 5.3).

There are a few general guidelines that can help in choosing the basic form
of the statistical model.

1. The model must use the data efficiently. If, for example, one were inter-
ested in predicting the probability that a patient with a specific set of
characteristics would live five years from diagnosis, an inefficient model
would be a binary logistic model. A more efficient method, and one that
would also allow for losses to follow-up before five years, would be a semi-
parametric (rank based) or parametric survival model. Such a model uses
individual times of events in estimating coefficients, but it can easily be
used to estimate the probability of surviving five years. As another exam-
ple, if one were interested in predicting patients’ quality of life on a scale
of excellent, very good, good, fair, and poor, a polytomous (multinomial)
categorical response model would not be efficient as it would not make use
of the ordering of responses.

2. Choose a model that fits overall structures likely to be present in the
data. In modeling survival time in chronic disease one might feel that the
importance of most of the risk factors is constant over time. In that case,
a proportional hazards model such as the Cox or Weibull model would
be a good initial choice. If on the other hand one were studying acutely
ill patients whose risk factors wane in importance as the patients survive
longer, a model such as the log-normal or log-logistic regression model
would be more appropriate.

3. Choose a model that is robust to problems in the data that are difficult to
check. For example, the Cox proportional hazards model and ordinal logis-
tic models are not affected by monotonic transformations of the response
variable.

4. Choose a model whose mathematical form is appropriate for the response
being modeled. This often has to do with minimizing the need for in-
teraction terms that are included only to address a basic lack of fit. For
example, many researchers have used ordinary linear regression models
for binary responses, because of their simplicity. But such models allow
predicted probabilities to be outside the interval [0, 1], and strange in-
teractions among the predictor variables are needed to make predictions
remain in the legal range.

5. Choose a model that is readily extendible. The Cox model, by its use of
stratification, easily allows a few of the predictors, especially if they are
categorical, to violate the assumption of equal regression coefficients over
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time (proportional hazards assumption). The continuation ratio ordinal
logistic model can also be generalized easily to allow for varying coefficients
of some of the predictors as one proceeds across categories of the response.

R. A. Fisher as quoted in Lehmann397 had these suggestions about model
building: “(a) We must confine ourselves to those forms which we know how
to handle,” and (b) “More or less elaborate forms will be suitable according
to the volume of the data.” Ameen [100, p. 453] stated that a good model is
“(a) satisfactory in performance relative to the stated objective, (b) logically
sound, (c) representative, (d) questionable and subject to on-line interroga-
tion, (e) able to accommodate external or expert information and (f) able to
convey information.”

It is very typical to use the data to make decisions about the form of
the model as well as about how predictors are represented in the model.
Then, once a model is developed, the entire modeling process is routinely
forgotten, and statistical quantities such as standard errors, confidence limits,
P -values, and R2 are computed as if the resulting model were entirely pre-
specified. However, Faraway,186 Draper,163 Chatfield,100 Buckland et al.80

and others have written about the severe problems that result from treating
an empirically derived model as if it were pre-specified and as if it were the
correct model. As Chatfield states [100, p. 426]:“It is indeed strange that we
often admit model uncertainty by searching for a best model but then ignore
this uncertainty by making inferences and predictions as if certain that the
best fitting model is actually true.”

Stepwise variable selection is one of the most widely used and abused of
all data analysis techniques. Much is said about this technique later (see Sec-
tion 4.3), but there are many other elements of model development that will
need to be accounted for when making statistical inferences, and unfortu-
nately it is difficult to derive quantities such as confidence limits that are
properly adjusted for uncertainties such as the data-based choice between a
Weibull and a log-normal regression model.4

Ye678 developed a general method for estimating the “generalized degrees
of freedom” (GDF) for any “data mining” or model selection procedure based
on least squares. The GDF is an extremely useful index of the amount of
“data dredging” or overfitting that has been done in a modeling process.
It is also useful for estimating the residual variance with less bias. In one
example, Ye developed a regression tree using recursive partitioning involving
10 candidate predictor variables on 100 observations. The resulting tree had
19 nodes and GDF of 76. The usual way of estimating the residual variance
involves dividing the pooled within-node sum of squares by 100− 19, but Ye
showed that dividing by 100 − 76 instead yielded a much less biased (and
much higher) estimate of σ2. In another example, Ye considered stepwise
variable selection using 20 candidate predictors and 22 observations. When
there is no true association between any of the predictors and the response,
Ye found that GDF = 14.1 for a strategy that selected the best five-variable
model.5
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Given that the choice of the model has been made (e.g., a log-normal
model), penalized maximum likelihood estimation has major advantages in
the battle between making the model fit adequately and avoiding overfitting
(Sections 9.10 and 13.4.7). Penalization lessens the need for model selection.

1.6 Further Reading

1 Briggs and Zaretzki74 eloquently state the problem with ROC curves and the
areas under them (AUC):

Statistics such as the AUC are not especially relevant to someone who
must make a decision about a particular xc. . . . ROC curves lack or ob-
scure several quantities that are necessary for evaluating the operational
effectiveness of diagnostic tests. . . . ROC curves were first used to check
how radio receivers (like radar receivers) operated over a range of fre-
quencies. . . . This is not how must ROC curves are used now, particularly
in medicine. The receiver of a diagnostic measurement . . . wants to make
a decision based on some xc, and is not especially interested in how well
he would have done had he used some different cutoff.

In the discussion to their paper, David Hand states

When integrating to yield the overall AUC measure, it is necessary to
decide what weight to give each value in the integration. The AUC im-
plicitly does this using a weighting derived empirically from the data.
This is nonsensical. The relative importance of misclassifying a case as
a noncase, compared to the reverse, cannot come from the data itself. It
must come externally, from considerations of the severity one attaches to
the different kinds of misclassifications.

AUC, only because it equals the concordance probability in the binary Y case,
is still often useful as a predictive discrimination measure.

2 More severe problems caused by dichotomizing continuous variables are dis-
cussed in [13, 17, 45, 82, 185, 294, 379, 521, 597].

3 See the excellent editorial by Mallows434 for more about model choice. See
Breiman and discussants67 for an interesting debate about the use of data
models vs. algorithms. This material also covers interpretability vs. predictive
accuracy and several other topics.

4 See [15, 80, 100, 163, 186, 415] for information about accounting for model selec-
tion in making final inferences. Faraway186 demonstrated that the bootstrap
has good potential in related although somewhat simpler settings, and Buck-
land et al.80 developed a promising bootstrap weighting method for accounting
for model uncertainty.

5 Tibshirani and Knight611 developed another approach to estimating the gener-
alized degrees of freedom. Luo et al.430 developed a way to add noise of known
variance to the response variable to tune the stopping rule used for variable
selection. Zou et al.689 showed that the lasso, an approach that simultaneously
selects variables and shrinks coefficients, has a nice property. Since it uses pe-
nalization (shrinkage), an unbiased estimate of its effective number of degrees
of freedom is the number of nonzero regression coefficients in the final model.



Chapter 2

General Aspects of Fitting
Regression Models

2.1 Notation for Multivariable Regression Models

The ordinary multiple linear regression model is frequently used and has
parameters that are easily interpreted. In this chapter we study a general
class of regression models, those stated in terms of a weighted sum of a set
of independent or predictor variables. It is shown that after linearizing the
model with respect to the predictor variables, the parameters in such re-
gression models are also readily interpreted. Also, all the designs used in
ordinary linear regression can be used in this general setting. These designs
include analysis of variance (ANOVA) setups, interaction effects, and nonlin-
ear effects. Besides describing and interpreting general regression models, this
chapter also describes, in general terms, how the three types of assumptions
of regression models can be examined.

First we introduce notation for regression models. Let Y denote the re-
sponse (dependent) variable, and let X = X1, X2, . . . , Xp denote a list or
vector of predictor variables (also called covariables or independent, descrip-
tor, or concomitant variables). These predictor variables are assumed to be
constants for a given individual or subject from the population of interest.
Let β = β0, β1, . . . , βp denote the list of regression coefficients (parameters).
β0 is an optional intercept parameter, and β1, . . . , βp are weights or regression
coefficients corresponding to X1, . . . , Xp. We use matrix or vector notation
to describe a weighted sum of the Xs:

Xβ = β0 + β1X1 + . . .+ βpXp, (2.1)

where there is an implied X0 = 1.
A regression model is stated in terms of a connection between the predic-

tors X and the response Y . Let C(Y |X) denote a property of the distribution
of Y given X (as a function of X). For example, C(Y |X) could be E(Y |X),
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the expected value or average of Y given X , or C(Y |X) could be the proba-
bility that Y = 1 given X (where Y = 0 or 1).

2.2 Model Formulations

We define a regression function as a function that describes interesting prop-
erties of Y that may vary across individuals in the population.X describes the
list of factors determining these properties. Stated mathematically, a general
regression model is given by

C(Y |X) = g(X). (2.2)

We restrict our attention to models that, after a certain transformation, are
linear in the unknown parameters, that is, models that involveX only through
a weighted sum of all the Xs. The general linear regression model is given by

C(Y |X) = g(Xβ). (2.3)

For example, the ordinary linear regression model is

C(Y |X) = E(Y |X) = Xβ, (2.4)

and given X , Y has a normal distribution with mean Xβ and constant vari-
ance σ2. The binary logistic regression model129, 647 is

C(Y |X) = Prob{Y = 1|X} = (1 + exp(−Xβ))−1, (2.5)

where Y can take on the values 0 and 1. In general the model, when
stated in terms of the property C(Y |X), may not be linear in Xβ; that
is C(Y |X) = g(Xβ), where g(u) is nonlinear in u. For example, a regression
model could be E(Y |X) = (Xβ).5. The model may be made linear in the
unknown parameters by a transformation in the property C(Y |X):

h(C(Y |X)) = Xβ, (2.6)

where h(u) = g−1(u), the inverse function of g. As an example consider the
binary logistic regression model given by

C(Y |X) = Prob{Y = 1|X} = (1 + exp(−Xβ))−1. (2.7)

If h(u) = logit(u) = log(u/(1− u)), the transformed model becomes

h(Prob(Y = 1|X)) = log(exp(Xβ)) = Xβ. (2.8)



2.3 Interpreting Model Parameters 15

The transformation h(C(Y |X)) is sometimes called a link function. Let
h(C(Y |X)) be denoted by C ′(Y |X). The general linear regression model then
becomes

C ′(Y |X) = Xβ. (2.9)

In other words, the model states that some property C′ of Y , given X , is
a weighted sum of the Xs (Xβ). In the ordinary linear regression model,
C′(Y |X) = E(Y |X). In the logistic regression case, C ′(Y |X) is the logit of
the probability that Y = 1, log Prob{Y = 1}/[1− Prob{Y = 1}]. This is the
log of the odds that Y = 1 versus Y = 0.

It is important to note that the general linear regression model has two
major components: C′(Y |X) andXβ. The first part has to do with a property
or transformation of Y . The second, Xβ, is the linear regression or linear
predictor part. The method of least squares can sometimes be used to fit
the model if C ′(Y |X) = E(Y |X). Other cases must be handled using other
methods such as maximum likelihood estimation or nonlinear least squares.

2.3 Interpreting Model Parameters

In the original model, C(Y |X) specifies the way in which X affects a property
of Y . Except in the ordinary linear regression model, it is difficult to interpret
the individual parameters if the model is stated in terms of C(Y |X). In the
model C ′(Y |X) = Xβ = β0 + β1X1 + . . . + βpXp, the regression parameter
βj is interpreted as the change in the property C′ of Y per unit change in
the descriptor variable Xj , all other descriptors remaining constanta:

βj = C′(Y |X1, X2, . . . , Xj + 1, . . . , Xp)− C′(Y |X1, X2, . . . , Xj , . . . , Xp).
(2.10)

In the ordinary linear regression model, for example, βj is the change in
expected value of Y per unit change in Xj . In the logistic regression model
βj is the change in log odds that Y = 1 per unit change in Xj. When a
non-interacting Xj is a dichotomous variable or a continuous one that is
linearly related to C′, Xj is represented by a single term in the model and
its contribution is described fully by βj .

In all that follows, we drop the ′ from C′ and assume that C(Y |X) is the
property of Y that is linearly related to the weighted sum of the Xs.

a Note that it is not necessary to “hold constant” all other variables to be able to
interpret the effect of one predictor. It is sufficient to hold constant the weighted sum
of all the variables other than Xj . And in many cases it is not physically possible to
hold other variables constant while varying one, e.g., when a model contains X and
X2 (David Hoaglin, personal communication).
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2.3.1 Nominal Predictors

Suppose that we wish to model the effect of two or more treatments and be
able to test for differences between the treatments in some property of Y .
A nominal or polytomous factor such as treatment group having k levels, in
which there is no definite ordering of categories, is fully described by a series of
k−1 binary indicator variables (sometimes called dummy variables). Suppose
that there are four treatments, J,K,L, and M , and the treatment factor is
denoted by T . The model can be written as

C(Y |T = J) = β0

C(Y |T = K) = β0 + β1 (2.11)

C(Y |T = L) = β0 + β2

C(Y |T = M) = β0 + β3.

The four treatments are thus completely specified by three regression param-
eters and one intercept that we are using to denote treatment J , the reference
treatment. This model can be written in the previous notation as

C(Y |T ) = Xβ = β0 + β1X1 + β2X2 + β3X3, (2.12)

where

X1 = 1 if T = K, 0 otherwise

X2 = 1 if T = L, 0 otherwise (2.13)

X3 = 1 if T = M, 0 otherwise.

For treatment J (T = J), all three Xs are zero and C(Y |T = J) = β0.
The test for any differences in the property C(Y ) between treatments is
H0 : β1 = β2 = β3 = 0.

This model is an analysis of variance or k-sample-type model. If there are
other descriptor covariables in the model, it becomes an analysis of covari-
ance-type model.

2.3.2 Interactions

Suppose that a model has descriptor variables X1 and X2 and that the effect
of the two Xs cannot be separated; that is the effect of X1 on Y depends on
the level of X2 and vice versa. One simple way to describe this interaction is
to add the constructed variable X3 = X1X2 to the model:

C(Y |X) = β0 + β1X1 + β2X2 + β3X1X2. (2.14)
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It is now difficult to interpret β1 and β2 in isolation. However, we may quantify
the effect of a one-unit increase in X1 if X2 is held constant as

Table 2.1 Parameters in a simple model with interaction

Parameter Meaning

β0 C(Y |age = 0, sex = m)
β1 C(Y |age = x+ 1, sex = m)− C(Y |age = x, sex = m)
β2 C(Y |age = 0, sex = f)− C(Y |age = 0, sex = m)
β3 C(Y |age = x+ 1, sex = f)− C(Y |age = x, sex = f)−

[C(Y |age = x+ 1, sex = m)− C(Y |age = x, sex = m)]

C(Y |X1 + 1, X2) − C(Y |X1, X2)

= β0 + β1(X1 + 1) + β2X2

+ β3(X1 + 1)X2 (2.15)

− [β0 + β1X1 + β2X2 + β3X1X2]

= β1 + β3X2.

Likewise, the effect of a one-unit increase in X2 on C if X1 is held constant is
β2+β3X1. Interactions can be much more complex than can be modeled with
a product of two terms. If X1 is binary, the interaction may take the form
of a difference in shape (and/or distribution) of X2 versus C(Y ) depending
on whether X1 = 0 or X1 = 1 (e.g., logarithm vs. square root). When both
variables are continuous, the possibilities are much greater (this case is dis-
cussed later). Interactions among more than two variables can be exceedingly
complex.

2.3.3 Example: Inference for a Simple Model

Suppose we postulated the model

C(Y |age, sex) = β0 + β1age+ β2[sex = f ] + β3age[sex = f ],

where [sex = f ] is a 0–1 indicator variable for sex = female; the reference cell
is sex = male corresponding to a zero value of the indicator variable. This is
a model that assumes

1. age is linearly related to C(Y ) for males,
2. age is linearly related to C(Y ) for females, and
3. whatever distribution, variance, and independence assumptions are appro-

priate for the model being considered.
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We are thus assuming that the interaction between age and sex is simple;
that is it only alters the slope of the age effect. The parameters in the model
have interpretations shown in Table 2.1. β3 is the difference in slopes (female
– male).

There are many useful hypotheses that can be tested for this model. First
let’s consider two hypotheses that are seldom appropriate although they are
routinely tested.

1. H0 : β1 = 0: This tests whether age is associated with Y for males.
2. H0 : β2 = 0: This tests whether sex is associated with Y for zero-year olds.

Now consider more useful hypotheses. For each hypothesis we should write
what is being tested, translate this to tests in terms of parameters, write the
alternative hypothesis, and describe what the test has maximum power to
detect. The latter component of a hypothesis test needs to be emphasized, as
almost every statistical test is focused on one specific pattern to detect. For
example, a test of association against an alternative hypothesis that a slope
is nonzero will have maximum power when the true association is linear.
If the true regression model is exponential in X , a linear regression test
will have some power to detect “non-flatness” but it will not be as powerful
as the test from a well-specified exponential regression effect. If the true
effect is U-shaped, a test of association based on a linear model will have
almost no power to detect association. If one tests for association against
a quadratic (parabolic) alternative, the test will have some power to detect
a logarithmic shape but it will have very little power to detect a cyclical
trend having multiple “humps.” In a quadratic regression model, a test of
linearity against a quadratic alternative hypothesis will have reasonable power
to detect a quadratic nonlinear effect but very limited power to detect a
multiphase cyclical trend. Therefore in the tests in Table 2.2 keep in mind
that power is maximal when linearity of the age relationship holds for both
sexes. In fact it may be useful to write alternative hypotheses as, for example,
“Ha : age is associated with C(Y ), powered to detect a linear relationship.”

Note that if there is an interaction effect, we know that there is both an
age and a sex effect. However, there can also be age or sex effects when the
lines are parallel. That’s why the tests of total association have 2 d.f.

2.4 Relaxing Linearity Assumption for Continuous
Predictors

2.4.1 Avoiding Categorization

Relationships among variables are seldom linear, except in special cases
such as when one variable is compared with itself measured at a different
time. It is a common belief among practitioners who do not study bias and
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efficiency in depth that the presence of non-linearity should be dealt with by
chopping continuous variables into intervals. Nothing could be more disas-
trous.13, 14, 17, 45, 82, 185, 187, 215, 294, 300, 379, 446, 465, 521,533, 559,597, 646

Table 2.2 Most Useful Tests for Linear Age× Sex Model

Null or Alternative Hypothesis Mathematical
Statement

Effect of age is independent of sex or H0 : β3 = 0
Effect of sex is independent of age or
Age and sex are additive
Age effects are parallel
Age interacts with sex Ha : β3 �= 0
Age modifies effect of sex
Sex modifies effect of age
Sex and age are non-additive (synergistic)

Age is not associated with Y H0 : β1 = β3 = 0
Age is associated with Y Ha : β1 �= 0 or β3 �= 0
Age is associated with Y for either
Females or males

Sex is not associated with Y H0 : β2 = β3 = 0
Sex is associated with Y Ha : β2 �= 0 or β3 �= 0
Sex is associated with Y for some
Value of age
Neither age nor sex is associated with Y H0 : β1 = β2 = β3 = 0
Either age or sex is associated with Y Ha : β1 �= 0 or β2 �= 0 or β3 �= 0

Problems caused by dichotomization include the following.

1. Estimated values will have reduced precision, and associated tests will have re-
duced power.

2. Categorization assumes that the relationship between the predictor and the re-
sponse is flat within intervals; this assumption is far less reasonable than a lin-
earity assumption in most cases.

3. To make a continuous predictor be more accurately modeled when categorization
is used, multiple intervals are required. The needed indicator variables will spend
more degrees of freedom than will fitting a smooth relationship, hence power and
precision will suffer. And because of sample size limitations in the very low and
very high range of the variable, the outer intervals (e.g., outer quintiles) will be
wide, resulting in significant heterogeneity of subjects within those intervals, and
residual confounding.

4. Categorization assumes that there is a discontinuity in response as interval bound-
aries are crossed. Other than the effect of time (e.g., an instant stock price drop
after bad news), there are very few examples in which such discontinuities have
been shown to exist.

5. Categorization only seems to yield interpretable estimates such as odds ratios.
For example, suppose one computes the odds ratio for stroke for persons with
a systolic blood pressure > 160 mmHg compared with persons with a blood
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pressure ≤ 160 mmHg. The interpretation of the resulting odds ratio will depend
on the exact distribution of blood pressures in the sample (the proportion of
subjects > 170, > 180, etc.). On the other hand, if blood pressure is modeled as
a continuous variable (e.g., using a regression spline, quadratic, or linear effect)
one can estimate the ratio of odds for exact settings of the predictor, e.g., the
odds ratio for 200 mmHg compared with 120 mmHg.

6. Categorization does not condition on full information. When, for example, the
risk of stroke is being assessed for a new subject with a known blood pressure
(say 162 mmHg), the subject does not report to her physician“my blood pressure
exceeds 160” but rather reports 162 mmHg. The risk for this subject will be much
lower than that of a subject with a blood pressure of 200 mmHg.

7. If cutpoints are determined in a way that is not blinded to the response vari-
able, calculation of P -values and confidence intervals requires special simulation
techniques; ordinary inferential methods are completely invalid. For example, if
cutpoints are chosen by trial and error in a way that utilizes the response, even
informally, ordinary P -values will be too small and confidence intervals will not
have the claimed coverage probabilities. The correct Monte-Carlo simulations
must take into account both multiplicities and uncertainty in the choice of cut-
points. For example, if a cutpoint is chosen that minimizes the P -value and the
resulting P -value is 0.05, the true type I error can easily be above 0.5300.

8. Likewise, categorization that is not blinded to the response variable results in
biased effect estimates17, 559.

9. “Optimal” cutpoints do not replicate over studies. Hollander et al.300 state that
“. . . the optimal cutpoint approach has disadvantages. One of these is that in al-
most every study where this method is applied, another cutpoint will emerge.
This makes comparisons across studies extremely difficult or even impossible.
Altman et al. point out this problem for studies of the prognostic relevance of the
S-phase fraction in breast cancer published in the literature. They identified 19
different cutpoints used in the literature; some of them were solely used because
they emerged as the ‘optimal’ cutpoint in a specific data set. In a meta-analysis on
the relationship between cathepsin-D content and disease-free survival in node-
negative breast cancer patients, 12 studies were in included with 12 different
cutpoints . . . Interestingly, neither cathepsin-D nor the S-phase fraction are rec-
ommended to be used as prognostic markers in breast cancer in the recent update
of the American Society of Clinical Oncology.” Giannoni et al.215 demonstrated
that many claimed “optimal cutpoints”are just the observed median values in the
sample, which happens to optimize statistical power for detecting a separation in
outcomes and have nothing to do with true outcome thresholds. Disagreements
in cutpoints (which are bound to happen whenever one searches for things that
do not exist) cause severe interpretation problems. One study may provide an
odds ratio for comparing body mass index (BMI) > 30 with BMI ≤ 30, another
for comparing BMI > 28 with BMI ≤ 28. Neither of these odds ratios has a good
definition and the two estimates are not comparable.

10. Cutpoints are arbitrary and manipulatable; cutpoints can be found that can result
in both positive and negative associations646.

11. If a confounder is adjusted for by categorization, there will be residual confound-
ing that can be explained away by inclusion of the continuous form of the predictor
in the model in addition to the categories.

When cutpoints are chosen using Y , categorization represents one of those
few times in statistics where both type I and type II errors are elevated.

A scientific quantity is a quantity which can be defined outside of the
specifics of the current experiment. The kind of high:low estimates that re-
sult from categorizing a continuous variable are not scientific quantities; their
interpretation depends on the entire sample distribution of continuous mea-
surements within the chosen intervals.
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To summarize problems with categorization it is useful to examine its
effective assumptions. Suppose one assumes there is a single cutpoint c for
predictor X . Assumptions implicit in seeking or using this cutpoint include
(1) the relationship between X and the response Y is discontinuous at X = c
and only X = c; (2) c is correctly found as the cutpoint; (3) X vs. Y is
flat to the left of c; (4) X vs. Y is flat to the right of c; (5) the “optimal”
cutpoint does not depend on the values of other predictors. Failure to have
these assumptions satisfied will result in great error in estimating c (because
it doesn’t exist), low predictive accuracy, serious lack of model fit, residual
confounding, and overestimation of effects of remaining variables.

A better approach that maximizes power and that only assumes a smooth
relationship is to use regression splines for predictors that are not known
to predict linearly. Use of flexible parametric approaches such as this allows
standard inference techniques (P -values, confidence limits) to be used, as
will be described below. Before introducing splines, we consider the simplest
approach to allowing for nonlinearity.

2.4.2 Simple Nonlinear Terms

If a continuous predictor is represented, say, as X1 in the model, the model
is assumed to be linear in X1. Often, however, the property of Y of interest
does not behave linearly in all the predictors. The simplest way to describe
a nonlinear effect of X1 is to include a term for X2 = X2

1 in the model:

C(Y |X1) = β0 + β1X1 + β2X
2
1 . (2.16)

If the model is truly linear in X1, β2 will be zero. This model formulation
allows one to test H0 : model is linear in X1 against Ha : model is quadratic
(parabolic) in X1 by testing H0 : β2 = 0.

Nonlinear effects will frequently not be of a parabolic nature. If a trans-
formation of the predictor is known to induce linearity, that transformation
(e.g., log(X)) may be substituted for the predictor. However, often the trans-
formation is not known. Higher powers of X1 may be included in the model
to approximate many types of relationships, but polynomials have some un-
desirable properties (e.g., undesirable peaks and valleys, and the fit in one
region of X can be greatly affected by data in other regions433) and will not
adequately fit many functional forms.156 For example, polynomials do not
adequately fit logarithmic functions or “threshold” effects.
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2.4.3 Splines for Estimating Shape of Regression
Function and Determining Predictor
Transformations

A draftsman’s spline is a flexible strip of metal or rubber used to draw curves.
Spline functions are piecewise polynomials used in curve fitting. That is, they
are polynomials within intervals of X that are connected across different
intervals of X . Splines have been used, principally in the physical sciences,
to approximate a wide variety of functions. The simplest spline function is a
linear spline function, a piecewise linear function. Suppose that the x axis is
divided into intervals with endpoints at a, b, and c, called knots . The linear
spline function is given by

f(X) = β0 + β1X + β2(X − a)+ + β3(X − b)+ + β4(X − c)+, (2.17)

where

(u)+ = u, u > 0,

0, u ≤ 0. (2.18)

The number of knots can vary depending on the amount of available data for
fitting the function. The linear spline function can be rewritten as

f(X) = β0 + β1X, X ≤ a

= β0 + β1X + β2(X − a) a < X ≤ b (2.19)

= β0 + β1X + β2(X − a) + β3(X − b) b < X ≤ c

= β0 + β1X + β2(X − a)

+β3(X − b) + β4(X − c) c < X.

A linear spline is depicted in Figure 2.1.
The general linear regression model can be written assuming only piecewise

linearity in X by incorporating constructed variables X2, X3, and X4 :

C(Y |X) = f(X) = Xβ, (2.20)

where Xβ = β0 + β1X1 + β2X2 + β3X3 + β4X4, and

X1 = X X2 = (X − a)+

X3 = (X − b)+ X4 = (X − c)+. (2.21)

By modeling a slope increment for X in an interval (a, b] in terms of (X−a)+,
the function is constrained to join (“meet”) at the knots. Overall linearity in
X can be tested by testing H0 : β2 = β3 = β4 = 0.
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Fig. 2.1 A linear spline function with knots at a = 1, b = 3, c = 5.

2.4.4 Cubic Spline Functions

Although the linear spline is simple and can approximate many common
relationships, it is not smooth and will not fit highly curved functions well.
These problems can be overcome by using piecewise polynomials of order
higher than linear. Cubic polynomials have been found to have nice properties
with good ability to fit sharply curving shapes. Cubic splines can be made to
be smooth at the join points (knots) by forcing the first and second derivatives
of the function to agree at the knots. Such a smooth cubic spline function
with three knots (a, b, c) is given by

f(X) = β0 + β1X + β2X
2 + β3X

3

+ β4(X − a)3+ + β5(X − b)3+ + β6(X − c)3+ (2.22)

= Xβ

with the following constructed variables:

X1 = X X2 = X2

X3 = X3 X4 = (X − a)3+ (2.23)

X5 = (X − b)3+ X6 = (X − c)3+.

If the cubic spline function has k knots, the function will require estimat-
ing k + 3 regression coefficients besides the intercept. See Section 2.4.6 for
information on choosing the number and location of knots. 1

There are more numerically stable ways to form a design matrix for cubic
spline functions that are based on B-splines instead of the truncated power
basis152, 575 used here. However, B-splines are more complex and do not allow
for extrapolation beyond the outer knots, and the truncated power basis
seldom presents estimation problems (see Section 4.6) when modern methods
such as the Q–R decomposition are used for matrix inversion. 2
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2.4.5 Restricted Cubic Splines

Stone and Koo595 have found that cubic spline functions do have a drawback
in that they can be poorly behaved in the tails, that is before the first knot and
after the last knot. They cite advantages of constraining the function to be
linear in the tails. Their restricted cubic spline function (also called natural
splines) has the additional advantage that only k − 1 parameters must be3

estimated (besides the intercept) as opposed to k + 3 parameters with the
unrestricted cubic spline. The restricted spline function with k knots t1, . . . , tk
is given by156

f(X) = β0 + β1X1 + β2X2 + . . .+ βk−1Xk−1, (2.24)

where X1 = X and for j = 1, . . . , k − 2,

Xj+1 = (X − tj)
3
+ − (X − tk−1)

3
+(tk − tj)/(tk − tk−1)

+ (X − tk)
3
+(tk−1 − tj)/(tk − tk−1). (2.25)

It can be shown that Xj is linear in X forX ≥ tk. For numerical behavior and
to put all basis functions for X on the same scale, R Hmisc and rms package
functions by default divide the terms in Eq. 2.25 by

τ = (tk − t1)
2. (2.26)

Figure 2.2 displays the τ -scaled spline component variables Xj for j =
2, 3, 4 and k = 5 and one set of knots. The left graph magnifies the lower
portion of the curves.

require(Hmisc )

x ← rcspline.eval (seq(0,1, .01),

knots =seq(.05 ,.95 ,length =5), inclx =T)

xm ← x

xm[xm > .0106 ] ← NA

matplot(x[,1], xm , type="l", ylim =c(0, .01),

xlab =expression (X), ylab = ' ' , lty =1)

matplot(x[,1], x, type="l",

xlab =expression (X), ylab = ' ' , lty =1)

Figure 2.3 displays some typical shapes of restricted cubic spline functions
with k = 3, 4, 5, and 6. These functions were generated using random β.
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Fig. 2.2 Restricted cubic spline component variables for k = 5 and knots at X =
.05, .275, .5, .725, and .95. Nonlinear basis functions are scaled by τ . The left panel
is a y–magnification of the right panel. Fitted functions such as those in Figure 2.3
will be linear combinations of these basis functions as long as knots are at the same
locations used here.

x ← seq(0, 1, length =300)

for(nk in 3:6) {

set.seed (nk)

knots ← seq(.05 , .95 , length =nk)

xx ← rcspline.eval (x, knots =knots , inclx =T)

for(i in 1 : (nk - 1))

xx[,i] ← (xx[,i] - min(xx[,i])) /

(max(xx[,i]) - min(xx[,i]))

for(i in 1 : 20) {

beta ← 2*runif (nk-1) - 1

xbeta ← xx %*% beta + 2 * runif (1) - 1

xbeta ← (xbeta - min(xbeta )) /

(max(xbeta ) - min(xbeta ))

if(i == 1) {

plot (x, xbeta , type="l", lty=1,

xlab =expression (X), ylab = ' ' , bty="l")

title (sub=paste (nk ,"knots "), adj=0, cex=.75)

for(j in 1 : nk)

arrows (knots [j], .04 , knots [j], -.03 ,

angle =20, length =.07 , lwd=1.5)

}

else lines (x, xbeta , col=i)

}

}
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Once β0, . . . , βk−1 are estimated, the restricted cubic spline can be restated
in the form

f(X) = β0 + β1X + β2(X − t1)
3
+ + β3(X − t2)

3
+

+ . . .+ βk+1(X − tk)
3
+ (2.27)

by dividing β2, . . . , βk−1 by τ (Eq. 2.26) and computing

βk = [β2(t1 − tk)+ β3(t2 − tk)+ . . .+ βk−1(tk−2 − tk)]/(tk − tk−1) (2.28)

βk+1 = [β2(t1 − tk−1)+ β3(t2 − tk−1)+ . . .+ βk−1(tk−2 − tk−1)]/(tk−1 − tk).

A test of linearity in X can be obtained by testing

H0 : β2 = β3 = . . . = βk−1 = 0. (2.29)

The truncated power basis for restricted cubic splines does allow for4

rational (i.e., linear) extrapolation beyond the outer knots. However, when
the outer knots are in the tails of the data, extrapolation can still be danger-
ous.

When nonlinear terms in Equation 2.25 are normalized, for example, by
dividing them by the square of the difference in the outer knots to make all
terms have units of X , the ordinary truncated power basis has no numerical
difficulties when modern matrix algebra software is used.

2.4.6 Choosing Number and Position of Knots

We have assumed that the locations of the knots are specified in advance;
that is, the knot locations are not treated as free parameters to be estimated.
If knots were free parameters, the fitted function would have more flexibility
but at the cost of instability of estimates, statistical inference problems, and
inability to use standard regression modeling software for estimating regres-
sion parameters.

How then does the analyst pre-assign knot locations? If the regression
relationship were described by prior experience, pre-specification of knot lo-
cations would be easy. For example, if a function were known to change
curvature at X = a, a knot could be placed at a. However, in most situations
there is no way to pre-specify knots. Fortunately, Stone593 has found that
the location of knots in a restricted cubic spline model is not very crucial in
most situations; the fit depends much more on the choice of k, the number of
knots. Placing knots at fixed quantiles (percentiles) of a predictor’s marginal5

distribution is a good approach in most datasets. This ensures that enough
points are available in each interval, and also guards against letting outliers
overly influence knot placement. Recommended equally spaced quantiles are
shown in Table 2.3.
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Fig. 2.3 Some typical restricted cubic spline functions for k = 3, 4, 5, 6. The y–axis
is Xβ. Arrows indicate knots. These curves were derived by randomly choosing values
of β subject to standard deviations of fitted functions being normalized.

Table 2.3 Default quantiles for knots

k Quantiles

3 .10 .5 .90
4 .05 .35 .65 .95
5 .05 .275 .5 .725 .95
6 .05 .23 .41 .59 .77 .95
7 .025 .1833 .3417 .5 .6583 .8167 .975
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The principal reason for using less extreme default quantiles for k = 3 and
more extreme ones for k = 7 is that one usually uses k = 3 for small sample
sizes and k = 7 for large samples. When the sample size is less than 100, the
outer quantiles should be replaced by the fifth smallest and fifth largest data
points, respectively.595 What about the choice of k? The flexibility of possible
fits must be tempered by the sample size available to estimate the unknown
parameters. Stone593 has found that more than 5 knots are seldom required
in a restricted cubic spline model. The principal decision then is between
k = 3, 4, or 5. For many datasets, k = 4 offers an adequate fit of the model
and is a good compromise between flexibility and loss of precision caused
by overfitting a small sample. When the sample size is large (e.g., n ≥ 100
with a continuous uncensored response variable), k = 5 is a good choice.
Small samples (< 30, say) may require the use of k = 3. Akaike’s information
criterion (AIC, Section 9.8.1) can be used for a data-based choice of k. The
value of k maximizing the model likelihood ratio χ2 − 2k would be the best
“for the money” using AIC.

The analyst may wish to devote more knots to variables that are thought
to be more important, and risk lack of fit for less important variables. In this
way the total number of estimated parameters can be controlled (Section 4.1).

2.4.7 Nonparametric Regression

One of the most important results of an analysis is the estimation of the
tendency (trend) of how X relates to Y . This trend is useful in its own right
and it may be sufficient for obtaining predicted values in some situations, but
trend estimates can also be used to guide formal regression modeling (by sug-
gesting predictor variable transformations) and to check model assumptions.

Nonparametric smoothers are excellent tools for determining the shape
of the relationship between a predictor and the response. The standard non-
parametric smoothers work when one is interested in assessing one continuous
predictor at a time and when the property of the response that should be lin-
early related to the predictor is a standard measure of central tendency. For
example, when C(Y ) is E(Y ) or Pr[Y = 1], standard smoothers are useful,
but when C(Y ) is a measure of variability or a rate (instantaneous risk), or
when Y is only incompletely measured for some subjects (e.g., Y is censored
for some subjects), simple smoothers will not work.

The oldest and simplest nonparametric smoother is the moving average.
Suppose that the data consist of the points X = 1, 2, 3, 5, and 8, with the
corresponding Y values 2.1, 3.8, 5.7, 11.1, and 17.2. To smooth the relationship
we could estimate E(Y |X = 2) by (2.1+ 3.8+ 5.7)/3 and E(Y |X = (2+ 3+
5)/3) by (3.8+ 5.7+ 11.1)/3. Note that overlap is fine; that is one point may
be contained in two sets that are averaged. You can immediately see that the
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simple moving average has a problem in estimating E(Y ) at the outer values
of X . The estimates are quite sensitive to the choice of the number of points
(or interval width) to use in “binning” the data.

A moving least squares linear regression smoother is far superior to a
moving flat line smoother (moving average). Cleveland’s111 moving linear
regression smoother loess has become the most popular smoother. To obtain
the smoothed value of Y at X = x, we take all the data having X values
within a suitable interval about x. Then a linear regression is fitted to all
of these points, and the predicted value from this regression at X = x is
taken as the estimate of E(Y |X = x). Actually, loess uses weighted least
squares estimates, which is why it is called a locally weighted least squares
method. The weights are chosen so that points near X = x are given the
most weightb in the calculation of the slope and intercept. Surprisingly, a
good default choice for the interval about x is an interval containing 2/3 of
the data points! The weighting function is devised so that points near the
extremes of this interval receive almost no weight in the calculation of the
slope and intercept.

Because loess uses a moving straight line rather than a moving flat one,
it provides much better behavior at the extremes of the Xs. For example,
one can fit a straight line to the first three data points and then obtain the
predicted value at the lowest X , which takes into account that this X is not
the middle of the three Xs.

loess obtains smoothed values for E(Y ) at each observed value of X .
Estimates for other Xs are obtained by linear interpolation.

The loess algorithm has another component. After making an initial es-
timate of the trend line, loess can look for outliers off this trend. It can
then delete or down-weight those apparent outliers to obtain a more robust
trend estimate. Now, different points will appear to be outliers with respect
to this second trend estimate. The new set of outliers is taken into account
and another trend line is derived. By default, the process stops after these
three iterations. loess works exceptionally well for binary Y as long as the
iterations that look for outliers are not done, that is only one iteration is
performed.

For a singleX , Friedman’s“super smoother”207 is another efficient and flex-
ible nonparametric trend estimator. For both loess and the super smoother
the amount of smoothing can be controlled by the analyst. Hastie and
Tibshirani275 provided an excellent description of smoothing methods and
developed a generalized additive model for multiple Xs, in which each
continuous predictor is fitted with a nonparametric smoother (see Chap-
ter 16). Interactions are not allowed. Cleveland et al.96 have extended two- 6

dimensional smoothers to multiple dimensions without assuming additivity.
Their local regression model is feasible for up to four or so predictors. Local
regression models are extremely flexible, allowing parts of the model to be

b This weight is not to be confused with the regression coefficient; rather the weights
are w1, w2, . . . , wn and the fitting criterion is

∑
n
i wi(Yi − Ŷi)2.
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parametrically specified, and allowing the analyst to choose the amount of
smoothing or the effective number of degrees of freedom of the fit.

Smoothing splines are related to nonparametric smoothers. Here a knot
is placed at every data point, but a penalized likelihood is maximized to
derive the smoothed estimates. Gray237, 238 developed a general method that
is halfway between smoothing splines and regression splines. He pre-specified,
say, 10 fixed knots, but uses a penalized likelihood for estimation. This allows
the analyst to control the effective number of degrees of freedom used.7

Besides using smoothers to estimate regression relationships, smoothers are
valuable for examining trends in residual plots. See Sections 14.6 and 21.2
for examples.

2.4.8 Advantages of Regression Splines
over Other Methods

There are several advantages of regression splines:271

1. Parametric splines are piecewise polynomials and can be fitted using any
existing regression program after the constructed predictors are computed.
Spline regression is equally suitable to multiple linear regression, survival
models, and logistic models for discrete outcomes.

2. Regression coefficients for the spline function are estimated using stan-
dard techniques (maximum likelihood or least squares), and statistical
inferences can readily be drawn. Formal tests of no overall association,
linearity, and additivity can readily be constructed. Confidence limits for
the estimated regression function are derived by standard theory.

3. The fitted spline function directly estimates the transformation that a
predictor should receive to yield linearity in C(Y |X). The fitted spline
transformation sometimes suggests a simple transformation (e.g., square
root) of a predictor that can be used if one is not concerned about the
proper number of degrees of freedom for testing association of the predictor
with the response.

4. The spline function can be used to represent the predictor in the final
model. Nonparametric methods do not yield a prediction equation.

5. Splines can be extended to non-additive models (see below). Multidimen-
sional nonparametric estimators often require burdensome computations.

2.5 Recursive Partitioning: Tree-Based Models

Breiman et al.69 have developed an essentially model-free approach called
classification and regression trees (CART), a form of recursive partitioning.
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For some implementations of CART, we say “essentially” model-free since a
model-based statistic is sometimes chosen as a splitting criterion. The essence
of recursive partitioning is as follows.

1. Find the predictor so that the best possible binary split on that predictor
has a larger value of some statistical criterion than any other split on any
other predictor. For ordinal and continuous predictors, the split is of the
form X < c versus X ≥ c. For polytomous predictors, the split involves
finding the best separation of categories, without preserving order.

2. Within each previously formed subset, find the best predictor and best
split that maximizes the criterion in the subset of observations passing the
previous split.

3. Proceed in like fashion until fewer than k observations remain to be split,
where k is typically 20 to 100.

4. Obtain predicted values using a statistic that summarizes each terminal
node (e.g., mean or proportion).

5. Prune the tree backward so that a tree with the same number of nodes
developed on 0.9 of the data validates best on the remaining 0.1 of the
data (average over the 10 cross-validations). Alternatively, shrink the node
estimates toward the mean, using a progressively stronger shrinkage factor,
until the best cross-validation results.

8

Tree models have the advantage of not requiring any functional form for
the predictors and of not assuming additivity of predictors (i.e., recursive
partitioning can identify complex interactions). Trees can deal with miss-
ing data flexibly. They have the disadvantages of not utilizing continuous
variables effectively and of overfitting in three directions: searching for best
predictors, for best splits, and searching multiple times. The penalty for the
extreme amount of data searching required by recursive partitioning surfaces
when the tree does not cross-validate optimally until it is pruned all the way
back to two or three splits. Thus reliable trees are often not very discrimi-
nating. 9

Tree models are especially useful in messy situations or settings in which
overfitting is not so problematic, such as confounder adjustment using propen-
sity scores117 or in missing value imputation. A major advantage of tree mod-
eling is savings of analyst time, but this is offset by the underfitting needed
to make trees validate.

2.6 Multiple Degree of Freedom Tests of Association

When a factor is a linear or binary term in the regression model, the test
of association for that factor with the response involves testing only a single
regression parameter. Nominal factors and predictors that are represented as
a quadratic or spline function require multiple regression parameters to be
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tested simultaneously in order to assess association with the response. For a
nominal factor having k levels, the overall ANOVA-type test with k − 1 d.f.
tests whether there are any differences in responses between the k categories.
It is recommended that this test be done before attempting to interpret in-
dividual parameter estimates. If the overall test is not significant, it can be
dangerous to rely on individual pairwise comparisons because the type I error
will be increased. Likewise, for a continuous predictor for which linearity is
not assumed, all terms involving the predictor should be tested simultane-
ously to check whether the factor is associated with the outcome. This test
should precede the test for linearity and should usually precede the attempt
to eliminate nonlinear terms. For example, in the model

C(Y |X) = β0 + β1X1 + β2X2 + β3X
2
2 , (2.30)

one should test H0 : β2 = β3 = 0 with 2 d.f. to assess association between
X2 and outcome. In the five-knot restricted cubic spline model

C(Y |X) = β0 + β1X + β2X
′ + β3X

′′ + β4X
′′′, (2.31)

the hypothesis H0 : β1 = . . . = β4 = 0 should be tested with 4 d.f. to
assess whether there is any association between X and Y . If this 4 d.f. test is
insignificant, it is dangerous to interpret the shape of the fitted spline function
because the hypothesis that the overall function is flat has not been rejected.

A dilemma arises when an overall test of association, say one having 4
d.f., is insignificant, the 3 d.f. test for linearity is insignificant, but the 1 d.f.
test for linear association, after deleting nonlinear terms, becomes significant.
Had the test for linearity been borderline significant, it would not have been
warranted to drop these terms in order to test for a linear association. But
with the evidence for nonlinearity not very great, one could attempt to test
for association with 1 d.f. This however is not fully justified, because the 1
d.f. test statistic does not have a χ2 distribution with 1 d.f. since pretesting
was done. The original 4 d.f. test statistic does have a χ2 distribution with 4
d.f. because it was for a pre-specified test.

For quadratic regression, Grambsch and O’Brien234 showed that the 2
d.f. test of association is nearly optimal when pretesting is done, even when
the true relationship is linear. They considered an ordinary regression model
E(Y |X) = β0 + β1X + β2X

2 and studied tests of association between X and
Y . The strategy they studied was as follows. First, fit the quadratic model
and obtain the partial test of H0 : β2 = 0, that is the test of linearity. If this
partial F -test is significant at the α = 0.05 level, report as the final test of
association between X and Y the 2 d.f. F -test of H0 : β1 = β2 = 0. If the
test of linearity is insignificant, the model is refitted without the quadratic
term and the test of association is then a 1 d.f. test, H0 : β1 = 0|β2 = 0.
Grambsch and O’Brien demonstrated that the type I error from this two-
stage test is greater than the stated α, and in fact a fairly accurate P -value
can be obtained if it is computed from an F distribution with 2 numerator
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d.f. even when testing at the second stage. This is because in the original
2 d.f. test of association, the 1 d.f. corresponding to the nonlinear effect is
deleted if the nonlinear effect is very small; that is one is retaining the most
significant part of the 2 d.f. F statistic.

If we use a 2 d.f. F critical value to assess the X effect even when X2 is not
in the model, it is clear that the two-stage approach can only lose power and
hence it has no advantage whatsoever. That is because the sum of squares
due to regression from the quadratic model is greater than the sum of squares
computed from the linear model.

2.7 Assessment of Model Fit

2.7.1 Regression Assumptions

In this section, the regression part of the model is isolated, and methods are
described for validating the regression assumptions or modifying the model
to meet the assumptions. The general linear regression model is

C(Y |X) = Xβ = β0 + β1X1 + β2X2 + . . .+ βkXk. (2.32)

The assumptions of linearity and additivity need to be verified. We begin
with a special case of the general model,

C(Y |X) = β0 + β1X1 + β2X2, (2.33)

where X1 is binary and X2 is continuous. One needs to verify that the prop-
erty of the response C(Y ) is related to X1 and X2 according to Figure 2.4.

There are several methods for checking the fit of this model. The first
method below is based on critiquing the simple model, and the other methods
directly “estimate” the model.

1. Fit the simple linear additive model and critically examine residual plots
for evidence of systematic patterns. For least squares fits one can compute
estimated residuals e = Y −Xβ̂ and box plots of e stratified by X1 and
scatterplots of e versus X1 and Ŷ with trend curves. If one is assuming
constant conditional variance of Y , the spread of the residual distribution
against each of the variables can be checked at the same time. If the nor-
mality assumption is needed (i.e., if significance tests or confidence limits
are used), the distribution of e can be compared with a normal distribu-
tion with mean zero. Advantage: Simplicity. Disadvantages: Standard
residuals can only be computed for continuous uncensored response vari-
ables. The judgment of non-randomness is largely subjective, it is difficult
to detect interaction, and if interaction is present it is difficult to check
any of the other assumptions. Unless trend lines are added to plots, pat-
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Fig. 2.4 Regression assumptions for one binary and one continuous predictor

terns may be difficult to discern if the sample size is very large. Detecting
patterns in residuals does not always inform the analyst of what corrective
action to take, although partial residual plots can be used to estimate the
needed transformations if interaction is absent.

2. Make a scatterplot of Y versus X2 using different symbols according to
values of X1. Advantages: Simplicity, and one can sometimes see all re-
gression patterns including interaction. Disadvantages: Scatterplots can-
not be drawn for binary, categorical, or censored Y . Patterns are difficult
to see if relationships are weak or if the sample size is very large.

3. Stratify the sample by X1 and quantile groups (e.g., deciles) of X2. Within
each X1 ×X2 stratum an estimate of C(Y |X1, X2) is computed. If X1 is
continuous, the same method can be used after grouping X1 into quantile
groups. Advantages: Simplicity, ability to see interaction patterns, can
handle censored Y if care is taken. Disadvantages: Subgrouping requires
relatively large sample sizes and does not use continuous factors effectively
as it does not attempt any interpolation. The ordering of quantile groups is
not utilized by the procedure. Subgroup estimates have low precision (see
p. 488 for an example). Each stratum must contain enough information
to allow trends to be apparent above noise in the data. The method of
grouping chosen (e.g., deciles vs. quintiles vs. rounding) can alter the shape
of the plot.

4. Fit a nonparametric smoother separately for levels of X1 (Section 2.4.7)
relating X2 to Y . Advantages: All regression aspects of the model can
be summarized efficiently with minimal assumptions. Disadvantages:
Does not easily apply to censored Y , and does not easily handle multiple
predictors.
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5. Fit a flexible parametric model that allows for most of the departures from
the linear additive model that you wish to entertain. Advantages: One
framework is used for examining the model assumptions, fitting the model,
and drawing formal inference. Degrees of freedom are well defined and
all aspects of statistical inference “work as advertised.”Disadvantages:
Complexity, and it is generally difficult to allow for interactions when
assessing patterns of effects.

The first four methods each have the disadvantage that if confidence limits
or formal inferences are desired it is difficult to know how many degrees of
freedom were effectively used so that, for example, confidence limits will have
the stated coverage probability. For method five, the restricted cubic spline
function is an excellent tool for estimating the true relationship between X2

and C(Y ) for continuous variables without assuming linearity. By fitting a
model containing X2 expanded into k − 1 terms, where k is the number of
knots, one can obtain an estimate of the function of X2 that could be used
linearly in the model:

Ĉ(Y |X) = β̂0 + β̂1X1 + β̂2X2 + β̂3X
′
2 + β̂4X

′′
2

= β̂0 + β̂1X1 + f̂(X2), (2.34)

where
f̂(X2) = β̂2X2 + β̂3X

′
2 + β̂4X

′′
2 , (2.35)

and X ′
2 and X ′′

2 are constructed spline variables (when k = 4) as described

previously. We call f̂(X2) the spline-estimated transformation ofX2. Plotting

the estimated spline function f̂(X2) versus X2 will generally shed light on
how the effect of X2 should be modeled. If the sample is sufficiently large,
the spline function can be fitted separately for X1 = 0 and X1 = 1, allowing
detection of even unusual interaction patterns. A formal test of linearity in
X2 is obtained by testing H0 : β3 = β4 = 0, using a computationally efficient
score test, for example (Section 9.2.3).

If the model is nonlinear in X2, either a transformation suggested by the
spline function plot (e.g., log(X2)) or the spline function itself (by placing
X2, X

′
2, and X ′′

2 simultaneously in any model fitted) may be used to describe
X2 in the model. If a tentative transformation of X2 is specified, say g(X2),
the adequacy of this transformation can be tested by expanding g(X2) in a
spline function and testing for linearity. If one is concerned only with predic-
tion and not with statistical inference, one can attempt to find a simplifying
transformation for a predictor by plotting g(X2) against f̂(X2) (the estimated
spline transformation) for a variety of g, seeking a linearizing transformation
of X2. When there are nominal or binary predictors in the model in addi-
tion to the continuous predictors, it should be noted that there are no shape
assumptions to verify for the binary/nominal predictors. One need only test
for interactions between these predictors and the others.
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If the model contains more than one continuous predictor, all may be ex-
panded with spline functions in order to test linearity or to describe nonlinear
relationships. If one did desire to assess simultaneously, for example, the lin-
earity of predictors X2 and X3 in the presence of a linear or binary predictor
X1, the model could be specified as

C(Y |X) = β0 + β1X1 + β2X2 + β3X
′
2 + β4X

′′
2

+ β5X3 + β6X
′
3 + β7X

′′
3 , (2.36)

whereX ′
2, X

′′
2 , X

′
3, andX ′′

3 represent components of four knot restricted cubic
spline functions.

The test of linearity for X2 (with 2 d.f.) is H0 : β3 = β4 = 0. The overall
test of linearity for X2 and X3 is H0 : β3 = β4 = β6 = β7 = 0, with 4 d.f.
But as described further in Section 4.1, even though there are many reasons
for allowing relationships to be nonlinear, there are reasons for not testing
the nonlinear components for significance, as this might tempt the analyst to
simplify the model thus distorting inference.234 Testing for linearity is usually
best done to justify to non-statisticians the need for complexity to explain or
predict outcomes.

2.7.2 Modeling and Testing Complex Interactions

For testing interaction between X1 and X2 (after a needed transformation
may have been applied), often a product term (e.g., X1X2) can be added
to the model and its coefficient tested. A more general simultaneous test of
linearity and lack of interaction for a two-variable model in which one variable
is binary (or is assumed linear) is obtained by fitting the model

C(Y |X) = β0 + β1X1 + β2X2 + β3X
′
2 + β4X

′′
2 (2.37)

+ β5X1X2 + β6X1X
′
2 + β7X1X

′′
2

and testing H0 : β3 = . . . = β7 = 0. This formulation allows the shape of the
X2 effect to be completely different for each level of X1. There is virtually
no departure from linearity and additivity that cannot be detected from this
expanded model formulation if the number of knots is adequate and X1 is
binary. For binary logistic models, this method is equivalent to fitting two
separate spline regressions in X2.10

Interactions can be complex when all variables are continuous. An ap-
proximate approach is to reduce the variables to two transformed variables,
in which case interaction may sometimes be approximated by a single product
of the two new variables. A disadvantage of this approach is that the esti-
mates of the transformations for the two variables will be different depending
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on whether interaction terms are adjusted for when estimating“main effects.”
A good compromise method involves fitting interactions of the form X1f(X2)
and X2g(X1):

C(Y |X) = β0 + β1X1 + β2X
′
1 + β3X

′′
1

+ β4X2 + β5X
′
2 + β6X

′′
2

+ β7X1X2 + β8X1X
′
2 + β9X1X

′′
2 (2.38)

+ β10X2X
′
1 + β11X2X

′′
1

(for k = 4 knots for both variables). The test of additivity is H0 : β7 = β8 =
. . . = β11 = 0 with 5 d.f. A test of lack of fit for the simple product interaction
with X2 is H0 : β8 = β9 = 0, and a test of lack of fit for the simple product
interaction with X1 is H0 : β10 = β11 = 0.

A general way to model and test interactions, although one requiring a
larger number of parameters to be estimated, is based on modeling the X1 ×
X2 × Y relationship with a smooth three-dimensional surface. A cubic spline
surface can be constructed by covering the X1 − X2 plane with a grid and
fitting a patch-wise cubic polynomial in two variables. The grid is (ui, vj), i =
1, . . . , k, j = 1, . . . , k, where knots for X1 are (u1, . . . , uk) and knots for X2

are (v1, . . . , vk). The number of parameters can be reduced by constraining
the surface to be of the form aX1 + bX2 + cX1X2 in the lower left and
upper right corners of the plane. The resulting restricted cubic spline surface
is described by a multiple regression model containing spline expansions in
X1 and X2 and all cross-products of the restricted cubic spline components
(e.g., X1X

′
2). If the same number of knots k is used for both predictors,

the number of interaction terms is (k − 1)2. Examples of various ways of
modeling interaction are given in Chapter 10. Spline functions made up of
cross-products of all terms of individual spline functions are called tensor
splines.50, 274 11

The presence of more than two predictors increases the complexity of tests
for interactions because of the number of two-way interactions and because
of the possibility of interaction effects of order higher than two. For example,
in a model containing age, sex, and diabetes, the important interaction could
be that older male diabetics have an exaggerated risk. However, higher-order
interactions are often ignored unless specified a priori based on knowledge of
the subject matter. Indeed, the number of two-way interactions alone is often
too large to allow testing them all with reasonable power while controlling
multiple comparison problems. Often, the only two-way interactions we can
afford to test are those that were thought to be important before examining
the data. A good approach is to test for all such pre-specified interaction
effects with a single global (pooled) test. Then, unless interactions involving
only one of the predictors are of special interest, one can either drop all
interactions or retain all of them.
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For some problems a reasonable approach is, for each predictor separately,
to test simultaneously the joint importance of all interactions involving that
predictor. For p predictors this results in p tests each with p − 1 degrees
of freedom. The multiple comparison problem would then be reduced from
p(p − 1)/2 tests (if all two-way interactions were tested individually) to p
tests.

In the fields of biostatistics and epidemiology, some types of interactions
that have consistently been found to be important in predicting outcomes
and thus may be pre-specified are the following.

1. Interactions between treatment and the severity of disease being treated.
Patients with little disease can receive little benefit.

2. Interactions involving age and risk factors. Older subjects are generally
less affected by risk factors. They had to have been robust to survive to
their current age with risk factors present.

3. Interactions involving age and type of disease. Some diseases are incurable
and have the same prognosis regardless of age. Others are treatable or
have less effect on younger patients.

4. Interactions between a measurement and the state of a subject during a
measurement. Respiration rate measured during sleep may have greater
predictive value and thus have a steeper slope versus outcome than res-
piration rate measured during activity.

5. Interaction between menopausal status and treatment or risk factors.
6. Interactions between race and disease.
7. Interactions between calendar time and treatment. Some treatments have

learning curves causing secular trends in the associations.
8. Interactions between month of the year and other predictors, due to sea-

sonal effects.
9. Interaction between the quality and quantity of a symptom, for example,

daily frequency of chest pain × severity of a typical pain episode.
10. Interactions between study center and treatment.12

2.7.3 Fitting Ordinal Predictors

For the case of an ordinal predictor, spline functions are not useful unless
there are so many categories that in essence the variable is continuous. When
the number of categories k is small (three to five, say), the variable is usu-
ally modeled as a polytomous factor using indicator variables or equivalently
as one linear term and k − 2 indicators. The latter coding facilitates testing
for linearity. For more categories, it may be reasonable to stratify the data
by levels of the variable and to compute summary statistics (e.g., logit pro-
portions for a logistic model) or to examine regression coefficients associated
with indicator variables over categories. Then one can attempt to summarize
the pattern with a linear or some other simple trend. Later hypothesis tests
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must take into account this data-driven scoring (by using > 1 d.f., for exam-
ple), but the scoring can save degrees of freedom when testing for interaction
with other factors. In one dataset, the number of comorbid diseases was used
to summarize the risk of a set of diseases that was too large to model. By
plotting the logit of the proportion of deaths versus the number of diseases,
it was clear that the square of the number of diseases would properly score
the variables.

Sometimes it is useful to code an ordinal predictor with k − 1 indicator
variables of the form [X ≥ vj ], where j = 2, . . . , k and [h] is 1 if h is true,
0 otherwise.648 Although a test of linearity does not arise immediately from
this coding, the regression coefficients are interpreted as amounts of change
from the previous category. A test of whether the last m categories can be
combined with the category k −m does follow easily from this coding.

2.7.4 Distributional Assumptions

The general linear regression model is stated as C(Y |X) = Xβ to highlight its
regression assumptions. For logistic regression models for binary or nominal
responses, there is no distributional assumption if simple random sampling
is used and subjects’ responses are independent. That is, the binary logistic
model and all of its assumptions are contained in the expression logit{Y =
1|X} = Xβ. For ordinary multiple regression with constant variance σ2, we
usually assume that Y −Xβ is normally distributed with mean 0 and variance
σ2. This assumption can be checked by estimating β with β̂ and plotting the
overall distribution of the residuals Y −Xβ̂, the residuals against Ŷ , and the
residuals against each X . For the latter two, the residuals should be normally
distributed within each neighborhood of Ŷ orX . A weaker requirement is that
the overall distribution of residuals is normal; this will be satisfied if all of the
stratified residual distributions are normal. Note a hidden assumption in both
models, namely, that there are no omitted predictors. Other models, such as
the Weibull survival model or the Cox132 proportional hazards model, also
have distributional assumptions that are not fully specified by C(Y |X) = Xβ.
However, regression and distributional assumptions of some of these models
are encapsulated by

C(Y |X) = C(Y = y|X) = d(y) +Xβ (2.39)

for some choice of C. Here C(Y = y|X) is a property of the response Y
evaluated at Y = y, given the predictor values X , and d(y) is a component of
the distribution of Y . For the Cox proportional hazards model, C(Y = y|X)
can be written as the log of the hazard of the event at time y, or equivalently
as the log of the − log of the survival probability at time y, and d(y) can be
thought of as a log hazard function for a “standard” subject.
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If we evaluated the property C(Y = y|X) at predictor values X1 and X2,
the difference in properties is

C(Y = y|X1)− C(Y = y|X2) = d(y) +X1β (2.40)

− [d(y) +X2β]

= (X1 −X2)β,

which is independent of y. One way to verify part of the distributional as-
sumption is to estimate C(Y = y|X1) and C(Y = y|X2) for set values of
X1 and X2 using a method that does not make the assumption, and to plot
C(Y = y|X1) − C(Y = y|X2) versus y. This function should be flat if the
distributional assumption holds. The assumption can be tested formally if
d(y) can be generalized to be a function of X as well as y. A test of whether
d(y|X) depends on X is a test of one part of the distributional assumption.
For example, writing d(y|X) = d(y) +XΓ log(y) where

XΓ = Γ1X1 + Γ2X2 + . . .+ ΓkXk (2.41)

and testing H0 : Γ1 = . . . = Γk = 0 is one way to test whether d(y|X) de-
pends onX . For semiparametric models such as the Cox proportional hazards
model, the only distributional assumption is the one stated above, namely,
that the difference in properties between two subjects depends only on the dif-
ference in the predictors between the two subjects. Other, parametric, models
assume in addition that the property C(Y = y|X) has a specific shape as a
function of y, that is that d(y) has a specific functional form. For example,
the Weibull survival model has a specific assumption regarding the shape of
the hazard or survival distribution as a function of y.

Assessments of distributional assumptions are best understood by applying
these methods to individual models as is demonstrated in later chapters.

2.8 Further Reading

1 References [152, 575, 578] have more information about cubic splines.
2 See Smith578 for a good overview of spline functions.
3 More material about natural splines may be found in de Boor152. McNeil et al.451

discuss the overall smoothness of natural splines in terms of the integral of the
square of the second derivative of the regression function, over the range of
the data. Govindarajulu et al.230 compared restricted cubic splines, penalized
splines, and fractional polynomial532 fits and found that the first two methods
agreed with each other more than with estimated fractional polynomials.

4 A tutorial on restricted cubic splines is in [271].
5 Durrleman and Simon168 provide examples in which knots are allowed to be

estimated as free parameters, jointly with the regression coefficients. They found
that even though the“optimal” knots were often far from a priori knot locations,
the model fits were virtually identical.
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6 Contrast Hastie and Tibshirani’s generalized nonparametric additive models275

with Stone and Koo’s595 additive model in which each continuous predictor is
represented with a restricted cubic spline function.

7 Gray237,238 provided some comparisons with ordinary regression splines, but he
compared penalized regression splines with non-restricted splines with only two
knots. Two knots were chosen so as to limit the degrees of freedom needed by the
regression spline method to a reasonable number. Gray argued that regression
splines are sensitive to knot locations, and he is correct when only two knots
are allowed and no linear tail restrictions are imposed. Two knots also prevent
the (ordinary maximum likelihood) fit from utilizing some local behavior of
the regression relationship. For penalized likelihood estimation using B-splines,
Gray238 provided extensive simulation studies of type I and II error for testing
association in which the true regression function, number of knots, and amount
of likelihood penalization were varied. He studied both normal regression and
Cox regression.

8 Breiman et al.’s original CART method69 used the Gini criterion for splitting.
Later work has used log-likelihoods.109 Segal,562 LeBlanc and Crowley,389 and
Ciampi et al.107,108 and Keleş and Segal342have extended recursive partitioning
to censored survival data using the log-rank statistic as the criterion. Zhang682

extended tree models to handle multivariate binary responses. Schmoor et al.556

used a more general splitting criterion that is useful in therapeutic trials, namely,
a Cox test for main and interacting effects. Davis and Anderson149 used an
exponential survival model as the basis for tree construction. Ahn and Loh7

developed a Cox proportional hazards model adaptation of recursive partition-
ing along with bootstrap and cross-validation-based methods to protect against
“over-splitting.”The Cox-based regression tree methods of Ciampi et al.107 have
a unique feature that allows for construction of “treatment interaction trees”
with hierarchical adjustment for baseline variables. Zhang et al.683 provided a
new method for handling missing predictor values that is simpler than using
surrogate splits. See [34,140,270,629] for examples using recursive partitioning
for binary responses in which the prediction trees did not validate well.

9 443,629 discuss other problems with tree models.
10 For ordinary linear models, the regression estimates are the same as obtained

with separate fits, but standard errors are different (since a pooled standard
error is used for the combined fit). For Cox132 regression, separate fits can be
slightly different since each subset would use a separate ranking of Y .

11 Gray’s penalized fixed-knot regression splines can be useful for estimating joint
effects of two continuous variables while allowing the analyst to control the
effective number of degrees of freedom in the fit [237, 238, Section 3.2]. When
Y is a non-censored variable, the local regression model of Cleveland et al.,96

a multidimensional scatterplot smoother mentioned in Section 2.4.7, provides a
good graphical assessment of the joint effects of several predictors so that the
forms of interactions can be chosen. See Wang et al.653 and Gustafson248 for
several other flexible approaches to analyzing interactions among continuous
variables.

12 Study site by treatment interaction is often the interaction that is worried about
the most in multi-center randomized clinical trials, because regulatory agencies
are concerned with consistency of treatment effects over study centers. However,
this type of interaction is usually the weakest and is difficult to assess when
there are many centers due to the number of interaction parameters to estimate.
Schemper545 discusses various types of interactions and a general nonparametric
test for interaction.
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2.9 Problems

For problems 1 to 3, state each model statistically, identifying each predictor
with one or more component variables. Identify and interpret each regression
parameter except for coefficients of nonlinear terms in spline functions. State
each hypothesis below as a formal statistical hypothesis involving the proper
parameters, and give the (numerator) degrees of freedom of the test. State
alternative hypotheses carefully with respect to unions or intersections of
conditions and list the type of alternatives to the null hypothesis that the
test is designed to detect.c

1. A property of Y such as the mean is linear in age and blood pressure
and there may be an interaction between the two predictors. Test H0 :
there is no interaction between age and blood pressure. Also test H0 :
blood pressure is not associated with Y (in any fashion). State the effect
of blood pressure as a function of age, and the effect of age as a function
of blood pressure.

2. Consider a linear additive model involving three treatments (control, drug
Z, and drug Q) and one continuous adjustment variable, age. Test H0 :
treatment group is not associated with response, adjusted for age. Also
test H0 : response for drug Z has the same property as the response for
drug Q, adjusted for age.

3. Consider models each with two predictors, temperature and white blood
count (WBC), for which temperature is always assumed to be linearly
related to the appropriate property of the response, and WBC may or
may not be linear (depending on the particular model you formulate for
each question). Test:

a. H0 : WBC is not associated with the response versus Ha : WBC is
linearly associated with the property of the response.

b. H0 : WBC is not associated with Y versus Ha : WBC is quadratically
associated with Y . Also write down the formal test of linearity against
this quadratic alternative.

c. H0 : WBC is not associated with Y versus Ha : WBC related to the
property of the response through a smooth spline function; for example,
for WBC the model requires the variables WBC, WBC′, and WBC′′

where WBC′ and WBC′′ represent nonlinear components (if there are
four knots in a restricted cubic spline function). Also write down the
formal test of linearity against this spline function alternative.

d. Test for a lack of fit (combined nonlinearity or non-additivity) in an
overall model that takes the form of an interaction between temperature
and WBC, allowing WBC to be modeled with a smooth spline function.

4. For a fitted model Y = a+ bX + cX2 derive the estimate of the effect on
Y of changing X from x1 to x2.

c In other words, under what assumptions does the test have maximum power?
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5. In “The Class of 1988: A Statistical Portrait,” the College Board reported
mean SAT scores for each state. Use an ordinary least squares multiple
regression model to study the mean verbal SAT score as a function of the
percentage of students taking the test in each state. Provide plots of fitted
functions and defend your choice of the “best” fit. Make sure the shape of
the chosen fit agrees with what you know about the variables. Add the
raw data points to plots.

a. Fit a linear spline function with a knot at X = 50%. Plot the data
and the fitted function and do a formal test for linearity and a test
for association between X and Y . Give a detailed interpretation of the
estimated coefficients in the linear spline model, and use the partial
t-test to test linearity in this model.

b. Fit a restricted cubic spline function with knots at X = 6, 12, 58, and
68% (not percentile).d Plot the fitted function and do a formal test of
association between X and Y . Do two tests of linearity that test the
same hypothesis:
i. by using a contrast to simultaneously test the correct set of coeffi-

cients against zero (done by the anova function in rms);e

ii. by comparing the R2 from the complex model with that from a simple
linear model using a partial F -test.

Explain why the tests of linearity have the d.f. they have.
c. Using subject matter knowledge, pick a final model (from among the

previous models or using another one) that makes sense.

The data are found in Table 2.4 and may be created in R using the sat.r

code on the RMS course web site.
6. Derive the formulas for the restricted cubic spline component variables

without cubing or squaring any terms.
7. Prove that each component variable is linear in X when X ≥ tk, the

last knot, using general principles and not algebra or calculus. Derive an
expression for the restricted spline regression function when X ≥ tk.

8. Consider a two–stage procedure in which one tests for linearity of the effect
of a predictor X on a property of the response C(Y |X) against a quadratic
alternative. If the two–tailed test of linearity is significant at the α level,
a two d.f. test of association between X and Y is done. If the test for
linearity is not significant, the square term is dropped and a linear model
is fitted. The test of association between X and Y is then (apparently) a
one d.f. test.

a. Write a formal expression for the test statistic for association.

d Note: To pre-specify knots for restricted cubic spline functions, use something like
rcs(predictor, c(t1,t2,t3,t4)), where the knot locations are t1, t2, t3, t4.
e Note that anova in rms computes all needed test statistics from a single model fit
object.
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b. Write an expression for the nominal P–value for testing association
using this strategy.

c. Write an expression for the actual P–value or alternatively for the type–
I error if using a fixed critical value for the test of association.

d. For the same two–stage strategy consider an estimate of the effect on
C(Y |X) of increasing X from a to b. Write a brief symbolic algorithm
for deriving a true two–sided 1−α confidence interval for the b : a effect
(difference in C(Y )) using the bootstrap.

Table 2.4 SAT data from the College Board, 1988

% Taking SAT Mean Verbal % Taking SAT Mean Verbal
(X) Score (Y ) (X) Score (Y )

4 482 24 440
5 498 29 460
5 513 37 448
6 498 43 441
6 511 44 424
7 479 45 417
9 480 49 422
9 483 50 441
10 475 52 408
10 476 55 412
10 487 57 400
10 494 58 401
12 474 59 430
12 478 60 433
13 457 62 433
13 485 63 404
14 451 63 424
14 471 63 430
14 473 64 431
16 467 64 437
17 470 68 446
18 464 69 424
20 471 72 420
22 455 73 432
23 452 81 436



Chapter 3

Missing Data

3.1 Types of Missing Data

There are missing data in the majority of datasets one is likely to encounter.
Before discussing some of the problems of analyzing data in which some
variables are missing for some subjects, we define some nomenclature. 1

Missing completely at random (MCAR)

Data are missing for reasons that are unrelated to any characteristics or re-
sponses for the subject, including the value of the missing value, were it to
be known. Examples include missing laboratory measurements because of a
dropped test tube (if it was not dropped because of knowledge of any mea-
surements), a study that ran out of funds before some subjects could return
for follow-up visits, and a survey in which a subject omitted her response to
a question for reasons unrelated to the response she would have made or to
any other of her characteristics.

Missing at random (MAR)

Data are not missing at random, but the probability that a value is missing
depends on values of variables that were actually measured. As an example,
consider a survey in which females are less likely to provide their personal
income in general (but the likelihood of responding is independent of her
actual income). If we know the sex of every subject and have income levels
for some of the females, unbiased sex-specific income estimates can be made.
That is because the incomes we do have for some of the females are a random
sample of all females’ incomes. Another way of saying that a variable is MAR
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is that given the values of other available variables, subjects having missing
values are only randomly different from other subjects.535 Or to paraphrase
Greenland and Finkle,242 for MAR the missingness of a covariable cannot
depend on unobserved covariable values; for example whether a predictor is
observed cannot depend on another predictor when the latter is missing but
it can depend on the latter when it is observed. MAR and MCAR data are
also called ignorable non-responses.

Informative missing (IM)

The tendency for a variable to be missing is a function of data that are not
available, including the case when data tend to be missing if their true values
are systematically higher or lower. An example is when subjects with lower
income levels or very high incomes are less likely to provide their personal in-
come in an interview. IM is also called nonignorable non-response and missing
not at random (MNAR).

IM is the most difficult type of missing data to handle. In many cases, there
is no fix for IM nor is there a way to use the data to test for the existence of
IM. External considerations must dictate the choice of missing data models,
and there are few clues for specifying a model under IM. MCAR is the easiest
case to handle. Our ability to correctly analyze MAR data depends on the
availability of other variables (the sex of the subject in the example above).
Most of the methods available for dealing with missing data assume the data
are MAR. Fortunately, even though the MAR assumption is not testable, it
may hold approximately if enough variables are included in the imputation
models256.

3.2 Prelude to Modeling

No matter whether one deletes incomplete cases, carefully imputes (esti-
mates) missing data, or uses a full maximum likelihood or Bayesian tech-
niques to incorporate partial data, it is beneficial to characterize patterns
of missingness using exploratory data analysis techniques. These techniques
include binary logistic models and recursive partitioning for predicting the
probability that a given variable is missing. Patterns of missingness should be
reported to help readers understand the limitations of incomplete data. If you
do decide to use imputation, it is also important to describe how variables are
simultaneously missing. A cluster analysis of missing value status of all the
variables is useful here. This can uncover cases where imputation is not as ef-
fective. For example, if the only variable moderately related to diastolic blood
pressure is systolic pressure, but both pressures are missing on the same sub-
jects, systolic pressure cannot be used to estimate diastolic blood pressure. R
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functions naclus and naplot in the Hmisc package (see p. 142) can help detect
how variables are simultaneously missing. Recursive partitioning (regression
tree) algorithms (see Section 2.5) are invaluable for describing which kinds of
subjects are missing on a variable. Logistic regression is also an excellent tool
for this purpose. A later example (p. 302) demonstrates these procedures.

It can also be helpful to explore the distribution of non-missing Y by the
number of missing variables in X (including zero, i.e., complete cases on X).

3.3 Missing Values for Different Types
of Response Variables

When the response variable Y is collected serially but some subjects drop out
of the study before completion, there are many ways of dealing with partial
information42, 412, 480 including multiple imputation in phases,381 or efficiently
analyzing all available serial data using a full likelihood model. When Y is the
time until an event, there are actually no missing values of Y but follow-up
will be curtailed for some subjects. That leaves the case where the response
is completely measured once.

It is common practice to discard subjects having missing Y . Before doing
so, at minimum an analysis should be done to characterize the tendency
for Y to be missing, as just described. For example, logistic regression or
recursive partitioning can be used to predict whether Y is missing and to
test for systematic tendencies as opposed to Y being missing completely at
random. In many models, though, more efficient and less biased estimates of
regression coefficients can be made by also utilizing observations missing on
Y that are non-missing on X . Hence there is a definite place for imputation
of Y . von Hippel645 found advantages of using all variables to impute all
others, and once imputation is finished, discarding those observations having
missing Y . However if missing Y values are MCAR, up-front deletion of cases
having missing Y may sometimes be preferred, as imputation requires correct
specification of the imputation model. 2

3.4 Problems with Simple Alternatives
to Imputation

Incomplete predictor information is a very common missing data problem.
Statistical software packages use casewise deletion in handling missing predic-
tors; that is, any subject having any predictor or Y missing will be excluded
from a regression analysis. Casewise deletion results in regression coefficient
estimates that can be terribly biased, imprecise, or both353. First consider an
example where bias is the problem. Suppose that the response is death and
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the predictors are age, sex, and blood pressure, and that age and sex were
recorded for every subject. Suppose that blood pressure was not measured
for a fraction of 0.10 of the subjects, and the most common reason for not
obtaining a blood pressure was that the subject was about to die. Deletion
of these very sick patients will cause a major bias (downward) in the model’s
intercept parameter. In general, casewise deletion will bias the estimate of3

the model’s intercept parameter (as well as others) when the probability of
a case being incomplete is related to Y and not just to X [422, Example
3.3]. van der Heijden et al.628 discuss how complete case analysis (casewise
deletion) usually assumes MCAR.

Now consider an example in which casewise deletion of incomplete records
is inefficient. The inefficiency comes from the reduction of sample size, which
causes standard errors to increase,162 confidence intervals to widen, and power
of tests of association and tests of lack of fit to decrease. Suppose that the
response is the presence of coronary artery disease and the predictors are
age, sex, LDL cholesterol, HDL cholesterol, blood pressure, triglyceride, and
smoking status. Suppose that age, sex, and smoking are recorded for all sub-
jects, but that LDL is missing in 0.18 of the subjects, HDL is missing in 0.20,
and triglyceride is missing in 0.21. Assume that all missing data are MCAR
and that all of the subjects missing LDL are also missing HDL and that
overall 0.28 of the subjects have one or more predictors missing and hence
would be excluded from the analysis. If total cholesterol were known on every
subject, even though it does not appear in the model, it (along perhaps with
age and sex) can be used to estimate (impute) LDL and HDL cholesterol and
triglyceride, perhaps using regression equations from other studies. Doing the
analysis on a “filled in” dataset will result in more precise estimates because
the sample size would then include the other 0.28 of the subjects.

In general, observations should only be discarded if the MCAR assump-
tion is justified, there is a rarely missing predictor of overriding importance
that cannot be reliably imputed from other information, or if the fraction of
observations excluded is very small and the original sample size is large. Even
then, there is no advantage of such deletion other than saving analyst time.
If a predictor is MAR but its missingness depends on Y , casewise deletion is
biased.

The first blood pressure example points out why it can be dangerous to
handle missing values by adding a dummy variable to the model. Many ana-
lysts would set missing blood pressures to a constant (it doesn’t matter which
constant) and add a variable to the model such as is.na(blood.pressure) in
R notation. The coefficient for the latter dummy variable will be quite large
in the earlier example, and the model will appear to have great ability to
predict death. This is because some of the left-hand side of the model con-
taminates the right-hand side; that is, is.na(blood.pressure) is correlated
with death. For categorical variables, another common practice is to add a4

new category to denote missing, adding one more degree of freedom to the
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predictor and changing its meaning.a Jones326, Allison [12, pp. 9–11], Don-
ders et al.161, Knol et al.353 and van der Heijden et al.628 describe why both
of these missing-indicator methods are invalid even when MCAR holds. 5

3.5 Strategies for Developing an Imputation Model

Except in special circumstances that usually involve only very simple models,
the primary alternative to deleting incomplete observations is imputation of
the missing values. Many non-statisticians find the notion of estimating data
distasteful, but the way to think about imputation of missing values is that
“making up” data is better than discarding valuable data. It is especially dis-
tressing to have to delete subjects who are missing on an adjustment variable
when a major variable of interest is not missing. So one goal of imputation
is to use as much information as possible for examining any one predictor’s
adjusted association with Y . The overall goal of imputation is to preserve the
information and meaning of the non-missing data.

At this point the analyst must make some decisions about the information
to use in computing predicted values for missing values.

1. Imputation of missing values for one of the variables can ignore all other
information. Missing values can be filled in by sampling non-missing values
of the variable, or by using a constant such as the median or mean non-
missing value.

2. Imputation algorithms can be based only on external information not oth-
erwise used in the model for Y in addition to variables included in later
modeling. For example, family income can be imputed on the basis of loca-
tion of residence when such information is to remain confidential for other
aspects of the analysis or when such information would require too many
degrees of freedom to be spent in the ultimate response model.

3. Imputations can be derived by only analyzing interrelationships among
the Xs.

4. Imputations can use relationships among the Xs and between X and Y .
5. Imputations can use X , Y , and auxiliary variables not in the model

predicting Y .
6. Imputations can take into account the reason for non-response if known.

The model to estimate the missing values in a sometimes-missing (target)
variable should include all variables that are either

a This may work if values are “missing” because of “not applicable”, e.g. one has a
measure of marital happiness, dichotomized as high or low, but the sample contains
some unmarried people. One could have a 3-category variable with values high, low,
and unmarried (Paul Allison, IMPUTE e-mail list, 4Jul09).
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1. related to the missing data mechanism;
2. have distributions that differ between subjects that have the target variable

missing and those that have it measured;
3. are associated with the target variable when it is not missing; or
4. are included in the final response model43.

The imputation and analysis (response) models should be “congenial” or the
imputation model should be more general than the response model or make
well-founded assumptions256.

When a variable, say Xj , is to be included as a predictor of Y , and Xj

is sometimes missing, ignoring the relationship between Xj and Y for those
observations for which both are known will bias regression coefficients for
Xj toward zero in the outcome model.421 On the other hand, using Y to
singly impute Xj using a conditional mean will cause a large inflation in
the apparent importance of Xj in the final model. In other words, when the
missing Xj are replaced with a mean that is conditional on Y without a
random component, this will result in a falsely strong relationship between
the imputed Xj values and Y .

At first glance it might seem that using Y to impute one or more of the Xs,
even with allowance for the correct amount of random variation, would result
in a circular analysis in which the importance of the Xs will be exaggerated.
But the relationship between X and Y in the subset of imputed observations
will only be as strong as the associations betweenX and Y that are evidenced
by the non-missing data. In other words, regression coefficients estimated
from a dataset that is completed by imputation will not in general be biased
high as long as the imputed values have similar variation as non-missing data
values.

The next important decision about developing imputation algorithms is
the choice of how missing values are estimated.

1. Missings can be estimated using single “best guesses” (e.g., predicted con-
ditional expected values or means) based on relationships between non-
missing values. This is called single imputation of conditional means.

2. Missing Xj (or Y ) can be estimated using single individual predicted val-
ues, where by predicted value we mean a random variable value from the
whole conditional distribution of Xj. If one uses ordinary multiple regres-
sion to estimate Xj from Y and the other Xs, a random residual would
be added to the predicted mean value. If assuming a normal distribution
for Xj conditional on the other data, such a residual could be computed
by a Gaussian random number generator given an estimate of the residual
standard deviation. If normality is not assumed, the residual could be a
randomly chosen residual from the actual computed residuals. When m
missing values need imputation for Xj, the residuals could be sampled
with replacement from the entire vector of residuals as in the bootstrap.
Better still according to Rubin and Schenker535 would be to use the “ap-
proximate Bayesian bootstrap” which involves sampling n residuals with
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replacement from the original n estimated residuals (from observations not
missing on Xj), then sampling m residuals with replacement from the first
sampled set. 6

3. More than one random predicted value (as just defined) can be generated
for each missing value. This process is called multiple imputation and it
has many advantages over the other methods in general. This is discussed
in Section 3.8.

4. Matching methods can be used to obtain random draws of other subject’s
values to replace missing values. Nearest neighbor matching can be used
to select a subject that is “close” to the subject in need of imputation,
on the basis of a series of variables. This method requires the analyst to
make decisions about what constitutes “closeness.”To simplify the match-
ing process into a single dimension, Little420 proposed the predictive mean
matching method where matching is done on the basis of predicted values
from a regression model for predicting the sometimes-missing variable (sec-
tion 3.7). According to Little, in large samples predictive mean matching
may be more robust to model misspecification than the method of adding
a random residual to the subject’s predicted value, but because of diffi-
culties in finding matches the random residual method may be better in
smaller samples. The random residual method may be easier to use when
multiple imputations are needed, but care must be taken to create the
correct degree of uncertainty in residuals. 7

What if Xj needs to be imputed for some subjects based on other variables
that themselves may be missing on the same subjects missing on Xj? This is
a place where recursive partitioning with “surrogate splits” in case of missing
predictors may be a good method for developing imputations (see Section 2.5
and p. 142). If using regression to estimate missing values, an algorithm
to cycle through all sometimes-missing variables for multiple iterations may
perform well. This algorithm is used by the R transcan function described
in Section 4.7.4 as well as the to–be–described aregImpute function. First, all
missing values are initialized to medians (modes for categorical variables).
Then every time missing values are estimated for a certain variable, those
estimates are inserted the next time the variable is used to predict other
sometimes-missing variables.

If you want to assess the importance of a specific predictor that is fre-
quently missing, it is a good idea to perform a sensitivity analysis in which
all observations containing imputed values for that predictor are temporarily
deleted. The test based on a model that included the imputed values may be
diluted by the imputation or it may test the wrong hypothesis, especially if
Y is not used in imputing X .

Little argues for down-weighting observations containing imputations, to
obtain a more accurate variance–covariance matrix. For the ordinary linear
model, the weights have been worked out for some cases [421, p. 1231].
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3.6 Single Conditional Mean Imputation

For a continuous or binary X that is unrelated to all other predictor vari-
ables, the mean or median may be substituted for missing values without
much loss of efficiency,162 although regression coefficients will be biased low
since Y was not utilized in the imputation. When the variable of interest
is related to the other Xs, it is far more efficient to use an individual pre-
dictive model for each X based on the other variables.79, 525, 612 The “best
guess” imputation method fills in missings with predicted expected values
using the multivariable imputation model based on non-missing datab. It is
true that conditional means are the best estimates of unknown values, but
except perhaps for binary logistic regression621, 623 their use will result in bi-
ased estimates and very biased (low) variance estimates. The latter problem
arises from the reduced variability of imputed values [174, p. 464].

Tree-based models (Section 2.5) may be very useful for imputation since
they do not require linearity or additivity assumptions, although such models
often have poor discrimination when they don’t overfit. When a continuous
X being imputed needs to be non-monotonically transformed to best relate
it to the other Xs (e.g., blood pressure vs. heart rate), trees and ordinary
regression are inadequate. Here a general transformation modeling procedure
(Section 4.7) may be needed.

Schemper et al.551, 553 proposed imputing missing binary covariables by
predicted probabilities. For categorical sometimes-missing variables, imputa-
tion models can be derived using polytomous logistic regression or a classifi-
cation tree method. For missing values, the most likely value for each subject
(from the series of predicted probabilities from the logistic or recursive par-
titioning model) can be substituted to avoid creating a new category that is
falsely highly correlated with Y . For an ordinal X , the predicted mean value
(possibly rounded to the nearest actual data value) or median value from an
ordinal logistic model is sometimes useful.8

3.7 Predictive Mean Matching

In predictive mean matching422 (PMM), one replaces a missing (NA) value
for the target variable being imputed with the actual value from a donor
observation. Donors are identified by matching in only one dimension, namely
the predicted value (e.g., predicted mean) of the target. Key considerations
are how to

b Predictors of the target variable include all the other Xs along with auxiliary
variables that are not included in the final outcome model, as long as they precede
the variable being imputed in the causal chain (unlike with multiple imputation).
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1. model the target when it is not NA

2. match donors on predicted values
3. avoid overuse of “good” donors to disallow excessive ties in imputed data
4. account for all uncertainties (section 3.8).

The predictive model for each target variable uses any outcome variables, all
predictors in the final outcome model, plus any needed auxiliary variables.
The modeling method should be flexible, not assuming linearity. Many meth-
ods will suffice; parametric additive models are often good choices. Beauties
of PMM include the lack of need for distributional assumptions (as no resid-
uals are calculated), and predicted values need only be monotonically related
to real predicted valuesc

In the original PMM method the donor for an NA was the complete obser-
vation whose predicted target was closest to the predicted value of the target
from all complete observationsd. This approach can result in some donors
being used repeatedly. This can be addressed by sampling from a multino-
mial distribution, where the probabilities are scaled distances of all potential
donors’ predictions to the predicted value y∗ of the missing target. Tukey’s
tricube function (used in loess) is a good weighting function, implemented in
the Hmisc aregImpute function:

wi = (1−min(di/s, 1)
3)3,

di = |ŷi − y∗| (3.1)

s = 0.2×mean|ŷi − y∗|.

s above is a good default scale factor, and the wi are scaled so that
∑

wi = 1.

3.8 Multiple Imputation

Imputing missing values and then doing an ordinary analysis as if the imputed
values were real measurements is usually better than excluding subjects with
incomplete data. However, ordinary formulas for standard errors and other
statistics are invalid unless imputation is taken into account.651 Methods for
properly accounting for having incomplete data can be complex. The boot-
strap (described later) is an easy method to implement, but the computations
can be slowe.

c Thus when modeling binary or categorical targets one can frequently take least
squares shortcuts in place of maximum likelihood for binary, ordinal, or multinomial
logistic models.
d 662 discusses an alternative method based on choosing a donor observation at
random from the q closest matches (q = 3, for example).
e To use the bootstrap to correctly estimate variances of regression coefficients, one
must repeat the imputation process and the model fitting perhaps 100 times using a
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Multiple imputation uses random draws from the conditional distribu-
tion of the target variable given the other variables (and any additional in-
formation that is relevant)85, 417, 421, 536. The additional information used to9

predict the missing values can contain any variables that are potentially pre-
dictive, including variables measured in the future; the causal chain is not
relevant.421, 463 When a regression model is used for imputation, the process
involves adding a random residual to the “best guess” for missing values, to
yield the same conditional variance as the original variable. Methods for esti-
mating residuals were listed in Section 3.5. To properly account for variability
due to unknown values, the imputation is repeated M times, where M ≥ 3.
Each repetition results in a “completed” dataset that is analyzed using the
standard method. Parameter estimates are averaged over these multiple im-
putations to obtain better estimates than those from single imputation. The
variance–covariance matrix of the averaged parameter estimates, adjusted for
variability due to imputation, is estimated using422

V = M−1
M∑
i

Vi +
M + 1

M
B, (3.2)

where Vi is the ordinary complete data estimate of the variance–covariance
matrix for the model parameters from the ith imputation, and B is the
between-imputation sample variance–covariance matrix, the diagonal entries
of which are the ordinary sample variances of the M parameter estimates.10

After running aregImpute (or MICE) you can run the Hmisc packages’s
fit.mult.impute function to fit the chosen model separately for each artificially
completed dataset corresponding to each imputation. After fit.mult.impute

fits all of the models, it averages the sets of regression coefficients and com-
putes variance and covariance estimates that are adjusted for imputation
(using Eq. 3.2).

White and Royston661 provide a method for multiply imputing missing
covariate values using censored survival time data in the context of the Cox
proportional hazards model.

White et al.662 recommend choosing the number of imputations M so
that the key inferential statistics are very reproducible should the imputation
analysis be repeated. They suggest the use of 100f imputations when f is
the fraction of cases that are incomplete. See also [85, Section 2.7] and232.
Extreme amount of missing data does not prevent one from using multiple
imputation, because alternatives are worse321. Horton and Lipsitz302 also
have a good overview of multiple imputation and a review of several software
packages that implement PMM.

Caution: Multiple imputation methods can generate imputations hav-
ing very reasonable distributions but still not having the property that final

resampling procedure174,566 (see Section 5.2). Still, the bootstrap can estimate the
right variance for the wrong parameter estimates if the imputations are not done
correctly.
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response model regression coefficients have nominal confidence interval cov-
erage. Among other things, it is worth checking that imputations generate
the correct collinearities among covariates.

3.8.1 The aregImpute and Other Chained Equations
Approaches

A flexible approach to multiple imputation that handles a wide variety of
target variables to be imputed and allows for multiple variables to be miss-
ing on the same subject is the chained equation method. With a chained
equations approach, each target variable is predicted by a regression model
conditional on all other variables in the model, plus other variables. An it-
erative process cycles through all target variables to impute all missing val-
ues627. This approach is used in the MICE algorithm (multiple imputation using
chained equations) implemented in R and other systems. The chained equa-
tion method does not attempt to use the full Bayesian multivariate model for
all target variables, which makes it more flexible and easy to use but leaves it
open to creating improper imputations, e.g., imputing conflicting values for
different target variables. However, simulation studies627 so far have demon-
strated very good performance of imputation based on chained equations in
non-complex situations.

The aregImpute algorithm463 takes all aspects of uncertainty into account
using the bootstrap while using the same estimation procedures as transcan

(section 4.7). Different bootstrap resamples used for each imputation by fit-
ting a flexible additive model on a sample with replacement from the original
data. This model is used to predict all of the original missing and non-missing
values for the target variable for the current imputation. aregImpute uses flex-
ible parametric additive regression spline models to predict target variables.
There is an option to allow target variables to be optimally transformed, even
non-monotonically (but this can overfit). The function implements regression
imputation based on adding random residuals to predicted means, but its
real value lies in implementing a wide variety of PMM algorithms.

The default method used by aregImpute is (weighted) PMM so that
no residuals or distributional assumptions are required. The default PMM
matching used is van Buuren’s “Type 1”matching [85, Section 3.4.2] to cap-
ture the right amount of uncertainty. Here one computes predicted values
for missing values using a regression fit on the bootstrap sample, and finds
donor observations by matching those predictions to predictions from poten-
tial donors using the regression fit from the original sample of complete obser-
vations. When a predictor of the target variable is missing, it is first imputed
from its last imputation when it was a target variable. The first 3 iterations
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Table 3.1 Summary of Methods for Dealing with Missing Values

Method Deletion Single Multiple

Allows nonrandom missing – x x
Reduces sample size x – –

Apparent S.E. of β̂ too low – x –

Increases real S.E. of β̂ x – –

β̂ biased if not MCAR x –

of the process are ignored (“burn-in”). aregImpute seems to perform as well as
MICE but runs significantly faster and allows for nonlinear relationships.11

Here is an example using the R Hmisc and rms packages.

a ← aregImpute (∼ age + sex + bp + death +

heart.attack.before.death ,

data =mydata , n.impute =5)

f ← fit.mult.impute (death ∼ rcs(age ,3) + sex +

rcs(bp ,5), lrm , a, data =mydata )

3.9 Diagnostics

One diagnostic that can be helpful in assessing the MCAR assumption is to
compare the distribution of non-missing Y for those subjects having com-
plete X with those having incomplete X . On the other hand, Yucel and
Zaslavsky681 developed a diagnostic that is useful for checking the imputa-
tions themselves. In solving a problem related to imputing binary variables
using continuous data models, they proposed a simple approach. Suppose
we were interested in the reasonableness of imputed values for a sometimes-
missing predictor Xj . Duplicate the entire dataset, but in the duplicated
observations set all values of Xj to missing. Develop imputed values for the
missing values of Xj , and in the observations of the duplicated portion of the
dataset corresponding to originally non-missing values of Xj, compare the
distribution of imputed Xj with the original values of Xj .12

3.10 Summary and Rough Guidelines

Table 3.1 summarizes the advantages and disadvantages of three methods of
dealing with missing data. Here “Single” refers to single conditional mean im-
putation (which cannot utilize Y ) and “Multiple” refers to multiple random-
draw imputation (which can incorporate Y ).
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The following contains crude guidelines. Simulation studies are needed to
refine the recommendations. Here f refers to the proportion of observations
having any variables missing.

f < 0.03: It doesn’t matter very much how you impute missings or whether
you adjust variance of regression coefficient estimates for having im-
puted data in this case. For continuous variables imputing missings with
the median non-missing value is adequate; for categorical predictors the
most frequent category can be used. Complete case analysis is also an
option here. Multiple imputation may be needed to check that the simple
approach “worked.”

f ≥ 0.03: Use multiple imputation with number of imputations equal to
max(5, 100f). Fewer imputations may be possible with very large sample
sizes. Type 1 predictive mean matching is usually preferred, with weighted
selection of donors. Account for imputation in estimating the covariance
matrix for final parameter estimates. Use the t distribution instead of the
Gaussian distribution for tests and confidence intervals, if possible, using
the estimated d.f. for the parameter estimates.

Multiple predictors frequently missing: More imputations may be required.
Perform a “sensitivity to order” analysis by creating multiple imputations
using different orderings of sometimes missing variables. It may be ben-
eficial to place the variable with the highest number of NAs first so that
initialization of other missing variables to medians will have less impact.

It is important to note that the reasons for missing data are more important
determinants of how missing values should be handled than is the quantity
of missing values.

If the main interest is prediction and not interpretation or inference about
individual effects, it is worth trying a simple imputation (e.g., median or nor-
mal value substitution) to see if the resulting model predicts the response
almost as well as one developed after using customized imputation. But it
is not appropriate to use the dummy variable or extra category method,
because these methods steal information from Y and bias all β̂s. Clark and 13

Altman110 presented a nice example of the use of multiple imputation for
developing a prognostic model. Marshall et al.442 developed a useful method
for obtaining predictions on future observations when some of the needed
predictors are unavailable. Their method uses an approximate re-fit of the
original model for available predictors only, utilizing only the coefficient esti-
mates and covariance matrix from the original fit. Little and An418 also have
an excellent review of imputation methods and developed several approxi-
mate formulas for understanding properties of various estimators. They also
developed a method combining imputation of missing values with propensity
score modeling of the probability of missingness.
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3.11 Further Reading

1 These types of missing data are well described in an excellent review article
on missing data by Schafer and Graham542. A good introductory article on
missing data and imputation is by Donders et al.161 and a good overview of
multiple imputation is by White et al.662 and Harel and Zhou256. Paul Allison’s
booklet12 and van Buuren’s book85 are also excellent practical treatments.

2 Crawford et al.138 give an example where responses are not MCAR for which
deleting subjects with missing responses resulted in a biased estimate of the
response distribution. They found that multiple imputation of the response re-
sulted in much improved estimates. Wood et al.673 have a good review of how
missing response data are typically handled in randomized trial reports, with
recommendations for improvements. Barnes et al.42 have a good overview of
imputation methods and a comparison of bias and confidence interval cover-
age for the methods when applied to longitudinal data with a small number
of subjects. Twist et al.617 found instability in using multiple imputation of
longitudinal data, and advantages of using instead full likelihood models.

3 See van Buuren et al.626 for an example in which subjects having missing base-
line blood pressure had shorter survival time. Joseph et al.327 provide examples
demonstrating difficulties with casewise deletion and single imputation, and
comment on the robustness of multiple imputation methods to violations of
assumptions.

4 Another problem with the missingness indicator approach arises when more
than one predictor is missing and these predictors are missing on almost the
same subjects. The missingness indicator variables will be collinear; that is
impossible to disentangle.326

5 See [623, pp. 2645–2646] for several problems with the “missing category” ap-
proach. A clear example is in161 where covariates X1,X2 have true β1 = 1, β2 =
0 and X1 is MCAR. Adding a missingness indicator for X1 as a covariate re-
sulted in β̂1 = 0.55, β̂2 = 0.51 because in the missing observations the constant
X1 was uncorrelated with X2. D’Agostino and Rubin146 developed methods for
propensity score modeling that allow for missing data. They mentioned that ex-
tra categories may be added to allow for missing data in propensity models and
that adding indicator variables describing patterns of missingness will also allow
the analyst to match on missingness patterns when comparing non-randomly
assigned treatments.

6 Harel and Zhou256 and Siddique569 discuss the approximate Bayesian bootstrap
further.

7 Kalton and Kasprzyk332 proposed a hybrid approach to imputation in which
missing values are imputed with the predicted value for the subject plus the
residual from the subject having the closest predicted value to the subject being
imputed.

8 Miller et al.458 studied the effect of ignoring imputation when conditional mean
fill-in methods are used, and showed how to formalize such methods using linear
models.

9 Meng455 argues against always separating imputation from final analysis, and
in favor of sometimes incorporating weights into the process.

10 van Buuren et al.626 presented an excellent case study in multiple imputation
in the context of survival analysis. Barzi and Woodward43 present a nice review
of multiple imputation with detailed comparison of results (point estimates and
confidence limits for the effect of the sometimes-missing predictor) for various
imputation methods. Barnard and Rubin41 derived an estimate of the d.f. asso-
ciated with the imputation-adjusted variance matrix for use in a t-distribution
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approximation for hypothesis tests about imputation-averaged coefficient es-
timates. When d.f. is not very large, the t approximation will result in more
accurate P -values than using a normal approximation that we use with Wald
statistics after inserting Equation 3.2 as the variance matrix.

11 Little and An418 present imputation methods based on flexible additive regres-
sion models using penalized cubic splines. Horton and Kleinman301 compare
several software packages for handling missing data and have comparisons of
results with that of aregImpute. Moons et al.463 compared aregImpute with
MICE.

12 He and Zaslavsky280 formalized the duplication approach to imputation
diagnostics.

13 A good general reference on missing data is Little and Rubin,422 and Volume 16,
Nos. 1 to 3 of Statistics in Medicine, a large issue devoted to incomplete covari-
able data. Vach620 is an excellent text describing properties of various methods
of dealing with missing data in binary logistic regression (see also [621,622,624]).
These references show how to use maximum likelihood to explicitly model the
missing data process. Little and Rubin show how imputation can be avoided
if the analyst is willing to assume a multivariate distribution for the joint dis-
tribution of X and Y . Since X usually contains a strange mixture of binary,
polytomous, and continuous but highly skewed predictors, it is unlikely that this
approach will work optimally in many problems. That’s the reason the imputa-
tion approach is emphasized. See Rubin536 for a comprehensive source on mul-
tiple imputation. See Little,419 Vach and Blettner,623 Rubin and Schenker,535

Zhou et al.,688 Greenland and Finkle,242 and Hunsberger et al.313 for excellent
reviews of missing data problems and approaches to solving them. Reilly and
Pepe have a nice comparison of the “hot-deck” imputation method with a maxi-
mum likelihood-based method.523 White and Carlin660 studied bias of multiple
imputation vs. complete case analysis.

3.12 Problems

The SUPPORT Study (Study to Understand Prognoses Preferences Out-
comes and Risks of Treatments) was a five-hospital study of 10,000 critically
ill hospitalized adultsf352. Patients were followed for in-hospital outcomes and
for long-term survival. We analyze 35 variables and a random sample of 1000
patients from the study.

1. Explore the variables and patterns of missing data in the SUPPORT
dataset.

a. Print univariable summaries of all variables. Make a plot (showing all
variables on one page) that describes especially the continuous variables.

b. Make a plot showing the extent of missing data and tendencies for some
variables to be missing on the same patients. Functions in the Hmisc

package may be useful.

f The dataset is on the book’s dataset wiki and may be automatically fetched over
the internet and loaded using the Hmisc package’s command getHdata(support).
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c. Total hospital costs (variable totcst) were estimated from hospital-
specific Medicare cost-to-charge ratios. Characterize what kind of pa-
tients have missing totcst. For this characterization use the follow-
ing patient descriptors: age, sex, dzgroup, num.co, edu, income, scoma,

meanbp, hrt, resp, temp.

2. Prepare for later development of a model to predict costs by developing
reliable imputations for missing costs. Remove the observation having zero
totcst.g

a. The cost estimates are not available on 105 patients. Total hospital
charges (bills) are available on all but 25 patients. Relate these two
variables to each other with an eye toward using charges to predict
totcst when totcst is missing. Make graphs that will tell whether lin-
ear regression or linear regression after taking logs of both variables is
better.

b. Impute missing total hospital costs in SUPPORT based on a regression
model relating charges to costs, when charges are available. You may
want to use a statement like the following in R:

support ← transform (support ,

totcst = ifelse (is.na (totcst ),

(expression_in_charges ), totcst ))

If in the previous problem you felt that the relationship between costs
and charges should be based on taking logs of both variables, the “ex-
pression in charges” above may look something like exp(intercept +

slope * log(charges)), where constants are inserted for intercept and
slope.

c. Compute the likely error in approximating total cost using charges by
computing the median absolute difference between predicted and ob-
served total costs in the patients having both variables available. If you
used a log transformation, also compute the median absolute percent
error in imputing total costs by anti-logging the absolute difference in
predicted logs.

3. State briefly why single conditional medianh imputation is OK here.
4. Use transcan to develop single imputations for total cost, commenting on

the strength of the model fitted by transcan as well as how strongly each
variable can be predicted from all the others.

5. Use predictive mean matching to multiply impute cost 10 times per missing
observation. Describe graphically the distributions of imputed values and
briefly compare these to distributions of non-imputed values. State in a

g You can use the R command subset(support, is.na(totcst) | totcst > 0). The
is.na condition tells R that it is permissible to include observations having missing
totcst without setting all columns of such observations to NA.
h We are anti-logging predicted log costs and we assume log cost has a symmetric
distribution
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simple way what the sample variance of multiple imputations for a single
observation of a continuous predictor is approximating.

6. Using the multiple imputed values, develop an overall least squares model
for total cost (using the log transformation) making optimal use of partial
information, with variances computed so as to take imputation (except for
cost) into account. The model should use the predictors in Problem 1 and
should not assume linearity in any predictor but should assume additivity.
Interpret one of the resulting ratios of imputation-corrected variance to
apparent variance and explain why ratios greater than one do not mean
that imputation is inefficient.



Chapter 4

Multivariable Modeling Strategies

Chapter 2 dealt with aspects of modeling such as transformations of pre-
dictors, relaxing linearity assumptions, modeling interactions, and examining
lack of fit. Chapter 3 dealt with missing data, focusing on utilization of in-
complete predictor information. All of these areas are important in the overall
scheme of model development, and they cannot be separated from what is to
follow. In this chapter we concern ourselves with issues related to the whole
model, with emphasis on deciding on the amount of complexity to allow in
the model and on dealing with large numbers of predictors. The chapter con-
cludes with three default modeling strategies depending on whether the goal
is prediction, estimation, or hypothesis testing. 1

There are many choices to be made when deciding upon a global modeling
strategy, including choice between

• parametric and nonparametric procedures
• parsimony and complexity
• parsimony and good discrimination ability
• interpretable models and black boxes.

This chapter addresses some of these issues. One general theme of what fol-
lows is the idea that in statistical inference when a method is capable of
worsening performance of an estimator or inferential quantity (i.e., when the
method is not systematically biased in one’s favor), the analyst is allowed to
benefit from the method. Variable selection is an example where the analysis
is systematically tilted in one’s favor by directly selecting variables on the
basis of P -values of interest, and all elements of the final result (including
regression coefficients and P -values) are biased. On the other hand, the next
section is an example of the “capitalize on the benefit when it works, and
the method may hurt” approach because one may reduce the complexity of
an apparently weak predictor by removing its most important component—
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nonlinear effects—from how the predictor is expressed in the model. The
method hides tests of nonlinearity that would systematically bias the final
result.

The book’s web site contains a number of simulation studies and references
to others that support the advocated approaches.

4.1 Prespecification of Predictor Complexity Without
Later Simplification

There are rare occasions in which one actually expects a relationship to be
linear. For example, one might predict mean arterial blood pressure at two
months after beginning drug administration using as baseline variables the
pretreatment mean blood pressure and other variables. In this case one ex-
pects the pretreatment blood pressure to linearly relate to follow-up blood
pressure, and modeling is simplea. In the vast majority of studies, however,
there is every reason to suppose that all relationships involving nonbinary
predictors are nonlinear. In these cases, the only reason to represent pre-
dictors linearly in the model is that there is insufficient information in the
sample to allow us to reliably fit nonlinear relationships.b

Supposing that nonlinearities are entertained, analysts often use scatter
diagrams or descriptive statistics to decide how to represent variables in a
model. The result will often be an adequately fitting model, but confidence
limits will be too narrow, P -values too small, R2 too large, and calibration
too good to be true. The reason is that the “phantom d.f.” that represented
potential complexities in the model that were dismissed during the subjective
assessments are forgotten in computing standard errors, P -values, and R2

adj.
The same problem is created when one entertains several transformations
(log,

√
, etc.) and uses the data to see which one fits best, or when one tries

to simplify a spline fit to a simple transformation.
An approach that solves this problem is to prespecify the complexity with

which each predictor is represented in the model, without later simplification
of the model. The amount of complexity (e.g., number of knots in spline func-
tions or order of ordinary polynomials) one can afford to fit is roughly related
to the “effective sample size.” It is also very reasonable to allow for greater
complexity for predictors that are thought to be more powerfully related to
Y . For example, errors in estimating the curvature of a regression function are
consequential in predicting Y only when the regression is somewhere steep.
Once the analyst decides to include a predictor in every model, it is fair to

a Even then, the two blood pressures may need to be transformed to meet distribu-
tional assumptions.
b Shrinkage (penalized estimation) is a general solution (see Section 4.5). One can
always use complex models that are “penalized towards simplicity,” with the amount
of penalization being greater for smaller sample sizes.
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use general measures of association to quantify the predictive potential for
a variable. For example, if a predictor has a low rank correlation with the
response, it will not “pay” to devote many degrees of freedom to that pre-
dictor in a spline function having many knots. On the other hand, a potent
predictor (with a high rank correlation) not known to act linearly might be
assigned five knots if the sample size allows.

When the effective sample size available is sufficiently large so that a satu-
rated main effects model may be fitted, a good approach to gauging predictive
potential is the following.

• Let all continuous predictors be represented as restricted cubic splines with
k knots, where k is the maximum number of knots the analyst entertains
for the current problem.

• Let all categorical predictors retain their original categories except for
pooling of very low prevalence categories (e.g., ones containing < 6 obser-
vations).

• Fit this general main effects model.
• Compute the partial χ2 statistic for testing the association of each pre-

dictor with the response, adjusted for all other predictors. In the case of
ordinary regression, convert partial F statistics to χ2 statistics or partial
R2 values.

• Make corrections for chance associations to “level the playing field” for pre-
dictors having greatly varying d.f., e.g., subtract the d.f. from the partial
χ2 (the expected value of χ2

p is p under H0).
• Make certain that tests of nonlinearity are not revealed as this would bias

the analyst.
• Sort the partial association statistics in descending order.

Commands in the rms package can be used to plot only what is needed.
Here is an example for a logistic model.

f ← lrm(y ∼ sex + race + rcs(age ,5) + rcs(weight ,5) +

rcs(height ,5) + rcs(blood.pressure ,5))

plot (anova (f))

This approach, and the rank correlation approach about to be discussed,
do not require the analyst to really prespecify predictor complexity, so how
are they not biased in our favor? There are two reasons: the analyst has al-
ready agreed to retain the variable in the model even if the strength of the
association is very low, and the assessment of association does not reveal
the degree of nonlinearity of the predictor to allow the analyst to “tweak”
the number of knots or to discard nonlinear terms. Any predictive ability a
variable might have may be concentrated in its nonlinear effects, so using
the total association measure for a predictor to save degrees of freedom by
restricting the variable to be linear may result in no predictive ability. Like-
wise, a low association measure between a categorical variable and Y might
lead the analyst to collapse some of the categories based on their frequencies.
This often helps, but sometimes the categories that are so combined are the
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ones that are most different from one another. So if using partial tests or
rank correlation to reduce degrees of freedom can harm the model, one might
argue that it is fair to allow this strategy to also benefit the analysis.

When collinearities or confounding are not problematic, a quicker approach
based on pairwise measures of association can be useful. This approach will
not have numerical problems (e.g., singular covariance matrix). When Y is
binary or continuous (but not censored), a good general-purpose measure of
association that is useful in making decisions about the number of parameters
to devote to a predictor is an extension of Spearman’s ρ rank correlation.
This is the ordinary R2 from predicting the rank of Y based on the rank of
X and the square of the rank of X . This ρ2 will detect not only nonlinear2

relationships (as will ordinary Spearman ρ) but some non-monotonic ones
as well. It is important that the ordinary Spearman ρ not be computed, as
this would tempt the analyst to simplify the regression function (towards
monotonicity) if the generalized ρ2 does not significantly exceed the square
of the ordinary Spearman ρ. For categorical predictors, ranks are not squared
but instead the predictor is represented by a series of dummy variables. The
resulting ρ2 is related to the Kruskal–Wallis test. See p. 460 for an example.
Note that bivariable correlations can be misleading if marginal relationships
vary greatly from ones obtained after adjusting for other predictors.3

Once one expands a predictor into linear and nonlinear terms and esti-
mates the coefficients, the best way to understand the relationship between
predictors and response is to graph this estimated relationshipc. If the plot
appears almost linear or the test of nonlinearity is very insignificant there
is a temptation to simplify the model. The Grambsch and O’Brien result
described in Section 2.6 demonstrates why this is a bad idea.

From the above discussion a general principle emerges. Whenever the re-
sponse variable is informally or formally linked, in an unmasked fashion, to
particular parameters that may be deleted from the model, special adjust-
ments must be made in P -values, standard errors, test statistics, and confi-
dence limits, in order for these statistics to have the correct interpretation.
Examples of strategies that are improper without special adjustments (e.g.,
using the bootstrap) include examining a frequency table or scatterplot to
decide that an association is too weak for the predictor to be included in
the model at all or to decide that the relationship appears so linear that all
nonlinear terms should be omitted. It is also valuable to consider the reverse
situation; that is, one posits a simple model and then additional analysis or
outside subject matter information makes the analyst want to generalize the
model. Once the model is generalized (e.g., nonlinear terms are added), the
test of association can be recomputed using multiple d.f. So another general
principle is that when one makes the model more complex, the d.f. prop-
erly increases and the new test statistics for association have the claimed

c One can also perform a joint test of all parameters associated with nonlinear effects.
This can be useful in demonstrating to the reader that some complexity was actually
needed.
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distribution. Thus moving from simple to more complex models presents no
problems other than conservatism if the new complex components are truly
unnecessary.

4.2 Checking Assumptions of Multiple Predictors
Simultaneously

Before developing a multivariable model one must decide whether the as-
sumptions of each continuous predictor can be verified by ignoring the effects
of all other potential predictors. In some cases, the shape of the relation-
ship between a predictor and the property of response will be different if an
adjustment is made for other correlated factors when deriving regression esti-
mates. Also, failure to adjust for an important factor can frequently alter the
nature of the distribution of Y . Occasionally, however, it is unwieldy to deal
simultaneously with all predictors at each stage in the analysis, and instead
the regression function shapes are assessed separately for each continuous
predictor.

4.3 Variable Selection

The material covered to this point dealt with a prespecified list of variables
to be included in the regression model. For reasons of developing a concise
model or because of a fear of collinearity or of a false belief that it is not
legitimate to include “insignificant” regression coefficients when presenting
results to the intended audience, stepwise variable selection is very commonly
employed. Variable selection is used when the analyst is faced with a series of
potential predictors but does not have (or use) the necessary subject matter
knowledge to enable her to prespecify the “important” variables to include
in the model. But using Y to compute P -values to decide which variables
to include is similar to using Y to decide how to pool treatments in a five–
treatment randomized trial, and then testing for global treatment differences
using fewer than four degrees of freedom.

Stepwise variable selection has been a very popular technique for many
years, but if this procedure had just been proposed as a statistical method, it
would most likely be rejected because it violates every principle of statistical
estimation and hypothesis testing. Here is a summary of the problems with
this method.



68 4 Multivariable Modeling Strategies

1. It yields R2 values that are biased high.
2. The ordinary F and χ2 test statistics do not have the claimed distribu-

tiond.234 Variable selection is based on methods (e.g., F tests for nested
models) that were intended to be used to test only prespecified hypotheses.

3. The method yields standard errors of regression coefficient estimates that
are biased low and confidence intervals for effects and predicted values that
are falsely narrow.16

4. It yields P -values that are too small (i.e., there are severe multiple compar-
ison problems) and that do not have the proper meaning, and the proper
correction for them is a very difficult problem.

5. It provides regression coefficients that are biased high in absolute value
and need shrinkage. Even if only a single predictor were being analyzed
and one only reported the regression coefficient for that predictor if its
association with Y were “statistically significant,” the estimate of the re-
gression coefficient β̂ is biased (too large in absolute value). To put this

in symbols for the case where we obtain a positive association (β̂ > 0),

E(β̂|P < 0.05, β̂ > 0) > β.100

6. In observational studies, variable selection to determine confounders for
adjustment results in residual confounding241.

7. Rather than solving problems caused by collinearity, variable selection is
made arbitrary by collinearity.

8. It allows us to not think about the problem.

The problems of P -value-based variable selection are exacerbated when the
analyst (as she so often does) interprets the final model as if it were pre-
specified. Copas and Long125 stated one of the most serious problems with
stepwise modeling eloquently when they said, “The choice of the variables
to be included depends on estimated regression coefficients rather than their
true values, and so Xj is more likely to be included if its regression coefficient
is over-estimated than if its regression coefficient is underestimated.”Derksen
and Keselman155 studied stepwise variable selection, backward elimination,
and forward selection, with these conclusions:

1. “The degree of correlation between the predictor variables affected the fre-
quency with which authentic predictor variables found their way into the
final model.

2. The number of candidate predictor variables affected the number of noise
variables that gained entry to the model.

3. The size of the sample was of little practical importance in determining the
number of authentic variables contained in the final model.

d Lockhart et al.425 provide an example with n = 100 and 10 orthogonal predictors
where all true βs are zero. The test statistic for the first variable to enter has type I
error of 0.39 when the nominal α is set to 0.05, in line with what one would expect
with multiple testing using 1− 0.9510 = 0.40.
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4. The population multiple coefficient of determination could be faithfully es-
timated by adopting a statistic that is adjusted by the total number of
candidate predictor variables rather than the number of variables in the
final model.”

They found that variables selected for the final model represented noise 0.20
to 0.74 of the time and that the final model usually contained less than half
of the actual number of authentic predictors. Hence there are many reasons
for using methods such as full-model fits or data reduction, instead of using
any stepwise variable selection algorithm.

If stepwise selection must be used, a global test of no regression should
be made before proceeding, simultaneously testing all candidate predictors
and having degrees of freedom equal to the number of candidate variables
(plus any nonlinear or interaction terms). If this global test is not significant,
selection of individually significant predictors is usually not warranted.

The method generally used for such variable selection is forward selection
of the most significant candidate or backward elimination of the least sig-
nificant predictor in the model. One of the recommended stopping rules is
based on the “residual χ2” with degrees of freedom equal to the number of
candidate variables remaining at the current step. The residual χ2 can be
tested for significance (if one is able to forget that because of variable selec-
tion this statistic does not have a χ2 distribution), or the stopping rule can
be based on Akaike’s information criterion (AIC33), here residual χ2 − 2×
d.f.257 Of course, use of more insight from knowledge of the subject matter
will generally improve the modeling process substantially. It must be remem-
bered that no currently available stopping rule was developed for data-driven
variable selection. Stopping rules such as AIC or Mallows’ Cp are intended
for comparing a limited number of prespecified models [66, Section 1.3]347e. 4

If the analyst insists on basing the stopping rule on P -values, the optimum
(in terms of predictive accuracy) α to use in deciding which variables to
include in the model is α = 1.0 unless there are a few powerful variables
and several completely irrelevant variables. A reasonable α that does allow
for deletion of some variables is α = 0.5.589 These values are far from the
traditional choices of α = 0.05 or 0.10. 5

e AIC works successfully when the models being entertained are on a progression
defined by a single parameter, e.g. a common shrinkage coefficient or the single num-
ber of knots to be used by all continuous predictors. AIC can also work when the
model that is best by AIC is much better than the runner-up so that if the process
were bootstrapped the same model would almost always be found. When used for
one variable at a time variable selection. AIC is just a restatement of the P -value,
and as such, doesn’t solve the severe problems with stepwise variable selection other
than forcing us to use slightly more sensible α values. Burnham and Anderson84 rec-
ommend selection based on AIC for a limited number of theoretically well-founded
models. Some statisticians try to deal with multiplicity problems caused by stepwise
variable selection by making α smaller than 0.05. This increases bias by giving vari-
ables whose effects are estimated with error a greater relative chance of being selected.
Variable selection does not compete well with shrinkage methods that simultaneously
model all potential predictors.
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Even though forward stepwise variable selection is the most commonly
used method, the step-down method is preferred for the following reasons.6

1. It usually performs better than forward stepwise methods, especially when
collinearity is present.437

2. It makes one examine a full model fit, which is the only fit providing
accurate standard errors, error mean square, and P -values.

3. The method of Lawless and Singhal385 allows extremely efficient step-down
modeling using Wald statistics, in the context of any fit from least squares
or maximum likelihood. This method requires passing through the data
matrix only to get the initial full fit.

For a given dataset, bootstrapping (Efron et al.150, 172, 177, 178) can help
decide between using full and reduced models. Bootstrapping can be done
on the whole model and compared with bootstrapped estimates of predictive
accuracy based on stepwise variable selection for each resample. Unless most
predictors are either very significant or clearly unimportant, the full model
usually outperforms the reduced model.

Full model fits have the advantage of providing meaningful confidence
intervals using standard formulas. Altman and Andersen16 gave an example
in which the lengths of confidence intervals of predicted survival probabilities
were 60% longer when bootstrapping was used to estimate the simultaneous
effects of variability caused by variable selection and coefficient estimation, as
compared with confidence intervals computed ignoring how a “final” model
came to be. On the other hand, models developed on full fits after data7

8 reduction will be optimum in many cases.
In some cases you may want to use the full model for prediction and vari-

able selection for a “best bet” parsimonious list of independently important
predictors. This could be accompanied by a list of variables selected in 50
bootstrap samples to demonstrate the imprecision in the “best bet.”

Sauerbrei and Schumacher541 present a method to use bootstrapping to
actually select the set of variables. However, there are a number of drawbacks
to this approach35:

1. The choice of an α cutoff for determining whether a variable is retained in
a given bootstrap sample is arbitrary.

2. The choice of a cutoff for the proportion of bootstrap samples for which a
variable is retained, in order to include that variable in the final model, is
somewhat arbitrary.

3. Selection from among a set of correlated predictors is arbitrary, and all
highly correlated predictors may have a low bootstrap selection frequency.
It may be the case that none of them will be selected for the final model
even though when considered individually each of them may be highly
significant.
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4. By using the bootstrap to choose variables, one must use the double boot-
strap to resample the entire modeling process in order to validate the model
and to derive reliable confidence intervals. This may be computationally
prohibitive.

5. The bootstrap did not improve upon traditional backward stepdown vari-
able selection. Both methods fail at identifying the “correct” variables.

For some applications the list of variables selected may be stabilized by
grouping variables according to subject matter considerations or empirical
correlations and testing each related group with a multiple degree of freedom
test. Then the entire group may be kept or deleted and, if desired, groups that
are retained can be summarized into a single variable or the most accurately
measured variable within the group can replace the group. See Section 4.7
for more on this.

Kass and Raftery337 showed that Bayes factors have several advantages in
variable selection, including the selection of less complex models that may
agree better with subject matter knowledge. However, as in the case with
more traditional stopping rules, the final model may still have regression
coefficients that are too large. This problem is solved by Tibshirani’s lasso
method,608, 609 which is a penalized estimation technique in which the esti-
mated regression coefficients are constrained so that the sum of their scaled
absolute values falls below some constant k chosen by cross-validation. This
kind of constraint forces some regression coefficient estimates to be exactly
zero, thus achieving variable selection while shrinking the remaining coef-
ficients toward zero to reflect the overfitting caused by data-based model
selection.

A final problem with variable selection is illustrated by comparing this
approach with the sensible way many economists develop regression mod-
els. Economists frequently use the strategy of deleting only those variables
that are “insignificant” and whose regression coefficients have a nonsensible
direction. Standard variable selection on the other hand yields biologically
implausible findings in many cases by setting certain regression coefficients
exactly to zero. In a study of survival time for patients with heart failure,
for example, it would be implausible that patients having a specific symptom
live exactly as long as those without the symptom just because the symp-
tom’s regression coefficient was “insignificant.” The lasso method shares this
difficulty with ordinary variable selection methods and with any method that
in the Bayesian context places nonzero prior probability on β being exactly
zero. 9

Many papers claim that there were insufficient data to allow for multivari-
able modeling, so they did “univariable screening” wherein only “significant”
variables (i.e., those that are separately significantly associated with Y ) were
entered into the model.f This is just a forward stepwise variable selection in

f This is akin to doing a t-test to compare the two treatments (out of 10, say) that
are apparently most different from each other.
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which insignificant variables from the first step are not reanalyzed in later
steps. Univariable screening is thus even worse than stepwise modeling as
it can miss important variables that are only important after adjusting for
other variables.598 Overall, neither univariable screening nor stepwise vari-
able selection in any way solves the problem of “too many variables, too few
subjects,” and they cause severe biases in the resulting multivariable model
fits while losing valuable predictive information from deleting marginally sig-
nificant variables.10

The online course notes contain a simple simulation study of stepwise
selection using R.

4.4 Sample Size, Overfitting, and Limits on
Number of Predictors

When a model is fitted that is too complex, that it, has too many free pa-
rameters to estimate for the amount of information in the data, the worth
of the model (e.g., R2) will be exaggerated and future observed values will
not agree with predicted values. In this situation, overfitting is said to be11

present, and some of the findings of the analysis come from fitting noise and
not just signal, or finding spurious associations between X and Y . In this sec-
tion general guidelines for preventing overfitting are given. Here we concern
ourselves with the reliability or calibration of a model, meaning the ability of
the model to predict future observations as well as it appeared to predict the
responses at hand. For now we avoid judging whether the model is adequate
for the task, but restrict our attention to the likelihood that the model has
significantly overfitted the data.

In typical low signal–to–noise ratio situationsg, model validations on in-
dependent datasets have found the minimum training sample size for which
the fitted model has an independently validated predictive discrimination
that equals the apparent discrimination seen with in training sample. Similar
validation experiments have considered the margin of error in estimating an
absolute quantity such as event probability. Studies such as268, 270, 577 have
shown that in many situations a fitted regression model is likely to be reli-
able when the number of predictors (or candidate predictors if using variable
selection) p is less than m/10 or m/20, where m is the “limiting sample size”
given in Table 4.1. A good average requirement is p < m

15 . For example,12

Smith et al.577 found in one series of simulations that the expected error in
Cox model predicted five–year survival probabilities was below 0.05 when
p < m/20 for “average” subjects and below 0.10 when p < m/20 for “sick”

g These are situations where the true R2 is low, unlike tightly controlled experiments
and mechanistic models where signal:noise ratios can be quite high. In those situ-
ations, many parameters can be estimated from small samples, and the m

15
rule of

thumb can be significantly relaxed.
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Table 4.1 Limiting Sample Sizes for Various Response Variables

Type of Response Variable Limiting Sample Size m

Continuous n (total sample size)
Binary min(n1, n2)

h

Ordinal (k categories) n− 1
n2

∑k
i=1 n

3
i

i

Failure (survival) time number of failures j

subjects, where m is the number of deaths. For “average”subjects, m/10 was
adequate for preventing expected errors > 0.1. Note: The number of non-
intercept parameters in the model (p) is usually greater than the number of
predictors. Narrowly distributed predictor variables (e.g., if all subjects’ ages
are between 30 and 45 or only 5% of subjects are female) will require even
higher sample sizes. Note that the number of candidate variables must include
all variables screened for association with the response, including nonlinear
terms and interactions. Instead of relying on the rules of thumb in the table,
the shrinkage factor estimate presented in the next section can be used to
guide the analyst in determining how many d.f. to model (see p. 87).

Rules of thumb such as the 15:1 rule do not consider that a certain min-
imum sample size is needed just to estimate basic parameters such as an
intercept or residual variance. This is dealt with in upcoming topics about
specific models. For the case of ordinary linear regression, estimation of the
residual variance is central. All standard errors, P -values, confidence inter-
vals, and R2 depend on having a precise estimate of σ2. The one-sample
problem of estimating a mean, which is equivalent to a linear model contain-
ing only an intercept, is the easiest case when estimating σ2. When a sample
of size n is drawn from a normal distribution, a 1 − α two-sided confidence
interval for the unknown population variance σ2 is given by

n− 1

χ2
1−α/2,n−1

s2 < σ2 <
n− 1

χ2
α/2,n−1

s2, (4.1)

h See [487]. If one considers the power of a two-sample binomial test compared
with a Wilcoxon test if the response could be made continuous and the propor-
tional odds assumption holds, the effective sample size for a binary response is
3n1n2/n ≈ 3min(n1, n2) if n1/n is near 0 or 1 [664, Eq. 10, 15]. Here n1 and n2

are the marginal frequencies of the two response levels.
i Based on the power of a proportional odds model two-sample test when the marginal
cell sizes for the response are n1, . . . , nk, compared with all cell sizes equal to unity
(response is continuous) [664, Eq, 3]. If all cell sizes are equal, the relative efficiency
of having k response categories compared with a continuous response is 1−1/k2 [664,
Eq. 14]; for example, a five-level response is almost as efficient as a continuous one if
proportional odds holds across category cutoffs.
j This is approximate, as the effective sample size may sometimes be boosted some-
what by censored observations, especially for non-proportional hazards methods such
as Wilcoxon-type tests.49
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where s2 is the sample variance and χ2
α,n−1 is the α critical value of the

χ2 distribution with n − 1 degrees of freedom. We take the fold-change or
multiplicative margin of error (MMOE) for estimating σ to be√√√√max(

χ2
1−α/2,n−1

n− 1
,

n− 1

χ2
α/2,n−1

) (4.2)

To achieve a MMOE of no worse than 1.2 with 0.95 confidence when
estimating σ requires a sample size of 70 subjects.

The linear model case is useful for examining n : p ratio another way. As
discussed in the next section, R2

adj is a nearly unbiased estimate of R2, i.e.,
is not inflated by overfitting if the value used for p is “honest”, i.e., includes
all variables screened. We can ask the question “for a given R2, what ratio of
n : p is required so that R2

adj does not drop by more than a certain relative or

absolute amount from the value of R2?” This assessment takes into account
that higher signal:noise ratios allow fitting more variables. For example, with
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Fig. 4.1 Multiple of p that n must be to achieve a relative drop from R2 to R2
adj by

the indicated relative factor (left panel, 3 factors) or absolute difference (right panel,
6 decrements)

low R2 a 100:1 ratio of n : p may be required to prevent R2 from dropping
by more 1

10 or by an absolute amount of 0.01. A 15:1 rule would prevent R2

from dropping by more than 0.075 for low R2 (Figure 4.1).
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4.5 Shrinkage

The term shrinkage is used in regression modeling to denote two ideas. The
first meaning relates to the slope of a calibration plot, which is a plot of
observed responses against predicted responsesk. When a dataset is used to
fit the model parameters as well as to obtain the calibration plot, the usual
estimation process will force the slope of observed versus predicted values to
be one. When, however, parameter estimates are derived from one dataset
and then applied to predict outcomes on an independent dataset, overfitting
will cause the slope of the calibration plot (i.e., the shrinkage factor) to be less
than one, a result of regression to the mean. Typically, low predictions will be
too low and high predictions too high. Predictions near the mean predicted
value will usually be quite accurate. The second meaning of shrinkage is a
statistical estimation method that preshrinks regression coefficients towards
zero so that the calibration plot for new data will not need shrinkage as its
calibration slope will be one.

We turn first to shrinkage as an adverse result of traditional modeling.
In ordinary linear regression, we know that all of the coefficient estimates
are exactly unbiased estimates of the true effect when the model fits. Isn’t
the existence of shrinkage and overfitting implying that there is some kind
of bias in the parameter estimates? The answer is no because each separate
coefficient has the desired expectation. The problem lies in how we use the
coefficients. We tend not to pick out coefficients at random for interpretation
but we tend to highlight very small and very large coefficients.

A simple example may suffice. Consider a clinical trial with 10 randomly
assigned treatments such that the patient responses for each treatment are
normally distributed. We can do an ANOVA by fitting a multiple regres-
sion model with an intercept and nine dummy variables. The intercept is an
unbiased estimate of the mean response for patients on the first treatment,
and each of the other coefficients is an unbiased estimate of the difference
in mean response between the treatment in question and the first treatment.
β̂0 + β̂1 is an unbiased estimate of the mean response for patients on the
second treatment. But if we plotted the predicted mean response for patients
against the observed responses from new data, the slope of this calibration
plot would typically be smaller than one. This is because in making this plot
we are not picking coefficients at random but we are sorting the coefficients
into ascending order. The treatment group having the lowest sample mean
response will usually have a higher mean in the future, and the treatment
group having the highest sample mean response will typically have a lower
mean in the future. The sample mean of the group having the highest sample
mean is not an unbiased estimate of its population mean.

k An even more stringent assessment is obtained by stratifying calibration curves by
predictor settings.
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As an illustration, let us draw 20 samples of size n = 50 from a uniform
distribution for which the true mean is 0.5. Figure 4.2 displays the 20 means
sorted into ascending order, similar to plotting Y versus Ŷ = Xβ̂ based
on least squares after sorting by Xβ̂. Bias in the very lowest and highest
estimates is evident.

set.seed (123)

n ← 50

y ← runif (20*n)

group ← rep (1:20, each=n)

ybar ← tapply (y, group , mean)

ybar ← sort (ybar )

plot (1:20, ybar , type= ' n ' , axes=FALSE , ylim =c(.3 ,.7),

xlab = ' Group ' , ylab= ' Group Mean ' )
lines (1:20, ybar )

points (1:20, ybar , pch =20, cex=.5)

axis (2)

axis (1, at =1:20, labels =FALSE )

for(j in 1:20) axis (1, at=j, labels =names (ybar )[j])

abline (h=.5 , col=gray (.85 ))
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Fig. 4.2 Sorted means from 20 samples of size 50 from a uniform [0, 1] distribution.
The reference line at 0.5 depicts the true population value of all of the means.

When we want to highlight a treatment that is not chosen at random (or a
priori), the data-based selection of that treatment needs to be compensated
for in the estimation process.l It is well known that the use of shrinkage

l It is interesting that researchers are quite comfortable with adjusting P -values for
post hoc selection of comparisons using, for example, the Bonferroni inequality, but
they do not realize that post hoc selection of comparisons also biases point estimates.
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methods such as the James–Stein estimator to pull treatment means toward
the grand mean over all treatments results in estimates of treatment-specific
means that are far superior to ordinary stratified means.176

Turning from a cell means model to the general case where predicted values
are general linear combinations Xβ̂, the slope γ of properly transformed
responses Y against Xβ̂ (sorted into ascending order) will be less than one
on new data. Estimation of the shrinkage coefficient γ allows quantification of
the amount of overfitting present, and it allows one to estimate the likelihood
that the model will reliably predict new observations. van Houwelingen and le
Cessie [633, Eq. 77] provided a heuristic shrinkage estimate that has worked
well in several examples:

γ̂ =
model χ2 − p

model χ2
, (4.3)

where p is the total degrees of freedom for the predictors and model χ2 is 13

the likelihood ratio χ2 statistic for testing the joint influence of all predictors
simultaneously (see Section 9.3.1). For ordinary linear models, van Houwelin-
gen and le Cessie proposed a shrinkage factor γ̂ that can be shown to equal
n−p−1
n−1

R2
adj

R2 , where the adjusted R2 is given by 14

R2
adj = 1− (1−R2)

n− 1

n− p− 1
. (4.4)

For such linear models with an intercept β0, the shrunken estimate of β is

β̂s
0 = (1− γ̂)Y + γ̂β̂0

β̂s
j = γ̂β̂j , j = 1, . . . , p, (4.5)

where Y is the mean of the response vector. Again, when stepwise fitting is
used, the p in these equations is much closer to the number of candidate de-
grees of freedom rather than the number in the “final”model. See Section 5.3 15

for methods of estimating γ using the bootstrap (p. 115) or cross-validation.
Now turn to the second usage of the term shrinkage. Just as clothing is

sometimes preshrunk so that it will not shrink further once it is purchased,
better calibrated predictions result when shrinkage is built into the estima-
tion process in the first place. The object of shrinking regression coefficient
estimates is to obtain a shrinkage coefficient of γ = 1 on new data. Thus by
somewhat discounting β̂ we make the model underfitted on the data at hand
(i.e., apparent γ < 1) so that on new data extremely low or high predictions
are correct.

Ridge regression388, 633 is one technique for placing restrictions on the pa-
rameter estimates that results in shrinkage. A ridge parameter must be chosen
to control the amount of shrinkage. Penalized maximum likelihood estima-
tion,237, 272, 388, 639 a generalization of ridge regression, is a general shrinkage
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procedure. A method such as cross-validation or optimization of a modified
AIC must be used to choose an optimal penalty factor. An advantage of pe-
nalized estimation is that one can differentially penalize the more complex
components of the model such as nonlinear or interaction effects. A drawback
of ridge regression and penalized maximum likelihood is that the final model
is difficult to validate unbiasedly since the optimal amount of shrinkage is
usually determined by examining the entire dataset. Penalization is one of
the best ways to approach the “too many variables, too little data” problem.
See Section 9.10 for details.

4.6 Collinearity

When at least one of the predictors can be predicted well from the other
predictors, the standard errors of the regression coefficient estimates can be
inflated and corresponding tests have reduced power.217 In stepwise variable
selection, collinearity can cause predictors to compete and make the selection
of “important” variables arbitrary. Collinearity makes it difficult to estimate
and interpret a particular regression coefficient because the data have little
information about the effect of changing one variable while holding another
(highly correlated) variable constant [101, Chap. 9]. However, collinearity
does not affect the joint influence of highly correlated variables when tested
simultaneously. Therefore, once groups of highly correlated predictors are
identified, the problem can be rectified by testing the contribution of an
entire set with a multiple d.f. test rather than attempting to interpret the
coefficient or one d.f. test for a single predictor.

Collinearity does not affect predictions made on the same dataset used to
estimate the model parameters or on new data that have the same degree
of collinearity as the original data [470, pp. 379–381] as long as extreme
extrapolation is not attempted. Consider as two predictors the total and LDL
cholesterols that are highly correlated. If predictions are made at the same
combinations of total and LDL cholesterol that occurred in the training data,
no problem will arise. However, if one makes a prediction at an inconsistent
combination of these two variables, the predictions may be inaccurate and
have high standard errors.

When the ordinary truncated power basis is used to derive component
variables for fitting linear and cubic splines, as was described earlier, the
component variables can be very collinear. It is very unlikely that this will
result in any problems, however, as the component variables are connected
algebraically. Thus it is not possible for a combination of, for example, x and
max(x− 10, 0) to be inconsistent with each other. Collinearity problems are
then more likely to result from partially redundant subsets of predictors as
in the cholesterol example above.
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One way to quantify collinearity is with variance inflation factors or VIF ,
which in ordinary least squares are diagonals of the inverse of the X ′X matrix
scaled to have unit variance (except that a column of 1s is retained corre-
sponding to the intercept). Note that some authors compute VIF from the
correlation matrix form of the design matrix, omitting the intercept. V IFi is
1/(1 − R2

i ) where R2
i is the squared multiple correlation coefficient between

column i and the remaining columns of the design matrix. For models that are
fitted with maximum likelihood estimation, the information matrix is scaled
to correlation form, and VIF is the diagonal of the inverse of this scaled ma-
trix.147, 654 Then the VIF are similar to those from a weighted correlation
matrix of the original columns in the design matrix. Note that indexes such 16

as VIF are not very informative as some variables are algebraically connected
to each other.

The SAS VARCLUS procedure539 and R varclus function can identify collinear
predictors. Summarizing collinear variables using a summary score is more
powerful and stable than arbitrary selection of one variable in a group of
collinear variables (see the next section). 17

4.7 Data Reduction

The sample size need not be as large as shown in Table 4.1 if the model
is to be validated independently and if you don’t care that the model may
fail to validate. However, it is likely that the model will be overfitted and
will not validate if the sample size does not meet the guidelines. Use of data
reduction methods before model development is strongly recommended if the
conditions in Table 4.1 are not satisfied, and if shrinkage is not incorporated
into parameter estimation. Methods such as shrinkage and data reduction
reduce the effective d.f. of the model, making it more likely for the model
to validate on future data. Data reduction is aimed at reducing the number
of parameters to estimate in the model, without distorting statistical infer-
ence for the parameters. This is accomplished by ignoring Y during data
reduction. Manipulations of X in unsupervised learning may result in a loss
of information for predicting Y , but when the information loss is small, the
gain in power and reduction of overfitting more than offset the loss.

Some available data reduction methods are given below.

1. Use the literature to eliminate unimportant variables.
2. Eliminate variables whose distributions are too narrow.
3. Eliminate candidate predictors that are missing in a large number of sub-

jects, especially if those same predictors are likely to be missing for future
applications of the model.

4. Use a statistical data reduction method such as incomplete principal com-
ponent regression, nonlinear generalizations of principal components such
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as principal surfaces, sliced inverse regression, variable clustering, or ordi-
nary cluster analysis on a measure of similarity between variables.18

See Chapters 8 and 14 for detailed case studies in data reduction.

4.7.1 Redundancy Analysis

There are many approaches to data reduction. One rigorous approach involves
removing predictors that are easily predicted from other predictors, using
flexible parametric additive regression models. This approach is unlikely to
result in a major reduction in the number of regression coefficients to estimate
against Y , but will usually provide insights useful for later data reduction
over and above the insights given by methods based on pairwise correlations
instead of multiple R2.

The Hmisc redun function implements the following redundancy checking
algorithm.

• Expand each continuous predictor into restricted cubic spline basis func-
tions. Expand categorical predictors into dummy variables.

• Use OLS to predict each predictor with all component terms of all remain-
ing predictors (similar to what the Hmisc transcan function does). When the
predictor is expanded into multiple terms, use the first canonical variatem.

• Remove the predictor that can be predicted from the remaining set with
the highest adjusted or regular R2.

• Predict all remaining predictors from their complement.
• Continue in like fashion until no variable still in the list of predictors can

be predicted with an R2 or adjusted R2 greater than a specified threshold
or until dropping the variable with the highest R2 (adjusted or ordinary)
would cause a variable that was dropped earlier to no longer be predicted
at the threshold from the now smaller list of predictors.

Special consideration must be given to categorical predictors. One way to
consider a categorical variable redundant is if a linear combination of dummy
variables representing it can be predicted from a linear combination of other
variables. For example, if there were 4 cities in the data and each city’s rainfall
was also present as a variable, with virtually the same rainfall reported for
all observations for a city, city would be redundant given rainfall (or vice-
versa). If two cities had the same rainfall, ‘city’ might be declared redundant
even though tied cities might be deemed non-redundant in another setting. A
second, more stringent way to check for redundancy of a categorical predictor
is to ascertain whether all dummy variables created from the predictor are
individually redundant. The redun function implements both approaches.

Examples of use of redun are given in two case studies.19

m There is an option to force continuous variables to be linear when they are being
predicted.
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4.7.2 Variable Clustering

Although the use of subject matter knowledge is usually preferred, statistical
clustering techniques can be useful in determining independent dimensions
that are described by the entire list of candidate predictors. Once each di-
mension is scored (see below), the task of regression modeling is simplified,
and one quits trying to separate the effects of factors that are measuring the
same phenomenon. One type of variable clustering539 is based on a type of
oblique-rotation principal component (PC) analysis that attempts to separate
variables so that the first PC of each group is representative of that group
(the first PC is the linear combination of variables having maximum vari-
ance subject to normalization constraints on the coefficients142, 144). Another
approach, that of doing a hierarchical cluster analysis on an appropriate sim-
ilarity matrix (such as squared correlations) will often yield the same results.
For either approach, it is often advisable to use robust (e.g., rank-based)
measures for continuous variables if they are skewed, as skewed variables can
greatly affect ordinary correlation coefficients. Pairwise deletion of missing
values is also advisable for this procedure—casewise deletion can result in a
small biased sample. 20

When variables are not monotonically related to each other, Pearson or
Spearman squared correlations can miss important associations and thus are
not always good similarity measures. A general and robust similarity mea-
sure is Hoeffding’s D,295 which for two variables X and Y is a measure of
the agreement between F (x, y) and G(x)H(y), where G,H are marginal cu-
mulative distribution functions and F is the joint CDF. The D statistic will
detect a wide variety of dependencies between two variables.

See pp. 330 and 458 for examples of variable clustering. 21

4.7.3 Transformation and Scaling Variables Without
Using Y

Scaling techniques often allow the analyst to reduce the number of parameters
to fit by estimating transformations for each predictor using only information
about associations with other predictors. It may be advisable to cluster vari-
ables before scaling so that patterns are derived only from variables that are
related. For purely categorical predictors, methods such as correspondence
analysis (see, for example, [108,139,239,391,456]) can be useful for data reduc-
tion. Often one can use these techniques to scale multiple dummy variables
into a few dimensions. For mixtures of categorical and continuous predictors,
qualitative principal component analysis such as the maximum total variance
(MTV) method of Young et al.456, 680 is useful. For the special case of repre-
senting a series of variables with one PC, the MTV method is quite easy to
implement.
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1. Compute PC1, the first PC of the variables to reduce X1, . . . , Xq using
the correlation matrix of Xs.

2. Use ordinary linear regression to predict PC1 on the basis of functions of
the Xs, such as restricted cubic spline functions for continuous Xs or a
series of dummy variables for polytomous Xs. The expansion of each Xj

is regressed separately on PC1.
3. These separately fitted regressions specify the working transformations of

each X .
4. Recompute PC1 by doing a PC analysis on the transformed Xs (predicted

values from the fits).
5. Repeat steps 2 to 4 until the proportion of variation explained by PC1

reaches a plateau. This typically requires three to four iterations.

A transformation procedure that is similar to MTV is the maximum gen-
eralized variance (MGV) method due to Sarle [368, pp. 1267–1268]. MGV
involves predicting each variable from (the current transformations of) all
the other variables. When predicting variable i, that variable is represented
as a set of linear and nonlinear terms (e.g., spline components). Analysis of
canonical variates279 can be used to find the linear combination of terms for
Xi (i.e., find a new transformation for Xi) and the linear combination of the
current transformations of all other variables (representing each variable as
a single, transformed, variable) such that these two linear combinations have
maximum correlation. (For example, if there are only two variablesX1 andX2

represented as quadratic polynomials, solve for a, b, c, d such that aX1 + bX2
1

has maximum correlation with cX2+dX2
2 .) The process is repeated until the

transformations converge. The goal of MGV is to transform each variable so
that it is most similar to predictions from the other transformed variables.
MGV does not use PCs (so one need not precede the analysis by variable
clustering), but once all variables have been transformed, you may want to
summarize them with the first PC.

The SAS PRINQUAL procedure of Kuhfeld368 implements the MTV and MGV
methods, and allows for very flexible transformations of the predictors, in-
cluding monotonic splines and ordinary cubic splines.

A very flexible automatic procedure for transforming each predictor in
turn, based on all remaining predictors, is the ACE (alternating conditional
expectation) procedure of Breiman and Friedman.68 Like SAS PROC PRIN-

QUAL, ACE handles monotonically restricted transformations and categorical
variables. It fits transformations by maximizing R2 between one variable and
a set of variables. It automatically transforms all variables, using the “super
smoother”207 for continuous variables. Unfortunately, ACE does not handle
missing values. See Chapter 16 for more about ACE.

It must be noted that at best these automatic transformation procedures
generally find onlymarginal transformations, not transformations of each pre-
dictor adjusted for the effects of all other predictors. When adjusted transfor-
mations differ markedly from marginal transformations, only joint modeling
of all predictors (and the response) will find the correct transformations.
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Once transformations are estimated using only predictor information, the
adequacy of each predictor’s transformation can be checked by graphical
methods, by nonparametric smooths of transformed Xj versus Y , or by ex-
panding the transformed Xj using a spline function. This approach of check-
ing that transformations are optimal with respect to Y uses the response
data, but it accepts the initial transformations unless they are significantly
inadequate. If the sample size is low, or if PC1 for the group of variables used
in deriving the transformations is deemed an adequate summary of those
variables, that PC1 can be used in modeling. In that way, data reduction is
accomplished two ways: by not using Y to estimate multiple coefficients for
a single predictor, and by reducing related variables into a single score, after
transforming them. See Chapter 8 for a detailed example of these scaling
techniques.

4.7.4 Simultaneous Transformation and Imputation

As mentioned in Chapter 3 (p. 52) if transformations are complex or non-
monotonic, ordinary imputation models may not work. SAS PROC PRINQUAL

implemented a method for simultaneously imputing missing values while solv-
ing for transformations. Unfortunately, the imputation procedure frequently
converges to imputed values that are outside the allowable range of the data.
This problem is more likely when multiple variables are missing on the same
subjects, since the transformation algorithm may simply separate missings
and nonmissings into clusters.

A simple modification of the MGV algorithm of PRINQUAL that simulta-
neously imputes missing values without these problems is implemented in
the R function transcan. Imputed values are initialized to medians of contin-
uous variables and the most frequent category of categorical variables. For
continuous variables, transformations are initialized to linear functions. For
categorical ones, transformations may be initialized to the identify function,
to dummy variables indicating whether the observation has the most preva-
lent categorical value, or to random numbers. Then when using canonical
variates to transform each variable in turn, observations that are missing on
the current “dependent” variable are excluded from consideration, although
missing values for the current set of “predictors” are imputed. Transformed
variables are normalized to have mean 0 and standard deviation 1. Although
categorical variables are scored using the first canonical variate, transcan has
an option to use recursive partitioning to obtain imputed values on the origi-
nal scale (Section 2.5) for these variables. It defaults to imputing categorical
variables using the category whose predicted canonical score is closest to the
predicted score.

transcan uses restricted cubic splines to model continuous variables. It does
not implement monotonicity constraints. transcan automatically constrains
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imputed values (both on transformed and original scales) to be in the same
range as non-imputed ones. This adds much stability to the resulting esti-
mates although it can result in a boundary effect. Also, imputed values can
optionally be shrunken using Eq. 4.5 to avoid overfitting when developing
the imputation models. Optionally, missing values can be set to specified
constants rather than estimating them. These constants are ignored during
the transformation-estimation phasen. This technique has proved to be help-
ful when, for example, a laboratory test is not ordered because a physician
thinks the patient has returned to normal with respect to the lab parameter
measured by the test. In that case, it’s better to use a normal lab value for
missings.

The transformation and imputation information created by transcan may
be used to transform/impute variables in datasets not used to develop the
transformation and imputation formulas. There is also an R function to create
R functions that compute the final transformed values of each predictor given
input values on the original scale.

As an example of non-monotonic transformation and imputation, consider
a sample of 1000 hospitalized patients from the SUPPORTo study.352 Two
mean arterial blood pressure measurements were set to missing.

require(Hmisc )

getHdata (support) # Get data frame from web site

heart.rate ← support $hrt

blood.pressure ← support $meanbp

blood.pressure [400:401]

Mean Arterial Blood Pressure Day 3
[1] 151 136

blood.pressure [400:401] ← NA # Create two missings

d ← data.frame (heart.rate , blood.pressure)

par (pch =46) # Figure 4.3

w ← transcan (∼ heart.rate + blood.pressure , transformed =TRUE ,

imputed =TRUE , show.na =TRUE , data=d)

Convergence criterion:2.901 0.035

0.007
Convergence in 4 iterations

R2 achieved in predicting each variable :

heart.rate blood.pressure
0.259 0.259

Adjusted R2:

heart.rate blood.pressure
0.254 0.253

n If one were to estimate transformations without removing observations that had
these constants inserted for the current Y -variable, the resulting transformations
would likely have a spike at Y = imputation constant.
o Study to Understand Prognoses Preferences Outcomes and Risks of Treatments
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w$imputed$blood.pressure

400 401
132.4057 109.7741

t ← w$transformed

spe ← round (c(spearman(heart.rate , blood.pressure ),

spearman(t[, ' heart.rate ' ],
t[, ' blood.pressure ' ])), 2)
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Fig. 4.3 Transformations fitted using transcan. Tick marks indicate the two imputed
values for blood pressure.

plot (heart.rate , blood.pressure ) # Figure 4.4

plot (t[, ' heart.rate ' ], t[, ' blood.pressure ' ],
xlab = ' Transformed hr ' , ylab = ' Transformed bp ' )

Spearman’s rank correlation ρ between pairs of heart rate and blood pressure
was -0.02, because these variables each require U -shaped transformations. Us-
ing restricted cubic splines with five knots placed at default quantiles, tran-
scan provided the transformations shown in Figure 4.3. Correlation between
transformed variables is ρ = −0.13. The fitted transformations are similar to
those obtained from relating these two variables to time until death.

4.7.5 Simple Scoring of Variable Clusters

If a subset of the predictors is a series of related dichotomous variables, a
simpler data reduction strategy is sometimes employed. First, construct two
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Fig. 4.4 The lower left plot contains raw data (Spearman ρ = −0.02); the lower right
is a scatterplot of the corresponding transformed values (ρ = −0.13). Data courtesy
of the SUPPORT study352.

new predictors representing whether any of the factors is positive and a count
of the number of positive factors. For the ordinal count of the number of
positive factors, score the summary variable to satisfy linearity assumptions
as discussed previously. For the more powerful predictor of the two summary
measures, test for adequacy of scoring by using all dichotomous variables as
candidate predictors after adjusting for the new summary variable. A residual
χ2 statistic can be used to test whether the summary variable adequately
captures the predictive information of the series of binary predictors.p This
statistic will have degrees of freedom equal to one less than the number of
binary predictors when testing for adequacy of the summary count (and hence
will have low power when there are many predictors). Stratification by the
summary score and examination of responses over cells can be used to suggest
a transformation on the score.

Another approach to scoring a series of related dichotomous predictors is to
have“experts”assign severity points to each condition and then to either sum
these points or use a hierarchical rule that scores according to the condition
with the highest points (see Section 14.3 for an example). The latter has the
advantage of being easy to implement for field use. The adequacy of either
type of scoring can be checked using tests of linearity in a regression modelq.

p Whether this statistic should be used to change the model is problematic in view
of model uncertainty.
q The R function score.binary in the Hmisc package (see Section 6.2) assists in
computing a summary variable from the series of binary conditions.
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4.7.6 Simplifying Cluster Scores

If a variable cluster contains many individual predictors, parsimony may 22

sometimes be achieved by predicting the cluster score from a subset of its
components (using linear regression or CART (Section 2.5), for example).
Then a new cluster score is created and the response model is rerun with the
new score in the place of the original one. If one constituent variable has a
very high R2 in predicting the original cluster score, the single variable may
sometimes be substituted for the cluster score in refitting the model without
loss of predictive discrimination.

Sometimes it may be desired to simplify a variable cluster by asking the
question “which variables in the cluster are really the predictive ones?,” even
though this approach will usually cause true predictive discrimination to suf-
fer. For clusters that are retained after limited step-down modeling, the entire
list of variables can be used as candidate predictors and the step-down process
repeated. All variables contained in clusters that were not selected initially are
ignored. A fair way to validate such two-stage models is to use a resampling
method (Section 5.3) with scores for deleted clusters as candidate variables
for each resample, along with all the individual variables in the clusters the
analyst really wants to retain. A method called battery reduction can be used
to delete variables from clusters by determining if a subset of the variables
can explain most of the variance explained by PC1 (see [142, Chapter 12]
and445). This approach does not require examination of associations with Y .
Battery reduction can also be used to find a set of individual variables that
capture much of the information in the first k principal components. 23

4.7.7 How Much Data Reduction Is Necessary?

In addition to using the sample size to degrees of freedom ratio as a rough
guide to how much data reduction to do before model fitting, the heuristic
shrinkage estimate in Equation 4.3 can also be informative. First, fit a full
model with all candidate variables, nonlinear terms, and hypothesized inter-
actions. Let p denote the number of parameters in this model, aside from any
intercepts. Let LR denote the log likelihood ratio χ2 for this full model. The
estimated shrinkage is (LR − p)/LR. If this falls below 0.9, for example, we
may be concerned with the lack of calibration the model may experience on
new data. Either a shrunken estimator or data reduction is needed. A reduced
model may have acceptable calibration if associations with Y are not used to
reduce the predictors.

A simple method, with an assumption, can be used to estimate the target
number of total regression degrees of freedom q in the model. In a “best
case,” the variables removed to arrive at the reduced model would have no
association with Y . The expected value of the χ2 statistic for testing those
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variables would then be p − q. The shrinkage for the reduced model is then
on average [LR − (p − q) − q]/[LR − (p − q)]. Setting this ratio to be ≥ 0.9
and solving for q gives q ≤ (LR−p)/9. Therefore, reduction of dimensionality
down to q degrees of freedom would be expected to achieve < 10% shrinkage.
With these assumptions, there is no hope that a reduced model would have
acceptable calibration unless LR > p+9. If the information explained by the
omitted variables is less than one would expect by chance (e.g., their total
χ2 is extremely small), a reduced model could still be beneficial, as long as
the conservative bound (LR−q)/LR ≥ 0.9 or q ≤ LR/10 were achieved. This
conservative bound assumes that no χ2 is lost by the reduction, that is that
the final model χ2 ≈ LR. This is unlikely in practice. Had the p− q omitted
variables had a larger χ2 of 2(p− q) (the break-even point for AIC), q must
be ≤ (LR− 2p)/8.

As an example, suppose that a binary logistic model is being developed
from a sample containing 45 events on 150 subjects. The 10:1 rule suggests
we can analyze 4.5 degrees of freedom. The analyst wishes to analyze age,
sex, and 10 other variables. It is not known whether interaction between age
and sex exists, and whether age is linear. A restricted cubic spline is fitted
with four knots, and a linear interaction is allowed between age and sex.
These two variables then need 3 + 1 + 1 = 5 degrees of freedom. The other
10 variables are assumed to be linear and to not interact with themselves
or age and sex. There is a total of 15 d.f. The full model with 15 d.f. has
LR = 50. Expected shrinkage from this model is (50 − 15)/50 = 0.7. Since
LR > 15 + 9 = 24, some reduction might yield a better validating model.
Reduction to q = (50 − 15)/9 ≈ 4 d.f. would be necessary, assuming the
reduced LR is about 50 − (15 − 4) = 39. In this case the 10:1 rule yields
about the same value for q. The analyst may be forced to assume that age is
linear, modeling 3 d.f. for age and sex. The other 10 variables would have to
be reduced to a single variable using principal components or another scaling
technique. The AIC-based calculation yields a maximum of 2.5 d.f.

If the goal of the analysis is to make a series of hypothesis tests (adjusting
P -values for multiple comparisons) instead of to predict future responses, the
full model would have to be used.

A summary of the various data reduction methods is given in Figure 4.5.
When principal component analysis or related methods are used for data

reduction, the model may be harder to describe since internal coefficients are
“hidden.” R code on p. 141 shows how an ordinary linear model fit can be
used in conjunction with a logistic model fit based on principal components
to draw a nomogram with axes for all predictors.24
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Fig. 4.5 Summary of Some Data Reduction Methods

Goals Reasons Methods

Group predictors so that
each group represents a
single dimension that can
be summarized with a sin-
gle score

• ↓ d.f. arising from mul-
tiple predictors

• Make PC1 more reason-
able summary

Variable clustering

• Subject matter knowl-
edge

• Group predictors to
maximize proportion of
variance explained by
PC1 of each group

• Hierarchical clustering
using a matrix of simi-
larity measures between
predictors

Transform predictors

• ↓ d.f. due to nonlin-
ear and dummy variable
components

• Allows predictors to be
optimally combined

• Make PC1 more reason-
able summary

• Use in customized
model for imputing
missing values on each
predictor

• Maximum total vari-
ance on a group of re-
lated predictors

• Canonical variates on
the total set of predic-
tors

Score a group of predic-
tors

↓ d.f. for group to unity • PC1
• Simple point scores

Multiple dimensional
scoring of all predictors

↓ d.f. for all predictors
combined

Principal components
1, 2, . . . , k, k < p com-
puted from all trans-
formed predictors

4.8 Other Approaches to Predictive Modeling

The approaches recommended in this text are

• fitting fully pre-specified models without deletion of “insignificant”predic-
tors

• using data reduction methods (masked to Y ) to reduce the dimensionality
of the predictors and then fitting the number of parameters the data’s
information content can support
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• using shrinkage (penalized estimation) to fit a large model without worry-
ing about the sample size.

Data reduction approaches covered in the last section can yield very inter-
pretable, stable models, but there are many decisions to be made when using a
two-stage (reduction/model fitting) approach. Newer single stage approaches
are evolving. These new approaches, listed on the text’s web site, handle
continuous predictors well, unlike recursive partitioning.

When data reduction is not required, generalized additive models277, 674

should also be considered.

4.9 Overly Influential Observations

Every observation should influence the fit of a regression model. It can be
disheartening, however, if a significant treatment effect or the shape of a
regression effect rests on one or two observations. Overly influential obser-
vations also lead to increased variance of predicted values, especially when
variances are estimated by bootstrapping after taking variable selection into
account. In some cases, overly influential observations can cause one to aban-
don a model, “change”the data, or get more data. Observations can be overly
influential for several major reasons.

1. The most common reason is having too few observations for the complex-
ity of the model being fitted. Remedies for this have been discussed in
Sections 4.7 and 4.3.

2. Data transcription or data entry errors can ruin a model fit.
3. Extreme values of the predictor variables can have a great impact, even

when these values are validated for accuracy. Sometimes the analyst may
deem a subject so atypical of other subjects in the study that deletion
of the case is warranted. On other occasions, it is beneficial to truncate
measurements where the data density ends. In one dataset of 4000 patients
and 2000 deaths, white blood count (WBC) ranged from 500 to 100,000
with .05 and .95 quantiles of 2755 and 26,700, respectively. Predictions
from a linear spline function of WBC were sensitive to WBC > 60,000, for
which there were 16 patients. There were 46 patients with WBC > 40,000.
Predictions were found to be more stable when WBC was truncated at
40,000, that is, setting WBC to 40,000 if WBC > 40,000.

4. Observations containing disagreements between the predictors and the re-
sponse can influence the fit. Such disagreements should not lead to discard-
ing the observations unless the predictor or response values are erroneous
as in Reason 3, or the analysis is made conditional on observations being
unlike the influential ones. In one example a single extreme predictor value
in a sample of size 8000 that was not on a straight line relationship with
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the other (X,Y ) pairs caused a χ2 of 36 for testing nonlinearity of the pre-
dictor. Remember that an imperfectly fitting model is a fact of life, and
discarding the observations can inflate the model’s predictive accuracy. On
rare occasions, such lack of fit may lead the analyst to make changes in
the model’s structure, but ordinarily this is best done from the “ground
up” using formal tests of lack of fit (e.g., a test of linearity or interaction).

Influential observations of the second and third kinds can often be detected
by careful quality control of the data. Statistical measures can also be helpful.
The most common measures that apply to a variety of regression models are
leverage, DFBETAS, DFFIT, and DFFITS.

Leverage measures the capacity of an observation to be influential due
to having extreme predictor values. Such an observation is not necessarily
influential. To compute leverage in ordinary least squares, we define the hat
matrix H given by

H = X(X ′X)−1X ′. (4.6)

H is the matrix that when multiplied by the response vector gives the pre-
dicted values, so it measures how an observation estimates its own predicted
response. The diagonals hii of H are the leverage measures and they are not
influenced by Y . It has been suggested47 that hii > 2(p+ 1)/n signal a high
leverage point, where p is the number of columns in the design matrix X
aside from the intercept and n is the number of observations. Some believe
that the distribution of hii should be examined for values that are higher
than typical.

DFBETAS is the change in the vector of regression coefficient estimates
upon deletion of each observation in turn, scaled by their standard errors.47

Since DFBETAS encompasses an effect for each predictor’s coefficient, DF-
BETAS allows the analyst to isolate the problem better than some of the
other measures. DFFIT is the change in the predicted Xβ when the observa-
tion is dropped, and DFFITS is DFFIT standardized by the standard error
of the estimate of Xβ. In both cases, the standard error used for normal-
ization is recomputed each time an observation is omitted. Some classify an
observation as overly influential when |DFFITS| > 2

√
(p+ 1)/(n− p− 1),

while others prefer to examine the entire distribution of DFFITS to identify
“outliers”.47

Section 10.7 discusses influence measures for the logistic model, which
requires maximum likelihood estimation. These measures require the use of
special residuals and information matrices (in place of X ′X).

If truly influential observations are identified using these indexes, careful
thought is needed to decide how (or whether) to deal with them. Most im-
portant, there is no substitute for careful examination of the dataset before
doing any analyses.99 Spence and Garrison [581, p. 16] feel that

Although the identification of aberrations receives considerable attention in
most modern statistical courses, the emphasis sometimes seems to be on dis-
posing of embarrassing data by searching for sources of technical error or
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minimizing the influence of inconvenient data by the application of resistant
methods. Working scientists often find the most interesting aspect of the anal-
ysis inheres in the lack of fit rather than the fit itself.

4.10 Comparing Two Models

Frequently one wants to choose between two competing models on the ba-
sis of a common set of observations. The methods that follow assume that
the performance of the models is evaluated on a sample not used to develop
either one. In this case, predicted values from the model can usually be con-
sidered as a single new variable for comparison with responses in the new
dataset. These methods listed below will also work if the models are com-
pared using the same set of data used to fit each one, as long as both models
have the same effective number of (candidate or actual) parameters. This
requirement prevents us from rewarding a model just because it overfits the
training sample (see Section 9.8.1 for a method comparing two models of dif-
fering complexity). The methods can also be enhanced using bootstrapping
or cross-validation on a single sample to get a fair comparison when the play-
ing field is not level, for example, when one model had more opportunity for
fitting or overfitting the responses.

Some of the criteria for choosing one model over the other are

1. calibration (e.g., one model is well-calibrated and the other is not),
2. discrimination,
3. face validity,
4. measurement errors in required predictors,
5. use of continuous predictors (which are usually better defined than cate-

gorical ones),
6. omission of “insignificant” variables that nonetheless make sense as risk

factors,
7. simplicity (although this is less important with the availability of comput-

ers), and
8. lack of fit for specific types of subjects.

Items 3 through 7 require subjective judgment, so we focus on the other as-
pects. If the purpose of the models is only to rank-order subjects, calibration
is not an issue. Otherwise, a model having poor calibration can be dismissed
outright. Given that the two models have similar calibration, discrimination
should be examined critically. Various statistical indexes can quantify dis-
crimination ability (e.g., R2, model χ2, Somers’ Dxy, Spearman’s ρ, area un-
der ROC curve—see Section 10.8). Rank measures (Dxy, ρ, ROC area) only
measure how well predicted values can rank-order responses. For example,
predicted probabilities of 0.01 and 0.99 for a pair of subjects are no better
than probabilities of 0.2 and 0.8 using rank measures, if the first subject had
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a lower response value than the second. Therefore, rank measures such as
ROC area (c index), although fine for describing a given model, may not be
very sensitive in choosing between two models118, 488, 493. This is especially
true when the models are strong, as it is easier to move a rank correlation
from 0.6 to 0.7 than it is to move it from 0.9 to 1.0. Measures such as R2 and
the model χ2 statistic (calculated from the predicted and observed responses)
are more sensitive. Still, one may not know how to interpret the added utility
of a model that boosts the R2 from 0.80 to 0.81.

Again given that both models are equally well calibrated, discrimination
can be studied more simply by examining the distribution of predicted values
Ŷ . Suppose that the predicted value is the probability that a subject dies.
Then high-resolution histograms of the predicted risk distributions for the
two models can be very revealing. If one model assigns 0.02 of the sample to
a risk of dying above 0.9 while the other model assigns 0.08 of the sample to
the high risk group, the second model is more discriminating. The worth of a
model can be judged by how far it goes out on a limb while still maintaining
good calibration. 25

Frequently, one model will have a similar discrimination index to another
model, but the likelihood ratio χ2 statistic is meaningfully greater for one. As-
suming corrections have been made for complexity, the model with the higher
χ2 usually has a better fit for some subjects, although not necessarily for the
average subject. A crude plot of predictions from the first model against
predictions from the second, possibly stratified by Y , can help describe the
differences in the models. More specific analyses will determine the charac-
teristics of subjects where the differences are greatest. Large differences may
be caused by an omitted, underweighted, or improperly transformed predic-
tor, among other reasons. In one example, two models for predicting hospital
mortality in critically ill patients had the same discrimination index (to two
decimal places). For the relatively small subset of patients with extremely low
white blood counts or serum albumin, the model that treated these factors
as continuous variables provided predictions that were very much different
from a model that did not.

When comparing predictions for two models that may not be calibrated
(from overfitting, e.g.), the two sets of predictions may be shrunk so as to
not give credit for overfitting (see Equation 4.3).

Sometimes one wishes to compare two models that used the response vari-
able differently, a much more difficult problem. For example, an investigator
may want to choose between a survival model that used time as a continuous
variable, and a binary logistic model for dead/alive at six months. Here, other
considerations are also important (see Section 17.1). A model that predicts
dead/alive at six months does not use the response variable effectively, and
it provides no information on the chance of dying within three months.

When one or both of the models is fitted using least squares, it is useful
to compare them using an error measure that was not used as the optimiza-
tion criterion, such as mean absolute error or median absolute error. Mean
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and median absolute errors are excellent measures for judging the value of a
model developed without transforming the response to a model fitted after
transforming Y , then back-transforming to get predictions.26

4.11 Improving the Practice of Multivariable Prediction

Standards for published predictive modeling and feature selection in high-
dimensional problems are not very high. There are several things that a good
analyst can do to improve the situation.

1. Insist on validation of predictive models and discoveries, using rigorous
internal validation based on resampling or using external validation.

2. Show collaborators that split-sample validation is not appropriate unless
the number of subjects is huge

• This can be demonstrated by spliting the data more than once and
seeing volatile results, and by calculating a confidence interval for the
predictive accuracy in the test dataset and showing that it is very wide.

3. Run a simulation study with no real associations and show that asso-
ciations are easy to find if a dangerous data mining procedure is used.
Alternately, analyze the collaborator’s data after randomly permuting the
Y vector and show some “positive” findings.

4. Show that alternative explanations are easy to posit. For example:

• The importance of a risk factor may disappear if 5 “unimportant” risk
factors are added back to the model

• Omitted main effects can explain away apparent interactions.
• Perform a uniqueness analysis : attempt to predict the predicted val-

ues from a model derived by data torture from all of the features not
used in the model. If one can obtain R2 = 0.85 in predicting the “win-
ning” feature signature (predicted values) from the“losing”features, the
“winning” pattern is not unique and may be unreliable.

4.12 Summary: Possible Modeling Strategies

Some possible global modeling strategies are to

• Use a method known not to work well (e.g., stepwise variable selection
without penalization; recursive partitioning resulting in a single tree), doc-
ument how poorly the model performs (e.g. using the bootstrap), and use
the model anyway

• Develop a black box model that performs poorly and is difficult to interpret
(e.g., does not incorporate penalization)
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• Develop a black box model that performs well and is difficult to interpret
• Develop interpretable approximations to the black box
• Develop an interpretable model (e.g. give priority to additive effects) that

performs well and is likely to perform equally well on future data from the
same stream.

As stated in the Preface, the strategy emphasized in this text, stemming
from the last philosophy, is to decide how many degrees of freedom can be
“spent,” where they should be spent, and then to spend them. If statistical
tests or confidence limits are required, later reconsideration of how d.f. are
spent is not usually recommended. In what follows some default strategies
are elaborated. These strategies are far from failsafe, but they should allow
the reader to develop a strategy that is tailored to a particular problem. At
the least these default strategies are concrete enough to be criticized so that
statisticians can devise better ones.

4.12.1 Developing Predictive Models

The following strategy is generic although it is aimed principally at the de-
velopment of accurate predictive models.

1. Assemble as much accurate pertinent data as possible, with wide distri-
butions for predictor values. For survival time data, follow-up must be
sufficient to capture enough events as well as the clinically meaningful
phases if dealing with a chronic process.

2. Formulate good hypotheses that lead to specification of relevant candi-
date predictors and possible interactions. Don’t use Y (either informally
using graphs, descriptive statistics, or tables, or formally using hypothe-
sis tests or estimates of effects such as odds ratios) in devising the list of
candidate predictors.

3. If there are missing Y values on a small fraction of the subjects but Y
can be reliably substituted by a surrogate response, use the surrogate to
replace the missing values. Characterize tendencies for Y to be missing
using, for example, recursive partitioning or binary logistic regression.
Depending on the model used, even the information on X for observa-
tions with missing Y can be used to improve precision of β̂, so multiple
imputation of Y can sometimes be effective. Otherwise, discard observa-
tions having missing Y .

4. Impute missing Xs if the fraction of observations with any missing Xs is
not tiny. Characterize observations that had to be discarded. Special im-
putation models may be needed if a continuousX needs a non-monotonic
transformation (p. 52). These models can simultaneously impute missing
values while determining transformations. In most cases, multiply impute
missing Xs based on other Xs and Y , and other available information
about the missing data mechanism.
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5. For each predictor specify the complexity or degree of nonlinearity that
should be allowed (see Section 4.1). When prior knowledge does not in-
dicate that a predictor has a linear effect on the property C(Y |X) (the
property of the response that can be linearly related to X), specify the
number of degrees of freedom that should be devoted to the predictor.
The d.f. (or number of knots) can be larger when the predictor is thought
to be more important in predicting Y or when the sample size is large.

6. If the number of terms fitted or tested in the modeling process (counting
nonlinear and cross-product terms) is too large in comparison with the
number of outcomes in the sample, use data reduction (ignoring Y ) until
the number of remaining free variables needing regression coefficients is
tolerable. Use the m/10 or m/15 rule or an estimate of likely shrinkage
or overfitting (Section 4.7) as a guide. Transformations determined from
the previous step may be used to reduce each predictor into 1 d.f., or the
transformed variables may be clustered into highly correlated groups if
more data reduction is required. Alternatively, use penalized estimation
with the entire set of variables. This will also effectively reduce the total
degrees of freedom.272

7. Use the entire sample in the model development as data are too precious
to waste. If steps listed below are too difficult to repeat for each bootstrap
or cross-validation sample, hold out test data from allmodel development
steps that follow.

8. When you can test for model complexity in a very structured way, you
may be able to simplify the model without a great need to penalize the
final model for having made this initial look. For example, it can be
advisable to test an entire group of variables (e.g., those more expensive
to collect) and to either delete or retain the entire group for further
modeling, based on a single P -value (especially if the P value is not
between 0.05 and 0.2). Another example of structured testing to simplify
the “initial” model is making all continuous predictors have the same
number of knots k, varying k from 0 (linear), 3, 4, 5, . . . , and choosing
the value of k that optimizes AIC. A composite test of all nonlinear effects
in a model can also be used, and statistical inferences are not invalidated
if the global test of nonlinearity yields P > 0.2 or so and the analyst
deletes all nonlinear terms.

9. Make tests of linearity of effects in the model only to demonstrate to
others that such effects are often statistically significant. Don’t remove
insignificant effects from the model when tested separately by predictor.
Any examination of the response that might result in simplifying the
model needs to be accounted for in computing confidence limits and other
statistics. It is preferable to retain the complexity that was prespecified
in Step 5 regardless of the results of assessments of nonlinearity.
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10. Check additivity assumptions by testing prespecified interaction terms.
If the global test for additivity is significant or equivocal, all prespecified
interactions should be retained in the model. If the test is decisive (e.g.,
P > 0.3), all interaction terms can be omitted, and in all likelihood there
is no need to repeat this pooled test for each resample during model
validation. In other words, one can assume that had the global interaction
test been carried out for each bootstrap resample it would have been
insignificant at the 0.05 level more than, say, 0.9 of the time. In this large
P -value case the pooled interaction test did not induce an uncertainty in
model selection that needed accounting.

11. Check to see if there are overly influential observations.
12. Check distributional assumptions and choose a different model if needed.
13. Do limited backwards step-down variable selection if parsimony is more

important than accuracy.582 The cost of doing any aggressive variable
selection is that the variable selection algorithm must also be included
in a resampling procedure to properly validate the model or to compute
confidence limits and the like.

14. This is the “final” model.
15. Interpret the model graphically (Section 5.1) and by examining predicted

values and using appropriate significance tests without trying to interpret
some of the individual model parameters. For collinear predictors obtain
pooled tests of association so that competition among variables will not
give misleading impressions of their total significance.

16. Validate the final model for calibration and discrimination ability, prefer-
ably using bootstrapping (see Section 5.3). Steps 9 to 13 must be repeated
for each bootstrap sample, at least approximately. For example, if age was
transformed when building the final model, and the transformation was
suggested by the data using a fit involving age and age2, each bootstrap
repetition should include both age variables with a possible step-down
from the quadratic to the linear model based on automatic significance
testing at each step.

17. Shrink parameter estimates if there is overfitting but no further data
reduction is desired, if shrinkage was not built into the estimation process.

18. When missing values were imputed, adjust final variance–covariance ma-
trix for imputation wherever possible (e.g., using bootstrap or multiple
imputation). This may affect some of the other results.

19. When all steps of the modeling strategy can be automated, consider
using Faraway’s method186 to penalize for the randomness inherent in
the multiple steps. 27

20. Develop simplifications to the full model by approximating it to any
desired degrees of accuracy (Section 5.5).



98 4 Multivariable Modeling Strategies

4.12.2 Developing Models for Effect Estimation

By effect estimation is meant point and interval estimation of differences in
properties of the responses between two or more settings of some predictors, or
estimating some function of these differences such as the antilog. In ordinary
multiple regression with no transformation of Y such differences are absolute
estimates. In regression involving log(Y ) or in logistic or proportional hazards
models, effect estimation is, at least initially, concerned with estimation of
relative effects. As discussed on pp. 4 and 224, estimation of absolute effects
for these models must involve accurate prediction of overall response values,
so the strategy in the previous section applies.

When estimating differences or relative effects, the bias in the effect es-
timate, besides being influenced by the study design, is related to how well
subject heterogeneity and confounding are taken into account. The variance
of the effect estimate is related to the distribution of the variable whose levels
are being compared, and, in least squares estimates, to the amount of vari-
ation “explained” by the entire set of predictors. Variance of the estimated
difference can increase if there is overfitting. So for estimation, the previous
strategy largely applies.

The following are differences in the modeling strategy when effect estima-
tion is the goal.

1. There is even less gain from having a parsimonious model than when de-
veloping overall predictive models, as estimation is usually done at the
time of analysis. Leaving insignificant predictors in the model increases
the likelihood that the confidence interval for the effect of interest has the
stated coverage. By contrast, overall predictions are conditional on the
values of all predictors in the model. The variance of such predictions is
increased by the presence of unimportant variables, as predictions are still
conditional on the particular values of these variables (Section 5.5.1) and
cancellation of terms (which occurs when differences are of interest) does
not occur.

2. Careful consideration of inclusion of interactions is still a major consid-
eration for estimation. If a predictor whose effects are of major interest
is allowed to interact with one or more other predictors, effect estimates
must be conditional on the values of the other predictors and hence have
higher variance.

3. A major goal of imputation is to avoid lowering the sample size because
of missing values in adjustment variables. If the predictor of interest is the
only variable having a substantial number of missing values, multiple im-
putation is less worthwhile, unless it corrects for a substantial bias caused
by deletion of nonrandomly missing data.
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4. The analyst need not be very concerned about conserving degrees of free-
dom devoted to the predictor of interest. The complexity allowed for this
variable is usually determined by prior beliefs, with compromises that con-
sider the bias-variance trade-off.

5. If penalized estimation is used, the analyst may wish to not shrink param-
eter estimates for the predictor of interest.

6. Model validation is not necessary unless the analyst wishes to use it to
quantify the degree of overfitting.

4.12.3 Developing Models for Hypothesis Testing

A default strategy for developing a multivariable model that is to be used
as a basis for hypothesis testing is almost the same as the strategy used for
estimation.

1. There is little concern for parsimony. A full model fit, including insignifi-
cant variables, will result in more accurate P -values for tests for the vari-
ables of interest.

2. Careful consideration of inclusion of interactions is still a major consid-
eration for hypothesis testing. If one or more predictors interacts with a
variable of interest, either separate hypothesis tests are carried out over
the levels of the interacting factors, or a combined “main effect + interac-
tion” test is performed. For example, a very well–defined test is whether
treatment is effective for any race group.

3. If the predictor of interest is the only variable having a substantial number
of missing values, multiple imputation is less worthwhile. In some cases,
multiple imputation may increase power (e.g., in ordinary multiple regres-
sion one can obtain larger degrees of freedom for error) but in others there
will be little net gain. However, the test can be biased due to exclusion of
nonrandomly missing observations if imputation is not done.

4. As before, the analyst need not be very concerned about conserving degrees
of freedom devoted to the predictor of interest. The degrees of freedom
allowed for this variable is usually determined by prior beliefs, with careful
consideration of the trade-off between bias and power.

5. If penalized estimation is used, the analyst should not shrink parameter
estimates for the predictors being tested.

6. Model validation is not necessary unless the analyst wishes to use it to
quantify the degree of overfitting. This may shed light on whether there is
overadjustment for confounders.
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4.13 Further Reading

1 Some good general references that address modeling strategies are [216,269,476,
590].

2 Even though they used a generalized correlation index for screening variables
and not for transforming them, Hall and Miller249 present a related idea, com-
puting the ordinary R2 against a cubic spline transformation of each potential
predictor.

3 Simulation studies are needed to determine the effects of modifying the model
based on assessments of “predictor promise.” Although it is unlikely that this
strategy will result in regression coefficients that are biased high in absolute
value, it may on some occasions result in somewhat optimistic standard errors
and a slight elevation in type I error probability. Some simulation results may
be found on the Web site. Initial promising findings for least squares models
for two uncorrelated predictors indicate that the procedure is conservative in
its estimation of σ2 and in preserving type I error.

4 Verweij and van Houwelingen640 and Shao565 describe how cross-validation can
be used in formulating a stopping rule. Luo et al.430 developed an approach to
tuning forward selection by adding noise to Y .

5 Roecker528 compared forward variable selection (FS) and all possible subsets
selection (APS) with full model fits in ordinary least squares. APS had a greater
tendency to select smaller, less accurate models than FS. Neither selection tech-
nique was as accurate as the full model fit unless more than half of the candidate
variables was redundant or unnecessary.

6 Wiegand668 showed that it is not very fruitful to try different stepwise algo-
rithms and then to be comforted by agreements in some of the variables selected.
It is easy for different stepwise methods to agree on the wrong set of variables.

7 Other results on how variable selection affects inference may be found in Hurvich
and Tsai316 and Breiman [66, Section 8.1].

8 Goring et al.227 presented an interesting analysis of the huge bias caused by
conditioning analyses on statistical significance in a high-dimensional genetics
context.

9 Steyerberg et al.589 have comparisons of smoothly penalized estimators with
the lasso and with several stepwise variable selection algorithms.

10 See Weiss,656 Faraway,186 and Chatfield100 for more discussions of the effect of
not prespecifying models, for example, dependence of point estimates of effects
on the variables used for adjustment.

11 Greenland241 provides an example in which overfitting a logistic model resulted
in far too many predictors with P < 0.05.

12 See Peduzzi et al.486,487 for studies of the relationship between “events per
variable” and types I and II error, accuracy of variance estimates, and accuracy
of normal approximations for regression coefficient estimators. Their findings
are consistent with those given in the text (but644 has a slightly different take).
van der Ploeg et al.629 did extensive simulations to determine the events per
variable ratio needed to avoid a drop-off (in an independent test sample) in more
than 0.01 in the c-index, for a variety of predictive methods. They concluded
that support vector machines, neural networks, and random forests needed far
more events per variable to achieve freedom from overfitting than does logistic
regression, and that recursive partitioning was not competitive. Logistic regres-
sion required between 20 and 50 events per variable to avoid overfitting. Differ-
ent results might have been obtained had the authors used a proper accuracy
score.

13 Copas [122, Eq. 8.5] adds 2 to the numerator of Equation 4.3 (see also [504,631]).
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14 An excellent discussion about such indexes may be found in http://r.789695.

n4.nabble.com/Adjusted-R-squared-formula-in-lm-td4656857.html where
J. Lucke points out that R2 tends to p

n−1
when the population R2 is zero,

but R2
adj converges to zero.

15 Efron [173, Eq. 4.23] and van Houwelingen and le Cessie633 showed that the av-
erage expected optimism in a mean logarithmic quality score for a p-predictor
binary logistic model is p/n. Taylor et al.600 showed that the ratio of variances
for certain quantities is proportional to the ratio of the number of parameters
in two models. Copas stated that “Shrinkage can be particularly marked when
stepwise fitting is used: the shrinkage is then closer to that expected of the
full regression rather than of the subset regression actually fitted.”122,504,631

Spiegelhalter,582 in arguing against variable selection, states that better predic-
tion will often be obtained by fitting all candidate variables in the final model,
shrinking the vector of regression coefficient estimates towards zero.

16 See Belsley [46, pp. 28–30] for some reservations about using VIF.
17 Friedman and Wall208 discuss and provide graphical devices for explaining sup-

pression by a predictor not correlated with the response but that is correlated
with another predictor. Adjusting for a suppressor variable will increase the
predictive discrimination of the model. Meinshausen453 developed a novel hier-
archical approach to gauging the importance of collinear predictors.

18 For incomplete principal component regression see [101, 119, 120, 142, 144, 320,
325]. See396,686 for sparse principal component analysis methods in which con-
straints are applied to loadings so that some of them are set to zero. The latter
reference provides a principal component method for binary data. See246 for
a type of sparse principal component analysis that also encourages loadings
to be similar for a group of highly correlated variables and allows for a type
of variable clustering.See [390] for principal surfaces. Sliced inverse regression
is described in [104, 119, 120, 189, 403, 404]. For material on variable cluster-
ing see [142, 144, 268, 441, 539]. A good general reference on cluster analysis
is [634, Chapter 11]. de Leeuw and Mair in their R homals package [153] have
one of the most general approaches to data reduction related to optimal scaling.
Their approach includes nonlinear principal component analysis among several
other multivariate analyses.

19 The redundancy analysis described here is related to principal variables448 but
is faster.

20 Meinshausen453 developed a method of testing the importance of competing
(collinear) variables using an interesting automatic clustering procedure.

21 The R ClustOfVar package by Marie Chavent, Vanessa Kuentz, Benoit Liquet,
and Jerome Saracco generalizes variable clustering and explicitly handles a mix-
ture of quantitative and categorical predictors. It also implements bootstrap
cluster stability analysis.

22 Principal components are commonly used to summarize a cluster of variables.
Vines643 developed a method to constrain the principal component coefficients
to be integers without much loss of explained variability.

23 Jolliffe324 presented a way to discard some of the variables making up principal
components. Wang and Gehan649 presented a new method for finding subsets of
predictors that approximate a set of principal components, and surveyed other
methods for simplifying principal components.

24 See D’Agostino et al.144 for excellent examples of variable clustering (including
a two-stage approach) and other data reduction techniques using both statistical
methods and subject-matter expertise.

25 Cook118 and Pencina et al.490,492,493 present an approach for judging the
added value of new variables that is based on evaluating the extent to which
the new information moves predicted probabilities higher for subjects having
events and lower for subjects not having events. But see292,592.

http://r.789695.n4.nabble.com/Adjusted-R-squared-formula-in-lm-td4656857.html
http://r.789695.n4.nabble.com/Adjusted-R-squared-formula-in-lm-td4656857.html
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26 The Hmisc abs.error.pred function computes a variety of accuracy measures
based on absolute errors.

27 Shen et al.567 developed an “optimal approximation” method to make correct
inferences after model selection.

4.14 Problems

Analyze the SUPPORT dataset (getHdata(support)) as directed below to re-
late selected variables to total cost of the hospitalization. Make sure this
response variable is utilized in a way that approximately satisfies the assump-
tions of normality-based multiple regression so that statistical inferences will
be accurate. See problems at the end of Chapters 3 and 7 of the text for more
information. Consider as predictors mean arterial blood pressure, heart rate,
age, disease group, and coma score.

1. Do an analysis to understand interrelationships among predictors, and find
optimal scaling (transformations) that make the predictors better relate
to each other (e.g., optimize the variation explained by the first principal
component).

2. Do a redundancy analysis of the predictors, using both a less stringent and
a more stringent approach to assessing the redundancy of the multiple-level
variable disease group.

3. Do an analysis that helps one determine how many d.f. to devote to each
predictor.

4. Fit a model, assuming the above predictors act additively, but do not as-
sume linearity for the age and blood pressure effects. Use the truncated
power basis for fitting restricted cubic spline functions with 5 knots. Esti-
mate the shrinkage coefficient γ̂.

5. Make appropriate graphical diagnostics for this model.
6. Test linearity in age, linearity in blood pressure, and linearity in heart rate,

and also do a joint test of linearity simultaneously in all three predictors.
7. Expand the model to not assume additivity of age and blood pressure.

Use a tensor natural spline or an appropriate restricted tensor spline. If
you run into any numerical difficulties, use 4 knots instead of 5. Plot in an
interpretable fashion the estimated 3-D relationship between age, blood
pressure, and cost for a fixed disease group.

8. Test for additivity of age and blood pressure. Make a joint test for the
overall absence of complexity in the model (linearity and additivity simul-
taneously).



Chapter 5

Describing, Resampling, Validating,
and Simplifying the Model

5.1 Describing the Fitted Model

5.1.1 Interpreting Effects

Before addressing issues related to describing and interpreting the model
and its coefficients, one can never apply too much caution in attempting to
interpret results in a causal manner. Regression models are excellent tools
for estimating and inferring associations between an X and Y given that the
“right” variables are in the model. Any ability of a model to provide causal
inference rests entirely on the faith of the analyst in the experimental design,
completeness of the set of variables that are thought to measure confounding
and are used for adjustment when the experiment is not randomized, lack of
important measurement error, and lastly the goodness of fit of the model.

The first line of attack in interpreting the results of a multivariable analysis
is to interpret the model’s parameter estimates. For simple linear, additive
models, regression coefficients may be readily interpreted. If there are in-
teractions or nonlinear terms in the model, however, simple interpretations
are usually impossible. Many programs ignore this problem, routinely print-
ing such meaningless quantities as the effect of increasing age2 by one day
while holding age constant. A meaningful age change needs to be chosen, and
connections between mathematically related variables must be taken into
account. These problems can be solved by relying on predicted values and
differences between predicted values.

Even when the model contains no nonlinear effects, it is difficult to com-
pare regression coefficients across predictors having varying scales. Some an-
alysts like to gauge the relative contributions of different predictors on a
common scale by multiplying regression coefficients by the standard devia-
tions of the predictors that pertain to them. This does not make sense for
nonnormally distributed predictors (and regression models should not need
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to make assumptions about the distributions of predictors). When a predic-
tor is binary (e.g., sex), the standard deviation makes no sense as a scaling
factor as the scale would depend on the prevalence of the predictor.a1

It is more sensible to estimate the change in Y when Xj is changed by
an amount that is subject-matter relevant. For binary predictors this is a
change from 0 to 1. For many continuous predictors the interquartile range
is a reasonable default choice. If the 0.25 and 0.75 quantiles of Xj are g and
h, linearity holds, and the estimated coefficient of Xj is b; b× (h− g) is the
effect of increasing Xj by h − g units, which is a span that contains half of
the sample values of Xj.

For the more general case of continuous predictors that are monotonically
but not linearly related to Y , a useful point summary is the change in Xβ
when the variable changes from its 0.25 quantile to its 0.75 quantile. For
models for which exp(Xβ) is meaningful, antilogging the predicted change in
Xβ results in quantities such as interquartile-range odds and hazards ratios.
When the variable is involved in interactions, these ratios are estimated sep-
arately for various levels of the interacting factors. For categorical predictors,
ordinary effects are computed by comparing each level of the predictor with
a reference level. See Section 10.10 and Chapter 11 for tabular and graphical
examples of this approach.2

The model can be described using partial effect plots by plotting each X
againstXβ̂ holding other predictors constant. Modified versions of such plots,
by nonlinearly rank-transforming the predictor axis, can show the relative
importance of a predictor336.

For an X that interacts with other factors, separate curves are drawn on
the same graph, one for each level of the interacting factor.

Nomograms40, 254, 339, 427 provide excellent graphical depictions of all the3

variables in the model, in addition to enabling the user to obtain predicted
values manually. Nomograms are especially good at helping the user envision
interactions. See Section 10.10 and Chapter 11 for examples.4

5.1.2 Indexes of Model Performance

5.1.2.1 Error Measures

Care must be taken in the choice of accuracy scores to be used in validation.
Indexes can be broken down into three main areas.

Central tendency of prediction errors: These measures include mean abso-
lute differences, mean squared differences, and logarithmic scores. An ab-
solute measure is mean |Y − Ŷ |. The mean squared error is a commonly
used and sensitive measure if there are no outliers. For the special case

a The s.d. of a binary variable is, aside from a multiplier of n
n−1

, equal to
√
a(1− a),

where a is the proportion of ones.
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where Y is binary, such a measure is the Brier score, which is a quadratic
proper scoring rule that combines calibration and discriminationb. The
logarithmic proper scoring rules (related to average log-likelihood) is even
more sensitive but can be harder to interpret and can be destroyed by a
single predicted probability of 0 or 1 that was incorrect.

Discrimination measures: A measure of pure discrimination is a rank corre-
lation of Ŷ and Y , including Spearman’s ρ, Kendall’s τ , and Somers’ Dxy.
When Y is binary, Dxy = 2 × (c − 1

2 ) where c is the concordance prob-
ability or area under the receiver operating characteristic curve, a linear
translation of the Wilcoxon-Mann-Whitney statistic. R2 is mostly a mea-
sure of discrimination, and R2

adj is is a good overfitting-corrected measure,
if the model is pre-specified. See Section 10.8 for more information about
rank-based measures.

Discrimination measures based on variation in Ŷ : These include the regres-
sion sum of squares and the g–Index (see below).

Calibration measures: These assess absolute prediction accuracy.
Calibration–in–the–large compares the average Ŷ with the average Y .
A high-resolution calibration curve or calibration–in–the–small assesses the
absolute forecast accuracy of predictions at individual levels of Ŷ . When
the calibration curve is linear, this can be summarized by the calibration
slope and intercept. A more general approach uses the loess nonparametric
smoother to estimate the calibration curve37. For any shape of calibration
curve, errors can be summarized by quantities such as the maximum ab-
solute calibration error, mean absolute calibration error, and 0.9 quantile
of calibration error.

The g-index is a new measure of a model’s predictive discrimination based
only on Xβ̂ = Ŷ that applies quite generally. It is based on Gini’s mean
difference for a variable Z, which is the mean over all possible i �= j of |Zi −
Zj |. The g-index is an interpretable, robust, and highly efficient measure of
variation. For example, when predicting systolic blood pressure, g = 11mmHg
represents a typical difference in Ŷ . g is independent of censoring and other
complexities. For models in which the anti-log of a difference in Ŷ represents
meaningful ratios (e.g., odds ratios, hazard ratios, ratio of medians), gr can
be defined as exp(g). For models in which Ŷ can be turned into a probability 5

estimate (e.g., logistic regression), gp is defined as Gini’s mean difference of

P̂ . These g–indexes represent e.g. “typical” odds ratios, and “typical” risk
differences. Partial g indexes can also be defined. More details may be found
in the documentation for the R rms package’s gIndex function.

b There are decompositions of the Brier score into discrimination and calibration
components.
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5.2 The Bootstrap

When one assumes that a random variable Y has a certain population dis-
tribution, one can use simulation or analytic derivations to study how a sta-
tistical estimator computed from samples from this distribution behaves. For
example, when Y has a log-normal distribution, the variance of the sample
median for a sample of size n from that distribution can be derived analyt-
ically. Alternatively, one can simulate 500 samples of size n from the log-
normal distribution, compute the sample median for each sample, and then
compute the sample variance of the 500 sample medians. Either case requires
knowledge of the population distribution function.

Efron’s bootstrap150, 177, 178 is a general-purpose technique for obtaining es-
timates of the properties of statistical estimators without making assumptions
about the distribution giving rise to the data. Suppose that a random variable
Y comes from a cumulative distribution function F (y) = Prob{Y ≤ y} and
that we have a sample of size n from this unknown distribution, Y1, Y2, . . . , Yn.
The basic idea is to repeatedly simulate a sample of size n from F , computing
the statistic of interest, and assessing how the statistic behaves over B rep-
etitions. Not having F at our disposal, we can estimate F by the empirical
cumulative distribution function

Fn(y) =
1

n

n∑
i=1

[Yi ≤ y]. (5.1)

Fn corresponds to a density function that places probability 1/n at each
observed datapoint (k/n if that point were duplicated k times and its value
listed only once).

As an example, consider a random sample of size n = 30 from a normal
distribution with mean 100 and standard deviation 10. Figure 5.1 shows the
population and empirical cumulative distribution functions.

Now pretend that Fn(y) is the original population distribution F (y). Sam-
pling from Fn is equivalent to sampling with replacement from the observed
data Y1, . . . , Yn. For large n, the expected fraction of original datapoints that
are selected for each bootstrap sample is 1 − e−1 = 0.632. Some points are
selected twice, some three times, a few four times, and so on. We take B sam-
ples of size n with replacement, with B chosen so that the summary measure
of the individual statistics is nearly as good as taking B = ∞. The bootstrap6

is based on the fact that the distribution of the observed differences between a
resampled estimate of a parameter of interest and the original estimate of the
parameter from the whole sample tells us about the distribution of unobserv-
able differences between the original estimate and the unknown population
value of the parameter.

As an example, consider the data (1, 5, 6, 7, 8, 9) and suppose that we would
like to obtain a 0.80 confidence interval for the population median, as well as
an estimate of the population expected value of the sample median (the latter
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Fig. 5.1 Empirical and population cumulative distribution function

is only used to estimate bias in the sample median). The first 20 bootstrap
samples (after sorting data values) and the corresponding sample medians
are shown in Table 5.1.

For a given number B of bootstrap samples, our estimates are simply
the sample 0.1 and 0.9 quantiles of the sample medians, and the mean of
the sample medians. Not knowing how large B should be, we could let B
range from, say, 50 to 1000, stopping when we are sure the estimates have
converged. In the left plot of Figure 5.2, B varies from 1 to 400 for the mean
(10 to 400 for the quantiles). It can be seen that the bootstrap estimate of the
population mean of the sample median can be estimated satisfactorily when
B > 50. For the lower and upper limits of the 0.8 confidence interval for the
population median Y , B must be at least 200. For more extreme confidence
limits, B must be higher still.

For the final set of 400 sample medians, a histogram (right plot in Fig-
ure 5.2) can be used to assess the form of the sampling distribution of the
sample median. Here, the distribution is almost normal, although there is a
slightly heavy left tail that comes from the data themselves having a heavy left
tail. For large samples, sample medians are normally distributed for a wide
variety of population distributions. Therefore we could use bootstrapping to
estimate the variance of the sample median and then take ±1.28 standard
errors as a 0.80 confidence interval. In other cases (e.g., regression coefficient
estimates for certain models), estimates are asymmetrically distributed, and
the bootstrap quantiles are better estimates than confidence intervals that
are based on a normality assumption. Note that because sample quantiles
are more or less restricted to equal one of the values in the sample, the boot-
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Fig. 5.2 Estimating properties of sample median using the bootstrap

Table 5.1 First 20 bootstrap samples

Bootstrap Sample Sample Median
1 6 6 7 8 9 6.5
1 5 5 5 6 8 5.0
5 7 8 9 9 9 8.5
7 7 7 8 8 9 7.5
1 5 7 7 9 9 7.0
1 5 6 6 7 8 6.0
7 8 8 8 8 8 8.0
5 5 5 7 9 9 6.0
1 5 5 7 7 9 6.0
1 5 5 7 7 8 6.0
1 1 5 5 7 7 5.0
1 1 5 5 7 8 5.0
1 5 5 7 7 8 6.0
1 5 6 7 8 8 6.5
1 5 6 7 9 9 6.5
6 6 7 7 8 9 7.0
1 5 7 8 8 9 7.5
6 6 8 9 9 9 8.5
1 1 5 5 6 9 5.0
1 6 8 9 9 9 8.5
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strap distribution is discrete and can be dependent on a small number of
outliers. For this reason, bootstrapping quantiles does not work particularly
well for small samples [150, pp. 41–43].

The method just presented for obtaining a nonparametric confidence in-
terval for the population median is called the bootstrap percentile method. It
is the simplest but not necessarily the best performing bootstrap method. 7

In this text we use the bootstrap primarily for computing statistical esti-
mates that are much different from standard errors and confidence intervals,
namely, estimates of model performance.

5.3 Model Validation

5.3.1 Introduction

The surest method to have a model fit the data at hand is to discard much
of the data. A p-variable fit to p+ 1 observations will perfectly predict Y as
long as no two observations have the same Y . Such a model will, however,
yield predictions that appear almost random with respect to responses on
a different dataset. Therefore, unbiased estimates of predictive accuracy are
essential.

Model validation is done to ascertain whether predicted values from the
model are likely to accurately predict responses on future subjects or sub-
jects not used to develop our model. Three major causes of failure of the 8

model to validate are overfitting, changes in measurement methods/changes
in definition of categorical variables, and major changes in subject inclusion
criteria.

There are two major modes of model validation, external and internal. The
most stringent external validation involves testing a final model developed in
one country or setting on subjects in another country or setting at another
time. This validation would test whether the data collection instrument was
translated into another language properly, whether cultural differences make
earlier findings nonapplicable, and whether secular trends have changed as-
sociations or base rates. Testing a finished model on new subjects from the 9

same geographic area but from a different institution as subjects used to fit
the model is a less stringent form of external validation. The least stringent
form of external validation involves using the first m of n observations for
model training and using the remaining n−m observations as a test sample.
This is very similar to data-splitting (Section 5.3.3). For details about meth-
ods for external validation see the R val.prob and val.surv functions in the
rms package.

Even though external validation is frequently favored by non-statisticians,
it is often problematic. Holding back data from the model-fitting phase re-
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sults in lower precision and power, and one can increase precision and learn
more about geographic or time differences by fitting a unified model to the
entire subject series including, for example, country or calendar time as a
main effect and/or as an interacting effect. Indeed one could use the follow-
ing working definition of external validation: validation of a prediction tool
using data that were not available when the tool needed to be completed. An
alternate definition could be taken as the validation of a prediction tool by
an independent research team.

One suggested hierarchy of the quality of various validation methods is as
follows, ordered from worst to best.

1. Attempting several validations (internal or external) and reporting only
the one that “worked”

2. Reporting apparent performance on the training dataset (no validation)
3. Reporting predictive accuracy on an undersized independent test sample
4. Internal validation using data-splitting where at least one of the training

and test samples is not huge and the investigator is not aware of the
arbitrariness of variable selection done on a single sample

5. Strong internal validation using 100 repeats of 10-fold cross-validation or
several hundred bootstrap resamples, repeating all analysis steps involving
Y afresh at each re-sample and the arbitrariness of selected “important
variables” is reported (if variable selection is used)

6. External validation on a large test sample, done by the original research
team

7. Re-analysis by an independent research team using strong internal valida-
tion of the original dataset

8. External validation using new test data, done by an independent research
team

9. External validation using new test data generated using different instru-
ments/technology, done by an independent research team

Internal validation involves fitting and validating the model by carefully
using one series of subjects. One uses the combined dataset in this way to
estimate the likely performance of the final model on new subjects, which
after all is often of most interest. Most of the remainder of Section 5.3 deals
with internal validation.

5.3.2 Which Quantities Should Be Used
in Validation?

For ordinary multiple regression models, the R2 index is a good measure
of the model’s predictive ability, especially for the purpose of quantifying
drop-off in predictive ability when applying the model to other datasets.
R2 is biased, however. For example, if one used nine predictors to predict
outcomes of 10 subjects, R2 = 1.0 but the R2 that will be achieved on future
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subjects will be close to zero. In this case, dramatic overfitting has occurred.
The adjusted R2 (Equation 4.4) solves this problem, at least when the model
has been completely prespecified and no variables or parameters have been
“screened” out of the final model fit. That is, R2

adj is only valid when p in its
formula is honest— when it includes all parameters ever examined (formally
or informally, e.g., using graphs or tables) whether these parameters are in
the final model or not.

Quite often we need to validate indexes other than R2 for which adjust-
ments for p have not been created.c We also need to validate models contain-
ing “phantom degrees of freedom” that were screened out earlier, formally
or informally. For these purposes, we obtain nearly unbiased estimates of R2

or other indexes using data splitting, cross-validation, or the bootstrap. The
bootstrap provides the most precise estimates.

The g–index is another discrimination measure to validate. But g and R2

measures only one aspect of predictive ability. In general, there are two major
aspects of predictive accuracy that need to be assessed. As discussed in Sec-
tion 4.5, calibration or reliability is the ability of the model to make unbiased
estimates of outcome. Discrimination is the model’s ability to separate sub-
jects’ outcomes. Validation of the model is recommended even when a data
reduction technique is used. This is a way to ensure that the model was not
overfitted or is otherwise inaccurate.

5.3.3 Data-Splitting

The simplest validation method is one-time data-splitting. Here a dataset is
split into training (model development) and test (model validation) samples
by a random process with or without balancing distributions of the response
and predictor variables in the two samples. In some cases, a chronological
split is used so that the validation is prospective. The model’s calibration
and discrimination are validated in the test set.

In ordinary least squares, calibration may be assessed by, for example,
plotting Y against Ŷ . Discrimination here is assessed by R2 and it is of
interest in comparing R2 in the training sample with that achieved in the
test sample. A drop in R2 indicates overfitting, and the absolute R2 in the
test sample is an unbiased estimate of predictive discrimination. Note that
in extremely overfitted models, R2 in the test set can be negative, since it is
computed on “frozen” intercept and regression coefficients using the formula
1−SSE/SST , where SSE is the error sum of squares, SST is the total sum

c For example, in the binary logistic model, there is a generalization of R2 available,
but no adjusted version. For logistic models we often validate other indexes such
as the ROC area or rank correlation between predicted probabilities and observed
outcomes. We also validate the calibration accuracy of Ŷ in predicting Y .
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of squares, and SSE can be greater than SST (when predictions are worse
than the constant predictor Y ).10

To be able to validate predictions from the model over an entire test sam-
ple (without validating it separately in particular subsets such as in males
and females), the test sample must be large enough to precisely fit a model
containing one predictor. For a study with a continuous uncensored response
variable, the test sample size should ordinarily be ≥ 100 at a bare minimum.
For survival time studies, the test sample should at least be large enough
to contain a minimum of 100 outcome events. For binary outcomes, the test
sample should contain a bare minimum of 100 subjects in the least frequent
outcome category. Once the size of the test sample is determined, the remain-
ing portion of the original sample can be used as a training sample. Even with
these test sample sizes, validation of extreme predictions is difficult.

Data-splitting has the advantage of allowing hypothesis tests to be con-
firmed in the test sample. However, it has the following disadvantages.

1. Data-splitting greatly reduces the sample size for both model development
and model testing. Because of this, Roecker528 found this method“appears
to be a costly approach, both in terms of predictive accuracy of the fitted
model and the precision of our estimate of the accuracy.” Breiman [66,
Section 1.3] found that bootstrap validation on the original sample was as
efficient as having a separate test sample twice as large36.

2. It requires a larger sample to be held out than cross-validation (see be-
low) to be able to obtain the same precision of the estimate of predictive
accuracy.

3. The split may be fortuitous; if the process were repeated with a different
split, different assessments of predictive accuracy may be obtained.

4. Data-splitting does not validate the final model, but rather a model devel-
oped on only a subset of the data. The training and test sets are recombined
for fitting the final model, which is not validated.

5. Data-splitting requires the split before the first analysis of the data. With
other methods, analyses can proceed in the usual way on the complete
dataset. Then, after a “final” model is specified, the modeling process is
rerun on multiple resamples from the original data to mimic the process
that produced the “final” model.

5.3.4 Improvements on Data-Splitting: Resampling

Bootstrapping, jackknifing, and other resampling plans can be used to obtain
nearly unbiased estimates of model performance without sacrificing sample
size. These methods work when either the model is completely specified ex-
cept for the regression coefficients, or all important steps of the modeling
process, especially variable selection, are automated. Only then can each
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bootstrap replication be a reflection of all sources of variability in model-
ing. Note that most analyses involve examination of graphs and testing for
lack of model fit, with many intermediate decisions by the analyst such as
simplification of interactions. These processes are difficult to automate. But
variable selection alone is often the greatest source of variability because of
multiple comparison problems, so the analyst must go to great lengths to
bootstrap or jackknife variable selection.

The ability to study the arbitrariness of how a stepwise variable selection
algorithm selects “important” factors is a major benefit of bootstrapping. A
useful display is a matrix of blanks and asterisks, where an asterisk is placed
in column x of row i if variable x is selected in bootstrap sample i (see p.
263 for an example). If many variables appear to be selected at random,
the analyst may want to turn to a data reduction method rather than using
stepwise selection (see also [541]).

Cross-validation is a generalization of data-splitting that solves some of the
problems of data-splitting. Leave-out-one cross-validation,565, 633 the limit of
cross-validation, is similar to jackknifing.675 Here one observation is omitted
from the analytical process and the response for that observation is predicted
using a model derived from the remaining n − 1 observations. The process
is repeated n times to obtain an average accuracy. Efron172 reports that
grouped cross-validation is more accurate; here groups of k observations are
omitted at a time. Suppose, for example, that 10 groups are used. The orig-
inal dataset is divided into 10 equal subsets at random. The first 9 subsets
are used to develop a model (transformation selection, interaction testing,
stepwise variable selection, etc. are all done). The resulting model is assessed
for accuracy on the remaining 1/10th of the sample. This process is repeated
at least 10 times to get an average of 10 indexes such as R2. 11

A drawback of cross-validation is the choice of the number of observations
to hold out from each fit. Another is that the number of repetitions needed to
achieve accurate estimates of accuracy often exceeds 200. For example, one
may have to omit 1

10 th of the sample 500 times to accurately estimate the
index of interest Thus the sample would need to be split into tenths 50 times. 12

Another possible problem is that cross-validation may not fully represent the
variability of variable selection. If 20 subjects are omitted each time from a
sample of size 1000, the lists of variables selected from each training sample
of size 980 are likely to be much more similar than lists obtained from fitting
independent samples of 1000 subjects. Finally, as with data-splitting, cross-
validation does not validate the full 1000-subject model.

An interesting way to study overfitting could be called the randomization
method. Here we ask the question “How well can the response be predicted
when we use our best procedure on random responses when the predictive
accuracy should be near zero?”The better the fit on random Y , the worse the
overfitting. The method takes a random permutation of the response variable
and develops a model with optional variable selection based on the originalX
and permuted Y . Suppose this yields R2 = .2 for the fitted sample. Apply the
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fit to the original data to estimate optimism. If overfitting is not a problem,
R2 would be the same for both fits and it will ordinarily be very near zero.13

5.3.5 Validation Using the Bootstrap

Efron,172, 173 Efron and Gong,175 Gong,224 Efron and Tibshirani,177, 178 Lin-
net,416 and Breiman66 describe several bootstrapping procedures for obtain-
ing nearly unbiased estimates of future model performance without holding
back data when making the final estimates of model parameters. With the
“simple bootstrap” [178, p. 247], one repeatedly fits the model in a bootstrap
sample and evaluates the performance of the model on the original sample.
The estimate of the likely performance of the final model on future data
is estimated by the average of all of the indexes computed on the original
sample.

Efron showed that an enhanced bootstrap estimates future model per-
formance more accurately than the simple bootstrap. Instead of estimating
an accuracy index directly from averaging indexes computed on the original
sample, the enhanced bootstrap uses a slightly more indirect approach by
estimating the bias due to overfitting or the “optimism” in the final model
fit. After the optimism is estimated, it can be subtracted from the index
of accuracy derived from the original sample to obtain a bias-corrected or
overfitting-corrected estimate of predictive accuracy. The bootstrap method
is as follows. From the original X and Y in the sample of size n, draw a
sample with replacement also of size n. Derive a model in the bootstrap sam-
ple and apply it without change to the original sample. The accuracy index
from the bootstrap sample minus the index computed on the original sample
is an estimate of optimism. This process is repeated for 100 or so bootstrap
replications to obtain an average optimism, which is subtracted from the final
model fit’s apparent accuracy to obtain the overfitting-corrected estimate.14

Note that bootstrapping validates the process that was used to fit the orig-
inal model (as does cross-validation). It provides an estimate of the expected
value of the optimism, which when subtracted from the original index, pro-
vides an estimate of the expected bias-corrected index. If stepwise variable15

selection is part of the bootstrap process (as it must be if the final model
is developed that way), and not all resamples (samples with replacement or
training samples in cross-validation) resulted in the same model (which is
almost always the case), this internal validation process actually provides an
unbiased estimate of the future performance of the process used to identify
markers and scoring systems; it does not validate a single final model. But
resampling does tend to provide good estimates of the future performance of
the final model that was selected using the same procedure repeated in the
resamples.
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Note that by drawing samples from X and Y , we are estimating aspects
of the unconditional distribution of statistical quantities. One could instead
draw samples from quantities such as residuals from the model to obtain a
distribution that is conditional on X . However, this approach requires that
the model be specified correctly, whereas the unconditional bootstrap does
not. Also, the unconditional estimators are similar to conditional estimators
except for very skewed or very small samples [186, p. 217].

Bootstrapping can be used to estimate the optimism in virtually any index.
Besides discrimination indexes such as R2, slope and intercept calibration fac-
tors can be estimated. When one fits the model C(Y |X) = Xβ, and then refits

the model C(Y |X) = γ0 + γ1Xβ̂ on the same data, where β̂ is an estimate of

β, γ̂0 and γ̂1 will necessarily be 0 and 1, respectively. However, when β̂ is used
to predict responses on another dataset, γ̂1 may be < 1 if there is overfitting,
and γ̂0 will be different from zero to compensate. Thus a bootstrap estimate
of γ1 will not only quantify overfitting nicely, but can also be used to shrink
predicted values to make them more calibrated (similar to [582]). Efron’s op-
timism bootstrap is used to estimate the optimism in (0, 1) and then (γ0, γ1)
are estimated by subtracting the optimism in the constant estimator (0, 1).

Note that in cross-validation one estimates β with β̂ from the training sample
and fits C(Y |X) = γXβ̂ on the test sample directly. Then the γ estimates are
averaged over all test samples. This approach does not require the choice of a 16

parameter that determines the amount of shrinkage as does ridge regression
or penalized maximum likelihood estimation; instead one estimates how to
make the initial fit well calibrated.123, 633 However, this approach is not as
reliable as building shrinkage into the original estimation process. The latter
allows different parameters to be shrunk by different factors.

Ordinary bootstrapping can sometimes yield overly optimistic estimates
of optimism, that is, may underestimate the amount of overfitting. This is
especially true when the ratio of the number of observations to the number
of parameters estimated is not large.205 A variation on the bootstrap that
improves precision of the assessment is the “.632”method, which Efron found
to be optimal in several examples.172 This method provides a bias-corrected
estimate of predictive accuracy by substituting 0.632× [apparent accuracy
−ε̂0] for the estimate of optimism, where ε̂0 is a weighted average of accuracies
evaluated on observations omitted from bootstrap samples [178, Eq. 17.25,
p. 253]. 17

For ordinary least squares, where the genuine per-observation .632 estima-
tor can be used, several simulations revealed close agreement with the mod-
ified .632 estimator, even in small, highly overfitted samples. In these over-
fitted cases, the ordinary bootstrap bias-corrected accuracy estimates were
significantly higher than the .632 estimates. Simulations259, 591 have shown,
however, that for most types of indexes of accuracy of binary logistic regres-
sion models, Efron’s original bootstrap has lower mean squared error than
the .632 bootstrap when n = 200, p = 30. Bootstrap overfitting-corrected es- 18

timates of model performance can be biased in favor of the model. Although
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Table 5.2 Example validation with and without variable selection

Method Apparent Rank Over- Bias-Corrected
Correlation of Optimism Correlation
Predicted vs.
Observed

Full Model 0.50 0.06 0.44
Stepwise Model 0.47 0.05 0.42

cross-validation is less biased than the bootstrap, Efron172 showed that it has
much higher variance in estimating overfitting-corrected predictive accuracy
than bootstrapping. In other words, cross-validation, like data-splitting, can
yield significantly different estimates when the entire validation process is
repeated.

It is frequently very informative to estimate a measure of predictive accu-
racy forcing all candidate factors into the fit and then to separately estimate
accuracy allowing stepwise variable selection, possibly with different stop-
ping rules. Consistent with Spiegelhalter’s proposal to use all factors and
then to shrink the coefficients to adjust for overfitting,582 the full model fit
will outperform the stepwise model more often than not. Even though step-
wise modeling has slightly less optimism in predictive discrimination, this
improvement is not enough to offset the loss of information from deleting
even marginally important variables. Table 5.2 shows a typical scenario. In
this example, stepwise modeling lost a possible 0.50− 0.47 = 0.03 predictive
discrimination. The full model fit will especially be an improvement when

1. the stepwise selection deletes several variables that are almost significant;
2. these marginal variables have some real predictive value, even if it’s slight;

and
3. there is no small set of extremely dominant variables that would be easily

found by stepwise selection.
19

Faraway186 has a fascinating study showing how resampling methods can
be used to estimate the distributions of predicted values and of effects of a
predictor, adjusting for an automated multistep modeling process. Bootstrap-
ping can be used, for example, to penalize the variance in predicted values for
choosing a transformation for Y and for outlier and influential observation
deletion, in addition to variable selection. Estimation of the transformation of
Y greatly increased the variance in Faraway’s examples. Brownstone [77, p.
74] states that “In spite of considerable efforts, theoretical statisticians have
been unable to analyze the sampling properties of [usual multistep modeling
strategies] under realistic conditions” and concludes that the modeling strat-
egy must be completely specified and then bootstrapped to get consistent
estimates of variances and other sampling properties.20
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5.4 Bootstrapping Ranks of Predictors

When the order of importance of predictors is not pre-specified but the re-
searcher attempts to determine that order by assessing multiple associations
with Y , the process of selecting “winners” and “losers” is unreliable. The
bootstrap can be used to demonstrate the difficulty of this task, by estimat-
ing confidence intervals for the ranks of all the predictors. Even though the
bootstrap intervals are wide, they actually underestimate the true widths250.

The following exampling uses simulated data with known ranks of impor-
tance of 12 predictors, using an ordinary linear model. The importance metric
is the partial χ2 minus its degrees of freedom, while the true metric is the
partial β, as all covariates have U(0, 1) distributions.

# Use the plot method for anova, with pl=FALSE to suppress

# actual plotting of chi-square - d.f. for each bootstrap

# repetition. Rank the negative of the adjusted chi-squares

# so that a rank of 1 is assigned to the highest. It is

# important to tell plot.anova.rms not to sort the results ,

# or every bootstrap replication would have ranks of 1,2,3,

# ... for the partial test statistics.

require (rms)

n ← 300

set.seed (1)

d ← data.frame (x1=runif(n), x2=runif(n), x3=runif (n),

x4=runif (n), x5=runif(n), x6=runif(n), x7=runif (n),

x8=runif (n), x9=runif(n), x10=runif (n), x11 =runif(n),

x12=runif(n))

d$y ← with(d, 1*x1 + 2*x2 + 3*x3 + 4*x4 + 5*x5 + 6*x6 +

7*x7 + 8*x8 + 9*x9 + 10*x10 + 11*x11 +

12*x12 + 9*rnorm (n))

f ← ols (y ∼ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11 +x12 , data=d)

B ← 1000

ranks ← matrix (NA , nrow=B, ncol =12)

rankvars ← function (fit )

rank(plot(anova (fit ), sort= ' none ' , pl=FALSE ))

Rank ← rankvars (f)

for (i in 1:B) {

j ← sample (1:n, n, TRUE)

bootfit ← update (f, data=d, subset =j)

ranks[i,] ← rankvars (bootfit )

}

lim ← t(apply (ranks , 2, quantile , probs=c(.025 ,.975 )))

predictor ← factor (names(Rank), names (Rank))

w ← data.frame (predictor , Rank , lower =lim [,1], upper=lim [,2])

require (ggplot2 )

ggplot (w, aes(x=predictor , y=Rank )) + geom_point () +

coord_flip () + scale_y_continuous(breaks =1:12) +

geom_errorbar(aes(ymin=lim [,1], ymax=lim [,2]), width =0)

With a sample size of n = 300 the observed ranks of predictor importance do
not coincide with population βs, even when there are no collinearities among
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Fig. 5.3 Bootstrap percentile 0.95 confidence limits for ranks of predictors in an OLS
model. Ranking is on the basis of partial χ2 minus d.f. Point estimates are original
ranks

the predictors. Confidence intervals are wide; for example the 0.95 confidence
interval for the rank of x7 (which has a true rank of 7) is [1, 8], so we are
only confident that x7 is not one of the 4 most influential predictors. The
confidence intervals do include the true ranks in each case (Figure 5.3).

5.5 Simplifying the Final Model by Approximating It

5.5.1 Difficulties Using Full Models

A model that contains all prespecified terms will usually be the one that pre-
dicts the most accurately on new data. It is also a model for which confidence
limits and statistical tests have the claimed properties. Often, however, this
model will not be very parsimonious. The full model may require more pre-
dictors than the researchers care to collect in future samples. It also requires
predicted values to be conditional on all of the predictors, which can increase
the variance of the predictions.

As an example suppose that least squares has been used to fit a model
containing several variables including race (with four categories). Race may
be an insignificant predictor and may explain a tiny fraction of the observed
variation in Y . Yet when predictions are requested, a value for race must be
inserted. If the subject is of the majority race, and this race has a majority of,
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say 0.75, the variance of the predicted value will not be significantly greater
than the variance for a predicted value from a model that excluded race
for its list of predictors. If, however, the subject is of a minority race (say
“other”with a prevalence of 0.01), the predicted value will have much higher
variance. One approach to this problem, that does not require development
of a second model, is to ignore the subject’s race and to get a weighted
average prediction. That is, we obtain predictions for each of the four races
and weight these predictions by the relative frequencies of the four races.d

This weighted average estimates the expected value of Y unconditional on
race. It has the advantage of having exactly correct confidence limits when
model assumptions are satisfied, because the correct “error term” is being
used (one that deducts 3 d.f. for having ever estimated the race effect). In
regression models having nonlinear link functions, this process does not yield
such a simple interpretation.

When predictors are collinear, their competition results in larger P -values
when predictors are (often inappropriately) tested individually. Likewise, con-
fidence intervals for individual effects will be wide and uninterpretable (can
other variables really be held constant when one is changed?).

5.5.2 Approximating the Full Model

When the full model contains several predictors that do not appreciably af-
fect the predictions, the above process of “unconditioning” is unwieldy. In the
search for a simple solution, the most commonly used procedure for making
the model parsimonious is to remove variables on the basis of P -values, but
this results in a variety of problems as we have seen. Our approach instead
is to consider the full model fit as the “gold standard” model, especially the
model from which formal inferences are made. We then proceed to approxi-
mate this full model to any desired degree of accuracy. For any approximate
model we calculate the accuracy with which it approximates the best model.
One goal this process accomplishes is that it provides different degrees of
parsimony to different audiences, based on their needs. One investigator may
be able to collect only three variables, another one seven. Each investigator
will know how much she is giving up by using a subset of the predictors.
In approximating the gold standard model it is very important to note that
there is nothing gained in removing certain nonlinear terms; gains in parsi-
mony come only from removing entire predictors. Another accomplishment
of model approximation is that when the full model has been fitted using

d Using the rms package described in Chapter 6, such estimates and their
confidence limits can easily be obtained, using for example contrast(fit,

list(age=50, disease=’hypertension’, race=levels(race)), type=’average’,

weights=table(race)).
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shrinkage (penalized estimation, Section 9.10), the approximate models will
inherit the shrinkage (see Section 14.10 for an example).

Approximating complex models with simpler ones has been used to de-
code “black boxes” such as artificial neural networks. Recursive partitioning
trees (Section 2.5) may sometimes be used in this context. One develops a

regression tree to predict the predicted value Xβ̂ on the basis of the unique
variables in X , using R2, the average absolute prediction error, or the max-
imum absolute prediction error as a stopping rule, for example184. The user
desiring simplicity may use the tree to obtain predicted values, using the first
k nodes, with k just large enough to yield a low enough absolute error in pre-
dicting the more comprehensive prediction. Overfitting is not a problem as it
is when the tree procedure is used to predict the outcome, because (1) given
the predictor values the predictions are deterministic and (2) the variable be-
ing predicted is a continuous, completely observed variable. Hence the best
cross-validating tree approximation will be one with one subject per node.
One advantage of the tree-approximation procedure is that data collection
on an individual subject whose outcome is being predicted may be abbrevi-
ated by measuring only those Xs that are used in the top nodes, until the
prediction is resolved to within a tolerable error.

When principal component regression is being used, trees can also be used
to approximate the components or to make them more interpretable.

Full models may also be approximated using least squares as long as the
linear predictor Xβ̂ is the target, and not some nonlinear transformation of
it such as a logistic model probability. When the original model was fitted
using unpenalized least squares, submodels fitted against Ŷ will have the same
coefficients as if least squares had been used to fit the subset of predictors
directly against Y . To see this, note that if X denotes the entire design matrix
and T denotes a subset of the columns of X , the coefficient estimates for the
full model are (X ′X)−1X ′Y , Ŷ = X(X ′X)−1X ′Y , estimates for a reduced
model fitted against Y are (T ′T )−1T ′Y , and coefficients fitted against Ŷ are
(T ′T )T ′X(X ′X)−1X ′Y which can be shown to equal (T ′T )−1T ′Y .

When least squares is used for both the full and reduced models, the
variance–covariancematrix of the coefficient estimates of the reduced model is
(T ′T )−1σ2, where the residual variance σ2 is estimated using the full model.
When σ2 is estimated by the unbiased estimator using the d.f. from the
full model, which provides the only unbiased estimate of σ2, the estimated
variance–covariance matrix of the reduced model will be appropriate (unlike
that from stepwise variable selection) although the bootstrap may be needed
to fully take into account the source of variation due to how the approximate
model was selected.

So if in the least squares case the approximate model coefficients are iden-
tical to coefficients obtained upon fitting the reduced model against Y , how
is model approximation any different from stepwise variable selection? There
are several differences, in addition to how σ2 is estimated.
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1. When the full model is approximated by a backward step-down procedure
against Ŷ , the stopping rule is less arbitrary. One stops deleting variables
when deleting any further variable would make the approximation inad-
equate (e.g., the R2 for predictions from the reduced model against the
original Ŷ drops below 0.95).

2. Because the stopping rule is different (i.e., is not based on P -values), the
approximate model will have a different number of predictors than an
ordinary stepwise model.

3. If the original model used penalization, approximate models will inherit
the amount of shrinkage used in the full fit.

Typically, though, if one performed ordinary backward step-down against Y
using a large cutoff for α (e.g., 0.5), the approximate model would be very
similar to the step-down model. The main difference would be the use of
a larger estimate of σ2 and smaller error d.f. than are used for the ordinary
step-down approach (an estimate that pretended the final reduced model was
prespecified).

When the full model was not fitted using least squares, least squares can
still easily be used to approximate the full model. If the coefficient estimates
from the full model are β̂, estimates from the approximate model are ma-
trix contrasts of β̂, namely, Wβ̂, where W = (T ′T )−1T ′X . So the variance–
covariance matrix of the reduced coefficient estimates is given by

WVW ′, (5.2)

where V is the variance matrix for β̂. See Section 19.5 for an example. Ambler
et al.21 studied model simplification using simulation studies based on several
clinical datasets, and compared it with ordinary backward stepdown variable
selection and with shrinkage methods such as the lasso (see Section 4.3). They
found that ordinary backwards variable selection can be competitive when
there is a large fraction of truly irrelevant predictors (something that can be
difficult to know in advance). Paul et al.485 found advantages to modeling
the response with a complex but reliable approach, and then developing a
parsimoneous model using the lasso or stepwise variable selection against Ŷ .
See Section 11.7 for a case study in model approximation.

5.6 Further Reading

1 Gelman213 argues that continuous variables should be scaled by two standard
deviations to make them comparable to binary predictors. However his approach
assumes linearity in the predictor effect and assumes the prevalence of the binary
predictor is near 0.5. John Fox [202, p. 95] points out that if two predictors are
on the same scale and have the same impact (e.g., years of employment and
years of education), standardizing the coefficients will make them appear to
have different impacts.
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2 Levine et al.401 have a compelling argument for graphing effect ratios on a
logarithmic scale.

3 Hankins254 is a definitive reference on nomograms and has multi-axis examples
of historical significance. According to Hankins, Maurice d’Ocagne could be
called the inventor of the nomogram, starting with alignment diagrams in 1884
and declaring a new science of “nomography” in 1899. d’Ocagne was at École
des Ponts et Chaussées, a French civil engineering school. Julien and Hanley328

have a nice example of adding axes to a nomogram to estimate the absolute
effect of a treatment estimated using a Cox proportional hazards model. Kattan
and Marasco339 have several clinical examples and explain advantages to the
user of nomograms over “black box” computerized prediction.

4 Graham and Clavel231 discuss graphical and tabular ways of obtaining risk
estimates. van Gorp et al.630 have a nice example of a score chart for manually
obtaining estimates.

5 Larsen and Merlo375 developed a similar measure—the median odds ratio. Gö-
nen and Heller223 developed a c-index that like g is a function of the covariate
distribution.

6 Booth and Sarkar61 have a nice analysis of the number of bootstrap resamples
needed to guarantee with 0.95 confidence that a variance estimate has a suf-
ficiently small relative error. They concentrate on the Monte Carlo simulation
error, showing that small errors in variance estimates can lead to important
differences in P -values. Canty et al.91 provide a number of diagnostics to check
the reliability of bootstrap calculations.

7 There are many variations on the basic bootstrap for computing confidence
limits.150,178 See Booth and Sarkar61 for useful information about choosing
the number of resamples. They report the number of resamples necessary to
not appreciably change P -values, for example. Booth and Sarkar propose a
more conservative number of resamples than others use (e.g., 800 resamples)
for estimating variances. Carpenter and Bithell92 have an excellent overview of
bootstrap confidence intervals, with practical guidance. They also have a good
discussion of the unconditional nonparametric bootstrap versus the conditional
semiparametric bootstrap.

8 Altman and Royston18 have a good general discussion of what it means to
validate a predictive model, including issues related to study design and con-
sideration of uses to which the model will be put.

9 An excellent paper on external validation and generalizability is Justice et al.329.
Bleeker et al.58 provide an example where internal validation is misleading when
compared with a true external validation done using subjects from different
centers in a different time period. Vergouwe et al.638 give good guidance about
the number of events needed in sample used for external validation of binary
logistic models.

10 See Picard and Berk505 for more about data-splitting.
11 In the context of variable selection where one attempts to select the set of vari-

ables with nonzero true regression coefficients in an ordinary regression model,
Shao565 demonstrated that leave-out-one cross-validation selects models that
are “too large.” Shao also showed that the number of observations held back for
validation should often be larger than the number used to train the model. This
is because in this case one is not interested in an accurate model (you fit the
whole sample to do that), but an accurate estimate of prediction error is manda-
tory so as to know which variables to allow into the final model. Shao suggests
using a cross-validation strategy in which approximately n3/4 observations are
used in each training sample and the remaining observations are used in the
test sample. A repeated balanced or Monte Carlo splitting approach is used,
and accuracy estimates are averaged over 2n (for the Monte Carlo method)
repeated splits.
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12 Picard and Cook’s Monte Carlo cross-validation procedure506 is an improve-
ment over ordinary cross-validation.

13 The randomization method is related to Kipnis’ “chaotization relevancy princi-
ple”348 in which one chooses between two models by measuring how far each is
from a nonsense model. Tibshirani and Knight also use a randomization method
for estimating the optimism in a model fit.611

14 This method used here is a slight change over that presented in [172], where
Efron wrote predictive accuracy as a sum of per-observation components (such
as 1 if the observation is classified correctly, 0 otherwise). Here we are writing
m × the unitless summary index of predictive accuracy in the place of Efron’s
sum of m per-observation accuracies [416, p. 613].

15 See [633] and [66, Section 4] for insight on the meaning of expected optimism.
16 See Copas,123 van Houwelingen and le Cessie [633, p. 1318], Verweij and van

Houwelingen,640 and others631 for other methods of estimating shrinkage coef-
ficients.

17 Efron172 developed the“.632” estimator only for the case where the index being
bootstrapped is estimated on a per-observation basis. A natural generalization
of this method can be derived by assuming that the accuracy evaluated on
observation i that is omitted from a bootstrap sample has the same expectation
as the accuracy of any other observation that would be omitted from the sample.
The modified estimate of ε0 is then given by

ε̂0 =
B∑

i=1

wiTi, (5.3)

where Ti is the accuracy estimate derived from fitting a model on the ith boot-
strap sample and evaluating it on the observations omitted from that bootstrap
sample, and wi are weights derived for the B bootstrap samples:

wi =
1

n

n∑
j=1

[bootstrap sample i omits observation j]

#bootstrap samples omitting observation j
. (5.4)

Note that ε̂0 is undefined if any observation is included in every bootstrap
sample. Increasing B will avoid this problem. This modified “.632” estimator
is easy to compute if one assembles the bootstrap sample assignments and
computes the wi before computing the accuracy indexes Ti. For large n, the wi

approach 1/B and so ε̂0 becomes equivalent to the accuracy computed on the
observations not contained in the bootstrap sample and then averaged over the
B repetitions.

18 Efron and Tibshirani179 have reduced the bias of the “.632” estimator further
with only a modest increase in its variance. Simulation has, however, shown no
advantage of this “.632+” method over the basic optimism bootstrap for most
accuracy indexes used in logistic models.

19 van Houwelingen and le Cessie633 have several interesting developments in
model validation. See Breiman66 for a discussion of the choice of X for which
to validate predictions. Steyerberg et al.587 present simulations showing the
number of bootstrap samples needed to obtain stable estimates of optimism of
various accuracy measures. They demonstrate that bootstrap estimates of op-
timism are nearly unbiased when compared with simulated external estimates.
They also discuss problems with precision of estimates of accuracy, especially
when using external validation on small samples.

20 Blettner and Sauerbrei also demonstrate the variability caused by data-driven
analytic decisions.59 Chatfield100 has more results on the effects of using the
data to select the model.
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5.7 Problem

Perform a simulation study to understand the performance of various internal
validation methods for binary logistic models. Modify the R code below in at
least two meaningful ways with regard to covariate distribution or number,
sample size, true regression coefficients, number of resamples, or number of
times certain strategies are averaged. Interpret your findings and give recom-
mendations for best practice for the type of configuration you studied. The
R code from this assignment may be downloaded from the RMS course wiki
page.

For each of 200 simulations, the code below generates a training sample
of 200 observations with p predictors (p = 15 or 30) and a binary response.
The predictors are independently U(−0.5, 0.5). The response is sampled so
as to follow a logistic model where the intercept is zero and all regression
coefficients equal 0.5. The “gold standard” is the predictive ability of the
fitted model on a test sample containing 50,000 observations generated from
the same population model. For each of the 200 simulations, several validation
methods are employed to estimate how the training sample model predicts
responses in the 50,000 observations. These validation methods involve fitting
40 or 200 models in resamples.

g-fold cross-validation is done using the command validate(f, method=

’cross’, B=g) using the rms package. This was repeated and averaged using
an extra loop, shown below.

For bootstrap methods, validate(f, method=’boot’ or ’.632’, B=40 or

B=200) was used. method=’.632’ does Efron’s “.632”method179, labeled 632a in
the output. An ad-hoc modification of the .632 method, 632b was also done.
Here a “bias-corrected”index of accuracy is simply the index evaluated in the
observation omitted from the bootstrap resample. The “gold standard”exter-
nal validations were obtained from the val.prob function in the rms package.
The following indexes of predictive accuracy are used:

Dxy: Somers’ rank correlation between predicted probability that Y = 1 vs.
the binary Y values. This equals 2(C − 0.5) where C is the “ROC Area”
or concordance probability.

D: Discrimination index — likelihood ratio χ2 divided by the sample size
U : Unreliability index — unitless index of how far the logit calibration

curve intercept and slope are from (0, 1)
Q: Logarithmic accuracy score — a scaled version of the log-likelihood

achieved by the predictive model
Intercept: Calibration intercept on logit scale
Slope: Calibration slope (slope of predicted log odds vs. true log odds)

Accuracy of the various resampling procedures may be estimated by com-
puting the mean absolute errors and the root mean squared errors of esti-
mates (e.g., of Dxy from the bootstrap on the 200 observations) against the
“gold standard” (e.g., Dxy for the fitted 200-observation model achieved in
the 50,000 observations).
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require (rms)

set.seed (1) # so can reproduce results

n ← 200 # Size of training sample

reps ← 200 # Simulations

npop ← 50000 # Size of validation gold standard sample

methods ← c( ' Boot 40 ' , ' Boot 200 ' , ' 632a 40 ' , ' 632a 200 ' ,
' 632b 40 ' , ' 632 b 200 ' , ' 10 -fold x 4 ' , ' 4-fold x 10 ' ,
' 10-fold x 20 ' , '4-fold x 50 ' )

R ← expand.grid (sim = 1:reps ,

p = c(15,30),

method = methods )

R$Dxy ← R$Intercept ← R$Slope ← R$D ← R$U ← R$Q ←
R$repmeth ← R$B ← NA

R$n ← n

## Function to do r overall reps of B resamples , averaging to

## get estimates similar to as if r*B resamples were done

val ← function (fit , method , B, r) {

contains ← function (m) length (grep(m, method )) > 0

meth ← if(contains ( ' Boot ' )) ' boot ' else

if(contains ( ' fold ' )) ' crossvalidation ' else

if(contains ( ' 632 ' )) ' .632 '
z ← 0

for (i in 1:r) z ← z + validate (fit , method =meth , B=B)[

c("Dxy","Intercept ","Slope ","D","U","Q"),

' index.corrected ' ]
z/r

}

for(p in c(15, 30)) {

## For each p create the true betas , the design matrix ,

## and realizations of binary y in the gold standard

## large sample

Beta ← rep(.5 , p) # True betas

X ← matrix (runif (npop *p), nrow =npop ) - 0.5

LX ← matxv (X, Beta)

Y ← ifelse (runif (npop) ≤ plogis (LX), 1, 0)

## For each simulation create the data matrix and

## realizations of y

for(j in 1: reps ) {

## Make training sample

x ← matrix (runif (n*p), nrow =n) - 0.5

L ← matxv (x, Beta)

y ← ifelse (runif (n) ≤ plogis (L), 1, 0)

f ← lrm(y ∼ x, x=TRUE , y=TRUE )

beta ← f$coef

forecast ← matxv (X, beta)

## Validate in population
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v ← val.prob (logit =forecast , y=Y, pl=FALSE )[

c("Dxy","Intercept ","Slope ","D","U","Q")]

for(method in methods) {

repmeth ← 1

if(method %in% c( ' Boot 40 ' , ' 632a 40 ' , ' 632b 40 ' ))
B ← 40

if(method %in% c( ' Boot 200 ' , ' 632a 200 ' , ' 632b 200 ' ))
B ← 200

if(method == ' 10 -fold x 4 ' ) {

B ← 10

repmeth ← 4

}

if(method == ' 4-fold x 10 ' ) {

B ← 4

repmeth ← 10

}

if(method == ' 10 -fold x 20 ' ) {

B ← 10

repmeth ← 20

}

if(method == ' 4-fold x 50 ' ) {

B ← 4

repmeth ← 50

}

z ← val(f, method , B, repmeth)

k ← which (R$sim == j & R$p == p & R$method == method )

if(length (k) != 1) stop( ' program logic error ' )
R[k, names (z)] ← z - v

R[k, c( ' B ' , ' repmeth ' )] ← c(B=B, repmeth=repmeth)

} # end over methods

} # end over reps

} # end over p

Results are best summarized in a multi-way dot chart. Bootstrap nonpara-
metric percentile 0.95 confidence limits are included.

statnames ← names (R)[6:11]

w ← reshape(R, direction = ' long ' , varying=list (statnames ),

v.names= ' x ' , timevar= ' stat ' , times =statnames )

w$p ← paste ( ' p ' , w$p, sep= ' = ' )
require(lattice)

s ← with (w, summarize (abs(x), llist (p, method , stat ),

smean.cl.boot ,stat.name = ' mae ' ))
Dotplot(method ∼ Cbind (mae , Lower , Upper ) | stat *p, data =s,

xlab = ' Mean |error | ' )
s ← with (w, summarize (x∧2, llist (p, method , stat ),

smean.cl.boot , stat.name = ' mse ' ))
Dotplot(method ∼ Cbind (sqrt (mse), sqrt (Lower ), sqrt (Upper )) |

stat *p, data =s,

xlab =expression (sqrt(MSE )))



Chapter 6

R Software

The methods described in this book are useful in any regression model that
involves a linear combination of regression parameters. The software that is
described below is useful in the same situations. Functions in R520 allow inter-
action spline functions as well as a wide variety of predictor parameterizations
for any regression function, and facilitate model validation by resampling. 1

R is the most comprehensive tool for general regression models for the
following reasons.

1. It is very easy to write R functions for new models, so R has implemented
a wide variety of modern regression models.

2. Designs can be generated for any model. There is no need to find out
whether the particular modeling function handles what SAS calls “class”
variables—dummy variables are generated automatically when an R cate-

gory, factor, ordered, or character variable is analyzed.
3. A single R object can contain all information needed to test hypotheses

and to obtain predicted values for new data.
4. R has superior graphics.
5. Classes in R make possible the use of generic function names (e.g., predict,

summary, anova) to examine fits from a large set of specific model–fitting
functions.

R44, 601, 635 is a high-level object-oriented language for statistical anal-
ysis with over six thousand packages and tens of thousands of functions
available. The R system318, 520 is the basis for R software used in this
text, centered around the Regression Modeling Strategies (rms) package261.
See the Appendix and the Web site for more information about software
implementations.

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 6
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6.1 The R Modeling Language

R has a battery of functions that make up a statistical modeling language.96

At the heart of the modeling functions is an R formula of the form2

response ∼ terms

The terms represent additive components of a general linear model. Although
variables and functions of variables make up the terms, the formula refers
to additive combinations; for example, when terms is age + blood.pressure,
it refers to β1 × age + β2 × blood.pressure. Some examples of formulas are
below.

y ∼ age + sex # age + sex main effects

y ∼ age + sex + age:sex # add second-order interaction

y ∼ age*sex # second-order interaction +

# all main effects

y ∼ (age + sex + pressure)∧2
# age+sex+pressure+age:sex+age:pressure...

y ∼ (age + sex + pressure)∧2 - sex:pressure

# all main effects and all 2nd order

# interactions except sex:pressure

y ∼ (age + race )*sex # age+race +sex+age:sex+race :sex

y ∼ treatment *(age*race + age*sex)

# no interact. with race ,sex

sqrt (y) ∼ sex*sqrt (age) + race

# functions , with dummy variables generated if

# race is an R factor (classification ) variable

y ∼ sex + poly (age ,2)# poly makes orthogonal polynomials

race.sex ← interaction (race ,sex)

y ∼ age + race.sex # if desire dummy variables for all

# combinations of the factors

The formula for a regression model is given to a modeling function; for
example,

lrm(y ∼ rcs(x,4))

is read “use a logistic regression model to model y as a function of x, repre-
senting x by a restricted cubic spline with four default knots.”a You can use
the R function update to refit a model with changes to the model terms or the
data used to fit it:

f ← lrm(y ∼ rcs(x,4) + x2 + x3)

f2 ← update (f, subset =sex =="male ")

f3 ← update (f, .∼.-x2) # remove x2 from model

f4 ← update (f, .∼. + rcs(x5 ,5)) # add rcs(x5 ,5) to model

f5 ← update (f, y2 ∼ .) # same terms , new response var.

a lrm and rcs are in the rms package.
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6.2 User-Contributed Functions

In addition to the many functions that are packaged with R, a wide variety
of user-contributed functions is available on the Internet (see the Appendix
or Web site for addresses). Two packages of functions used extensively in
this text are Hmisc20 and rms written by the author. The Hmisc package con-
tains miscellaneous functions such as varclus, spearman2, transcan, hoeffd,
rcspline.eval, impute, cut2, describe, sas.get, latex, and several power and
sample size calculation functions. The varclus function uses the R hclust hi-
erarchical clustering function to do variable clustering, and the R plclust

function to draw dendrograms depicting the clusters. varclus offers a choice
of three similarity measures (Pearson r2, Spearman ρ2, and Hoeffding D)
and uses pairwise deletion of missing values. varclus automatically generates
a series of dummy variables for categorical factors. The Hmisc hoeffd function
computes a matrix of Hoeffding Ds for a series of variables. The spearman2

function will do Wilcoxon, Spearman, and Kruskal–Wallis tests and general-
izes Spearman’s ρ to detect non-monotonic relationships.

Hmisc’s transcan function (see Section 4.7) performs a similar function to
PROC PRINQUAL in SAS—it uses restricted splines, dummy variables, and canon-
ical variates to transform each of a series of variables while imputing missing
values. An option to shrink regression coefficients for the imputation models
avoids overfitting for small samples or a large number of predictors. transcan
can also do multiple imputation and adjust variance–covariance matrices for
imputation. See Chapter 8 for an example of using these functions for data
reduction.

See the Web site for a list of R functions for correspondence analysis,
principal component analysis, and missing data imputation available from
other users. Venables and Ripley [635, Chapter 11] provide a nice description
of the multivariate methods that are available in R, and they provide several
new multivariate analysis functions.

A basic function in Hmisc is the rcspline.eval function, which creates a
design matrix for a restricted (natural) cubic spline using the truncated power
basis. Knot locations are optionally estimated using methods described in
Section 2.4.6, and two types of normalizations to reduce numerical problems
are supported. You can optionally obtain the design matrix for the anti-
derivative of the spline function. The rcspline.restate function computes
the coefficients (after un-normalizing if needed) that translate the restricted
cubic spline function to unrestricted form (Equation 2.27). rcspline.restate
also outputs LATEX and R representations of spline functions in simplified
form.
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6.3 The rms Package

A package of R functions called rms contains several functions that extend
R to make the analyses described in this book easy to do. A central func-
tion in rms is datadist, which computes statistical summaries of predictors to
automate estimation and plotting of effects. datadist exists as a separate func-
tion so that the candidate predictors may be summarized once, thus saving
time when fitting several models using subsets or different transformations of
predictors. If datadist is called before model fitting, the distributional sum-
maries are stored with the fit so that the fit is self-contained with respect
to later estimation. Alternatively, datadist may be called after the fit to cre-
ate temporary summaries to use as plot ranges and effect intervals, or these
ranges may be specified explicitly to Predict and summary (see below), without
ever calling datadist. The input to datadist may be a data frame, a list of
individual predictors, or a combination of the two.

The characteristics saved by datadist include the overall range and certain
quantiles for continuous variables, and the distinct values for discrete vari-
ables (i.e., R factor variables or variables with 10 or fewer unique values). The
quantiles and set of distinct values facilitate estimation and plotting, as de-
scribed later. When a function of a predictor is used (e.g., pol(pmin(x,50),2)),
the limits saved apply to the innermost variable (here, x). When a plot is re-
quested for how x relates to the response, the plot will have x on the x-axis,
not pmin(x,50). The way that defaults are computed can be controlled by
the q.effect and q.display parameters to datadist. By default, continuous
variables are plotted with ranges determined by the tenth smallest and tenth
largest values occurring in the data (if n < 200, the 0.05 and 0.95 quantiles
are used). The default range for estimating effects such as odds and hazard
ratios is the lower and upper quartiles. When a predictor is adjusted to a
constant so that the effects of changes in other predictors can be studied, the
default constant used is the median for continuous predictors and the most
frequent category for factor variables. The R system option datadist is used
to point to the result returned by the datadist function. See the help files for
datadist for more information.

rms fitting functions save detailed information for later prediction, plotting,
and testing. rms also allows for special restricted interactions and sets the
default method of generating contrasts for categorical variables to "contr.-

treatment", the traditional dummy-variable approach.
rms has a special operator %ia% in the terms of a formula that allows for

restricted interactions. For example, one may specify a model that contains
sex and a five-knot linear spline for age, but restrict the age × sex interaction
to be linear in age. To be able to connect this incomplete interaction with the
main effects for later hypothesis testing and estimation, the following formula
would be given:

y ∼ sex + lsp(age ,c(20 ,30 ,40 ,50 ,60)) +

sex %ia% lsp(age ,c(20 ,30 ,40 ,50 ,60))
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Table 6.1 rms Fitting Functions

Function Purpose Related R

Functions
ols Ordinary least squares linear model lm

lrm Binary and ordinal logistic regression model glm

Has options for penalized MLE
orm Ordinal semi-parametric regression model with polr,lrm

several link functions
psm Accelerated failure time parametric survival survreg

models
cph Cox proportional hazards regression coxph

bj Buckley–James censored least squares model survreg,lm
Glm General linear models glm

Gls Generalized least squares gls

Rq Quantile regression rq

The following expression would restrict the age × cholesterol interaction to
be of the form AF (B) +BG(A) by removing doubly nonlinear terms.

y ∼ lsp(age ,30) + rcs(cholesterol ,4) +

lsp(age ,30) %ia% rcs(cholesterol ,4)

rms has special fitting functions that facilitate many of the procedures de-
scribed in this book, shown in Table 6.1.

Glm is a slight modification of the built-in R glm function so that rms meth-
ods can be run on the resulting fit object. glm fits general linear models under
a wide variety of distributions of Y . Gls is a modification of the gls function
from the nlme package of Pinheiro and Bates509, for repeated measures (longi-
tudinal) and spatially correlated data. The Rq function is a modification of the
quantreg package’s rq function356, 357. Functions related to survival analysis
make heavy use of Therneau’s survival package482.

You may want to specify to the fitting functions an option for how missing
values (NAs) are handled. The method for handling missing data in R is to
specify an na.action function. Some possible na.actions are given in Table 6.2.
The default na.action is na.delete when you use rms’s fitting functions. An
easy way to specify a new default na.action is, for example,

options(na.action ="na.omit")# don ' t report frequency of NAs

before using a fitting function. If you use na.delete you can also use the system
option na.detail.response that makes model fits store information about Y
stratified by whether each X is missing. The default descriptive statistics for
Y are the sample size and mean. For a survival time response object the
sample size and proportion of events are used. Other summary functions can
be specified using the na.fun.response option.
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Table 6.2 Some na.actions Used in rms

Function Name Method Used

na.fail Stop with error message if any missing
values present

na.omit Function to remove observations with
any predictors or responses missing

na.delete Modified version of na.omit to also
report on frequency of NAs for each
variable

options(na.action ="na.delete ", na.detail.response =TRUE ,

na.fun.response ="mystats")

# Just use na.fun.response =" quantile " if don ' t care about n

mystats ← function (y) {

z ← quantile (y, na.rm =T)

n ← sum(!is.na (y))

c(N=n, z) # elements named N, 0%, 25%, etc.

}

When R deletes missing values during the model–fitting procedure, residuals,
fitted values, and other quantities stored with the fit will not correspond row-
for-row with observations in the original data frame (which retained NAs). This
is problematic when, for example, age in the dataset is plotted against the
residual from the fitted model. Fortunately, for many na.actions including
na.delete and a modified version of na.omit, a class of R functions called
naresid written by Therneau works behind the scenes to put NAs back into
residuals, predicted values, and other quantities when the predict or residuals
functions (see below) are used. Thus for some of the na.actions, predicted
values and residuals will automatically be arranged to match the original
data.

Any R function can be used in the terms for formulas given to the fit-
ting function, but if the function represents a transformation that has data-
dependent parameters (such as the standard R functions poly or ns), R will
not in general be able to compute predicted values correctly for new obser-
vations. For example, the function ns that automatically selects knots for a
B-spline fit will not be conducive to obtaining predicted values if the knots
are kept “secret.” For this reason, a set of functions that keep track of trans-
formation parameters, exists in rms for use with the functions highlighted
in this book. These are shown in Table 6.3. Of these functions, asis, catg,
scored, and matrx are almost always called implicitly and are not mentioned
by the user. catg is usually called explicitly when the variable is a numeric
variable to be used as a polytomous factor, and it has not been converted to
an R categorical variable using the factor function.
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Table 6.3 rms Transformation Functions

Function Purpose Related R

Functions

asis No post-transformation (seldom used explicitly) I

rcs Restricted cubic spline ns

pol Polynomial using standard notation poly

lsp Linear spline
catg Categorical predictor (seldom) factor

scored Ordinal categorical variables ordered

matrx Keep variables as group for anova and fastbw matrix

strat Nonmodeled stratification factors strata

(used for cph only)

These functions can be used with any function of a predictor. For example,
to obtain a four-knot cubic spline expansion of the cube root of x, specify
rcs(x∧(1/3),4).

When the transformation functions are called, they are usually given one
or two arguments, such as rcs(x,5). The first argument is the predictor vari-
able or some function of it. The second argument is an optional vector of
parameters describing a transformation, for example location or number of
knots. Other arguments may be provided.

The Hmisc package’s cut2 function is sometimes used to create a categorical
variable from a continuous variable x. You can specify the actual interval
endpoints (cuts), the number of observations to have in each interval on
the average (m), or the number of quantile groups (g). Use, for example,
cuts=c(0,1,2) to cut into the intervals [0, 1), [1, 2].

A key concept in fitting models in R is that the fitting function returns an
object that is an R list. This object contains basic information about the fit
(e.g., regression coefficient estimates and covariance matrix, model χ2) as well
as information about how each parameter of the model relates to each factor
in the model. Components of the fit object are addressed by, for example,
fit$coef, fit$var, fit$loglik. rms causes the following information to also
be retained in the fit object: the limits for plotting and estimating effects
for each factor (if options(datadist="name") was in effect), the label for each
factor, and a vector of values indicating which parameters associated with a
factor are nonlinear (if any). Thus the “fit object”contains all the information
needed to get predicted values, plots, odds or hazard ratios, and hypothesis
tests, and to do “smart” variable selection that keeps parameters together
when they are all associated with the same predictor.

R uses the notion of the class of an object. The object-oriented class idea
allows one to write a few generic functions that decide which specific func-
tions to call based on the class of the object passed to the generic function.
An example is the function for printing the main results of a logistic model.
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The lrm function returns a fit object of class "lrm". If you specify the R com-
mand print(fit) (or just fit if using R interactively—this invokes print), the
print function invokes the print.lrm function to do the actual printing specific
to logistic models. To find out which particular methods are implemented for
a given generic function, type methods(generic.name).

Generic functions that are used in this book include those in Table 6.4.

Table 6.4 rms Package and R Generic Functions

Function Purpose Related Functions
print Print parameters and statistics of fit
coef Fitted regression coefficients
formula Formula used in the fit
specs Detailed specifications of fit
vcov Fetch covariance matrix
logLik Fetch maximized log-likelihood
AIC Fetch AIC
lrtest Likelihood ratio test for two nested models
univarLR Compute all univariable LR χ2

robcov Robust covariance matrix estimates
bootcov Bootstrap covariance matrix estimates

and bootstrap distributions of estimates
pentrace Find optimum penalty factors by tracing

effective AIC for a grid of penalties
effective.df Print effective d.f. for each type of variable

in model, for penalized fit or pentrace result
summary Summary of effects of predictors
plot.summary Plot continuously shaded confidence bars

for results of summary
anova Wald tests of most meaningful hypotheses
plot.anova Graphical depiction of anova
contrast General contrasts, C.L., tests
Predict Predicted values and confidence limits easily

varying a subset of predictors and leaving the
rest set at default values

plot.Predict Plot the result of Predict using lattice

ggplot Plot the result of Predict using ggplot2

bplot 3-dimensional plot when Predict varied
two continuous predictors over a fine grid

gendata Easily generate predictor combinations
predict Obtain predicted values or design matrix
fastbw Fast backward step-down variable selection step

residuals (or resid) Residuals, influence stats from fit
sensuc Sensitivity analysis for unmeasured

confounder
which.influence Which observations are overly influential residuals

latex LATEX representation of fitted model Function

continued on next page
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continued from previous page

Function Purpose Related Functions

Function R function analytic representation of Xβ̂ latex

from a fitted regression model
Hazard R function analytic representation of a fitted

hazard function (for psm)
Survival R function analytic representation of fitted

survival function (for psm, cph)
ExProb R function analytic representation of

exceedance probabilities for orm

Quantile R function analytic representation of fitted
function for quantiles of survival time
(for psm, cph)

Mean R function analytic representation of fitted
function for mean survival time or for ordinal logistic

nomogram Draws a nomogram for the fitted model latex, plot
survest Estimate survival probabilities (psm, cph) survfit

survplot Plot survival curves (psm, cph) plot.survfit

validate Validate indexes of model fit using resampling
calibrate Estimate calibration curve using resampling val.prob

vif Variance inflation factors for fitted model
naresid Bring elements corresponding to missing data

back into predictions and residuals
naprint Print summary of missing values
impute Impute missing values transcan

The first argument of the majority of functions is the object returned from
the model fitting function. When used with ols, lrm, orm, psm, cph, Glm, Gls, Rq,
bj, these functions do the following. specs prints the design specifications, for
example, number of parameters for each factor, levels of categorical factors,
knot locations in splines, and so on. vcov returns the variance-covariance
matrix for the model. logLik retrieves the maximized log-likelihood, whereas
AIC computes the Akaike Information Criterion for the model on the minus
twice log-likelihood scale (with an option to compute it on the χ2 scale if you
specify type=’chisq’). lrtest, when given two fit objects from nested models,
computes the likelihood ratio test for the extra variables. univarLR computes
all univariable likelihood ratio χ2 statistics, one predictor at a time.

The robcov function computes the Huber robust covariance matrix esti-
mate. bootcov uses the bootstrap to estimate the covariance matrix of pa-
rameter estimates. Both robcov and bootcov assume that the design matrix
and response variable were stored with the fit. They have options to adjust
for cluster sampling. Both replace the original variance–covariance matrix
with robust estimates and return a new fit object that can be passed to any
of the other functions. In that way, robust Wald tests, variable selection, con-
fidence limits, and many other quantities may be computed automatically.
The functions do save the old covariance estimates in component orig.var

of the new fit object. bootcov also optionally returns the matrix of param-
eter estimates over the bootstrap simulations. These estimates can be used
to derive bootstrap confidence intervals that don’t assume normality or sym-
metry. Associated with bootcov are plotting functions for drawing histogram
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and smooth density estimates for bootstrap distributions. bootcov also has
a feature for deriving approximate nonparametric simultaneous confidence
sets. For example, the function can get a simultaneous 0.90 confidence region
for the regression effect of age over its entire range.

The pentrace function assists in selection of penalty factors for fitting re-
gression models using penalized maximum likelihood estimation (see Sec-
tion 9.10). Different types of model terms can be penalized by different
amounts. For example, one can penalize interaction terms more than main
effects. The effective.df function prints details about the effective degrees
of freedom devoted to each type of model term in a penalized fit.

summary prints a summary of the effects of each factor. When summary is
used to estimate effects (e.g., odds or hazard ratios) for continuous variables,
it allows the levels of interacting factors to be easily set, as well as allowing
the user to choose the interval for the effect. This method of estimating effects
allows for nonlinearity in the predictor. By default, interquartile range effects
(differences inXβ̂, odds ratios, hazards ratios, etc.) are printed for continuous
factors, and all comparisons with the reference level are made for categorical
factors. See the example at the end of the summary documentation for a method
of quickly computing pairwise treatment effects and confidence intervals for
a large series of values of factors that interact with the treatment variable.
Saying plot(summary(fit)) will depict the effects graphically, with bars for a
list of confidence levels.

The anova function automatically tests most meaningful hypotheses in a
design. For example, suppose that age and cholesterol are predictors, and
that a general interaction is modeled using a restricted spline surface. anova
prints Wald statistics for testing linearity of age, linearity of cholesterol, age
effect (age + age × cholesterol interaction), cholesterol effect (cholesterol +
age × cholesterol interaction), linearity of the age × cholesterol interaction
(i.e., adequacy of the simple age × cholesterol 1 d.f. product), linearity of the
interaction in age alone, and linearity of the interaction in cholesterol alone.
Joint tests of all interaction terms in the model and all nonlinear terms in the
model are also performed. The plot.anova function draws a dot chart showing
the relative contribution (χ2, χ2 minus d.f., AIC, partial R2, P -value, etc.)
of each factor in the model.

The contrast function is used to obtain general contrasts and correspond-
ing confidence limits and test statistics. This is most useful for testing effects
in the presence of interactions (e.g., type II and type III contrasts). See the
help file for contrast for several examples of how to obtain joint tests of mul-
tiple contrasts (see Section 9.3.2) as well as double differences (interaction
contrasts).

The predict function is used to obtain a variety of values or predicted
values from either the data used to fit the model or a new dataset. The
Predict function is easier to use for most purposes, and has a special plot
method. The gendata function makes it easy to obtain a data frame containing
predictor combinations for obtaining selected predicted values.
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The fastbw function performs a slightly inefficient but numerically stable
version of fast backward elimination on factors, using a method based on
Lawless and Singhal.385 This method uses the fitted complete model and
computes approximate Wald statistics by computing conditional (restricted)
maximum likelihood estimates assuming multivariate normality of estimates.
It can be used in simulations since it returns indexes of factors retained and
dropped:

fit ← ols(y ∼ x1*x2*x3)

# run , and print results:

fastbw (fit , optional_arguments )

# typically used in simulations :

z ← fastbw (fit , optional_args )

# least squares fit of reduced model:

lm.fit (X[,z$parms.kept ], Y)

fastbw deletes factors, not columns of the design matrix. Factors requiring
multiple d.f. will be retained or dropped as a group. The function prints the
deletion statistics for each variable in turn, and prints approximate parameter
estimates for the model after deleting variables. The approximation is better
when the number of factors deleted is not large. For ols, the approximation
is exact.

The which.influence function creates a list with a component for each
factor in the model. The names of the components are the factor names.
Each component contains the observation identifiers of all observations that
are “overly influential”with respect to that factor, meaning that |dfbetas| > u

for at least one βi associated with that factor, for a given u. The default u
is .2. You must have specified x=TRUE, y=TRUE in the fitting function to use
which.influence. The first argument is the fit object, and the second argument
is the cutoff u.

The following R program will print the set of predictor values that were
very influential for each factor. It assumes that the data frame containing the
data used in the fit is called df.

f ← lrm(y ∼ x1 + x2 + ... , data =df , x=TRUE , y=TRUE)

w ← which.influence (f, .4)

nam ← names (w)

for(i in 1: length (nam )) {

cat("Influential observations for effect of",

nam[i],"\n")

print (df[w[[i]],])

}

The latex function is a generic function available in the Hmisc package. It
invokes a specific latex function for most of the fit objects created by rms to
create a LATEX algebraic representation of the fitted model for inclusion in a
report or viewing on the screen. This representation documents all parameters
in the model and the functional form being assumed for Y , and is especially
useful for getting a simplified version of restricted cubic spline functions. On
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the other hand, the print method with optional argument latex=TRUE is used
to output LATEX code representing the model results in tabular form to the
console. This is intended for use with knitr677 or Sweave399 .

The Function function composes an R function that you can use to evaluate
Xβ̂ analytically from a fitted regression model. The documentation for Func-
tion also shows how to use a subsidiary function sascode that will (almost)
translate such an R function into SAS code for evaluating predicted values in
new subjects. Neither Function nor latex handles third-order interactions.

The nomogram function draws a partial nomogram for obtaining predictions
from the fitted model manually. It constructs different scales when interac-
tions (up to third-order) are present. The constructed nomogram is not com-
plete, in that point scores are obtained for each predictor and the user must
add the point scores manually before reading predicted values on the final
axis of the nomogram. The constructed nomogram is useful for interpreting
the model fit, especially for non-monotonically transformed predictors (their
scales wrap around an axis automatically).

The vif function computes variance inflation factors from the covariance
matrix of a fitted model, using [147, 654].

The impute function is another generic function. It does simple imputation
by default. It can also work with the transcan function to multiply or singly
impute missing values using a flexible additive model.

As an example of using many of the functions, suppose that a categorical
variable treat has values "a", "b", and "c", an ordinal variable num.diseases

has values 0,1,2,3,4, and that there are two continuous variables, age and
cholesterol. age is fitted with a restricted cubic spline, while cholesterol

is transformed using the transformation log(cholesterol+10). Cholesterol is
missing on three subjects, and we impute these using the overall median
cholesterol. We wish to allow for interaction between treat and cholesterol.
The following R program will fit a logistic model, test all effects in the design,
estimate effects, and plot estimated transformations. The fit for num.diseases
really considers the variable to be a five-level categorical variable. The only
difference is that a 3 d.f. test of linearity is done to assess whether the variable
can be remodeled “asis”. Here we also show statements to attach the rms

package and store predictor characteristics from datadist.

require(rms) # make new functions available

ddist ← datadist (cholesterol , treat , num.diseases , age)

# Could have used ddist ← datadist(data.frame.name )

options(datadist ="ddist ") # defines data dist. to rms

cholesterol ← impute ( cholesterol )

fit ← lrm(y ∼ treat + scored (num.diseases ) + rcs(age) +

log(cholesterol +10) +

treat :log(cholesterol +10))

describe (y ∼ treat + scored (num.diseases ) + rcs(age ))

# or use describe (formula(fit)) for all variables used in

# fit. describe function (in Hmisc) gets simple statistics

# on variables

# fit ← robcov(fit)# Would make all statistics that follow
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# use a robust covariance matrix

# would need x=TRUE , y=TRUE in lrm()

specs (fit) # Describe the design characteristics

anova (fit)

anova (fit , treat , cholesterol ) # Test these 2 by themselves

plot (anova (fit)) # Summarize anova graphically

summary(fit) # Est. effects; default ranges

plot (summary(fit)) # Graphical display of effects with C.I.

# Specific reference cell and adjustment value:

summary(fit , treat ="b", age =60)

# Estimate effect of increasing age: 50->70

summary(fit , age=c(50 ,70))

# Increase age 50->70, adjust to 60 when estimating

# effects of other factors:

summary(fit , age=c(50 ,60 ,70))

# If had not defined datadist , would have to define

# ranges for all variables

# Estimate and test treatment (b-a) effect averaged

# over 3 cholesterols :

contrast (fit , list (treat = ' b ' , cholesterol =c(150 ,200 ,250)) ,

list (treat = ' a ' , cholesterol =c(150 ,200 ,250)) ,

type = ' average ' )

p ← Predict(fit , age=seq(20,80, length =100), treat ,

conf.int=FALSE )

plot (p) # Plot relationship between age and

# or ggplot(p) # log odds , separate curve for each

# treat , no C.I.

plot (p, ∼ age | treat ) # Same but 2 panels

ggplot (p, groups =FALSE )

bplot (Predict(fit , age , cholesterol , np =50))

# 3-dimensional perspective plot for

# age , cholesterol , and log odds

# using default ranges for both

# Plot estimated probabilities instead of log odds :

plot (Predict(fit , num.diseases ,

fun=function (x) 1/(1+ exp(-x)),

conf.int=.9), ylab="Prob ")

# Again , if no datadist were defined , would have to tell

# plot all limits

logit ← predict(fit , expand.grid (treat ="b",num.dis =1:3,

age=c(20,40,60),

cholesterol =seq (100,300, length =10)))

# Could obtain list of predictor settings interactively

logit ← predict(fit , gendata(fit , nobs =12))

# An easier approach is

# Predict(fit , treat = ' b ' , num.dis =1:3,...)

# Since age doesn ' t interact with anything , we can quickly

# and interactively try various transformations of age ,

# taking the spline function of age as the gold standard.

# We are seeking a linearizing transformation.
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ag ← 10:80

logit ← predict(fit , expand.grid (treat ="a", num.dis =0,

age=ag ,

cholesterol =median (cholesterol )),

type="terms ")[,"age"]

# Note : if age interacted with anything , this would be the

# age `main effect ' ignoring interaction terms

# Could also use logit ← Predict(f, age=ag , ...)$yhat ,

# which allows evaluation of the shape for any level of

# interacting factors. When age does not interact with

# anything , the result from predict(f, ... , type =" terms")

# would equal the result from Predict if all other terms

# were ignored

# Could also specify:

# logit ← predict(fit ,

# gendata(fit , age=ag , cholesterol =...))

# Unmentioned variables are set to reference values

plot (ag∧.5 , logit ) # try square root vs. spline transform.

plot (ag∧1.5 , logit ) # try 1.5 power

# Pretty printing of table of estimates and

# summary statistics :

print (fit , latex =TRUE) # print LATEX code to console

latex (fit) # invokes latex.lrm , creates fit.tex

# Draw a nomogram for the model fit

plot (nomogram (fit))

# Compose R function to evaluate linear predictors

# analytically

g ← Function (fit)

g(treat = ' b ' , cholesterol =260, age =50)

# Letting num.diseases default to reference value

To examine interactions in a simpler way, you may want to group age into
tertiles:

age.tertile ← cut2 (age , g=3)

# For auto ranges later , specify age.tertile to datadist

fit ← lrm(y ∼ age.tertile * rcs(cholesterol ))

Example output from these functions is shown in Chapter 10 and later
chapters.

Note that type="terms" in predict scores each factor in a model with its
fitted transformation. This may be used to compute, for example, rank cor-
relation between the response and each transformed factor, pretending it has
1 d.f.

When regression is done on principal components, one may use an ordi-
nary linear model to decode “internal” regression coefficients for helping to
understand the final model. Here is an example.
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require(rms)

dd ← datadist (my.data)

options(datadist = ' dd ' )
pcfit ← princomp (∼ pain.symptom1 + pain.symptom2 + sign1 +

sign2 + sign3 + smoking)

pc2 ← pcfit $scores [,1:2] # first 2 PCs as matrix

logistic.fit ← lrm(death ∼ rcs(age ,4) + pc2)

predicted.logit ← predict(logistic.fit )

linear.mod ← ols( predicted.logit ∼ rcs(age ,4) +

pain.symptom1 + pain.symptom2 +

sign1 + sign2 + sign3 + smoking)

# This model will have R-squared =1

nom ← nomogram (linear.mod , fun=function (x)1/(1+ exp(-x)),

funlabel ="Probability of Death ")

# can use fun=plogis

plot (nom)

# 7 Axes showing effects of all predictors , plus a reading

# axis converting to predicted probability scale

In addition to many of the add-on functions described above, there are
several other R functions that validate models. The first, predab.resample,
is a general-purpose function that is used by functions for specific models
described later. predab.resample computes estimates of optimism and bias-
corrected estimates of a vector of indexes of predictive accuracy, for a model
with a specified design matrix, with or without fast backward step-down of
predictors. If bw=TRUE, predab.resample prints a matrix of asterisks showing
which factors were selected at each repetition, along with a frequency dis-
tribution of the number of factors retained across resamples. The function
has an optional parameter that may be specified to force the bootstrap al-
gorithm to do sampling with replacement from clusters rather than from
original records, which is useful when each subject has multiple records in
the dataset. It also has a parameter that can be used to validate predictions
in a subset of the records even though models are refit using all records.

The generic function validate invokes predab.resample with model-specific
fits and measures of accuracy. The function calibrate invokes predab.resample
to estimate bias-corrected model calibration and to plot the calibration curve.
Model calibration is estimated at a sequence of predicted values.

6.4 Other Functions

For principal component analysis, R has the princomp and prcomp functions.
Canonical correlations and canonical variates can be easily computed us-
ing the cancor function. There are many other R functions for examining
associations and for fitting models. The supsmu function implements Fried-
man’s “super smoother.”207 The lowess function implements Cleveland’s two-
dimensional smoother.111 The glm function will fit general linear models under
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a wide variety of distributions of Y . There are functions to fit Hastie and Tib-
shirani’s275 generalized additive model for a variety of distributions. More is
said about parametric and nonparametric additive multiple regression func-
tions in Chapter 16. The loess function fits a multidimensional scatterplot
smoother (the local regression model of Cleveland et al.96). loess provides
approximate test statistics for normal or symmetrically distributed Y :

f ← loess (y ∼ age * pressure )

plot (f) # cross-sectional plots

ages ← seq(20,70, length =40)

pressures ← seq(80,200, length =40)

pred ← predict(f,

expand.grid (age=ages , pressure =pressures ))

persp (ages , pressures , pred) # 3-D plot

loess has a large number of options allowing various restrictions to be placed
on the fitted surface.

Atkinson and Therneau’s rpart recursive partitioning package and related
functions implement classification and regression trees69 algorithms for bi-
nary, continuous, and right-censored response variables (assuming an expo-
nential distribution for the latter). rpart deals effectively with missing predic-
tor values using surrogate splits. The rms package has a validate function for
rpart objects for obtaining cross-validated mean squared errors and Somers’
Dxy rank correlations (Brier score and ROC areas for probability models).

For displaying which variables tend to be missing on the same subjects,
the Hmisc naclus function can be used (e.g., plot(naclus(dataframename)) or
naplot(naclus( dataframename))). For characterizing what type of subjects
have NA’s on a given predictor (or response) variable, a tree model whose
response variable is is.na(varname) can be quite useful.

require(rpart )

f ← rpart (is.na (cholesterol ) ∼ age + sex + trig + smoking)

plot (f) # plots the tree

text (f) # labels the tree

The Hmisc rcorr.cens function can compute Somers’ Dxy rank correla-
tion coefficient and its standard error, for binary or continuous (and possibly
right-censored) responses. A simple transformation of Dxy yields the c index
(generalized ROC area). The Hmisc improveProb function is useful for compar-
ing two probability models using the methods of Pencina etal490, 492, 493 in an
external validation setting. See also the rcorrp.cens function in this context.

6.5 Further Reading

1 Harrell and Goldstein263 list components of statistical languages or packages
and compare several popular packages for survival analysis capabilities.

2 Imai et al.319 have further generalized R as a statistical modeling language.



Chapter 7

Modeling Longitudinal Responses using
Generalized Least Squares

In this chapter we consider models for a multivariate response variable repre-
sented by serial measurements over time within subject. This setup induces
correlations between measurements on the same subject that must be taken
into account to have optimal model fits and honest inference. Full likelihood
model-based approaches have advantages including (1) optimal handling of
imbalanced data and (2) robustness to missing data (dropouts) that occur
not completely at random. The three most popular model-based full like-
lihood approaches are mixed effects models, generalized least squares, and
Bayesian hierarchical models. For continuous Y , generalized least squares
has a certain elegance, and a case study will demonstrate its use after sur-
veying competing approaches. As OLS is a special case of generalized least
squares, the case study is also helpful in developing and interpreting OLS
modelsa.

Some good references on longitudinal data analysis
include148, 159, 252, 414, 509, 635, 637.

7.1 Notation and Data Setup

Suppose there are N independent subjects, with subject i (i = 1, 2, . . . , N)
having ni responses measured at times ti1, ti2, . . . , tini . The response at time t
for subject i is denoted by Yit. Suppose that subject i has baseline covariates
Xi. Generally the response measured at time ti1 = 0 is a covariate in Xi

instead of being the first measured response Yi0.
For flexible analysis, longitudinal data are usually arranged in a “tall and

thin” layout. This allows measurement times to be irregular. In studies com-

a A case study in OLS—Chapter 7 from the first edition—may be found on the text’s
web site.

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 7

143



144 7 Modeling Longitudinal Responses using Generalized Least Squares

paring two or more treatments, a response is often measured at baseline
(pre-randomization). The analyst has the option to use this measurement as
Yi0 or as part of Xi. There are many reasons to put initial measurements of
Y in X , i.e., to use baseline measurements as baseline .1

7.2 Model Specification for Effects on E(Y )

Longitudinal data can be used to estimate overall means or the mean at the
last scheduled follow-up, making maximum use of incomplete records. But the
real value of longitudinal data comes from modeling the entire time course.
Estimating the time course leads to understanding slopes, shapes, overall
trajectories, and periods of treatment effectiveness. With continuous Y one
typically specifies the time course by a mean time-response profile. Common
representations for such profiles include

• k dummy variables for k+1 unique times (assumes no functional form for
time but assumes discrete measurement times and may spend many d.f.)

• k = 1 for linear time trend, g1(t) = t
• k–order polynomial in t
• k+1–knot restricted cubic spline (one linear term, k− 1 nonlinear terms)

Suppose the time trend is modeled with k parameters so that the time
effect has k d.f. Let the basis functions modeling the time effect be g1(t),
g2(t), . . . , gk(t) to allow it to be nonlinear. A model for the time profile with-
out interactions between time and any X is given by

E[Yit|Xi] = Xiβ + γ1g1(t) + γ2g2(t) + . . .+ γkgk(t). (7.1)

To allow the slope or shape of the time-response profile to depend on some
of the Xs we add product terms for desired interaction effects. For example,
to allow the mean time trend for subjects in group 1 (reference group) to
be arbitrarily different from the time trend for subjects in group 2, have a
dummy variable for group 2, a time “main effect” curve with k d.f. and all k
products of these time components with the dummy variable for group 2.

Once the right hand side of the model is formulated, predicted values,
contrasts, and ANOVAs are obtained just as with a univariate model. For
these purposes time is no different than any other covariate except for what
is described in the next section.

7.3 Modeling Within-Subject Dependence

Sometimes understanding within-subject correlation patterns is of interest
in itself. More commonly, accounting for intra-subject correlation is crucial
for inferences to be valid. Some methods of analysis cover up the correlation
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pattern while others assume a restrictive form for the pattern. The following
table is an attempt to briefly survey available longitudinal analysis meth-
ods. LOCF and the summary statistic method are not modeling methods. 2

LOCF is an ad hoc attempt to account for longitudinal dropouts, and sum-
mary statistics can convert multivariate responses to univariate ones with few
assumptions (other than minimal dropouts), with some information loss.

What Methods To Use for Repeated Measurements /
Serial Data? ab

Repeated GEE Mixed GLS LOCF Summary
Measures Effects Statisticc

ANOVA Model
Assumes normality × × ×
Assumes independence of ×d ×e

measurements within subject
Assumes a correlation structuref × ×g × ×
Requires same measurement × ?

times for all subjects
Does not allow smooth modeling ×

of time to save d.f.
Does not allow adjustment for ×

baseline covariates
Does not easily extend to × ×

non-continuous Y
Loses information by not using ×h ×

intermediate measurements
Does not allow widely varying # × ×i × ×j

of observations per subject
Does not allow for subjects × × × ×

to have distinct trajectoriesk

Assumes subject-specific effects ×
are Gaussian

Badly biased if non-random ? × ×
dropouts

Biased in general ×
Harder to get tests & CLs ×l ×m

Requires large # subjects/clusters ×
SEs are wrong ×n ×
Assumptions are not verifiable × N/A × × ×

in small samples
Does not extend to complex × × × × ?

settings such as time-dependent
covariates and dynamico models

a Thanks to Charles Berry, Brian Cade, Peter Flom, Bert Gunter, and Leena Choi
for valuable input.
b GEE: generalized estimating equations; GLS: generalized least squares; LOCF: last
observation carried forward.
c E.g., compute within-subject slope, mean, or area under the curve over time. As-
sumes that the summary measure is an adequate summary of the time profile and
assesses the relevant treatment effect.
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The most prevalent full modeling approach is mixed effects models in which
baseline predictors are fixed effects, and random effects are used to describe
subject differences and to induce within-subject correlation. Some disadvan-
tages of mixed effects models are

• The induced correlation structure for Y may be unrealistic if care is not
taken in specifying the model.

• Random effects require complex approximations for distributions of test
statistics.

• The most commonly used models assume that random effects follow a
normal distribution. This assumption may not hold.

It could be argued that an extended linear model (with no random effects)
is a logical extension of the univariate OLS model b. This model, called the
generalized least squares or growth curve model221, 509, 510, was developed long
before mixed effect models became popular.

We will assume that Yit|Xi has a multivariate normal distribution with
mean given above and with variance-covariance matrix Vi, an ni × ni matrix
that is a function of ti1, . . . , tini . We further assume that the diagonals of Vi

are all equalb. This extended linear model has the following assumptions:

• all the assumptions of OLS at a single time point including correct mod-
eling of predictor effects and univariate normality of responses conditional
on X

d Unless one uses the Huynh-Feldt or Greenhouse-Geisser correction
e For full efficiency, if using the working independence model
f Or requires the user to specify one
g For full efficiency of regression coefficient estimates
h Unless the last observation is missing
i The cluster sandwich variance estimator used to estimate SEs in GEE does not
perform well in this situation, and neither does the working independence model
because it does not weight subjects properly.
j Unless one knows how to properly do a weighted analysis
k Or uses population averages
l Unlike GLS, does not use standard maximum likelihood methods yielding simple
likelihood ratio χ2 statistics. Requires high-dimensional integration to marginalize
random effects, using complex approximations, and if using SAS, unintuitive d.f. for
the various tests.
m Because there is no correct formula for SE of effects; ordinary SEs are not penalized
for imputation and are too small
n If correction not applied
o E.g., a model with a predictor that is a lagged value of the response variable
b E.g., few statisticians use subject random effects for univariate Y . Pinheiro and
Bates [509, Section 5.1.2] state that “in some applications, one may wish to avoid
incorporating random effects in the model to account for dependence among obser-
vations, choosing to use the within-group component Λi to directly model variance-
covariance structure of the response.”
b This procedure can be generalized to allow for heteroscedasticity over time or with
respect to X , e.g., males may be allowed to have a different variance than females.
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• the distribution of two responses at two different times for the same sub-
ject, conditional on X , is bivariate normal with a specified correlation
coefficient

• the joint distribution of all ni responses for the ith subject is multivariate
normal with the given correlation pattern (which implies the previous two
distributional assumptions)

• responses from two different subjects are uncorrelated.

7.4 Parameter Estimation Procedure

Generalized least squares is like weighted least squares but uses a covariance
matrix that is not diagonal. Each subject can have her own shape of Vi due
to each subject being measured at a different set of times. This is a maximum
likelihood procedure. Newton-Raphson or other trial-and-error methods are
used for estimating parameters. For a small number of subjects, there are ad-
vantages in using REML (restricted maximum likelihood) instead of ordinary
MLE [159, Section 5.3] [509, Chapter 5]221 (especially to get a more unbiased
estimate of the covariance matrix).

When imbalances of measurement times are not severe, OLS fitted ignoring
subject identifiers may be efficient for estimating β. But OLS standard errors
will be too small as they don’t take intra-cluster correlation into account.
This may be rectified by substituting a covariance matrix estimated using
the Huber-White cluster sandwich estimator or from the cluster bootstrap.
When imbalances are severe and intra-subject correlations are strong, OLS
(or GEE using a working independence model) is not expected to be efficient
because it gives equal weight to each observation; a subject contributing two
distant observations receives 1

5 the weight of a subject having 10 tightly-
spaced observations.

7.5 Common Correlation Structures

We usually restrict ourselves to isotropic correlation structures which assume
the correlation between responses within subject at two times depends only on
a measure of the distance between the two times, not the individual times.
We simplify further and assume it depends on |t1 − t2|c. Assume that the
correlation coefficient for Yit1 vs. Yit2 conditional on baseline covariates Xi

for subject i is h(|t1 − t2|, ρ), where ρ is a vector (usually a scalar) set of
fundamental correlation parameters. Some commonly used structures when

c We can speak interchangeably of correlations of residuals within subjects or correla-
tions between responses measured at different times on the same subject, conditional
on covariates X .
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times are continuous and are not equally spaced [509, Section 5.3.3] are shown
below, along with the correlation function names from the R nlme package.
Compound symmetry: h = ρ if t1 �= t2, 1 if t1 = t2 nlme corCompSymm

(Essentially what two-way ANOVA assumes)
Autoregressive-moving average lag 1: h = ρ|t1−t2| = ρs corCAR1

where s = |t1 − t2|
Exponential: h = exp(−s/ρ) corExp
Gaussian: h = exp[−(s/ρ)2] corGaus
Linear: h = (1 − s/ρ)[s < ρ] corLin
Rational quadratic: h = 1− (s/ρ)2/[1 + (s/ρ)2] corRatio
Spherical: h = [1− 1.5(s/ρ) + 0.5(s/ρ)3 ][s < ρ] corSpher

Linear exponent AR(1): h = ρ
dmin+δ

s−dmin
dmax−dmin , 1 if t1 = t2572

The structures 3–7 use ρ as a scaling parameter, not as something re-
stricted to be in [0, 1]

7.6 Checking Model Fit

The constant variance assumption may be checked using typical residual
plots. The univariate normality assumption (but not multivariate normal-
ity) may be checked using typical Q-Q plots on residuals. For checking the
correlation pattern, a variogram is a very helpful device based on estimating
correlations of all possible pairs of residuals at different time pointsd. Pairs
of estimates obtained at the same absolute time difference s are pooled. The
variogram is a plot with y = 1− ĥ(s, ρ) vs. s on the x-axis, and the theoretical
variogram of the correlation model currently being assumed is superimposed.

7.7 Sample Size Considerations

Section 4.4 provided some guidance about sample sizes needed for OLS.
A good way to think about sample size adequacy for generalized least squares
is to determine the effective number of independent observations that a given
configuration of repeated measurements has. For example, if the standard er-
ror of an estimate from three measurements on each of 20 subjects is the same
as the standard error from 27 subjects measured once, we say that the 20×3
study has an effective sample size of 27, and we equate power from the uni-
variate analysis on n subjects measured once to 20n

27 subjects measured three
times. Faes et al.181 have a nice approach to effective sample sizes with a
variety of correlation patterns in longitudinal data. For an AR(1) correlation
structure with n equally spaced measurement times on each of N subjects,

d Variograms can be unstable.
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with the correlation between two consecutive times being ρ, the effective

sample size is n−(n−2)ρ
1+ρ N . Under compound symmetry, the effective size is

nN
1+ρ(n−1) .

7.8 R Software

The nonlinear mixed effects model package nlme of Pinheiro & Bates in
Rprovides many useful functions. For fitting linear models, fitting functions
are lme for mixed effects models and gls for generalized least squares without
random effects. The rms package has a front-end function Gls so that many
features of rms can be used:

anova: all partial Wald tests, test of linearity, pooled tests
summary: effect estimates (differences in Ŷ ) and confidence limits
Predict and plot: partial effect plots
nomogram: nomogram
Function: generate R function code for the fitted model
latex: LATEX representation of the fitted model.

In addition, Gls has a cluster bootstrap option (hence you do not use rms’s
bootcov for Gls fits). When B is provided to Gls( ), bootstrapped regression
coefficients and correlation estimates are saved, the former setting up for
bootstrap percentile confidence limitse The nlme package has many graphics
and fit-checking functions. Several functions will be demonstrated in the case
study.

7.9 Case Study

Consider the dataset in Table 6.9 of Davis [148, pp. 161–163] from a multi-
center, randomized controlled trial of botulinum toxin type B (BotB) in pa-
tients with cervical dystonia from nine U.S. sites. Patients were randomized
to placebo (N = 36), 5000 units of BotB (N = 36), or 10,000 units of BotB
(N = 37). The response variable is the total score on the Toronto Western
Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and
disability of cervical dystonia (high scores mean more impairment). TWSTRS
is measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment
began. The dataset name on the dataset wiki page is cdystonia.

e To access regular gls functions named anova (for likelihood ratio tests, AIC, etc.)
or summary use anova.gls or summary.gls.
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7.9.1 Graphical Exploration of Data

Graphics which follow display raw data as well as quartiles of TWSTRS by
time, site, and treatment. A table shows the realized measurement schedule.

require(rms)

getHdata (cdystonia )

attach (cdystonia )

# Construct unique subject ID

uid ← with (cdystonia , factor (paste (site , id )))

# Tabulate patterns of subjects ' time points

table (tapply (week , uid ,

function (w) paste (sort (unique (w)), collapse= ' ' )))

0 0 2 4 0 2 4 12 16 0 2 4 8 0 2 4 8 12
1 1 3 1 1

0 2 4 8 12 16 0 2 4 8 16 0 2 8 12 16 0 4 8 12 16 0 4 8 16
94 1 2 4 1

# Plot raw data , superposing subjects

xl ← xlab ( ' Week ' ); yl ← ylab( ' TWSTRS-total score ' )
ggplot (cdystonia , aes(x=week , y=twstrs , color =factor (id))) +

geom_line () + xl + yl + facet_grid (treat ∼ site) +

guides (color =FALSE ) # Fig. 7.1

# Show quartiles

ggplot (cdystonia , aes(x=week , y=twstrs )) + xl + yl +

ylim (0, 70) + stat_summary (fun.data ="median_hilow ",

conf.int =0.5 , geom = ' smooth ' ) +

facet_wrap (∼ treat , nrow =2) # Fig. 7.2

Next the data are rearranged so that Yi0 is a baseline covariate.

baseline ← subset (data.frame (cdystonia ,uid), week == 0,

-week )

baseline ← upData (baseline , rename =c(twstrs = ' twstrs0 ' ),
print =FALSE )

followup ← subset (data.frame (cdystonia ,uid), week > 0,

c(uid ,week ,twstrs ))

rm(uid)

both ← merge (baseline , followup , by= ' uid ' )

dd ← datadist(both)

options(datadist = ' dd ' )
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Fig. 7.1 Time profiles for individual subjects, stratified by study site and dose

7.9.2 Using Generalized Least Squares

We stay with baseline adjustment and use a variety of correlation structures,
with constant variance. Time is modeled as a restricted cubic spline with
3 knots, because there are only 3 unique interior values of week. Below, six
correlation patterns are attempted. In general it is better to use scientific
knowledge to guide the choice of the correlation structure.

require(nlme )

cp← list(corCAR1 ,corExp ,corCompSymm ,corLin ,corGaus ,corSpher )

z ← vector ( ' list ' ,length (cp))
for (k in 1: length (cp)) {

z[[k]] ← gls(twstrs ∼ treat * rcs (week , 3) +

rcs(twstrs0 , 3) + rcs (age , 4) * sex , data=both ,

correlation =cp[[k]]( form = ∼week | uid ))

}

anova (z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]])

Model df AIC BIC logLik
z[[1]] 1 20 3553.906 3638.357 -1756.953
z[[2]] 2 20 3553.906 3638.357 -1756.953
z[[3]] 3 20 3587.974 3672.426 -1773.987
z[[4]] 4 20 3575.079 3659.531 -1767.540
z[[5]] 5 20 3621.081 3705.532 -1790.540
z[[6]] 6 20 3570.958 3655.409 -1765.479
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Fig. 7.2 Quartiles of TWSTRS stratified by dose

AIC computed above is set up so that smaller values are best. From this
the continuous-time AR1 and exponential structures are tied for the best.
For the remainder of the analysis we use corCAR1, using Gls.3

a ← Gls(twstrs ∼ treat * rcs(week , 3) + rcs(twstrs0 , 3) +

rcs(age , 4) * sex , data =both ,

correlation =corCAR1(form =∼week | uid))

print (a, latex =TRUE )

Generalized Least Squares Fit by REML

Gls(model = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +

rcs(age, 4) * sex, data = both, correlation = corCAR1

(form = ~week | uid))

Obs 522 Log-restricted-likelihood -1756.95
Clusters 108 Model d.f. 17
g 11.334 σ 8.5917

d.f. 504
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Coef S.E. t Pr(> |t|)
Intercept -0.3093 11.8804 -0.03 0.9792
treat=5000U 0.4344 2.5962 0.17 0.8672
treat=Placebo 7.1433 2.6133 2.73 0.0065
week 0.2879 0.2973 0.97 0.3334
week’ 0.7313 0.3078 2.38 0.0179
twstrs0 0.8071 0.1449 5.57 < 0.0001
twstrs0’ 0.2129 0.1795 1.19 0.2360
age -0.1178 0.2346 -0.50 0.6158
age’ 0.6968 0.6484 1.07 0.2830
age” -3.4018 2.5599 -1.33 0.1845
sex=M 24.2802 18.6208 1.30 0.1929
treat=5000U * week 0.0745 0.4221 0.18 0.8599
treat=Placebo * week -0.1256 0.4243 -0.30 0.7674
treat=5000U * week’ -0.4389 0.4363 -1.01 0.3149
treat=Placebo * week’ -0.6459 0.4381 -1.47 0.1411
age * sex=M -0.5846 0.4447 -1.31 0.1892
age’ * sex=M 1.4652 1.2388 1.18 0.2375
age” * sex=M -4.0338 4.8123 -0.84 0.4023

Correlation Structure: Continuous AR(1)

Formula: ~week | uid

Parameter estimate(s):

Phi

0.8666689

ρ̂ = 0.867, the estimate of the correlation between two measurements
taken one week apart on the same subject. The estimated correlation for
measurements 10 weeks apart is 0.86710 = 0.24.

v ← Variogram (a, form=∼ week | uid)

plot (v) # Figure 7.3

The empirical variogram is largely in agreement with the pattern dictated by
AR(1).

Next check constant variance and normality assumptions.

both$resid ← r ← resid(a); both$fitted ← fitted (a)

yl ← ylab( ' Residuals ' )
p1 ← ggplot (both , aes(x=fitted , y=resid )) + geom_point () +

facet_grid (∼ treat ) + yl

p2 ← ggplot (both , aes(x=twstrs0 , y=resid )) + geom_point ()+ yl

p3 ← ggplot (both , aes(x=week , y=resid )) + yl + ylim(-20 ,20) +

stat_summary(fun.data ="mean_sdl ", geom= ' smooth ' )
p4 ← ggplot (both , aes(sample =resid )) + stat_qq () +

geom_abline ( intercept =mean(r), slope=sd(r)) + yl

gridExtra :: grid.arrange(p1, p2 , p3 , p4, ncol =2) # Figure 7.4
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Fig. 7.3 Variogram, with assumed correlation pattern superimposed

These model assumptions appear to be well satisfied, so inferences are likely
to be trustworthy if the more subtle multivariate assumptions hold.

Now get hypothesis tests, estimates, and graphically interpret the model.

plot (anova (a)) # Figure 7.5

ylm ← ylim (25, 60)

p1 ← ggplot (Predict(a, week , treat , conf.int =FALSE ),

adj.subtitle =FALSE , legend.position = ' top ' ) + ylm

p2 ← ggplot (Predict(a, twstrs0), adj.subtitle =FALSE ) + ylm

p3 ← ggplot (Predict(a, age , sex), adj.subtitle =FALSE ,

legend.position = ' top ' ) + ylm

gridExtra :: grid.arrange (p1 , p2 , p3 , ncol =2) # Figure 7.6

latex (summary (a),file= ' ' , table.env =FALSE) # Shows for week 8

Low High Δ Effect S.E. Lower 0.95 Upper 0.95

week 4 12 8 6.69100 1.10570 4.5238 8.8582
twstrs0 39 53 14 13.55100 0.88618 11.8140 15.2880
age 46 65 19 2.50270 2.05140 -1.5179 6.5234
treat — 5000U:10000U 1 2 0.59167 1.99830 -3.3249 4.5083
treat — Placebo:10000U 1 3 5.49300 2.00430 1.5647 9.4212
sex — M:F 1 2 -1.08500 1.77860 -4.5711 2.4011

# To get results for week 8 for a different reference group

# for treatment , use e.g. summary(a, week =4, treat = ' Placebo ' )

# Compare low dose with placebo , separately at each time
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Fig. 7.4 Three residual plots to check for absence of trends in central tendency
and in variability. Upper right panel shows the baseline score on the x-axis. Bottom
left panel shows the mean ±2×SD. Bottom right panel is the QQ plot for checking
normality of residuals from the GLS fit.
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Fig. 7.5 Results of anova from generalized least squares fit with continuous time
AR1 correlation structure. As expected, the baseline version of Y dominates.
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Fig. 7.6 Estimated effects of time, baseline TWSTRS, age, and sex

k1 ← contrast (a, list (week=c(2,4,8,12,16), treat = ' 5000U ' ),
list (week=c(2,4,8,12,16), treat = ' Placebo ' ))

options(width =80)

print (k1 , digits =3)

week twstrs0 age sex Contrast S.E. Lower Upper Z Pr(>|z|)
1 2 46 56 F -6.31 2.10 -10.43 -2.186 -3.00 0.0027
2 4 46 56 F -5.91 1.82 -9.47 -2.349 -3.25 0.0011
3 8 46 56 F -4.90 2.01 -8.85 -0.953 -2.43 0.0150
4* 12 46 56 F -3.07 1.75 -6.49 0.361 -1.75 0.0795
5* 16 46 56 F -1.02 2.10 -5.14 3.092 -0.49 0.6260

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals

# Compare high dose with placebo

k2 ← contrast (a, list (week=c(2,4,8,12,16), treat = ' 10000 U ' ),
list (week=c(2,4,8,12,16), treat = ' Placebo ' ))

print (k2 , digits =3)

week twstrs0 age sex Contrast S.E. Lower Upper Z Pr(>|z|)
1 2 46 56 F -6.89 2.07 -10.96 -2.83 -3.32 0.0009
2 4 46 56 F -6.64 1.79 -10.15 -3.13 -3.70 0.0002
3 8 46 56 F -5.49 2.00 -9.42 -1.56 -2.74 0.0061
4* 12 46 56 F -1.76 1.74 -5.17 1.65 -1.01 0.3109
5* 16 46 56 F 2.62 2.09 -1.47 6.71 1.25 0.2099

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals



7.9 Case Study 157

k1 ← as.data.frame (k1[c( ' week ' , ' Contrast ' , ' Lower ' ,
' Upper ' )])

p1 ← ggplot (k1 , aes(x=week , y=Contrast )) + geom_point () +

geom_line () + ylab( ' Low Dose - Placebo ' ) +

geom_errorbar (aes(ymin=Lower , ymax =Upper ), width =0)

k2 ← as.data.frame (k2[c( ' week ' , ' Contrast ' , ' Lower ' ,
' Upper ' )])

p2 ← ggplot (k2 , aes(x=week , y=Contrast )) + geom_point () +

geom_line () + ylab( ' High Dose - Placebo ' ) +

geom_errorbar (aes(ymin=Lower , ymax =Upper ), width =0)

gridExtra :: grid.arrange (p1 , p2 , ncol =2) # Figure 7.7
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Fig. 7.7 Contrasts and 0.95 confidence limits from GLS fit

Although multiple d.f. tests such as total treatment effects or treatment
× time interaction tests are comprehensive, their increased degrees of free-
dom can dilute power. In a treatment comparison, treatment contrasts at
the last time point (single d.f. tests) are often of major interest. Such con-
trasts are informed by all the measurements made by all subjects (up until
dropout times) when a smooth time trend is assumed. They use appropriate
extrapolation past dropout times based on observed trajectories of subjects
followed the entire observation period. In agreement with the top left panel
of Figure 7.6, Figure 7.7 shows that the treatment, despite causing an early
improvement, wears off by 16 weeks at which time no benefit is seen.

A nomogram can be used to obtain predicted values, as well as to better
understand the model, just as with a univariate Y .

n ← nomogram (a, age=c(seq(20, 80, by=10), 85))

plot (n, cex.axis =.55 , cex.var=.8 , lmgp =.25) # Figure 7.8
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Fig. 7.8 Nomogram from GLS fit. Second axis is the baseline score.

7.10 Further Reading

1 Jim Rochon (Rho, Inc., Chapel Hill NC) has the following comments about
using the baseline measurement of Y as the first longitudinal response.

For RCTs [randomized clinical trials], I draw a sharp line at the point
when the intervention begins. The LHS [left hand side of the model equa-
tion] is reserved for something that is a response to treatment. Anything
before this point can potentially be included as a covariate in the regres-
sion model. This includes the “baseline” value of the outcome variable.
Indeed, the best predictor of the outcome at the end of the study is typ-
ically where the patient began at the beginning. It drinks up a lot of
variability in the outcome; and, the effect of other covariates is typically
mediated through this variable.

I treat anything after the intervention begins as an outcome. In the west-
ern scientific method, an “effect”must follow the “cause” even if by a split
second.

Note that an RCT is different than a cohort study. In a cohort study,
“Time 0” is not terribly meaningful. If we want to model, say, the trend
over time, it would be legitimate, in my view, to include the “baseline”
value on the LHS of that regression model.
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Now, even if the intervention, e.g., surgery, has an immediate effect, I
would include still reserve the LHS for anything that might legitimately
be considered as the response to the intervention. So, if we cleared a
blocked artery and then measured the MABP, then that would still be
included on the LHS.

Now, it could well be that most of the therapeutic effect occurred by
the time that the first repeated measure was taken, and then levels off.
Then, a plot of the means would essentially be two parallel lines and the
treatment effect is the distance between the lines, i.e., the difference in
the intercepts.

If the linear trend from baseline to Time 1 continues beyond Time 1, then
the lines will have a common intercept but the slopes will diverge. Then,
the treatment effect will the difference in slopes.

One point to remember is that the estimated intercept is the value at time
0 that we predict from the set of repeated measures post randomization.
In the first case above, the model will predict different intercepts even
though randomization would suggest that they would start from the same
place. This is because we were asleep at the switch and didn’t record the
“action” from baseline to time 1. In the second case, the model will predict
the same intercept values because the linear trend from baseline to time
1 was continued thereafter.

More importantly, there are considerable benefits to including it as a co-
variate on the RHS. The baseline value tends to be the best predictor of
the outcome post-randomization, and this maneuver increases the preci-
sion of the estimated treatment effect. Additionally, any other prognostic
factors correlated with the outcome variable will also be correlated with
the baseline value of that outcome, and this has two important conse-
quences. First, this greatly reduces the need to enter a large number of
prognostic factors as covariates in the linear models. Their effect is already
mediated through the baseline value of the outcome variable. Secondly,
any imbalances across the treatment arms in important prognostic factors
will induce an imbalance across the treatment arms in the baseline value
of the outcome. Including the baseline value thereby reduces the need to
enter these variables as covariates in the linear models.

Stephen Senn563 states that temporally and logically, a “baseline cannot be
a response to treatment”, so baseline and response cannot be modeled in an
integrated framework.

. . . one should focus clearly on ‘outcomes’ as being the only values that
can be influenced by treatment and examine critically any schemes that
assume that these are linked in some rigid and deterministic view to
‘baseline’ values. An alternative tradition sees a baseline as being merely
one of a number of measurements capable of improving predictions of
outcomes and models it in this way.

The final reason that baseline cannot be modeled as the response at time zero is
that many studies have inclusion/exclusion criteria that include cutoffs on the
baseline variable yielding a truncated distribution. In general it is not appropri-
ate to model the baseline with the same distributional shape as the follow-up
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measurements. Thus the approach recommended by Liang and Zeger405 and
Liu et al.423 are problematicf.

2 Gardiner et al.211 compared several longitudinal data models, especially with re-
gard to assumptions and how regression coefficients are estimated. Peters et al.500

have an empirical study confirming that the “use all available data” approach of
likelihood–based longitudinal models makes imputation of follow-up measure-
ments unnecessary.

3 Keselman et al.347 did a simulation study to study the reliability of AIC for
selecting the correct covariance structure in repeated measurement models. In
choosing from among 11 structures, AIC selected the correct structure 47% of
the time. Gurka et al.247 demonstrated that fixed effects in a mixed effects
model can be biased, independent of sample size, when the specified covariate
matrix is more restricted than the true one.

f In addition to this, one of the paper’s conclusions that analysis of covariance is not
appropriate if the population means of the baseline variable are not identical in the
treatment groups is arguable563. See346 for a discussion of423.



Chapter 8

Case Study in Data Reduction

Recall that the aim of data reduction is to reduce (without using the outcome)
the number of parameters needed in the outcome model. The following case
study illustrates these techniques:

1. redundancy analysis;
2. variable clustering;
3. data reduction using principal component analysis (PCA), sparse PCA,

and pretransformations;
4. restricted cubic spline fitting using ordinary least squares, in the context

of scaling; and
5. scaling/variable transformations using canonical variates and nonparamet-

ric additive regression.

8.1 Data

Consider the 506-patient prostate cancer dataset from Byar and Green.87 The
data are listed in [28, Table 46] and are available in ASCII form from StatLib

(lib.stat.cmu.edu) in the Datasets area from this book’s Web page. These
data were from a randomized trial comparing four treatments for stage 3
and 4 prostate cancer, with almost equal numbers of patients on placebo and
each of three doses of estrogen. Four patients had missing values on all of the
following variables: wt, pf, hx, sbp, dbp, ekg, hg, bm; two of these patients
were also missing sz. These patients are excluded from consideration. The
ultimate goal of an analysis of the dataset might be to discover patterns in
survival or to do an analysis of covariance to assess the effect of treatment
while adjusting for patient heterogeneity. See Chapter 21 for such analyses.
The data reductions developed here are general and can be used for a variety
of dependent variables.

© Springer International Publishing Switzerland 2015
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The variable names, labels, and a summary of the data are printed below.

require(Hmisc )

getHdata (prostate ) # Download and make prostate accessible

# Convert an old date format to R format

prostate $sdate ← as.Date(prostate $sdate )

d ← describe (prostate [2:17])

latex (d, file = ' ' )

prostate[2:17]
16 Variables 502 Observations

stage : Stage
n missing unique Info Mean

502 0 2 0.73 3.424

3 (289, 58%), 4 (213, 42%)

rx
n missing unique

502 0 4

placebo (127, 25%), 0.2 mg estrogen (124, 25%)
1.0 mg estrogen (126, 25%), 5.0 mg estrogen (125, 25%)

dtime : Months of Follow-up
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 76 1 36.13 1.05 5.00 14.25 34.00 57.75 67.00 71.00

lowest : 0 1 2 3 4, highest: 72 73 74 75 76

status
n missing unique

502 0 10

alive (148, 29%), dead - prostatic ca (130, 26%)
dead - heart or vascular (96, 19%), dead - cerebrovascular (31, 6%)
dead - pulmonary embolus (14, 3%), dead - other ca (25, 5%)
dead - respiratory disease (16, 3%)
dead - other specific non-ca (28, 6%), dead - unspecified non-ca (7, 1%)
dead - unknown cause (7, 1%)

age : Age in Years
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

501 1 41 1 71.46 56 60 70 73 76 78 80

lowest : 48 49 50 51 52, highest: 84 85 87 88 89

wt : Weight Index = wt(kg)-ht(cm)+200
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

500 2 67 1 99.03 77.95 82.90 90.00 98.00 107.00 116.00 123.00

lowest : 69 71 72 73 74, highest: 136 142 145 150 152
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pf
n missing unique

502 0 4

normal activity (450, 90%), in bed < 50% daytime (37, 7%)
in bed > 50% daytime (13, 3%), confined to bed (2, 0%)

hx : History of Cardiovascular Disease
n missing unique Info Sum Mean

502 0 2 0.73 213 0.4243

sbp : Systolic Blood Pressure/10
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 18 0.98 14.35 11 12 13 14 16 17 18

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 30
Frequency 1 3 14 27 65 74 98 74 72 34 17 12 3 2 3 1 1 1
% 0 1 3 5 13 15 20 15 14 7 3 2 1 0 1 0 0 0

dbp : Diastolic Blood Pressure/10
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 12 0.95 8.149 6 6 7 8 9 10 10

4 5 6 7 8 9 10 11 12 13 14 18
Frequency 4 5 43 107 165 94 66 9 5 2 1 1
% 1 1 9 21 33 19 13 2 1 0 0 0

ekg
n missing unique

494 8 7

normal (168, 34%), benign (23, 5%)
rhythmic disturb & electrolyte ch (51, 10%)
heart block or conduction def (26, 5%), heart strain (150, 30%)
old MI (75, 15%), recent MI (1, 0%)

hg : Serum Hemoglobin (g/100ml)
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 91 1 13.45 10.2 10.7 12.3 13.7 14.7 15.8 16.4

lowest : 5.899 7.000 7.199 7.800 8.199
highest: 17.297 17.500 17.598 18.199 21.199

sz: Size of Primary Tumor (cm2)
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

497 5 55 1 14.63 2.0 3.0 5.0 11.0 21.0 32.0 39.2

lowest : 0 1 2 3 4, highest: 54 55 61 62 69

sg : Combined Index of Stage and Hist. Grade
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

491 11 11 0.96 10.31 8 8 9 10 11 13 13

5 6 7 8 9 10 11 12 13 14 15
Frequency 3 8 7 67 137 33 114 26 75 5 16
% 1 2 1 14 28 7 23 5 15 1 3
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ap : Serum Prostatic Acid Phosphatase
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

502 0 128 1 12.18 0.300 0.300 0.500 0.700 2.975 21.689 38.470

lowest : 0.09999 0.19998 0.29999 0.39996 0.50000
highest: 316.00000 353.50000 367.00000 596.00000 999.87500

bm : Bone Metastases
n missing unique Info Sum Mean

502 0 2 0.41 82 0.1633

stage is defined by ap as well as X-ray results. Of the patients in stage 3,
0.92 have ap ≤ 0.8. Of those in stage 4, 0.93 have ap > 0.8. Since stage can
be predicted almost certainly from ap, we do not consider stage in some of
the analyses.

8.2 How Many Parameters Can Be Estimated?

There are 354 deaths among the 502 patients. If predicting survival time were
of major interest, we could develop a reliable model if no more than about
354/15 = 24 parameters were examined against Y in unpenalized modeling.
Suppose that a full model with no interactions is fitted and that linearity is
not assumed for any continuous predictors. Assuming age is almost linear,
we could fit a restricted cubic spline function with three knots. For the other
continuous variables, let us use five knots. For categorical predictors, the
maximum number of degrees of freedom needed would be one fewer than
the number of categories. For pf we could lump the last two categories since
the last category has only 2 patients. Likewise, we could combine the last
two levels of ekg. Table 8.1 lists the candidate predictors with the maximum
number of parameters we consider for each.

Table 8.1 Degrees of freedom needed for predictors

Predictor: rx age wt pf hx sbp dbp ekg hg sz sg ap bm

# Parameters: 3 2 4 2 1 4 4 5 4 4 4 4 1

8.3 Redundancy Analysis

As described in Section 4.7.1, it is occasionally useful to do a rigorous re-
dundancy analysis on a set of potential predictors. Let us run the algorithm
discussed there, on the set of predictors we are considering. We will use a low
threshold (0.3) for R2 for demonstration purposes.
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# Allow only 1 d.f. for three of the predictors

prostate ←
transform (prostate ,

ekg.norm = 1*(ekg %in% c("normal ","benign ")),

rxn = as.numeric (rx),

pfn = as.numeric (pf))

# Force pfn, rxn to be linear because of difficulty of placing

# knots with so many ties in the data

# Note: all incomplete cases are deleted (inefficient)

redun (∼ stage + I(rxn ) + age + wt + I(pfn) + hx +

sbp + dbp + ekg.norm + hg + sz + sg + ap + bm,

r2=.3, type= ' adjusted ' , data=prostate )

Redundancy Analysis

redun (formula = ∼stage + I(rxn) + age + wt + I(pfn) + hx +

sbp + dbp + ekg.norm + hg + sz + sg + ap + bm ,

data = prostate , r2 = 0.3, type = "adjusted ")

n: 483 p: 14 nk: 3

Number of NAs: 19

Frequencies of Missing Values Due to Each Variable

stage I(rxn) age wt I(pfn) hx sbp

dbp

0 0 1 2 0 0 0

0

ekg.norm hg sz sg ap bm

0 0 5 11 0 0

Transformation of target variables forced to be linear

R2 cutoff : 0.3 Type : adjusted

R2 with which each variable can be predicted from all other

variables :

stage I(rxn) age wt I(pfn) hx sbp

dbp

0.658 0.000 0.073 0.111 0.156 0.062 0.452

0.417

ekg.norm hg sz sg ap bm

0.055 0.146 0.192 0.540 0.147 0.391

Rendundant variables :

stage sbp bm sg

Predicted from variables :

I(rxn) age wt I(pfn) hx dbp ekg.norm hg sz ap
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Variable Deleted R2 R2 after later deletions

1 stage 0.658 0.658 0.646 0.494

2 sbp 0.452 0.453 0.455

3 bm 0.374 0.367

4 sg 0.342

By any reasonable criterion on R2, none of the predictors is redundant. stage
can be predicted with an R2 = 0.658 from the other 13 variables, but only
with R2 = 0.493 after deletion of 3 variables later declared to be“redundant.”

8.4 Variable Clustering

From Table 8.1, the total number of parameters is 42, so some data reduction
should be considered. We resist the temptation to take the “easy way out”us-
ing stepwise variable selection so that we can achieve a more stable modeling
process and obtain unbiased standard errors. Before using a variable cluster-1

ing procedure, note that ap is extremely skewed. To handle skewness, we use
Spearman rank correlations for continuous variables (later we transform each
variable using transcan, which will allow ordinary correlation coefficients to
be used). After classifying ekg as “normal/benign”versus everything else, the
Spearman correlations are plotted below.

x ← with (prostate ,

cbind (stage , rx , age , wt , pf , hx , sbp , dbp ,

ekg.norm , hg , sz , sg , ap , bm))

# If no missing data , could use cor(apply(x, 2, rank ))

r ← rcorr (x, type ="spearman ")$r # rcorr in Hmisc

maxabsr ← max(abs(r[row(r) != col(r)]))

p ← nrow (r)

plot (c(-.35 ,p+.5),c(.5 ,p+.25), type = ' n ' , axes =FALSE ,

xlab = ' ' ,ylab = ' ' ) # Figure 8.1

v ← dimnames (r)[[1]]

text (rep(.5 ,p), 1:p, v, adj =1)

for(i in 1:( p-1)) {

for(j in (i+1): p) {

lines (c(i,i),c(j,j+r[i,j]/maxabsr/2),

lwd=3, lend= ' butt ' )
lines (c(i-.2 ,i+.2),c(j,j), lwd=1, col=gray (.7))

}

text (i, i, v[i], srt=-45 , adj =0)

}

We perform a hierarchical cluster analysis based on a similarity matrix
that contains pairwise Hoeffding D statistics.295 D will detect nonmonotonic
associations.
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vc ← varclus(∼ stage + rxn + age + wt + pfn + hx +

sbp + dbp + ekg.norm + hg + sz + sg + ap + bm ,

sim= ' hoeffding ' , data =prostate )

plot (vc) # Figure 8.2

We combine sbp and dbp, and tentatively combine ap, sg, sz, and bm.

8.5 Transformation and Single Imputation Using
transcan

Now we turn to the scoring of the predictors to potentially reduce the number
of regression parameters that are needed later by doing away with the need for

stage
rx

age
wt

pf
hx

sbp
dbp

ekg.norm
hg
sz

sg
ap
bm

stage

rx

age

wt

pf

hx

sbp

dbp

ekg.norm

hg

sz

sg

ap

Fig. 8.1 Matrix of Spearman ρ rank correlation coefficients between predictors. Hor-
izontal gray scale lines correspond to ρ = 0. The tallest bar corresponds to |ρ| = 0.78.

nonlinear terms and multiple dummy variables. The R Hmisc package transcan
function defaults to using a maximum generalized variance method368 that
incorporates canonical variates to optimally transform both sides of a mul-
tiple regression model. Each predictor is treated in turn as a variable being
predicted, and all variables are expanded into restricted cubic splines (for
continuous variables) or dummy variables (for categorical ones).

# Combine 2 levels of ekg (one had freq. 1)

levels (prostate $ekg)[ levels (prostate $ekg) %in%

c( ' old MI ' , ' recent MI ' )] ← ' MI '

prostate $pf.coded ← as.integer (prostate $pf)
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Fig. 8.2 Hierarchical clustering using Hoeffding’s D as a similarity measure. Dummy
variables were used for the categorical variable ekg. Some of the dummy variables
cluster together since they are by definition negatively correlated.

# make a numeric version; combine last 2 levels of original

levels (prostate $pf) ← levels (prostate $pf)[c(1,2,3,3)]

ptrans ←
transcan (∼ sz + sg + ap + sbp + dbp +

age + wt + hg + ekg + pf + bm + hx , imputed=TRUE ,

transformed =TRUE , trantab=TRUE , pl=FALSE ,

show.na=TRUE , data=prostate , frac =.1 , pr=FALSE )

summary(ptrans , digits =4)

transcan (x = ∼sz + sg + ap + sbp + dbp + age + wt + hg + ekg +
pf + bm + hx , imputed = TRUE, trantab = TRUE, transformed = TRUE,
pr = FALSE, p l = FALSE, show . na = TRUE, data = prostate ,
f r a c = 0 . 1 )

I t e r a t i o n s : 8

R2 ach ieved in p red i c t i ng each va r i ab l e :

sz sg ap sbp dbp age wt hg ekg pf bm hx
0.207 0.556 0.573 0.498 0.485 0.095 0.122 0.158 0.092 0.113 0.349 0.108

Adjusted R2 :

sz sg ap sbp dbp age wt hg ekg pf bm hx
0.180 0.541 0.559 0.481 0.468 0.065 0.093 0.129 0.059 0.086 0.331 0.083

Co e f f i c i e n t s o f canon i ca l v a r i a t e s f o r p r ed i c t i n g each ( row ) va r i a b l e

sz sg ap sbp dbp age wt hg ekg pf bm
sz 0.66 0.20 0.33 0.33 −0.01 −0.01 0.11 0.11 0.03 −0.36
sg 0.23 0.84 0.08 0.07 −0.02 0.01 −0.01 −0.07 0.02 −0.20
ap 0.07 0.80 −0.11 −0.05 0.03 −0.02 0.01 0.01 0.00 −0.83
sbp 0.13 0.10 −0.14 −0.94 0.14 −0.09 0.03 0.10 0.10 −0.03
dbp 0.13 0.09 −0.06 −0.98 0.14 0.07 0.05 0.03 0.04 0.03
age −0.02 −0.06 0.18 0.58 0.57 0.14 0.46 0.43 −0.03 1.05
wt −0.02 0.06 −0.08 −0.31 0.23 0.12 0.51 −0.06 0.21 −1.09
hg 0.13 −0.02 0.03 0.09 0.15 0.33 0.43 −0.02 0.24 −1.53
ekg 0.20 −0.38 0.10 0.42 0.12 0.41 −0.04 −0.04 0.15 −0.42
pf 0.04 0.08 0.02 0.36 0.14 −0.03 0.22 0.29 0.13 −1.75
bm −0.02 −0.03 −0.13 0.00 0.00 0.03 −0.04 −0.06 −0.01 −0.06
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hx 0.04 0.05 −0.01 −0.04 0.00 −0.06 0.02 −0.01 −0.09 −0.04 −0.05
hx

sz 0.34
sg 0.14
ap −0.03
sbp −0.14
dbp −0.01
age −0.76
wt 0.27
hg −0.12
ekg −1.23
pf −0.46
bm −0.02
hx

Summary o f imputed va lues

sz
n miss ing unique In fo Mean
5 0 4 0.95 12.86

6 (2 , 40%) , 7.416 (1 , 20%) , 20.18 (1 , 20%) , 24.69 (1 , 20%)
sg

n miss ing unique In fo Mean . 05 . 10 . 25 . 50
11 0 10 1 10.1 6.900 7.289 7.697 10.270

. 75 . 90 . 95
10.560 15.000 15.000

6.511 7.289 7.394 8 10.25 10.27 10.32 10.39 10.73 15
Frequency 1 1 1 1 1 1 1 1 1 2
% 9 9 9 9 9 9 9 9 9 18
age

n miss ing unique In fo Mean
1 0 1 0 71.65

wt
n miss ing unique In fo Mean
2 0 2 1 97.77

91.24 (1 , 50%) , 104.3 (1 , 50%)
ekg

n miss ing unique In fo Mean
8 0 4 0 . 9 2.625

1 (3 , 38%) , 3 (3 , 38%) , 4 (1 , 12%) , 5 (1 , 12%)

Star t i ng e s t imate s f o r imputed va lue s :

sz sg ap sbp dbp age wt hg ekg pf bm hx
11.0 10.0 0 . 7 14.0 8 . 0 73.0 98.0 13.7 1 . 0 1 . 0 0 . 0 0 . 0

ggplot (ptrans , scale =TRUE) +

theme (axis.text.x =element_text (size =6)) # Figure 8.3

The plotted output is shown in Figure 8.3. Note that at face value the trans-
formation of ap was derived in a circular manner, since the combined index
of stage and histologic grade, sg, uses in its stage component a cutoff on ap.
However, if sg is omitted from consideration, the resulting transformation for
ap does not change appreciably. Note that bm and hx are represented as binary
variables, so their coefficients in the table of canonical variable coefficients
are on a different scale. For the variables that were actually transformed, the
coefficients are for standardized transformed variables (mean 0, variance 1).
From examining the R2s, age, wt, ekg, pf, and hx are not strongly related
to other variables. Imputations for age, wt, ekg are thus relying more on the
median or modal values from the marginal distributions. From the coefficients
of first (standardized) canonical variates, sbp is predicted almost solely from
dbp; bm is predicted mainly from ap, hg, and pf. 2
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Fig. 8.3 Simultaneous transformation and single imputation of all candidate predic-
tors using transcan. Imputed values are shown as red plus signs. Transformed values
are arbitrarily scaled to [0, 1].

8.6 Data Reduction Using Principal Components

The first PC, PC1, is the linear combination of standardized variables having
maximum variance. PC2 is the linear combination of predictors having the
second largest variance such that PC2 is orthogonal to (uncorrelated with)
PC1. If there are p raw variables, the first k PCs, where k < p, will explain
only part of the variation in the whole system of p variables unless one or
more of the original variables is exactly a linear combination of the remaining
variables. Note that it is common to scale and center variables to have mean
zero and variance 1 before computing PCs.

The response variable (here, time until death due to any cause) is not
examined during data reduction, so that if PCs are selected by variance ex-
plained in the X-space and not by variation explained in Y , one needn’t
correct for model uncertainty or multiple comparisons.

PCA results in data reduction when the analyst uses only a subset of the
p possible PCs in predicting Y . This is called incomplete principal component
regression. When one sequentially enters PCs into a predictive model in a
strict pre-specified order (i.e., by descending amounts of variance explained
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for the system of p variables), model uncertainty requiring bootstrap adjust-
ment is minimized. In contrast, model uncertainty associated with stepwise
regression (driven by associations with Y ) is massive.

For the prostate dataset, consider PCs on raw candidate predictors, ex-
panding polytomous factors using dummy variables. The R function princomp

is used, after singly imputing missing raw values using transcan’s optimal
additive nonlinear models. In this series of analyses we ignore the treatment
variable, rx.

# Impute all missing values in all variables given to transcan

imputed ← impute (ptrans , data=prostate , list.out =TRUE)

Imputed missing values with the following frequencies

and stored them in variables with their original names :

sz sg age wt ekg

5 11 1 2 8

imputed ← as.data.frame (imputed)

# Compute principal components on imputed data.

# Create a design matrix from ekg categories

Ekg ← model.matrix (∼ ekg , data=imputed )[, -1]

# Use correlation matrix

pfn ← prostate $pfn

prin.raw ← princomp(∼ sz + sg + ap + sbp + dbp + age +

wt + hg + Ekg + pfn + bm + hx,

cor=TRUE , data =imputed)

plot (prin.raw , type = ' lines ' , main = ' ' , ylim =c(0,3))#Figure 8.4

# Add cumulative fraction of variance explained

addscree ← function (x, npcs=min(10, length (x$sdev )),

plotv =FALSE ,

col=1, offset =.8 , adj=0, pr=FALSE ) {

vars ← x$sdev∧2
cumv ← cumsum (vars)/sum(vars)

if(pr) print (cumv )

text (1:npcs , vars [1: npcs] + offset *par( ' cxy ' )[2],
as.character (round (cumv [1: npcs ], 2)),

srt=45, adj=adj , cex=.65 , xpd=NA , col=col)

if(plotv ) lines (1:npcs , vars [1: npcs ], type = ' b ' , col=col)

}

addscree (prin.raw )

prin.trans ← princomp(ptrans $transformed , cor=TRUE)

addscree (prin.trans , npcs =10, plotv =TRUE , col= ' red ' ,
offset =-.8 , adj =1)
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Fig. 8.4 Variance of the system of raw predictors (black) explained by individual
principal components (lines) along with cumulative proportion of variance explained
(text), and variance explained by components computed on transcan-transformed
variables (red)

The resulting plot shown in Figure 8.4 is called a “scree”plot [325, pp. 96–99,
104, 106]. It shows the variation explained by the first k principal components
as k increases all the way to 16 parameters (no data reduction). It requires
10 of the 16 possible components to explain > 0.8 of the variance, and the
first 5 components explain 0.49 of the variance of the system. Two of the 16
dimensions are almost totally redundant.

After repeating this process when transforming all predictors via transcan,
we have only 12 degrees of freedom for the 12 predictors. The variance ex-
plained is depicted in Figure 8.4 in red. It requires at least 9 of the 12 possible
components to explain ≥ 0.9 of the variance, and the first 5 components ex-
plain 0.66 of the variance as opposed to 0.49 for untransformed variables.

Let us see how the PCs “explain” the times until death using the Cox re-
gression132 function from rms, cph, described in Chapter 20. In what follows
we vary the number of components used in the Cox models from 1 to all 16,
computing the AIC for each model. AIC is related to model log likelihood
penalized for number of parameters estimated, and lower is better. For refer-
ence, the AIC of the model using all of the original predictors, and the AIC
of a full additive spline model are shown as horizontal lines.

require(rms)

S ← with (prostate , Surv(dtime , status != "alive "))

# two-column response var.

pcs ← prin.raw $scores # pick off all PCs

aic ← numeric (16)

for(i in 1:16) {
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ps ← pcs[,1:i]

aic[i] ← AIC(cph(S ∼ ps))

} # Figure 8.5

plot (1:16, aic , xlab= ' Number of Components Used ' ,
ylab = ' AIC ' , type= ' l ' , ylim=c(3950 ,4000))

f ← cph(S ∼ sz + sg + log(ap) + sbp + dbp + age + wt + hg +

ekg + pf + bm + hx , data =imputed)

abline (h=AIC(f), col= ' blue ' )
f ← cph(S ∼ rcs(sz ,5) + rcs(sg ,5) + rcs(log(ap),5) +

rcs(sbp ,5) + rcs(dbp ,5) + rcs(age ,3) + rcs(wt ,5) +

rcs(hg ,5) + ekg + pf + bm + hx ,

tol=1e-14 , data =imputed)

abline (h=AIC(f), col= ' blue ' , lty =2)

For the money, the first 5 components adequately summarizes all variables,
if linearly transformed, and the full linear model is no better than this. The
model allowing all continuous predictors to be nonlinear is not worth its
added degrees of freedom.

Next check the performance of a model derived from cluster scores of
transformed variables.

# Compute PC1 on a subset of transcan-transformed predictors

pco ← function (v) {

f ← princomp (ptrans $transformed [,v], cor=TRUE )

vars ← f$sdev∧2
cat( ' Fraction of variance explained by PC1: ' ,

round (vars [1]/sum(vars ),2), ' \n ' )
f$scores [,1]

}

tumor ← pco(c( ' sz ' , ' sg ' , ' ap ' , ' bm ' ))

Fraction of variance explained by PC1: 0.59

bp ← pco(c( ' sbp ' , ' dbp ' ))

Fraction of variance explained by PC1: 0.84

cardiac ← pco(c( ' hx ' , ' ekg ' ))

Fraction of variance explained by PC1: 0.61

# Get transformed individual variables that are not clustered

other ← ptrans $transformed [,c( ' hg ' , ' age ' , ' pf ' , ' wt ' )]
f ← cph (S ∼ tumor + bp + cardiac + other) # other is matrix

AIC (f)
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Fig. 8.5 AIC of Cox models fitted with progressively more principal components.
The solid blue line depicts the AIC of the model with all original covariates. The
dotted blue line is positioned at the AIC of the full spline model.

[1] 3954.393

print (f, latex =TRUE , long=FALSE , title = ' ' )

Model Tests Discrimination
Indexes

Obs 502 LR χ2 81.11 R2 0.149
Events 354 d.f. 7 Dxy 0.286
Center 0 Pr(> χ2) 0.0000 g 0.562

Score χ2 86.81 gr 1.755
Pr(> χ2) 0.0000

Coef S.E. Wald Z Pr(> |Z|)
tumor -0.1723 0.0367 -4.69 < 0.0001
bp -0.0251 0.0424 -0.59 0.5528
cardiac -0.2513 0.0516 -4.87 < 0.0001
hg -0.1407 0.0554 -2.54 0.0111
age -0.1034 0.0579 -1.79 0.0739
pf -0.0933 0.0487 -1.92 0.0551
wt -0.0910 0.0555 -1.64 0.1012

The tumor and cardiac clusters seem to dominate prediction of mortality,
and the AIC of the model built from cluster scores of transformed variables
compares favorably with other models (Figure 8.5).
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8.6.1 Sparse Principal Components

A disadvantage of principal components is that every predictor receives a
nonzero weight for every component, so many coefficients are involved even
through the effective degrees of freedom with respect to the response model
are reduced. Sparse principal components672 uses a penalty function to reduce
the magnitude of the loadings variables receive in the components. If an L1
penalty is used (as with the lasso), some loadings are shrunk to zero, result-
ing in some simplicity. Sparse principal components combines some elements
of variable clustering, scoring of variables within clusters, and redundancy
analysis.

Filzmoser, Fritz, and Kalcher191 have written a nice R package pcaPP for
doing sparse PC analysis.a The following example uses the prostate data
again. To allow for nonlinear transformations and to score the ekg variable
in the prostate dataset down to a scalar, we use the transcan-transformed
predictors as inputs.

require(pcaPP )

s ← sPCAgrid (ptrans $transformed , k=10, method = ' sd ' ,
center =mean , scale =sd , scores =TRUE ,

maxiter =10)

plot (s, type = ' lines ' , main= ' ' , ylim =c(0,3)) # Figure 8.6

addscree (s)

s$loadings # These loadings are on the orig. transcan scale

Loadings :
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

sz 0.248 0.950
sg 0.620 0.522
ap 0.634 −0.305
sbp −0.707
dbp 0.707
age 1.000
wt 1.000
hg 1.000
ekg 1.000
pf 1.000
bm −0.391 0.852
hx 1.000

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
SS l oad ings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proport ion Var 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
Cumulative Var 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667

Comp.9 Comp.10
SS l oad ings 1.000 1.000
Proport ion Var 0.083 0.083
Cumulative Var 0.750 0.833

Only nonzero loadings are shown. The first sparse PC is the tumor cluster
used above, and the second is the blood pressure cluster. Let us see how well
incomplete sparse principal component regression predicts time until death.

a The spca package is a new sparse PC package that should also be considered.
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Fig. 8.6 Variance explained by individual sparse principal components (lines) along
with cumulative proportion of variance explained (text)

pcs ← s$scores # pick off sparse PCs

aic ← numeric (10)

for(i in 1:10) {

ps ← pcs[,1:i]

aic[i] ← AIC(cph(S ∼ ps))

} # Figure 8.7

plot (1:10, aic , xlab= ' Number of Components Used ' ,
ylab = ' AIC ' , type= ' l ' , ylim =c(3950 ,4000))

More components are required to optimize AIC than were seen in Figure 8.5,
but a model built from 6–8 sparse PCs performed as well as the other models.

8.7 Transformation Using Nonparametric Smoothers

The ACE nonparametric additive regression method of Breiman and Fried-
man68 transforms both the left-hand-side variable and all the right-hand-side
variables so as to optimize R2. ACE can be used to transform the predic-
tors using the R ace function in the acepack package, called by the transace

function in the Hmisc package. transace does not impute data but merely
does casewise deletion of missing values. Here transace is run after single im-
putation by transcan. binary is used to tell transace which variables not to
try to predict (because they need no transformation). Several predictors are
restricted to be monotonically transformed.
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Fig. 8.7 Performance of sparse principal components in Cox models

x ← with (imputed ,

cbind (sz , sg , ap , sbp , dbp , age , wt , hg , ekg , pf,

bm , hx))

monotonic ← c("sz","sg","ap","sbp","dbp","age","pf")

transace (x, monotonic , # Figure 8.8

categorical ="ekg", binary =c("bm","hx"))

R2 ach ieved in p red i c t i ng each va r i ab l e :

sz sg ap sbp dbp age wt
0.2265824 0.5762743 0.5717747 0.4823852 0.4580924 0.1514527 0.1732244

hg ekg pf bm hx
0.2001008 0.1110709 0.1778705 NA NA

Except for ekg, age, and for arbitrary sign reversals, the transformations in
Figure 8.8 determined using transace were similar to those in Figure 8.3. The
transcan transformation for ekg makes more sense.

8.8 Further Reading

1 Sauerbrei and Schumacher541 used the bootstrap to demonstrate the variability
of a standard variable selection procedure for the prostate cancer dataset.

2 Schemper and Heinze551 used logistic models to impute dichotomizations of the
predictors for this dataset.
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Fig. 8.8 Simultaneous transformation of all variables using ACE.

8.9 Problems

The Mayo Clinic conducted a randomized trial in primary biliary cirrhosis
(PBC) of the liver between January 1974 and May 1984, to compare D-
penicillamine with placebo. The drug was found to be ineffective [197, p.
2], and the trial was done before liver transplantation was common, so this
trial constitutes a natural history study for PBC. Followup continued through
July, 1986. For the 19 patients that did undergo transplant, followup time was
censored (status=0) at the day of transplant. 312 patients were randomized,
and another 106 patients were entered into a registry. The nonrandomized
patients have most of their laboratory values missing, except for bilirubin,
albumin, and prothrombin time. 28 randomized patients had both serum
cholesterol and triglycerides missing. The data, which consist of clinical, bio-
chemical, serologic, and histologic information, are listed in [197, pp. 359–
375]. The PBC data are discussed and analyzed in [197, pp. 2–7, 102–104,
153–162], [158], [7] (a tree-based analysis which on its p. 480 mentions some
possible lack of fit of the earlier analyses), and [361]. The data are stored in
the datasets web site so may be accessed using the Hmisc getHdata function
with argument pbc. Use only the data on randomized patients for all analyses.
For Problems 1–6, ignore followup time, status, and drug.
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1. Do an initial variable clustering based on ranks, using pairwise deletion of
missing data. Comment on the potential for one-dimensional summaries of
subsets of variables being adequate summaries of prognostic information.

2. cholesterol, triglycerides, platelets, and copper are missing on some pa-
tients. Impute them using a method you recommend. Use some or all of
the remaining predictors and possibly the outcome. Provide a correlation
coefficient describing the usefulness of each imputation model. Provide
the actual imputed values, specifying observation numbers. For all later
analyses, use imputed values for missing values.

3. Perform a scaling/transformation analysis to better measure how the pre-
dictors interrelate and to possibly pretransform some of them. Use transcan
or ACE. Repeat the variable clustering using the transformed scores and
Pearson correlation or using an oblique rotation principal component anal-
ysis. Determine if the correlation structure (or variance explained by the
first principal component) indicates whether it is possible to summarize
multiple variables into single scores.

4. Do a principal component analysis of all transformed variables simulta-
neously. Make a graph of the number of components versus the cumula-
tive proportion of explained variation. Repeat this for laboratory variables
alone.

5. Repeat the overall PCA using sparse principal components. Pay atten-
tion to how best to solve for sparse components, e.g., consider the lambda

parameter in sPCAgrid.
6. How well can variables (lab and otherwise) that are routinely collected

(on nonrandomized patients) capture the information (variation) of the
variables that are often missing? It would be helpful to explore the strength
of interrelationships by

a. correlating two PC1s obtained from untransformed variables,
b. correlating two PC1s obtained from transformed variables,
c. correlating the best linear combination of one set of variables with the

best linear combination of the other set, and
d. doing the same on transformed variables.

For this problem consider only complete cases, and transform the 5 non-
numeric categorical predictors to binary 0–1 variables.

7. Consider the patients having complete data who were randomized to
placebo. Consider only models that are linear in all the covariates.

a. Fit a survival model to predict time of death using the following covari-
ates: bili, albumin, stage, protime, age, alk.phos, sgot, chol, trig,

platelet, copper.
b. Perform an ordinary principal component analysis. Fit the survival

model using only the first 3 PCs. Compare the likelihood ratio χ2 and
AIC with that of the model using the original variables.
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c. Considering the PCs are fixed, use the bootstrap to estimate the 0.95
confidence interval of the inter-quartile-range age effect on the original
scale, and the same type of confidence interval for the coefficient of PC1.

d. Now accounting for uncertainty in the PCs, compute the same two
confidence intervals. Compare and interpret the two sets. Take into
account the fact that PCs are not unique to within a sign change.

R programming hints for this exercise are found on the course web site.



Chapter 9

Overview of Maximum Likelihood
Estimation

9.1 General Notions—Simple Cases

In ordinary least squares multiple regression, the objective in fitting a model
is to find the values of the unknown parameters that minimize the sum of
squared errors of prediction. When the response variable is non-normal, poly-
tomous, or not observed completely, one needs a more general objective func-
tion to optimize.

Maximum likelihood (ML) estimation is a general technique for estimat-
ing parameters and drawing statistical inferences in a variety of situations,
especially nonstandard ones. Before laying out the method in general, ML
estimation is illustrated with a standard situation, the one-sample binomial
problem. Here, independent binary responses are observed and one wishes to
draw inferences about an unknown parameter, the probability of an event in
a population.

Suppose that in a population of individuals, each individual has the same
probability P that an event occurs. We could also say that the event has
already been observed, so that P is the prevalence of some condition in the
population. For each individual, let Y = 1 denote the occurrence of the
event and Y = 0 denote nonoccurrence. Then Prob{Y = 1} = P for each
individual. Suppose that a random sample of size 3 from the population is
drawn and that the first individual had Y = 1, the second had Y = 0, and the
third had Y = 1. The respective probabilities of these outcomes are P , 1−P ,
and P . The joint probability of observing the independent events Y = 1, 0, 1
is P (1−P )P = P 2(1−P ). Now the value of P is unknown, but we can solve
for the value of P that makes the observed data (Y = 1, 0, 1) most likely
to have occurred. In this case, the value of P that maximizes P 2(1 − P ) is
P = 2/3. This value for P is the maximum likelihood estimate (MLE ) of the
population probability.

© Springer International Publishing Switzerland 2015
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Let us now study the situation of independent binary trials in general. Let
the sample size be n and the observed responses be Y1, Y2, . . . , Yn. The joint
probability of observing the data is given by

L =
n∏

i=1

P Yi(1− P )1−Yi . (9.1)

Now let s denote the sum of the Y s or the number of times that the event
occurred (Yi = 1), that is the number of “successes.” The number of non-
occurrences (“failures”) is n− s. The likelihood of the data can be simplified
to

L = P s(1− P )n−s. (9.2)

It is easier to work with the log likelihood function, which also has desirable
statistical properties. For the one-sample binary response problem, the log
likelihood is

logL = s log(P ) + (n− s) log(1− P ). (9.3)

The MLE of P is that value of P that maximizes L or logL. Since logL
is a smooth function of P , its maximum value can be found by finding the
point at which logL has a slope of 0. The slope or first derivative of logL,
with respect to P , is

U(P ) = ∂ logL/∂P = s/P − (n− s)/(1− P ). (9.4)

The first derivative of the log likelihood function with respect to the parame-
ter(s), here U(P ), is called the score function. Equating this function to zero
requires that s/P = (n− s)/(1− P ). Multiplying both sides of the equation
by P (1 − P ) yields s(1 − P ) = (n − s)P or that s = (n − s)P + sP = nP .
Thus the MLE of P is p = s/n.

Another important function is called the Fisher information about the
unknown parameters. The information function is the expected value of the
negative of the curvature in logL, which is the negative of the slope of the
slope as a function of the parameter, or the negative of the second derivative
of logL. Motivation for consideration of the Fisher information is as follows.
If the log likelihood function has a distinct peak, the sample provides infor-
mation that allows one to readily discriminate between a good parameter
estimate (the location of the obvious peak) and a bad one. In such a case the
MLE will have good precision or small variance. If on the other hand the like-
lihood function is relatively flat, almost any estimate will do and the chosen
estimate will have poor precision or large variance. The degree of peakedness
of a function at a given point is the speed with which the slope is changing at
that point, that is, the slope of the slope or second derivative of the function
at that point.
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Here, the information is

I(P ) = E{−∂2 logL/∂P 2}
= E{s/P 2 + (n− s)/(1− P )2} (9.5)

= nP/P 2 + n(1− P )/(1− P )2 = n/[P (1− P )].

We estimate the information by substituting the MLE of P into I(P ), yielding
I(p) = n/[p(1− p)].

Figures 9.1, 9.2, and 9.3 depict, respectively, logL, U(P ), and I(P ), all
as a function of P . Three combinations of n and s were used in each graph.
These combinations correspond to p = .5, .6, and .6, respectively.
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Fig. 9.1 log likelihood functions for three one-sample binomial problems

In each case it can be seen that the value of P that makes the data most
likely to have occurred (the value that maximizes L or logL) is p given
above. Also, the score function (slope of logL) is zero at P = p. Note that
the information function I(P ) is highest for P approaching 0 or 1 and is
lowest for P near .5, where there is maximum uncertainty about P . Note
also that while logL has the same shape for the s = 60 and s = 12 curves
in Figure 9.1, the range of logL is much greater for the larger sample size.
Figures 9.2 and 9.3 show that the larger sample size produces a sharper
likelihood. In other words, with larger n, one can zero in on the true value of
P with more precision.
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In this binary response one-sample example let us now turn to inference
about the parameter P . First, we turn to the estimation of the variance of the
MLE, p. An estimate of this variance is given by the inverse of the information
at P = p:
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V ar(p) = I(p)−1 = p(1− p)/n. (9.6)

Note that the variance is smallest when the information is greatest (p = 0
or 1).

The variance estimate forms a basis for confidence limits on the unknown
parameter. For large n, the MLE p is approximately normally distributed
with expected value (mean) P and variance P (1 − P )/n. Since p(1− p) is a
consistent estimate of P (1 − P )/n, it follows that p± z[p(1 − p)/n]1/2 is an
approximate 1− α confidence interval for P if z is the 1− α/2 critical value
of the standard normal distribution.

9.2 Hypothesis Tests

Now let us turn to hypothesis tests about the unknown population parameter
P — H0 : P = P0. There are three kinds of statistical tests that arise from
likelihood theory.

9.2.1 Likelihood Ratio Test

This test statistic is the ratio of the likelihood at the hypothesized parameter
values to the likelihood of the data at the maximum (i.e., at parameter values
= MLEs). It turns out that −2× the log of this likelihood ratio has desirable
statistical properties. The likelihood ratio test statistic is given by

LR = −2 log(L at H0/L at MLEs)

= −2(logL at H0)− [−2(logL at MLEs)]. (9.7)

The LR statistic, for large enough samples, has approximately a χ2 distribu-
tion with degrees of freedom equal to the number of parameters estimated, if
the null hypothesis is “simple,” that is, doesn’t involve any unknown param-
eters. Here LR has 1 d.f.

The value of logL at H0 is

logL(H0) = s log(P0) + (n− s) log(1 − P0). (9.8)

The maximum value of logL (at MLEs) is

logL(P = p) = s log(p) + (n− s) log(1− p). (9.9)
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For the hypothesis H0 : P = P0, the test statistic is

LR = −2{s log(P0/p) + (n− s) log[(1− P0)/(1− p)]}. (9.10)

Note that when p happens to equal P0, LR= 0. When p is far from P0, LR will
be large. Suppose that P0 = 1/2, so that H0 is P = 1/2. For n = 100, s = 50,
LR = 0. For n = 100, s = 60,

LR = −2{60 log(.5/.6) + 40 log(.5/.4)} = 4.03. (9.11)

For n = 20, s = 12,

LR = −2{12 log(.5/.6) + 8 log(.5/.4)} = .81 = 4.03/5. (9.12)

Therefore, even though the best estimate of P is the same for these two cases,
the test statistic is more impressive when the sample size is five times larger.

9.2.2 Wald Test

The Wald test statistic is a generalization of a t- or z-statistic. It is a function
of the difference in the MLE and its hypothesized value, normalized by an
estimate of the standard deviation of the MLE. Here the statistic is

W = [p− P0]
2/[p(1− p)/n]. (9.13)

For large enough n, W is distributed as χ2 with 1 d.f. For n = 100, s = 50,
W = 0. For the other samples, W is, respectively, 4.17 and 0.83 (note 0.83 =
4.17/5).

Many statistical packages treat
√
W as having a t distribution instead of

a normal distribution. As pointed out by Gould,228 there is no basis for this
outside of ordinary linear modelsa.

9.2.3 Score Test

If the MLE happens to equal the hypothesized value P0, P0 maximizes the
likelihood and so U(P0) = 0. Rao’s score statistic measures how far from zero
the score function is when evaluated at the null hypothesis. The score function

a In linear regression, a t distribution is used to penalize for the fact that the variance
of Y |X is estimated. In models such as the logistic model, there is no separate vari-
ance parameter to estimate. Gould has done simulations that show that the normal
distribution provides more accurate P -values than the t for binary logistic regression.
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(slope or first derivative of log L) is normalized by the information (curvature
or second derivative of − logL). The test statistic for our example is

S = U(P0)
2/I(P0), (9.14)

which formally does not involve the MLE, p. The statistic can be simplified
as follows.

U(P0) = s/P0 − (n− s)/(1− P0)

I(P0) = s/P 2
0 + (n− s)/(1− P0)

2 (9.15)

S = (s− nP0)
2/[nP0(1 − P0)] = n(p− P0)

2/[P0(1− P0)].

Note that the numerator of S involves s − nP0, the difference between the
observed number of successes and the number of successes expected underH0.

As with the other two test statistics, S = 0 for the first sample. For the
last two samples S is, respectively, 4 and .8 = 4/5. 1

9.2.4 Normal Distribution—One Sample

Suppose that a sample of size n is taken from a population for a random
variable Y that is known to be normally distributed with unknown mean
μ and variance σ2. Denote the observed values of the random variable by
Y1, Y2, . . . , Yn. Now unlike the binary response case (Y = 0 or 1), we cannot
use the notion of the probability that Y equals an observed value. This is
because Y is continuous and the probability that it will take on a given value
is zero. We substitute the density function for the probability. The density
at a point y is the limit as d approaches zero of

Prob{y < Y ≤ y + d}/d = [F (y + d)− F (y)]/d, (9.16)

where F (y) is the normal cumulative distribution function (for a mean of μ
and variance of σ2). The limit of the right-hand side of the above equation as
d approaches zero is f(y), the density function of a normal distribution with
mean μ and variance σ2. This density function is

f(y) = (2πσ2)−1/2 exp{−(y − μ)2/2σ2}. (9.17)

The likelihood of observing the observed sample values is the joint density
of the Y s. The log likelihood function here is a function of two unknowns, μ
and σ2.

logL = −.5n log(2πσ2)− .5

n∑
i=1

(Yi − μ)2/σ2. (9.18)
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It can be shown that the value of μ that maximizes logL is the value that min-
imizes the sum of squared deviations about μ, which is the sample mean Y .
The MLE of σ2 is

s2 =

n∑
i=1

(Yi − Y )2/n. (9.19)

Recall that the sample variance uses n−1 instead of n in the denominator. It
can be shown that the expected value of the MLE of σ2, s2, is [(n− 1)/n]σ2;
in other words, s2 is too small by a factor of (n − 1)/n on the average. The
sample variance is unbiased, but being unbiased does not necessarily make
it a better estimator. The MLE has greater precision (smaller mean squared
error) in many cases.

9.3 General Case

Suppose we need to estimate a vector of unknown parameters B = {B1, B2,
. . . , Bp} from a sample of size n based on observations Y1, . . . , Yn. Denote the
probability or density function of the random variable Y for the ith observa-
tion by fi(y;B). The likelihood for the ith observation is Li(B) = fi(Yi;B).
In the one-sample binary response case, recall that Li(B) = Li(P ) =
P Yi [1 − P ]1−Yi . The likelihood function, or joint likelihood of the sample,
is given by

L(B) =
n∏

i=1

fi(Yi;B). (9.20)

The log likelihood function is

logL(B) =

n∑
i=1

logLi(B). (9.21)

The MLE of B is that value of the vector B that maximizes logL(B) as
a function of B. In general, the solution for B requires iterative trial-and-
error methods as outlined later. Denote the MLE of B as b = {b1, . . . , bp}.
The score vector is the vector of first derivatives of logL(B) with respect to
B1, . . . , Bp:

U(B) = {∂/∂B1 logL(B), . . . , ∂/∂Bp logL(B)}
= (∂/∂B) logL(B). (9.22)

The Fisher information matrix is the p × p matrix whose elements are the
negative of the expectation of all second partial derivatives of logL(B):

I∗(B) = −{E[(∂2 logL(B)/∂Bj∂Bk)]}p×p

= −E{(∂2/∂B∂B′) logL(B)}. (9.23)
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The observed information matrix I(B) is I∗(B) without taking the expecta-
tion. In other words, observed values remain in the second derivatives:

I(B) = −(∂2/∂B∂B′) logL(B). (9.24)

This information matrix is often estimated from the sample using the es-
timated observed information I(b), by inserting b, the MLE of B, into the
formula for I(B).

Under suitable conditions, which are satisfied for most situations likely
to be encountered, the MLE b for large samples is an optimal estimator
(has as great a chance of being close to the true parameter as all other
types of estimators) and has an approximate multivariate normal distribution
with mean vector B and variance–covariance matrix I∗−1(B), where C−1

denotes the inverse of the matrix C. (C−1 is the matrix such that C−1C is
the identity matrix, a matrix with ones on the diagonal and zeros elsewhere.
If C is a 1 × 1 matrix, C−1 = 1/C.) A consistent estimator of the variance–
covariance matrix is given by the matrix V , obtained by inserting b for B in
I(B) : V = I−1(b) .

9.3.1 Global Test Statistics

Suppose we wish to test the null hypothesis H0 : B = B0. The likelihood
ratio test statistic is

LR = −2 log(L at H0/L at MLEs)

= −2[logL(B0)− logL(b)]. (9.25)

The corresponding Wald test statistic, using the estimated observed informa-
tion matrix, is

W = (b−B0)′I(b)(b −B0) = (b−B0)′V −1(b −B0). (9.26)

(A quadratic form a′V a is a matrix generalization of a2V .) Note that if the
number of estimated parameters is p = 1, W reduces to (b−B0)2/V , which
is the square of a z- or t-type statistic (estimate − hypothesized value divided
by estimated standard deviation of estimate).

The score statistic for H0 is

S = U ′(B0)I−1(B0)U(B0). (9.27)

Note that as before, S does not require solving for the MLE. For large samples,
LR, W , and S have a χ2 distribution with p d.f. under suitable conditions.
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9.3.2 Testing a Subset of the Parameters

Let B = {B1, B2} and suppose that we wish to test H0 : B1 = B0
1 . We

are treating B2 as a nuisance parameter. For example, we may want to test
whether blood pressure and cholesterol are risk factors after adjusting for
confounders age and sex. In that case B1 is the pair of regression coefficients
for blood pressure and cholesterol and B2 is the pair of coefficients for age
and sex. B2 must be estimated to allow adjustment for age and sex, although
B2 is a nuisance parameter and is not of primary interest.

Let the number of parameters of interest be k so that B1 is a vector of
length k. Let the number of “nuisance” or “adjustment” parameters be q, the
length of B2 (note k + q = p).

Let b∗2 be the MLE of B2 under the restriction that B1 = B0
1 . Then the

likelihood ratio statistic is

LR = −2[logL at H0 − logL at MLE]. (9.28)

Now logL atH0 is more complex than before becauseH0 involves an unknown
nuisance parameter B2 that must be estimated. logL at H0 is the maximum
of the likelihood function for any value of B2 but subject to the condition
that B1 = B0

1 . Thus

LR = −2[logL(B0
1 , b

∗
2)− logL(b)], (9.29)

where as before b is the overall MLE of B. Note that LR requires maximiz-
ing two log likelihood functions. The first component of LR is a restricted
maximum likelihood and the second component is the overall or unrestricted
maximum.

LR is often computed by examining successively more complex models in
a stepwise fashion and calculating the increment in likelihood ratio χ2 in the
overall model. The LR χ2 for testing H0 : B2 = 0 when B1 is not in the
model is

LR(H0 : B2 = 0|B1 = 0) = −2[logL(0, 0)− logL(0, b∗2)]. (9.30)

Here we are specifying that B1 is not in the model by setting B1 = B0
1 = 0,

and we are testing H0 : B2 = 0. (We are also ignoring nuisance parameters
such as an intercept term in the test for B2 = 0.)

The LR χ2 for testing H0 : B1 = B2 = 0 is given by

LR(H0 : B1 = B2 = 0) = −2[logL(0, 0)− logL(b)]. (9.31)

Subtracting LR χ2 for the smaller model from that of the larger model yields

−2[logL(0, 0)− logL(b)]−−2[logL(0, 0)− logL(0, b2∗)]
= −2[logL(0, b∗2)− logL(b)], (9.32)

which is the same as above (letting B0
1 = 0).
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Table 9.1 Example tests

Variables (Parameters) LR χ2 Number of
in Model Parameters

Intercept, age 1000 2
Intercept, age, age2 1010 3
Intercept, age, age2, sex 1013 4

For example, suppose successively larger models yield the LR χ2s in
Table 9.1. The LR χ2 for testing for linearity in age (not adjusting for sex)
against quadratic alternatives is 1010 − 1000 = 10 with 1 d.f. The LR χ2

for testing the added information provided by sex, adjusting for a quadratic
effect of age, is 1013−1010 = 3 with 1 d.f. The LR χ2 for testing the joint im-
portance of sex and the nonlinear (quadratic) effect of age is 1013−1000 = 13
with 2 d.f.

To derive the Wald statistic for testing H0 : B1 = B0
1 with B2 being a

nuisance parameter, let the MLE b be partitioned into b = {b1, b2}. We can
likewise partition the estimated variance–covariance matrix V into

V =

[
V11 V12

V ′
12 V22

]
. (9.33)

The Wald statistic is

W = (b1 −B0
1)

′V −1
11 (b1 − B0

1), (9.34)

which when k = 1 reduces to (estimate − hypothesized value)2/ estimated
variance, with the estimates adjusted for the parameters in B2.

The score statistic for testing H0 : B1 = B0
1 does not require solving for

the full set of unknown parameters. Only the MLEs of B2 must be computed,
under the restriction that B1 = B0

1 . This restricted MLE is b∗2 from above.
Let U(B0

1 , b
∗
2) denote the vector of first derivatives of logL with respect to

all parameters in B, evaluated at the hypothesized parameter values B0
1 for

the first k parameters and at the restricted MLE b∗2 for the last q parameters.
(Since the last q estimates are MLEs, the last q elements of U are zero, so
the formulas that follow simplify.) Let I(B0

1 , b
∗
2) be the observed information

matrix evaluated at the same values of B as is U . The score statistic for
testing H0 : B1 = B0

1 is

S = U ′(B0
1 , b

∗
2)I

−1(B0
1 , b

∗
2)U(B0

1 , b
∗
2). (9.35)

Under suitable conditions, the distribution of LR,W , and S can be ade-
quately approximated by a χ2 distribution with k d.f. 2
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9.3.3 Tests Based on Contrasts

Wald tests are also done by setting up a general linear contrast. H0 : CB = 0
is tested by a Wald statistic of the form

W = (Cb)′(CV C′)−1(Cb), (9.36)

where C is a contrast matrix that “picks off” the proper elements of B. The
contrasts can be much more general by allowing elements of C to be other
than zero and one. For the normal linear model, W is converted to an F -
statistic by dividing by the rank r of C (normally the number of rows in
C), yielding a statistic with an F -distribution with r numerator degrees of
freedom.

Many interesting contrasts are tested by forming differences in predicted
values. By forming more contrasts than are really needed, one can develop
a surprisingly flexible approach to hypothesis testing using predicted values.
This has the major advantage of not requiring the analyst to account for how
the predictors are coded. Suppose that one wanted to assess the difference
in two vectors of predicted values, X1b − X2b = (X1 − X2)b = Δb to test
H0 : ΔB = 0, where Δ = X1 −X2. The covariance matrix for Δb is given by

var(Δb) = ΔVΔ′. (9.37)

Let r be the rank of var(Δb), i.e., the number of non-linearly-dependent
(non-redundant) differences of predicted values of Δ. The value of r and the
rows of Δ that are not redundant may easily be determined using the QR
decomposition as done by the R function qrb. The χ2 statistic with r degrees
of freedom (or F -statistic upon dividing the statistic by r) may be obtained by
computing Δ∗V ∗Δ∗′ where Δ∗ is the subset of elements of Δ corresponding
to non-redundant contrasts and V ∗ is the corresponding sub-matrix of V .

The “difference in predictions” approach can be used to compare means
in a 30 year old male with a 40 year old femalec. But the true utility of
the approach is most obvious when the contrast involves multiple nonlinear
terms for a single predictor, e.g., a spline function. To test for a difference
in two curves, one can compare predictions at one predictor value against
predictions at a series of values with at least one value that pertains to each
basis function. Points can be placed between every pair of knots and beyond
the outer knots, or just obtain predictions at 100 equally spaced X-values.

b For example, in a 3-treatment comparison one could examine contrasts between
treatments A and B, A and C, and B and C by obtaining predicted values for those
treatments, even though only two differences are required.
c The rms command could be contrast(fit, list(sex=’male’,age=30),

list(sex=’female’,age=40)) where all other predictors are set to medians or
modes.
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Suppose that there are three treatment groups (A, B, C) interacting with a
cubic spline function of X . If one wants to test the multiple degree of freedom
hypothesis that the profile for X is the same for treatment A and B vs. the
alternative hypothesis that there is a difference between A and B for at least
one value ofX , one can compare predicted values at treatment A and a vector
of X values against predicted values at treatment B and the same vector of
X values. If the X relationship is linear, any two X values will suffice, and
if X is quadratic, any three points will suffice. It would be difficult to test
complex hypotheses involving only 2 of 3 treatments using other methods.

The contrast function in rms can estimate a wide variety of contrasts and
make joint tests involving them, automatically computing the number of non-
linearly-dependent contrasts as the test’s degrees of freedom. See its help file
for several examples.

9.3.4 Which Test Statistics to Use When

At this point, one may ask why three types of test statistics are needed. The
answer lies in the statistical properties of the three tests as well as in com-
putational expense in different situations. From the standpoint of statistical
properties, LR is the best statistic, followed by S and W . The major sta-
tistical problem with W is that it is sensitive to problems in the estimated
variance–covariance matrix in the full model. For some models, most notably
the logistic regression model,278 the variance–covariance estimates can be too
large as the effects in the model become very strong, resulting in values of
W that are too small (or significance levels that are too large). W is also
sensitive to the way the parameter appears in the model. For example, a test
of H0 : log odds ratio = 0 will yield a different value of W than will H0 :
odds ratio = 1.

Relative computational efficiency of the three types of tests is also an issue.
Computation of LR and W requires estimating all p unknown parameters,
and in addition LR requires re-estimating the last q parameters under that
restriction that the first k parameters = B0

1 . Therefore, when one is contem-
plating whether a set of parameters should be added to a model, the score
test is the easiest test to carry out. For example, if one were interested in
testing all two-way interactions among 4 predictors, the score test statistic
for H0 : “no interactions present” could be computed without estimating the
4×3/2 = 6 interaction effects. S would also be appealing for testing linearity
of effects in a model—the nonlinear spline terms could be tested for signifi-
cance after adjusting for the linear effects (with estimation of only the linear
effects). Only parameters for linear effects must be estimated to compute
S, resulting in fewer numerical problems such as lack of convergence of the
Newton–Raphson algorithm.



194 9 Overview of Maximum Likelihood Estimation

Table 9.2 Choice of test statistics

Type of Test Recommended Test Statistic

Global association LR (S for large no. parameters)
Partial association W (LR or S if problem with W)
Lack of fit, 1 d.f. W or S
Lack of fit, > 1 d.f. S
Inclusion of additional predictors S

The Wald tests are very easy to make after all the parameters in a model
have been estimated. Wald tests are thus appealing in a multiple regression
setup when one wants to test whether a given predictor or set of predic-
tors is “significant.” A score test would require re-estimating the regression
coefficients under the restriction that the parameters of interest equal zero.

Likelihood ratio tests are used often for testing the global hypothesis that
no effects are significant, as the log likelihood evaluated at the MLEs is al-
ready available from fitting the model and the log likelihood evaluated at
a “null model” (e.g., a model containing only an intercept) is often easy to
compute. Likelihood ratio tests should also be used when the validity of a
Wald test is in question as in the example cited above.

Table 9.2 summarizes recommendations for choice of test statistics for
various situations.

9.3.5 Example: Binomial—Comparing Two
Proportions

Suppose that a binary random variable Y1 represents responses for population
1 and Y2 represents responses for population 2. Let Pi = Prob{Yi = 1}
and assume that a random sample has been drawn from each population
with respective sample sizes n1 and n2. The sample values are denoted by
Yi1, . . . , Yini , i = 1 or 2. Let

s1 =

n1∑
j=1

Y1j s2 =

n2∑
j=1

Y2j , (9.38)

the respective observed number of “successes” in the two samples. Let us test
the null hypothesis H0 : P1 = P2 based on the two samples.

The likelihood function is

L =

2∏
i=1

ni∏
j=1

P
Yij

i (1 − Pi)
1−Yij
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=

2∏
i=1

P si
i (1− Pi)

ni−si (9.39)

logL =

2∑
i=1

{si log(Pi) + (ni − si) log(1 − Pi)}. (9.40)

Under H0, P1 = P2 = P , so

logL(H0) = s log(P ) + (n− s) log(1 − P ), (9.41)

where s = s1 + s2, n = n1 + n2. The (restricted) MLE of this common P is
p = s/n and logL at this value is s log(p) + (n− s) log(1− p).

Since the original unrestricted log likelihood function contains two terms
with separate parameters, the two parts may be maximized separately giving
MLEs

p1 = s1/n1 and p2 = s2/n2. (9.42)

logL evaluated at these (unrestricted) MLEs is

logL = s1 log(p1) + (n1 − s1) log(1− p1)

+ s2 log(p2) + (n2 − s2) log(1− p2). (9.43)

The likelihood ratio statistic for testing H0 : P1 = P2 is then

LR = −2{s log(p) + (n− s) log(1 − p)

− [s1 log(p1) + (n1 − s1) log(1− p1) (9.44)

+ s2 log(p2) + (n2 − s2) log(1− p2)]}.

This statistic for large enough n1 and n2 has a χ2 distribution with 1 d.f.
since the null hypothesis involves the estimation of one fewer parameter than
does the unrestricted case. This LR statistic is the likelihood ratio χ2 statistic
for a 2 × 2 contingency table. It can be shown that the corresponding score
statistic is equivalent to the Pearson χ2 statistic. The better LR statistic can
be used routinely over the Pearson χ2 for testing hypotheses in contingency
tables.

9.4 Iterative ML Estimation

In most cases, one cannot explicitly solve for MLEs but must use trial-and-
error numerical methods to solve for parameter values B that maximize
logL(B) or yield a score vector U(B) = 0. One of the fastest and most ap-
plicable methods for maximizing a function is the Newton–Raphson method,
which is based on approximating U(B) by a linear function of B in a small
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region. A starting estimate b0 of the MLE b is made. The linear approximation
(a first-order Taylor series approximation)

U(b) = U(b0)− I(b0)(b− b0) (9.45)

is equated to 0 and solved by b yielding

b = b0 + I−1(b0)U(b0). (9.46)

The process is continued in like fashion. At the ith step the next estimate is
obtained from the previous estimate using the formula

bi+1 = bi + I−1(bi)U(bi). (9.47)

If the log likelihood actually worsened at bi+1, “step halving” is used; bi+1

is replaced with (bi + bi+1)/2. Further step halving is done if the log like-
lihood still is worse than the log likelihood at bi, after which the original
iterative strategy is resumed. The Newton–Raphson iterations continue until
the −2 log likelihood changes by only a small amount over the previous iter-
ation (say .025). The reasoning behind this stopping rule is that estimates of
B that change the −2 log likelihood by less than this amount do not affect
statistical inference since −2 log likelihood is on the χ2 scale.3

9.5 Robust Estimation of the Covariance Matrix

The estimator for the covariance matrix of b found in Section 9.3 assumes that
the model is correctly specified in terms of distribution, regression assump-
tions, and independence assumptions. The model may be incorrect in a va-
riety of ways such as non-independence (e.g., repeated measurements within
subjects), lack of fit (e.g., omitted covariable, incorrect covariable transfor-
mation, omitted interaction), and distributional (e.g., Y has a Γ distribution
instead of a normal distribution). Variances and covariances, and hence con-
fidence intervals and Wald tests, will be incorrect when these assumptions
are violated.

For the case in which the observations are independent and identically
distributed but other assumptions are possibly violated, Huber312 provided
a covariance matrix estimator that is consistent. His “sandwich” estimator is
given by

H = I−1(b)[

n∑
i=1

UiU
′
i ]I

−1(b), (9.48)

where I(b) is the observed information matrix (Equation 9.24) and Ui is the
vector of derivatives, with respect to all parameters, of the log likelihood
component for the ith observation (assuming the log likelihood can be par-
titioned into per-observation contributions). For the normal multiple linear
regression case, H was derived by White:659
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(X ′X)−1[

n∑
i=1

(Yi −Xib)
2XiX

′
i](X

′X)−1, (9.49)

where X is the design matrix (including an intercept if appropriate) and Xi

is the vector of predictors (including an intercept) for the ith observation.
This covariance estimator allows for any pattern of variances of Y |X across
observations. Note that even though H improves the bias of the covariance 4

matrix of b, it may actually have larger mean squared error than the ordinary
estimate in some cases due to increased variance.164, 529

When observations are dependent within clusters, and the number of ob-
servations within clusters is very small in comparison to the total sample
size, a simple adjustment to Equation 9.48 can be used to derive appro-
priate covariance matrix estimates (see Lin [407, p. 2237], Rogers,529 and
Lee et al. [393, Eq. 5.1, p. 246]). One merely accumulates sums of elements of
U within clusters before computing cross-product terms:

Hc = I−1(b)[

c∑
i=1

{(
ni∑
j=1

Uij)(

ni∑
j=1

Uij)
′}]I−1(b), (9.50)

where c is the number of clusters, ni is the number of observations in the ith
cluster, Uij is the contribution of the jth observation within the ith cluster to
the score vector, and I(b) is computed as before ignoring clusters. For a model
such as the Cox model which has no per-observation score contributions,
special score residuals393, 407, 410, 605 are used for U .

Bootstrapping can also be used to derive robust covariance matrix esti-
mates177, 178 in many cases, especially if covariances of b that are not condi-
tional onX are appropriate. One merely generates approximately 200 samples
with replacement from the original dataset, computes 200 sets of parameter
estimates, and computes the sample covariance matrix of these parameter es-
timates. Sampling with replacement from entire clusters can be used to derive
variance estimates in the presence of intracluster correlation.188 Bootstrap 5

estimates of the conditional variance–covariance matrix given X are harder
to obtain and depend on the model assumptions being satisfied. The simpler
unconditional estimates may be more appropriate for many non-experimental
studies where one may desire to “penalize” for the X being random variables.
It is interesting that these unconditional estimates may be very difficult to ob-
tain parametrically, since a multivariate distribution may need to be assumed
for X .

The previous discussion addresses the use of a “working independence
model”with clustered data. Here one estimates regression coefficients assum-
ing independence of all records (observations). Then a sandwich or bootstrap
method is used to increase standard errors to reflect some redundancy in the
correlated observations. The parameter estimates will often be consistent es-
timates of the true parameter values, but they may be inefficient for certain
cluster or correlation structures. 6
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The rms package’s robcov function computes the Huber robust covariance
matrix estimator, and the bootcov function computes the bootstrap covariance
estimator. Both of these functions allow for clustering.

9.6 Wald, Score, and Likelihood-Based Confidence
Intervals

A 1 − α confidence interval for a parameter βi is the set of all values β0
i

that if hypothesized would be accepted in a test of H0 : βi = β0
i at the

α level. What test should form the basis for the confidence interval? The
Wald test is most frequently used because of its simplicity. A two-sided 1−α
confidence interval is bi±z1−α/2s, where z is the critical value from the normal
distribution and s is the estimated standard error of the parameter estimate
bi.

d The problem with s discussed in Section 9.3.4 points out that Wald
statistics may not always be a good basis. Wald-based confidence intervals are
also symmetric even though the coverage probability may not be.160 Score-
and LR-based confidence limits have definite advantages. When Wald-type7

confidence intervals are appropriate, the analyst may consider insertion of
robust covariance estimates (Section 9.5) into the confidence interval formulas
(note that adjustments for heterogeneity and correlated observations are not
available for score and LR statistics).

Wald– (asymptotic normality) based statistics are convenient for deriving
confidence intervals for linear or more complex combinations of the model’s
parameters. As in Equation 9.36, the variance–covariance matrix of Cb, where
C is an appropriate matrix and b is the vector of parameter estimates, is
CV C′, where V is the variance matrix of b. In regression models we commonly
substitute a vector of predictors (and optional intercept) for C to obtain the
variance of the linear predictor Xb as

var(Xb) = XVX ′. (9.51)

See Section 9.3.3 for related information.

d This is the basis for confidence limits computed by the R rms package’s Predict,
summary, and contrast functions. When the robcov function has been used to replace
the information-matrix-based covariance matrix with a Huber robust covariance esti-
mate with an optional cluster sampling correction, the functions are using a “robust”
Wald statistic basis. When the bootcov function has been used to replace the model
fit’s covariance matrix with a bootstrap unconditional covariance matrix estimate,
the two functions are computing confidence limits based on a normal distribution but
using more nonparametric covariance estimates.
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9.6.1 Simultaneous Wald Confidence Regions

The confidence intervals just discussed are pointwise confidence intervals.
For OLS regression there are methods for computing confidence intervals
with exact simultaneous confidence coverage for multiple estimates374. There
are approximate methods for simultaneous confidence limits for all models
for which the vector of estimates b is approximately multivariately normally
distributed. The method of Hothorn et al.307 is quite general; in their R

package multcomp’s glht function, the user can specify any contrast matrix over
which the individual confidence limits will be simultaneous. A special case
of a contrast matrix is the design matrix X itself, resulting in simultaneous
confidence bands for any number of predicted values. An example is shown
in Figure 9.5. See Section 9.3.3 for a good use for simultaneous contrasts.

9.7 Bootstrap Confidence Regions

A more nonparametric method for computing confidence intervals for func-
tions of the vector of parameters B can be based on bootstrap percentile
confidence limits. For each sample with replacement from the original dataset,
one computes the MLE of B, b, and then the quantity of interest g(b). Then
the gs are sorted and the desired quantiles are computed. At least 1000 boot-
strap samples will be needed for accurate assessment of outer confidence
limits. This method is suitable for obtaining pointwise confidence bands for 8

a nonlinear regression function, say, the relationship between age and the log
odds of disease. At each of 100 age values the predicted logits are computed
for each bootstrap sample. Then separately for each age point the 0.025 and
0.975 quantiles of 1000 estimates of the logit are computed to derive a 0.95
confidence band. Other more complex bootstrap schemes will achieve some-
what greater accuracy of confidence interval coverage,178 and as described
in Section 9.5 one can use variations on the basic bootstrap in which the
predictors are considered fixed and/or cluster sampling is taken into account.
The R function bootcov in the rms package bootstraps model fits to obtain
unconditional (with respect to predictors) bootstrap distributions with or
without cluster sampling. bootcov stores the matrix of bootstrap regression
coefficients so that the bootstrapped quantities of interest can be computed
in one sweep of the coefficient matrix once bootstrapping is completed. 9

For many regression models. the rms package’s Predict, summary, and
contrast functions make it easy to compute pointwise bootstrap confidence
intervals in a variety of contexts. As an example, consider 200 simulated
x values from a log-normal distribution and simulate binary y from a true
population binary logistic model given by
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Prob(Y = 1|X = x) =
1

1 + exp[−(1 + x/2)]
. (9.52)

Not knowing the true model, a quadratic logistic model is fitted. The R code
needed to generate the data and fit the model is given below.

require(rms)

n ← 200

set.seed (15)

x1 ← rnorm (n)

logit ← x1/2

y ← ifelse (runif (n) ≤ plogis (logit ), 1, 0)

dd ← datadist (x1); options(datadist = ' dd ' )
f ← lrm(y ∼ pol(x1 ,2), x=TRUE , y=TRUE )

print (f, latex =TRUE )

Logistic Regression Model

lrm(formula = y ~ pol(x1, 2), x = TRUE, y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 200 LR χ2 16.37 R2 0.105 C 0.642
0 97 d.f. 2 g 0.680 Dxy 0.285
1 103 Pr(> χ2) 0.0003 gr 1.973 γ 0.286

max |∂ logL
∂β | 3×10−9 gp 0.156 τa 0.143

Brier 0.231

Coef S.E. Wald Z Pr(> |Z|)
Intercept -0.0842 0.1823 -0.46 0.6441
x1 0.5902 0.1580 3.74 0.0002
x12 0.1557 0.1136 1.37 0.1708

latex (anova (f), file = ' ' , table.env =FALSE )

χ2 d.f. P

x1 13.99 2 0.0009
Nonlinear 1.88 1 0.1708

TOTAL 13.99 2 0.0009

The bootcov function is used to draw 1000 resamples to obtain bootstrap
estimates of the covariance matrix of the regression coefficients as well as
to save the 1000 × 3 matrix of regression coefficients. Then, because indi-
vidual regression coefficients for x do not tell us much, we summarize the



9.7 Bootstrap Confidence Regions 201

x-effect by computing the effect (on the logit scale) of increasing x from 1
to 5. We first compute bootstrap nonparametric percentile confidence inter-
vals the long way. The 1000 bootstrap estimates of the log odds ratio are
computed easily using a single matrix multiplication with the difference in
predictions approach, multiplying the difference in two design matrices, and
we obtain the bootstrap estimate of the standard error of the log odds ratio
by computing the sample standard deviation of the 1000 valuese. Bootstrap
percentile confidence limits are just sample quantiles from the bootstrapped
log odds ratios.

# Get 2-row design matrix for obtaining predicted values

# for x = 1 and 5

X ← cbind (Intercept =1,

predict(f, data.frame (x1=c(1,5)), type = ' x ' ))
Xdif ← X[2,, drop =FALSE ] - X[1,,drop =FALSE ]

Xdif

Intercept pol(x1, 2)x1 pol(x1 , 2)x1∧2
2 0 4 24

b ← bootcov(f, B=1000)

boot.log.odds.ratio ← b$boot.Coef %*% t(Xdif )

sd(boot.log.odds.ratio )

[1] 2.752103

# This is the same as from summary(b, x=c(1 ,5)) as summary

# uses the bootstrap covariance matrix

summary(b, x1=c(1,5))[1, ' S.E. ' ]

[1] 2.752103

# Compare this s.d. with one from information matrix

summary(f, x1=c(1,5))[1, ' S.E. ' ]

[1] 2.988373

# Compute percentiles of bootstrap odds ratio

exp(quantile (boot.log.odds.ratio , c(.025 , .975 )))

2.5% 97.5%
2.795032 e+00 2.067146 e+05

# Automatic :

summary(b, x1=c(1 ,5))[ ' Odds Ratio ' ,]

e As indicated below, this standard deviation can also be obtained by using the
summary function on the object returned by bootcov, as bootcov returns a fit object
like one from lrm except with the bootstrap covariance matrix substituted for the
information-based one.



202 9 Overview of Maximum Likelihood Estimation

Low High Diff. Effect S.E.
1.000000 e+00 5.000000 e+00 4.000000 e+00 4.443932 e+02 NA

Lower 0.95 Upper 0.95 Type
2.795032 e+00 2.067146 e+05 2.000000 e+00

print (contrast (b, list (x1=5), list (x1=1), fun=exp))

Contrast S.E. Lower Upper Z Pr(>|z|)
11 6.09671 2.752103 1.027843 12.23909 2.22 0.0267

Confidence intervals are 0.95 bootstrap nonparametric percentile intervals

# Figure 9.4

hist (boot.log.odds.ratio , nclass =100, xlab = ' log(OR) ' ,
main = ' ' )
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Fig. 9.4 Distribution of 1000 bootstrap x=1:5 log odds ratios

Figure 9.4 shows the distribution of log odds ratios.
Now consider confidence bands for the true log odds that y = 1, across

a sequence of x values. The Predict function automatically calculates point-
by-point bootstrap percentiles, basic bootstrap, or BCa203 confidence limits
when the fit has passed through bootcov. Simultaneous Wald-based confi-
dence intervals307 and Wald intervals substituting the bootstrap covariance
matrix estimator are added to the plot when Predict calls the multcomp pack-
age (Figure 9.5).

x1s ← seq(0, 5, length =100)

pwald ← Predict(f, x1=x1s)

psand ← Predict(robcov (f), x1=x1s)

pbootcov ← Predict(b, x1=x1s , usebootcoef =FALSE )

pbootnp ← Predict(b, x1=x1s)

pbootbca ← Predict(b, x1=x1s , boot.type = ' bca ' )
pbootbas ← Predict(b, x1=x1s , boot.type = ' basic ' )
psimult ← Predict(b, x1=x1s , conf.type = ' simultaneous ' )
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z ← rbind ( ' Boot percentile ' = pbootnp ,

' Robust sandwich ' = psand ,

' Boot BCa ' = pbootbca ,

' Boot covariance +Wald ' = pbootcov ,

Wald = pwald ,

' Boot basic ' = pbootbas ,

Simultaneous = psimult)

z$class ← ifelse (z$.set. %in% c( ' Boot percentile ' , ' Boot bca ' ,
' Boot basic ' ), ' Other ' , ' Wald ' )

ggplot (z, groups =c( ' .set. ' , ' class ' ),
conf = ' line ' , ylim=c(-1 , 9), legend.label =FALSE )

See Problems at chapter’s end for a worrisome investigation of bootstrap con-
fidence interval coverage using simulation. It appears that when the model’s
log odds distribution is not symmetric and includes very high or very low
probabilities, neither the bootstrap percentile nor the bootstrap BCa inter-
vals have good coverage, while the basic bootstrap and ordinary Wald in-
tervals are fairly accuratef. It is difficult in general to know when to trust
the bootstrap for logistic and perhaps other models when computing confi-
dence intervals, and the simulation problem suggests that the basic bootstrap
should be used more frequently. Similarly, the distribution of bootstrap effect
estimates can be suspect. Asymmetry in this distribution does not imply that
the true sampling distribution is asymmetric or that the percentile intervals
are preferred.

9.8 Further Use of the Log Likelihood

9.8.1 Rating Two Models, Penalizing for Complexity

Suppose that from a single sample two competing models were developed. Let
the respective −2 log likelihoods for these models be denoted by L1 and L2,
and let p1 and p2 denote the number of parameters estimated in each model.
Suppose that L1 < L2. It may be tempting to rate model one as the “best”
fitting or “best” predicting model. That model may provide a better fit for
the data at hand, but if it required many more parameters to be estimated,
it may not be better “for the money.” If both models were applied to a new
sample, model one’s overfitting of the original dataset may actually result in
a worse fit on the new dataset.

f Limited simulations using the conditional bootstrap and Firth’s penalized likeli-
hood281 did not show significant improvement in confidence interval coverage.
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Fig. 9.5 Predicted log odds and confidence bands for seven types of confidence in-
tervals. Seven categories are ordered top to bottom corresponding to order of lower
confidence bands at x1=5. Dotted lines are for Wald–type methods that yield sym-
metric confidence intervals and assume normality of point estimators.

Akaike’s information criterion (AIC33, 359, 633) provides a method for pe-
nalizing the log likelihood achieved by a given model for its complexity to
obtain a more unbiased assessment of the model’s worth. The penalty is
to subtract the number of parameters estimated from the log likelihood, or
equivalently to add twice the number of parameters to the −2 log likelihood.
The penalized log likelihood is analogous to Mallows’ Cp in ordinary multiple
regression. AIC would choose the model by comparing L1 + 2p1 to L2 + 2p2
and picking the model with the lower value. We often use AIC in “adjusted10

χ2” form:

AIC = LR χ2 − 2p. (9.53)

Breiman [66, Section 1.3] and Chatfield [100, Section 4] discuss the fallacy of
AIC and Cp for selecting from a series of non-prespecified models.11

9.8.2 Testing Whether One Model Is Better
than Another

One way to test whether one model (A) is better than another (B) is to
embed both models in a more general model (A + B). Then a LR χ2 test
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can be done to test whether A is better than B by changing the hypothesis
to test whether A adds predictive information to B (H0 : A + B > B) and
whether B adds information to A (H0 : A+B > A). The approach of testing
A > B via testing A+B > B and A+B > A is especially useful for selecting
from competing predictors such as a multivariable model and a subjective
assessor.131, 264, 395, 669

Note that LR χ2 for H0 : A + B > B minus LR χ2 for H0 : A + B > A
equals LR χ2 for H0 : A has no predictive information minus LR χ2 for
H0 : B has no predictive information,665 the difference in LR χ2 for testing
each model (set of variables) separately. This gives further support to the use
of two separately computed Akaike’s information criteria for rating the two
sets of variables. 12

See Section 9.8.4 for an example.

9.8.3 Unitless Index of Predictive Ability

The global likelihood ratio test for regression is useful for determining whether
any predictor is associated with the response. If the sample is large enough,
even weak associations can be “statistically significant.” Even though a like-
lihood ratio test does not shed light on a model’s predictive strength, the log
likelihood (L.L.) can still be useful here. Consider the following L.L.s:

Best (lowest) possible −2 L.L.:
L∗ = −2 L.L. for a hypothetical model that perfectly predicts the outcome.

−2 L.L. achieved:
L = −2 L.L. for the fitted model.

Worst −2 L.L.:
L0 = −2 L.L. for a model that has no predictive information.

The last −2 L.L., for a “no information”model, is the −2 L.L. under the null
hypothesis that all regression coefficients except for intercepts are zero. A“no
information”model often contains only an intercept and some distributional
parameters (a variance, for example). 13

The quantity L0 − L is LR, the log likelihood ratio statistic for testing
the global null hypothesis that no predictors are related to the response. It
is also the −2 log likelihood “explained” by the model. The best (lowest) −2
L.L. is L∗, so the amount of L.L. that is capable of being explained by the
model is L0−L∗. The fraction of −2 L.L. explained that was capable of being
explained is

(L0 − L)/(L0 − L∗) = LR/(L0 − L∗). (9.54)
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The fraction of log likelihood explained is analogous to R2 in an ordinary
linear model, although Korn and Simon365, 366 provide a much more precise
notion.

Akaike’s information criterion can be used to penalize this measure of
association for the number of parameters estimated (p, say) to transform
this unitless measure of association into a quantity that is analogous to the
adjusted R2 or Mallows’ Cp in ordinary linear regression. We let R denote
the square root of such a penalized fraction of log likelihood explained. R is
defined by

R2 = (LR− 2p)/(L0 − L∗). (9.55)

The R index can be used to assess how well the model compares with a
“perfect” model, as well as to judge whether a more complex model has pre-
dictive strength that justifies its additional parameters. Had p been used in
Equation 9.55 rather than 2p, R2 is negative if the log likelihood explained
is less than what one would expect by chance. R will be the square root of
1 − 2p/(L0 − L∗) if the model perfectly predicts the response. This upper
limit will be near one if the sample size is large.

PartialR indexes can also be defined by substituting the −2 L.L. explained
for a given factor in place of that for the entire model, LR. The “penalty
factor” p becomes one. This index Rpartial is defined by

R2
partial = (LRpartial − 2)/(L0 − L∗), (9.56)

which is the (penalized) fraction of −2 log likelihood explained by the pre-
dictor. Here LRpartial is the log likelihood ratio statistic for testing whether
the predictor is associated with the response, after adjustment for the other
predictors. Since such likelihood ratio statistics are tedious to compute, the
1 d.f. Wald χ2 can be substituted for the LR statistic (keeping in mind that
difficulties with the Wald statistic can arise).

Liu and Dyer424 and Cox and Wermuth136 point out difficulties with the
R2 measure for binary logistic models. Cox and Snell135 and Magee432 used
other analogies to derive other R2 measures that may have better properties.
For a sample of size n and a Wald statistic for testing overall association,
they defined

R2
W =

W

n+W

R2
LR = 1− exp(−LR/n) (9.57)

= 1− λ2/n,

where λ is the null model likelihood divided by the fitted model likelihood. In
the case of ordinary least squares with normality both of the above indexes
are equal to the traditional R2. R2

LR is equivalent to Maddala’s index [431,
Eq. 2.44]. Cragg and Uhler137 and Nagelkerke471 suggested dividing R2

LR by
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its maximum attainable value

R2
max = 1− exp(−L0/n) (9.58)

to derive R2
N which ranges from 0 to 1. This is the form of the R2 index we

use throughout.
For penalizing for overfitting, see Verweij and van Houwelingen640 for an

overfitting-corrected R2 that uses a cross-validated likelihood. 14

9.8.4 Unitless Index of Adequacy of a Subset
of Predictors

Log likelihoods are also useful for quantifying the predictive information con-
tained in a subset of the predictors compared with the information contained
in the entire set of predictors.264 Let LR again denote the −2 log likelihood
ratio statistic for testing the joint significance of the full set of predictors. Let
LRs denote the −2 log likelihood ratio statistic for testing the importance of
the subset of predictors of interest, excluding the other predictors from the
model. A measure of adequacy of the subset for predicting the response is
given by

A = LRs/LR. (9.59)

A is then the proportion of log likelihood explained by the subset with refer-
ence to the log likelihood explained by the entire set. When A = 1, the subset
contains all the predictive information found in the whole set of predictors;
that is, the subset is adequate by itself and the additional predictors contain
no independent information. When A = 0, the subset contains no predictive
information by itself.

Califf et al.89 used the A index to quantify the adequacy (with respect to
prognosis) of two competing sets of predictors that each describe the extent of
coronary artery disease. The response variable was time until cardiovascular
death and the statistical model used was the Cox132 proportional hazards
model. Some of their results are reproduced in Table 9.3. A chance-corrected 15

adequacy measure could be derived by squaring the ratio of the R-index for
the subset to the R-index for the whole set. A formal test of superiority of
X1 = maximum % stenosis over X2 = jeopardy score can be obtained by
testing whether X1 adds to X2 (LR χ2 = 57.5 − 42.6 = 14.9) and whether
X2 adds to X1 (LR χ2 = 57.5− 51.8 = 5.7). X1 adds more to X2 (14.9) than
X2 adds to X1 (5.7). The difference 14.9− 5.7 = 9.2 equals the difference in
single factor χ2 (51.8− 42.6)665.
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Table 9.3 Completing prognostic markers

Predictors Used LR χ2 Adequacy

Coronary jeopardy score 42.6 0.74
Maximum % stenosis in each artery 51.8 0.90
Combined 57.5 1.00

9.9 Weighted Maximum Likelihood Estimation

It is commonly the case that data elements represent combinations of values
that pertain to a set of individuals. This occurs, for example, when unique
combinations of X and Y are determined from a massive dataset, along with
the frequency of occurrence of each combination, for the purpose of reducing
the size of the dataset to analyze. For the ith combination we have a case
weight wi that is a positive integer representing a frequency. Assuming that
observations represented by combination i are independent, the likelihood
needed to represent all wi observations is computed simply by multiplying
all of the likelihood elements (each having value Li), yielding a total likeli-
hood contribution for combination i of Lwi

i or a log likelihood contribution
of wi logLi. To obtain a likelihood for the entire dataset one computes the
product over all combinations. The total log likelihood is

∑
wi logLi. As an

example, the weighted likelihood that would be used to fit a weighted logistic
regression model is given by

L =

n∏
i=1

PwiYi

i (1− Pi)
wi(1−Yi), (9.60)

where there are n combinations,
∑n

i=1 wi > n, and Pi is Prob[Yi = 1|Xi] as
dictated by the model. Note that in general the correct likelihood function
cannot be obtained by weighting the data and using an unweighted likelihood.

By a small leap one can obtain weighted maximum likelihood estimates
from the above method even if the weights do not represent frequencies or
even integers, as long as the weights are non-negative. Non-frequency weights
are commonly used in sample surveys to adjust estimates back to better
represent a target population when some types of subjects have been over-
sampled from that population. Analysts should beware of possible losses in
efficiency when obtaining weighted estimates in sample surveys.363, 364 Mak-
ing the regression estimates conditional on sampling strata by including strata
as covariables may be preferable to re-weighting the strata. If weighted esti-
mates must be obtained, the weighted likelihood function is generally valid
for obtaining properly weighted parameter estimates. However, the variance–
covariance matrix obtained by inverting the information matrix from the
weighted likelihood will not be correct in general. For one thing, the sum of
the weights may be far from the number of subjects in the sample. A rough
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approximation to the variance–covariance matrix may be obtained by first
multiplying each weight by n/

∑
wi and then computing the weighted in-

formation matrix, where n is the number of actual subjects in the sample.
16

9.10 Penalized Maximum Likelihood Estimation

Maximizing the log likelihood provides the best fit to the dataset at hand,
but this can also result in fitting noise in the data. For example, a categor-
ical predictor with 20 levels can produce extreme estimates for some of the
19 regression parameters, especially for the small cells (see Section 4.5). A
shrinkage approach will often result in regression coefficient estimates that
while biased are lower in mean squared error and hence are more likely to be
close to the true unknown parameter values. Ridge regression is one approach
to shrinkage, but a more general and better developed approach is penalized
maximum likelihood estimation,237, 388, 639, 641 which is really a special case 17

of Bayesian modeling with a Gaussian prior. Letting L denote the usual like-
lihood function and λ be a penalty factor, we maximize the penalized log
likelihood given by

logL− 1

2
λ

p∑
i=1

(siβi)
2, (9.61)

where s1, s2, . . . , sp are scale factors chosen to make siβi unitless. Most au-
thors standardize the data first and do not have scale factors in the equation,
but Equation 9.61 has the advantage of allowing estimation of β on the orig-
inal scale of the data. The usual methods (e.g., Newton–Raphson) are used
to maximize 9.61.

The choice of the scaling constants has received far too little attention in
the ridge regression and penalized MLE literature. It is common to use the 18

standard deviation of each column of the design matrix to scale the corre-
sponding parameter. For models containing nothing but continuous variables
that enter the regression linearly, this is usually a reasonable approach. For
continuous variables represented with multiple terms (one of which is lin-
ear), it is not always reasonable to scale each nonlinear term with its own
standard deviation. For dummy variables, scaling using the standard devia-
tion (

√
d(1 − d), where d is the mean of the dummy variable, i.e., the frac-

tion of observations in that cell) is problematic since this will result in high
prevalance cells getting more shrinkage than low prevalence ones because the
high prevalence cells will dominate the penalty function.

An advantage of the formulation in Equation 9.61 is that one can assign
scale constants of zero for parameters for which no shrinkage is desired.237, 639

For example, one may have prior beliefs that a linear additive model will fit
the data. In that case, nonlinear and non-additive terms may be penalized.
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For a categorical predictor having c levels, users of ridge regression often do
not recognize that the amount of shrinkage and the predicted values from the
fitted model depend on how the design matrix is coded. For example, one will
get different predictions depending on which cell is chosen as the reference
cell when constructing dummy variables. The setup in Equation 9.61 has the
same problem. For example, if for a three-category factor we use category 1
as the reference cell and have parameters β2 and β3, the unscaled penalty
function is β2

2 + β2
3 . If category 3 were used as the reference cell instead, the

penalty would be β2
3 + (β2 − β3)

2. To get around this problem, Verweij and
van Houwelingen639 proposed using the penalty function

∑c
i (βi − β)2, where

β is the mean of all c βs. This causes shrinkage of all parameters toward
the mean parameter value. Letting the first category be the reference cell,
we use c − 1 dummy variables and define β1 ≡ 0. For the case c = 3 the
sum of squares is 2[β2

2 + β2
3 − β2β3]/3. For c = 2 the penalty is β2

2/2. If no
scale constant is used, this is the same as scaling β2 with

√
2 × the standard

deviation of a binary dummy variable with prevalance of 0.5.
The sum of squares can be written in matrix form as [β2, . . . , βc]

′

(A − B)[β2, . . . , βc], where A is a c − 1 × c − 1 identity matrix and B is
a c− 1× c− 1 matrix all of whose elements are 1

c .19

For general penalty functions such as that just described, the penalized
log likelihood can be generalized to

logL− 1

2
λβ′Pβ. (9.62)

For purposes of using the Newton–Raphson procedure, the first derivative
of the penalty function with respect to β is −λPβ, and the negative of the
second derivative is λP .

Another problem in penalized estimation is how the choice of λ is made.20

Many authors use cross-validation. A limited number of simulation stud-
ies in binary logistic regression modeling has shown that for each λ being
considered, at least 10-fold cross-validation must be done so as to obtain a
reasonable estimate of predictive accuracy. Even then, a smoother207 (“su-
per smoother”) must be used on the (λ, accuracy) pairs to allow location of
the optimum value unless one is careful in choosing the initial sub-samples
and uses these same splits throughout. Simulation studies have shown that a
modified AIC is not only much quicker to compute (since it requires no cross-
validation) but performs better at finding a good value of λ (see below).21

For a given λ, the effective number of parameters being estimated is re-
duced because of shrinkage. Gray [237, Eq. 2.9] and others estimate the ef-
fective degrees of freedom by computing the expected value of a global Wald
statistic for testing association, when the null hypothesis of no association is
true. The d.f. is equal to

trace[I(β̂P )V (β̂P )], (9.63)
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where β̂P is the penalized MLE (the parameters that maximize Equa-
tion 9.61), I is the information matrix computed from ignoring the penalty
function, and V is the covariance matrix computed by inverting the infor-
mation matrix that included the second derivatives with respect to β in the
penalty function. 22

Gray [237, Eq. 2.6] states that a better estimate of the variance–covariance

matrix for β̂P than V (β̂P ) is

V ∗ = V (β̂P )I(β̂P )V (β̂P ). (9.64)

Therneau (personal communication, 2000) has found in a limited number
of simulation studies that V ∗ underestimates the true variances, and that a
better estimate of the variance–covariance matrix is simply V (β̂P ), assuming
that the model is correctly specified. This is the covariance matrix used by
default in the rms package (the user can request that the sandwich estimator
be used instead) and is in fact the one Gray used for Wald tests.

Penalization will bias estimates of β, so hypothesis tests and confidence
intervals using β̂P may not have a simple interpretation. The same prob-
lem arises in score and likelihood ratio tests. So far, penalization is better
understood in pure prediction mode unless Bayesian methods are used.

Equation 9.63 can be used to derive a modified AIC (see [639, Eq. 6]
and [641, Eq. 7]) on the model χ2 scale:

LR χ2 − 2× effective d.f., (9.65)

where LR χ2 is the likelihood ratio χ2 for the penalized model, but ignoring
the penalty function. If a variety of λ are tried and one plots the (λ, AIC)
pairs, the λ that maximizes AIC will often be a good choice, that is, it is
likely to be near the value of λ that maximizes predictive accuracy on a
future datasetg.

Note that if one does penalized maximum likelihood estimation where a set
of variables being penalized has a negative value for the unpenalized χ2−2 ×
d.f., the value of λ that will optimize the overall model AIC will be ∞.

As an example, consider some simulated data (n = 100) with one predictor
in which the true model is Y = X1 + ε, where ε has a standard normal
distribution and so does X1. We use a series of penalties (found by trial and
error) that give rise to sensible effective d.f., and fit penalized restricted cubic
spline functions with five knots. We penalize two ways: all terms in the model
including the coefficient of X1, which in reality needs no penalty; and only
the nonlinear terms. The following R program, in conjunction with the rms

package, does the job.

g Several examples from simulated datasets have shown that using BIC to choose a
penalty results in far too much shrinkage.
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set.seed (191)

x1 ← rnorm (100)

y ← x1 + rnorm (100)

pens ← df ← aic ← c(0,.07 ,.5 ,2,6,15,60)

all ← nl ← list ()

for(penalize in 1:2) {

for(i in 1: length (pens )) {

f ← ols(y ∼ rcs(x1 ,5), penalty=

list (simple =if(penalize ==1) pens [i] else 0,

nonlinear =pens [i]))

df[i] ← f$stats [ ' d.f. ' ]
aic[i] ← AIC(f)

nam ← paste (if(penalize == 1) ' all ' else ' nl ' ,
' penalty: ' , pens [i], sep= ' ' )

nam ← as.character (pens[i])

p ← Predict(f, x1=seq(-2.5 , 2.5 , length =100),

conf.int=FALSE )

if(penalize == 1) all[[nam]] ← p else nl[[nam ]] ← p

}

print (rbind (df=df , aic=aic))

}

[,1] [,2] [,3] [,4] [,5] [,6]
df 4.0000 3.213591 2.706069 2.30273 2.029282 1.822758
aic 270.6653 269.154045 268.222855 267.56594 267.288988 267.552915

[,7]
df 1.513609
aic 270.805033

[,1] [,2] [,3] [,4] [,5] [,6]
df 4.0000 3.219149 2.728126 2.344807 2.109741 1.960863
aic 270.6653 269.167108 268.287933 267.718681 267.441197 267.347475

[,7]
df 1.684421
aic 267.892073

all ← do.call ( ' rbind ' , all ); all $type ← ' Penalize All '
nl ← do.call ( ' rbind ' , nl) ; nl$type ← ' Penalize Nonlinear '
both ← as.data.frame(rbind.data.frame(all , nl))

both$Penalty ← both$.set.

ggplot (both , aes(x=x1 , y=yhat , color =Penalty )) + geom_line () +

geom_abline (col =gray(.7)) + facet_grid (∼ type)

# Figure 9.6

The left panel in Figure 9.6 corresponds to penalty = list(simple=a, nonlin-

ear=a) in the R program, meaning that all parameters except the intercept are
shrunk by the same amount a (this would be more appropriate had there been
multiple predictors). As effective d.f. get smaller (penalty factor gets larger),
the regression fits get flatter (too flat for the largest penalties) and confidence
bands get narrower. The right graph corresponds to penalty=list(simple=0,

nonlinear=a), causing only the cubic spline terms that are nonlinear in X1

to be shrunk. As the amount of shrinkage increases (d.f. lowered), the fits
become more linear and closer to the true regression line (longer dotted line).
Again, confidence intervals become smaller.23
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Fig. 9.6 Penalized least squares estimates for an unnecessary five-knot restricted
cubic spline function. In the left graph all parameters (except the intercept) are
penalized. The effective d.f. are 4, 3.21, 2.71, 2.30, 2.03, 1.82, and 1.51. In the right
graph, only parameters associated with nonlinear functions of X1 are penalized. The
effective d.f. are 4, 3.22, 2.73, 2.34, 2.11, 1.96, and 1.68.

9.11 Further Reading

1 Boos60 has some nice generalizations of the score test. Morgan et al.464 show
how score test χ2 statistics may negative unless the expected information matrix
is used.

2 See Marubini and Valsecchi [444, pp. 164–169] for an excellent description of
the relationship between the three types of test statistics.

3 References [115,507] have good descriptions of methods used to maximize logL.
4 As Long and Ervin426 argue, for small sample sizes, the usual Huber–White co-

variance estimator should not be used because there the residuals do not have
constant variance even under homoscedasticity. They showed that a simple cor-
rection due to Efron and others can result in substantially better estimates.
Lin and Wei,410 Binder,55 and Lin407 have applied the Huber estimator to the
Cox132 survival model. Freedman206 questioned the use of sandwich estima-
tors because they are often used to obtain the right variances on the wrong
parameters when the model doesn’t fit. He also has some excellent background
information.

5 Feng et al.188 showed that in the case of cluster correlations arising from re-
peated measurement data with Gaussian errors, the cluster bootstrap performs
excellently even when the number of observations per cluster is large and the
number of subjects is small. Xiao and Abrahamowicz676 compared the cluster
bootstrap with a two-stage cluster bootstrap in the context of the Cox model.
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6 Graubard and Korn235 and Fitzmaurice195 describe the kinds of situations in
which the working independence model can be trusted.

7 Minkin,460 Alho,11 Doganaksoy and Schmee,160 and Meeker and Escobar452

discuss the need for LR and score-based confidence intervals. Alho found that
score-based intervals are usually more tedious to compute, and provided use-
ful algorithms for the computation of either type of interval (see also [452]
and [444, p. 167]). Score and LR intervals require iterative computations and
have to deal with the fact that when one parameter is changed (e.g., bi is re-
stricted to be zero), all other parameter estimates change. DiCiccio and Efron157

provide a method for very accurate confidence intervals for exponential families
that requires a modest amount of additional computation. Venzon and Mool-
gavkar provide an efficient general method for computing LR-based intervals.636

Brazzale and Davison65 developed some promising and feasible ways to make
unconditional likelihood-based inferences more accurate in small samples.

8 Carpenter and Bithell92 have an excellent overview of several variations on the
bootstrap for obtaining confidence limits.

9 Tibshirani and Knight610 developed an easy to program approach for deriving
simultaneous confidence sets that is likely to be useful for getting simultaneous
confidence regions for the entire vector of model parameters, for population val-
ues for an entire sequence of predictor values, and for a set of regression effects
(e.g., interquartile-range odds ratios for age for both sexes). The basic idea is
that during the, say, 1000 bootstrap repetitions one stores the −2 log likelihood
for each model fit, being careful to compute the likelihood at the current boot-
strap parameter estimates but with respect to the original data matrix, not
the bootstrap sample of the data matrix. To obtain an approximate simultane-
ous 0.95 confidence set one computes the 0.95 quantile of the −2 log likelihood
values and determines which vectors of parameter estimates correspond to −2
log likelihoods that are at least as small as the 0.95 quantile of all −2 log like-
lihoods. Once the qualifying parameter estimates are found, the quantities of
interest are computed from those parameter estimates and an outer envelope
of those quantities is found. Computations are facilitated with the rms package
confplot function.

10 van Houwelingen and le Cessie [633, Eq. 52] showed, consistent with AIC, that
the average optimism in a mean logarithmic (minus log likelihood) quality score
for logistic models is p/n.

11 Schwarz560 derived a different penalty using large-sample Bayesian properties
of competing models. His Bayesian Information Criterion (BIC) chooses the
model having the lowest value of L + 1/2p log n or the highest value of LR
χ2 − p log n. Kass and Raftery have done several studies of BIC.337 Smith
and Spiegelhalter576 and Laud and Ibrahim377 discussed other useful gener-
alizations of likelihood penalties. Zheng and Loh685 studied several penalty
measures, and found that AIC does not penalize enough for overfitting in the
ordinary regression case. Kass and Raftery [337, p. 790] provide a nice review
of this topic, stating that “AIC picks the correct model asymptotically if the
complexity of the true model grows with sample size” and that “AIC selects
models that are too big even when the sample size is large.” But they also cite
other papers that show the existence of cases where AIC can work better than
BIC. According to Buckland et al.,80 BIC “assumes that a true model exists
and is low-dimensional.”
Hurvich and Tsai314,315 made an improvement in AIC that resulted in much
better model selection for small n. They defined the corrected AIC as

AICC = LR χ2 − 2p[1 +
p+ 1

n− p− 1
]. (9.66)
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In [314] they contrast asymptotically efficient model selection with AIC when
the true model has infinitely many parameters with improvements using other
indexes such as AICC when the model is finite.
One difficulty in applying the Schwarz, AICC , and related criteria is that with
censored or binary responses it is not clear that the actual sample size n should
be used in the formula.

12 Goldstein,222 Willan et al.,669 and Royston and Thompson534 have nice dis-
cussions on comparing non-nested regression models. Schemper’s method549 is
useful for testing whether a set of variables provides significantly greater infor-
mation (using an R2 measure) than another set of variables.

13 van Houwelingen and le Cessie [633, Eq. 22] recommended using L/2 (also called
the Kullback–Leibler error rate) as a quality index.

14 Schemper549 provides a bootstrap technique for testing for significant differ-
ences between correlated R2 measures. Mittlböck and Schemper,461 Schemper
and Stare,554 Korn and Simon,365,366 Menard,454 and Zheng and Agresti684

have excellent discussions about the pros and cons of various indexes of the
predictive value of a model.

15 Al-Radi et al.10 presented another analysis comparing competing predictors
using the adequacy index and a receiver operating characteristic curve area
approach based on a test for whether one predictor has a higher probability of
being “more concordant” than another.

16 [55,97,409] provide good variance–covariance estimators from a weighted max-
imum likelihood analysis.

17 Huang and Harrington310 developed penalized partial likelihood estimates for
Cox models and provided useful background information and theoretical results
about improvements in mean squared errors of regression estimates. They used
a bootstrap error estimate for selection of the penalty parameter.

18 Sardy538 proposes that the square roots of the diagonals of the inverse of the
covariance matrix for the predictors be used for scaling rather than the standard
deviations.

19 Park and Hastie483 and articles referenced therein describe how quadratic pe-
nalized logistic regression automatically sets coefficient estimates for empty cells
to zero and forces the sum of k coefficients for a k-level categorical predictor to
equal zero.

20 Greenland241 has a nice discussion of the relationship between penalized max-
imum likelihood estimation and mixed effects models. He cautions against esti-
mating the shrinkage parameter.

21 See310 for a bootstrap approach to selection of λ.
22 Verweij and van Houwelingen [639, Eq. 4] derived another expression for d.f., but

it requires more computation and did not perform any better than Equation 9.63
in choosing λ in several examples tested.

23 See van Houwelingen and Thorogood631 for an approximate empirical Bayes
approach to shrinkage. See Tibshirani608 for the use of a non-smooth penalty
function that results in variable selection as well as shrinkage (see Section 4.3).
Verweij and van Houwelingen640 used a “cross-validated likelihood” based on
leave-out-one estimates to penalize for overfitting. Wang and Taylor652 pre-
sented some methods for carrying out hypothesis tests and computing con-
fidence limits under penalization. Moons et al.462 presented a case study of
penalized estimation and discussed the advantages of penalization.
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Table 9.4 Likelihood ratio global test statistics

Variables in Model LR χ2

age 100
sex 108
age, sex 111
age2 60
age, age2 102
age, age2, sex 115

9.12 Problems

1. A sample of size 100 from a normal distribution with unknown mean and
standard deviation (μ and σ) yielded the following log likelihood values
when computed at two values of μ.

logL(μ = 10, σ = 5) = −800

logL(μ = 20, σ = 5) = −820.

What do you know about μ? What do you know about Y ?
2. Several regression models were considered for predicting a response. LR χ2

(corrected for the intercept) for models containing various combinations of
variables are found in Table 9.4. Compute all possible meaningful LR χ2.
For each, state the d.f. and an approximate P -value. State which LR χ2

involving only one variable is not very meaningful.
3. For each problem below, rank Wald, score, and LR statistics by overall

statistical properties and then by computational convenience.

a. A forward stepwise variable selection (to be later accounted for with the
bootstrap) is desired to determine a concise model that contains most
of the independent information in all potential predictors.

b. A test of independent association of each variable in a given model (each
variable adjusted for the effects of all other variables in the given model)
is to be obtained.

c. A model that contains only additive effects is fitted. A large number
of potential interaction terms are to be tested using a global (multiple
d.f.) test.

4. Consider a univariate saturated model in 3 treatments (A, B, C) that is
quadratic in age. Write out the model with all the βs, and write in detail
the contrast for comparing treatment B with treatment C for 30 year olds.
Sketch out the same contrast using the“difference in predictions”approach
without simplification.
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5. Simulate a binary logistic model for n = 300 with an average fraction of
events somewhere between 0.15 and 0.3. Use 5 continuous covariates and
assume the model is everywhere linear. Fit an unpenalized model, then
solve for the optimum quadratic penalty λ. Relate the resulting effective
d.f. to the 15:1 rule of thumb, and compute the heuristic shrinkage coeffi-
cient γ̂ for the unpenalized model and for the optimally penalized model,
inserting the effective d.f. for the number of non-intercept parameters in
the model.

6. For a similar setup as the binary logistic model simulation in Section 9.7,
do a Monte Carlo simulation to determine the coverage probabilities for
ordinary Wald and for three types of bootstrap confidence intervals for the
true x=5 to x=1 log odds ratio. In addition, consider the Wald-type con-
fidence interval arising from the sandwich covariance estimator. Estimate
the non-coverage probabilities in both tails. Use a sample size n = 200
with the single predictor x1 having a standard log-normal distribution,
and the true model being logit(Y = 1) = 1 + x1/2. Determine whether
increasing the sample size relieves any problem you observed. Some R code
for this simulation is on the web site.



Chapter 10

Binary Logistic Regression

10.1 Model

Binary responses are commonly studied in many fields. Examples include 1

the presence or absence of a particular disease, death during surgery, or a
consumer purchasing a product. Often one wishes to study how a set of
predictor variables X is related to a dichotomous response variable Y . The
predictors may describe such quantities as treatment assignment, dosage, risk
factors, and calendar time.

For convenience we define the response to be Y = 0 or 1, with Y = 1
denoting the occurrence of the event of interest. Often a dichotomous outcome
can be studied by calculating certain proportions, for example, the proportion
of deaths among females and the proportion among males. However, in many
situations, there are multiple descriptors, or one or more of the descriptors
are continuous. Without a statistical model, studying patterns such as the
relationship between age and occurrence of a disease, for example, would
require the creation of arbitrary age groups to allow estimation of disease
prevalence as a function of age.

LettingX denote the vector of predictors {X1, X2, . . . , Xk}, a first attempt
at modeling the response might use the ordinary linear regression model

E{Y |X} = Xβ, (10.1)

since the expectation of a binary variable Y is Prob{Y = 1}. However, such
a model by definition cannot fit the data over the whole range of the pre-
dictors since a purely linear model E{Y |X} = Prob{Y = 1|X} = Xβ can
allow Prob{Y = 1} to exceed 1 or fall below 0. The statistical model that is
generally preferred for the analysis of binary responses is instead the binary
logistic regression model, stated in terms of the probability that Y = 1 given
X , the values of the predictors:

© Springer International Publishing Switzerland 2015
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Prob{Y = 1|X} = [1 + exp(−Xβ)]−1. (10.2)

As before, Xβ stands for β0 + β1X1 + β2X2 + . . . + βkXk. The binary lo-
gistic regression model was developed primarily by Cox129 and Walker and
Duncan.647 The regression parameters β are estimated by the method of2

maximum likelihood (see below).
The function

P = [1 + exp(−x)]−1 (10.3)

is called the logistic function. This function is plotted in Figure 10.1 for x
varying from −4 to +4. This function has an unlimited range for x while P
is restricted to range from 0 to 1.
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Fig. 10.1 Logistic function

For future derivations it is useful to express x in terms of P . Solving the
equation above for x by using

1− P = exp(−x)/[1 + exp(−x)] (10.4)

yields the inverse of the logistic function:

x = log[P/(1− P )] = log[odds that Y = 1 occurs] = logit{Y = 1}. (10.5)

Other methods that have been used to analyze binary response data in-
clude the probit model, which writes P in terms of the cumulative normal
distribution, and discriminant analysis. Probit regression, although assuming
a similar shape to the logistic function for the regression relationship be-
tween Xβ and Prob{Y = 1}, involves more cumbersome calculations, and
there is no natural interpretation of its regression parameters. In the past,
discriminant analysis has been the predominant method since it is the sim-
plest computationally. However, it makes more assumptions than logistic re-
gression. The model used in discriminant analysis is stated in terms of the3
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distribution of X given the outcome group Y , even though one is seldom in-
terested in the distribution of the predictors per se. The discriminant model
has to be inverted using Bayes’ rule to derive the quantity of primary in-
terest, Prob{Y = 1}. By contrast, the logistic model is a direct probability
model since it is stated in terms of Prob{Y = 1|X}. Since the distribution
of a binary random variable Y is completely defined by the true probability
that Y = 1 and since the model makes no assumption about the distribu-
tion of the predictors, the logistic model makes no distributional assumptions
whatsoever.

10.1.1 Model Assumptions and Interpretation
of Parameters

Since the logistic model is a direct probability model, its only assumptions
relate to the form of the regression equation. Regression assumptions are
verifiable, unlike the assumption of multivariate normality made by discrimi-
nant analysis. The logistic model assumptions are most easily understood by
transforming Prob{Y = 1} to make a model that is linear in Xβ:

logit{Y = 1|X} = logit(P ) = log[P/(1− P )]

= Xβ, (10.6)

where P = Prob{Y = 1|X}. Thus the model is a linear regression model in
the log odds that Y = 1 since logit(P ) is a weighted sum of the Xs. If all
effects are additive (i.e., no interactions are present), the model assumes that
for every predictor Xj,

logit{Y = 1|X} = β0 + β1X1 + . . .+ βjXj + . . .+ βkXk

= βjXj + C, (10.7)

where if all other factors are held constant, C is a constant given by

C = β0 + β1X1 + . . .+ βj−1Xj−1 + βj+1Xj+1 + . . .+ βkXk. (10.8)

The parameter βj is then the change in the log odds per unit change in
Xj if Xj represents a single factor that is linear and does not interact with
other factors and if all other factors are held constant. Instead of writing this
relationship in terms of log odds, it could just as easily be written in terms
of the odds that Y = 1:

odds{Y = 1|X} = exp(Xβ), (10.9)
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and if all factors other than Xj are held constant,

odds{Y = 1|X} = exp(βjXj + C) = exp(βjXj) exp(C). (10.10)

The regression parameters can also be written in terms of odds ratios . The
odds that Y = 1 when Xj is increased by d, divided by the odds at Xj is

odds{Y = 1|X1, X2, . . . , Xj + d, . . . , Xk}
odds{Y = 1|X1, X2, . . . , Xj, . . . , Xk}

=
exp[βj(Xj + d)] exp(C)

[exp(βjXj) exp(C)]
(10.11)

= exp[βjXj + βjd− βjXj ] = exp(βjd).

Thus the effect of increasing Xj by d is to increase the odds that Y = 1 by
a factor of exp(βjd), or to increase the log odds that Y = 1 by an increment
of βjd. In general, the ratio of the odds of response for an individual with
predictor variable values X∗ compared with an individual with predictors
X is

X∗ : X odds ratio = exp(X∗β)/ exp(Xβ)

= exp[(X∗ −X)β]. (10.12)

Now consider some special cases of the logistic multiple regression model.
If there is only one predictor X and that predictor is binary, the model can
be written

logit{Y = 1|X = 0} = β0

logit{Y = 1|X = 1} = β0 + β1. (10.13)

Here β0 is the log odds of Y = 1 when X = 0. By subtracting the two
equations above, it can be seen that β1 is the difference in the log odds
when X = 1 as compared with X = 0, which is equivalent to the log of the
ratio of the odds when X = 1 compared with the odds when X = 0. The
quantity exp(β1) is the odds ratio for X = 1 compared with X = 0. Letting
P 0 = Prob{Y = 1|X = 0} and P 1 = Prob{Y = 1|X = 1}, the regression
parameters are interpreted by

β0 = logit(P 0) = log[P 0/(1− P 0)]

β1 = logit(P 1)− logit(P 0) (10.14)

= log[P 1/(1− P 1)]− log[P 0/(1− P 0)]

= log{[P 1/(1− P 1)]/[P 0/(1− P 0)]}.
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Since there are only two quantities to model and two free parameters,
there is no way that this two-sample model can’t fit; the model in this case
is essentially fitting two cell proportions. Similarly, if there are g − 1 dummy
indicator Xs representing g groups, the ANOVA-type logistic model must
always fit.

If there is one continuous predictor X , the model is

logit{Y = 1|X} = β0 + β1X, (10.15)

and without further modification (e.g., taking log transformation of the pre-
dictor), the model assumes a straight line in the log odds, or that an increase
in X by one unit increases the odds by a factor of exp(β1).

Now consider the simplest analysis of covariance model in which there are
two treatments (indicated by X1 = 0 or 1) and one continuous covariable
(X2). The simplest logistic model for this setup is

logit{Y = 1|X} = β0 + β1X1 + β2X2, (10.16)

which can be written also as

logit{Y = 1|X1 = 0, X2} = β0 + β2X2

logit{Y = 1|X1 = 1, X2} = β0 + β1 + β2X2. (10.17)

The X1 = 1 : X1 = 0 odds ratio is exp(β1), independent of X2. The odds
ratio for a one-unit increase in X2 is exp(β2), independent of X1.

This model, with no term for a possible interaction between treatment
and covariable, assumes that for each treatment the relationship between X2

and log odds is linear, and that the lines have equal slope; that is, they are
parallel. Assuming linearity in X2, the only way that this model can fail is
for the two slopes to differ. Thus, the only assumptions that need verification
are linearity and lack of interaction between X1 and X2.

To adapt the model to allow or test for interaction, we write

logit{Y = 1|X} = β0 + β1X1 + β2X2 + β3X3, (10.18)

where the derived variable X3 is defined to be X1X2. The test for lack of
interaction (equal slopes) is H0 : β3 = 0. The model can be amplified as

logit{Y = 1|X1 = 0, X2} = β0 + β2X2

logit{Y = 1|X1 = 1, X2} = β0 + β1 + β2X2 + β3X2 (10.19)

= β′
0 + β′

2X2,
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Table 10.1 Effect of an odds ratio of two on various risks

Without Risk Factor With Risk Factor

Probability Odds Odds Probability

.2 .25 .5 .33

.5 1 2 .67

.8 4 8 .89

.9 9 18 .95
.98 49 98 .99

where β′
0 = β0+β1 and β′

2 = β2+β3. The model with interaction is therefore
equivalent to fitting two separate logistic models with X2 as the only predic-
tor, one model for each treatment group. Here the X1 = 1 : X1 = 0 odds
ratio is exp(β1 + β3X2).

10.1.2 Odds Ratio, Risk Ratio, and Risk Difference

As discussed above, the logistic model quantifies the effect of a predictor in
terms of an odds ratio or log odds ratio. An odds ratio is a natural descrip-
tion of an effect in a probability model since an odds ratio can be constant.
For example, suppose that a given risk factor doubles the odds of disease.
Table 10.1 shows the effect of the risk factor for various levels of initial risk.

Since odds have an unlimited range, any positive odds ratio will still yield
a valid probability. If one attempted to describe an effect by a risk ratio, the
effect can only occur over a limited range of risk (probability). For example, a
risk ratio of 2 can only apply to risks below .5; above that point the risk ratio
must diminish. (Risk ratios are similar to odds ratios if the risk is small.)
Risk differences have the same difficulty; the risk difference cannot be con-
stant and must depend on the initial risk. Odds ratios, on the other hand, can
describe an effect over the entire range of risk. An odds ratio can, for example,
describe the effect of a treatment independently of covariables affecting risk.
Figure 10.2 depicts the relationship between risk of a subject without the risk
factor and the increase in risk for a variety of relative increases (odds ratios).
It demonstrates how absolute risk increase is a function of the baseline risk.
Risk increase will also be a function of factors that interact with the risk fac-
tor, that is, factors that modify its relative effect. Once a model is developed
for estimating Prob{Y = 1|X}, this model can easily be used to estimate the
absolute risk increase as a function of baseline risk factors as well as inter-
acting factors. Let X1 be a binary risk factor and let A = {X2, . . . , Xp} be
the other factors (which for convenience we assume do not interact with X1).
Then the estimate of Prob{Y = 1|X1 = 1, A} − Prob{Y = 1|X1 = 0, A} is
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Fig. 10.2 Absolute benefit as a function of risk of the event in a control subject and
the relative effect (odds ratio) of the risk factor. The odds ratios are given for each
curve.

Table 10.2 Example binary response data

Females Age: 37 39 39 42 47 48 48 52 53 55 56 57 58 58 60 64 65 68 68 70
Response: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1

Males Age: 34 38 40 40 41 43 43 43 44 46 47 48 48 50 50 52 55 60 61 61
Response: 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1

1

1 + exp−[β̂0 + β̂1 + β̂2X2 + . . .+ β̂pXp]

− 1

1 + exp−[β̂0 + β̂2X2 + . . .+ β̂pXp]
(10.20)

=
1

1 + (1−R̂
R̂

) exp(−β̂1)
− R̂,

where R̂ is the estimate of the baseline risk, Prob{Y = 1|X1 = 0}. The risk
difference estimate can be plotted against R̂ or against levels of variables in A
to display absolute risk increase against overall risk (Figure 10.2) or against
specific subject characteristics. 4

10.1.3 Detailed Example

Consider the data in Table 10.2. A graph of the data, along with a fitted
logistic model (described later), appears in Figure 10.3. The graph also dis-
plays proportions of responses obtained by stratifying the data by sex and
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age group (< 45, 45 − 54,≥ 55). The age points on the abscissa for these
groups are the overall mean ages in the three age intervals (40.2, 49.1, and
61.1, respectively).

require(rms)

getHdata (sex.age.response)

d ← sex.age.response

dd ← datadist (d); options (datadist = ' dd ' )
f ← lrm (response ∼ sex + age , data=d)

fasr ← f # Save for later

w ← function (...)

with(d, {

m ← sex == ' male '
f ← sex == ' female '
lpoints (age[f], response [f], pch =1)

lpoints (age[m], response [m], pch =2)

af ← cut2(age , c(45,55), levels.mean =TRUE)

prop ← tapply (response , list(af , sex), mean ,

na.rm =TRUE)

agem ← as.numeric (row.names (prop))

lpoints (agem , prop[, ' female '],
pch=4, cex =1.3, col = ' green ')

lpoints (agem , prop[, ' male ' ],
pch=5, cex =1.3, col = ' green ')

x ← rep (62, 4); y ← seq (.25 , .1 , length =4)

lpoints (x, y, pch =c(1, 2, 4, 5),

col =rep (c( ' blue ' , ' green ' ),each =2))
ltext(x+5, y,

c( ' F Observed ' , 'M Observed ' ,
' F Proportion ' , ' M Proportion ' ), cex=.8)

} ) # Figure 10.3

plot(Predict (f, age=seq (34, 70, length =200) , sex , fun=plogis ),

ylab= ' Pr[response ] ' , ylim=c(-.02 , 1.02), addpanel =w)

ltx ← function (fit) latex(fit , inline =TRUE , columns =54,

file= ' ' , after= ' $. ' , digits =3,

size= ' Ssize ' , before = ' $X\\ hat {\\ beta}= ' )
ltx (f)

Xβ̂ = −9.84 + 3.49[male] + 0.158 age.
Descriptive statistics for assessing the association between sex and re-

sponse, age group and response, and age group and response stratified by
sex are found below. Corresponding fitted logistic models, with sex coded as
0 = female, 1 = male are also given. Models were fitted first with sex as the
only predictor, then with age as the (continuous) predictor, then with sex and
age simultaneously. First consider the relationship between sex and response,
ignoring the effect of age.
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Fig. 10.3 Data, subgroup proportions, and fitted logistic model, with 0.95 pointwise
confidence bands

sex response

Frequency

Row Pct 0 1 Total Odds/Log

F 14 6 20 6/14=.429

70.00 30.00 -.847

M 6 14 20 14/6=2.33

30.00 70.00 .847

Total 20 20 40

M:F odds ratio = (14/6)/(6/14) = 5.44, log=1.695

Statistics for sex × response

Statistic d.f. Value P

χ2 1 6.400 0.011
Likelihood Ratio χ2 1 6.583 0.010

Parameter Estimate Std Err Wald χ2 P

β0 −0.8473 0.4880 3.0152
β1 1.6946 0.6901 6.0305 0.0141
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Note that the estimate of β0, β̂0 is the log odds for females and that β̂1 is the
log odds (M:F) ratio. β̂0 + β̂1 = .847, the log odds for males. The likelihood
ratio test for H0 : no effect of sex on probability of response is obtained as
follows.

Log likelihood (β1 = 0) : −27.727
Log likelihood (max) : −24.435
LR χ2(H0 : β1 = 0) : −2(−27.727 −−24.435) = 6.584.

(Note the agreement of the LR χ2 with the contingency table likelihood ratio
χ2, and compare 6.584 with the Wald statistic 6.03.)

Next, consider the relationship between age and response, ignoring sex.

age response

Frequency

Row Pct 0 1 Total Odds/Log

<45 8 5 13 5/8=.625

61.5 38.4 -.47

45-54 6 6 12 6/6=1

50.0 50.0 0

55+ 6 9 15 9/6=1.5

40.0 60.0 .405

Total 20 20 40

55+ : <45 odds ratio = (9/6)/(5/8) = 2.4, log=.875

Parameter Estimate Std Err Wald χ2 P

β0 −2.7338 1.8375 2.2134 0.1368
β1 0.0540 0.0358 2.2763 0.1314

The estimate of β1 is in rough agreement with that obtained from the
frequency table. The 55+ : < 45 log odds ratio is .875, and since the respective
mean ages in the 55+ and <45 age groups are 61.1 and 40.2, an estimate of
the log odds ratio increase per year is .875/(61.1− 40.2) = .875/20.9 = .042.

The likelihood ratio test for H0 : no association between age and response
is obtained as follows.

Log likelihood (β1 = 0) : −27.727
Log likelihood (max) : −26.511
LR χ2(H0 : β1 = 0) : −2(−27.727 −−26.511) = 2.432.

(Compare 2.432 with the Wald statistic 2.28.)
Next we consider the simultaneous association of age and sex with

response.
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sex=F

age response

Frequency

Row Pct 0 1 Total

<45 4 0 4

100.0 0.0

45-54 4 1 5

80.0 20.0

55+ 6 5 11

54.6 45.4

Total 14 6 20

sex=M

age response

Frequency

Row Pct 0 1 Total

<45 4 5 9

44.4 55.6

45-54 2 5 7

28.6 71.4

55+ 0 4 4

0.0 100.0

Total 6 14 20

A logistic model for relating sex and age simultaneously to response is
given below.

Parameter Estimate Std Err Wald χ2 P

β0 −9.8429 3.6758 7.1706 0.0074
β1 (sex) 3.4898 1.1992 8.4693 0.0036
β2 (age) 0.1581 0.0616 6.5756 0.0103

Likelihood ratio tests are obtained from the information below.
Log likelihood (β1 = 0, β2 = 0) : −27.727
Log likelihood (max) : −19.458
Log likelihood (β1 = 0) : −26.511
Log likelihood (β2 = 0) : −24.435
LR χ2 (H0 : β1 = β2 = 0) : −2(−27.727 −−19.458) = 16.538
LR χ2 (H0 : β1 = 0) sex|age : −2(−26.511 −−19.458) = 14.106
LR χ2 (H0 : β2 = 0) age|sex : −2(−24.435 −−19.458) = 9.954.

The 14.1 should be compared with the Wald statistic of 8.47, and 9.954
should be compared with 6.58. The fitted logistic model is plotted separately
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for females and males in Figure 10.3. The fitted model is

logit{Response = 1|sex,age} = −9.84 + 3.49× sex + .158× age, (10.21)

where as before sex = 0 for females, 1 for males. For example, for a 40-year-
old female, the predicted logit is −9.84 + .158(40) = −3.52. The predicted
probability of a response is 1/[1 + exp(3.52)] = .029. For a 40-year-old male,
the predicted logit is −9.84 + 3.49 + .158(40) = −.03, with a probability
of .492.

10.1.4 Design Formulations

The logistic multiple regression model can incorporate the same designs as
can ordinary linear regression. An analysis of variance (ANOVA) model for
a treatment with k levels can be formulated with k − 1 dummy variables.
This logistic model is equivalent to a 2 × k contingency table. An analysis
of covariance logistic model is simply an ANOVA model augmented with
covariables used for adjustment.

One unique design that is interesting to consider in the context of logistic
models is a simultaneous comparison of multiple factors between two groups.
Suppose, for example, that in a randomized trial with two treatments one
wished to test whether any of 10 baseline characteristics are mal-distributed
between the two groups. If the 10 factors are continuous, one could perform a
two-sample Wilcoxon–Mann–Whitney test or a t-test for each factor (if each
is normally distributed). However, this procedure would result in multiple
comparison problems and would also not be able to detect the combined ef-
fect of small differences across all the factors. A better procedure would be a
multivariate test. The Hotelling T 2 test is designed for just this situation. It
is a k-variable extension of the one-variable unpaired t-test. The T 2 test, like
discriminant analysis, assumes multivariate normality of the k factors. This
assumption is especially tenuous when some of the factors are polytomous. A
better alternative is the global test of no regression from the logistic model.
This test is valid because it can be shown that H0 : mean X is the same for
both groups (= H0 : mean X does not depend on group = H0 : mean X |
group = constant) is true if and only ifH0 : Prob{group|X} = constant. Thus
k factors can be tested simultaneously for differences between the two groups
using the binary logistic model, which has far fewer assumptions than does the
Hotelling T 2 test. The logistic global test of no regression (with k d.f.) would
be expected to have greater power if there is non-normality. Since the logistic
model makes no assumption regarding the distribution of the descriptor vari-
ables, it can easily test for simultaneous group differences involving a mixture
of continuous, binary, and nominal variables. In observational studies, such



10.2 Estimation 231

models for treatment received or exposure (propensity score models) hold
great promise for adjusting for confounding.117, 380, 526, 530, 531 5

O’Brien479 has developed a general test for comparing group 1 with
group 2 for a single measurement. His test detects location and scale dif-
ferences by fitting a logistic model for Prob{Group 2} using X and X2 as
predictors.

For a randomized study where adjustment for confounding is seldom neces-
sary, adjusting for covariables using a binary logistic model results in increases
in standard errors of regression coefficients.527 This is the opposite of what
happens in linear regression where there is an unknown variance parameter
that is estimated using the residual squared error. Fortunately, adjusting for
covariables using logistic regression, by accounting for subject heterogeneity,
will result in larger regression coefficients even for a randomized treatment
variable. The increase in estimated regression coefficients more than offsets
the increase in standard error284, 285, 527, 588.

10.2 Estimation

10.2.1 Maximum Likelihood Estimates

The parameters in the logistic regression model are estimated using the maxi-
mum likelihood (ML) method. The method is based on the same principles as
the one-sample proportion example described in Section 9.1. The difference
is that the general logistic model is not a single sample or a two-sample prob-
lem. The probability of response for the ith subject depends on a particular
set of predictors Xi, and in fact the list of predictors may not be the same
for any two subjects. Denoting the response and probability of response of
the ith subject by Yi and Pi, respectively, the model states that

Pi = Prob{Yi = 1|Xi} = [1 + exp(−Xiβ)]
−1. (10.22)

The likelihood of an observed response Yi given predictors Xi and the un-
known parameters β is

PYi

i [1− Pi]
1−Yi . (10.23)

The joint likelihood of all responses Y1, Y2, . . . , Yn is the product of these
likelihoods for i = 1, . . . , n. The likelihood and log likelihood functions are
rewritten by using the definition of Pi above to allow them to be recognized
as a function of the unknown parameters β. Except in simple special cases
(such as the k-sample problem in which all Xs are dummy variables), the
ML estimates (MLE) of β cannot be written explicitly. The Newton–Raphson
method described in Section 9.4 is usually used to solve iteratively for the
list of values β that maximize the log likelihood. The MLEs are denoted by
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β̂. The inverse of the estimated observed information matrix is taken as the
estimate of the variance–covariance matrix of β̂.

Under H0 : β1 = β2 = . . . = βk = 0, the intercept parameter β0 can be
estimated explicitly and the log likelihood under this global null hypothesis
can be computed explicitly. Under the global null hypothesis, Pi = P =
[1 + exp(−β0)]

−1 and the MLE of P is P̂ = s/n where s is the number of

responses and n is the sample size. The MLE of β0 is β̂0 = logit(P̂ ). The log
likelihood under this null hypothesis is6

s log(P̂ ) + (n− s) log(1− P̂ )

= s log(s/n) + (n− s) log[(n− s)/n] (10.24)

= s log s+ (n− s) log(n− s)− n log(n).

10.2.2 Estimation of Odds Ratios and Probabilities

Once β is estimated, one can estimate any log odds, odds, or odds ratios.
The MLE of the Xj + 1 : Xj log odds ratio is β̂j , and the estimate of the

Xj + d : Xj log odds ratio is β̂jd, all other predictors remaining constant
(assuming the absence of interactions and nonlinearities involving Xj). For
large enough samples, the MLEs are normally distributed with variances that
are consistently estimated from the estimated variance–covariance matrix.
Letting z denote the 1−α/2 critical value of the standard normal distribution,
a two-sided 1 − α confidence interval for the log odds ratio for a one-unit
increase in Xj is [β̂j − zs, β̂j + zs], where s is the estimated standard error

of β̂j . (Note that for α = .05, i.e., for a 95% confidence interval, z = 1.96.)
A theorem in statistics states that the MLE of a function of a parameter

is that same function of the MLE of the parameter. Thus the MLE of the
Xj + 1 : Xj odds ratio is exp(β̂j). Also, if a 1 − α confidence interval of a
parameter β is [c, d] and f(u) is a one-to-one function, a 1 − α confidence
interval of f(β) is [f(c), f(d)]. Thus a 1−α confidence interval for the Xj+1 :

Xj odds ratio is exp[β̂j ±zs]. Note that while the confidence interval for βj is

symmetric about β̂j, the confidence interval for exp(βj) is not. By the same
theorem just used, the MLE of Pi = Prob{Yi = 1|Xi} is

P̂i = [1 + exp(−Xiβ̂)]
−1. (10.25)

A confidence interval for Pi could be derived by computing the standard
error of P̂i, yielding a symmetric confidence interval. However, such an in-
terval would have the disadvantage that its endpoints could fall below zero
or exceed one. A better approach uses the fact that for large samples Xβ̂
is approximately normally distributed. An estimate of the variance of Xβ̂
in matrix notation is XVX ′ where V is the estimated variance–covariance
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matrix of β̂ (see Equation 9.51). This variance is the sum of all variances and

covariances of β̂ weighted by squares and products of the predictors. The es-
timated standard error of Xβ̂, s, is the square root of this variance estimate.
A 1− α confidence interval for Pi is then 7

{1 + exp[−(Xiβ̂ ± zs)]}−1. (10.26)

10.2.3 Minimum Sample Size Requirement

Suppose there were no covariates, so that the only parameter in the model is
the intercept. What is the sample size required to allow the estimate of the
intercept to be precise enough so that the predicted probability is within 0.1
of the true probability with 0.95 confidence, when the true intercept is in the
neighborhood of zero? The answer is n=96. What if there were one covariate,
and it was binary with a prevalence of 1

2? One would need 96 subjects with
X = 0 and 96 with X = 1 to have an upper bound on the margin of error
for estimating Prob{Y = 1|X = x} not exceed 0.1 for either value of xa.

Now consider a very simple single continuous predictor case in which X
has a normal distribution with mean zero and standard deviation σ, with the
true Prob{Y = 1|X = x} = [1+exp(−x)]−1. The expected number of events
is n

2
b. The following simulation answers the question “What should n be so

that the expected maximum absolute error (over x ∈ [−1.5, 1.5]) in P̂ is less
than ε?”

sigmas ← c(.5 , .75 , 1, 1.25 , 1.5 , 1.75 , 2, 2.5 , 3, 4)

ns ← seq(25, 300, by =25)

nsim ← 1000

xs ← seq(-1.5 , 1.5 , length =200)

pactual ← plogis (xs)

dn ← list (sigma =format (sigmas ), n=format (ns))

maxerr ← N1 ← array (NA , c(length (sigmas ), length (ns)), dn)

require(rms)

i ← 0

for(s in sigmas ) {

i ← i + 1

j ← 0

for(n in ns) {

a The general formula for the sample size required to achieve a margin of error of δ in
estimating a true probability of θ at the 0.95 confidence level is n = (1.96

δ
)2×θ(1−θ).

Set θ = 1
2
(intercept=0) for the worst case.

b The R code can easily be modified for other event frequencies, or the minimum of
the number of events and non-events for a dataset at hand can be compared with n

2
in this simulation. An average maximum absolute error of 0.05 corresponds roughly
to a half-width of the 0.95 confidence interval of 0.1.
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j ← j + 1

n1 ← maxe ← 0

for(k in 1: nsim ) {

x ← rnorm (n, 0, s)

P ← plogis (x)

y ← ifelse (runif (n) ≤ P, 1, 0)

n1 ← n1 + sum(y)

beta ← lrm.fit(x, y)$coefficients

phat ← plogis (beta [1] + beta [2] * xs)

maxe ← maxe + max(abs(phat - pactual ))

}

n1 ← n1/nsim

maxe ← maxe /nsim

maxerr [i,j] ← maxe

N1[i,j] ← n1

}

}

xrange ← range (xs)

simerr ← llist (N1 , maxerr , sigmas , ns , nsim , xrange )

maxe ← reShape(maxerr )

# Figure 10.4

xYplot (maxerr ∼ n, groups =sigma , data =maxe ,

ylab =expression (paste ( ' Average Maximum ' ,
abs(hat(P) - P))),

type = ' l ' , lty=rep(1:2, 5), label.curve =FALSE ,

abline =list (h=c(.15 , .1 , .05), col=gray (.85 )))

Key(.8 , .68 , other =list (cex=.7 ,

title =expression (∼∼∼∼∼∼∼∼∼∼∼sigma )))

10.3 Test Statistics

The likelihood ratio, score, and Wald statistics discussed earlier can be used
to test any hypothesis in the logistic model. The likelihood ratio test is gen-
erally preferred. When true parameters are near the null values all three
statistics usually agree. The Wald test has a significant drawback when the
true parameter value is very far from the null value. In such case the stan-
dard error estimate becomes too large. As β̂j increases from 0, the Wald test
statistic for H0 : βj = 0 becomes larger, but after a certain point it becomes

smaller. The statistic will eventually drop to zero if β̂j becomes infinite.278

Infinite estimates can occur in the logistic model especially when there is a
binary predictor whose mean is near 0 or 1. Wald statistics are especially
problematic in this case. For example, if 10 out of 20 males had a disease and
5 out of 5 females had the disease, the female : male odds ratio is infinite and
so is the logistic regression coefficient for sex. If such a situation occurs, the
likelihood ratio or score statistic should be used instead of the Wald statistic.
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Fig. 10.4 Simulated expected maximum error in estimating probabilities for x ∈
[−1.5, 1.5] with a single normally distributed X with mean zero

For k-sample (ANOVA-type) logistic models, logistic model statistics are
equivalent to contingency table χ2 statistics. As exemplified in the logistic
model relating sex to response described previously, the global likelihood
ratio statistic for all dummy variables in a k-sample model is identical to the
contingency table (k-sample binomial) likelihood ratio χ2 statistic. The score
statistic for this same situation turns out to be identical to the k− 1 degrees
of freedom Pearson χ2 for a k × 2 table.

As mentioned in Section 2.6, it can be dangerous to interpret individual
parameters, make pairwise treatment comparisons, or test linearity if the
overall test of association for a factor represented by multiple parameters is
insignificant.

10.4 Residuals

Several types of residuals can be computed for binary logistic model fits. Many
of these residuals are used to examine the influence of individual observations
on the fit. The partial residual can be used for directly assessing how each 8
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predictor should be transformed. For the ith observation, the partial residual
for the jth element of X is defined by

rij = β̂jXij +
Yi − P̂i

P̂i(1− P̂i)
, (10.27)

where Xij is the value of the jth variable in the ith observation, Yi is the

corresponding value of the response, and P̂i is the predicted probability that
Yi = 1. A smooth plot (using, e.g., loess) of Xij against rij will provide an
estimate of how Xj should be transformed, adjusting for the other Xs (using
their current transformations). Typically one tentatively models Xj linearly
and checks the smoothed plot for linearity. A U -shaped relationship in this
plot, for example, indicates that a squared term or spline function needs to
be added for Xj . This approach does assume additivity of predictors.9

10.5 Assessment of Model Fit

As the logistic regression model makes no distributional assumptions, only
the assumptions of linearity and additivity need to be verified (in addition
to the usual assumptions about independence of observations and inclusion
of important covariables). In ordinary linear regression there is no global
test for lack of model fit unless there are replicate observations at various
settings of X . This is because ordinary regression entails estimation of a
separate variance parameter σ2. In logistic regression there are global tests
for goodness of fit. Unfortunately, some of the most frequently used ones are
inappropriate. For example, it is common to see a deviance test of goodness
of fit based on the “residual” log likelihood, with P -values obtained from a χ2

distribution with n− p d.f. This P -value is inappropriate since the deviance
does not have an asymptotic χ2 distribution, due to the facts that the number
of parameters estimated is increasing at the same rate as n and the expected
cell frequencies are far below five (by definition).

Hosmer and Lemeshow304 have developed a commonly used test for good-
ness of fit for binary logistic models based on grouping into deciles of pre-
dicted probability and performing an ordinary χ2 test for the mean predicted
probability against the observed fraction of events (using 8 d.f. to account
for evaluating fit on the model development sample). The Hosmer–Lemeshow
test is dependent on the choice of how predictions are grouped303 and it is
not clear that the choice of the number of groups should be independent of n.
Hosmer et al.303 have compared a number of global goodness of fit tests for
binary logistic regression. They concluded that the simple unweighted sum of
squares test of Copas124 as modified by le Cessie and van Houwelingen387 is as
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good as any. They used a normal Z-test for the sum of squared errors (n×B,
where B is the Brier index in Equation 10.35). This test takes into account the
fact that one cannot obtain a χ2 distribution for the sum of squares. It also
takes into account the estimation of β. It is not yet clear for which types of
lack of fit this test has reasonable power. Returning to the external validation
case where uncertainty of β does not need to be accounted for, Stallard584 has
further documented the lack of power of the original Hosmer-Lemeshow test
and found more power with a logarithmic scoring rule (deviance test) and a
χ2 test that, unlike the simple unweighted sum of squares test, weights each
squared error by dividing it by P̂i(1− P̂i). A scaled χ2 distribution seemed to
provide the best approximation to the null distribution of the test statistics.

More power for detecting lack of fit is expected to be obtained from testing
specific alternatives to the model. In the model

logit{Y = 1|X} = β0 + β1X1 + β2X2, (10.28)

where X1 is binary and X2 is continuous, one needs to verify that the log
odds is related to X1 and X2 according to Figure 10.5.

X2
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t{
Y

=
1}

X1= 0

X1= 1

Fig. 10.5 Logistic regression assumptions for one binary and one continuous predic-
tor

The simplest method for validating that the data are consistent with the
no-interaction linear model involves stratifying the sample by X1 and quan-
tile groups (e.g., deciles) of X2.

265 Within each stratum the proportion of
responses P̂ is computed and the log odds calculated from log[P̂ /(1 − P̂ )].
The number of quantile groups should be such that there are at least 20 (and
perhaps many more) subjects in eachX1×X2 group. Otherwise, probabilities
cannot be estimated precisely enough to allow trends to be seen above“noise”
in the data. Since at least 3 X2 groups must be formed to allow assessment
of linearity, the total sample size must be at least 2 × 3 × 20 = 120 for this
method to work at all.
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Figure 10.6 demonstrates this method for a large sample size of 3504 sub-
jects stratified by sex and deciles of age. Linearity is apparent for males while
there is evidence for slight interaction between age and sex since the age trend
for females appears curved.

getHdata (acath )

acath $sex ← factor (acath $sex , 0:1, c( ' male ' , ' female ' ))
dd ← datadist (acath ); options(datadist = ' dd ' )
f ← lrm(sigdz ∼ rcs(age , 4) * sex , data =acath )

w ← function (...)

with (acath , {

plsmo (age , sigdz , group =sex , fun=qlogis , lty= ' dotted ' ,
add=TRUE , grid =TRUE)

af ← cut2 (age , g=10, levels.mean =TRUE )

prop ← qlogis (tapply (sigdz , list (af , sex), mean ,

na.rm =TRUE ))

agem ← as.numeric (row.names (prop ))

lpoints(agem , prop [, ' female ' ], pch=4, col= ' green ' )
lpoints(agem , prop [, ' male ' ], pch=2, col= ' green ' )

} ) # Figure 10.6

plot (Predict(f, age , sex), ylim=c(-2 ,4), addpanel =w,

label.curve =list (offset =unit (0.5 , ' cm ' )))

The subgrouping method requires relatively large sample sizes and does
not use continuous factors effectively. The ordering of values is not used at all
between intervals, and the estimate of the relationship for a continuous vari-
able has little resolution. Also, the method of grouping chosen (e.g., deciles
vs. quintiles vs. rounding) can alter the shape of the plot.

In this dataset with only two variables, it is efficient to use a nonpara-
metric smoother for age, separately for males and females. Nonparametric
smoothers, such as loess111 used here, work well for binary response vari-
ables (see Section 2.4.7); the logit transformation is made on the smoothed
probability estimates. The smoothed estimates are shown in Figure 10.6.10

When there are several predictors, the restricted cubic spline function is
better for estimating the true relationship between X2 and logit{Y = 1} for
continuous variables without assuming linearity. By fitting a model containing
X2 expanded into k−1 terms, where k is the number of knots, one can obtain
an estimate of the transformation of X2 as discussed in Section 2.4:

logit{Y = 1|X} = β̂0 + β̂1X1 + β̂2X2 + β̂3X
′
2 + β̂4X

′′
2

= β̂0 + β̂1X1 + f(X2), (10.29)

where X ′
2 and X ′′

2 are constructed spline variables (when k = 4). Plotting
the estimated spline function f(X2) versus X2 will estimate how the effect of
X2 should be modeled. If the sample is sufficiently large, the spline function
can be fitted separately for X1 = 0 and X1 = 1, allowing detection of even
unusual interaction patterns. A formal test of linearity in X2 is obtained by
testing H0 : β3 = β4 = 0.
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Fig. 10.6 Logit proportions of significant coronary artery disease by sex and deciles
of age for n=3504 patients, with spline fits (smooth curves). Spline fits are for k = 4
knots at age= 36, 48, 56, and 68 years, and interaction between age and sex is allowed.
Shaded bands are pointwise 0.95 confidence limits for predicted log odds. Smooth
nonparametric estimates are shown as dotted curves. Data courtesy of the Duke
Cardiovascular Disease Databank.

For testing interaction between X1 and X2, a product term (e.g., X1X2)
can be added to the model and its coefficient tested. A more general simul-
taneous test of linearity and lack of interaction for a two-variable model in
which one variable is binary (or is assumed linear) is obtained by fitting the
model

logit{Y = 1|X} = β0 + β1X1 + β2X2 + β3X
′
2 + β4X

′′
2

+ β5X1X2 + β6X1X
′
2 + β7X1X

′′
2 (10.30)

and testing H0 : β3 = . . . = β7 = 0. This formulation allows the shape of the
X2 effect to be completely different for each level of X1. There is virtually
no departure from linearity and additivity that cannot be detected from this
expanded model formulation. The most computationally efficient test for lack
of fit is the score test (e.g., X1 and X2 are forced into a tentative model
and the remaining variables are candidates). Figure 10.6 also depicts a fitted
spline logistic model with k = 4, allowing for general interaction between
age and sex as parameterized above. The fitted function, after expanding the
restricted cubic spline function for simplicity (see Equation 2.27), is given
above. Note the good agreement between the empirical estimates of log odds
and the spline fits and nonparametric estimates in this large dataset.

An analysis of log likelihood for this model and various sub-models is found
in Table 10.3. The χ2 for global tests is corrected for the intercept and the
degrees of freedom does not include the intercept.
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Table 10.3 LR χ2 tests for coronary artery disease risk

Model / Hypothesis Likelihood d.f. P Formula
Ratio χ2

a: sex, age (linear, no interaction) 766.0 2
b: sex, age, age × sex 768.2 3
c: sex, spline in age 769.4 4
d: sex, spline in age, interaction 782.5 7
H0 : no age × sex interaction 2.2 1 .14 (b− a)

given linearity
H0 : age linear | no interaction 3.4 2 .18 (c− a)
H0 : age linear, no interaction 16.6 5 .005 (d− a)
H0 : age linear, product form 14.4 4 .006 (d− b)

interaction
H0 : no interaction, allowing for 13.1 3 .004 (d− c)

nonlinearity in age

Table 10.4 AIC on χ2 scale by number of knots

k Model χ2 AIC
0 99.23 97.23
3 112.69 108.69
4 121.30 115.30
5 123.51 115.51
6 124.41 114.51

This analysis confirms the first impression from the graph, namely, that
age × sex interaction is present but it is not of the form of a simple product
between age and sex (change in slope). In the context of a linear age effect,
there is no significant product interaction effect (P = .14). Without allowing
for interaction, there is no significant nonlinear effect of age (P = .18). How-
ever, the general test of lack of fit with 5 d.f. indicates a significant departure
from the linear additive model (P = .005).

In Figure 10.7, data from 2332 patients who underwent cardiac catheteri-
zation at Duke University Medical Center and were found to have significant
(≥ 75%) diameter narrowing of at least one major coronary artery were ana-
lyzed (the dataset is available from the Web site). The relationship between
the time from the onset of symptoms of coronary artery disease (e.g., angina,
myocardial infarction) to the probability that the patient has severe (three-
vessel disease or left main disease—tvdlm) coronary disease was of interest.
There were 1129 patients with tvdlm. A logistic model was used with the
duration of symptoms appearing as a restricted cubic spline function with
k = 3, 4, 5, and 6 equally spaced knots in terms of quantiles between .05 and
.95. The best fit for the number of parameters was chosen using Akaike’s
information criterion (AIC), computed in Table 10.4 as the model likelihood
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ratio χ2 minus twice the number of parameters in the model aside from the
intercept. The linear model is denoted k = 0.

dz ← subset (acath , sigdz ==1)

dd ← datadist (dz)

f ← lrm(tvdlm ∼ rcs(cad.dur , 5), data =dz)

w ← function (...)

with (dz , {

plsmo (cad.dur , tvdlm , fun=qlogis , add=TRUE ,

grid =TRUE , lty= ' dotted ' )
x ← cut2 (cad.dur , g=15, levels.mean =TRUE )

prop ← qlogis (tapply (tvdlm , x, mean , na.rm =TRUE ))

xm ← as.numeric (names (prop ))

lpoints(xm , prop , pch=2, col= ' green ' )
} ) # Figure 10.7

plot (Predict(f, cad.dur), addpanel =w)
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Fig. 10.7 Estimated relationship between duration of symptoms and the log odds
of severe coronary artery disease for k = 5. Knots are marked with arrows. Solid line
is spline fit; dotted line is a nonparametric loess estimate.

Figure 10.7 displays the spline fit for k = 5. The triangles represent sub-
group estimates obtained by dividing the sample into groups of 150 patients.
For example, the leftmost triangle represents the logit of the proportion
of tvdlm in the 150 patients with the shortest duration of symptoms, ver-
sus the mean duration in that group. A Wald test of linearity, with 3 d.f.,
showed highly significant nonlinearity (χ2= 23.92 with 3 d.f.). The plot of the
spline transformation suggests a log transformation, and when log (duration
of symptoms in months + 1) was fitted in a logistic model, the log likelihood
of the model (119.33 with 1 d.f.) was virtually as good as the spline model
(123.51 with 4 d.f.); the corresponding Akaike information criteria (on the χ2

scale) are 117.33 and 115.51. To check for adequacy in the log transformation,
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a five-knot restricted cubic spline function was fitted to log10(months + 1),
as displayed in Figure 10.8. There is some evidence for lack of fit on the right,
but the Wald χ2 for testing linearity yields P = .27.

f ← lrm(tvdlm ∼ log10 (cad.dur + 1), data =dz)

w ← function (...)

with (dz , {

x ← cut2 (cad.dur , m=150, levels.mean =TRUE )

prop ← tapply (tvdlm , x, mean , na.rm =TRUE )

xm ← as.numeric (names (prop ))

lpoints(xm , prop , pch=2, col= ' green ' )
} )

# Figure 10.8

plot (Predict(f, cad.dur , fun=plogis ), ylab = ' P ' ,
ylim =c(.2 , .8), addpanel =w)
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Fig. 10.8 Fitted linear logistic model in log10(duration + 1), with subgroup es-
timates using groups of 150 patients. Fitted equation is logit(tvdlm) = −.9809 +
.7122 log10(months + 1).

If the model contains two continuous predictors, they may both be ex-
panded with spline functions in order to test linearity or to describe nonlinear
relationships. Testing interaction is more difficult here. If X1 is continuous,
one might temporarily group X1 into quantile groups. Consider the subset
of 2258 (1490 with disease) of the 3504 patients used in Figure 10.6 who
have serum cholesterol measured. A logistic model for predicting significant
coronary disease was fitted with age in tertiles (modeled with two dummy
variables), sex, age × sex interaction, four-knot restricted cubic spline in
cholesterol, and age tertile × cholesterol interaction. Except for the sex ad-
justment this model is equivalent to fitting three separate spline functions in
cholesterol, one for each age tertile. The fitted model is shown in Figure 10.9
for cholesterol and age tertile against logit of significant disease. Significant
age × cholesterol interaction is apparent from the figure and is suggested by
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the Wald χ2 statistic (10.03) that follows. Note that the test for linearity of
the interaction with respect to cholesterol is very insignificant (χ2 = 2.40 on
4 d.f.), but we retain it for now. The fitted function is

acath ← transform (acath ,

cholesterol = choleste ,

age.tertile = cut2 (age ,g=3),

sx = as.integer (acath $sex) - 1)

# sx for loess , need to code as numeric

dd ← datadist (acath ); options(datadist = ' dd ' )

# First model stratifies age into tertiles to get more

# empirical estimates of age x cholesterol interaction

f ← lrm(sigdz ∼ age.tertile *(sex + rcs(cholesterol ,4)),

data =acath )

print (f, latex =TRUE )

Logistic Regression Model

lrm(formula = sigdz ~ age.tertile * (sex + rcs(cholesterol, 4)),

data = acath)

Frequencies of Missing Values Due to Each Variable

sigdz age.tertile sex cholesterol

0 0 0 1246

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 2258 LR χ2 533.52 R2 0.291 C 0.780
0 768 d.f. 14 g 1.316 Dxy 0.560
1 1490 Pr(> χ2) < 0.0001 gr 3.729 γ 0.562

max |∂ logL
∂β | 2×10−8 gp 0.252 τa 0.251

Brier 0.173

Coef S.E. Wald Z Pr(> |Z|)
Intercept -0.4155 1.0987 -0.38 0.7053
age.tertile=[49,58) 0.8781 1.7337 0.51 0.6125
age.tertile=[58,82] 4.7861 1.8143 2.64 0.0083
sex=female -1.6123 0.1751 -9.21 < 0.0001
cholesterol 0.0029 0.0060 0.48 0.6347
cholesterol’ 0.0384 0.0242 1.59 0.1126
cholesterol” -0.1148 0.0768 -1.49 0.1350
age.tertile=[49,58) * sex=female -0.7900 0.2537 -3.11 0.0018
age.tertile=[58,82] * sex=female -0.4530 0.2978 -1.52 0.1283
age.tertile=[49,58) * cholesterol 0.0011 0.0095 0.11 0.9093
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Coef S.E. Wald Z Pr(> |Z|)
age.tertile=[58,82] * cholesterol -0.0158 0.0099 -1.59 0.1111
age.tertile=[49,58) * cholesterol’ -0.0183 0.0365 -0.50 0.6162
age.tertile=[58,82] * cholesterol’ 0.0127 0.0406 0.31 0.7550
age.tertile=[49,58) * cholesterol” 0.0582 0.1140 0.51 0.6095
age.tertile=[58,82] * cholesterol” -0.0092 0.1301 -0.07 0.9436

ltx(f)

Xβ̂ = −0.415 + 0.878[age.tertile ∈ [49, 58)] + 4.79[age.tertile ∈ [58, 82]] −
1.61[female] + 0.00287cholesterol + 1.52×10−6(cholesterol − 160)3+ − 4.53×
10−6(cholesterol − 208)3+ + 3.44× 10−6(cholesterol − 243)3+ − 4.28× 10−7

(cholesterol−319)3++[female][−0.79[age.tertile ∈ [49, 58)]−0.453[age.tertile ∈
[58, 82]]]+[age.tertile ∈ [49, 58)][0.00108cholesterol−7.23×10−7(cholesterol−
160)3+ + 2.3×10−6(cholesterol − 208)3+ − 1.84×10−6(cholesterol − 243)3+ +
2.69×10−7(cholesterol− 319)3+] + [age.tertile ∈ [58, 82]][−0.0158cholesterol+
5×10−7(cholesterol− 160)3+ − 3.64×10−7(cholesterol − 208)3+ − 5.15×10−7

(cholesterol− 243)3+ + 3.78×10−7(cholesterol− 319)3+].

# Table 10.5:

latex (anova (f), file = ' ' , size= ' smaller ' ,
caption= ' Crudely categorizing age into tertiles ' ,
label = ' tab:anova-tertiles ' )

yl ← c(-1 ,5)

plot (Predict(f, cholesterol , age.tertile ),

adj.subtitle =FALSE , ylim=yl) # Figure 10.9

Table 10.5 Crudely categorizing age into tertiles

χ2 d.f. P
age.tertile (Factor+Higher Order Factors) 120.74 10 < 0.0001
All Interactions 21.87 8 0.0052

sex (Factor+Higher Order Factors) 329.54 3 < 0.0001
All Interactions 9.78 2 0.0075

cholesterol (Factor+Higher Order Factors) 93.75 9 < 0.0001
All Interactions 10.03 6 0.1235
Nonlinear (Factor+Higher Order Factors) 9.96 6 0.1263

age.tertile × sex (Factor+Higher Order Factors) 9.78 2 0.0075
age.tertile × cholesterol (Factor+Higher Order Factors) 10.03 6 0.1235
Nonlinear 2.62 4 0.6237
Nonlinear Interaction : f(A,B) vs. AB 2.62 4 0.6237

TOTAL NONLINEAR 9.96 6 0.1263
TOTAL INTERACTION 21.87 8 0.0052
TOTAL NONLINEAR + INTERACTION 29.67 10 0.0010
TOTAL 410.75 14 < 0.0001
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Fig. 10.9 Log odds of significant coronary artery disease modeling age with two
dummy variables

Before fitting a parametric model that allows interaction between age and
cholesterol, let us use the local regression model of Cleveland et al.96 dis-
cussed in Section 2.4.7. This nonparametric smoothing method is not meant
to handle binary Y , but it can still provide useful graphical displays in the
binary case. Figure 10.10 depicts the fit from a local regression model predict-
ing Y = 1 = significant coronary artery disease. Predictors are sex (modeled
parametrically with a dummy variable), age, and cholesterol, the last two
fitted nonparametrically. The effect of not explicitly modeling a probability
is seen in the figure, as the predicted probabilities exceeded 1. Because of this
we do not take the logit transformation but leave the predicted values in raw
form. However, the overall shape is in agreement with Figure 10.10.

# Re-do model with continuous age

f ← loess (sigdz ∼ age * (sx + cholesterol ), data =acath ,

parametric ="sx", drop.square ="sx")

ages ← seq(25, 75, length =40)

chols ← seq(100, 400, length =40)

g ← expand.grid (cholesterol =chols , age=ages , sx=0)

# drop sex dimension of grid since held to 1 value

p ← drop (predict(f, g))

p[p < 0.001 ] ← 0.001

p[p > 0.999 ] ← 0.999

zl ← c(-3 , 6) # Figure 10.10

wireframe (qlogis (p) ∼ cholesterol *age ,

xlab =list (rot =30), ylab =list (rot=-40),

zlab =list (label = ' log odds ' , rot=90), zlim=zl ,

scales = list (arrows = FALSE ), data =g)

Chapter 2 discussed linear splines, which can be used to construct linear
spline surfaces by adding all cross-products of the linear variables and spline
terms in the model. With a sufficient number of knots for each predictor, the
linear spline surface can fit a wide variety of patterns. However, it requires
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a large number of parameters to be estimated. For the age–sex–cholesterol
example, a linear spline surface is fitted for age and cholesterol, and a sex
× age spline interaction is also allowed. Figure 10.11 shows a fit that placed
knots at quartiles of the two continuous variablesc. The algebraic form of the
fitted model is shown below.

f ← lrm(sigdz ∼ lsp(age ,c(46 ,52 ,59)) *

(sex + lsp(cholesterol ,c(196 ,224 ,259))) ,

data =acath )

ltx(f)

Xβ̂ = −1.83 + 0.0232 age + 0.0759(age − 46)+ − 0.0025(age − 52)+ +
2.27(age−59)++3.02[female]−0.0177cholesterol+0.114(cholesterol−196)+−
0.131(cholesterol−224)++0.0651(cholesterol−259)++[female][−0.112age+
0.0852 (age − 46)+ − 0.0302 (age − 52)+ + 0.176 (age − 59)+] + age
[0.000577 cholesterol− 0.00286 (cholesterol− 196)+ + 0.00382 (cholesterol−
224)+ − 0.00205 (cholesterol− 259)+] + (age− 46)+[−0.000936 cholesterol +
0.00643(cholesterol−196)+−0.0115(cholesterol−224)++0.00756(cholesterol−
259)+] + (age − 52)+[0.000433 cholesterol − 0.0037 (cholesterol − 196)+ +
0.00815 (cholesterol − 224)+ − 0.00715 (cholesterol − 259)+] + (age − 59)+
[−0.0124cholesterol+0.015(cholesterol−196)+−0.0067(cholesterol−224)++
0.00752 (cholesterol− 259)+].
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Fig. 10.10 Local regression fit for the logit of the probability of significant coronary
disease vs. age and cholesterol for males, based on the loess function.

c In the wireframe plots that follow, predictions for cholesterol–age combinations for
which fewer than 5 exterior points exist are not shown, so as to not extrapolate to
regions not supported by at least five points beyond the data perimeter.
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latex (anova (f), caption= ' Linear spline surface ' , file = ' ' ,
size = ' smaller ' , label = ' tab:anova-lsp ' ) # Table 10.6

perim ← with (acath ,

perimeter (cholesterol , age , xinc =20, n=5))

zl ← c(-2 , 4) # Figure 10.11

bplot (Predict(f, cholesterol , age , np =40), perim =perim ,

lfun =wireframe , zlim=zl , adj.subtitle =FALSE )

Table 10.6 Linear spline surface

χ2 d.f. P
age (Factor+Higher Order Factors) 164.17 24 < 0.0001
All Interactions 42.28 20 0.0025
Nonlinear (Factor+Higher Order Factors) 25.21 18 0.1192

sex (Factor+Higher Order Factors) 343.80 5 < 0.0001
All Interactions 23.90 4 0.0001

cholesterol (Factor+Higher Order Factors) 100.13 20 < 0.0001
All Interactions 16.27 16 0.4341
Nonlinear (Factor+Higher Order Factors) 16.35 15 0.3595

age × sex (Factor+Higher Order Factors) 23.90 4 0.0001
Nonlinear 12.97 3 0.0047
Nonlinear Interaction : f(A,B) vs. AB 12.97 3 0.0047

age × cholesterol (Factor+Higher Order Factors) 16.27 16 0.4341
Nonlinear 11.45 15 0.7204
Nonlinear Interaction : f(A,B) vs. AB 11.45 15 0.7204
f(A,B) vs. Af(B) + Bg(A) 9.38 9 0.4033
Nonlinear Interaction in age vs. Af(B) 9.99 12 0.6167
Nonlinear Interaction in cholesterol vs. Bg(A) 10.75 12 0.5503

TOTAL NONLINEAR 33.22 24 0.0995
TOTAL INTERACTION 42.28 20 0.0025
TOTAL NONLINEAR + INTERACTION 49.03 26 0.0041
TOTAL 449.26 29 < 0.0001

Chapter 2 also discussed a tensor spline extension of the restricted cubic
spline model to fit a smooth function of two predictors, f(X1, X2). Since
this function allows for general interaction between X1 and X2, the two-
variable cubic spline is a powerful tool for displaying and testing interaction,
assuming the sample size warrants estimating 2(k− 1)+ (k− 1)2 parameters
for a rectangular grid of k × k knots. Unlike the linear spline surface, the
cubic surface is smooth. It also requires fewer parameters in most situations.
The general cubic model with k = 4 (ignoring the sex effect here) is

β0 + β1X1 + β2X
′
1 + β3X

′′
1 + β4X2 + β5X

′
2 + β6X

′′
2 + β7X1X2

+ β8X1X
′
2 + β9X1X

′′
2 + β10X

′
1X2 + β11X

′
1X

′
2 (10.31)

+ +β12X
′
1X

′′
2 + β13X

′′
1X2 + β14X

′′
1X

′
2 + β15X

′′
1X

′′
2 ,
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where X ′
1, X

′′
1 , X

′
2, and X ′′

2 are restricted cubic spline component variables
for X1 and X2 for k = 4. A general test of interaction with 9 d.f. is H0 : β7 =
. . . = β15 = 0. A test of adequacy of a simple product form interaction is
H0 : β8 = . . . = β15 = 0 with 8 d.f. A 13 d.f. test of linearity and additivity
is H0 : β2 = β3 = β5 = β6 = β7 = β8 = β9 = β10 = β11 = β12 = β13 = β14 =
β15 = 0 .

Figure 10.12 depicts the fit of this model. There is excellent agreement with
Figures 10.9 and 10.11, including an increased (but probably insignificant)
risk with low cholesterol for age ≥ 57.

f ← lrm(sigdz ∼ rcs(age ,4)*(sex + rcs(cholesterol ,4)),

data =acath , tol =1 e-11)

ltx(f)

Xβ̂ = −6.41 + 0.166age − 0.00067(age − 36)3+ + 0.00543(age − 48)3+ −
0.00727(age−56)3++0.00251(age−68)3++2.87[female]+0.00979cholesterol+
1.96× 10−6(cholesterol − 160)3+ − 7.16× 10−6(cholesterol − 208)3+ + 6.35×
10−6(cholesterol−243)3+−1.16×10−6(cholesterol−319)3++[female][−0.109age+
7.52×10−5(age−36)3++0.00015(age−48)3+−0.00045(age−56)3++0.000225(age−
68)3+] + age[−0.00028cholesterol + 2.68×10−9(cholesterol − 160)3+ + 3.03×
10−8(cholesterol − 208)3+ − 4.99× 10−8(cholesterol − 243)3+ + 1.69× 10−8

(cholesterol − 319)3+] + age′[0.00341cholesterol − 4.02× 10−7(cholesterol −
160)3++9.71×10−7(cholesterol−208)3+−5.79×10−7(cholesterol−243)3++8.79×
10−9(cholesterol−319)3+]+age′′[−0.029cholesterol+3.04×10−6(cholesterol−
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Fig. 10.11 Linear spline surface for males, with knots for age at 46, 52, 59 and knots
for cholesterol at 196, 224, and 259 (quartiles).
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160)3+ − 7.34×10−6(cholesterol− 208)3+ + 4.36×10−6(cholesterol− 243)3+ −
5.82×10−8(cholesterol− 319)3+].

latex (anova (f), caption= ' Cubic spline surface ' , file = ' ' ,
size = ' smaller ' , label = ' tab:anova-rcs ' ) #Table 10.7

# Figure 10.12:

bplot (Predict(f, cholesterol , age , np =40), perim =perim ,

lfun =wireframe , zlim=zl , adj.subtitle =FALSE )

Table 10.7 Cubic spline surface

χ2 d.f. P
age (Factor+Higher Order Factors) 165.23 15 < 0.0001
All Interactions 37.32 12 0.0002
Nonlinear (Factor+Higher Order Factors) 21.01 10 0.0210

sex (Factor+Higher Order Factors) 343.67 4 < 0.0001
All Interactions 23.31 3 < 0.0001

cholesterol (Factor+Higher Order Factors) 97.50 12 < 0.0001
All Interactions 12.95 9 0.1649
Nonlinear (Factor+Higher Order Factors) 13.62 8 0.0923

age × sex (Factor+Higher Order Factors) 23.31 3 < 0.0001
Nonlinear 13.37 2 0.0013
Nonlinear Interaction : f(A,B) vs. AB 13.37 2 0.0013

age × cholesterol (Factor+Higher Order Factors) 12.95 9 0.1649
Nonlinear 7.27 8 0.5078
Nonlinear Interaction : f(A,B) vs. AB 7.27 8 0.5078
f(A,B) vs. Af(B) + Bg(A) 5.41 4 0.2480
Nonlinear Interaction in age vs. Af(B) 6.44 6 0.3753
Nonlinear Interaction in cholesterol vs. Bg(A) 6.27 6 0.3931

TOTAL NONLINEAR 29.22 14 0.0097
TOTAL INTERACTION 37.32 12 0.0002
TOTAL NONLINEAR + INTERACTION 45.41 16 0.0001
TOTAL 450.88 19 < 0.0001

Statistics for testing age × cholesterol components of this fit are above.
None of the nonlinear interaction components is significant, but we again
retain them.

The general interaction model can be restricted to be of the form

f(X1, X2) = f1(X1) + f2(X2) +X1g2(X2) +X2g1(X1) (10.32)

by removing the parameters β11, β12, β14, and β15 from the model. The previ-
ous table of Wald statistics included a test of adequacy of this reduced form
(χ2 = 5.41 on 4 d.f., P = .248). The resulting fit is in Figure 10.13.

f ← lrm(sigdz ∼ sex*rcs(age ,4) + rcs(cholesterol ,4) +

rcs(age ,4) %ia% rcs(cholesterol ,4), data =acath )

latex (anova (f), file = ' ' , size= ' smaller ' ,
caption= ' Singly nonlinear cubic spline surface ' ,
label = ' tab:anova-ria ' ) #Table 10.8
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Fig. 10.12 Restricted cubic spline surface in two variables, each with k = 4 knots

Table 10.8 Singly nonlinear cubic spline surface

χ2 d.f. P
sex (Factor+Higher Order Factors) 343.42 4 < 0.0001
All Interactions 24.05 3 < 0.0001

age (Factor+Higher Order Factors) 169.35 11 < 0.0001
All Interactions 34.80 8 < 0.0001
Nonlinear (Factor+Higher Order Factors) 16.55 6 0.0111

cholesterol (Factor+Higher Order Factors) 93.62 8 < 0.0001
All Interactions 10.83 5 0.0548
Nonlinear (Factor+Higher Order Factors) 10.87 4 0.0281

age × cholesterol (Factor+Higher Order Factors) 10.83 5 0.0548
Nonlinear 3.12 4 0.5372
Nonlinear Interaction : f(A,B) vs. AB 3.12 4 0.5372
Nonlinear Interaction in age vs. Af(B) 1.60 2 0.4496
Nonlinear Interaction in cholesterol vs. Bg(A) 1.64 2 0.4400

sex × age (Factor+Higher Order Factors) 24.05 3 < 0.0001
Nonlinear 13.58 2 0.0011
Nonlinear Interaction : f(A,B) vs. AB 13.58 2 0.0011

TOTAL NONLINEAR 27.89 10 0.0019
TOTAL INTERACTION 34.80 8 < 0.0001
TOTAL NONLINEAR + INTERACTION 45.45 12 < 0.0001
TOTAL 453.10 15 < 0.0001

# Figure 10.13:

bplot (Predict(f, cholesterol , age , np =40), perim =perim ,

lfun =wireframe , zlim=zl , adj.subtitle =FALSE )

ltx(f)
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Table 10.9 Linear interaction surface

χ2 d.f. P
age (Factor+Higher Order Factors) 167.83 7 < 0.0001
All Interactions 31.03 4 < 0.0001
Nonlinear (Factor+Higher Order Factors) 14.58 4 0.0057

sex (Factor+Higher Order Factors) 345.88 4 < 0.0001
All Interactions 22.30 3 0.0001

cholesterol (Factor+Higher Order Factors) 89.37 4 < 0.0001
All Interactions 7.99 1 0.0047
Nonlinear 10.65 2 0.0049

age × cholesterol (Factor+Higher Order Factors) 7.99 1 0.0047
age × sex (Factor+Higher Order Factors) 22.30 3 0.0001
Nonlinear 12.06 2 0.0024
Nonlinear Interaction : f(A,B) vs. AB 12.06 2 0.0024

TOTAL NONLINEAR 25.72 6 0.0003
TOTAL INTERACTION 31.03 4 < 0.0001
TOTAL NONLINEAR + INTERACTION 43.59 8 < 0.0001
TOTAL 452.75 11 < 0.0001

Xβ̂ = −7.2+2.96[female]+0.164age+7.23×10−5(age−36)3+−0.000106(age−
48)3+ − 1.63×10−5(age− 56)3+ + 4.99×10−5(age− 68)3+ +0.0148cholesterol+
1.21× 10−6(cholesterol − 160)3+ − 5.5× 10−6(cholesterol − 208)3+ + 5.5×
10−6(cholesterol − 243)3+ − 1.21×10−6(cholesterol − 319)3+ + age[−0.00029
cholesterol+9.28×10−9(cholesterol−160)3++1.7×10−8(cholesterol−208)3+−
4.43×10−8(cholesterol−243)3++1.79×10−8(cholesterol−319)3+]+cholesterol[2.3×
10−7(age− 36)3+ + 4.21×10−7(age− 48)3+ − 1.31×10−6(age− 56)3+ + 6.64×
10−7(age−68)3+]+[female][−0.111age+8.03×10−5(age−36)3++0.000135(age−
48)3+ − 0.00044(age− 56)3+ + 0.000224(age− 68)3+].

The fit is similar to the former one except that the climb in risk for low-
cholesterol older subjects is less pronounced. The test for nonlinear interac-
tion is now more concentrated (P = .54 with 4 d.f.). Figure 10.14 accordingly
depicts a fit that allows age and cholesterol to have nonlinear main effects,
but restricts the interaction to be a product between (untransformed) age
and cholesterol. The function agrees substantially with the previous fit.

f ← lrm (sigdz ∼ rcs(age ,4) *sex + rcs(cholesterol ,4) +

age %ia% cholesterol , data=acath)

latex (anova (f), caption = ' Linear interaction surface ' , file= ' ' ,
size= ' smaller ' , label = ' tab:anova-lia ' ) #Table 10.9

# Figure 10.14:

bplot (Predict(f, cholesterol , age , np =40), perim =perim ,

lfun =wireframe , zlim=zl , adj.subtitle =FALSE )

f.linia ← f # save linear interaction fit for later

ltx(f)
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Fig. 10.13 Restricted cubic spline fit with age × spline(cholesterol) and cholesterol
× spline(age)

Xβ̂ = −7.36+0.182age−5.18×10−5(age−36)3++8.45×10−5(age−48)3+−2.91×
10−6(age− 56)3+ − 2.99×10−5(age− 68)3+ + 2.8[female] + 0.0139cholesterol+
1.76× 10−6(cholesterol − 160)3+ − 4.88× 10−6(cholesterol − 208)3+ + 3.45×
10−6(cholesterol− 243)3+ − 3.26×10−7(cholesterol− 319)3+ − 0.00034 age ×
cholesterol + [female][−0.107age + 7.71×10−5(age − 36)3+ + 0.000115(age−
48)3+ − 0.000398(age− 56)3+ + 0.000205(age− 68)3+].

The Wald test for age × cholesterol interaction yields χ2 = 7.99 with 1
d.f., P = .005. These analyses favor the nonlinear model with simple prod-
uct interaction in Figure 10.14 as best representing the relationships among
cholesterol, age, and probability of prognostically severe coronary artery dis-
ease. A nomogram depicting this model is shown in Figure 10.21.

Using this simple product interaction model, Figure 10.15 displays pre-
dicted cholesterol effects at the mean age within each age tertile. Substantial
agreement with Figure 10.9 is apparent.

# Make estimates of cholesterol effects for mean age in

# tertiles corresponding to initial analysis

mean.age ←
with (acath ,

as.vector (tapply (age , age.tertile , mean , na.rm =TRUE )))

plot (Predict(f, cholesterol , age=round (mean.age ,2),

sex="male"),

adj.subtitle =FALSE , ylim=yl) #3 curves , Figure 10.15
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Fig. 10.14 Spline fit with nonlinear effects of cholesterol and age and a simple
product interaction
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Fig. 10.15 Predictions from linear interaction model with mean age in tertiles indi-
cated.

The partial residuals discussed in Section 10.4 can be used to check lo-
gistic model fit (although it may be difficult to deal with interactions). As
an example, reconsider the “duration of symptoms” fit in Figure 10.7. Fig-
ure 10.16 displays “loess smoothed” and raw partial residuals for the original
and log-transformed variable. The latter provides a more linear relationship,
especially where the data are most dense.
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Table 10.10 Merits of Methods for Checking Logistic Model Assumptions

Method Choice Assumes Uses Ordering Low Good
Required Additivity of X Variance Resolution

on X

Stratification Intervals
Smoother on X1 Bandwidth x x x
stratifying on X2 (not on X2) (if min. strat.) (X1)
Smooth partial Bandwidth x x x x
residual plot
Spline model Knots x x x x
for all Xs

f ← lrm(tvdlm ∼ cad.dur , data=dz , x=TRUE , y=TRUE )

resid (f, "partial", pl="loess ", xlim =c(0,250), ylim=c(-3 ,3))

scat1d (dz$cad.dur)

log.cad.dur ← log10 (dz$cad.dur + 1)

f ← lrm(tvdlm ∼ log.cad.dur , data =dz , x=TRUE , y=TRUE)

resid (f, "partial", pl="loess ", ylim =c(-3 ,3))

scat1d (log.cad.dur ) # Figure 10.16
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Fig. 10.16 Partial residuals for duration and log10(duration+1). Data density shown
at top of each plot.

Table 10.10 summarizes the relative merits of stratification, nonparametric
smoothers, and regression splines for determining or checking binary logistic
model fits.
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10.6 Collinearity

The variance inflation factors (VIFs) discussed in Section 4.6 can apply to
any regression fit.147, 654 These VIFs allow the analyst to isolate which vari-
able(s) are responsible for highly correlated parameter estimates. Recall that,
in general, collinearity is not a large problem compared with nonlinearity and
overfitting.

10.7 Overly Influential Observations

Pregibon511 developed a number of regression diagnostics that apply to the
family of regression models of which logistic regression is a member. Influence
statistics based on the “leave-out-one”method use an approximation to avoid
having to refit the model n times for n observations. This approximation
uses the fit and covariance matrix at the last iteration and assumes that
the “weights” in the weighted least squares fit can be kept constant, yielding
a computationally feasible one-step estimate of the leave-out-one regression
coefficients.

Hosmer and Lemeshow [305, pp. 149–170] discuss many diagnostics for
logistic regression and show how the final fit can be used in any least squares
program that provides diagnostics. A new dependent variable to be used in
that way is

Zi = Xβ̂ +
Yi − P̂i

Vi
, (10.33)

where Vi = P̂i(1− P̂i), and P̂i = [1+exp−Xβ̂]−1 is the predicted probability
that Yi = 1. The Vi, i = 1, 2, . . . , n are used as weights in an ordinary weighted
least squares fit of X against Z. This least squares fit will provide regression
coefficients identical to b. The new standard errors will be off from the actual
logistic model ones by a constant.

As discussed in Section 4.9, the standardized change in the regression co-
efficients upon leaving out each observation in turn (DFBETAS) is one of the
most useful diagnostics, as these can pinpoint which observations are influ-
ential on each part of the model. After carefully modeling predictor trans-
formations, there should be no lack of fit due to improper transformations.
However, as the white blood count example in Section 4.9 indicates, it is
commonly the case that extreme predictor values can still have too much
influence on the estimates of coefficients involving that predictor.

In the age–sex–response example of Section 10.1.3, both DFBETAS and
DFFITS identified the same influential observations. The observation given
by age = 48 sex = female response = 1 was influential for both age and sex,
while the observation age = 34 sex = male response = 1 was influential for
age and the observation age = 50 sex = male response = 0 was influential
for sex. It can readily be seen from Figure 10.3 that these points do not fit
the overall trends in the data. However, as these data were simulated from a
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Table 10.11 Example influence statistics

Females Males
DFBETAS DFFITS DFBETAS DFFITS

Intercept Age Sex Intercept Age Sex
0.0 0.0 0.0 0 0.5 -0.5 -0.2 2
0.0 0.0 0.0 0 0.2 -0.3 0.0 1
0.0 0.0 0.0 0 -0.1 0.1 0.0 -1
0.0 0.0 0.0 0 -0.1 0.1 0.0 -1
-0.1 0.1 0.1 0 -0.1 0.1 -0.1 -1
-0.1 0.1 0.1 0 0.0 0.0 0.1 0
0.7 -0.7 -0.8 3 0.0 0.0 0.1 0
-0.1 0.1 0.1 0 0.0 0.0 0.1 0
-0.1 0.1 0.1 0 0.0 0.0 -0.2 -1
-0.1 0.1 0.1 0 0.1 -0.1 -0.2 -1
-0.1 0.1 0.1 0 0.0 0.0 0.1 0
-0.1 0.0 0.1 0 -0.1 0.1 0.1 0
-0.1 0.0 0.1 0 -0.1 0.1 0.1 0
0.1 0.0 -0.2 1 0.3 -0.3 -0.4 -2
0.0 0.0 0.1 -1 -0.1 0.1 0.1 0
0.1 -0.2 0.0 -1 -0.1 0.1 0.1 0
-0.1 0.2 0.0 1 -0.1 0.1 0.1 0
-0.2 0.2 0.0 1 0.0 0.0 0.0 0
-0.2 0.2 0.0 1 0.0 0.0 0.0 0
-0.2 0.2 0.1 1 0.0 0.0 0.0 0

population model that is truly linear in age and additive in age and sex, the
apparent influential observations are just random occurrences. It is unwise
to assume that in real data all points will agree with overall trends. Removal
of such points would bias the results, making the model apparently more
predictive than it will be prospectively. See Table 10.11.11

f ← update (fasr , x=TRUE , y=TRUE )

which.influence (f, .4) # Table 10.11

10.8 Quantifying Predictive Ability

The test statistics discussed above allow one to test whether a factor or set of
factors is related to the response. If the sample is sufficiently large, a factor
that grades risk from .01 to .02 may be a significant risk factor. However, that
factor is not very useful in predicting the response for an individual subject.
There is controversy regarding the appropriateness of R2 from ordinary least
squares in this setting.136, 424 The generalized R2

N index of Nagelkerke471 and12

Cragg and Uhler137, Maddala431, and Magee432 described in Section 9.8.3
can be useful for quantifying the predictive strength of a model:
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R2
N =

1− exp(−LR/n)

1− exp(−L0/n)
, (10.34)

where LR is the global log likelihood ratio statistic for testing the importance
of all p predictors in the model and L0 is the −2 log likelihood for the null
model. 13

Tjur613 coined the term “coefficient of discrimination” D, defined as the
average P̂ when Y = 1 minus the average P̂ when Y = 0, and showed how it
ties in with sum of squares–based R2 measures. D has many advantages as
an index of predictive powerd.

Linnet416 advocates quadratic and logarithmic probability scoring rules
for measuring predictive performance for probability models. Linnet shows
how to bootstrap such measures to get bias-corrected estimates and how to
use bootstrapping to compare two correlated scores. The quadratic scoring
rule is Brier’s score, frequently used in judging meteorologic forecasts30, 73:

B =
1

n

n∑
i=1

(P̂i − Yi)
2, (10.35)

where P̂i is the predicted probability and Yi the corresponding observed re-
sponse for the ith observation. 14

A unitless index of the strength of the rank correlation between predicted
probability of response and actual response is a more interpretable measure of
the fitted model’s predictive discrimination. One such index is the probability
of concordance, c, between predicted probability and response. The c index,
which is derived from the Wilcoxon–Mann–Whitney two-sample rank test,
is computed by taking all possible pairs of subjects such that one subject
responded and the other did not. The index is the proportion of such pairs
with the responder having a higher predicted probability of response than
the nonresponder.

Bamber39 and Hanley and McNeil255 have shown that c is identical to a
widely used measure of diagnostic discrimination, the area under a “receiver
operating characteristic”(ROC) curve. A value of c of .5 indicates random pre-
dictions, and a value of 1 indicates perfect prediction (i.e., perfect separation
of responders and nonresponders). A model having c greater than roughly
.8 has some utility in predicting the responses of individual subjects. The
concordance index is also related to another widely used index, Somers’ Dxy

rank correlation579 between predicted probabilities and observed responses,
by the identity

Dxy = 2(c− .5). (10.36)

Dxy is the difference between concordance and discordance probabilities.
When Dxy = 0, the model is making random predictions. When Dxy = 1,

d Note that D and B (below) and other indexes not related to c (below) do not work
well in case-control studies because of their reliance on absolute probability estimates.
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the predictions are perfectly discriminating. These rank-based indexes have
the advantage of being insensitive to the prevalence of positive responses.15

A commonly used measure of predictive ability for binary logistic models is
the fraction of correctly classified responses. Here one chooses a cutoff on the
predicted probability of a positive response and then predicts that a response
will be positive if the predicted probability exceeds this cutoff. There are a
number of reasons why this measure should be avoided.

1. It’s highly dependent on the cutpoint chosen for a “positive” prediction.
2. You can add a highly significant variable to the model and have the per-

centage classified correctly actually decrease. Classification error is a very
insensitive and statistically inefficient measure264, 633 since if the threshold
for “positive” is, say 0.75, a prediction of 0.99 rates the same as one of
0.751.

3. It gets away from the purpose of fitting a logistic model. A logistic model
is a model for the probability of an event, not a model for the occurrence
of the event. For example, suppose that the event we are predicting is
the probability of being struck by lightning. Without having any data,
we would predict that you won’t get struck by lightning. However, you
might develop an interesting model that discovers real risk factors that
yield probabilities of being struck that range from 0.000000001 to 0.001.

4. If you make a classification rule from a probability model, you are being
presumptuous. Suppose that a model is developed to assist physicians
in diagnosing a disease. Physicians sometimes profess to desiring a binary
decision model, but if given a probability they will rightfully apply different
thresholds for treating different patients or for ordering other diagnostic
tests. Even though the age of the patient may be a strong predictor of
the probability of disease, the physician will often use a lower threshold
of disease likelihood for treating a young patient. This usage is above and
beyond how age affects the likelihood.

5. If a disease were present in only 0.02 of the population, one could be 0.98
accurate in diagnosing the disease by ruling that everyone is disease–free,
i.e., by avoiding predictors. The proportion classified correctly fails to take
the difficulty of the task into account.

6. van Houwelingen and le Cessie633 demonstrated a peculiar property that
occurs when you try to obtain an honest estimate of classification error
using cross-validation. The cross-validated error rate corrects the apparent
error rate only if the predicted probability is exactly 1/2 or is 1/2±1/(2n).
The cross-validation estimate of optimism is“zero for n even and negligibly
small for n odd.”Better measures of error rate such as the Brier score and
logarithmic scoring rule do not have this problem. They also have the
nice property of being maximized when the predicted probabilities are the
population probabilities.416.16
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10.9 Validating the Fitted Model

The major cause of unreliable models is overfitting the data. The methods
described in Section 5.3 can be used to assess the accuracy of models fairly.
If a sample has been held out and never used to study associations with the
response, indexes of predictive accuracy can now be estimated using that
sample. More efficient is cross-validation, and bootstrapping is the most ef-
ficient validation procedure. As discussed earlier, bootstrapping does not re-
quire holding out any data, since all aspects of model development (stepwise
variable selection, tests of linearity, estimation of coefficients, etc.) are re-
validated on samples taken with replacement from the whole sample.

Cox130 proposed and Harrell and Lee267 and Miller et al.457 further de-
veloped the idea of fitting a new binary logistic model to a new sample to
estimate the relationship between the predicted probability and the observed
outcome in that sample. This fit provides a simple calibration equation that
can be used to quantify unreliability (lack of calibration) and to calibrate
the predictions for future use. This logistic calibration also leads to indexes
of unreliability (U), discrimination (D), and overall quality (Q = D − U)
which are derived from likelihood ratio tests267. Q is a logarithmic scoring
rule, which can be compared with Brier’s index (Equation 10.35). See [633]

for many more ideas.
With bootstrapping we do not have a separate validation sample for as-

sessing calibration, but we can estimate the overoptimism in assuming that
the final model needs no calibration, that is, it has overall intercept=0 and
slope=1. As discussed in Section 5.3, refitting the model

Pc = Prob{Y = 1|Xβ̂} = [1 + exp−(γ0 + γ1Xβ̂)]−1 (10.37)

(where Pc denotes the calibrated probability and the original predicted prob-

ability is P̂ = [1 + exp(−Xβ̂)]−1) in the original sample will always result in
γ = (γ0, γ1) = (0, 1), since a logistic model will always “fit” the training sam-
ple when assessed overall. We thus estimate γ by using Efron’s172 method to
estimate the overoptimism in (0, 1) to obtain bias-corrected estimates of the
true calibration. Simulations have shown this method produces an efficient
estimate of γ.259

More stringent calibration checks can be made by running separate calibra-
tions for different covariate levels. Smooth nonparametric curves described in
Section 10.11 are more flexible than the linear-logit calibration method just
described.

A good set of indexes to estimate for summarizing a model validation is the
c or Dxy indexes and measures of calibration. In addition, the overoptimism
in the indexes may be reported to quantify the amount of overfitting present.
The estimate of γ can be used to draw a calibration curve by plotting P̂
on the x-axis and P̂c = [1 + exp−(γ0 + γ1L)]

−1 on the y-axis, where L =
logit(P̂ ).130, 267 An easily interpreted index of unreliability, Emax, follows
immediately from this calibration model:
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Emax(a, b) = max
a≤P̂≤b

|P̂ − P̂c|, (10.38)

the maximum error in predicted probabilities over the range a ≤ P̂ ≤ b. In
some cases, we would compute the maximum absolute difference in predicted
and calibrated probabilities over the entire interval, that is, use Emax(0, 1).
The null hypothesis H0 : Emax(0, 1) = 0 can easily be tested by testing
H0 : γ0 = 0, γ1 = 1 as above. Since Emax does not weight the discrepancies
by the actual distribution of predictions, it may be preferable to compute the
average absolute discrepancy over the actual distribution of predictions (or
to use a mean squared error, incorporating the same calibration function).

If stepwise variable selection is being done, a matrix depicting which factors
are selected at each bootstrap sample will shed light on how arbitrary is the
selection of “significant” factors. See Section 5.3 for reasons to compare full
and stepwise model fits.

As an example using bootstrapping to validate the calibration and discrim-
ination of a model, consider the data in Section 10.1.3. Using 150 samples with
replacement, we first validate the additive model with age and sex forced into
every model. The optimism-corrected discrimination and calibration statistics
produced by validate (see Section 10.11) are in the table below.

d ← sex.age.response

dd ← datadist (d); options(datadist = ' dd ' )
f ← lrm(response ∼ sex + age , data =d, x=TRUE , y=TRUE)

set.seed (3) # for reproducibility

v1 ← validate (f, B=150)

latex (v1 ,

caption= ' Bootstrap Validation , 2 Predictors Without

Stepdown ' , digits =2, size= ' Ssize ' , file = ' ' )

Bootstrap Validation, 2 Predictors Without Stepdown

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.70 0.70 0.67 0.04 0.66 150
R2 0.45 0.48 0.43 0.05 0.40 150
Intercept 0.00 0.00 0.01 −0.01 0.01 150
Slope 1.00 1.00 0.91 0.09 0.91 150
Emax 0.00 0.00 0.02 0.02 0.02 150
D 0.39 0.44 0.36 0.07 0.32 150
U −0.05 −0.05 0.04 −0.09 0.04 150
Q 0.44 0.49 0.32 0.16 0.28 150
B 0.16 0.15 0.18 −0.03 0.19 150
g 2.10 2.49 1.97 0.52 1.58 150
gp 0.35 0.35 0.34 0.01 0.34 150
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Now we incorporate variable selection. The variables selected in the first
10 bootstrap replications are shown below. The apparent Somers’ Dxy is 0.7,
and the bias-corrected Dxy is 0.66. The slope shrinkage factor is 0.91. The
maximum absolute error in predicted probability is estimated to be 0.02.

We next allow for step-down variable selection at each resample. For illus-
tration purposes only, we use a suboptimal stopping rule based on significance
of individual variables at the α = 0.10 level. Of the 150 repetitions, both age
and sex were selected in 137, and neither variable was selected in 3 samples.
The validation statistics are in the table below.

v2 ← validate (f, B=150, bw=TRUE ,

rule = ' p ' , sls=.1 , type = ' individual ' )

latex (v2 ,

caption = ' Bootstrap Validation , 2 Predictors with Stepdown ' ,
digits =2, B=15, file= ' ' , size= ' Ssize ')

Bootstrap Validation, 2 Predictors with Stepdown

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.70 0.70 0.64 0.07 0.63 150
R2 0.45 0.49 0.41 0.09 0.37 150
Intercept 0.00 0.00 −0.04 0.04 −0.04 150
Slope 1.00 1.00 0.84 0.16 0.84 150
Emax 0.00 0.00 0.05 0.05 0.05 150
D 0.39 0.45 0.34 0.11 0.28 150
U −0.05 −0.05 0.06 −0.11 0.06 150
Q 0.44 0.50 0.28 0.22 0.22 150
B 0.16 0.14 0.18 −0.04 0.20 150
g 2.10 2.60 1.88 0.72 1.38 150
gp 0.35 0.35 0.33 0.02 0.33 150

Factors Retained in Backwards Elimination
First 15 Resamples
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sex age

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
•

Frequencies of Numbers of Factors Retained

0 1 2
3 10 137

The apparent Somers’Dxy is 0.7 for the original stepwise model (which ac-
tually retained both age and sex), and the bias-correctedDxy is 0.63, slightly
worse than the more correct model which forced in both variables. The cal-
ibration was also slightly worse as reflected in the slope correction factor
estimate of 0.84 versus 0.91.

Next, five additional candidate variables are considered. These variables
are random uniform variables, x1, . . . , x5 on the [0, 1] interval, and have no
association with the response.

set.seed (133)

n ← nrow (d)

x1 ← runif (n)

x2 ← runif (n)

x3 ← runif (n)

x4 ← runif (n)

x5 ← runif (n)

f ← lrm(response ∼ age + sex + x1 + x2 + x3 + x4 + x5 ,

data =d, x=TRUE , y=TRUE )

v3 ← validate (f, B=150, bw=TRUE ,

rule = ' p ' , sls=.1 , type = ' individual ' )

k ← attr (v3 , ' kept ' )
# Compute number of x1-x5 selected

nx ← apply (k[,3:7], 1, sum)

# Get selections of age and sex

v ← colnames (k)

as ← apply (k[,1:2], 1,
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function (x) paste (v[1:2][ x], collapse = ' , ' ))
table (paste (as , ' ' , nx , ' Xs ' ))

0 Xs 1 Xs age 2 Xs age, sex 0 Xs
50 3 1 34

age , sex 1 Xs age, sex 2 Xs age , sex 3 Xs age, sex 4 Xs
17 11 7 1

sex 0 Xs sex 1 Xs
12 3

latex (v3 ,

caption= ' Bootstrap Validation with 5 Noise Variables and

Stepdown ' , digits =2, B=15, size = ' Ssize ' , file = ' ' )

Bootstrap Validation with 5 Noise Variables and Stepdown

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.70 0.47 0.38 0.09 0.60 139
R2 0.45 0.34 0.23 0.11 0.34 139
Intercept 0.00 0.00 0.03 −0.03 0.03 139
Slope 1.00 1.00 0.78 0.22 0.78 139
Emax 0.00 0.00 0.06 0.06 0.06 139
D 0.39 0.31 0.18 0.13 0.26 139
U −0.05 −0.05 0.07 −0.12 0.07 139
Q 0.44 0.36 0.11 0.25 0.19 139
B 0.16 0.17 0.22 −0.04 0.20 139
g 2.10 1.81 1.06 0.75 1.36 139
gp 0.35 0.23 0.19 0.04 0.31 139

Factors Retained in Backwards Elimination
First 15 Resamples

age sex x1 x2 x3 x4 x5

• • • • • •
• • • •

• •

• • • •
• • •

• •
• •
• • •

• • •
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Frequencies of Numbers of Factors Retained

0 1 2 3 4 5 6
50 15 37 18 11 7 1

Using step-down variable selection with the same stopping rule as before,
the “final” model on the original sample correctly deleted x1, . . . , x5. Of the
150 bootstrap repetitions, 11 samples yielded a singularity or non-convergence
either in the full-model fit or after step-down variable selection. Of the 139
successful repetitions, the frequencies of the number of factors selected, as
well as the frequency of variable combinations selected, are shown above.
Validation statistics are also shown above.

Figure 10.17 depicts the calibration (reliability) curves for the three strate-
gies using the corrected intercept and slope estimates in the above tables as
γ0 and γ1, and the logistic calibration model Pc = [1 + exp−(γ0 + γ1L)]

−1,
where Pc is the “actual” or calibrated probability, L is logit(P̂ ), and P̂ is the
predicted probability. The shape of the calibration curves (driven by slopes
< 1) is typical of overfitting—low predicted probabilities are too low and high
predicted probabilities are too high. Predictions near the overall prevalence
of the outcome tend to be calibrated even when overfitting is present.

g ← function (v) v[c( ' Intercept ' , ' Slope ' ), ' index.corrected ' ]
k ← rbind (g(v1), g(v2), g(v3))

co ← c(2,5,4,1)

plot (0, 0, ylim =c(0,1), xlim=c(0,1),

xlab ="Predicted Probability ",

ylab ="Estimated Actual Probability ", type ="n")

legend (.45 ,.35 ,c("age , sex", "age , sex stepdown ",

"age , sex , x1-x5 ", "ideal "),

lty=1, col=co , cex=.8 , bty="n")

probs ← seq(0, 1, length =200); L ← qlogis (probs )

for(i in 1:3) {

P ← plogis (k[i, ' Intercept ' ] + k[i, ' Slope ' ] * L)

lines (probs , P, col=co[i], lwd =1)

}

abline (a=0, b=1, col=co[4], lwd =1) # Figure 10.17

“Honest” calibration curves may also be estimated using nonparametric
smoothers in conjunction with bootstrapping and cross-validation (see
Section 10.11).

10.10 Describing the Fitted Model

Once the proper variables have been modeled and all model assumptions have
been met, the analyst needs to present and interpret the fitted model. There
are at least three ways to proceed. The coefficients in the model may be
interpreted. For each variable, the change in log odds for a sensible change in
the variable value (e.g., interquartile range) may be computed. Also, the odds
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Fig. 10.17 Estimated logistic calibration (reliability) curves obtained by bootstrap-
ping three modeling strategies.

Table 10.12 Effects Response : sigdz

Low High Δ Effect S.E. Lower 0.95 Upper 0.95

age 46 59 13 0.90629 0.18381 0.546030 1.26650
Odds Ratio 46 59 13 2.47510 1.726400 3.54860

cholesterol 196 259 63 0.75479 0.13642 0.487410 1.02220
Odds Ratio 196 259 63 2.12720 1.628100 2.77920

sex — female:male 1 2 -2.42970 0.14839 -2.720600 -2.13890
Odds Ratio 1 2 0.08806 0.065837 0.11778

ratio or factor by which the odds increases for a certain change in a predictor,
holding all other predictors constant, may be displayed. Table 10.12 contains
such summary statistics for the linear age × cholesterol interaction surface
fit described in Section 10.5.

s ← summary(f.linia) # Table 10.12

latex (s, file = ' ' , size= ' Ssize ' ,
label = ' tab:lrm-cholxage-confbar ' )

plot (s) # Figure 10.18

The outer quartiles of age are 46 and 59 years, so the “half-sample” odds
ratio for age is 2.47, with 0.95 confidence interval [1.63, 3.74] when sex is male
and cholesterol is set to its median. The effect of increasing cholesterol from
196 (its lower quartile) to 259 (its upper quartile) is to increase the log odds
by 0.79 or to increase the odds by a factor of 2.21. Since there are interactions
allowed between age and sex and between age and cholesterol, each odds ratio
in the above table depends on the setting of at least one other factor. The
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Odds Ratio
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age − 59:46

cholesterol − 259:196

sex − female:male

Adjusted to:age=52 sex=male cholesterol=224.5 

Fig. 10.18 Odds ratios and confidence bars, using quartiles of age and cholesterol
for assessing their effects on the odds of coronary disease

results are shown graphically in Figure 10.18. The shaded confidence bars
show various levels of confidence and do not pin the analyst down to, say, the
0.95 level.

For those used to thinking in terms of odds or log odds, the preceding
description may be sufficient. Many prefer instead to interpret the model in
terms of predicted probabilities instead of odds. If the model contains only
a single predictor (even if several spline terms are required to represent that
predictor), one may simply plot the predictor against the predicted response.
Such a plot is shown in Figure 10.19 which depicts the fitted relationship
between age of diagnosis and the probability of acute bacterial meningitis
(ABM) as opposed to acute viral meningitis (AVM), based on an analysis of
422 cases from Duke University Medical Center.580 The data may be found
on the web site. A linear spline function with knots at 1, 2, and 22 years was
used to model this relationship.

When the model contains more than one predictor, one may graph the pre-
dictor against log odds, and barring interactions, the shape of this relationship
will be independent of the level of the other predictors. When displaying the
model on what is usually a more interpretable scale, the probability scale, a
difficulty arises in that unlike log odds the relationship between one predictor
and the probability of response depends on the levels of all other factors. For
example, in the model

Prob{Y = 1|X} = {1 + exp[−(β0 + β1X1 + β2X2)]}−1 (10.39)

there is no way to factor out X1 when examining the relationship between
X2 and the probability of a response. For the two-predictor case one can plot
X2 versus predicted probability for each level of X1. When it is uncertain
whether to include an interaction in this model, consider presenting graphs
for two models (with and without interaction terms included) as was done
in [658].
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Fig. 10.19 Linear spline fit for probability of bacterial versus viral meningitis as a
function of age at onset580. Points are simple proportions by age quantile groups.

When three factors are present, one could draw a separate graph for each
level of X3, a separate curve on each graph for each level of X1, and vary X2

on the x-axis. Instead of this, or if more than three factors are present, a good
way to display the results may be to plot “adjusted probability estimates” as
a function of one predictor, adjusting all other factors to constants such as
the mean. For example, one could display a graph relating serum cholesterol
to probability of myocardial infarction or death, holding age constant at 55,
sex at 1 (male), and systolic blood pressure at 120 mmHg.

The final method for displaying the relationship between several predictors
and probability of response is to construct a nomogram.40, 254 A nomogram
not only sheds light on how the effect of one predictor on the probability of
response depends on the levels of other factors, but it allows one to quickly
estimate the probability of response for individual subjects. The nomogram
in Figure 10.20 allows one to predict the probability of acute bacterial menin-
gitis (given the patient has either viral or bacterial meningitis) using the same
sample as in Figure 10.19. Here there are four continuous predictor values,
none of which are linearly related to log odds of bacterial meningitis: age
at admission (expressed as a linear spline function), month of admission (ex-
pressed as |month−8|), cerebrospinal fluid glucose/blood glucose ratio (linear
effect truncated at .6; that is, the effect is the glucose ratio if it is ≤ .6, and .6
if it exceeded .6), and the cube root of the total number of polymorphonuclear
leukocytes in the cerebrospinal fluid. 17

The model associated with Figure 10.14 is depicted in what could be called
a “precision nomogram” in Figure 10.21. Discrete cholesterol levels were re-
quired because of the interaction between two continuous variables.
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Fig. 10.20 Nomogram for estimating probability of bacterial (ABM) versus viral
(AVM) meningitis. Step 1, place ruler on reading lines for patient’s age and month
of presentation and mark intersection with line A; step 2, place ruler on values for
glucose ratio and total polymorphonuclear leukocyte (PMN) count in cerebrospinal
fluid and mark intersection with line B; step 3, use ruler to join marks on lines A and
B, then read off the probability of ABM versus AVM.580

# Draw a nomogram that shows examples of confidence intervals

nom ← nomogram (f.linia , cholesterol =seq(150, 400, by=50),

interact=list(age=seq(30, 70, by =10)),

lp.at =seq(-2 , 3.5 , by=.5),

conf.int=TRUE , conf.lp="all",

fun=function(x)1/(1+ exp(-x)), # or plogis

funlabel="Probability of CAD",

fun.at =c(seq(.1 , .9 , by=.1), .95 , .99)

) # Figure 10.21

plot (nom , col.grid = gray (c(0.8 , 0.95)),

varname.label =FALSE , ia.space =1, xfrac =.46 , lmgp=.2)
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10.11 R Functions

The general R statistical modeling functions96 described in Section 6.2 work
with the author’s lrm function for fitting binary and ordinal logistic regres-
sion models. lrm has several options for doing penalized maximum likelihood
estimation, with special treatment of categorical predictors so as to shrink
all estimates (including the reference cell) to the mean. The following exam- 18

ple fits a logistic model containing predictors age, blood.pressure, and sex,
with age fitted with a smooth five-knot restricted cubic spline function and a
different shape of the age relationship for males and females.

fit ← lrm(death ∼ blood.pressure + sex * rcs(age ,5))

anova (fit)

plot (Predict(fit , age , sex ))

The pentrace function makes it easy to check the effects of a sequence of
penalties. The following code fits an unpenalized model and plots the AIC
and Schwarz BIC for a variety of penalties so that approximately the best
cross-validating model can be chosen (and so we can learn how the penalty
relates to the effective degrees of freedom). Here we elect to only penalize the
nonlinear or non-additive parts of the model.

f ← lrm(death ∼ rcs(age ,5)*treatment + lsp(sbp ,c(120 ,140)) ,

x=TRUE , y=TRUE)

plot (pentrace (f,

penalty=list (nonlinear =seq(.25 ,10, by=.25 ))) )

See Sections 9.8.1 and 9.10 for more information. 19

The residuals function for lrm and the which.influence function can be
used to check predictor transformations as well as to analyze overly influential
observations in binary logistic regression. See Figure 10.16 for one application.
The residuals function will also perform the unweighted sum of squares test
for global goodness of fit described in Section 10.5.

The validate function when used on an object created by lrm does resam-
pling validation of a logistic regression model, with or without backward
step-down variable deletion. It provides bias-corrected Somers’ Dxy rank
correlation, R2

N index, the intercept and slope of an overall logistic calibra-
tion equation, the maximum absolute difference in predicted and calibrated
probabilities Emax, the discrimination index D [(model L.R. χ2 − 1)/n], the
unreliability index U = (difference in −2 log likelihood between uncalibrated
Xβ and Xβ with overall intercept and slope calibrated to test sample)/n,
and the overall quality index Q = D − U .267 The “corrected” slope can
be thought of as a shrinkage factor that takes overfitting into account. See
predab.resample in Section 6.2 for the list of resampling methods.

The calibrate function produces bootstrapped or cross-validated calibra-
tion curves for logistic and linear models. The“apparent”calibration accuracy
is estimated using a nonparametric smoother relating predicted probabilities
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Fig. 10.21 Nomogram relating age, sex, and cholesterol to the log odds and to
the probability of significant coronary artery disease. Select one axis corresponding
to sex and to age ∈ {30, 40, 50, 60, 70}. There is linear interaction between age and
sex and between age and cholesterol. 0.70 and 0.90 confidence intervals are shown
(0.90 in gray). Note that for the “Linear Predictor” scale there are various lengths

of confidence intervals near the same value of Xβ̂, demonstrating that the standard
error of Xβ̂ depends on the individual X values. Also note that confidence intervals
corresponding to smaller patient groups (e.g., females) are wider.

to observed binary outcomes. The nonparametric estimate is evaluated at a
sequence of predicted probability levels. Then the distances from the 45◦ line
are compared with the differences when the current model is evaluated back
on the whole sample (or omitted sample for cross-validation). The differences
in the differences are estimates of overoptimism. After averaging over many
replications, the predicted-value-specific differences are then subtracted from



10.12 Further Reading 271

the apparent differences and an adjusted calibration curve is obtained. Un-
like validate, calibrate does not assume a linear logistic calibration. For an
example, see the end of Chapter 11. calibrate will print the mean absolute
calibration error, the 0.9 quantile of the absolute error, and the mean squared
error, all over the observed distribution of predicted values.

The val.prob function is used to compute measures of discrimination and
calibration of predicted probabilities for a separate sample from the one
used to derive the probability estimates. Thus val.prob is used in exter-
nal validation and data-splitting. The function computes similar indexes as
validate plus the Brier score and a statistic for testing for unreliability or
H0 : γ0 = 0, γ1 = 1.

In the following example, a logistic model is fitted on 100 observations
simulated from the actual model given by

Prob{Y = 1|X1, X2, X3} = [1 + exp[−(−1 + 2X1)]]
−1, (10.40)

where X1 is a random uniform [0, 1] variable. Hence X2 and X3 are irrelevant.
After fitting a linear additive model in X1, X2, and X3, the coefficients are
used to predict Prob{Y = 1} on a separate sample of 100 observations.

set.seed (13)

n ← 200

x1 ← runif (n)

x2 ← runif (n)

x3 ← runif (n)

logit ← 2*(x1-.5 )

P ← 1/(1+ exp(-logit ))

y ← ifelse (runif (n) ≤ P, 1, 0)

d ← data.frame (x1 , x2 , x3 , y)

f ← lrm(y ∼ x1 + x2 + x3 , subset =1:100)

phat ← predict(f, d[101:200 ,] , type = ' fitted ' )
# Figure 10.22

v ← val.prob (phat , y[101:200] , m=20, cex=.5)

The output is shown in Figure 10.22.
The R built-in function glm, a very general modeling function, can fit binary

logistic models. The response variable must be coded 0/1 for glm to work. Glm
is a slight modification of the built-in glm function in the rms package that
allows fits to use rms methods. This facilitates Poisson and several other types
of regression analysis.

10.12 Further Reading

1 See [590] for modeling strategies specific to binary logistic regression.
2 See [632] for a nice review of logistic modeling. Agresti6 is an excellent source

for categorical Y in general.
3 Not only does discriminant analysis assume the same regression model as lo-

gistic regression, but it also assumes that the predictors are each normally
distributed and that jointly the predictors have a multivariate normal distri-
bution. These assumptions are unlikely to be met in practice, especially when
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Fig. 10.22 Validation of a logistic model in a test sample of size n = 100. The
calibrated risk distribution (histogram of logistic-calibrated probabilities) is shown.

one of the predictors is a discrete variable such as sex group. When discrimi-
nant analysis assumptions are violated, logistic regression yields more accurate
estimates.251,514 Even when discriminant analysis is optimal (i.e., when all
its assumptions are satisfied) logistic regression is virtually as accurate as the
discriminant model.264

4 See [573] for a review of measures of effect for binary outcomes.
5 Cepedaet al.95 found that propensity adjustment is better than covariate ad-

justment with logistic models when the number of events per variable is less
than 8.

6 Pregibon512 developed a modification of the log likelihood function that when
maximized results in a fit that is resistant to overly influential and outlying
observations.

7 See Hosmer and Lemeshow306 for methods of testing for a difference in the
observed event proportion and the predicted event probability (average of pre-
dicted probabilities) for a group of heterogeneous subjects.

8 See Hosmer and Lemeshow,305 Kay and Little,341 and Collett [115, Chap. 5].
Landwehr et al.373 proposed the partial residual (see also Fowlkes199).

9 See Berk and Booth51 for other partial-like residuals.
10 See [341] for an example comparing a smoothing method with a parametric

logistic model fit.
11 See Collett [115, Chap. 5] and Pregibon512 for more information about influence

statistics. Pregibon’s resistant estimator of β handles overly influential groups
of observations and allows one to estimate the weight that an observation con-
tributed to the fit after making the fit robust. Observations receiving low weight
are partially ignored but are not deleted.

12 Buyse86 showed that in the case of a single categorical predictor, the ordi-
nary R2 has a ready interpretation in terms of variance explained for binary
responses. Menard454 studied various indexes for binary logistic regression. He
criticized R2

N for being too dependent on the proportion of observations with
Y = 1. Hu et al.309 further studied the properties of variance-based R2 mea-
sures for binary responses. Tjur613 has a nice discussion discrimination graphics
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and sum of squares–based R2 measures for binary logistic regression, as well
as a good discussion of “separation” and infinite regression coefficients. Sums of
squares are approximated various ways.

13 Very little work has been done on developing adjusted R2 measures in logistic
regression and other non-linear model setups. Liao and McGee406 developed
one adjusted R2 measure for binary logistic regression, but it uses simulation to
adjust for the bias of overfitting. One might as well use the bootstrap to adjust
any of the indexes discussed in this section.

14 [123, 633] have more pertinent discussion of probability accuracy scores.
15 Copas121 demonstrated how ROC areas can be misleading when applied to

different responses having greatly different prevalences. He proposed another
approach, the logit rank plot. Newsom473 is an excellent reference on Dxy.
Newson474 developed several generalizations to Dxy including a stratified ver-
sion, and discussed the jackknife variance estimator for them. ROC areas are
not very useful for comparing two models118,493 (but see490).

16 Gneiting and Raftery219 have an excellent review of proper scoring rules.
Hand253 contains much information about assessing classification accuracy.
Mittlböck and Schemper461 have an excellent review of indexes of explained
variation for binary logistic models. See also Korn and Simon366 and Zheng
and Agresti.684.

17 Pryor et al.515 presented nomograms for a 10-variable logistic model. One of the
variables was sex, which interacted with some of the other variables. Evaluation
of predicted probabilities was simplified by the construction of separate nomo-
grams for females and males. Seven terms for discrete predictors were collapsed
into one weighted point score axis in the nomograms, and age by risk factor
interactions were captured by having four age scales.

18 Moons et al.462 presents a case study in penalized binary logistic regression
modeling.

19 The rcspline.plot function in the Hmisc R package does not allow for in-
teractions as does lrm, but it can provide detailed output for checking spline
fits. This function plots the estimated spline regression and confidence limits,
placing summary statistics on the graph. If there are no adjustment variables,
rcspline.plot can also plot two alternative estimates of the regression func-
tion: proportions or logit proportions on grouped data, and a nonparametric
estimate. The nonparametric regression estimate is based on smoothing the bi-
nary responses and taking the logit transformation of the smoothed estimates, if
desired. The smoothing uses the “super smoother” of Friedman207 implemented
in the R function supsmu.

10.13 Problems

1. Consider the age–sex–response example in Section 10.1.3. This dataset is
available from the text’s web site in the Datasets area.

a. Duplicate the analyses done in Section 10.1.3.
b. For the model containing both age and sex, test H0 : logit response is

linear in age versus Ha : logit response is quadratic in age. Use the best
test statistic.

c. Using a Wald test, test H0 : no age × sex interaction. Interpret all
parameters in the model.
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d. Plot the estimated logit response as a function of age and sex, with and
without fitting an interaction term.

e. Perform a likelihood ratio test of H0 : the model containing only age
and sex is adequate versusHa : model is inadequate. Here, “inadequate”
may mean nonlinearity (quadratic) in age or presence of an interaction.

f. Assuming no interaction is present, testH0 : model is linear in age versus
Ha : model is nonlinear in age. Allow “nonlinear” to be more general
than quadratic. (Hint: use a restricted cubic spline function with knots
at age=39, 45, 55, 64 years.)

g. Plot age against the estimated spline transformation of age (the trans-
formation that would make age fit linearly). You can set the sex and
intercept terms to anything you choose. Also plot Prob{response = 1 |
age, sex} from this fitted restricted cubic spline logistic model.

2. Consider a binary logistic regression model using the following predictors:
age (years), sex, race (white, African-American, Hispanic, Oriental, other),
blood pressure (mmHg). The fitted model is given by

logit Prob[Y = 1|X ] = Xβ̂ = −1.36 + .03(race = African-American)
− .04(race = hispanic) + .05(race = oriental)− .06(race = other)
+ .07|blood pressure− 110|+ .3(sex = male)− .1age + .002age2 +
(sex = male)[.05age− .003age2].

a. Compute the predicted logit (log odds) that Y = 1 for a 50-year-old
female Hispanic with a blood pressure of 90 mmHg. Also compute the
odds that Y = 1 (Prob[Y = 1]/Prob[Y = 0]) and the estimated proba-
bility that Y = 1.

b. Estimate odds ratios for each nonwhite race compared with the ref-
erence group (white), holding all other predictors constant. Why can
you estimate the relative effect of race for all types of subjects without
specifying their characteristics?

c. Compute the odds ratio for a blood pressure of 120 mmHg compared
with a blood pressure of 105, holding age first to 30 years and then to
40 years.

d. Compute the odds ratio for a blood pressure of 120 mmHg compared
with a blood pressure of 105, all other variables held to unspecified
constants. Why is this relative effect meaningful without knowing the
subject’s age, race, or sex?

e. Compute the estimated risk difference in changing blood pressure from
105 mmHg to 120 mmHg, first for age = 30 then for age = 40, for a
white female. Why does the risk difference depend on age?

f. Compute the relative odds for males compared with females, for age = 50
and other variables held constant.

g. Same as the previous question but for females : males instead of males
: females.

h. Compute the odds ratio resulting from increasing age from 50 to 55
for males, and then for females, other variables held constant. What is
wrong with the following question: What is the relative effect of chang-
ing age by one year?



Chapter 11

Case Study in Binary Logistic Regression,
Model Selection and Approximation:
Predicting Cause of Death

11.1 Overview

This chapter contains a case study on developing, describing, and validating
a binary logistic regression model. In addition, the following methods are
exemplified:

1. Data reduction using incomplete linear and nonlinear principal compo-
nents

2. Use of AIC to choose from five modeling variations, deciding which is best
for the number of parameters

3. Model simplification using stepwise variable selection and approximation
of the full model

4. The relationship between the degree of approximation and the degree of
predictive discrimination loss

5. Bootstrap validation that includes penalization for model uncertainty
(variable selection) and that demonstrates a loss of predictive discrimi-
nation over the full model even when compensating for overfitting the full
model.

The data reduction and pre-transformation methods used here were discussed
in more detail in Chapter 8. Single imputation will be used because of the
limited quantity of missing data.

11.2 Background

Consider the randomized trial of estrogen for treatment of prostate cancer87

described in Chapter 8. In this trial, larger doses of estrogen reduced the effect
of prostate cancer but at the cost of increased risk of cardiovascular death.

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
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Kay340 did a formal analysis of the competing risks for cancer, cardiovascular,
and other deaths. It can also be quite informative to study how treatment
and baseline variables relate to the cause of death for those patients who
died.376 We subset the original dataset of those patients dying from prostate
cancer (n = 130), heart or vascular disease (n = 96), or cerebrovascular
disease (n = 31). Our goal is to predict cardiovascular–cerebrovascular death
(cvd, n = 127) given the patient died from either cvd or prostate cancer. Of
interest is whether the time to death has an effect on the cause of death, and
whether the importance of certain variables depends on the time of death.

11.3 Data Transformations and Single Imputation

In R, first obtain the desired subset of the data and do some preliminary
calculations such as combining an infrequent category with the next category,
and dichotomizing ekg for use in ordinary principal components (PCs).

require(rms)

getHdata (prostate )

prostate ←
within (prostate , {

levels (ekg)[ levels (ekg) %in%

c( ' old MI ' , ' recent MI ' )] ← ' MI '
ekg.norm ← 1*(ekg %in% c( ' normal ' , ' benign ' ))
levels (ekg) ← abbreviate (levels (ekg))

pfn ← as.numeric (pf)

levels (pf) ← levels (pf)[c(1,2,3,3)]

cvd ← status %in% c("dead - heart or vascular",

"dead - cerebrovascular ")

rxn = as.numeric (rx) })

# Use transcan to compute optimal pre-transformations

ptrans ← # See Figure 8.3

transcan (∼ sz + sg + ap + sbp + dbp +

age + wt + hg + ekg + pf + bm + hx + dtime + rx ,

imputed=TRUE , transformed =TRUE ,

data =prostate , pl=FALSE , pr=FALSE )

# Use transcan single imputations

imp ← impute (ptrans , data =prostate , list.out =TRUE)

Imputed missing values with the following frequencies
and stored them in variables with their original names:

sz sg age wt ekg
5 11 1 2 8

NAvars ← all.vars (∼ sz + sg + age + wt + ekg)

for(x in NAvars ) prostate [[x]] ← imp[[x]]

subset ← prostate $status %in% c("dead - heart or vascular ",
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"dead - cerebrovascular ","dead - prostatic ca")

trans ← ptrans $transformed [subset ,]

psub ← prostate [subset ,]

11.4 Regression on Original Variables, Principal
Components and Pretransformations

We first examine the performance of data reduction in predicting the cause
of death, similar to what we did for survival time in Section 8.6. The first
analyses assess how well PCs (on raw and transformed variables) predict the
cause of death.

There are 127 cvds. We use the 15:1 rule of thumb discussed on P. 72 to
justify using the first 8 PCs. ap is log-transformed because of its extreme
distribution.

# Function to compute the first k PCs

ipc ← function (x, k=1, ... )

princomp (x, ... , cor=TRUE)$scores [,1:k]

# Compute the first 8 PCs on raw variables then on

# transformed ones

pc8 ← ipc(∼ sz + sg + log (ap) + sbp + dbp + age +

wt + hg + ekg.norm + pfn + bm + hx + rxn + dtime ,

data=psub , k=8)

f8 ← lrm(cvd ∼ pc8 , data=psub)

pc8t ← ipc(trans , k=8)

f8t ← lrm(cvd ∼ pc8t , data=psub)

# Fit binary logistic model on original variables

f ← lrm (cvd ∼ sz + sg + log (ap) + sbp + dbp + age +

wt + hg + ekg + pf + bm + hx + rx + dtime , data=psub)

# Expand continuous variables using splines

g ← lrm (cvd ∼ rcs(sz ,4) + rcs (sg ,4) + rcs(log (ap),4) +

rcs(sbp ,4) + rcs(dbp ,4) + rcs(age ,4) + rcs(wt ,4) +

rcs(hg ,4) + ekg + pf + bm + hx + rx + rcs(dtime ,4),

data=psub)

# Fit binary logistic model on individual transformed var.

h ← lrm (cvd ∼ trans , data=psub)

The five approaches to modeling the outcome are compared using AIC (where
smaller is better).

c(f8=AIC(f8), f8t=AIC(f8t), f=AIC(f), g=AIC(g), h=AIC(h))

f8 f8t f g h
257.6573 254.5172 255.8545 263.8413 254.5317

Based on AIC, the more traditional model fitted to the raw data and as-
suming linearity for all the continuous predictors has only a slight chance
of producing worse cross-validated predictive accuracy than other methods.
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The chances are also good that effect estimates from this simple model will
have competitive mean squared errors.

11.5 Description of Fitted Model

Here we describe the simple all-linear full model. Summary statistics and a
Wald-ANOVA table are below, followed by partial effects plots with pointwise
confidence bands, and odds ratios over default ranges of predictors.

print (f, latex =TRUE )

Logistic Regression Model

lrm(formula = cvd ~ sz + sg + log(ap) + sbp + dbp + age + wt +

hg + ekg + pf + bm + hx + rx + dtime, data = psub)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 257 LR χ2 144.39 R2 0.573 C 0.893
FALSE 130 d.f. 21 g 2.688 Dxy 0.786
TRUE 127 Pr(> χ2) < 0.0001 gr 14.701 γ 0.787

max |∂ logL
∂β | 6×10−11 gp 0.394 τa 0.395

Brier 0.133

Coef S.E. Wald Z Pr(> |Z|)
Intercept -4.5130 3.2210 -1.40 0.1612
sz -0.0640 0.0168 -3.80 0.0001
sg -0.2967 0.1149 -2.58 0.0098
ap -0.3927 0.1411 -2.78 0.0054
sbp -0.0572 0.0890 -0.64 0.5201
dbp 0.3917 0.1629 2.40 0.0162
age 0.0926 0.0286 3.23 0.0012
wt -0.0177 0.0140 -1.26 0.2069
hg 0.0860 0.0925 0.93 0.3524
ekg=bngn 1.0781 0.8793 1.23 0.2202
ekg=rd&ec -0.1929 0.6318 -0.31 0.7601
ekg=hbocd -1.3679 0.8279 -1.65 0.0985
ekg=hrts 0.4365 0.4582 0.95 0.3407
ekg=MI 0.3039 0.5618 0.54 0.5886
pf=in bed < 50% daytime 0.9604 0.6956 1.38 0.1673
pf=in bed > 50% daytime -2.3232 1.2464 -1.86 0.0623
bm 0.1456 0.5067 0.29 0.7738
hx 1.0913 0.3782 2.89 0.0039
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Coef S.E. Wald Z Pr(> |Z|)
rx=0.2 mg estrogen -0.3022 0.4908 -0.62 0.5381
rx=1.0 mg estrogen 0.7526 0.5272 1.43 0.1534
rx=5.0 mg estrogen 0.6868 0.5043 1.36 0.1733
dtime -0.0136 0.0107 -1.27 0.2040

an ← anova (f)

latex (an , file = ' ' , table.env =FALSE )

χ2 d.f. P
sz 14.42 1 0.0001
sg 6.67 1 0.0098
ap 7.74 1 0.0054
sbp 0.41 1 0.5201
dbp 5.78 1 0.0162
age 10.45 1 0.0012
wt 1.59 1 0.2069
hg 0.86 1 0.3524
ekg 6.76 5 0.2391
pf 5.52 2 0.0632
bm 0.08 1 0.7738
hx 8.33 1 0.0039
rx 5.72 3 0.1260
dtime 1.61 1 0.2040
TOTAL 66.87 21 < 0.0001

plot (an) # Figure 11.1

s ← f$stats

gamma.hat ← (s[ ' Model L.R. ' ] - s[ ' d.f. ' ])/s[ ' Model L.R. ' ]

dd ← datadist (psub ); options(datadist = ' dd ' )
ggplot (Predict(f), sepdiscrete = ' vertical ' , vnames = ' names ' ,

rdata =psub ,

histSpike.opts =list (frac=function (f) .1*f/max(f) ))

# Figure 11.2

plot (summary(f), log=TRUE) # Figure 11.3

The van Houwelingen–Le Cessie heuristic shrinkage estimate (Equation 4.3)
is γ̂ = 0.85, indicating that this model will validate on new data about 15%
worse than on this dataset.
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Fig. 11.1 Ranking of apparent importance of predictors of cause of death

11.6 Backwards Step-Down

Now use fast backward step-down (with total residual AIC as the stopping
rule) to identify the variables that explain the bulk of the cause of death.
Later validation will take this screening of variables into account.The greatly
reduced model results in a simple nomogram.

fastbw (f)

Deleted Chi -Sq d.f. P Residual d.f. P AIC
ekg 6.76 5 0.2391 6.76 5 0.2391 -3.24
bm 0.09 1 0.7639 6.85 6 0.3349 -5.15
hg 0.38 1 0.5378 7.23 7 0.4053 -6.77
sbp 0.48 1 0.4881 7.71 8 0.4622 -8.29
wt 1.11 1 0.2932 8.82 9 0.4544 -9.18
dtime 1.47 1 0.2253 10.29 10 0.4158 -9.71
rx 5.65 3 0.1302 15.93 13 0.2528 -10.07
pf 4.78 2 0.0915 20.71 15 0.1462 -9.29
sg 4.28 1 0.0385 25.00 16 0.0698 -7.00
dbp 5.84 1 0.0157 30.83 17 0.0209 -3.17

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept -3.74986 1.82887 -2.050 0.0403286
sz -0.04862 0.01532 -3.174 0.0015013
ap -0.40694 0.11117 -3.660 0.0002518
age 0.06000 0.02562 2.342 0.0191701
hx 0.86969 0.34339 2.533 0.0113198

Factors in Final Model

[1] sz ap age hx
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Fig. 11.2 Partial effects (log odds scale) in full model for cause of death, along with
vertical line segments showing the raw data distribution of predictors

fred ← lrm(cvd ∼ sz + log(ap) + age + hx , data =psub)

latex (fred , file = ' ' )

Prob{cvd} =
1

1 + exp(−Xβ)
, where

Xβ̂ =

−5.009276− 0.05510121 sz− 0.509185 log(ap) + 0.0788052 age + 1.070601 hx
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Odds Ratio
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Fig. 11.3 Interquartile-range odds ratios for continuous predictors and simple odds
ratios for categorical predictors. Numbers at left are upper quartile : lower quartile or
current group : reference group. The bars represent 0.9, 0.95, 0.99 confidence limits.
The intervals are drawn on the log odds ratio scale and labeled on the odds ratio
scale. Ranges are on the original scale.

nom ← nomogram (fred , ap=c(.1 , .5 , 1, 5, 10, 50),

fun=plogis , funlabel ="Probability ",

fun.at =c(.01 ,.05 ,.1 ,.25 ,.5 ,.75 ,.9 ,.95 ,.99 ))

plot (nom , xfrac =.45) # Figure 11.4

It is readily seen from this model that patients with a history of heart
disease, and patients with less extensive prostate cancer are those more likely
to die from cvd rather than from cancer. But beware that it is easy to over-
interpret findings when using unpenalized estimation, and confidence inter-
vals are too narrow. Let us use the bootstrap to study the uncertainty in
the selection of variables and to penalize for this uncertainty when estimat-
ing predictive performance of the model. The variables selected in the first 20
bootstrap resamples are shown, making it obvious that the set of “significant”
variables, i.e., the final model, is somewhat arbitrary.

f ← update (f, x=TRUE , y=TRUE)

v ← validate (f, B=200, bw=TRUE)

latex (v, B=20, digits =3)
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Fig. 11.4 Nomogram calculating Xβ̂ and P̂ for cvd as the cause of death, using
the step-down model. For each predictor, read the points assigned on the 0–100 scale
and add these points. Read the result on the Total Points scale and then read the
corresponding predictions below it.

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.682 0.713 0.643 0.071 0.611 200
R2 0.439 0.481 0.393 0.088 0.351 200
Intercept 0.000 0.000 −0.006 0.006 −0.006 200
Slope 1.000 1.000 0.811 0.189 0.811 200
Emax 0.000 0.000 0.048 0.048 0.048 200
D 0.395 0.449 0.346 0.102 0.293 200
U −0.008 −0.008 0.018 −0.026 0.018 200
Q 0.403 0.456 0.329 0.128 0.275 200
B 0.162 0.151 0.174 −0.022 0.184 200
g 1.932 2.213 1.756 0.457 1.475 200
gp 0.341 0.355 0.320 0.035 0.306 200
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Factors Retained in Backwards Elimination
First 20 Resamples

sz sg ap sbp dbp age wt hg ekg pf bm hx rx dtime

• • •
• • • • • • • •
• • • •
• •
• • • •

• •
• • • • •
• • • •
• • •
• • •
• • • •
• • • •
• • • •
• • • •
• • • • • • • •

• • • •
• • • • • •
• •
• • • •

• •

Frequencies of Numbers of Factors Retained

1 2 3 4 5 6 7 8 9 11 12

6 39 47 61 19 10 8 4 2 3 1

The slope shrinkage (γ̂) is a bit lower than was estimated above. There is
drop-off in all indexes. The estimated likely future predictive discrimination
of the model as measured by Somers’ Dxy fell from 0.682 to 0.611. The
latter estimate is the one that should be claimed when describing model
performance.

A nearly unbiased estimate of future calibration of the stepwise-derived
model is given below.

cal ← calibrate (f, B=200, bw=TRUE )

plot (cal) # Figure 11.5

The amount of overfitting seen in Figure 11.5 is consistent with the indexes
produced by the validate function.

For comparison, consider a bootstrap validation of the full model without
using variable selection.

vfull ← validate (f, B=200)

latex (vfull , digits =3)
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Fig. 11.5 Bootstrap overfitting–corrected calibration curve estimate for the back-
wards step-down cause of death logistic model, along with a rug plot showing the dis-
tribution of predicted risks. The smooth nonparametric calibration estimator (loess)
is used.

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.786 0.833 0.738 0.095 0.691 200
R2 0.573 0.641 0.501 0.140 0.433 200
Intercept 0.000 0.000 −0.013 0.013 −0.013 200
Slope 1.000 1.000 0.690 0.310 0.690 200
Emax 0.000 0.000 0.085 0.085 0.085 200
D 0.558 0.653 0.468 0.185 0.373 200
U −0.008 −0.008 0.051 −0.058 0.051 200
Q 0.566 0.661 0.417 0.244 0.322 200
B 0.133 0.115 0.150 −0.035 0.168 200
g 2.688 3.464 2.355 1.108 1.579 200
gp 0.394 0.416 0.366 0.050 0.344 200

Compared to the validation of the full model, the step-down model has less
optimism, but it started with a smaller Dxy due to loss of information from
removing moderately important variables. The improvement in optimism was
not enough to offset the effect of eliminating variables. If shrinkage were used
with the full model, it would have better calibration and discrimination than
the reduced model, since shrinkage does not diminish Dxy. Thus stepwise
variable selection failed at delivering excellent predictive discrimination.

Finally, compare previous results with a bootstrap validation of a step-
down model using a better significance level for a variable to stay in the
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model (α = 0.5,589) and using individual approximate Wald tests rather
than tests combining all deleted variables.

v5 ← validate (f, bw=TRUE , sls=0.5 , type = ' individual ' , B=200)

Backwards Step -down - Original Model

Deleted Chi -Sq d.f. P Residual d.f. P AIC
ekg 6.76 5 0.2391 6.76 5 0.2391 -3.24
bm 0.09 1 0.7639 6.85 6 0.3349 -5.15
hg 0.38 1 0.5378 7.23 7 0.4053 -6.77
sbp 0.48 1 0.4881 7.71 8 0.4622 -8.29
wt 1.11 1 0.2932 8.82 9 0.4544 -9.18
dtime 1.47 1 0.2253 10.29 10 0.4158 -9.71
rx 5.65 3 0.1302 15.93 13 0.2528 -10.07

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept -4.86308 2.67292 -1.819 0.068852
sz -0.05063 0.01581 -3.202 0.001366
sg -0.28038 0.11014 -2.546 0.010903
ap -0.24838 0.12369 -2.008 0.044629
dbp 0.28288 0.13036 2.170 0.030008
age 0.08502 0.02690 3.161 0.001572
pf=in bed < 50% daytime 0.81151 0.66376 1.223 0.221485
pf=in bed > 50% daytime -2.19885 1.21212 -1.814 0.069670
hx 0.87834 0.35203 2.495 0.012592

Factors in Final Model

[1] sz sg ap dbp age pf hx

latex (v5 , digits =3, B=0)

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.739 0.801 0.716 0.085 0.654 200
R2 0.517 0.598 0.481 0.117 0.400 200
Intercept 0.000 0.000 −0.008 0.008 −0.008 200
Slope 1.000 1.000 0.745 0.255 0.745 200
Emax 0.000 0.000 0.067 0.067 0.067 200
D 0.486 0.593 0.444 0.149 0.337 200
U −0.008 −0.008 0.033 −0.040 0.033 200
Q 0.494 0.601 0.411 0.190 0.304 200
B 0.147 0.125 0.156 −0.030 0.177 200
g 2.351 2.958 2.175 0.784 1.567 200
gp 0.372 0.401 0.358 0.043 0.330 200

The performance statistics are midway between the full model and the
smaller stepwise model.
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11.7 Model Approximation

Frequently a better approach than stepwise variable selection is to approx-
imate the full model, using its estimates of precision, as discussed in Sec-
tion 5.5. Stepwise variable selection as well as regression trees are useful for
making the approximations, and the sacrifice in predictive accuracy is always
apparent.

We begin by computing the “gold standard” linear predictor from the full
model fit (R2 = 1.0), then running backwards step-down OLS regression to
approximate it.

lp ← predict(f) # Compute linear predictor from full model

# Insert sigma=1 as otherwise sigma=0 will cause problems

a ← ols(lp ∼ sz + sg + log(ap) + sbp + dbp + age + wt +

hg + ekg + pf + bm + hx + rx + dtime , sigma =1,

data =psub )

# Specify silly stopping criterion to remove all variables

s ← fastbw (a, aics =10000)

betas ← s$Coefficients # matrix , rows =iterations

X ← cbind (1, f$x) # design matrix

# Compute the series of approximations to lp

ap ← X %*% t(betas )

# For each approx. compute approximation R∧2 and ratio of

# likelihood ratio chi-square for approximate model to that

# of original model

m ← ncol (ap) - 1 # all but intercept-only model

r2 ← frac ← numeric(m)

fullchisq ← f$stats [ ' Model L.R. ' ]
for(i in 1:m) {

lpa ← ap[,i]

r2[i] ← cor(lpa , lp)∧2
fapprox ← lrm(cvd ∼ lpa , data =psub )

frac [i] ← fapprox$stats [ ' Model L.R. ' ] / fullchisq

} # Figure 11.6:

plot (r2 , frac , type = ' b ' ,
xlab =expression (paste ( ' Approximation ' , R∧2)),
ylab =expression (paste ( ' Fraction of ' ,

chi∧2, ' Preserved ' )))
abline (h=.95 , col=gray (.83 )); abline (v=.95 , col=gray (.83 ))

abline (a=0, b=1, col=gray (.83))

After 6 deletions, slightly more than 0.05 of both the LR χ2 and the approx-
imation R2 are lost (see Figure 11.6). Therefore we take as our approximate
model the one that removed 6 predictors. The equation for this model is
below, and its nomogram is in Figure 11.7.

fapprox ← ols(lp ∼ sz + sg + log(ap) + age + ekg + pf + hx +

rx , data =psub)

fapprox$stats [ ' R2 ' ] # as a check

R2 0.9453396

latex (fapprox , file = ' ' )
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Fig. 11.6 Fraction of explainable variation (full model LR χ2) in cvd that was
explained by approximate models, along with approximation accuracy (x–axis)

E(lp) = Xβ, where

Xβ̂ =

−2.868303 − 0.06233241 sz− 0.3157901 sg − 0.3834479 log(ap) + 0.09089393 age

+1.396922[bngn] + 0.06275034[rd&ec]− 1.24892[hbocd] + 0.6511938[hrts]

+0.3236771[MI]

+1.116028[in bed < 50% daytime]− 2.436734[in bed > 50% daytime]

+1.05316 hx

−0.3888534[0.2 mg estrogen] + 0.6920495[1.0 mg estrogen]

+0.7834498[5.0 mg estrogen]

and [c] = 1 if subject is in group c, 0 otherwise.

nom ← nomogram (fapprox , ap=c(.1 , .5 , 1, 5, 10, 20, 30, 40),

fun=plogis , funlabel ="Probability ",

lp.at =(-5):4,

fun.lp.at =qlogis (c(.01 ,.05 ,.25 ,.5 ,.75 ,.95 ,.99 )))

plot (nom , xfrac =.45) # Figure 11.7
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Fig. 11.7 Nomogram for predicting the probability of cvd based on the approximate
model



Chapter 12

Logistic Model Case Study 2: Survival
of Titanic Passengers

This case study demonstrates the development of a binary logistic regression
model to describe patterns of survival in passengers on the Titanic, based on
passenger age, sex, ticket class, and the number of family members accom-
panying each passenger. Nonparametric regression is also used. Since many
of the passengers had missing ages, multiple imputation is used so that the
complete information on the other variables can be efficiently utilized. Titanic
passenger data were gathered by many researchers. Primary references are
the Encyclopedia Titanica at www.encyclopedia-titanica.org and Eaton and
Haas.169 Titanic survival patterns have been analyzed previously151, 296, 571

but without incorporation of individual passenger ages. Thomas Cason while
a University of Virginia student compiled and interpreted the data from the
World Wide Web. One thousand three hundred nine of the passengers are
represented in the dataset, which is available from this text’s Web site under
the name titanic3. An early analysis of Titanic data may be found in Bron75.

12.1 Descriptive Statistics

First we obtain basic descriptive statistics on key variables.

require(rms)

getHdata (titanic3 ) # get dataset from web site

# List of names of variables to analyze

v ← c( ' pclass ' , ' survived ' , ' age ' , ' sex ' , ' sibsp ' , ' parch ' )
t3 ← titanic3 [, v]

units (t3$age) ← ' years '
latex (describe (t3), file = ' ' )

© Springer International Publishing Switzerland 2015
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t3
6 Variables 1309 Observations

pclass
n missing unique

1309 0 3

1st (323, 25%), 2nd (277, 21%), 3rd (709, 54%)

survived : Survived
n missing unique Info Sum Mean

1309 0 2 0.71 500 0.382

age : Age [years]

n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95
1046 263 98 1 29.88 5 14 21 28 39 50 57

lowest : 0.1667 0.3333 0.4167 0.6667 0.7500
highest: 70.5000 71.0000 74.0000 76.0000 80.0000

sex
n missing unique

1309 0 2

female (466, 36%), male (843, 64%)

sibsp : Number of Siblings/Spouses Aboard
n missing unique Info Mean

1309 0 7 0.67 0.4989

0 1 2 3 4 5 8
Frequency 891 319 42 20 22 6 9
% 68 24 3 2 2 0 1

parch : Number of Parents/Children Aboard
n missing unique Info Mean

1309 0 8 0.55 0.385

0 1 2 3 4 5 6 9
Frequency 1002 170 113 8 6 6 2 2
% 77 13 9 1 0 0 0 0

Next, we obtain access to the needed variables and observations, and save data
distribution characteristics for plotting and for computing predictor effects.
There are not many passengers having more than 3 siblings or spouses or
more than 3 children, so we truncate two variables at 3 for the purpose of
estimating stratified survival probabilities.

dd ← datadist (t3)

# describe distributions of variables to rms

options(datadist = ' dd ' )
s ← summary(survived ∼ age + sex + pclass +

cut2 (sibsp ,0:3) + cut2 (parch ,0:3), data =t3)

plot (s, main = ' ' , subtitles =FALSE ) # Figure 12.1

Note the large number of missing ages. Also note the strong effects of sex and
passenger class on the probability of surviving. The age effect does not appear
to be very strong, because as we show later, much of the effect is restricted to
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Survived
0.2 0.3 0.4 0.5 0.6 0.7
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0
1
2
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[40.000,80.0]

[3,8]

[3,9]

Age [years]

sex

pclass

Number of Siblings/Spouses Aboard

Number of Parents/Children Aboard

Overall

Fig. 12.1 Univariable summaries of Titanic survival

age < 21 years for one of the sexes. The effects of the last two variables are
unclear as the estimated proportions are not monotonic in the values of these
descriptors. Although some of the cell sizes are small, we can show four-way
empirical relationships with the fraction of surviving passengers by creating
four cells for sibsp × parch combinations and by creating two age groups. We
suppress proportions based on fewer than 25 passengers in a cell. Results are
shown in Figure 12.2.

tn ← transform (t3 ,

agec = ifelse (age < 21, ' child ' , ' adult ' ),
sibsp = ifelse (sibsp == 0, ' no sib/sp ' , ' sib/sp ' ),
parch = ifelse (parch == 0, ' no par/child ' , ' par/child ' ))

g ← function (y) if(length (y) < 25) NA else mean (y)

s ← with (tn , summarize (survived ,

llist (agec , sex , pclass , sibsp , parch ), g))

# llist , summarize in Hmisc package

# Figure 12.2:

ggplot (subset (s, agec != ' NA ' ),
aes(x=survived , y=pclass , shape =sex)) +

geom_point () + facet_grid (agec ∼ sibsp * parch ) +

xlab ( ' Proportion Surviving ' ) + ylab ( ' Passenger Class ' ) +

scale_x_continuous (breaks =c(0, .5 , 1))
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Fig. 12.2 Multi-way summary of Titanic survival

Note that none of the effects of sibsp or parch for common passenger groups
appear strong on an absolute risk scale.

12.2 Exploring Trends with Nonparametric Regression

As described in Section 2.4.7, the loess smoother has excellent performance
when the response is binary, as long as outlier detection is turned off. Here
we use a ggplot2 add-on function histSpikeg in the Hmisc package to obtain
and plot the loess fit and age distribution. histSpikeg uses the “no iteration”
option for the R lowess function when the response is binary.

# Figure 12.3

b ← scale_size_discrete (range =c(.1 , .85))

yl ← ylab (NULL )

p1 ← ggplot (t3 , aes(x=age , y=survived )) +

histSpikeg (survived ∼ age , lowess =TRUE , data =t3) +

ylim (0,1) + yl

p2 ← ggplot (t3 , aes(x=age , y=survived , color =sex)) +

histSpikeg (survived ∼ age + sex , lowess =TRUE ,

data =t3) + ylim (0,1) + yl

p3 ← ggplot (t3 , aes(x=age , y=survived , size =pclass )) +

histSpikeg (survived ∼ age + pclass , lowess =TRUE ,

data =t3) + b + ylim (0,1) + yl

p4 ← ggplot (t3 , aes(x=age , y=survived , color =sex ,

size =pclass )) +

histSpikeg (survived ∼ age + sex + pclass ,

lowess =TRUE , data =t3) +

b + ylim (0,1) + yl

gridExtra :: grid.arrange (p1 , p2 , p3 , p4 , ncol =2) # combine 4
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Fig. 12.3 Nonparametric regression (loess) estimates of the relationship between
age and the probability of surviving the Titanic, with tick marks depicting the age
distribution. The top left panel shows unstratified estimates of the probability of
survival. Other panels show nonparametric estimates by various stratifications.

Figure 12.3 shows much of the story of passenger survival patterns. “Women
and children first” seems to be true except for women in third class. It is
interesting that there is no real cutoff for who is considered a child. For men,
the younger the greater chance of surviving. The interpretation of the effects
of the “number of relatives”-type variables will be more difficult, as their
definitions are a function of age. Figure 12.4 shows these relationships.

# Figure 12.4

top ← theme (legend.position = ' top ' )
p1 ← ggplot (t3 , aes(x=age , y=survived , color =cut2(sibsp ,

0:2))) + stat_plsmo () + b + ylim (0,1) + yl + top +

scale_color_discrete (name= ' siblings /spouses ' )
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p2 ← ggplot (t3 , aes(x=age , y=survived , color =cut2(parch ,

0:2))) + stat_plsmo () + b + ylim (0,1) + yl + top +

scale_color_discrete (name= ' parents/children ' )
gridExtra :: grid.arrange (p1 , p2 , ncol =2)
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Fig. 12.4 Relationship between age and survival stratified by the number of siblings
or spouses on board (left panel) or by the number of parents or children of the
passenger on board (right panel).

12.3 Binary Logistic Model With Casewise Deletion
of Missing Values

What follows is the standard analysis based on eliminating observations hav-
ing any missing data. We develop an initial somewhat saturated logistic
model, allowing for a flexible nonlinear age effect that can differ in shape
for all six sex × class strata. The sibsp and parch variables do not have suf-
ficiently dispersed distributions to allow for us to model them nonlinearly.
Also, there are too few passengers with nonzero values of these two variables
in sex × pclass × age strata to allow us to model complex interactions in-
volving them. The meaning of these variables does depend on the passenger’s
age, so we consider only age interactions involving sibsp and parch.

f1 ← lrm(survived ∼ sex*pclass *rcs(age ,5) +

rcs(age ,5)*(sibsp + parch ), data =t3) # Table 12.1

latex (anova (f1), file = ' ' , label = ' titanic-anova3 ' ,
size = ' small ' )

Three-way interactions are clearly insignificant (P = 0.4) in Table 12.1. So
is parch (P = 0.6 for testing the combined main effect + interaction effects
for parch, i.e., whether parch is important for any age). These effects would
be deleted in almost all bootstrap resamples had we bootstrapped a variable
selection procedure using α = 0.1 for retention of terms, so we can safely
ignore these terms for future steps. The model not containing those terms
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Table 12.1 Wald Statistics for survived

χ2 d.f. P
sex (Factor+Higher Order Factors) 187.15 15 < 0.0001
All Interactions 59.74 14 < 0.0001

pclass (Factor+Higher Order Factors) 100.10 20 < 0.0001
All Interactions 46.51 18 0.0003

age (Factor+Higher Order Factors) 56.20 32 0.0052
All Interactions 34.57 28 0.1826
Nonlinear (Factor+Higher Order Factors) 28.66 24 0.2331

sibsp (Factor+Higher Order Factors) 19.67 5 0.0014
All Interactions 12.13 4 0.0164

parch (Factor+Higher Order Factors) 3.51 5 0.6217
All Interactions 3.51 4 0.4761

sex × pclass (Factor+Higher Order Factors) 42.43 10 < 0.0001
sex × age (Factor+Higher Order Factors) 15.89 12 0.1962
Nonlinear (Factor+Higher Order Factors) 14.47 9 0.1066
Nonlinear Interaction : f(A,B) vs. AB 4.17 3 0.2441

pclass × age (Factor+Higher Order Factors) 13.47 16 0.6385
Nonlinear (Factor+Higher Order Factors) 12.92 12 0.3749
Nonlinear Interaction : f(A,B) vs. AB 6.88 6 0.3324

age × sibsp (Factor+Higher Order Factors) 12.13 4 0.0164
Nonlinear 1.76 3 0.6235
Nonlinear Interaction : f(A,B) vs. AB 1.76 3 0.6235

age × parch (Factor+Higher Order Factors) 3.51 4 0.4761
Nonlinear 1.80 3 0.6147
Nonlinear Interaction : f(A,B) vs. AB 1.80 3 0.6147

sex × pclass × age (Factor+Higher Order Factors) 8.34 8 0.4006
Nonlinear 7.74 6 0.2581

TOTAL NONLINEAR 28.66 24 0.2331
TOTAL INTERACTION 75.61 30 < 0.0001
TOTAL NONLINEAR + INTERACTION 79.49 33 < 0.0001
TOTAL 241.93 39 < 0.0001

is fitted below. The ^2 in the model formula means to expand the terms in
parentheses to include all main effects and second-order interactions.

f ← lrm(survived ∼ (sex + pclass + rcs(age ,5))∧2 +

rcs(age ,5)*sibsp , data=t3)

print (f, latex =TRUE )

Logistic Regression Model

lrm(formula = survived ~ (sex + pclass + rcs(age, 5))^2

+ rcs(age, 5) * sibsp, data = t3)

Frequencies of Missing Values Due to Each Variable

survived sex pclass age sibsp

0 0 0 263 0
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Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 1046 LR χ2 553.87 R2 0.555 C 0.878
0 619 d.f. 26 g 2.427 Dxy 0.756
1 427 Pr(> χ2) < 0.0001 gr 11.325 γ 0.758

max |∂ logL
∂β | 6×10−6 gp 0.365 τa 0.366

Brier 0.130

Coef S.E. Wald Z Pr(> |Z|)
Intercept 3.3075 1.8427 1.79 0.0727
sex=male -1.1478 1.0878 -1.06 0.2914
pclass=2nd 6.7309 3.9617 1.70 0.0893
pclass=3rd -1.6437 1.8299 -0.90 0.3691
age 0.0886 0.1346 0.66 0.5102
age’ -0.7410 0.6513 -1.14 0.2552
age” 4.9264 4.0047 1.23 0.2186
age”’ -6.6129 5.4100 -1.22 0.2216
sibsp -1.0446 0.3441 -3.04 0.0024
sex=male * pclass=2nd -0.7682 0.7083 -1.08 0.2781
sex=male * pclass=3rd 2.1520 0.6214 3.46 0.0005
sex=male * age -0.2191 0.0722 -3.04 0.0024
sex=male * age’ 1.0842 0.3886 2.79 0.0053
sex=male * age” -6.5578 2.6511 -2.47 0.0134
sex=male * age”’ 8.3716 3.8532 2.17 0.0298
pclass=2nd * age -0.5446 0.2653 -2.05 0.0401
pclass=3rd * age -0.1634 0.1308 -1.25 0.2118
pclass=2nd * age’ 1.9156 1.0189 1.88 0.0601
pclass=3rd * age’ 0.8205 0.6091 1.35 0.1780
pclass=2nd * age” -8.9545 5.5027 -1.63 0.1037
pclass=3rd * age” -5.4276 3.6475 -1.49 0.1367
pclass=2nd * age”’ 9.3926 6.9559 1.35 0.1769
pclass=3rd * age”’ 7.5403 4.8519 1.55 0.1202
age * sibsp 0.0357 0.0340 1.05 0.2933
age’ * sibsp -0.0467 0.2213 -0.21 0.8330
age” * sibsp 0.5574 1.6680 0.33 0.7382
age”’ * sibsp -1.1937 2.5711 -0.46 0.6425

latex (anova (f),file = ' ' ,label = ' titanic-anova2 ' ,size= ' small ' )
#12.2

This is a very powerful model (ROC area = c = 0.88); the survival patterns
are easy to detect. The Wald ANOVA in Table 12.2 indicates especially strong
sex and pclass effects (χ2 = 199 and 109, respectively). There is a very strong
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Table 12.2 Wald Statistics for survived

χ2 d.f. P
sex (Factor+Higher Order Factors) 199.42 7 < 0.0001
All Interactions 56.14 6 < 0.0001

pclass (Factor+Higher Order Factors) 108.73 12 < 0.0001
All Interactions 42.83 10 < 0.0001

age (Factor+Higher Order Factors) 47.04 20 0.0006
All Interactions 24.51 16 0.0789
Nonlinear (Factor+Higher Order Factors) 22.72 15 0.0902

sibsp (Factor+Higher Order Factors) 19.95 5 0.0013
All Interactions 10.99 4 0.0267

sex × pclass (Factor+Higher Order Factors) 35.40 2 < 0.0001
sex × age (Factor+Higher Order Factors) 10.08 4 0.0391
Nonlinear 8.17 3 0.0426
Nonlinear Interaction : f(A,B) vs. AB 8.17 3 0.0426

pclass × age (Factor+Higher Order Factors) 6.86 8 0.5516
Nonlinear 6.11 6 0.4113
Nonlinear Interaction : f(A,B) vs. AB 6.11 6 0.4113

age × sibsp (Factor+Higher Order Factors) 10.99 4 0.0267
Nonlinear 1.81 3 0.6134
Nonlinear Interaction : f(A,B) vs. AB 1.81 3 0.6134

TOTAL NONLINEAR 22.72 15 0.0902
TOTAL INTERACTION 67.58 18 < 0.0001
TOTAL NONLINEAR + INTERACTION 70.68 21 < 0.0001
TOTAL 253.18 26 < 0.0001

sex × pclass interaction and a strong age × sibsp interaction, considering
the strength of sibsp overall.

Let us examine the shapes of predictor effects. With so many interactions
in the model we need to obtain predicted values at least for all combinations
of sex and pclass. For sibsp we consider only two of its possible values.

p ← Predict(f, age , sex , pclass , sibsp =0, fun=plogis )

ggplot (p) # Fig. 12.5

Note the agreement between the lower right-hand panel of Figure 12.3 with
Figure 12.5. This results from our use of similar flexibility in the parametric
and nonparametric approaches (and similar effective degrees of freedom). The
estimated effect of sibsp as a function of age is shown in Figure 12.6.

ggplot (Predict(f, sibsp , age=c(10,15,20,50), conf.int=FALSE ))

## Figure 12.6

Note that children having many siblings apparently had lower survival. Mar-
ried adults had slightly higher survival than unmarried ones.

There will never be another Titanic, so we do not need to validate the
model for prospective use. But we use the bootstrap to validate the model
anyway, in an effort to detect whether it is overfitting the data. We do not
penalize the calculations that follow for having examined the effect of parch or
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Fig. 12.5 Effects of predictors on probability of survival of Titanic passengers, esti-
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Fig. 12.6 Effect of number of siblings and spouses on the log odds of surviving, for
third class males

for testing three-way interactions, in the belief that these tests would replicate
well.

f ← update (f, x=TRUE , y=TRUE)

# x=TRUE , y=TRUE adds raw data to fit object so can bootstrap

set.seed (131) # so can replicate re-samples

latex (validate (f, B=200), digits =2, size = ' Ssize ' )
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Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.76 0.77 0.74 0.03 0.72 200
R2 0.55 0.58 0.53 0.05 0.50 200
Intercept 0.00 0.00 −0.08 0.08 −0.08 200
Slope 1.00 1.00 0.87 0.13 0.87 200
Emax 0.00 0.00 0.05 0.05 0.05 200
D 0.53 0.56 0.50 0.06 0.46 200
U 0.00 0.00 0.01 −0.01 0.01 200
Q 0.53 0.56 0.49 0.07 0.46 200
B 0.13 0.13 0.13 −0.01 0.14 200
g 2.43 2.75 2.37 0.37 2.05 200
gp 0.37 0.37 0.35 0.02 0.35 200

cal ← calibrate (f, B=200) # Figure 12.7

plot (cal , subtitles =FALSE )

n=1046 Mean absolute error =0.009 Mean squared error =0.00012
0.9 Quantile of absolute error =0.017

The output of validate indicates minor overfitting. Overfitting would have
been worse had the risk factors not been so strong. The closeness of the cali-
bration curve to the 45◦ line in Figure 12.7 demonstrates excellent validation
on an absolute probability scale. But the extent of missing data casts some
doubt on the validity of this model, and on the efficiency of its parameter
estimates.
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Fig. 12.7 Bootstrap overfitting-corrected loess nonparametric calibration curve for
casewise deletion model
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12.4 Examining Missing Data Patterns

The first step to dealing with missing data is understanding the patterns
of missing values. To do this we use the Hmisc library’s naclus and naplot

functions, and the recursive partitioning library of Atkinson and Therneau.
Below naclus tells us which variables tend to be missing on the same persons,
and it computes the proportion of missing values for each variable. The rpart

function derives a tree to predict which types of passengers tended to have
age missing.

na.patterns ← naclus (titanic3 )

require(rpart ) # Recursive partitioning package

who.na ← rpart (is.na (age) ∼ sex + pclass + survived +

sibsp + parch , data =titanic3 , minbucket =15)

naplot (na.patterns , ' na per var ' )
plot (who.na , margin =.1); text(who.na ) # Figure 12.8

plot (na.patterns )

We see in Figure 12.8 that age tends to be missing on the same passengers
as the body bag identifier, and that it is missing in only 0.09 of first or sec-
ond class passengers. The category of passengers having the highest fraction
of missing ages is third class passengers having no parents or children on
board. Below we use Hmisc’s summary.formula function to plot simple descrip-
tive statistics on the fraction of missing ages, stratified by other variables. We
see that without adjusting for other variables, age is slightly more missing on
nonsurviving passengers.

plot (summary(is.na (age) ∼ sex + pclass + survived +

sibsp + parch , data =t3)) # Figure 12.9

Let us derive a logistic model to predict missingness of age, to see if the
survival bias maintains after adjustment for the other variables.

m ← lrm (is.na(age) ∼ sex * pclass + survived + sibsp + parch ,

data=t3)

print (m, latex=TRUE , needspace = '2in ' )

Logistic Regression Model

lrm(formula = is.na(age) ~ sex * pclass + survived + sibsp +

parch, data = t3)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 1309 LR χ2 114.99 R2 0.133 C 0.703
FALSE 1046 d.f. 8 g 1.015 Dxy 0.406
TRUE 263 Pr(> χ2) < 0.0001 gr 2.759 γ 0.452

max |∂ logL
∂β | 5×10−6 gp 0.126 τa 0.131

Brier 0.148
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Fig. 12.8 Patterns of missing data. Upper left panel shows the fraction of observa-
tions missing on each predictor. Lower panel depicts a hierarchical cluster analysis of
missingness combinations. The similarity measure shown on the Y -axis is the frac-
tion of observations for which both variables are missing. Right panel shows the result
of recursive partitioning for predicting is.na(age). The rpart function found only
strong patterns according to passenger class.

Coef S.E. Wald Z Pr(> |Z|)
Intercept -2.2030 0.3641 -6.05 < 0.0001
sex=male 0.6440 0.3953 1.63 0.1033
pclass=2nd -1.0079 0.6658 -1.51 0.1300
pclass=3rd 1.6124 0.3596 4.48 < 0.0001
survived -0.1806 0.1828 -0.99 0.3232
sibsp 0.0435 0.0737 0.59 0.5548
parch -0.3526 0.1253 -2.81 0.0049
sex=male * pclass=2nd 0.1347 0.7545 0.18 0.8583
sex=male * pclass=3rd -0.8563 0.4214 -2.03 0.0422

latex (anova (m), file = ' ' , label = ' titanic-anova.na ' )
# Table 12.3
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Fig. 12.9 Univariable descriptions of proportion of passengers with missing age

Fortunately, after controlling for other variables, Table 12.3 provides evi-
dence that nonsurviving passengers are no more likely to have age missing.
The only important predictors of missingness are pclass and parch (the more
parents or children the passenger has on board, the less likely age was to be
missing).

12.5 Multiple Imputation

Multiple imputation is expected to reduce bias in estimates as well as to
provide an estimate of the variance–covariance matrix of β̂ penalized for im-
putation. With multiple imputation, survival status can be used to impute
missing ages, so the age relationship will not be as attenuated as with single
conditional mean imputation. aregImpute The following uses the Hmisc pack-
age aregImpute function to do predictive mean matching, using van Buuren’s
“Type 1” matching [85, Section 3.4.2] in conjunction with bootstrapping to
incorporate all uncertainties, in the context of smooth additive imputation
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Table 12.3 Wald Statistics for is.na(age)

χ2 d.f. P

sex (Factor+Higher Order Factors) 5.61 3 0.1324
All Interactions 5.58 2 0.0614

pclass (Factor+Higher Order Factors) 68.43 4 < 0.0001
All Interactions 5.58 2 0.0614

survived 0.98 1 0.3232
sibsp 0.35 1 0.5548
parch 7.92 1 0.0049
sex × pclass (Factor+Higher Order Factors) 5.58 2 0.0614
TOTAL 82.90 8 < 0.0001

models. Sampling of donors is handled by distance weighting to yield better
distributions of imputed values. By default, aregImpute does not transform
age when it is being predicted from the other variables. Four knots are used
to transform age when used to impute other variables (not needed here as no
other missings were present in the variables of interest). Since the fraction of
observations with missing age is 263

1309 = 0.2 we use 20 imputations.

set.seed (17) # so can reproduce random aspects

mi ← aregImpute (∼ age + sex + pclass +

sibsp + parch + survived ,

data =t3 , n.impute =20, nk=4, pr=FALSE )

mi

Multiple Imputation using Bootstrap and PMM

aregImpute(formula = ∼age + sex + pclass + sibsp + parch + survived ,
data = t3, n.impute = 20, nk = 4, pr = FALSE)

n: 1309 p: 6 Imputations: 20 nk: 4

Number of NAs:
age sex pclass sibsp parch survived
263 0 0 0 0 0

type d.f.
age s 1
sex c 1
pclass c 2
sibsp s 2
parch s 2
survived l 1

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable
Using Last Imputations of Predictors

age
0.295
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# Print the first 10 imputations for the first 10 passengers

# having missing age

mi$imputed$age [1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
16 40 49 24 29 60.0 58 64 36 50 61
38 33 45 40 49 80.0 2 38 38 36 53
41 29 24 19 31 40.0 60 64 42 30 65
47 40 42 29 48 36.0 46 64 30 38 42
60 52 40 22 31 38.0 22 19 24 40 33
70 16 14 23 23 18.0 24 19 27 59 23
71 30 62 57 30 42.0 31 64 40 40 63
75 43 23 36 61 45.5 58 64 27 24 50
81 44 57 47 31 45.0 30 64 62 39 67
107 52 18 24 62 32.5 38 64 47 19 23

plot (mi)

Ecdf (t3$age , add=TRUE , col= ' gray ' , lwd=2,

subtitles =FALSE )#Fig. 12.10
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Fig. 12.10 Distributions of imputed and actual ages for the Titanic dataset. Imputed
values are in black and actual ages in gray.

We now fit logistic models for five completed datasets. The fit.mult.impute

function fits five models and examines the within– and between–imputation
variances to compute an imputation-corrected variance–covariance matrix
that is stored in the fit object f.mi. fit.mult.impute will also average the five
β̂ vectors, storing the result in f.mi$coefficients. The function also prints
the ratio of imputation-corrected variances to average ordinary variances.

f.mi ← fit.mult.impute (

survived ∼ (sex + pclass + rcs(age ,5))∧2 +

rcs(age ,5)*sibsp ,
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Table 12.4 Wald Statistics for survived

χ2 d.f. P
sex (Factor+Higher Order Factors) 240.42 7 < 0.0001
All Interactions 54.56 6 < 0.0001

pclass (Factor+Higher Order Factors) 114.21 12 < 0.0001
All Interactions 36.43 10 0.0001

age (Factor+Higher Order Factors) 50.37 20 0.0002
All Interactions 25.88 16 0.0557
Nonlinear (Factor+Higher Order Factors) 24.21 15 0.0616

sibsp (Factor+Higher Order Factors) 24.22 5 0.0002
All Interactions 12.86 4 0.0120

sex × pclass (Factor+Higher Order Factors) 30.99 2 < 0.0001
sex × age (Factor+Higher Order Factors) 11.38 4 0.0226
Nonlinear 8.15 3 0.0430
Nonlinear Interaction : f(A,B) vs. AB 8.15 3 0.0430

pclass × age (Factor+Higher Order Factors) 5.30 8 0.7246
Nonlinear 4.63 6 0.5918
Nonlinear Interaction : f(A,B) vs. AB 4.63 6 0.5918

age × sibsp (Factor+Higher Order Factors) 12.86 4 0.0120
Nonlinear 1.84 3 0.6058
Nonlinear Interaction : f(A,B) vs. AB 1.84 3 0.6058

TOTAL NONLINEAR 24.21 15 0.0616
TOTAL INTERACTION 67.12 18 < 0.0001
TOTAL NONLINEAR + INTERACTION 70.99 21 < 0.0001
TOTAL 298.78 26 < 0.0001

lrm , mi , data =t3 , pr=FALSE )

latex (anova (f.mi ), file = ' ' , label = ' titanic-anova.mi ' ,
size = ' small ' ) # Table 12.4

The Wald χ2 for age is reduced by accounting for imputation but is in-
creased (by a lesser amount) by using patterns of association with survival
status to impute missing age. The Wald tests are all adjusted for multiple im-
putation. Now examine the fitted age relationship using multiple imputation
vs. casewise deletion.

p1 ← Predict(f, age , pclass , sex , sibsp =0, fun=plogis )

p2 ← Predict(f.mi , age , pclass , sex , sibsp =0, fun=plogis )

p ← rbind ( ' Casewise Deletion ' =p1 , ' Multiple Imputation ' =p2)
ggplot (p, groups = ' sex ' , ylab= ' Probability of Surviving ' )
# Figure 12.11

12.6 Summarizing the Fitted Model

In this section we depict the model fitted using multiple imputation, by com-
puting odds ratios and by showing various predicted values. For age, the odds
ratio for an increase from 1 year old to 30 years old is computed, instead of
the default odds ratio based on outer quartiles of age. The estimated odds
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Fig. 12.11 Predicted probability of survival for males from fit using casewise deletion
again (top) and multiple random draw imputation (bottom). Both sets of predictions
are for sibsp=0.

ratios are very dependent on the levels of interacting factors, so Figure 12.12
depicts only one of many patterns.

# Get predicted values for certain types of passengers

s ← summary(f.mi , age=c(1,30), sibsp =0:1)

# override default ranges for 3 variables

plot (s, log=TRUE , main= ' ' ) # Figure 12.12

Now compute estimated probabilities of survival for a variety of settings of
the predictors.
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Fig. 12.12 Odds ratios for some predictor settings

phat ← predict(f.mi ,

combos ←
expand.grid (age=c(2,21,50), sex=levels (t3$sex),

pclass =levels (t3$pclass ),

sibsp =0), type = ' fitted ' )
# Can also use Predict(f.mi , age=c(2,21,50), sex , pclass ,

# sibsp=0, fun=plogis)$yhat

options(digits =1)

data.frame (combos , phat)

age sex pclass sibsp phat
1 2 female 1st 0 0.97
2 21 female 1st 0 0.98
3 50 female 1st 0 0.97
4 2 male 1st 0 0.88
5 21 male 1st 0 0.48
6 50 male 1st 0 0.27
7 2 female 2nd 0 1.00
8 21 female 2nd 0 0.90
9 50 female 2nd 0 0.82
10 2 male 2nd 0 1.00
11 21 male 2nd 0 0.08
12 50 male 2nd 0 0.04
13 2 female 3rd 0 0.85
14 21 female 3rd 0 0.57
15 50 female 3rd 0 0.37
16 2 male 3rd 0 0.91
17 21 male 3rd 0 0.13
18 50 male 3rd 0 0.06

options(digits =5)

We can also get predicted values by creating an R function that will evaluate
the model on demand.
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pred.logit ← Function(f.mi)

# Note : if don ' t define sibsp to pred.logit , defaults to 0

# normally just type the function name to see its body

latex (pred.logit , file = ' ' , type= ' Sinput ' , size = ' small ' ,
width.cutoff =49)

p r e d . l o g i t ← f unc t i on ( sex = ”male ” , p c l a s s = ”3rd ” ,
age = 28 , s i b sp = 0)

{
3 .2427671 − 0 .95431809 ∗ ( sex == ”male ”) + 5 .4086505 ∗

( p c l a s s == ”2nd”) − 1 .3378623 ∗ ( p c l a s s ==
”3rd ”) + 0 .091162649 ∗ age − 0 .00031204327 ∗
pmax( age − 6 , 0)∧3 + 0 .0021750413 ∗ pmax( age −
21 , 0)∧3 − 0 .0027627032 ∗ pmax( age − 27 , 0)∧3 +
0 .0009805137 ∗ pmax( age − 36 , 0)∧3 − 8 .0808484e−05 ∗
pmax( age − 55 .8 , 0)∧3 − 1 .1567976 ∗ s i b sp +
( sex == ”male ”) ∗ (−0.46061284 ∗ ( p c l a s s ==

”2nd”) + 2 .0406523 ∗ ( p c l a s s == ”3rd ”) ) +
( sex == ”male ”) ∗ (−0.22469066 ∗ age + 0 .00043708296 ∗

pmax( age − 6 , 0)∧3 − 0 .0026505136 ∗ pmax( age −
21 , 0)∧3 + 0 .0031201404 ∗ pmax( age − 27 ,
0)∧3 − 0 .00097923749 ∗ pmax( age − 36 ,
0)∧3 + 7 .2527708e−05 ∗ pmax( age − 55 .8 ,
0)∧3) + ( p c l a s s == ”2nd”) ∗ (−0.46144083 ∗

age + 0 .00070194849 ∗ pmax( age − 6 , 0)∧3 −
0 .0034726662 ∗ pmax( age − 21 , 0)∧3 + 0 .0035255387 ∗
pmax( age − 27 , 0)∧3 − 0 .0007900891 ∗ pmax( age −
36 , 0)∧3 + 3 .5268151e−05 ∗ pmax( age − 55 .8 ,
0)∧3) + ( p c l a s s == ”3 rd ”) ∗ (−0.17513289 ∗
age + 0 .00035283358 ∗ pmax( age − 6 , 0)∧3 −
0 .0023049372 ∗ pmax( age − 21 , 0)∧3 + 0 .0028978962 ∗
pmax( age − 27 , 0)∧3 − 0 .00105145 ∗ pmax( age −
36 , 0)∧3 + 0 .00010565735 ∗ pmax( age − 55 .8 ,
0)∧3) + s ib sp ∗ (0 .040830773 ∗ age − 1 .5627772e−05 ∗
pmax( age − 6 , 0)∧3 + 0 .00012790256 ∗ pmax( age −
21 , 0)∧3 − 0 .00025039385 ∗ pmax( age − 27 ,
0)∧3 + 0 .00017871701 ∗ pmax( age − 36 , 0)∧3 −
4 .0597949e−05 ∗ pmax( age − 55 .8 , 0)∧3)

}

# Run the newly created function

plogis (pred.logit (age=c(2,21,50), sex= ' male ' , pclass = ' 3rd ' ))

[1] 0.914817 0.132640 0.056248

A nomogram could be used to obtain predicted values manually, but this is
not feasible when so many interaction terms are present.



Chapter 13

Ordinal Logistic Regression

13.1 Background

Many medical and epidemiologic studies incorporate an ordinal response
variable. In some cases an ordinal response Y represents levels of a standard
measurement scale such as severity of pain (none, mild, moderate, severe).
In other cases, ordinal responses are constructed by specifying a hierarchy
of separate endpoints. For example, clinicians may specify an ordering of
the severity of several component events and assign patients to the worst
event present from among none, heart attack, disabling stroke, and death.
Still another use of ordinal response methods is the application of rank-based
methods to continuous responses so as to obtain robust inferences. For ex-
ample, the proportional odds model described later allows for a continuous
Y and is really a generalization of the Wilcoxon–Mann–Whitney rank test.
Thus the semiparametric proportional odds model is a direct competitor of
ordinary linear models.

There are many variations of logistic models used for predicting an ordinal
response variable Y . All of them have the advantage that they do not assume
a spacing between levels of Y . In other words, the same regression coefficients
and P -values result from an analysis of a response variable having levels 0, 1, 2
when the levels are recoded 0, 1, 20. Thus ordinal models use only the rank-
ordering of values of Y .

In this chapter we consider two of the most popular ordinal logistic models,
the proportional odds (PO) form of an ordinal logistic model647 and the for-
ward continuation ratio (CR) ordinal logistic model.190 Chapter 15 deals with
a wider variety of ordinal models with emphasis on analysis of continuous Y . 1
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13.2 Ordinality Assumption

A basic assumption of all commonly used ordinal regression models is that the
response variable behaves in an ordinal fashion with respect to each predictor.
Assuming that a predictor X is linearly related to the log odds of some
appropriate event, a simple way to check for ordinality is to plot the mean
of X stratified by levels of Y . These means should be in a consistent order.
If for many of the Xs, two adjacent categories of Y do not distinguish the
means, that is evidence that those levels of Y should be pooled.

One can also estimate the mean or expected value of X |Y = j (E(X |Y =
j)) given that the ordinal model assumptions hold. This is a useful tool for
checking those assumptions, at least in an unadjusted fashion. For simplicity,
assume that X is discrete, and let Pjx = Pr(Y = j|X = x) be the probability
that Y = j given X = x that is dictated from the model being fitted, with
X being the only predictor in the model. Then

Pr(X = x|Y = j) = Pr(Y = j|X = x) Pr(X = x)/Pr(Y = j)

E(X |Y = j) =
∑
x

xPjx Pr(X = x)/Pr(Y = j), (13.1)

and the expectation can be estimated by

Ê(X |Y = j) =
∑
x

xP̂jxfx/gj, (13.2)

where P̂jx denotes the estimate of Pjx from the fitted one-predictor model
(for inner values of Y in the PO models, these probabilities are differences
between terms given by Equation 13.4 below), fx is the frequency of X = x
in the sample of size n, and gj is the frequency of Y = j in the sample. This
estimate can be computed conveniently without grouping the data by X . For
n subjects let the n values of X be x1, x2, . . . , xn. Then

Ê(X |Y = j) =

n∑
i=1

xiP̂jxi/gj. (13.3)

Note that if one were to compute differences between conditional means of X
and the conditional means of X given PO, and if furthermore the means were
conditioned on Y ≥ j instead of Y = j, the result would be proportional to
means of score residuals defined later in Equation 13.6.
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13.3 Proportional Odds Model

13.3.1 Model

The most commonly used ordinal logistic model was described in Walker
and Duncan647 and later called the proportional odds (PO) model by Mc-
Cullagh.449 The PO model is best stated as follows, for a response variable
having levels 0, 1, 2, . . . , k:

Pr[Y ≥ j|X ] =
1

1 + exp[−(αj +Xβ)]
, (13.4)

where j = 1, 2, . . . , k. Some authors write the model in terms of Y ≤ j. Our
formulation makes the model coefficients consistent with the binary logistic
model. There are k intercepts (αs). For fixed j, the model is an ordinary
logistic model for the event Y ≥ j. By using a common vector of regression
coefficients β connecting probabilities for varying j, the PO model allows for
parsimonious modeling of the distribution of Y . 2

There is a nice connection between the PO model and the Wilcoxon–
Mann–Whitney two-sample test: when there is a single predictor X1 that is
binary, the numerator of the score test for testing H0 : β1 = 0 is proportional
to the two-sample test statistic [664, pp. 2258–2259].

13.3.2 Assumptions and Interpretation of Parameters

There is an implicit assumption in the PO model that the regression coef-
ficients (β) are independent of j, the cutoff level for Y . One could say that
there is no X×Y interaction if PO holds. For a specific Y -cutoff j, the model
has the same assumptions as the binary logistic model (Section 10.1.1). That
is, the model in its simplest form assumes the log odds that Y ≥ j is linearly
related to each X and that there is no interaction between the Xs.

In designing clinical studies, one sometimes hears the statement that an
ordinal outcome should be avoided since statistical tests of patterns of those
outcomes are hard to interpret. In fact, one interprets effects in the PO model
using ordinary odds ratios. The difference is that a single odds ratio is as-
sumed to apply equally to all events Y ≥ j, j = 1, 2, . . . , k. If linearity and
additivity hold, the Xm + 1 : Xm odds ratio for Y ≥ j is exp(βm), whatever
the cutoff j.

The proportional hazards assumption is frequently violated, just as the as-
sumptions of normality of residuals with equal variance in ordinary regression
are frequently violated, but the PO model can still be useful and powerful in
this situation. As stated by Senn and Julious564,
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Clearly, the dependence of the proportional odds model on the assumption
of proportionality can be over-stressed. Suppose that two different statisticians
would cut the same three-point scale at different cut points. It is hard to see how
anybody who could accept either dichotomy could object to the compromise
answer produced by the proportional odds model.

Sometimes it helps in interpreting the model to estimate the mean Y as
a function of one or more predictors, even though this assumes a spacing for
the Y -levels.3

13.3.3 Estimation

The POmodel is fitted using MLE on a somewhat complex likelihood function
that is dependent on differences in logistic model probabilities. The estimation
process forces the αs to be in descending order.

13.3.4 Residuals

Schoenfeld residuals557 are very effective233 in checking the proportional haz-
ards assumption in the Cox132 survival model. For the PO model one could
analogously compute each subject’s contribution to the first derivative of
the log likelihood function with respect to βm, average them separately by
levels of Y , and examine trends in the residual plots as in Section 20.6.2.
A few examples have shown that such plots are usually hard to interpret.
Easily interpreted score residual plots for the PO model can be constructed,
however, by using the fitted PO model to predict a series of binary events
Y ≥ j, j = 1, 2, . . . , k, using the corresponding predicted probabilities

P̂ij =
1

1 + exp[−(α̂j +Xiβ̂)]
, (13.5)

where Xi stands for a vector of predictors for subject i. Then, after forming
an indicator variable for the event currently being predicted ([Yi ≥ j]), one
computes the score (first derivative) components Uim from an ordinary binary
logistic model:

Uim = Xim([Yi ≥ j]− P̂ij), (13.6)

for the subject i and predictor m. Then, for each column of U , plot the mean
Ū·m and confidence limits, with Y (i.e., j) on the x-axis. For each predictor
the trend against j should be flat if PO holds. aIn binary logistic regression,
partial residuals are very useful as they allow the analyst to fit linear effects

a If β̂ were derived from separate binary fits, all Ū·m ≡ 0.
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for all the predictors but then to nonparametrically estimate the true trans-
formation that each predictor requires (Section 10.4). The partial residual is
defined as follows, for the ith subject and mth predictor variable.115, 373

rim = β̂mXim +
Yi − P̂i

P̂i(1− P̂i)
, (13.7)

where

P̂i =
1

1 + exp[−(α+Xiβ̂)]
. (13.8)

A smoothed plot (e.g., using the moving linear regression algorithm in
loess111) of Xim against rim provides a nonparametric estimate of how Xm

relates to the log relative odds that Y = 1|Xm. For ordinal Y , we just need
to compute binary model partial residuals for all cutoffs j:

rim = β̂mXim +
[Yi ≥ j]− P̂ij

P̂ij(1− P̂ij)
, (13.9)

then to make a plot for each m showing smoothed partial residual curves for
all j, looking for similar shapes and slopes for a given predictor for all j. Each
curve provides an estimate of how Xm relates to the relative log odds that
Y ≥ j. Since partial residuals allow examination of predictor transformations
(linearity) while simultaneously allowing examination of PO (parallelism),
partial residual plots are generally preferred over score residual plots for or-
dinal models.

Li and Shepherd402 have a residual for ordinal models that serves for the
entire range of Y without the need to consider cutoffs. Their residual is use-
ful for checking functional form of predictors but not the proportional odds
assumption.

13.3.5 Assessment of Model Fit

Peterson and Harrell502 developed score and likelihood ratio tests for testing
the PO assumption. The score test is used in the SAS PROC LOGISTIC,540

but its extreme anti-conservatism in many cases can make it unreliable.502 4

For determining whether the PO assumption is likely to be satisfied for
each predictor separately, there are several graphics that are useful. One is the
graph comparing means of X |Y with and without assuming PO, as described
in Section 13.2 (see Figure 14.2 for an example). Another is the simple method
of stratifying on each predictor and computing the logits of all proportions of
the form Y ≥ j, j = 1, 2, . . . , k. When proportional odds holds, the differences
in logits between different values of j should be the same at all levels of X ,
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because the model dictates that logit(Y ≥ j|X)− logit(Y ≥ i|X) = αj − αi,
for any constant X . An example of this is in Figure 13.1.

require(Hmisc )

getHdata (support)

sfdm ← as.integer (support $sfdm2 ) - 1

sf ← function (y)

c( ' Y ≥ 1 ' =qlogis (mean (y ≥ 1)), ' Y ≥ 2 ' =qlogis (mean (y ≥ 2)),

' Y ≥ 3 ' =qlogis (mean (y ≥ 3)))

s ← summary(sfdm ∼ adlsc + sex + age + meanbp , fun=sf ,

data =support)

plot (s, which =1:3, pch =1:3, xlab = ' logit ' , vnames = ' names ' ,
main = ' ' , width.factor =1.5) # Figure 13.1

logit
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210
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216
211
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211
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[0.495,1.167)
[1.167,3.024)
[3.024,7.000]

[19.8, 52.4)
[52.4, 65.3)
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[74.8,100.1]

[  0, 64)
[ 64, 78)
[ 78,108)
[108,180]

adlsc

sex

age

meanbp

Overall

Fig. 13.1 Checking PO assumption separately for a series of predictors. The circle,
triangle, and plus sign correspond to Y ≥ 1, 2, 3, respectively. PO is checked by
examining the vertical constancy of distances between any two of these three symbols.
Response variable is the severe functional disability scale sfdm2 from the 1000-patient
SUPPORT dataset, with the last two categories combined because of low frequency
of coma/intubation.

When Y is continuous or almost continuous and X is discrete, the PO model
assumes that the logit of the cumulative distribution function of Y is parallel



13.3 Proportional Odds Model 317

across categories of X . The corresponding, more rigid, assumptions of the
ordinary linear model (here, parametric ANOVA) are parallelism and linear-
ity if the normal inverse cumulative distribution function across categories
of X . As an example consider the web site’s diabetes dataset, where we con-
sider the distribution of log glycohemoglobin across subjects’ body frames.

getHdata (diabetes )

a ← Ecdf (∼ log(glyhb ), group =frame , fun=qnorm ,

xlab = ' log(HbA1c ) ' , label.curves =FALSE , data =diabetes ,

ylab =expression (paste (Phi∧-1 , (F[n](x))))) # Fig. 13.2

b ← Ecdf (∼ log(glyhb ), group =frame , fun=qlogis ,

xlab = ' log(HbA1c ) ' , label.curves =list (keys= ' lines ' ),
data =diabetes , ylab=expression (logit (F[n](x))))

print (a, more =TRUE , split =c(1,1,2,1))

print (b, split =c(2,1,2,1))

log(HbA1c)

Φ
−1

(F
n( x

))

−2

0

2

1.0 1.5 2.0 2.5

log(HbA1c)

lo
gi

t(F
n(x

))

−5

0

5

1.0 1.5 2.0 2.5

small
medium
large

Fig. 13.2 Transformed empirical cumulative distribution functions stratified by body
frame in the diabetes dataset. Left panel: checking all assumptions of the parametric
ANOVA. Right panel: checking all assumptions of the POmodel (here, Kruskal–Wallis
test).

One could conclude the right panel of Figure 13.2 displays more parallelism
than the left panel displays linearity, so the assumptions of the PO model are
better satisfied than the assumptions of the ordinary linear model.

Chapter 14 has many examples of graphics for assessing fit of PO models.
Regarding assessment of linearity and additivity assumptions, splines, partial
residual plots, and interaction tests are among the best tools. Fagerland and
Hosmer182 have a good review of goodness-of-fit tests for the PO model.
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13.3.6 Quantifying Predictive Ability

The R2
N coefficient is really computed from the model LR χ2 (χ2 added to

a model containing only the k intercept parameters) to describe the model’s

predictive power. The Somers’ Dxy rank correlation between Xβ̂ and Y is
an easily interpreted measure of predictive discrimination. Since it is a rank
measure, it does not matter which intercept α is used in the calculation.
The probability of concordance, c, is also a useful measure. Here one takes all
possible pairs of subjects having differing Y values and computes the fraction
of such pairs for which the values of Xβ̂ are in the same direction as the two
Y values. c could be called a generalized ROC area in this setting. As before,
Dxy = 2(c − 0.5). Note that Dxy, c, and the Brier score B can easily be
computed for various dichotomizations of Y , to investigate predictive ability
in more detail.

13.3.7 Describing the Fitted Model

As discussed in Section 5.1, models are best described by computing predicted
values or differences in predicted values. For PO models there are four and
sometimes five types of relevant predictions:

1. logit[Y ≥ j|X ], i.e., the linear predictor
2. Prob[Y ≥ j|X ]
3. Prob[Y = j|X ]
4. Quantiles of Y |X (e.g., the medianb)
5. E(Y |X) if Y is interval scaled.

For the first two quantities above a good default choice for j is the middle
category. Partial effect plots are as simple to draw for PO models as they are
for binary logistic models. Other useful graphics, as before, are odds ratio
charts and nomograms. For the latter, an axis displaying the predicted mean
makes the model more interpretable, under scaling assumptions on Y .

13.3.8 Validating the Fitted Model

The PO model is validated much the same way as the binary logistic model
(see Section 10.9). For estimating an overfitting-corrected calibration curve
(Section 10.11) one estimates Pr(Y ≥ j|X) using one j at a time.

b If Y does not have very many levels, the median will be a discontinuous function
of X and may not be satisfactory.
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13.3.9 R Functions

The rms package’s lrm and orm functions fit the PO model directly, assuming
that the levels of the response variable (e.g., the levels of a factor variable)
are listed in the proper order. lrm is intended to be used for the case where the
number of unique values of Y are less than a few dozen whereas orm handles
the continuous Y case efficiently, as well as allowing for links other than the
logit. See Chapter 15 for more information.

If the response is numeric, lrm assumes the numeric codes properly order
the responses. If it is a character vector and is not a factor, lrm assumes the
correct ordering is alphabetic. Of course ordered variables in R are appropriate
response variables for ordinal regression. The predict function (predict.lrm)
can compute all the quantities listed in Section 13.3.7 except for quantiles.

The R functions popower and posamsize (in the Hmisc package) compute
power and sample size estimates for ordinal responses using the proportional
odds model.

The function plot.xmean.ordinaly in rms computes and graphs the quanti-
ties described in Section 13.2. It plots simple Y -stratified means overlaid with
Ê(X |Y = j), with j on the x-axis. The Ês are computed for both PO and con-
tinuation ratio ordinal logistic models. The Hmisc package’s summary.formula

function is also useful for assessing the PO assumption (Figure 13.1). Generic
rms functions such as validate, calibrate, and nomogram work with PO model
fits from lrm as long as the analyst specifies which intercept(s) to use. rms has
a special function generator Mean for constructing an easy-to-use function for
getting the predicted mean Y from a PO model. This is handy with plot and
nomogram. If the fit has been run through the bootcov function, it is easy to
use the Predict function to estimate bootstrap confidence limits for predicted
means.

13.4 Continuation Ratio Model

13.4.1 Model

Unlike the PO model, which is based on cumulative probabilities, the contin-
uation ratio (CR) model is based on conditional probabilities. The (forward)
CR model31, 52, 190 is stated as follows for Y = 0, . . . , k.

Pr(Y = j|Y ≥ j,X) =
1

1 + exp[−(θj +Xγ)]

logit(Y = 0|Y ≥ 0, X) = logit(Y = 0|X)

= θ0 +Xγ (13.10)
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logit(Y = 1|Y ≥ 1, X) = θ1 +Xγ

. . .

logit(Y = k − 1|Y ≥ k − 1, X) = θk−1 +Xγ.

The CR model has been said to be likely to fit ordinal responses when subjects
have to “pass through” one category to get to the next. The CR model is a
discrete version of the Cox proportional hazards model. The discrete hazard
function is defined as Pr(Y = j|Y ≥ j).

13.4.2 Assumptions and Interpretation of Parameters

The CR model assumes that the vector of regression coefficients, γ, is the
same regardless of which conditional probability is being computed.

One could say that there is no X× condition interaction if the CR model
holds. For a specific condition Y ≥ j, the model has the same assumptions as
the binary logistic model (Section 10.1.1). That is, the model in its simplest
form assumes that the log odds that Y = j conditional on Y ≥ j is linearly
related to each X and that there is no interaction between the Xs.

A single odds ratio is assumed to apply equally to all conditions Y ≥ j, j =
0, 1, 2, . . . , k− 1. If linearity and additivity hold, the Xm +1 : Xm odds ratio
for Y = j is exp(βm), whatever the conditioning event Y ≥ j.

To compute Pr(Y > 0|X) from the CR model, one only needs to take
one minus Pr(Y = 0|X). To compute other unconditional probabilities from
the CR model, one must multiply the conditional probabilities. For example,
Pr(Y > 1|X) = Pr(Y > 1|X,Y ≥ 1) × Pr(Y ≥ 1|X) = [1 − Pr(Y = 1|Y ≥
1, X)][1−Pr(Y = 0|X)] = [1−1/(1+exp[−(θ1+Xγ)])][1−1/(1+exp[−(θ0+
Xγ)])].

13.4.3 Estimation

Armstrong and Sloan31 and Berridge and Whitehead52 showed how the CR
model can be fitted using an ordinary binary logistic model likelihood func-
tion, after certain rows of the X matrix are duplicated and a new binary Y
vector is constructed. For each subject, one constructs separate records by
considering successive conditions Y ≥ 0, Y ≥ 1, . . . , Y ≥ k − 1 for a response
variable with values 0, 1, . . . , k. The binary response for each applicable con-
dition or “cohort” is set to 1 if the subject failed at the current “cohort” or
“risk set,” that is, if Y = j where the cohort being considered is Y ≥ j. The
constructed cohort variable is carried along with the new X and Y . This vari-
able is considered to be categorical and its coefficients are fitted by adding
k− 1 dummy variables to the binary logistic model. For ease of computation,



13.4 Continuation Ratio Model 321

the CR model is restated as follows, with the first cohort used as the reference
cell.

Pr(Y = j|Y ≥ j,X) =
1

1 + exp[−(α+ θj +Xγ)]
. (13.11)

Here α is an overall intercept, θ0 ≡ 0, and θ1, . . . , θk−1 are increments from α.

13.4.4 Residuals

To check CR model assumptions, binary logistic model partial residuals are
again valuable. We separately fit a sequence of binary logistic models using a
series of binary events and the corresponding applicable (increasingly small)
subsets of subjects, and plot smoothed partial residuals against X for all of
the binary events. Parallelism in these plots indicates that the CR model’s
constant γ assumptions are satisfied.

13.4.5 Assessment of Model Fit

The partial residual plots just described are very useful for checking the
constant slope assumption of the CR model. The next section shows how to
test this assumption formally. Linearity can be assessed visually using the
smoothed partial residual plot, and interactions between predictors can be
tested as usual.

13.4.6 Extended CR Model

The PO model has been extended by Peterson and Harrell502 to allow for
unequal slopes for some or all of the Xs for some or all levels of Y . This partial
PO model requires specialized software. The CR model can be extended more
easily. In R notation, the ordinary CR model is specified as 5

y ∼ cohort + X1 + X2 + X3 + ...

with cohort denoting a polytomous variable. The CR model can be extended
to allow for some or all of the βs to change with the cohort or Y -cutoff.31

Suppose that non-constant slope is allowed for X1 and X2. The R notation for
the extended model would be

y ∼ cohort *(X1 + X2) + X3
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The extended CR model is a discrete version of the Cox survival model with
time-dependent covariables.

There is nothing about the CR model that makes it fit a given dataset
better than other ordinal models such as the PO model. The real benefit of
the CR model is that using standard binary logistic model software one can
flexibly specify how the equal-slopes assumption can be relaxed.

13.4.7 Role of Penalization in Extended CR Model

As demonstrated in the upcoming case study, penalized MLE is invaluable in
allowing the model to be extended into an unequal-slopes model insofar as the
information content in the data will support. Faraway186 has demonstrated
how all data-driven steps of the modeling process increase the real variance in
“final” parameter estimates, when one estimates variances without assuming
that the final model was prespecified. For ordinal regression modeling, the
most important modeling steps are (1) choice of predictor variables, (2) se-
lecting or modeling predictor transformations, and (3) allowance for unequal
slopes across Y -cutoffs (i.e., non-PO or non-CR). Regarding Steps (2) and (3)
one is tempted to rely on graphical methods such as residual plots to make
detours in the strategy, but it is very difficult to estimate variances or to
properly penalize assessments of predictive accuracy for subjective modeling
decisions. Regarding (1), shrinkage has been proven to work better than step-
wise variable selection when one is attempting to build a main-effects model.
Choosing a shrinkage factor is a well-defined, smooth, and often a unique
process as opposed to binary decisions on whether variables are “in” or “out”
of the model. Likewise, instead of using arbitrary subjective (residual plots)
or objective (χ2 due to cohort × covariable interactions, i.e., non-constant
covariable effects), shrinkage can systematically allow model enhancements
insofar as the information content in the data will support, through the use of
differential penalization. Shrinkage is a solution to the dilemma faced when
the analyst attempts to choose between a parsimonious model and a more
complex one that fits the data. Penalization does not require the analyst to
make a binary decision, and it is a process that can be validated using the
bootstrap.

13.4.8 Validating the Fitted Model

Validation of statistical indexes such as Dxy and model calibration is done
using techniques discussed previously, except that certain problems must be
addressed. First, when using the bootstrap, the resampling must take into ac-
count the existence of multiple records per subject that were created to use
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the binary logistic likelihood trick. That is, sampling should be done with re-
placement from subjects rather than records. Second, the analyst must isolate
which event to predict. This is because when observations are expanded in
order to use a binary logistic likelihood function to fit the CR model, several
different events are being predicted simultaneously. Somers’ Dxy could be
computed by relating Xγ̂ (ignoring intercepts) to the ordinal Y , but other
indexes are not defined so easily. The simplest approach here would be to
validate a single prediction for Pr(Y = j|Y ≥ j,X), for example. The sim-
plest event to predict is Pr(Y = 0|X), as this would just require subsetting
on all observations in the first cohort level in the validation sample. It would
also be easy to validate any one of the later conditional probabilities. The
validation functions described in the next section allow for such subsetting,
as well as handling the cluster sampling. Specialized calculations would be
needed to validate an unconditional probability such as Pr(Y ≥ 2|X).

13.4.9 R Functions

The cr.setup function in rms returns a list of vectors useful in constructing
a dataset used to trick a binary logistic function such as lrm into fitting
CR models. The subs vector in this list contains observation numbers in the
original data, some of which are repeated. Here is an example.

u ← cr.setup (Y) # Y=original ordinal response

attach (mydata [u$subs ,]) # mydata is the original dataset

# mydata[i,] subscripts input data ,

# using duplicate values of i for

# repeats

y ← u$y # constructed binary responses

cohort ← u$cohort # cohort or risk set categories

f ← lrm(y ∼ cohort *age + sex)

Since the lrm and pentrace functions have the capability to penalize dif-
ferent parts of the model by different amounts, they are valuable for fitting
extended CR models in which the cohort × predictor interactions are allowed
to be only as important as the information content in the data will support.
Simple main effects can be unpenalized or slightly penalized as desired.

The validate and calibrate functions for lrm allow specification of sub-
ject identifiers when using the bootstrap, so the samples can be constructed
with replacement from the original subjects. In other words, cluster sam-
pling is done from the expanded records. This is handled internally by the
predab.resample function. These functions also allow one to specify a subset of
the records to use in the validation, which makes it especially easy to validate
the part of the model used to predict Pr(Y = 0|X).

The plot.xmean.ordinaly function is useful for checking the CR assumption
for single predictors, as described earlier. 6



324 13 Ordinal Logistic Regression

13.5 Further Reading

1 See5,25,26,31,32,52,63,64,113,126,240,245,276,354,449,502,561,664,679 for some
excellent background references, applications, and extensions to the ordinal
models.663 and428 demonstrate how to model ordinal outcomes with repeated
measurements within subject using random effects in Bayesian models. The first
to develop an ordinal regression model were Aitchison and Silvey8.

2 Some analysts feel that combining categories improves the performance of test
statistics when fitting PO models when sample sizes are small and cells are
sparse. Murad et al.469 demonstrated that this causes more problems, because
it results in overly conservative Wald tests.

3 Anderson and Philips [26, p. 29] proposed methods for constructing properly
spaced response values given a fitted PO model.

4 The simplest demonstration of this is to consider a model in which there is a
single predictor that is totally independent of a nine-level response Y , so PO
must hold. A PO model is fitted in SAS using:

DATA test;
DO i=1 to 50;

y=FLOOR(RANUNI(151)*9);
x=RANNOR(5);
OUTPUT;
END;

PROC LOGISTIC; MODEL y=x;

The score test for PO was χ2 = 56 on 7 d.f., P < 0.0001. This problem results
from some small cell sizes in the distribution of Y .502 The P -value for testing
the regression effect for X was 0.76.

5 The R glmnetcr package by Kellie Archer provides a different way to fit con-
tinuation ratio models.

6 Bender and Benner48 have some examples using the precursor of the rms package
for fitting and assessing the goodness of fit of ordinal logistic regression models.

13.6 Problems

Test for the association between disease group and total hospital cost in
SUPPORT, without imputing any missing costs (exclude the one patient
having zero cost).

1. Use the Kruskal–Wallis rank test.
2. Use the proportional odds ordinal logistic model generalization of the

Wilcoxon–Mann–Whitney Kruskal–Wallis Spearman test. Group total cost
into 20 quantile groups so that only 19 intercepts will need to be in the
model, not one less than the number of subjects (this would have taken
the program too long to fit the model). Use the likelihood ratio χ2 for this
and later steps.

3. Use a binary logistic model to test for association between disease group
and whether total cost exceeds the median of total cost. In other words,
group total cost into two quantile groups and use this binary variable as
the response. What is wrong with this approach?
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4. Instead of using only two cost groups, group cost into 3, 4, 5, 6, 8, 10,
and 12 quantile groups. Describe the relationship between the number of
intervals used to approximate the continuous response variable and the
efficiency of the analysis. How many intervals of total cost, assuming that
the ordering of the different intervals is used in the analysis, are required
to avoid losing significant information in this continuous variable?

5. If you were selecting one of the rank-based tests for testing the association
between disease and cost, which of any of the tests considered would you
choose?

6. Why do all of the tests you did have the same number of degrees of freedom
for the hypothesis of no association between dzgroup and totcst?

7. What is the advantage of a rank-based test over a parametric test based
on log(cost)?

8. Show that for a two-sample problem, the numerator of the score test for
comparing the two groups using a proportional odds model is exactly the
numerator of the Wilcoxon-Mann-Whitney two-sample rank-sum test.



Chapter 14

Case Study in Ordinal Regression,
Data Reduction, and Penalization

This case study is taken from Harrell et al.272 which described a World Health
Organization study439 in which vital signs and a large number of clinical
signs and symptoms were used to develop a predictive model for an ordinal
response. This response consists of laboratory assessments of diagnosis and
severity of illness related to pneumonia, meningitis, and sepsis. Much of the
modeling strategy given in Chapter 4 was used to develop the model, with ad-
ditional emphasis on penalized maximum likelihood estimation (Section 9.10).
The following laboratory data are used in the response: cerebrospinal fluid
(CSF) culture from a lumbar puncture (LP), blood culture (BC), arterial
oxygen saturation (SaO2, a measure of lung dysfunction), and chest X-ray
(CXR). The sample consisted of 4552 infants aged 90 days or less.

This case study covers these topics:

1. definition of the ordinal response (Section 14.1);
2. scoring and clustering of clinical signs (Section 14.2);
3. testing adequacy of weights specified by subject-matter specialists and

assessing the utility of various scoring schemes using a tentative ordinal
logistic model (Section 14.3);

4. assessing the basic ordinality assumptions and examining the propor-
tional odds and continuation ratio (PO and CR) assumptions separately
for each predictor (Section 14.4);

5. deriving a tentative PO model using cluster scores and regression splines
(Section 14.5);

6. using residual plots to check PO, CR, and linearity assumptions (Sec-
tion 14.6);

7. examining the fit of a CR model (Section 14.7);
8. utilizing an extended CR model to allow some or all of the regression

coefficients to vary with cutoffs of the response level as well as to provide
formal tests of constant slopes (Section 14.8);
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Table 14.1 Ordinal Outcome Scale

Outcome Definition n Fraction in Outcome Level
Level BC, CXR Not Random
Y Indicated Indicated Sample

(n = 2398) (n = 1979) (n = 175)
0 None of the below 3551 0.63 0.96 0.91
1 90% ≤ SaO2 < 95% 490 0.17 0.04a 0.05

or CXR+
2 BC+ or CSF+ 511 0.21 0.00b 0.03

or SaO2 < 90%

a SaO2 was measured but CXR was not done
b Assumed zero since neither BC nor LP were done.

9. using penalized maximum likelihood estimation to improve accuracy
(Section 14.9);

10. approximating the full model by a sub-model and drawing a nomogram
on the basis of the sub-model (Section 14.10); and

11. validating the ordinal model using the bootstrap (Section 14.11).

14.1 Response Variable

To be a candidate for BC and CXR, an infant had to have a clinical indication
for one of the three diseases, according to prespecified criteria in the study
protocol (n = 2398). Blood work-up (but not necessarily LP) and CXR was
also done on a random sample intended to be 10% of infants having no signs
or symptoms suggestive of infection (n = 175). Infants with signs suggestive
of meningitis had LP done. All 4552 infants received a full physical exam and
standardized pulse oximetry to measure SaO2. The vast majority of infants
getting CXR had the X-rays interpreted by three independent radiologists.

The analyses that follow are not corrected for verification bias687 with
respect to BC, LP, and CXR, but Section 14.1 has some data describing the
extent of the problem, and the problem is reduced by conditioning on a large
number of covariates.

Patients were assigned to the worst qualifying outcome category. Table 14.1
shows the definition of the ordinal outcome variable Y and shows the distri-
bution of Y by the lab work-up strategy.

The effect of verification bias is a false negative fraction of 0.03 for Y = 2,
from comparing the detection fraction of zero for Y = 2 in the“Not Indicated”
group with the observed positive fraction of 0.03 in the random sample that
was fully worked up. The extent of verification bias in Y = 1 is 0.05− 0.04 =
0.01. These biases are ignored in this analysis.
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14.2 Variable Clustering

Forty-seven clinical signs were collected for each infant. Most questionnaire
items were scored as a single variable using equally spaced codes, with 0 to
3 representing, for example, sign not present, mild, moderate, severe. The
resulting list of clinical signs with their abbreviations is given in Table 14.2.
The signs are organized into clusters as discussed later.

Table 14.2 Clinical Signs

Cluster Name Sign Name Values
Abbreviation of Sign

bul.conv abb bulging fontanel 0-1
convul hx convulsion 0-1

hydration abk sunken fontanel 0-1
hdi hx diarrhoea 0-1
deh dehydrated 0-2
stu skin turgor 0-2
dcp digital capillary refill 0-2

drowsy hcl less activity 0-1
qcr quality of crying 0-2
csd drowsy state 0-2
slpm sleeping more 0-1
wake wakes less easily 0-1
aro arousal 0-2
mvm amount of movement 0-2

agitated hcm crying more 0-1
slpl sleeping less 0-1
con consolability 0-2
csa agitated state 0-1

crying hcm crying more 0-1
hcs crying less 0-1
qcr quality of crying 0-2
smi2 smiling ability × age > 42 days 0-2

reffort nfl nasal flaring 0-3
lcw lower chest in-drawing 0-3
gru grunting 0-2
ccy central cyanosis 0-1

stop.breath hap hx stop breathing 0-1
apn apnea 0-1

ausc whz wheezing 0-1
coh cough heard 0-1
crs crepitation 0-2

hxprob hfb fast breathing 0-1
hdb difficulty breathing 0-1
hlt mother report resp. problems none, chest, other

feeding hfa hx abnormal feeding 0-3
absu sucking ability 0-2
afe drinking ability 0-2

labor chi previous child died 0-1
fde fever at delivery 0-1
ldy days in labor 1-9
twb water broke 0-1

abdominal adb abdominal distension 0-4
jau jaundice 0-1
omph omphalitis 0-1

fever.ill illd age-adjusted no. days ill
hfe hx fever 0-1

pustular conj conjunctivitis 0-1
oto otoscopy impression 0-2
puskin pustular skin rash 0-1
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Fig. 14.1 Hierarchical variable clustering using Spearman ρ2 as a similarity measure
for all pairs of variables. Note that since the hlt variable was nominal, it is represented
by two dummy variables here.

Here, hx stands for history, ausc for auscultation, and hxprob for history of
problems. Two signs (qcr, hcm) were listed twice since they were later placed
into two clusters each.

Next, hierarchical clustering was done using the matrix of squared Spear-
man rank correlation coefficients as the similarity matrix. The varclus R

function was used as follows.

require(rms)

getHdata (ari) # defines ari, Sc, Y, Y.death

vclust ←
varclus (∼ illd + hlt + slpm + slpl + wake + convul + hfa +

hfb + hfe + hap + hcl + hcm + hcs + hdi +

fde + chi + twb + ldy + apn + lcw + nfl +

str + gru + coh + ccy + jau + omph + csd +

csa + aro + qcr + con + att + mvm + afe +

absu + stu + deh + dcp + crs + abb + abk +

whz + hdb + smi2 + abd + conj + oto + puskin ,

data=ari)

plot(vclust ) # Figure 14.1

The output appears in Figure 14.1. This output served as a starting point
for clinicians to use in constructing more meaningful clinical clusters. The
clusters in Table 14.2 were the consensus of the clinicians who were the in-
vestigators in the WHO study. Prior subject matter knowledge plays a key
role at this stage in the analysis.

14.3 Developing Cluster Summary Scores

The clusters listed in Table 14.2 were first scored by the first principal com-
ponent of transcan-transformed signs, denoted by PC1. Knowing that the
resulting weights may be too complex for clinical use, the primary reasons
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Table 14.3 Clinician Combinations, Rankings, and Scorings of Signs

Cluster Combined/Ranked Signs in Order of Severity Weights
bul.conv abb ∪ convul 0–1
drowsy hcl, qcr>0, csd>0 ∪ slpm ∪ wake, aro>0, mvm>0 0–5
agitated hcm, slpl, con=1, csa, con=2 0, 1, 2, 7, 8, 10
reffort nfl>0, lcw>1, gru=1, gru=2, ccy 0–5
ausc whz, coh, crs>0 0–3
feeding hfa=1, hfa=2, hfa=3, absu=1 ∪ afe=1, 0–5

absu=2 ∪ afe=2
abdominal jau ∪ abd>0 ∪ omph 0–1

for analyzing the principal components were to see if some of the clusters
could be removed from consideration so that the clinicians would not spend
time developing scoring rules for them. Let us “peek” at Y to assist in scoring
clusters at this point, but to do so in a very structured way that does not
involve the examination of a large number of individual coefficients.

To judge any cluster scoring scheme, we must pick a tentative outcome
model. For this purpose we chose the PO model. By using the 14 PC1s cor-
responding to the 14 clusters, the fitted PO model had a likelihood ratio
(LR) χ2 of 1155 with 14 d.f., and the predictive discrimination of the clus-

ters was quantified by a Somers’ Dxy rank correlation between Xβ̂ and Y
of 0.596. The following clusters were not statistically important predictors
and we assumed that the lack of importance of the PC1s in predicting Y
(adjusted for the other PC1s) justified a conclusion that no sign within that
cluster was clinically important in predicting Y : hydration, hxprob, pustular,

crying, fever.ill, stop.breath, labor. This list was identified using a back-
ward step-down procedure on the full model. The total Wald χ2 for these
seven PC1s was 22.4 (P = 0.002). The reduced model had LR χ2 = 1133
with 7 d.f., Dxy = 0.591. The bootstrap validation in Section 14.11 penalizes
for examining all candidate predictors.

The clinicians were asked to rank the clinical severity of signs within each
potentially important cluster. During this step, the clinicians also ranked
severity levels of some of the component signs, and some cluster scores were
simplified, especially when the signs within a cluster occurred infrequently.
The clinicians also assessed whether the severity points or weights should be
equally spaced, assigning unequally spaced weights for one cluster (agitated).
The resulting rankings and sign combinations are shown in Table 14.3. The
signs or sign combinations separated by a comma are treated as separate
categories, whereas some signs were unioned (“or”–ed) when the clinicians
deemed them equally important. As an example, if an additive cluster score
was to be used for drowsy, the scorings would be 0 = none present, 1 = hcl,
2 = qcr>0, 3 = csd>0 or slpm or wake, 4 = aro>0, 5 = mvm>0 and the scores
would be added.
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Table 14.4 Predictive information of various cluster scoring strategies. AIC is on
the likelihood ratio χ2 scale.

Scoring Method LR χ2 d.f. AIC

PC1 of each cluster 1133 7 1119
Union of all signs 1045 7 1031
Union of higher categories 1123 7 1109
Hierarchical (worst sign) 1194 7 1180
Additive, equal weights 1155 7 1141
Additive using clinician weights 1183 7 1169
Hierarchical, data-driven weights 1227 25 1177

This table reflects some data reduction already (unioning some signs and
selection of levels of ordinal signs) but more reduction is needed. Even after
signs are ranked within a cluster, there are various ways of assigning the clus-
ter scores. We investigated six methods. We started with the purely statistical
approach of using PC1 to summarize each cluster. Second, all sign combina-
tions within a cluster were unioned to represent a 0/1 cluster score. Third,
only sign combinations thought by the clinicians to be severe were unioned,
resulting in drowsy=aro>0 or mvm>0, agitated=csa or con=2, reffort=lcw>1 or
gru>0 or ccy, ausc=crs>0, and feeding=absu>0 or afe>0. For clusters that are
not scored 0/1 in Table 14.3, the fourth summarization method was a hi-
erarchical one that used the weight of the worst applicable category as the
cluster score. For example, if aro=1 but mvm=0, drowsy would be scored as 4.
The fifth method counted the number of positive signs in the cluster. The
sixth method summed the weights of all signs or sign combinations present.
Finally, the worst sign combination present was again used as in the sec-
ond method, but the points assigned to the category were data-driven ones
obtained by using extra dummy variables. This provided an assessment of
the adequacy of the clinician-specified weights. By comparing rows 4 and 7
in Table 14.4 we see that response data-driven sign weights have a slightly
worse AIC, indicating that the number of extra β parameters estimated was
not justified by the improvement in χ2. The hierarchical method, using the
clinicians’ weights, performed quite well. The only cluster with inadequate
clinician weights was ausc—see below. The PC1 method, without any guid-
ance, performed well, as in268. The only reasons not to use it are that it
requires a coefficient for every sign in the cluster and the coefficients are not
translatable into simple scores such as 0, 1, . . ..

Representation of clusters by a simple union of selected signs or of all signs
is inadequate, but otherwise the choice of methods is not very important in
terms of explaining variation in Y . We chose the fourth method, a hierar-
chical severity point assignment (using weights that were prespecified by the
clinicians), for its ease of use and of handling missing component variables
(in most cases) and potential for speeding up the clinical exam (examining
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to detect more important signs first). Because of what was learned regard-
ing the relationship between ausc and Y , we modified the ausc cluster score
by redefining it as ausc=crs>0 (crepitations present). Note that neither the
“tweaking” of ausc nor the examination of the seven scoring methods dis-
played in Table 14.4 is taken into account in the model validation.

14.4 Assessing Ordinality of Y for each X,
and Unadjusted Checking of PO and CR
Assumptions

Section 13.2 described a graphical method for assessing the ordinality as-
sumption for Y separately with respect to each X , and for assessing PO and
CR assumptions individually. Figure 14.2 is an example of such displays. For
this dataset we expect strongly nonlinear effects for temp, rr, and hrat, so for
those predictors we plot the mean absolute differences from suitable “normal”
values as an approximate solution.

Sc ← transform (Sc ,

ausc = 1 * (ausc == 3),

bul.conv = 1 * (bul.conv == ' TRUE ' ),
abdominal = 1 * (abdominal == ' TRUE ' ))

plot.xmean.ordinaly (Y ∼ age + abs(temp-37) + abs(rr-60 ) +

abs(hrat-125 ) + waz + bul.conv + drowsy +

agitated + reffort + ausc + feeding +

abdominal , data =Sc , cr=TRUE ,

subn=FALSE , cex.points =.65) # Figure 14.2

The plot is shown in Figure 14.2. Y does not seem to operate in an ordinal
fashion with respect to age, |rr−60|, or ausc. For the other variables, ordinality
holds, and PO holds reasonably well for the other variables. For heart rate,
the PO assumption appears to be satisfied perfectly. CR model assumptions
appear to be more tenuous than PO assumptions, when one variable at a
time is fitted.

14.5 A Tentative Full Proportional Odds Model

Based on what was determined in Section 14.3, the original list of 47 signs
was reduced to seven predictors: two unions of signs (bul.conv, abdominal),
one single sign (ausc), and four “worst category” point assignments (drowsy,
agitated, reffort, feeding). Seven clusters were dropped for the time being
because of weak associations with Y . Such a limited use of variable selection
reduces the severe problems inherent with that technique.
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Fig. 14.2 Examination of the ordinality of Y for each predictor by assessing how
varying Y relate to the mean X , and whether the trend is monotonic. Solid lines
connect the simple stratified means, and dashed lines connect the estimated expected
value of X |Y = j given that PO holds. Estimated expected values from the CR model
are marked with Cs.

At this point in model development add to the model age and vital signs:
temp (temperature), rr (respiratory rate), hrat (heart rate), and waz, weight-
for-age Z-score. Since age was expected to modify the interpretation of temp,
rr, and hrat, and interactions between continuous variables would be difficult
to use in the field, we categorized age into three intervals: 0–6 days (n = 302),
7–59 days (n = 3042), and 60–90 days (n = 1208).a

Sc$ageg ← cut2 (Sc$age , c(7, 60))

The new variables temp, rr, hrat, waz were missing in, respectively, n =
13, 11, 147, and 20 infants. Since the three vital sign variables are somewhat
correlated with each other, customized single imputation models were de-
veloped to impute all the missing values without assuming linearity or even
monotonicity of any of the regressions.

a These age intervals were also found to adequately capture most of the interaction
effects.
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vsign.trans ← transcan(∼ temp + hrat + rr , data =Sc,

imputed=TRUE , pl=FALSE )

Convergence criterion:2.222 0.643 0.191 0.056 0.016
Convergence in 6 iterations

R2 achieved in predicting each variable :

temp hrat rr
0.168 0.160 0.066

Adjusted R2:

temp hrat rr
0.167 0.159 0.064

Sc ← transform (Sc ,

temp = impute (vsign.trans , temp ),

hrat = impute (vsign.trans , hrat ),

rr = impute (vsign.trans , rr))

After transcan estimated optimal restricted cubic spline transformations, temp
could be predicted with adjusted R2 = 0.17 from hrat and rr, hrat could be
predicted with adjusted R2 = 0.16 from temp and rr, and rr could be pre-
dicted with adjusted R2 of only 0.06. The first two R2, while not large, mean
that customized imputations are more efficient than imputing with constants.
Imputations on rr were closer to the median rr of 48/minute as compared
with the other two vital signs whose imputations have more variation. In a
similar manner, waz was imputed using age, birth weight, head circumference,
body length, and prematurity (adjusted R2 for predicting waz from the oth-
ers was 0.74). The continuous predictors temp, hrat, rr were not assumed to
linearly relate to the log odds that Y ≥ j. Restricted cubic spline functions
with five knots for temp,rr and four knots for hrat,waz were used to model
the effects of these variables:

f1 ← lrm(Y ∼ ageg *(rcs(temp ,5)+ rcs(rr ,5)+ rcs(hrat ,4)) +

rcs(waz ,4) + bul.conv + drowsy + agitated +

reffort + ausc + feeding + abdominal ,

data =Sc , x=TRUE , y=TRUE )

# x=TRUE , y=TRUE used by resid() below

print (f1 , latex =TRUE , coefs =5)

Logistic Regression Model

lrm(formula = Y ~ ageg * (rcs(temp, 5) + rcs(rr, 5) + rcs(hrat,

4)) + rcs(waz, 4) + bul.conv + drowsy + agitated + reffort +

ausc + feeding + abdominal, data = Sc, x = TRUE, y = TRUE)
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Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 4552 LR χ2 1393.18 R2 0.355 C 0.826
0 3551 d.f. 45 g 1.485 Dxy 0.653
1 490 Pr(> χ2) < 0.0001 gr 4.414 γ 0.654
2 511 gp 0.225 τa 0.240

max |∂ logL
∂β | 2×10−6 Brier 0.120

Coef S.E. Wald Z Pr(> |Z|)
y≥1 0.0653 7.6563 0.01 0.9932
y≥2 -1.0646 7.6563 -0.14 0.8894
ageg=[ 7,60) 9.5590 9.9071 0.96 0.3346
ageg=[60,90] 29.1376 15.8915 1.83 0.0667
temp -0.0694 0.2160 -0.32 0.7480
. . .

Wald tests of nonlinearity and interaction are shown in Table 14.5.

latex (anova (f1), file = ' ' , label = ' ordinal-anova.f1 ' ,
caption= ' Wald statistics from the proportional odds model ' ,
size = ' smaller ' ) # Table 14.5

The bottom four lines of the table are the most important. First, there is
strong evidence that some associations with Y exist (45 d.f. test) and very
strong evidence of nonlinearity in one of the vital signs or in waz (26 d.f. test).
There is moderately strong evidence for an interaction effect somewhere in the
model (22 d.f. test). We see that the grouped age variable ageg is predictive
of Y , but mainly as an effect modifier for rr, and hrat. temp is extremely
nonlinear, and rr is moderately so. hrat, a difficult variable to measure reliably
in young infants, is perhaps not important enough (χ2 = 19, 9 d.f.) to keep
in the final model.

14.6 Residual Plots

Section 13.3.4 defined binary logistic score residuals for isolating the PO
assumption in an ordinal model. For the tentative PO model, score residuals
for four of the variables were plotted using

resid (f1 , ' score.binary ' , pl=TRUE , which =c(17 ,18 ,20 ,21))

## Figure 14.3

The result is shown in Figure 14.3. We see strong evidence of non-PO for
ausc and moderate evidence for drowsy and bul.conv, in agreement with
Figure 14.2.
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Table 14.5 Wald statistics from the proportional odds model

χ2 d.f. P
ageg (Factor+Higher Order Factors) 41.49 24 0.0147
All Interactions 40.48 22 0.0095

temp (Factor+Higher Order Factors) 37.08 12 0.0002
All Interactions 6.77 8 0.5617
Nonlinear (Factor+Higher Order Factors) 31.08 9 0.0003

rr (Factor+Higher Order Factors) 81.16 12 < 0.0001
All Interactions 27.37 8 0.0006
Nonlinear (Factor+Higher Order Factors) 27.36 9 0.0012

hrat (Factor+Higher Order Factors) 19.00 9 0.0252
All Interactions 8.83 6 0.1836
Nonlinear (Factor+Higher Order Factors) 7.35 6 0.2901

waz 35.82 3 < 0.0001
Nonlinear 13.21 2 0.0014

bul.conv 12.16 1 0.0005
drowsy 17.79 1 < 0.0001
agitated 8.25 1 0.0041
reffort 63.39 1 < 0.0001
ausc 105.82 1 < 0.0001
feeding 30.38 1 < 0.0001
abdominal 0.74 1 0.3895
ageg × temp (Factor+Higher Order Factors) 6.77 8 0.5617
Nonlinear 6.40 6 0.3801
Nonlinear Interaction : f(A,B) vs. AB 6.40 6 0.3801

ageg × rr (Factor+Higher Order Factors) 27.37 8 0.0006
Nonlinear 14.85 6 0.0214
Nonlinear Interaction : f(A,B) vs. AB 14.85 6 0.0214

ageg × hrat (Factor+Higher Order Factors) 8.83 6 0.1836
Nonlinear 2.42 4 0.6587
Nonlinear Interaction : f(A,B) vs. AB 2.42 4 0.6587

TOTAL NONLINEAR 78.20 26 < 0.0001
TOTAL INTERACTION 40.48 22 0.0095
TOTAL NONLINEAR + INTERACTION 96.31 32 < 0.0001
TOTAL 1073.78 45 < 0.0001

Partial residuals computed separately for each Y -cutoff (Section 13.3.4) are
the most useful residuals for ordinal models as they simultaneously check lin-
earity, find needed transformations, and check PO. In Figure 14.4, smoothed
partial residual plots were obtained for all predictors, after first fitting a sim-
ple model in which every predictor was assumed to operate linearly. Inter-
actions were temporarily ignored and age was used as a continuous variable.

f2 ← lrm(Y ∼ age + temp + rr + hrat + waz +

bul.conv + drowsy + agitated + reffort + ausc +

feeding + abdominal , data=Sc, x=TRUE , y=TRUE)

resid (f2 , ' partial ' , pl=TRUE , label.curves=FALSE) # Figure 14.4
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Fig. 14.3 Binary logistic model score residuals for binary events derived from two
cutoffs of the ordinal response Y . Note that the mean residuals, marked with closed
circles, correspond closely to differences between solid and dashed lines at Y = 1, 2
in Figure 14.2. Score residual assessments for spline-expanded variables such as rr

would have required one plot per d.f.

The degree of non-parallelism generally agreed with the degree of non-flatness
in Figure 14.3 and with the other score residual plots that were not shown.
The partial residuals show that temp is highly nonlinear and that it is much
more useful in predicting Y = 2. For the cluster scores, the linearity assump-
tion appears reasonable, except possibly for drowsy. Other nonlinear effects
are taken into account using splines as before (except for age, which is cate-
gorized).

A model can have significant lack of fit with respect to some of the predic-
tors and still yield quite accurate predictions. To see if that is the case for this
PO model, we computed predicted probabilities of Y = 2 for all infants from
the model and compared these with predictions from a customized binary
logistic model derived to predict Pr(Y = 2). The mean absolute difference
in predicted probabilities between the two models is only 0.02, but the 0.90
quantile of that difference is 0.059. For high-risk infants, discrepancies of 0.2
were common. Therefore we elected to consider a different model.

14.7 Graphical Assessment of Fit of CR Model

In order to take a first look at the fit of a CR model, let us consider the
two binary events that need to be predicted, and assess linearity and paral-
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lelism over Y -cutoffs. Here we fit a sequence of binary fits and then use the
plot.lrm.partial function, which assembles partial residuals for a sequence
of fits and constructs one graph per predictor.

cr0 ← lrm(Y==0 ∼ age + temp + rr + hrat + waz +

bul.conv + drowsy + agitated + reffort + ausc +

feeding + abdominal , data =Sc , x=TRUE , y=TRUE)

# Use the update function to save repeating model right-

# hand side. An indicator variable for Y=1 is the

# response variable below

cr1 ← update (cr0 , Y==1 ∼ ., subset =Y ≥ 1)

plot.lrm.partial (cr0 , cr1 , center =TRUE ) # Figure 14.5

The output is in Figure 14.5. There is not much more parallelism here than
in Figure 14.4. For the two most important predictors, ausc and rr, there are
strongly differing effects for the different events being predicted (e.g., Y = 0
or Y = 1|Y ≥ 1). As is often the case, there is no one constant β model that
satisfies assumptions with respect to all predictors simultaneously, especially
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Fig. 14.4 Smoothed partial residuals corresponding to two cutoffs of Y , from a model
in which all predictors were assumed to operate linearly and additively. The smoothed
curves estimate the actual predictor transformations needed, and parallelism relates
to the PO assumption. Solid lines denote Y ≥ 1 while dashed lines denote Y ≥ 2.
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Fig. 14.5 loess smoothed partial residual plots for binary models that are compo-
nents of an ordinal continuation ratio model. Solid lines correspond to a model for
Y = 0, and dotted lines correspond to a model for Y = 1|Y ≥ 1.

when there is evidence for non-ordinality for ausc in Figure 14.2. The CR
model will need to be generalized to adequately fit this dataset.

14.8 Extended Continuation Ratio Model

The CR model in its ordinary form has no advantage over the PO model for
this dataset. But Section 13.4.6 discussed how the CR model can easily be
extended to relax any of its assumptions. First we use the cr.setup function
to set up the data for fitting a CR model using the binary logistic trick.

u ← cr.setup (Y)

Sc.expanded ← Sc[u$subs , ]

y ← u$y

cohort ← u$cohort
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Here the cohort variable has values ’all’, ’Y>=1’ corresponding to the condi-
tioning events in Equation 13.10. Once the data frame is expanded to include
the different risk cohorts, vectors such as age are lengthened (to 5553 records).
Now we fit a fully extended CR model that makes no equal slopes assump-
tions; that is, the model has to fit Y assuming the covariables are linear and
additive. At this point, we omit hrat but add back all variables that were
deleted by examining their association with Y . Recall that most of these
seven cluster scores were summarized using PC1. Adding back “insignificant”
variables will allow us to validate the model fairly using the bootstrap, as
well as to obtain confidence intervals that are not falsely narrow.16

full ←
lrm(y ∼ cohort *(ageg *(rcs(temp ,5) + rcs(rr ,5)) +

rcs(waz ,4) + bul.conv + drowsy + agitated + reffort +

ausc + feeding + abdominal + hydration + hxprob +

pustular + crying + fever.ill + stop.breath + labor ),

data =Sc.expanded , x=TRUE , y=TRUE )

# x=TRUE , y=TRUE are for pentrace , validate , calibrate below

perf ← function (fit) { # model performance for Y=0

pr ← predict(fit , type= ' fitted ' )[ cohort == ' all ' ]
s ← round (somers2(pr , y[cohort == ' all ' ]), 3)

pr ← 1 - pr # Predict Prob[Y > 0] instead of Prob [Y = 0]

f ← round (c(mean (pr < .05), mean (pr > .25),

mean (pr > .5)), 2)

f ← paste (f[1], ' , ' , f[2], ' , and ' , f[3], ' . ' , sep= ' ' )
list (somers =s, fractions =f)

}

perf.unpen ← perf (full)

print (full , latex =TRUE , coefs =5)

Logistic Regression Model

lrm(formula = y ~ cohort * (ageg * (rcs(temp, 5) +

rcs(rr, 5)) + rcs(waz, 4) + bul.conv + drowsy +

agitated + reffort + ausc + feeding + abdominal +

hydration + hxprob + pustular + crying + fever.ill +

stop.breath + labor), data = Sc.expanded, x = TRUE,

y = TRUE)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 5553 LR χ2 1824.33 R2 0.406 C 0.843
0 1512 d.f. 87 g 1.677 Dxy 0.685
1 4041 Pr(> χ2) < 0.0001 gr 5.350 γ 0.687

max |∂ logL
∂β | 8×10−7 gp 0.269 τa 0.272

Brier 0.135
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Table 14.6 Wald statistics for cohort in the CR model

χ2 d.f. P
cohort (Factor+Higher Order Factors) 199.47 44 < 0.0001
All Interactions 172.12 43 < 0.0001

TOTAL 199.47 44 < 0.0001

Coef S.E. Wald Z Pr(> |Z|)
Intercept 1.3966 9.0827 0.15 0.8778
cohort=Y≥1 1.5077 14.6443 0.10 0.9180
ageg=[ 7,60) -9.3715 11.4104 -0.82 0.4115
ageg=[60,90] -26.4502 17.2188 -1.54 0.1245
temp -0.0049 0.2551 -0.02 0.9846
. . .

latex (anova (full , cohort ), file= ' ' , # Table 14.6

caption= ' Wald statistics for \\co{cohort } in the CR model ' ,
size = ' smaller [2] ' , label = ' ordinal-anova.cohort ' )

an ← anova (full , india =FALSE , indnl =FALSE )

latex (an , file = ' ' , label = ' ordinal-anova.full ' ,
caption= ' Wald statistics for the continuation ratio model.

Interactions with \\co{cohort } assess non-proportional

hazards ' , caption.lot = ' Wald statistics for $Y$ in the

continuation ratio model ' ,
size = ' smaller [2] ' ) # Table 14.7

This model has LR χ2 = 1824 with 87 d.f. Wald statistics are in Tables 14.6
and 14.7. The global test of the constant slopes assumption in the CR model
(test of all interactions involving cohort) has Wald χ2 = 172 with 43 d.f.,
P < 0.0001. Consistent with Figure 14.5, the formal tests indicate that ausc

is the biggest violator, followed by waz and rr.

14.9 Penalized Estimation

We know that the CR model must be extended to fit these data adequately. If
the model is fully extended to allow for all cohort × predictor interactions, we
have not gained any precision or power in using an ordinal model over using a
polytomous logistic model. Therefore we seek some restrictions on the model’s
parameters. The lrm and pentrace functions allow for differing λ for shrinking
different types of terms in the model. Here we do a grid search to determine
the optimum penalty for simple main effect (non-interaction) terms and the
penalty for interaction terms, most of which are terms interacting with cohort
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Table 14.7 Wald statistics for the continuation ratio model. Interactions with
cohort assess non-proportional hazards

χ2 d.f. P
cohort 199.47 44 < 0.0001
ageg 48.89 36 0.0742
temp 59.37 24 0.0001
rr 93.77 24 < 0.0001
waz 39.69 6 < 0.0001
bul.conv 10.80 2 0.0045
drowsy 15.19 2 0.0005
agitated 13.55 2 0.0011
reffort 51.85 2 < 0.0001
ausc 109.80 2 < 0.0001
feeding 27.47 2 < 0.0001
abdominal 1.78 2 0.4106
hydration 4.47 2 0.1069
hxprob 6.62 2 0.0364
pustular 3.03 2 0.2194
crying 1.55 2 0.4604
fever.ill 3.63 2 0.1630
stop.breath 5.34 2 0.0693
labor 5.35 2 0.0690
ageg × temp 8.18 16 0.9432
ageg × rr 38.11 16 0.0015
cohort × ageg 14.88 18 0.6701
cohort × temp 8.77 12 0.7225
cohort × rr 19.67 12 0.0736
cohort × waz 9.04 3 0.0288
cohort × bul.conv 0.33 1 0.5658
cohort × drowsy 0.57 1 0.4489
cohort × agitated 0.55 1 0.4593
cohort × reffort 2.29 1 0.1298
cohort × ausc 38.11 1 < 0.0001
cohort × feeding 2.48 1 0.1152
cohort × abdominal 0.09 1 0.7696
cohort × hydration 0.53 1 0.4682
cohort × hxprob 2.54 1 0.1109
cohort × pustular 2.40 1 0.1210
cohort × crying 0.39 1 0.5310
cohort × fever.ill 3.17 1 0.0749
cohort × stop.breath 2.99 1 0.0839
cohort × labor 0.05 1 0.8309
cohort × ageg × temp 2.22 8 0.9736
cohort × ageg × rr 10.22 8 0.2500
TOTAL NONLINEAR 93.36 40 < 0.0001
TOTAL INTERACTION 203.10 59 < 0.0001
TOTAL NONLINEAR + INTERACTION 257.70 67 < 0.0001
TOTAL 1211.73 87 < 0.0001
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to allow for unequal slopes. The following code uses pentrace on the full
extended CR model fit to find the optimum penalty factors. All combinations
of the simple and interaction λs for which the interaction penalty ≥ the
penalty for the simple parameters are examined.

d ← options(digits =4)

pentrace (full ,

list (simple =c(0, .025 ,.05 ,.075 ,.1),

interaction =c(0 ,10 ,50 ,100 ,125 ,150)))

Best penalty:

simple interaction df

0.05 125 49.75

simple interaction df aic bic aic.c

0.000 0 87.00 1650 1074 1648

0.000 10 60.63 1671 1269 1669

0.025 10 60.11 1672 1274 1670

0.050 10 59.80 1672 1276 1670

0.075 10 59.58 1671 1277 1670

0.100 10 59.42 1671 1278 1670

0.000 50 54.64 1671 1309 1670

0.025 50 54.14 1672 1313 1671

0.050 50 53.83 1672 1316 1671

0.075 50 53.62 1672 1317 1671

0.100 50 53.46 1672 1318 1671

0.000 100 51.61 1672 1330 1671

0.025 100 51.11 1673 1334 1672

0.050 100 50.81 1673 1336 1672

0.075 100 50.60 1672 1337 1671

0.100 100 50.44 1672 1338 1671

0.000 125 50.55 1672 1337 1671

0.025 125 50.05 1673 1341 1672

0.050 125 49.75 1673 1343 1672

0.075 125 49.54 1672 1344 1672

0.100 125 49.39 1672 1345 1671

0.000 150 49.65 1672 1343 1671

0.025 150 49.15 1672 1347 1672

0.050 150 48.85 1673 1349 1672

0.075 150 48.64 1672 1350 1671

0.100 150 48.49 1672 1351 1671

options(d)

We see that shrinkage from 87 d.f. down to 49.75 effective d.f. results in an
improvement in χ2–scaled AIC of 23. The optimum penalty factors were 0.05
for simple terms and 125 for interaction terms.

Let us now store a penalized version of the full fit, find where the effective
d.f. were reduced, and compute χ2 for each factor in the model. We take
the effective d.f. for a collection of model parameters to be the sum of the
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diagonals of the matrix product defined underneath Gray’s Equation 2.9237

that correspond to those parameters.

full.pen ←
update (full ,

penalty=list (simple =.05 , interaction =125))

print (full.pen , latex =TRUE , coefs =FALSE )

Logistic Regression Model

lrm(formula = y ~ cohort * (ageg * (rcs(temp, 5) + rcs(rr, 5)) +

rcs(waz, 4) + bul.conv + drowsy + agitated + reffort + ausc +

feeding + abdominal + hydration + hxprob + pustular + crying +

fever.ill + stop.breath + labor), data = Sc.expanded, x = TRUE,

y = TRUE, penalty = list(simple = 0.05, interaction = 125))

Penalty factors

simple nonlinear interaction nonlinear.interaction

0.05 0.05 125 125

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 5553 LR χ2 1772.11 R2 0.392 C 0.840
0 1512 d.f. 49.75 g 1.594 Dxy 0.679
1 4041 Pr(> χ2) < 0.0001 gr 4.924 γ 0.681

max |∂ logL
∂β | 1×10−7 Penalty 21.48 gp 0.263 τa 0.269

Brier 0.136

effective.df (full.pen)

Original and Effective Degrees of Freedom

Original Penalized

All 87 49.75

Simple Terms 20 19.98

Interaction or Nonlinear 67 29.77

Nonlinear 40 16.82

Interaction 59 22.57

Nonlinear Interaction 32 9.62

## Compute discrimination for Y=0 vs. Y>0

perf.pen ← perf (full.pen) # Figure 14.6

# Exclude interactions and cohort effects from plot

plot (anova (full.pen ), cex.labels =0.75 , rm.ia =TRUE ,

rm.other = ' cohort (Factor +Higher Order Factors) ' )
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Fig. 14.6 Importance of predictors in full penalized model, as judged by partial
Wald χ2 minus the predictor d.f. The Wald χ2 values for each line in the dot plot
include contributions from all higher-order effects. Interaction effects by themselves
have been removed as has the cohort effect.

This will be the final model except for the model used in Section 14.10.
The model has LR χ2 = 1772. The output of effective.df shows that non-
interaction terms have barely been penalized, and coefficients of interaction
terms have been shrunken from 59 d.f. to effectively 22.6 d.f. Predictive dis-
crimination was assessed by computing the Somers’ Dxy rank correlation

between Xβ̂ and whether Y = 0, in the subset of records for which Y = 0 is
what was being predicted. Here Dxy = 0.672, and the ROC area is 0.838 (the
unpenalized model had an apparent Dxy = 0.676). To summarize in another
way the effectiveness of this model in screening infants for risks of any abnor-
mality, the fraction of infants with predicted probabilities that Y > 0 being
< 0.05, > 0.25, and > 0.5 are, respectively, 0.1, 0.28, and 0.14. anova output is
plotted in Figure 14.6 to give a snapshot of the importance of the various pre-
dictors. The Wald statistics used here are computed on a variance–covariance
matrix which is adjusted for penalization (using Gray Equation 2.6237 before
it was determined that the sandwich covariance estimator performs less well
than the inverse of the penalized information matrix—see p. 211).

The full equation for the fitted model is below. Only the part of the equa-
tion used for predicting Pr(Y = 0) is shown, other than an intercept for
Y ≥ 1 that does not apply when Y = 0.

latex (full.pen , which =1:21, file = ' ' )
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Xβ̂ =

−1.337435[Y >= 1]

+0.1074525[ageg ∈ [ 7, 60)] + 0.1971287[ageg ∈ [60, 90]]

+0.1978706temp + 0.1091831(temp − 36.19998)3+ − 2.833442(temp − 37)3+

+5.07114(temp − 37.29999)3+ − 2.507527(temp − 37.69998)3+

+0.1606456(temp − 39)3+

+0.02090741rr − 6.336873×10−5(rr − 32)3+ + 8.405441×10−5(rr− 42)3+

+6.152416×10−5(rr− 49)3+ − 0.0001018105(rr − 59)3+ + 1.960063×10−5(rr− 76)3+

−0.07589699waz + 0.02508918(waz + 2.9)3+ − 0.1185068(waz + 0.75)3+

+0.1225752(waz − 0.28)3+ − 0.02915754(waz − 1.73)3+ − 0.4418073 bul.conv

−0.08185088 drowsy − 0.05327209 agitated − 0.2304409 reffort

−1.158604 ausc− 0.1599588 feeding − 0.1608684 abdominal

−0.05409718 hydration + 0.08086387 hxprob + 0.007519746 pustular

+0.04712091 crying + 0.004298725 fever.ill− 0.3519033 stop.breath

+0.06863879 labor

+[ageg ∈ [ 7, 60)][6.499592×10−5 temp− 0.00279976(temp − 36.19998)3+

−0.008691166(temp − 37)3+ − 0.004987871(temp − 37.29999)3+

+0.0259236(temp − 37.69998)3+ − 0.009444801(temp − 39)3+]

+[ageg ∈ [60, 90]][0.0001320368temp − 0.00182639(temp − 36.19998)3+

−0.01640406(temp − 37)3+ − 0.0476041(temp − 37.29999)3+

+0.09142148(temp − 37.69998)3+ − 0.02558693(temp − 39)3+]

+[ageg ∈ [ 7, 60)][−0.0009437598rr − 1.044673×10−6(rr− 32)3+

−1.670499×10−6(rr− 42)3+ − 5.189082×10−6(rr− 49)3+ + 1.428634×10−5(rr− 59)3+

−6.382087×10−6(rr− 76)3+]

+[ageg ∈ [60, 90]][−0.001920811rr − 5.52134×10−6(rr− 32)3+

−8.628392×10−6(rr− 42)3+ − 4.147347×10−6(rr− 49)3+ + 3.813427×10−5(rr− 59)3+

−1.98372×10−5(rr− 76)3+]

where [c] = 1 if subject is in group c, 0 otherwise; (x)+ = x if x > 0, 0 otherwise.

Now consider displays of the shapes of effects of the predictors. For the
continuous variables temp and rr that interact with age group, we show the
effects for all three age groups separately for each Y cutoff. All effects have
been centered so that the log odds at the median predictor value is zero
when cohort=’all’, so these plots actually show log odds relative to reference
values. The patterns in Figures 14.9 and 14.8 are in agreement with those in
Figure 14.5.



348 14 Ordinal Regression, Data Reduction, and Penalization

yl ← c(-3, 1) # put all plots on common y-axis scale

# Plot predictors that interact with another predictor

# Vary ageg over all age groups, then vary temp over its

# default range (10th smallest to 10th largest values in

# data). Make a separate plot for each ' cohort '
# ref.zero centers effects using median x

dd ← datadist ( Sc.expanded ); dd ← datadist (dd , cohort )

options (datadist = ' dd ' )

p1 ← Predict (full.pen , temp , ageg , cohort ,

ref.zero =TRUE , conf.int =FALSE)

p2 ← Predict (full.pen , rr, ageg , cohort ,

ref.zero =TRUE , conf.int =FALSE)

p ← rbind (temp=p1 , rr=p2) # Figure 14.7:

source (paste( ' http://biostat.mc.vanderbilt.edu /wiki/pub /Main ' ,
' RConfiguration/ graphicsSet.r ' , sep= ' / ' ))

ggplot (p, ∼ cohort , groups = ' ageg ' , varypred =TRUE ,

ylim=yl, layout =c(2, 1), legend.position=c(.85 ,.8),

addlayer =ltheme (width =3, height =3, text=2.5 , title =2.5),

adj.subtitle=FALSE) # ltheme defined with source()

# For each predictor that only interacts with cohort , show

# the differing effects of the predictor for predicting

# Pr(Y=0) and Pr(Y=1 given Y exceeds 0) on the same graph

dd$limits [ ' Adjust to ' , ' cohort ' ] ← ' Y ≥ 1 '
v ← Cs(waz , bul.conv , drowsy , agitated , reffort , ausc ,

feeding , abdominal , hydration , hxprob , pustular ,

crying )

yeq1 ← Predict(full.pen , name=v, ref.zero =TRUE )

yl ← c(-1.5 , 1.5)

ggplot (yeq1 , ylim =yl, sepdiscrete = ' vertical ' ) # Figure 14.8

dd$limits [ ' Adjust to ' , ' cohort ' ] ← ' all ' # original default

all ← Predict(full.pen , name=v, ref.zero =TRUE )

ggplot (all , ylim =yl , sepdiscrete = ' vertical ' ) # Figure 14.9

1

14.10 Using Approximations to Simplify the Model

Parsimonious models can be developed by approximating predictions from
the model to any desired level of accuracy. Let L̂ = Xβ̂ denote the predicted
log odds from the full penalized ordinal model, including multiple records for
subjects with Y > 0. Then we can use a variety of techniques to approximate
L̂ from a subset of the predictors (in their raw form). With this approach
one can immediately see what is lost over the full model by computing, for
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example, the mean absolute error in predicting L̂. Another advantage to full
model approximation is that shrinkage used in computing L̂ is inherited by
any model that predicts L̂. In contrast, the usual stepwise methods result in
β̂ that are too large since the final coefficients are estimated as if the model
structure were prespecified. 2

CART would be particularly useful as a model approximator as it would
result in a prediction tree that would be easy for health workers to use.
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Fig. 14.7 Centered effects of predictors on the log odds, showing the effects of two
predictors with interaction effects for the age intervals noted. The title all refers
to the prediction of Y = 0|Y ≥ 0, that is, Y = 0. Y>=1 refers to predicting the
probability of Y = 1|Y ≥ 1.
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Fig. 14.8 Centered effects of predictors on the log odds, for predicting Y = 1|Y ≥ 1

Unfortunately, a 50-node CART was required to predict L̂ with an R2 ≥ 0.9,
and the mean absolute error in the predicted logit was still 0.4. This will
happen when the model contains many important continuous variables.

Let’s approximate the full model using its important components, by using
a step-down technique predicting L̂ from all of the component variables using
ordinary least squares. In using step-down with the least squares function ols

in rms there is a problem when the initial R2 = 1.0 as in that case the esti-
mate of σ = 0. This can be circumvented by specifying an arbitrary nonzero
value of σ to ols (here 1.0), as we are not using the variance–covariance
matrix from ols anyway. Since cohort interacts with the predictors, separate
approximations can be developed for each level of Y . For this example we
approximate the log odds that Y = 0 using the cohort of patients used for
determining Y = 0, that is, Y ≥ 0 or cohort=’all’.
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Fig. 14.9 Centered effects of predictors on the log odds, for predicting Y ≥ 1. No
plot was made for the fever.ill, stop.breath. or labor cluster scores.

plogit ← predict(full.pen )

f ← ols(plogit ∼ ageg *(rcs(temp ,5) + rcs(rr ,5)) +

rcs(waz ,4) + bul.conv + drowsy + agitated +

reffort + ausc + feeding + abdominal + hydration +

hxprob + pustular + crying + fever.ill +

stop.breath + labor ,

subset =cohort == ' all ' , data =Sc.expanded , sigma =1)

# Do fast backward stepdown

w ← options(width =120)

fastbw (f, aics =1 e10)
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Deleted Chi−Sq d . f . P Res idua l d . f . P AIC R2

ageg ∗ temp 1.87 8 0 .9848 1 .87 8 0 .9848 −14.13 1 .000

ageg 0 .05 2 0 .9740 1 .92 10 0 .9969 −18.08 1 .000

pu s tu l a r 0 .02 1 0 .8778 1 .94 11 0 .9987 −20.06 1 .000

f e v e r . i l l 0 .08 1 0 .7828 2 .02 12 0 .9994 −21.98 1 .000

c ry ing 9 .47 1 0 .0021 11 .49 13 0 .5698 −14.51 0 .999

abdominal 12 .66 1 0 .0004 24 .15 14 0 .0440 −3.85 0 .997

r r 17 .90 4 0 .0013 42 .05 18 0 .0011 6 .05 0 .995

hydrat ion 13 .21 1 0 .0003 55 .26 19 0 .0000 17 .26 0 .993

labor 23 .48 1 0 .0000 78 .74 20 0 .0000 38 .74 0 .990

stop . breath 33 .40 1 0 .0000 112 .14 21 0 .0000 70 .14 0 .986

bul . conv 51 .53 1 0 .0000 163 .67 22 0 .0000 119 .67 0 .980

ag i t a t ed 63 .66 1 0 .0000 227 .33 23 0 .0000 181 .33 0 .972

hxprob 84 .16 1 0 .0000 311 .49 24 0 .0000 263 .49 0 .962

drowsy 109 .86 1 0 .0000 421 .35 25 0 .0000 371 .35 0 .948

temp 295 .67 4 0 .0000 717 .01 29 0 .0000 659 .01 0 .911

waz 368 .86 3 0 .0000 1085 .87 32 0 .0000 1021 .87 0 .866

r e f f o r t 449 .83 1 0 .0000 1535 .70 33 0 .0000 1469 .70 0 .810

ageg ∗ r r 751 .19 8 0 .0000 2286 .90 41 0 .0000 2204 .90 0 .717

ausc 1906 .82 1 0 .0000 4193 .72 42 0 .0000 4109 .72 0 .482

f e ed ing 3900 .33 1 0 .0000 8094 .04 43 0 .0000 8008 .04 0 .000

Approximate Estimates a f t e r De le t ing Factors

Coef S .E . Wald Z P

[ 1 , ] 1 .617 0 .01482 109 .1 0

Factors in Fina l Model

None

options(w)

# 1e10 causes all variables to eventually be

# deleted so can see most important ones in order

# Fit an approximation to the full penalized model using

# most important variables

full.approx ←
ols(plogit ∼ rcs(temp ,5) + ageg *rcs(rr ,5) +

rcs(waz ,4) + bul.conv + drowsy + reffort +

ausc + feeding ,

subset =cohort == ' all ' , data =Sc.expanded )

p ← predict(full.approx )

abserr ← mean (abs(p - plogit [cohort == ' all ' ]))
Dxy ← somers2(p, y[cohort == ' all ' ])[ ' Dxy ' ]

The approximate model had R2 against the full penalized model of 0.972, and
the mean absolute error in predicting L̂ was 0.17. The Dxy rank correlation
between the approximate model’s predicted logit and the binary event Y = 0
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is 0.665 as compared with the full model’s Dxy = 0.672. See Section 19.5 for
an example of computing correct estimates of variance of the parameters in
an approximate model.

Next turn to diagramming this model approximation so that all predicted
values can be computed without the use of a computer. We draw a type of
nomogram that converts each effect in the model to a 0 to 100 scale which is
just proportional to the log odds. These points are added across predictors
to derive the “Total Points,” which are converted to L̂ and then to predicted
probabilities. For the interaction between rr and ageg, rms’s nomogram func-
tion automatically constructs three rr axes—only one is added into the total
point score for a given subject. Here we draw a nomogram for predicting the
probability that Y > 0, which is 1 − Pr(Y = 0). This probability is derived

by negating β̂ and Xβ̂ in the model derived to predict Pr(Y = 0).

f ← full.approx

f$coefficients ← -f$coefficients

f$linear.predictors ← -f$linear.predictors

n ← nomogram (f,

temp =32:41 , rr=seq(20,120, by=10),

waz=seq(-1.5 ,2,by=.5),

fun=plogis , funlabel = ' Pr(Y>0) ' ,
fun.at =c(.02 ,.05 ,seq(.1 ,.9 ,by=.1),.95 ,.98 ))

# Print n to see point tables

plot (n, lmgp =.2 , cex.axis=.6) # Figure 14.10

newsubject ←
data.frame (ageg = ' [ 0, 7) ' , rr=30, temp =39, waz=0, drowsy =5,

reffort=2, bul.conv =0, ausc =0, feeding =0)

xb ← predict(f, newsubject )

The nomogram is shown in Figure 14.10. As an example in using the nomo-
gram, a six-day-old infant gets approximately 9 points for having a respiration
rate of 30/minute, 19 points for having a temperature of 39◦C, 11 points for
waz=0, 14 points for drowsy=5, and 15 points for reffort=2. Assuming that
bul.conv=ausc=feeding=0, that infant gets 68 total points. This corresponds to
Xβ̂ = −0.68 and a probability of 0.34. 3

14.11 Validating the Model

For the full CR model that was fitted using penalized maximum likelihood
estimation (PMLE), we used 200 bootstrap replications to estimate and then
to correct for optimism in various statistical indexes: Dxy, generalized R2,

intercept and slope of a linear re-calibration equation for Xβ̂, the maximum
calibration error for Pr(Y = 0) based on the linear-logistic re-calibration
(Emax), and the Brier quadratic probability score B. PMLE is used at each
of the 200 resamples. During the bootstrap simulations, we sample with
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rr (ageg=[60,90])
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Weight−for−age
zscore 2 1 0 −0.5

bul.conv
0

1

drowsy
0 2 4

1 3 5

reffort
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1 3 5
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0

1

feeding
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1 3 5

Total Points
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Linear Predictor
−4 −3 −2 −1 0 1 2 3 4 5 6

Pr(Y>0)
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Fig. 14.10 Nomogram for predicting Pr(Y > 0) from the penalized extended CR
model, using an approximate model fitted using ordinary least squares (R2 = 0.972
against the full model’s predicted logits).

replacement from the patients and not from the 5553 expanded records, hence
the specification cluster=u$subs, where u$subs is the vector of sequential pa-
tient numbers computed from cr.setup above. To be able to assess predictive
accuracy of a single predicted probability, the subset parameter is specified
so that Pr(Y = 0) is being assessed even though 5553 observations are used
to develop each of the 200 models.

set.seed (1) # so can reproduce results

v ← validate (full.pen , B=200, cluster=u$subs ,

subset =cohort == ' all ' )
latex (v, file = ' ' , digits =2, size = ' smaller ' )
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Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.67 0.68 0.67 0.01 0.66 200
R2 0.38 0.38 0.37 0.01 0.36 200
Intercept −0.03 −0.03 0.00 −0.03 0.00 200
Slope 1.03 1.03 1.00 0.03 1.00 200
Emax 0.00 0.00 0.00 0.00 0.00 200
D 0.28 0.29 0.28 0.01 0.27 200
U 0.00 0.00 0.00 0.00 0.00 200
Q 0.28 0.29 0.28 0.01 0.27 200
B 0.12 0.12 0.12 0.00 0.12 200
g 1.47 1.50 1.45 0.04 1.42 200
gp 0.22 0.23 0.22 0.00 0.22 200

v ← round (v, 3)

We see that for the apparent Dxy = 0.672 and that the optimism from
overfitting was estimated to be 0.011 for the PMLE model, so the bias-
corrected estimate of predictive discrimination is 0.661. The intercept and
slope needed to re-calibrate Xβ̂ to a 45◦ line are very near (0, 1). The es-
timate of the maximum calibration error in predicting Pr(Y = 0) is 0.001,
which is quite satisfactory. The corrected Brier score is 0.122.

The simple calibration statistics just listed do not address the issue of
whether predicted values from the model are miscalibrated in a nonlinear
way, so now we estimate an overfitting-corrected calibration curve nonpara-
metrically.

cal ← calibrate (full.pen , B=200, cluster=u$subs ,

subset =cohort == ' all ' )
err ← plot (cal) # Figure 14.11

n=5553 Mean ab so lu t e e r r o r =0.017 Mean squared e r r o r =0.00043

0 . 9 Quanti le o f ab so lu t e e r r o r =0.038

The results are shown in Figure 14.11. One can see a slightly nonlinear cali-
bration function estimate, but the overfitting-corrected calibration is excellent
everywhere, being only slightly worse than the apparent calibration. The esti-
mated maximum calibration error is 0.044. The excellent validation for both
predictive discrimination and calibration are a result of the large sample size,
frequency distribution of Y , initial data reduction, and PMLE.

14.12 Summary

Clinically guided variable clustering and item weighting resulted in a great
reduction in the number of candidate predictor degrees of freedom and hence
increased the true predictive accuracy of the model. Scores summarizing clus-
ters of clinical signs, along with temperature, respiration rate, and weight-
for-age after suitable nonlinear transformation and allowance for interactions



356 14 Ordinal Regression, Data Reduction, and Penalization

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted Pr{y=1}

A
ct

ua
l P

ro
ba

bi
lit

y

Apparent

Bias−corrected

Ideal

Fig. 14.11 Bootstrap calibration curve for the full penalized extended CR model.
200 bootstrap repetitions were used in conjunction with the loess smoother.111 Also
shown is a “rug plot” to demonstrate how effective this model is in discriminating
patients into low- and high-risk groups for Pr(Y = 0) (which corresponds with the
derived variable value y = 1 when cohort=’all’).

with age, are powerful predictors of the ordinal response. Graphical methods
are effective for detecting lack of fit in the PO and CR models and for dia-
gramming the final model. Model approximation allowed development of par-
simonious clinical prediction tools. Approximate models inherit the shrinkage
from the full model. For the ordinal model developed here, substantial shrink-
age of the full model was needed.

14.13 Further Reading

1 See Moons et al.462 for another case study in penalized maximum likelihood
estimation.

2 The lasso method of Tibshirani608,609 also incorporates shrinkage into variable
selection.

3 To see how this compares with predictions using the full model, the extra clinical
signs in that model that are not in the approximate model were predicted
individually on the basis of Xβ̂ from the reduced model along with the signs
that are in that model, using ordinary linear regression. The signs not specified
when evaluating the approximate model were then set to predicted values based
on the values given for the 6-day-old infant above. The resulting Xβ̂ for the full
model is −0.81 and the predicted probability is 0.31, as compared with -0.68
and 0.34 quoted above.
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14.14 Problems

Develop a proportional odds ordinal logistic model predicting the severity
of functional disability (sfdm2) in SUPPORT. The highest level of this vari-
able corresponds to patients dying before the two-month follow-up interviews.
Consider this level as the most severe outcome. Consider the following pre-
dictors: age, sex, dzgroup, num.co, scoma, race (use all levels), meanbp, hrt,

temp, pafi, alb, adlsc. The last variable is the baseline level of functional
disability from the “activities of daily living scale.”

1. For the variables adlsc, sex, age, meanbp, and others if you like, make
plots of means of predictors stratified by levels of the response, to check
for ordinality. On the same plot, show estimates of means assuming the pro-
portional odds relationship between predictors and response holds. Com-
ment on the evidence for ordinality and for proportional odds.

2. To allow for maximum adjustment of baseline functional status, treat
this predictor as nominal (after rounding it to the nearest whole num-
ber; fractional values are the result of imputation) in remaining steps, so
that all dummy variables will be generated. Make a single chart showing
proportions of various outcomes stratified (individually) by adlsc, sex,

age, meanbp. For continuous predictors use quartiles. You can pass the fol-
lowing function to the summary (summary.formula) function to obtain the
proportions of patients having sfdm2 at or worse than each of its possi-
ble levels (other than the first level). An easy way to do this is to use
the cumcategory function with the Hmisc package’s summary.formula func-
tion. cumcategorysummary.formula Print estimates to only two significant
digits of precision. Manually check the calculations for the sex variable
using table(sex, sfdm2). Then plot all estimates on a single graph using
plot(object, which=1:4), where object was created by summary (actually
summary.formula). Note: for printing tables you may want to convert sfdm2
to a 0–4 variable so that column headers are short and so that later cal-
culations are simpler. You can use for example:

sfdm ← as.integer (sfdm2 ) - 1

3. Use an R function such as the following to compute the logits of the cu-
mulative proportions.

sf ← function (y)

c( ' Y ≥ 1 ' =qlogis (mean (y ≥ 1)),

' Y ≥ 2 ' =qlogis (mean (y ≥ 2)),

' Y ≥ 3 ' =qlogis (mean (y ≥ 3)),

' Y ≥ 4 ' =qlogis (mean (y ≥ 4)))

As the Y = 3 category is rare, it may be even better to omit the Y ≥ 4
column above, as was done in Section 13.3.9 and Figure 13.1. For each
predictor pick two rows of the summary table having reasonable sample
sizes, and take the difference between the two rows. Comment on the
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validity of the proportional odds assumption by assessing how constant
the row differences are across columns. Note: constant differences in log
odds (logits) mean constant ratios of odds or constant relative effects of
the predictor across outcome levels.

4. Make two plots nonparametrically relating age to all of the cumulative
proportions or their logits. You can use commands such as the following
(to use the R Hmisc package).

for(i in 1:4)

plsmo (age , sfdm ≥ i, add=i>1,

ylim=c(.2 ,.8), ylab = ' Proportion Y ≥ j ' )
for(i in 1:4)

plsmo (age , sfdm ≥ i, add=i>1, fun=qlogis ,

ylim=qlogis (c(.2 ,.8)), ylab = ' logit ' )

Comment on the linearity of the age effect (which of the two plots do
you use?) and on the proportional odds assumption for age, by assessing
parallelism in the second plot.

5. Impute race using the most frequent category and pafi and alb using
“normal” values.

6. Fit a model to predict the ordinal response using all predictors. For con-
tinuous ones assume a smooth relationship but allow it to be nonlinear.
Quantify the ability of the model to discriminate patients in the five out-
comes. Do an overall likelihood ratio test for whether any variables are
associated with the level of functional disability.

7. Compute partial tests of association for each predictor and a test of nonlin-
earity for continuous ones. Compute a global test of nonlinearity. Graphi-
cally display the ranking of importance of the predictors.

8. Display the shape of how each predictor relates to the log odds of exceeding
any level of sfdm2 you choose, setting other predictors to typical values
(one value per predictor). By default, Predict will make predictions for
the second response category, which is a satisfactory choice here.

9. Use resampling to validate the Somers’ Dxy rank correlation between pre-
dicted logit and the ordinal outcome. Also validate the generalized R2,
and slope shrinkage coefficient, all using a single R command. Comment
on the quality (potential “export-ability”) of the model.



Chapter 15

Regression Models for Continuous Y
and Case Study in Ordinal Regression

This chapter concerns univariate continuous Y . There are many multivariable
models for predicting such response variables, such as

• linear models with assumed normal residuals, fitted with ordinary least
squares

• generalized linear models and other parametric models based on special
distributions such as the gamma

• generalized additive models (GAMs)277

• generalization of GAMs to also nonparametrically transform Y (see
Chapter 16)

• quantile regression (see Section 15.2)
• other robust regression models that, like quantile regression, use an objec-

tive different from minimizing the sum of squared errors635

• semiparametric models based on the ranks of Y , such as the Cox pro-
portional hazards model (Chapter 20) and the proportional odds ordinal
logistic model (Chapters 13 and 14)

• cumulative probability models (often called cumulative link models) which
are semiparametric models from a wider class of families than the logistic.

Semiparametric models that treat Y as ordinal but not interval-scaled have
many advantages including robustness and freedom from all distributional
assumptions for Y conditional on any given set of predictors. Advantages
are demonstrated in a case study of a cumulative probability ordinal model.
Some of the results are compared to quantile regression and OLS. Many of
the methods used in the case study also apply to ordinary linear models.

15.1 The Linear Model

The most popular multivariable model for analyzing a univariate continuous
Y is the linear model

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 15
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E(Y |X) = Xβ, (15.1)

where β is estimated using ordinary least squares, that is, by solving for β̂ to
minimize

∑
(Yi −Xβ̂)2.

To compute P -values and confidence limits using parametric methods we
would have to assume that Y |X is normal with mean Xβ and constant vari-
ance σ2a. One could estimate conditional means of Y without any distribu-
tional assumptions, but least squares estimators are not robust to outliers or
high-leverage points, and the model would be inaccurate in estimating condi-
tional quantiles of Y |X or Prob[Y ≥ c|X ] unless normality of residuals holds.
To be accurate in estimating all quantities, the linear model assumes that
the Gaussian distribution of Y |X1 is a simple shift from the distribution of
Y |X2.

15.2 Quantile Regression

Quantile regression355, 357 is a different approach to modeling Y . It makes no
distributional assumptions other than continuity of Y , while having all the
usual right hand side assumptions. Quantile regression provides essentially
the same estimates as sample quantiles if there is only an intercept or a cate-
gorical predictor in the model. Quantile regression is transformation invariant
— pre-transforming Y is not important.

Quantile regression is a natural generalization of sample quantiles. Let
ρτ (y) = y(τ − [y < 0]). The τ th sample quantile is the minimizer q of∑n

i−1 ρτ (yi − q). For a conditional τ th quantile of Y |X the corresponding

quantile regression estimator β̂τ minimizes
∑n

i=1 ρτ (Yi −Xβ).
In non-large samples, quantile regression is not as efficient at estimating

quantiles as is ordinary least squares at estimating the mean, if the latter’s
assumptions hold.

Koenker’s quantreg package in R356 implements quantile regression, and
the rms package’s Rq function provides a front-end that gives rise to various
graphics and inference tools.

Using quantile regression, we directly model the median as a function
of covariates so that only the Xβ structure need be correct. Other quantiles
(e.g., 90th percentile) can be modeled but standard errors will be much larger
as it is more difficult to precisely estimate outer quantiles.

a The latter assumption may be dispensed with if we use a robust Huber–White or
bootstrap covariance matrix estimate. Normality may sometimes be dispensed with
by using bootstrap confidence intervals.
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15.3 Ordinal Regression Models for Continuous Y

A different robust semiparametric regression approach than quantile regres-
sion is the cumulative probability ordinal model. Semiparametric models
have several advantages over parametric models such as OLS. While quantile
regression has no restriction in the parameters when modeling one quantile
versus anotherb, ordinal cumulative probability models assume a connection
between distributions of Y for different X . Ordinal regression even makes
one less assumption than quantile regression about the distribution of Y for
a specific X : the distribution need not be continuous.

Applying an increasing 1–1 transformation to Y results in no change to
regression coefficient estimates with ordinal regressionc. Regression coefficient
estimates are completely robust to extreme Y valuesd. Estimates of quantiles
of Y from ordinal regression are exactly transformation-preserving, e.g., the
estimate of the median of log Y is exactly the log of the estimate of the
median Y .

For a general continuous distribution function F (y), an ordinal regression
model based on cumulative probabilities may be stated as followse. Let the
ordered unique values of Y be denoted by y1, y2, . . . , yk and let the intercepts
associated with y1, . . . , yk be α1, α2, . . . , αk, where α1 = ∞ because Prob[Y ≥
y1] = 1. Let αy = αi, i : yi = y. Then

Prob[Y ≥ yi|X ] = F (αi +Xβ) = F (αyi +Xβ) (15.2)

For the OLS fully parametric case, the model may be restated

Prob[Y ≥ y|X ] = Prob[
Y −Xβ

σ
≥ y −Xβ

σ
] (15.3)

= 1− Φ(
y −Xβ

σ
) = Φ(

−y

σ
+

Xβ

σ
) (15.4)

b Quantile regression allows the estimated value of the 0.5 quantile to be higher than
the estimated value of the 0.6 quantile for some values of X . Composite quantile
regression690 removes this possibility by forcing all the X coefficients to be the same
across multiple quantiles, a restriction not unlike what cumulative probability ordinal
models make.
c For symmetric distributions applying a decreasing transformation will negate the
coefficients. For asymmetric distributions (e.g., Gumbel), reversing the order of Y
will do more than change signs.
d Only an estimate of mean Y from these β̂s is non-robust.
e It is more traditional to state the model in terms of Prob[Y ≤ y|X ] but we use
Prob[Y ≥ y|X ] so that higher predicted values are associated with higher Y .
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Table 15.1 Distribution families used in ordinal cumulative probability models. Φ
denotes the Gaussian cumulative distribution function. For the Connection column,
P1 = Prob[Y ≥ y|X1], P2 = Prob[Y ≥ y|X2],Δ = (X2 − X1)β. The connection
specifies the only distributional assumption if the model is fitted semiparametrically,
i.e, contains an intercept for every unique Y value less one. For parametric models, P1

must be specified absolutely instead of just requiring a relationship between P1 and
P2. For example, the traditional Gaussian parametric model specifies that Prob[Y ≥
y|X ] = 1− Φ(y−Xβ

σ
) = Φ(−y+Xβ

σ
).

Distribution F Inverse Link Name Connection

(Link Function)

Logistic [1 + exp(−y)]−1 log( y

1−y
) logit P2

1−P2
= P1

1−P1
exp(Δ)

Gaussian Φ(y) Φ−1(y) probit P2 = Φ(Φ−1(P1) + Δ)

Gumbel maximum exp(− exp(−y)) log(− log(y)) log− log P2 = P
exp(Δ)
1

value

Gumbel minimum 1 − exp(− exp(y)) log(− log(1 − y)) complementary 1 − P2 = (1 − P1)
exp(Δ)

value log− log

Cauchy 1
π

tan−1(y) + 1
2

tan[π(y − 1
2
)] cauchit

so that to within an additive constantf αy = −y
σ (intercepts α are linear in

y whereas they are arbitrarily descending in the ordinal model), and σ is
absorbed in β to put the OLS model into the new notation.

The general ordinal regression model assumes that for fixed X1, X2,

F−1(Prob[Y ≥ y|X2])− F−1(Prob[Y ≥ y|X1]) (15.5)

= (X2 −X1)β (15.6)

independent of the αs (parallelism assumption). If F = [1+ exp(−y)]−1, this
is the proportional odds assumption.

Common choices of F , implemented in the R rms orm function, are shown
in Table 15.1. The Gumbel maximum value distribution is also called the
extreme value type I distribution. This distribution (log− log link) also rep-
resents a continuous time proportional hazards model. The hazard ratio when
X changes from X1 to X2 is exp(−(X2 −X1)β).

The mean of Y |X is easily estimated from a fitted cumulative probability
ordinal model by computing

n∑
i=1

yiP̂rob[Y = yi|X ] (15.7)

and the qth quantile of Y |X is y such that F−1(1− q)−Xβ̂ = α̂y.
g

f α̂y are unchanged if a constant is added to all y.
g The intercepts have to be shifted to the left one position in solving this equation
because the quantile is such that Prob[Y ≤ y] = q whereas the model is stated in
terms of Prob[Y ≥ y].
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The orm function in the rms package takes advantage of the information
matrix being of a sparse tri-band diagonal form for the intercept parameters.
This makes the computations efficient even for hundreds of intercepts (i.e.,
unique values of Y ). orm is made to handle continuous Y .

Ordinal regression has nice properties in addition to those listed above,
allowing for

• estimation of quantiles as efficiently as quantile regression if the parallel
slopes assumptions hold

• efficient estimation of mean Y
• direct estimation of Prob[Y ≥ y|X ]
• arbitrary clumping of values of Y , while still estimating β and mean Y

efficientlyh

• solutions for β̂ using ordinary Newton-Raphson or other popular optimiza-
tion techniques

• being based on a standard likelihood function, penalized estimation can
be straightforward

• Wald, score, and likelihood ratio χ2 tests that are more powerful than tests
from quantile regression.

On the last point, if there is a single predictor in the model and it is binary,
the score test from the proportional odds model is essentially the Wilcoxon
test, and the score test from the Gumbel log-log cumulative probability
model is essentially the log-rank test.

15.3.1 Minimum Sample Size Requirement

When Y is continuous and the purpose of an ordinal model includes semi-
parametric estimation of probabilities or quantiles, the accuracy of estimates
is limited even more by the accuracy of estimating the empirical cumulative
distribution of Y than by estimating β. When β = 0, intercept estimates are
transformations of the empirical distribution step function. As described in
Section 20.3, the sample size must be 184 to estimate the entire distribution
of Y with a global margin of error not exceeding 0.1. For estimating the mean
of Y , smaller sample sizes may be needed.

h But it is not sensible to estimate quantiles of Y when there are heavy ties in Y in
the area containing the quantile.
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15.4 Comparison of Assumptions of Various Models

Quantile regression makes the fewest left-hand-side model assumptions except
for the assumption that Y be continuous, but can have less estimator precision
than other models and has lower power. To summarize how assumptions of
parametric models compare to assumptions of semiparametric ordinal models,
consider the ordinary linear model or its special case the equal variance two-
sample t-test, vs. the probit or logit (proportional odds) ordinal model or
their special cases the Van der Waerden (normal-scores) two-sample rank test
or the Wilcoxon two-sample test. All the assumptions of the linear model
other than independence of residuals are captured in the following, using the
more standard Y ≤ y notation:

F (y|X) = Prob[Y ≤ y|X ] = Φ(
y −Xβ

σ
) (15.8)

Φ−1(F (y|X)) =
y −Xβ

σ
(15.9)

On the other hand, ordinal models assume the following:

y

Φ−1(F(y|X))
− ΔXβ σ

y

Φ−1(F(y|X))

logit(F(y|X))

− ΔXβ

Fig. 15.1 Assumptions of the linear model (left panel) and semiparametric ordi-
nal probit or logit (proportional odds) models (right panel). Ordinal models do not
assume any shape for the distribution of Y for a given X ; they only assume paral-
lelism. The linear model can relax the parallelism assumption if σ is allowed to vary,
but in practice it is difficult to know how to vary it except for the unequal variance
two-sample t-test.

Prob[Y ≤ y|X ] = F (g(y)−Xβ), (15.10)

where g is unknown and may be discontinuous. This translates to the paral-
lelism assumption in the right panel of Figure 15.1, whereas the linear model
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makes the additional strong assumption of linearity of normal inverse cu-
mulative distribution function, which arises from the Gaussian distribution
assumption.

15.5 Dataset and Descriptive Statistics

Diabetes Mellitus (DM) type II (adult onset diabetes) is strongly associ-
ated with obesity. The currently best laboratory test for diabetes measures
glycosylated hemoglobin (HbA1c), also called glycated hemoglobin, glycohe-
moglobin, or hemoglobin A1c. HbA1c reflects average blood glucose for the
preceding 60 to 90 days. HbA1c > 7.0 is sometimes taken as a positive di-
agnosis of diabetes even though there are no data to support the use of a
threshold.

The goals of this analyses are to better understand effects of body size
measurements on risk of DM and to enhance screening for DM. The best way
to develop a model for DM screening is not to fit a binary logistic model
with HbA1c > 7 as the response variable. There are at least two reasons for
this. First, when the relationship between a measurement and its ultimate
clinical impact is smooth, all cutpoints are arbitrary. There is no justification
for any putative cut on HbA1c. Second, such an analysis loses information by
treating HbA1c=2 the same as HbA1c=6.9, and by treating HbA1c=7.1 as
equal to HbA1c=10. Failure to use all available information results in larger
standard errors of β̂, lower power, and wider confidence bands. It is better to
predict continuous HbA1c using a continuous response model, then use that
model to estimate the probability that HbA1c exceeds any cutoff, or estimate
the 0.9 quantile of HbA1c.

The data used here are from the National Health and Nutrition Examina-
tion Survey (NHANES) 2009–2010 from the U.S. National Center for Health
Statistics/Centers for Disease Control. The original data may be obtained
from http://www.cdc.gov/nchs/nhanes.htm94; the analysis file used here,
called nhgh, may be obtained from the DataSets wiki page, along with R code
used to download and create the file. Note that CDC coded age ≥ 80 as 80.
We use the subset of subjects with age ≥ 21 who have neither been diagnosed
nor treated for DM. Descriptive statistics are shown below.

require(rms)

getHdata (nhgh)

w ← subset (nhgh , age ≥ 21 & dx==0 & tx==0, select =-c(dx,tx))

latex (describe (w), file= ' ')

http://www.cdc.gov/nchs/nhanes.htm
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w
18 Variables 4629 Observations

seqn : Respondent sequence number
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 4629 1 56902 52136 52633 54284 56930 59495 61079 61641

lowest : 51624 51629 51630 51645 51647
highest: 62152 62153 62155 62157 62158

sex
n missing unique

4629 0 2

male (2259, 49%), female (2370, 51%)

age : Age [years]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 703 1 48.57 23.33 26.08 33.92 46.83 61.83 74.83 80.00

lowest : 21.00 21.08 21.17 21.25 21.33
highest: 79.67 79.75 79.83 79.92 80.00

re : Race/Ethnicity
n missing unique

4629 0 5

Mexican American (832, 18%), Other Hispanic (474, 10%)
Non-Hispanic White (2318, 50%), Non-Hispanic Black (756, 16%)
Other Race Including Multi-Racial (249, 5%)

income : Family Income
n missing unique

4389 240 14

[0,5000) (162, 4%), [5000,10000) (216, 5%), [10000,15000) (371, 8%)
[15000,20000) (300, 7%), [20000,25000) (374, 9%)
[25000,35000) (535, 12%), [35000,45000) (421, 10%)
[45000,55000) (346, 8%), [55000,65000) (257, 6%), [65000,75000) (188, 4%)
> 20000 (149, 3%), < 20000 (52, 1%), [75000,100000) (399, 9%)
>= 100000 (619, 14%)

wt : Weight [kg]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 890 1 80.49 52.44 57.18 66.10 77.70 91.40 106.52 118.00

lowest : 33.2 36.1 37.9 38.5 38.7
highest: 184.3 186.9 195.3 196.6 203.0

ht : Standing Height [cm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 512 1 167.5 151.1 154.4 160.1 167.2 175.0 181.0 184.8

lowest : 123.3 135.4 137.5 139.4 139.8
highest: 199.2 199.3 199.6 201.7 202.7
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bmi : Body Mass Index [kg/m2]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 1994 1 28.59 20.02 21.35 24.12 27.60 31.88 36.75 40.68

lowest : 13.18 14.59 15.02 15.40 15.49
highest: 61.20 62.81 65.62 71.30 84.87

leg : Upper Leg Length [cm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4474 155 216 1 38.39 32.0 33.5 36.0 38.4 41.0 43.3 44.6

lowest : 20.4 24.9 25.0 25.1 26.4, highest: 49.0 49.5 49.8 50.0 50.3

arml : Upper Arm Length [cm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4502 127 156 1 37.01 32.6 33.5 35.0 37.0 39.0 40.6 41.7

lowest : 24.8 27.0 27.5 29.2 29.5, highest: 45.2 45.5 45.6 46.0 47.0

armc : Arm Circumference [cm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4499 130 290 1 32.87 25.4 26.9 29.5 32.5 35.8 39.1 41.4

lowest : 17.9 19.0 19.3 19.5 19.9, highest: 54.2 54.9 55.3 56.0 61.0

waist : Waist Circumference [cm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4465 164 716 1 97.62 74.8 78.6 86.9 96.3 107.0 117.8 125.0

lowest : 59.7 60.0 61.5 62.0 62.4
highest: 160.0 160.6 162.2 162.7 168.7

tri : Triceps Skinfold [mm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4295 334 342 1 18.94 7.2 8.8 12.0 18.0 25.2 31.0 33.8

lowest : 2.6 3.1 3.2 3.3 3.4, highest: 39.6 39.8 40.0 40.2 40.6

sub : Subscapular Skinfold [mm]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

3974 655 329 1 20.8 8.60 10.30 14.40 20.30 26.58 32.00 35.00

lowest : 3.8 4.2 4.6 4.8 4.9, highest: 40.0 40.1 40.2 40.3 40.4

gh : Glycohemoglobin [%]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4629 0 63 0.99 5.533 4.8 5.0 5.2 5.5 5.8 6.0 6.3

lowest : 4.0 4.1 4.2 4.3 4.4, highest: 11.9 12.0 12.1 12.3 14.5

albumin : Albumin [g/dL]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4576 53 26 0.99 4.261 3.7 3.9 4.1 4.3 4.5 4.7 4.8

lowest : 2.6 2.7 3.0 3.1 3.2, highest: 4.9 5.0 5.1 5.2 5.3
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bun : Blood urea nitrogen [mg/dL]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4576 53 50 0.99 13.03 7 8 10 12 15 19 22

lowest : 1 2 3 4 5, highest: 49 53 55 56 63

SCr : Creatinine [mg/dL]
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

4576 53 167 1 0.8887 0.58 0.62 0.72 0.84 0.99 1.14 1.25

lowest : 0.34 0.38 0.39 0.40 0.41
highest: 5.98 6.34 9.13 10.98 15.66

dd ← datadist (w); options(datadist = ' dd ' )

15.5.1 Checking Assumptions of OLS
and Other Models

First let’s see if gh would make a Gaussian residuals model fit. Use ordinary
regression on four key variables to collapse these into one variable (predicted
mean from the OLS model). Stratify the predicted means into six quantile
groups. Apply the normal inverse cumulative distribution function Φ−1 to the
empirical cumulative distribution functions (ECDF) of gh using these strata,
and check for normality and constant σ2. The ECDF estimates Prob[Y ≤
y|X ] but for ordinal modeling we want to state models in terms of Prob[Y ≥
y|X ] so take one minus the ECDF before inverse transforming.

f ← ols (gh ∼ rcs(age ,5) + sex + re + rcs(bmi , 3), data=w)

pgh ← fitted (f)

p ← function (fun , row , col ) {

f ← substitute (fun ); g ← function (F) eval(f)

z ← Ecdf(∼ gh , groups =cut2(pgh , g=6),

fun=function (F) g(1 - F),

ylab=as.expression(f), xlim=c(4.5, 7.75), data=w,

label.curve =FALSE)

print (z, split =c(col , row , 2, 2), more=row < 2 | col < 2)

}

p(log (F/(1-F)), 1, 1)

p(qnorm (F), 1, 2)

p(-log(-log(F)), 2, 1)

p(log (-log(1-F)), 2, 2)

# Get slopes of pgh for some cutoffs of Y

# Use glm complementary log-log link on Prob(Y < cutoff) to

# get log-log link on Prob(Y ≥ cutoff)

r ← NULL

for (link in c( ' logit ' , ' probit ' , ' cloglog ' ))
for (k in c(5, 5.5 , 6)) {

co ← coef(glm (gh < k ∼ pgh , data=w, family =binomial (link)))
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r ← rbind (r, data.frame (link=link , cutoff =k,

slope=round(co[2] ,2)))

}

print (r, row.names =FALSE )

link cutoff slope
logit 5.0 -3.39
logit 5.5 -4.33
logit 6.0 -5.62

probit 5.0 -1.69
probit 5.5 -2.61
probit 6.0 -3.07

cloglog 5.0 -3.18
cloglog 5.5 -2.97
cloglog 6.0 -2.51

Glycohemoglobin, % Glycohemoglobin, %

Glycohemoglobin, % Glycohemoglobin, %
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Fig. 15.2 Examination of normality and constant variance assumption, and assump-
tions for various ordinal models



370 15 Regression Models for Continuous Y and Case Study in Ordinal Regression

The upper right curves in Figure 15.2 are not linear, implying that a normal
conditional distribution cannot work for ghi There is non-parallelism for the
logit model. The other graphs will be used to guide selection of an ordinal
model below.

15.6 Ordinal Regression Applied to HbA1c

In the upper left panel of Figure 15.2, logit inverse curves are not parallel
so the proportional odds assumption does not hold when predicting HbA1c.
The log-log link yields the highest degree of parallelism and most constant
regression coefficients across cutoffs of gh, so we use this link in an ordinal
regression model (linearity of the curves is not required).

15.6.1 Checking Fit for Various Models Using Age

Another way to examine model fit is to flexibly fit the single most important
predictor (age) using a variety of methods, and compare predictions to sample
quantiles and means based on subsets on age. We use overlapping subsets
to gain resolution, with each subset composed of those subjects having age
within five years of the point being predicted by the models. Here we predict
the 0.5, 0.75, and 0.9 quantiles and the mean. For quantiles we can compare
to quantile regression (discussed below) and for means we compare to OLS.

ag ← 25:75
lag ← length(ag)
q2 ← q3 ← p90 ← means ← numeric (lag)
for(i in 1:lag) {

s ← which(abs(w$age - ag[i]) < 5)
y ← w$gh[s]
a ← quantile (y, probs=c(.5, .75 , .9))
q2[i] ← a[1]
q3[i] ← a[2]
p90[i] ← a[3]
means[i] ← mean(y)

}
fams ← c( ' logistic ' , ' probit ' , ' loglog ' , ' cloglog ')
fe ← function (pred , target) mean(abs(pred$yhat - target ))
mod ← gh ∼ rcs(age ,6)
P ← Er ← list()
for(est in c( ' q2 ' , ' q3 ' , ' p90 ' , ' mean ' )) {

meth ← if(est == ' mean ') ' ols ' else ' QR '
p ← list()
er ← rep(NA, 5)
names(er) ← c(fams , meth)
for(family in fams) {

h ← orm(mod, family=family, data=w)
fun ← if(est == ' mean ') Mean(h)
else {

qu ← Quantile (h)

i They are not parallel either.
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switch(est, q2 = function (x) qu(.5, x),
q3 = function (x) qu(.75 , x),
p90 = function (x) qu(.9, x))

}
p[[family ]] ← z ← Predict(h, age=ag, fun=fun, conf.int =FALSE)
er[family] ← fe(z, switch(est , mean=means , q2=q2, q3=q3, p90=p90))

}
h ← switch(est,

mean= ols(mod, data=w),
q2 = Rq (mod, data=w),
q3 = Rq (mod, tau=0.75 , data=w),
p90 = Rq (mod, tau=0.90 , data=w))

p[[meth]] ← z ← Predict (h, age=ag, conf.int =FALSE)
er[meth] ← fe(z, switch(est, mean=means , q2=q2, q3=q3, p90=p90))

Er[[est]] ← er
pr ← do.call ( ' rbind ' , p)
pr$est ← est
P ← rbind.data.frame(P, pr)

}

xyplot (yhat ∼ age | est, groups=.set. , data=P, type= 'l ' , # F i g u r e 15.3
auto.key =list(x=.75, y=.2 , points =FALSE , lines=TRUE),
panel=function (..., subscripts) {

panel.xyplot(..., subscripts=subscripts)
est ← P$est[subscripts[1]]
lpoints (ag, switch(est, mean=means , q2=q2, q3=q3, p90=p90),

col=gray(.7))
er ← format(round(Er[[est]],3), nsmall =3)
ltext(26, 6.15, paste(names(er), collapse = '\n '),

cex=.7, adj=0)
ltext(40, 6.15, paste(er , collapse = '\n '),

cex=.7, adj=1)})

It can be seen in Figure 15.3 that models dedicated to a specific task
(quantile regression for quantiles and OLS for means) were best for those
tasks. Although the log-log ordinal cumulative probability model did not
estimate the median as accurately as some other methods, it does well for
the 0.75 and 0.9 quantiles and is the best compromise overall because of
its ability to also directly predict the mean as well as quantities such as
Prob[HbA1c > 7|X ].

From here on we focus on the log-log ordinal model. Returning to the
bottom left of Figure 15.2, let’s look at quantile groups of predicted HbA1c

by OLS and plot predicted distributions of actual HbA1c against empirical
distributions.

w$pghg ← cut2(pgh , g=6)

f ← orm(gh ∼ pghg , data=w)

lp ← predict (f, newdata =data.frame (pghg=levels (w$pghg )))

ep ← ExProb (f) # Exceedance prob. functn. generator in rms

z ← ep(lp)

j ← order (w$pghg) # puts in order of lp (levels of pghg)

plot(z, xlim=c(4, 7.5), data=w[j,c( ' pghg ' , ' gh ' )]) # Fig. 15.4

Agreement between predicted and observed exceedance probability distribu-
tions is excellent in Figure 15.4.
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Fig. 15.3 Three estimated quantiles and estimated mean using 6 methods, compared
against caliper-matched sample quantiles/means (circles). Numbers are mean abso-
lute differences between predicted and sample quantities using overlapping intervals
of age and caliper matching. QR:quantile regression.

To return to the initial look at a linear model with assumed Gaussian
residuals, fit a probit ordinal model and compare the estimated intercepts to
the linear relationship with gh that is assumed by the normal distribution.

f ← orm (gh ∼ rcs(age ,6), family =probit , data=w)

g ← ols (gh ∼ rcs(age ,6), data=w)

s ← g$stats[ ' Sigma ']
yu ← f$yunique [-1]

r ← quantile (w$gh, c(.005 , .995))

alphas ← coef(f)[1: num.intercepts(f)]

plot(-yu / s, alphas , type= ' l ' , xlim=rev (- r / s), # Fig. 15.5

xlab=expression (-y/hat (sigma )), ylab=expression (alpha[y]))

Figure 15.5 depicts a significant departure from the linear form implied by
Gaussian residuals (Eq. 15.4).
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Fig. 15.4 Observed (dashed lines, open circles) and predicted (solid lines, closed cir-
cles) exceedance probability distributions from a model using 6-tiles of OLS-predicted
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15.6.2 Examination of BMI

Body mass index (BMI, weight divided by height2) is commonly used as an
obesity measure because it is well correlated with abdominal visceral fat.
But it is not obvious that BMI is the correct summary of height and weight
for predicting pre-clinical diabetes, and it may be the case that body size
measures other than height and weight are better predictors.

Use the log-log ordinal model to check the adequacy of BMI, adjusting for
age (without assuming linearity). This can be done by examining the ratio
of coefficients of log height and log weight, and also by using AIC to judge
whether BMI is an adequate summary of height and weight when compared
to nonlinear functions of the logs, and to a tensor spline interaction surface.

f ← orm(gh ∼ rcs(age ,5) + log(ht) + log(wt),
family=loglog, data=w)

print(f, latex=TRUE)

-log-log Ordinal Regression Model

orm(formula = gh ~ rcs(age, 5) + log(ht) + log(wt), data = w,

family = loglog)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 4629 LR χ2 1126.94 R2 0.217 ρ 0.486
Unique Y 63 d.f. 6 g 0.627
Y0.5 5.5 Pr(> χ2) < 0.0001 gr 1.872

max |∂ logL
∂β | Score χ2 1262.81 |Pr(Y ≥ Y0.5)− 1

2 | 0.153
1×10−6 Pr(> χ2) < 0.0001

Coef S.E. Wald Z Pr(> |Z|)
age 0.0398 0.0055 7.29 < 0.0001
age’ -0.0158 0.0275 -0.57 0.5657
age” -0.0072 0.0866 -0.08 0.9333
age”’ 0.0309 0.1135 0.27 0.7853
ht -3.0680 0.2789 -11.00 < 0.0001
wt 1.2748 0.0704 18.10 < 0.0001

aic ← NULL
for(mod in list(gh ∼ rcs(age ,5) + rcs(log(bmi),5),

gh ∼ rcs(age ,5) + rcs(log(ht),5) + rcs(log(wt),5),
gh ∼ rcs(age ,5) + rcs(log(ht),4) * rcs(log(wt),4)))

aic ← c(aic , AIC(orm(mod, family =loglog , data=w)))
print(aic)

[1] 25910.77 25910.17 25906.03
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The ratio of the coefficient of log height to the coefficient of log weight is -
2.4, which is between what BMI uses and the more dimensionally reasonable
weight / height3. By AIC, a spline interaction surface between height and
weight does slightly better than BMI in predicting HbA1c, but a nonlinear
function of BMI is barely worse. It will require other body size measures to
displace BMI as a predictor.

As an aside, compare this model fit to that from the Cox proportional
hazards model. The Cox model uses a conditioning argument to obtain
a partial likelihood free of the intercepts α (and requires a second step to
estimate these log discrete hazard components) whereas we are using a full
marginal likelihood of the ranks of Y 330.

print(cph(Surv(gh) ∼ rcs(age ,5) + log(ht) + log(wt), data=w),
latex=TRUE)

Cox Proportional Hazards Model

cph(formula = Surv(gh) ~ rcs(age, 5) + log(ht)

+ log(wt), data = w)

Model Tests Discrimination
Indexes

Obs 4629 LR χ2 1120.20 R2 0.215
Events 4629 d.f. 6 Dxy 0.359
Center 8.3792 Pr(> χ2) 0.0000 g 0.622

Score χ2 1258.07 gr 1.863
Pr(> χ2) 0.0000

Coef S.E. Wald Z Pr(> |Z|)
age -0.0392 0.0054 -7.24 < 0.0001
age’ 0.0148 0.0274 0.54 0.5888
age” 0.0093 0.0862 0.11 0.9144
age”’ -0.0321 0.1131 -0.28 0.7767
ht 3.0477 0.2779 10.97 < 0.0001
wt -1.2653 0.0701 -18.04 < 0.0001

Close agreement of the two is seen, as expected.

15.6.3 Consideration of All Body Size Measurements

Next we examine all body size measures, and check their redundancies.

v ← varclus(∼ wt + ht + bmi + leg + arml + armc + waist +

tri + sub + age + sex + re , data =w)

plot (v)
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# Omit wt so it won ' t be removed before bmi

redun (∼ ht + bmi + leg + arml + armc + waist + tri + sub ,

data =w, r2=.75)

Redundancy Analysis

redun(formula = ∼ht + bmi + leg + arml + armc + waist + tri +
sub , data = w, r2 = 0.75)

n: 3853 p: 8 nk: 3

Number of NAs: 776
Frequencies of Missing Values Due to Each Variable

ht bmi leg arml armc waist tri sub
0 0 155 127 130 164 334 655

Transformation of target variables forced to be linear

R2 cutoff: 0.75 Type: ordinary

R2 with which each variable can be predicted from all other variables:

ht bmi leg arml armc waist tri sub
0.829 0.924 0.682 0.748 0.843 0.864 0.531 0.594

Rendundant variables:

bmi ht

Predicted from variables:

leg arml armc waist tri sub

Variable Deleted R2 R2 after later deletions
1 bmi 0.924 0.909
2 ht 0.792

Six size measures adequately capture the entire set. Height and BMI are
removed (Figure 15.6). An advantage of removing height is that it is age-
dependent due to vertebral compression in the elderly:

f ← orm(ht ∼ rcs(age ,4)*sex , data =w) # Prop. odds model

qu ← Quantile (f); med ← function(x) qu(.5 , x)

ggplot (Predict(f, age , sex , fun=med , conf.int =FALSE ),

ylab = ' Predicted Median Height , cm ' )

However, upper leg length has the same declining trend, implying a survival
bias or birth year effect.

In preparing to create a multivariable model, degrees of freedom are allo-
cated according to the generalized Spearman ρ2(Figure 15.7)j.

s ← spearman2 (gh ∼ age + sex + re + wt + leg + arml + armc +

waist + tri + sub , data =w, p=2)

plot (s)

Parameters will be allocated in descending order of ρ2. But note that
subscapular skinfold has a large number of NAs and other predictors also have
NAs. Suboptimal casewise deletion will be used until the final model is fitted
(Figure 15.8).

j Competition between collinear size measures hurts interpretation of partial tests of
association in a saturated additive model.
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Fig. 15.6 Variable clustering for all potential predictors
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Fig. 15.7 Estimated median height as a smooth function of age, allowing age to
interact with sex, from a proportional odds model

Because there are many competing body measures, we use backwards step-
down to arrive at a set of predictors. The bootstrap will be used to penal-
ize predictive ability for variable selection. First the full model is fit using
casewise deletion, then we do a composite test to assess whether any of the
frequently–missing predictors is important.

f ← orm(gh ∼ rcs(age ,5) + sex + re + rcs(wt ,3) + rcs(leg ,3) + arml +
rcs(armc ,3) + rcs(waist ,4) + tri + rcs(sub ,3),
family= ' loglog ' , data=w, x=TRUE , y=TRUE)

print(f, latex=TRUE , coefs=FALSE)
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age
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Fig. 15.8 Generalized squared rank correlations

-log-log Ordinal Regression Model

orm(formula = gh ~ rcs(age, 5) + sex + re + rcs(wt, 3)

+ rcs(leg, 3) + arml + rcs(armc, 3) + rcs(waist, 4)

+ tri + rcs(sub, 3), data = w, x = TRUE, y = TRUE,

family = "loglog")

Frequencies of Missing Values Due to Each Variable

0 100 200 300 400 500 600 700

655
334
164
155
130
127

0
0
0
0
0

N

sub
tri

waist
leg

armc
arml

gh
age
sex
re
wt



15.6 Ordinal Regression Applied to HbA1c 379

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 3853 LR χ2 1180.13 R2 0.265 ρ 0.520
Unique Y 60 d.f. 22 g 0.732
Y0.5 5.5 Pr(> χ2) < 0.0001 gr 2.080

max |∂ logL
∂β | Score χ2 1298.88 |Pr(Y ≥ Y0.5)− 1

2 | 0.172
3×10−5 Pr(> χ2) < 0.0001

# # C o m p o s i t e t e s t :

lan ← function (a) latex(a, table.env=FALSE , file= ' ' )
lan(anova(f, leg, arml , armc , waist , tri, sub))

χ2 d.f. P

leg 8.30 2 0.0158
Nonlinear 3.32 1 0.0685

arml 0.16 1 0.6924
armc 6.66 2 0.0358
Nonlinear 3.29 1 0.0695

waist 29.40 3 < 0.0001
Nonlinear 4.29 2 0.1171

tri 16.62 1 < 0.0001
sub 40.75 2 < 0.0001
Nonlinear 4.50 1 0.0340

TOTAL NONLINEAR 14.95 5 0.0106
TOTAL 128.29 11 < 0.0001

The model achieves Spearman ρ = 0.52, the rank correlation between
predicted and observed HbA1c.

We show the predicted mean and median HbA1c as a function of age,
adjusting other variables to their median or mode (Figure 15.9). Compare the

estimate of the median and 90th percentile with that from quantile regression.

M ← Mean (f)

qu ← Quantile (f)

med ← function (x) qu(.5 , x)

p90 ← function (x) qu(.9 , x)

fq ← Rq(formula(f), data=w)

fq90 ← Rq(formula(f), data=w, tau=.9)

pmean ← Predict(f, age , fun=M, conf.int =FALSE )

pmed ← Predict(f, age , fun=med , conf.int =FALSE )

p90 ← Predict(f, age , fun=p90 , conf.int =FALSE )

pmedqr ← Predict(fq, age , conf.int =FALSE )

p90qr ← Predict(fq90 , age , conf.int =FALSE )

z ← rbind ( ' orm mean ' =pmean , ' orm median ' =pmed , ' orm P90 ' =p90 ,
' QR median ' =pmedqr , ' QR P90 ' =p90qr )

ggplot (z, groups = ' .set. ' ,
adj.subtitle =FALSE , legend.label =FALSE )
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print (fastbw (f, rule= ' p ' ), estimates =FALSE )
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orm median
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QR median
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Fig. 15.9 Estimated mean and 0.5 and 0.9 quantiles from the log-log ordinal model
using casewise deletion, along with predictions of 0.5 and 0.9 quantiles from quantile
regression (QR). Age is varied and other predictors are held constant to medians/-
modes.

Deleted Chi -Sq d.f. P Residual d.f. P AIC
arml 0.16 1 0.6924 0.16 1 0.6924 -1.84
sex 0.45 1 0.5019 0.61 2 0.7381 -3.39
wt 5.72 2 0.0572 6.33 4 0.1759 -1.67
armc 3.32 2 0.1897 9.65 6 0.1400 -2.35

Factors in Final Model

[1] age re leg waist tri sub

set.seed (13) # so can reproduce results

v ← validate (f, B=100, bw=TRUE , estimates =FALSE , rule= ' p ' )
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Backwards Step -down - Original Model

Deleted Chi -Sq d.f. P Residual d.f. P AIC
arml 0.16 1 0.6924 0.16 1 0.6924 -1.84
sex 0.45 1 0.5019 0.61 2 0.7381 -3.39
wt 5.72 2 0.0572 6.33 4 0.1759 -1.67
armc 3.32 2 0.1897 9.65 6 0.1400 -2.35

Factors in Final Model

[1] age re leg waist tri sub

# Show number of variables selected in first 30 boots

latex (v, B=30, file = ' ' , size= ' small ' )

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

ρ 0.5225 0.5290 0.5208 0.0083 0.5142 100
R2 0.2712 0.2788 0.2692 0.0095 0.2617 100
Slope 1.0000 1.0000 0.9761 0.0239 0.9761 100
g 1.2276 1.2505 1.2207 0.0298 1.1978 100

|Pr(Y ≥ Y0.5)− 1
2
| 0.2007 0.2050 0.1987 0.0064 0.1943 100

Factors Retained in Backwards Elimination
First 30 Resamples

age sex re wt leg arml armc waist tri sub
• • • • • • • •
• • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • • •
• • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • • • •
• • • • • •
• • • • • •
• • • • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • •
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Frequencies of Numbers of Factors Retained

5 6 7 8 9 10
1 19 29 46 4 1

Next we fit the reduced model, using multiple imputation to impute miss-
ing predictors (Figure 15.10).

a ← aregImpute(∼ gh + wt + ht + bmi + leg + arml + armc + waist +
tri + sub + age +re, data=w, n.impute =5, pr=FALSE)

g ← fit.mult.impute(gh ∼ rcs(age ,5) + re + rcs(leg ,3) +
rcs(waist ,4) + tri + rcs(sub ,4),
orm, a, family =loglog , data=w, pr=FALSE)

print(g, latex=TRUE , needspace= '1.5in ')

-log-log Ordinal Regression Model

fit.mult.impute(formula = gh ~ rcs(age, 5) + re + rcs(leg, 3)

+ rcs(waist, 4) + tri + rcs(sub, 4), fitter = orm,

xtrans = a, data = w, pr = FALSE, family = loglog)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 4629 LR χ2 1448.42 R2 0.269 ρ 0.513
Unique Y 63 d.f. 17 g 0.743
Y0.5 5.5 Pr(> χ2) < 0.0001 gr 2.102

max |∂ logL
∂β | Score χ2 1569.21 |Pr(Y ≥ Y0.5)− 1

2 | 0.173
1×10−5 Pr(> χ2) < 0.0001

Coef S.E. Wald Z Pr(> |Z|)
age 0.0404 0.0055 7.29 < 0.0001
age’ -0.0228 0.0279 -0.82 0.4137
age” 0.0126 0.0876 0.14 0.8857
age”’ 0.0424 0.1148 0.37 0.7116
re=Other Hispanic -0.0766 0.0597 -1.28 0.1992
re=Non-Hispanic White -0.4121 0.0449 -9.17 < 0.0001
re=Non-Hispanic Black 0.0645 0.0566 1.14 0.2543
re=Other Race Including Multi-Racial -0.0555 0.0750 -0.74 0.4593
leg -0.0339 0.0091 -3.73 0.0002
leg’ 0.0153 0.0105 1.46 0.1434
waist 0.0073 0.0050 1.47 0.1428
waist’ 0.0304 0.0158 1.93 0.0536
waist” -0.0910 0.0508 -1.79 0.0732
tri -0.0163 0.0026 -6.28 < 0.0001
sub -0.0027 0.0097 -0.28 0.7817
sub’ 0.0674 0.0289 2.33 0.0198
sub” -0.1895 0.0922 -2.06 0.0398
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an ← anova(g)
lan(an)

χ2 d.f. P

age 692.50 4 < 0.0001
Nonlinear 28.47 3 < 0.0001

re 168.91 4 < 0.0001
leg 24.37 2 < 0.0001
Nonlinear 2.14 1 0.1434

waist 128.31 3 < 0.0001
Nonlinear 4.05 2 0.1318

tri 39.44 1 < 0.0001
sub 39.30 3 < 0.0001
Nonlinear 6.63 2 0.0363

TOTAL NONLINEAR 46.80 8 < 0.0001
TOTAL 1464.24 17 < 0.0001

b ← anova(g, leg, waist , tri, sub)
# A d d n e w l i n e s t o t h e p l o t w i t h c o m b i n e d e f f e c t o f 4 s i z e v a r .

s ← rbind(an, size=b[ ' TOTAL ' , ])
class(s) ← ' anova.rms '
plot(s)

leg

sub

tri

waist

re

size

age

0 100 200 300 400 500 600 700

χ2− df

Fig. 15.10 ANOVA for reduced model, after multiple imputation, with addition of
a combined effect for four size variables

ggplot (Predict (g), abbrev=TRUE , ylab=NULL) # F i g u r e 15.11
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Compare the estimated age partial effects and confidence intervals with
those from a model using casewise deletion, and with bootstrap nonparamet-
ric confidence intervals (also with casewise deletion).
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Fig. 15.11 Partial effects (log hazard or log-log cumulative probability scale) of all
predictors in reduced model, after multiple imputation

gc ← orm(gh ∼ rcs(age ,5) + re + rcs(leg ,3) +

rcs(waist ,4) + tri + rcs(sub ,4),

family =loglog , data=w, x=TRUE , y=TRUE )

gb ← bootcov(gc , B=300)

bootclb ← Predict(gb, age , boot.type = ' basic ' )
bootclp ← Predict(gb, age , boot.type = ' percentile ' )
multimp ← Predict(g, age)

plot (Predict(gc , age), addpanel =function (...) {

with (bootclb , {llines (age , lower , col= ' blue ' )
llines (age , upper , col= ' blue ' )})

with (bootclp , {llines (age , lower , col= ' blue ' , lty =2)

llines (age , upper , col= ' blue ' , lty =2)})

with (multimp , {llines (age , lower , col= ' red ' )
llines (age , upper , col= ' red ' )
llines (age , yhat , col= ' red ' )} ) },

col.fill =gray (.9), adj.subtitle =FALSE ) # Figure 15.12
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Fig. 15.12 Partial effect for age from multiple imputation (center red line) and
casewise deletion (center blue line) with symmetric Wald 0.95 confidence bands using
casewise deletion (gray shaded area), basic bootstrap confidence bands using casewise
deletion (blue lines), percentile bootstrap confidence bands using casewise deletion
(dashed blue lines), and symmetric Wald confidence bands accounting for multiple
imputation (red lines).

Figure 15.13 depicts the relationship between various predicted quantities,
demonstrating that the ordinal model makes fewer model assumptions that
dictate their connections. A Gaussian or log-Gaussian model would have a
straight-line relationship between the predicted mean and median.

M ← Mean (g)

qu ← Quantile (g)

med ← function (lp) qu(.5 , lp)

q90 ← function (lp) qu(.9 , lp)

lp ← predict(g)

lpr ← quantile (predict(g), c(.002 , .998 ), na.rm =TRUE)

lps ← seq(lpr[1], lpr [2], length =200)

pmn ← M(lps)

pme ← med(lps)

p90 ← q90(lps)

plot (pmn , pme , # Figure 15.13

xlab =expression (paste ( ' Predicted Mean ' , HbA["1c"])),

ylab = ' Median and 0.9 Quantile ' , type = ' l ' ,
xlim =c(4.75 , 8.0), ylim=c(4.75 , 8.0), bty= ' n ' )

box(col=gray (.8))
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lines (pmn , p90 , col= ' blue ' )
abline (a=0, b=1, col=gray (.8))

text (6.5 , 5.5 , ' Median ' )
text (5.5 , 6.3 , ' 0.9 ' , col= ' blue ' )
nint ← 350

scat1d (M(lp), nint=nint)

scat1d (med(lp), side =2, nint=nint )

scat1d (q90(lp), side =4, col= ' blue ' , nint =nint )
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Fig. 15.13 Predicted mean HbA1cvs. predicted median and 0.9 quantile along with
their marginal distributions

Finally, let us draw a nomogram that shows the full power of ordinal
models, by predicting five quantities of interest.

g ← Newlevels (g, list (re=abbreviate (levels (w$re ))))

exprob ← ExProb (g)

nom ←
nomogram (g, fun=list (Mean=M,

' Median Glycohemoglobin ' = med ,

' 0.9 Quantile ' = q90 ,

' Prob(HbA1c ≥ 6.5) ' =
function(x) exprob (x, y=6.5),

' Prob(HbA1c ≥ 7.0) ' =
function(x) exprob (x, y=7),

' Prob(HbA1c ≥ 7.5) ' =



15.6 Ordinal Regression Applied to HbA1c 387

function(x) exprob (x, y=7.5)),

fun.at =list (seq(5, 8, by=.5),

c(5,5.25 ,5.5 ,5.75 ,6,6 .25),

c(5.5 ,6,6.5 ,7,8,10,12,14) ,

c(.01 ,.05 ,.1 ,.2 ,.3 ,.4),

c(.01 ,.05 ,.1 ,.2 ,.3 ,.4),

c(.01 ,.05 ,.1 ,.2 ,.3 ,.4 )))

plot (nom , lmgp =.28) # Figure 15.14

Points
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Fig. 15.14 Nomogram for predicting median, mean, and 0.9 quantile of glycohe-
moglobin, along with the estimated probability that HbA1c≥ 6.5, 7, or 7.5, all from
the log-log ordinal model



Chapter 16

Transform-Both-Sides Regression

16.1 Background

Fitting multiple regression models by the method of least squares is one of the
most commonly used methods in statistics. There are a number of challenges
to the use of least squares, even when it is only used for estimation and not
inference, including the following.

1. How should continuous predictors be transformed so as to get a good fit?
2. Is it better to transform the response variable? How does one find a good

transformation that simplifies the right-hand side of the equation?
3. What if Y needs to be transformed non-monotonically (e.g., |Y − 100|)

before it will have any correlation with X?

When one is trying to draw an inference about population effects using con-
fidence limits or hypothesis tests, the most common approach is to assume
that the residuals have a normal distribution. This is equivalent to assuming
that the conditional distribution of the response Y given the set of predictors
X is normal with mean depending on X and variance that is (one hopes)
a constant independent of X . The need for a distributional assumption to
enable us to draw inferences creates a number of other challenges such as the
following.

1. If for the untransformed original scale of the response Y the distribution of
the residuals is not normal with constant spread, ordinary methods will not
yield correct inferences (e.g., confidence intervals will not have the desired
coverage probability and the intervals will need to be asymmetric).

2. Quite often there is a transformation of Y that will yield well-behaving
residuals. How do you find this transformation? Can you find a transfor-
mation for the Xs at the same time?

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
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3. All classical statistical inferential methods assume that the full model was
pre-specified, that is, the model was not modified after examining the data.
How does one correct confidence limits, for example, for data-based model
and transformation selection?

16.2 Generalized Additive Models

Hastie and Tibshirani275 have developed generalized additive models (GAMs)
for a variety of distributions for Y . There are semiparametric GAMs, but
most GAMs for continuous Y assume that the conditional distribution of Y is
from a specific distribution family. GAMs nicely estimate the transformation
each continuous X requires so as to optimize a fitting criterion such as sum
of squared errors or log likelihood, subject to the degrees of freedom the
analyst desires to spend on each predictor. However, GAMs assume that Y
has already been transformed to fit the specified distribution family.

There is excellent software available for fitting a wide variety of GAMs,
such as the R packages gam, mgcv, and robustgam.

16.3 Nonparametric Estimation of Y -Transformation

When the model’s left-hand side also needs transformation, either to im-
prove R2 or to achieve constant variance of the residuals (which increases the
chances of satisfying a normality assumption), there are a few approaches
available. One approach is Breiman and Friedman’s alternating conditional
expectation (ACE) method.68 ACE simultaneously transforms both Y and
each of the Xs so as to maximize the multiple R2 between the transformed
Y and the transformed Xs. The model is given by

g(Y ) = f1(X1) + f2(X2) + . . .+ fp(Xp). (16.1)

ACE allows the analyst to impose restrictions on the transformations such
as monotonicity. It allows for categorical predictors, whose categories will
automatically be given numeric scores. The transformation for Y is allowed to
be non-monotonic. One feature of ACE is its ability to estimate the maximal
correlation between an X and the response Y . Unlike the ordinary correlation
coefficient (which assumes linearity) or Spearman’s rank correlation (which
assumes monotonicity), the maximal correlation has the property that it is
zero if and only if X and Y are statistically independent. This property holds
because ACE allows for non-monotonic transformations of all variables. The
“super smoother”(see the S supsmu function) is the basis for the nonparametric
estimation of transformations for continuous Xs.
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Tibshirani developed a different algorithm for nonparametric additive
regression based on least squares, additivity and variance stabilization
(AVAS).607 Unlike ACE, AVAS forces g(Y ) to be monotonic. AVAS’s fit-
ting criterion is to maximize R2 while forcing the transformation for Y to
result in nearly constant variance of residuals. The model specification is the
same as for ACE (Equation 16.3).

ACE and AVAS are powerful fitting algorithms, but they can result in over-
fitting (R2 can be greatly inflated when one fits many predictors), and they
provide no statistical inferential measures. As discussed earlier, the process of
estimating transformations (especially those for Y ) can result in significant
variance under-estimation, especially for small sample sizes. The bootstrap
can be used to correct the apparent R2 (R2

app) for overfitting. As before,
it estimates the optimism (bias) in R2

app and subtracts this optimism from
R2

app to get a more trustworthy estimate. The bootstrap can also be used to
compute confidence limits for all estimated transformations, and confidence
limits for estimated predictor effects that take fully into account the uncer-
tainty associated with the transformations. To do this, all steps involved in
fitting the additive models must be repeated fresh for each re-sample.

Limited testing has shown that the sample size needs to exceed 100 for
ACE and AVAS to provide stable estimates. In small sample sizes the boot-
strap bias-corrected estimate of R2 will be zero because the sample informa-
tion did not support simultaneous estimation of all transformations.

16.4 Obtaining Estimates on the Original Scale

A common practice in least squares fitting is to attempt to rectify lack of
fit by taking parametric transformations of Y before fitting; the logarithm
is the most common transformation.a If after transformation the model’s
residuals have a population median of zero, the inverse transformation of a
predicted transformed value estimates the population median of Y given X .
This is because unlike means, quantiles are transformation-preserving. Many
analysts make the mistake of not reporting which population parameter is
being estimated when inverse transforming Xβ̂, and sometimes they even
report that the mean is being estimated.

How would one go about estimating the population mean or other param-
eter on the untransformed scale? If the residuals are assumed to be normally
distributed and if log(Y ) is the transformation, the mean of the log-normal
distribution, a function of both the mean and the variance of the residuals,
can be used to derive the desired quantity. However, if the residuals are not
normally distributed, this procedure will not result in the correct estimator.

a A disadvantage of transform-both-sides regression is this difficulty of interpreting
estimates on the original scale. Sometimes the use of a special generalized linear model
can allow for a good fit without transforming Y .
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Duan165 developed a “smearing” estimator for more nonparametrically ob-
taining estimates of parameters on the original scale. In the simple one-sample
case without predictors in which one has computed θ̂ =

∑n
i=1 log(Yi)/n, the

residuals from this fitted value are given by ei = log(Yi) − θ̂. The smearing

estimator of the population mean is
∑

exp[θ̂ + ei]/n. In this simple case the
result is the ordinary sample mean Y .

The worth of Duan’s smearing estimator is in regression modeling. Sup-
pose that the regression was run on g(Y ) from which estimated values

ĝ(Yi) = Xiβ̂ and residuals on the transformed scale ei = ĝ(Yi)−Xiβ̂ were ob-
tained. Instead of restricting ourselves to estimating the population mean, let
W (y1, y2, . . . , yn) denote any function of a vector of untransformed response
values. To estimate the population mean in the homogeneous one-sample
case, W is the simple average of all of its arguments. To estimate the pop-
ulation 0.25 quantile, W is the sample 0.25 quantile of y1, . . . , yn. Then the
smearing estimator of the population parameter estimated by W given X is
W (g−1(a+ e1), g

−1(a+ e2), . . . , g
−1(a+ en)), where g

−1 is the inverse of the

g transformation and a = Xβ̂.
When using the AVAS algorithm, the monotonic transformation g is es-

timated from the data, and the predicted value of ĝ(Y ) is given by Equa-
tion 16.3. So we extend the smearing estimator as W (ĝ−1(a+e1), . . . , ĝ

−1(a+
en)), where a is the predicted transformed response given X . As ĝ is non-
parametric (i.e., a table look-up), the areg.boot function described below
computes ĝ−1 using reverse linear interpolation.

If residuals from ĝ(Y ) are assumed to be symmetrically distributed, their
population median is zero and we can estimate the median on the untrans-
formed scale by computing ĝ−1(Xβ̂). To be safe, areg.boot adds the median

residual to Xβ̂ when estimating the population median (the median residual
can be ignored by specifying statistic=’fitted’ to functions that operate on
objects created by areg.boot).

When quantiles of Y are of major interest, a more direct way to obtain
estimates is through the use of quantile regression357. An excellent case study
including comparisons with other methods such as Cox regression can be
found in Austin et al.38.

16.5 R Functions

The R acepack package’s ace function implements all the features of the ACE
algorithm, and its avas function does likewise for AVAS. The bootstrap and
smearing capabilities mentioned above are offered for these estimation func-
tions by the areg.boot (“additive regression using the bootstrap”) function
in the Hmisc package. Unlike the ace and avas functions, areg.boot uses the
R modeling language, making it easier for the analyst to specify the predic-
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tor variables and what is assumed about their relationships with the trans-
formed Y . areg.boot also implements a parametric transform-both-sides ap-
proach using restricted cubic splines and canonical variates, and offers various
estimation options with and without smearing. It can estimate the effect of
changing one predictor, holding others constant, using the ordinary bootstrap
to estimate the standard deviation of difference in two possibly transformed
estimates (for two values of X), assuming normality of such differences. Nor-
mality is assumed to avoid generating a large number of bootstrap replica-
tions of time-consuming model fits. It would not be very difficult to add non-
parametric bootstrap confidence limit capabilities to the software. areg.boot
re-samples every aspect of the modeling process it uses, just as Faraway186

did for parametric least squares modeling.
areg.boot implements a variety of methods as shown in the simple exam-

ple below. The monotone function restricts a variable’s transformation to be
monotonic, while the I function restricts it to be linear.

f ← areg.boot (Y ∼ monotone (age) +

sex + weight + I(blood.pressure ))

plot (f) #show transformations , CLs

Function (f) #generate S functions

#defining transformations

predict(f) #get predictions , smearing estimates

summary(f) #compute CLs on effects of each X

smearingEst () #generalized smearing estimators

Mean (f) #derive S function to

#compute smearing mean Y

Quantile (f) #derive function to compute smearing quantile

The methods are best described in a case study.

16.6 Case Study

Consider simulated data where the conditional distribution of Y is log-normal
given X , but where transform-both-sides regression methods use unlogged
Y . Predictor X1 is linearly related to log Y , X2 is related by |X2 − 1

2 |, and
categorical X3 has reference group a effect of zero, group b effect of 0.3, and
group c effect of 0.5.

require(rms)

set.seed (7)

n ← 400

x1 ← runif (n)

x2 ← runif (n)

x3 ← factor (sample (c( ' a ' , ' b ' , ' c ' ), n, TRUE ))

y ← exp(x1 + 2*abs(x2 - .5) + .3*(x3== ' b ' ) + .5*(x3== ' c ' ) +

.5*rnorm (n))
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# For reference fit appropriate OLS model

print (ols(log(y) ∼ x1 + rcs(x2 , 5) + x3), coefs =FALSE ,

latex =TRUE )

Linear Regression Model

ols(formula = log(y) ~ x1 + rcs(x2, 5) + x3)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 400 LR χ2 236.87 R2 0.447
σ 0.4722 d.f. 7 R2

adj 0.437

d.f. 392 Pr(> χ2) 0.0000 g 0.482

Residuals
Min 1Q Median 3Q Max

−1.346 −0.3075 −0.0134 0.327 1.527

Now fit the avas model. We use 300 bootstrap repetitions but only plot
the first 20 estimates to see clearly how the bootstrap re-estimates of trans-
formations vary. Had we wanted to restrict transformations to be linear, we
would have specified the identity function, for example, I(x1).

f ← areg.boot (y ∼ x1 + x2 + x3 , method = ' avas ' , B=300)

f

avas Additive Regression Model

areg.boot(x = y ∼ x1 + x2 + x3, B = 300, method = "avas")

Predictor Types

type
x1 s
x2 s
x3 c

y type: s

n= 400 p= 3

Apparent R2 on transformed Y scale: 0.444
Bootstrap validated R2 : 0.42

Coefficients of standardized transformations:

Intercept x1 x2 x3
-3.443111e-16 9.702960 e-01 1.224320 e+00 9.881150 e-01

Residuals on transformed scale:
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Min 1Q Median 3Q Max
-1.877152e+00 -5.252194e-01 -3.732200e-02 5.339122 e-01 2.172680 e+00

Mean S.D.
8.673617 e-19 7.420788 e-01

Note that the coefficients above do not mean very much as the scale of the
transformations is arbitrary. We see that the model was very slightly overfit-
ted (R2 dropped from 0.44 to 0.42), and the R2 are in agreement with the
OLS model fit above.

Next we plot the transformations, 0.95 confidence bands, and a sample of
the bootstrap estimates.

plot (f, boot =20) # Figure 16.1
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Fig. 16.1 avas transformations: overall estimates, pointwise 0.95 confidence bands,
and 20 bootstrap estimates (red lines).

The plot is shown in Figure 16.1. The nonparametrically estimated transfor-
mation of x1 is almost linear, and the transformation of x2 is close to |x2−0.5|.
We know that the true transformation of y is log(y), so variance stabilization
and normality of residuals will be achieved if the estimated y-transformation
is close to log(y).
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ys ← seq(.8 , 20, length =200)

ytrans ← Function (f)$y # Function outputs all transforms

plot (log(ys), ytrans (ys), type= ' l ' ) # Figure 16.2

abline (lm(ytrans (ys) ∼ log(ys)), col=gray (.8))
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Fig. 16.2 Checking estimated against optimal transformation

Approximate linearity indicates that the estimated transformation is very
log-like.b

Now let us obtain approximate tests of effects of each predictor. summary
does this by setting all other predictors to reference values (e.g., medians),
and comparing predicted responses for a given level of the predictor X with
predictions for the lowest setting of X . The default predicted response for
summary is the median, which is used here. Therefore tests are for differences
in medians.

summary(f, values =list (x1=c(.2 , .8), x2=c(.1 , .5)))

summary .areg.boot(object = f, values = list(x1 = c(0.2, 0.8),
x2 = c(0.1, 0.5)))

Estimates based on 300 resamples

Values to which predictors are set when estimating
effects of other predictors:

y x1 x2 x3
3.728843 0.500000 0.300000 2.000000

b Beware that use of a data–derived transformation in an ordinary model, as this will
result in standard errors that are too small. This is because model selection is not
taken into account.186
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Estimates of differences of effects on Median Y (from first X
value), and bootstrap standard errors of these differences.
Settings for X are shown as row headings .

Predictor: x1

x Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)
0.2 0.000000 NA NA NA NA NA
0.8 1.546992 0.2099959 1.135408 1.958577 7.366773 1.747491 e-13

Predictor: x2

x Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)
0.1 0.000000 NA NA NA NA NA
0.5 -1.658961 0.3163361 -2.278968 -1.038953 -5.244298 1.568786 e-07

Predictor: x3

x Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)
a 0.0000000 NA NA NA NA NA
b 0.8447422 0.1768244 0.4981728 1.191312 4.777295 1.776692 e-06
c 1.3526151 0.2206395 0.9201697 1.785061 6.130431 8.764127 e-10

For example, when x1 increases from 0.2 to 0.8 we predict an increase in
median y by 1.55 with bootstrap standard error 0.21, when all other predictors
are held to constants. Setting them to other constants will yield different
estimates of the x1 effect, as the transformation of y is nonlinear.

Next depict the fitted model by plotting predicted values, with x2 varying
on the x-axis, and three curves corresponding to three values of x3. x1 is set
to 0.5. Figure 16.3 shows estimates of both the median and the mean y.

newdat ← expand.grid (x2=seq(.05 , .95 , length =200),

x3=c( ' a ' , ' b ' , ' c ' ), x1=.5 ,

statistic =c( ' median ' , ' mean ' ))
yhat ← c(predict(f, subset (newdat , statistic == ' median ' ),

statistic = ' median ' ),
predict(f, subset (newdat , statistic == ' mean ' ),

statistic = ' mean ' ))
newdat ←

upData (newdat ,

lp = x1 + 2*abs(x2 - .5) + .3*(x3== ' b ' ) +

.5*(x3== ' c ' ),
ytrue = ifelse (statistic == ' median ' , exp(lp),

exp(lp + 0.5*(0.5∧2))), pr=FALSE )

Input object size: 45472 bytes; 4 variables
Added variable lp
Added variable ytrue
Added variable pr

New object size: 69800 bytes; 7 variables

# Use Hmisc function xYplot to produce Figure 16.3

xYplot (yhat ∼ x2 | statistic , groups =x3 ,

data =newdat , type= ' l ' , col=1,

ylab =expression (hat(y)),

panel =function (...) {
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panel.xYplot (...)

dat ← subset (newdat ,

statistic ==c( ' median ' , ' mean ' )[ current.column ()])

for(w in c( ' a ' , ' b ' , ' c ' ))
with (subset (dat , x3==w),

llines (x2 , ytrue , col=gray (.7), lwd =1.5))

}

)
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Fig. 16.3 Predicted median (left panel) and mean (right panel) y as a function of
x2 and x3. True population values are shown in gray.



Chapter 17

Introduction to Survival Analysis

17.1 Background

Suppose that one wished to study the occurrence of some event in a popu-
lation of subjects. If the time until the occurrence of the event were unim-
portant, the event could be analyzed as a binary outcome using the logistic
regression model. For example, in analyzing mortality associated with open
heart surgery, it may not matter whether a patient dies during the proce-
dure or he dies after being in a coma for two months. For other outcomes,
especially those concerned with chronic conditions, the time until the event
is important. In a study of emphysema, death at eight years after onset of
symptoms is different from death at six months. An analysis that simply
counted the number of deaths would be discarding valuable information and
sacrificing statistical power.

Survival analysis is used to analyze data in which the time until the event
is of interest. The response variable is the time until that event and is often
called a failure time, survival time, or event time. Examples of responses 1

of interest include the time until cardiovascular death, time until death or
myocardial infarction, time until failure of a light bulb, time until pregnancy,
or time until occurrence of an ECG abnormality during exercise. Bull and
Spiegelhalter83 have an excellent overview of survival analysis.

The response, event time, is usually continuous, but survival analysis al-
lows the response to be incompletely determined for some subjects. For exam-
ple, suppose that after a five-year follow-up study of survival after myocardial
infarction a patient is still alive. That patient’s survival time is censored on
the right at five years; that is, her survival time is known only to exceed five
years. The response value to be used in the analysis is 5+. Censoring can also
occur when a subject is lost to follow-up. 2

If no responses are censored, standard regression models for continuous
responses could be used to analyze the failure times by writing the ex-
pected failure time as a function of one or more predictors, assuming that

© Springer International Publishing Switzerland 2015
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the distribution of failure time is properly specified. However, there are still
several reasons for studying failure time using the specialized methods of
survival analysis.

1. Time to failure can have an unusual distribution. Failure time is restricted
to be positive so it has a skewed distribution and will never be normally
distributed.

2. The probability of surviving past a certain time is often more relevant than
the expected survival time (and expected survival time may be difficult to
estimate if the amount of censoring is large).

3. A function used in survival analysis, the hazard function, helps one to
understand the mechanism of failure.308

Survival analysis is used often in industrial life-testing experiments, and
it is heavily used in clinical and epidemiologic follow-up studies. Examples
include a randomized trial comparing a new drug with placebo for its ability
to maintain remission in patients with leukemia, and an observational study
of prognostic factors in coronary heart disease. In the latter example subjects
may well be followed for varying lengths of time, as they may enter the study
over a period of many years.

When regression models are used for survival analysis, all the advantages
of these models can be brought to bear in analyzing failure times. Multiple,
independent prognostic factors can be analyzed simultaneously and treatment
differences can be assessed while adjusting for heterogeneity and imbalances
in baseline characteristics. Also, patterns in outcome over time can be pre-
dicted for individual subjects.

Even in a simple well-designed experiment, survival modeling can allow
one to do the following in addition to making simple comparisons.

1. Test for and describe interactions with treatment. Subgroup analyses can
easily generate spurious results and they do not consider interacting fac-
tors in a dose-response manner. Once interactions are modeled, relative
treatment benefits can be estimated (e.g., hazard ratios), and analyses
can be done to determine if some patients are too sick or too well to have
even a relative benefit.

2. Understand prognostic factors (strength and shape).
3. Model absolute effect of treatment. First, a model for the probability of

surviving past time t is developed. Then differences in survival probabilities
for patients on treatments A and B can be estimated. The differences will
be due primarily to sickness (overall risk) of the patient and to treatment
interactions.

4. Understand time course of treatment effect. The period of maximum effect
or period of any substantial effect can be estimated from a plot of relative
effects of treatment over time.

5. Gain power for testing treatment effects.
6. Adjust for imbalances in treatment allocation in non-randomized studies.



17.2 Censoring, Delayed Entry, and Truncation 401

17.2 Censoring, Delayed Entry, and Truncation

Responses may be left–censored and interval–censored besides being right–
censored. Interval–censoring is present, for example, when a measuring device
functions only for a certain range of the response; measurements outside that
range are censored at an end of the scale of the device. Interval–censoring also
occurs when the presence of a medical condition is assessed during periodic ex-
ams. When the condition is present, the time until the condition developed is
only known to be between the current and the previous exam. Left–censoring
means that an event is known to have occurred before a certain time. In addi-
tion, left–truncation and delayed entry are common. Nomenclature is confus- 3

ing as many authors refer to delayed entry as left–truncation. Left–truncation
really means that an unknown subset of subjects failed before a certain time
and the subjects didn’t get into the study. For example, one might study the
survival patterns of patients who were admitted to a tertiary care hospital.
Patients who didn’t survive long enough to be referred to the hospital com-
pose the left-truncated group, and interesting questions such as the optimum
timing of admission to the hospital cannot be answered from the data set.

Delayed entry occurs in follow-up studies when subjects are exposed to the
risk of interest only after varying periods of survival. For example, in a study
of occupational exposure to a toxic compound, researchers may be interested
in comparing life length of employees with life expectancy in the general
population. A subject must live until the beginning of employment before
exposure is possible; that is, death cannot be observed before employment.
The start of follow-up is delayed until the start of employment and it may be
right–censored when follow-up ends. In some studies, a researcher may want
to assume that for the purpose of modeling the shape of the hazard function,
time zero is the day of diagnosis of disease, while patients enter the study
at various times since diagnosis. Delayed entry occurs for patients who don’t
enter the study until some time after their diagnosis. Patients who die before
study entry are left-truncated. Note that the choice of time origin is very
important.53, 83, 112, 133

Heart transplant studies have been analyzed by considering time zero to be
the time of enrollment in the study. Pre-transplant survival is right–censored
at the time of transplant. Transplant survival experience is based on delayed
entry into the “risk set” to recognize that a transplant patient is not at risk
of dying from transplant failure until after a donor heart is found. In other
words, survival experience is not credited to transplant surgery until the day
of transplant. Comparisons of transplant experience with medical treatment
suffer from “waiting time bias” if transplant survival begins on the day of
transplant instead of using delayed entry.209, 438, 570

There are several planned mechanisms by which a response is right–
censored. Fixed type I censoring occurs when a study is planned to end af-
ter two years of follow-up, or when a measuring device will only measure
responses up to a certain limit. There the responses are observed only if they
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fall below a fixed value C. In type II censoring, a study ends when there is
a pre-specified number of events. If, for example, 100 mice are followed until
50 die, the censoring time is not known in advance.

We are concerned primarily with random type I right-censoring in which
each subject’s event time is observed only if the event occurs before a certain
time, but the censoring time can vary between subjects. Whatever the cause
of censoring, we assume that the censoring is non-informative about the event;
that is, the censoring is caused by something that is independent of the im-
pending failure. Censoring is non-informative when it is caused by planned
termination of follow-up or by a subject moving out of town for reasons unre-
lated to the risk of the event. If subjects are removed from follow-up because
of a worsening condition, the informative censoring will result in biased esti-
mates and inaccurate statistical inference about the survival experience. For
example, if a patient’s response is censored because of an adverse effect of
a drug or noncompliance to the drug, a serious bias can result if patients
with adverse experiences or noncompliance are also at higher risk of suffering
the outcome. In such studies, efficacy can only be assessed fairly using the
intention to treat principle: all events should be attributed to the treatment
assigned even if the subject is later removed from that treatment.4

17.3 Notation, Survival, and Hazard Functions

In survival analysis we use T to denote the response variable, as the response
is usually the time until an event. Instead of defining the statistical model
for the response T in terms of the expected failure time, it is advantageous
to define it in terms of the survival function, S(t), given by

S(t) = Prob{T > t} = 1− F (t), (17.1)

where F (t) is the cumulative distribution function for T . If the event is death,
S(t) is the probability that death occurs after time t, that is, the probability
that the subject will survive at least until time t. S(t) is always 1 at t = 0;
all subjects survive at least to time zero. The survival function must be
non-increasing as t increases. An example of a survival function is shown in
Figure 17.1. In that example subjects are at very high risk of the event in the
early period so that the S(t) drops sharply. The risk is low for 0.1 ≤ t ≤ 0.6, so
S(t) is somewhat flat. After t = .6 the risk again increases, so S(t) drops more
quickly. Figure 17.2 depicts the cumulative hazard function corresponding
to the survival function in Figure 17.1. This function is denoted by Λ(t).
It describes the accumulated risk up until time t, and as is shown later,
is the negative of the log of the survival function. Λ(t) is non-decreasing
as t increases; that is, the accumulated risk increases or remains the same.
Another important function is the hazard function, λ(t), also called the force
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Fig. 17.2 Cumulative hazard function

of mortality, or instantaneous event (death, failure) rate. The hazard at time
t is related to the probability that the event will occur in a small interval
around t, given that the event has not occurred before time t. By studying
the event rate at a given time conditional on the event not having occurred by
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Fig. 17.3 Hazard function

that time, one can learn about the mechanisms and forces of risk over time.
Figure 17.3 depicts the hazard function corresponding to S(t) in Figure 17.1
and to Λ(t) in Figure 17.2. Notice that the hazard function allows one to
more easily determine the phases of increased risk than looking for sudden
drops in S(t) or Λ(t).

The hazard function is defined formally by

λ(t) = lim
u→0

Prob{t < T ≤ t+ u|T > t}
u

, (17.2)

which using the law of conditional probability becomes

λ(t) = lim
u→0

Prob{t < T ≤ t+ u}/Prob{T > t}
u

= lim
u→0

[F (t+ u)− F (t)]/u

S(t)

=
∂F (t)/∂t

S(t)
(17.3)

=
f(t)

S(t)
,
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where f(t) is the probability density function of T evaluated at t, the deriva-
tive or slope of the cumulative distribution function 1− S(t). Since

∂ logS(t)

∂t
=

∂S(t)/∂t

S(t)
= − f(t)

S(t)
, (17.4)

the hazard function can also be expressed as

λ(t) = −∂ logS(t)

∂t
, (17.5)

the negative of the slope of the log of the survival function. Working back-
wards, the integral of λ(t) is:∫ t

0

λ(v)dv = − logS(t). (17.6)

The integral or area under λ(t) is defined to be Λ(t), the cumulative hazard
function. Therefore

Λ(t) = − logS(t), (17.7)

or
S(t) = exp[−Λ(t)]. (17.8)

So knowing any one of the functions S(t), Λ(t), or λ(t) allows one to derive
the other two functions. The three functions are different ways of describing
the same distribution.

One property of Λ(t) is that the expected value of Λ(T ) is unity, since if
T ∼ S(t), the density of T is λ(t)S(t) and

E[Λ(T )] =

∫ ∞

0

Λ(t)λ(t) exp(−Λ(t))dt

=

∫ ∞

0

u exp(−u)du (17.9)

= 1.

Now consider properties of the distribution of T . The population qth quan-
tile (100qth percentile), Tq, is the time by which a fraction q of the subjects
will fail. It is the value t such that S(t) = 1− q; that is

Tq = S−1(1 − q). (17.10)

The median life length is the time by which half the subjects will fail, obtained
by setting S(t) = 0.5:

T0.5 = S−1(0.5). (17.11)

The qth quantile of T can also be computed by setting exp[−Λ(t)] = 1 − q,
giving
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Tq = Λ−1[− log(1− q)] and as a special case,

T.5 = Λ−1(log 2). (17.12)

The mean or expected value of T (the expected failure time) is the area under
the survival function for t ranging from 0 to ∞:

μ =

∫ ∞

0

S(v)dv. (17.13)

Irwin has defined mean restricted life (see [334,335]), which is the area under
S(t) up to a fixed time (usually chosen to be a point at which there is still
adequate follow-up information).

The random variable T denotes a random failure time from the survival
distribution S(t). We need additional notation for the response and censoring
information for the ith subject. Let Ti denote the response for the ith subject.
This response is the time until the event of interest, and it may be censored
if the subject is not followed long enough for the event to be observed. Let Ci

denote the censoring time for the ith subject, and define the event indicator as

ei = 1 if the event was observed (Ti ≤ Ci),

= 0 if the response was censored (Ti > Ci). (17.14)

The observed response is

Yi = min(Ti, Ci), (17.15)

which is the time that occurred first: the failure time or the censoring time.
The pair of values (Yi, ei) contains all the response information for most
purposes (i.e., the potential censoring time Ci is not usually of interest if the
event occurred before Ci).

Figure 17.4 demonstrates this notation. The line segments start at study
entry (survival time t = 0).

A useful property of the cumulative hazard function can be derived as fol-
lows. Let z be any cutoff time and consider the expected value of Λ evaluated
at the earlier of the cutoff time or the actual failure time.

E[Λ(min(T, z))] = E[Λ(T )[T ≤ z] + Λ(z)[T > z]]

= E[Λ(T )[T ≤ z]] + Λ(z)S(z). (17.16)

The first term in the right–hand side is∫ ∞

0

Λ(t)[t ≤ z]λ(t) exp(−Λ(t))dt

=

∫ z

0

Λ(t)λ(t) exp(−Λ(t))dt (17.17)
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Fig. 17.4 Some censored data. Circles denote events.

= −[u exp(−u) + exp(−u)]|Λ(z)
0

= 1− S(z)[Λ(z) + 1].

Adding Λ(z)S(z) results in

E[Λ(min(T, z))] = 1− S(z) = F (z). (17.18)

It follows that
∑n

i=1 Λ(min(Ti, z)) estimates the expected number of failures
occurring before time z among the n subjects. 5

17.4 Homogeneous Failure Time Distributions

In this section we assume that each subject in the sample has the same dis-
tribution of the random variable T that represents the time until the event.
In particular, there are no covariables that describe differences between sub-
jects in the distribution of T . As before we use S(t), λ(t), and Λ(t) to denote,
respectively, the survival, hazard, and cumulative hazard functions.

The form of the true population survival distribution function S(t) is al-
most always unknown, and many distributional forms have been used for
describing failure time data. We consider first the two most popular para-
metric survival distributions: the exponential and Weibull distributions. The
exponential distribution is a very simple one in which the hazard function is
constant; that is, λ(t) = λ . The cumulative hazard and survival functions
are then

Λ(t) = λt and

S(t) = exp(−Λ(t)) = exp(−λt). (17.19)

The median life length is Λ−1(log 2) or
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T0.5 = log(2)/λ. (17.20)

The time by which 1/2 of the subjects will have failed is then proportional to
the reciprocal of the constant hazard rate λ . This is true also of the expected
or mean life length, which is 1/λ.

The exponential distribution is one of the few distributions for which a
closed-form solution exists for the estimator of its parameter when censoring
is present. This estimator is a function of the number of events and the total
person-years of exposure. Methods based on person-years in fact implicitly
assume an exponential distribution. The exponential distribution is often used
to model events that occur “at random in time.”323 It has the property that
the future lifetime of a subject is the same, no matter how “old” it is, or

Prob{T > t0 + t|T > t0} = Prob{T > t}. (17.21)

This “ageless”property also makes the exponential distribution a poor choice
for modeling human survival except over short time periods.

The Weibull distribution is a generalization of the exponential distribution.
Its hazard, cumulative hazard, and survival functions are given by

λ(t) = αγtγ−1

Λ(t) = αtγ (17.22)

S(t) = exp(−αtγ).

The Weibull distribution with γ = 1 is an exponential distribution (with
constant hazard). When γ > 1, its hazard is increasing with t, and when
γ < 1 its hazard is decreasing. Figure 17.5 depicts some of the shapes of
the hazard function that are possible. If T has a Weibull distribution, the
median of T is

T0.5 = [(log 2)/α]1/γ . (17.23)

There are many other traditional parametric survival distributions, some of
which have hazards that are “bathtub shaped” as in Figure 17.3.243, 323 The
restricted cubic spline function described in Section 2.4.5 is an alternative
basis for λ(t).286, 287 This function family allows for any shape of smooth
λ(t) since the number of knots can be increased as needed, subject to the
number of events in the sample. Nonlinear terms in the spline function can
be tested to assess linearity of hazard (Rayleigh-ness) or constant hazard
(exponentiality).6

The restricted cubic spline hazard model with k knots is

λk(t) = a+ bt+

k−2∑
j=1

γjwj(t), (17.24)
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Fig. 17.5 Some Weibull hazard functions with α = 1 and various values of γ.

where the wj(t) are the restricted cubic spline terms of Equation 2.25. There
terms are cubic terms in t. A set of knots v1, . . . , vk is selected from the
quantiles of the uncensored failure times (see Section 2.4.5 and [286]).

The cumulative hazard function for this model is

Λ(t) = at+
1

2
t2 +

1

4
× quartic terms in t. (17.25)

Standard maximum likelihood theory is used to obtain estimates of the k
unknown parameters to derive, for example, smooth estimates of λ(t) with
confidence bands. The flexible estimates of S(t) using this method are as
efficient as Kaplan–Meier estimates, but they are smooth and can be used as a
basis for modeling predictor variables. The spline hazard model is particularly
useful for fitting steeply falling and gently rising hazard functions that are
characteristic of high-risk medical procedures.

17.5 Nonparametric Estimation of S and Λ

17.5.1 Kaplan–Meier Estimator

As the true form of the survival distribution is seldom known, it is useful to
estimate the distribution without making any assumptions. For many anal-
yses, this may be the last step, while in others this step helps one select a
statistical model for more in-depth analyses. When no event times are cen-
sored, a nonparametric estimator of S(t) is 1−Fn(t) where Fn(t) is the usual
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Table 17.1 Kaplan-Meier computations

Day No. Subjects Deaths Censored Cumulative
At Risk Survival

12 100 1 0 99/100 = .99
30 99 2 1 97/99× 99/100 = .97
60 96 0 3 96/96× .97 = .97
72 93 3 0 90/93× .97 = .94
. . . . .
. . . . .

empirical cumulative distribution function based on the observed failure times
T1, . . . , Tn. Let Sn(t) denote this empirical survival function. Sn(t) is given
by the fraction of observed failure times that exceed t:

Sn(t) = [number of Ti > t]/n. (17.26)

When censoring is present, S(t) can be estimated (at least for t up until
the end of follow-up) by the Kaplan–Meier333 product-limit estimator. This
method is based on conditional probabilities. For example, suppose that ev-
ery subject has been followed for 39 days or has died within 39 days so that
the proportion of subjects surviving at least 39 days can be computed. After
39 days, some subjects may be lost to follow-up besides those removed from
follow-up because of death within 39 days. The proportion of those still fol-
lowed 39 days who survive day 40 is computed. The probability of surviving
40 days from study entry equals the probability of surviving day 40 after
living 39 days, multiplied by the chance of surviving 39 days.

The life table in Table 17.1 demonstrates the method in more detail. We
suppose that 100 subjects enter the study and none die or are lost before
day 12.

Times in a life table should be measured as precisely as possible. If the
event being analyzed is death, the failure time should usually be specified
to the nearest day. We assume that deaths occur on the day indicated and
that being censored on a certain day implies the subject survived through the
end of that day. The data used in computing Kaplan–Meier estimates consist
of (Yi, ei), i = 1, 2, . . . , n using notation defined previously. Primary data
collected to derive (Yi, ei) usually consist of entry date, event date (if subject
failed), and censoring date (if subject did not fail). Instead, the entry date,
date of event/censoring, and event/censoring indicator ei may be specified.

The Kaplan–Meier estimator is called the product-limit estimator because
it is the limiting case of actuarial survival estimates as the time periods
shrink so that an entry is made for each failure time. An entry need not
be in the table for censoring times (when no failures occur at that time) as
long as the number of subjects censored is subtracted from the next number
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Table 17.2 Summaries used in Kaplan-Meier computations

i ti ni di (ni − di)/ni

1 1 7 1 6/7
2 3 6 2 4/6
3 9 2 1 1/2

at risk. Kaplan–Meier estimates are preferred to actuarial estimates because
they provide more resolution and make fewer assumptions. In constructing
a yearly actuarial life table, for example, it is traditionally assumed that
subjects censored between two years were followed 0.5 years.

The product-limit estimator is a nonparametric maximum likelihood es-
timator [331, pp. 10–13]. The formula for the Kaplan–Meier product-limit
estimator of S(t) is as follows. Let k denote the number of failures in the
sample and let t1, t2, . . . , tk denote the unique event times (ordered for ease
of calculation). Let di denote the number of failures at ti and ni be the num-
ber of subjects at risk at time ti; that is, ni = number of failure/censoring
times ≥ ti . The estimator is then

SKM(t) =
∏

i:ti≤t

(1− di/ni). (17.27)

The Kaplan–Meier estimator of Λ(t) is ΛKM(t) = − logSKM(t). An estimate
of quantile q of failure time is S−1

KM(1− q), if follow-up is long enough so that
SKM(t) drops as low as 1−q. If the last subject followed failed so that SKM(t)
drops to zero, the expected failure time can be estimated by computing the
area under the Kaplan–Meier curve.

To demonstrate computation of SKM(t), imagine a sample of failure times
given by

1 3 3 6+ 8+ 9 10+,

where + denotes a censored time. The quantities needed to compute SKM are
in Table 17.2. Thus

SKM(t) = 1, 0 ≤ t < 1

= 6/7 = .85, 1 ≤ t < 3

= (6/7)(4/6) = .57, 3 ≤ t < 9 (17.28)

= (6/7)(4/6)(1/2) = .29, 9 ≤ t < 10.

Note that the estimate of S(t) is undefined for t > 10 since not all subjects
have failed by t = 10 but no follow-up extends beyond t = 10. A graph of the
Kaplan–Meier estimate is found in Figure 17.6.
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require(rms)

tt ← c(1,3,3,6,8,9,10)

stat ← c(1,1,1,0,0,1,0)

S ← Surv (tt , stat )

survplot (npsurv (S ∼ 1), conf="bands ", n.risk =TRUE ,

xlab =expression (t))

survplot (npsurv (S ∼ 1, type=" fleming-harrington ",

conf.int=FALSE ), add=TRUE , lty=3)
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Fig. 17.6 Kaplan–Meier product–limit estimator with 0.95 confidence bands. The
Altschuler–Nelson–Aalen–Fleming–Harrington estimator is depicted with the dotted
lines.

The variance of SKM(t) can be estimated using Greenwood’s formula [331,
p. 14], and using normality of SKM(t) in large samples this variance can
be used to derive a confidence interval for S(t). A better method is to de-
rive an asymmetric confidence interval for S(t) based on a symmetric in-
terval for logΛ(t). This latter method ensures that a confidence limit does
not exceed one or fall below zero, and is more accurate since logΛKM(t) is
more normally distributed than SKM(t). Once a confidence interval, say [a, b]
is determined for logΛ(t), the confidence interval for S(t) is computed by
[exp{− exp(b)}, exp{− exp(a)}]. The formula for an estimate of the variance
of interest is [331, p. 15]:

Var{logΛKM(t)} =

∑
i:ti≤t di/[ni(ni − di)]

{∑i:ti≤t log[(ni − di)/ni]}2 . (17.29)
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Letting s denote the square root of this variance estimate, an approximate
1− α confidence interval for logΛ(t) is given by logΛKM(t)± zs , where z is
the 1−α/2 standard normal critical value. After simplification, the confidence
interval for S(t) becomes

SKM(t)exp(±zs). (17.30)

Even though the logΛ basis for confidence limits has theoretical advan-
tages, on the log− log scale the estimate of S(t) has the greatest instability
where much information is available: when S(t) falls just below 1.0. For that
reason, the recommended default confidence limits are on the Λ(t) scale using

Var{ΛKM(t)} =
∑
i:ti≤t

di
[ni(ni − di)]

. (17.31)

Letting s denote its square root, an approximate 1−α confidence interval for
S(t) is given by

exp(±zs)SKM(t), (17.32)

truncated to [0, 1]. 7

17.5.2 Altschuler–Nelson Estimator

Altschuler19, Nelson472, Aalen1 and Fleming and Harrington196 proposed es-
timators of Λ(t) or of S(t) based on an estimator of Λ(t):

Λ̂(t) =
∑
i:ti≤t

di
ni

SΛ(t) = exp(−Λ̂(t)). (17.33)

SΛ(t) has advantages over SKM(t). First,
∑n

i=1 Λ̂(Yi) =
∑n

i=1 ei
[605, Appendix 3]. In other words, the estimator gives the correct expected
number of events. Second, there is a wealth of asymptotic theory based on
the Altschuler–Nelson estimator.196

See Figure 17.6 for an example of the SΛ(t) estimator. This estimator has
the same variance as SKM(t) for large enough samples. 8

17.6 Analysis of Multiple Endpoints

Clinical studies frequently assess multiple endpoints. A cancer clinical trial
may, for example, involve recurrence of disease and death, whereas a car-
diovascular trial may involve nonfatal myocardial infarction and death. End-
points may be combined, and the new event (e.g., time until infarction or
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death) may be analyzed with any of the tools of survival analysis because only
the usual censoring mechanism is used. Sometimes the various endpoints may
need separate study, however, because they may have different risk factors.

When the multiple endpoints represent multiple causes of a terminating
event (e.g., death), Prentice et al. have developed standard methods for an-
alyzing cause-specific hazards513 [331, pp. 163–178]. Their methods allow
each cause of failure to be analyzed separately, censoring on the other causes.
They do not assume any mechanism for cause removal nor make any assump-
tions regarding the interrelation among causes of failure. However, analyses
of competing events using data where some causes of failure are removed in
a different way from the original dataset will give rise to different inferences.

When the multiple endpoints represent a mixture of fatal and nonfatal
outcomes, the analysis may be more complex. The same is true when one
wishes to jointly study an event-time endpoint and a repeated measurement.

9

17.6.1 Competing Risks

When events are independent, each event may also be analyzed separately by
censoring on all other events as well as censoring on loss to follow-up. This will
yield an unbiased estimate of an easily interpreted cause-specific λ(t) or S(t)
because censoring is non-informative [331, pp. 168–169]. One minus SKM(t)
computed in this manner will correctly estimate the probability of failing from
the event in the absence of other events. Even when the competing events are
not independent, the cause-specific hazard model may lead to valid results,
but the resulting model does not allow one to estimate risks conditional on
removal of one or more causes of the event. See Kay340 for a nice example
of competing risks analysis when a treatment reduces the risk of death from
one cause but increases the risk of death from another cause.10

Larson and Dinse376 have an interesting approach that jointly models the
time until (any) failure and the failure type. For r failure types, they use
an r-category polytomous logistic model to predict the probability of failing
from each cause. They assume that censoring is unrelated to cause of event.

17.6.2 Competing Dependent Risks

In many medical and epidemiologic studies one is interested in analyzing
multiple causes of death. If the goal is to estimate cause-specific failure prob-
abilities, treating subjects dying from extraneous causes as censored and
then computing the ordinary Kaplan–Meier estimate results in biased (high)
survival estimates212, 225. If cause m is of interest, the cause-specific hazard
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function is defined as

λm(t) = lim
u→0

Pr{fail from cause m in [t, t+ u)|alive at t}
u

. (17.34)

The cumulative incidence function or probability of failure from cause m by
time t is given by

Fm(t) =

∫ t

0

λm(u)S(u)du, (17.35)

where S(u) is the probability of surviving (ignoring cause of death), which
equals exp[− ∫ u

0 (
∑

λm(x))dx] [212]; [444, Chapter 10]; [102,408]. As previously

mentioned, 1−Fm(t) = exp[− ∫ t

0 λm(u)du] only if failures due to other causes
are eliminated and if the cause-specific hazard of interest remains unchanged
in doing so.212

Again letting t1, t2, . . . , tk denote the unique ordered failure times, a non-
parametric estimate of Fm(t) is given by

F̂m(t) =
∑
i:ti≤t

dmi

ni
SKM(ti−1), (17.36)

where dmi is the number of failures of type m at time ti and ni is the number
of subjects at risk of failure at ti.

Pepe and others494, 496, 497 showed how to use a combination of Kaplan–
Meier estimators to derive an estimator of the probability of being free of
event 1 by time t given event 2 has not occurred by time t (see also [349]).
Let T1 and T2 denote, respectively, the times until events 1 and 2. Let S1(t)
and S2(t) denote, respectively, the two survival functions. Let us suppose
that event 1 is not a terminating event (e.g., is not death) and that even
after event 1 subjects are followed to ascertain occurrences of event 2. The
probability that T1 > t given T2 > t is

Prob{T1 > t|T2 > t} =
Prob{T1 > t and T2 > t}

Prob{T2 > t}
=

S12(t)

S2(t)
, (17.37)

where S12(t) is the survival function for min(T1, T2), the earlier of the two
events. Since S12(t) does not involve any informative censoring (assuming as
always that loss to follow-up is non-informative), S12 may be estimated by
the Kaplan–Meier estimator SKM12 (or by SΛ). For the type of event 1 we
have discussed above, S2 can also be estimated without bias by SKM2 . Thus
we estimate, for example, the probability that a subject still alive at time t
will be free of myocardial infarction as of time t by SKM12/SKM2.
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Another quantity that can easily be computed from ordinary survival es-
timates is S2(t)− S12(t) = [1− S12(t)]− [1− S2(t)], which is the probability
that event 1 occurs by time t and that event 2 has not occurred by time t.

The ratio estimate above is used to estimate the survival function for one
event given that another has not occurred. Another function of interest is
the crude survival function which is a marginal distribution; that is, it is the
probability that T1 > t whether or not event 2 occurs:362

Sc(t) = 1− F1(t)

F1(t) = Prob{T1 ≤ t}, (17.38)

where F1(t) is the crude incidence function defined previously. Note that the
T1 ≤ t implies that the occurrence of event 1 is part of the probability being
computed. If event 2 is a terminating event so that some subjects can never
suffer event 1, the crude survival function for T1 will never drop to zero. The
crude survival function can be interpreted as the survival distribution of W
where W = T1 if T1 < T2 and W = ∞ otherwise.36211

17.6.3 State Transitions and Multiple Types
of Nonfatal Events

In many studies there is one final, absorbing state (death, all causes) and mul-
tiple live states. The live states may represent different health states or phases
of a disease. For example, subjects may be completely free of cancer, have an
isolated tumor, metastasize to a distant organ, and die. Unlike this example,
the live states need not have a definite ordering. One may be interested in es-
timating transition probabilities, for example, the probability πij(t1, t2) that
an individual in state i at time t1 is in state j after an additional time t2.
Strauss and Shavelle596 have developed an extended Kaplan–Meier estimator
for this situation. Let Si

KM (t|t1) denote the ordinary Kaplan–Meier estimate
of the probability of not dying before time t (ignoring distinctions between
multiple live states) for a cohort of subjects beginning follow-up at time t1
in state i. This is an estimate of the probability of surviving an additional t
time units (in any live state) given that the subject was alive and in state i
at time t1. Strauss and Shavelle’s estimator is given by

πij(t1, t2) =
nij(t1, t2)

ni(t1, t2)
Si
KM (t2|t1), (17.39)

where ni(t1, t2) is the number of subjects in live state i at time t1 who are
alive and uncensored t2 time units later, and nij(t1, t2) is the number of such
subjects in state j t2 time units beyond t1.12
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17.6.4 Joint Analysis of Time and Severity
of an Event

In some studies, an endpoint is given more weight if it occurs earlier or
if it is more severe clinically, or both. For example, the event of interest
may be myocardial infarction, which may be of any severity from minimal
damage to the left ventricle to a fatal infarction. Berridge and Whitehead52

have provided a promising model for the analysis of such endpoints. Their
method assumes that the severity of endpoints which do occur is measured
on an ordinal categorical scale and that severity is assessed at the time of
the event. Berridge and Whitehead’s example was time until first headache,
with severity of headaches graded on an ordinal scale. They proposed a joint
hazard of an individual who responds with ordered category j:

λj(t) = λ(t)πj(t), (17.40)

where λ(t) is the hazard for the failure time and πj(t) is the probability of an
individual having event severity j given she fails at time t. Note that a shift
in the distribution of response severity is allowed as the time until the event
increases. 13

17.6.5 Analysis of Multiple Events

It is common to choose as an endpoint in a clinical trial an event that can
recur. Examples include myocardial infarction, gastric ulcer, pregnancy, and
infection. Using only the time until the first event can result in a loss of
statistical information and power.a There are specialized multivariate survival
models (whose assumptions are extremely difficult to verify) for handling this
setup, but in many cases a simpler approach will be efficient.

The simpler approach involves modeling the marginal distribution of the
time until each event.407, 495 Here one forms one record per subject per event,
and the survival time is the time to the first event for the first record, or is
the time from the previous event to the next event for all later records. This
approach yields consistent estimates of distribution parameters as long as the
marginal distributions are correctly specified.655 One can allow the number of
previous events to influence the hazard function of another event by modeling
this count as a covariable.

The multiple events within subject are not independent, so variance esti-
mates must be corrected for intracluster correlation. The clustered sandwich
covariance matrix estimator described in Section 9.5 and in [407] will provide

a An exception to this is the case in which once an event occurs for the first time, that
event is likely to recur multiple times for any patient. Then the latter occurrences are
redundant.
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consistent estimates of variances and covariances even if the events are de-
pendent. Lin407 also discussed how this method can easily be used to model
multiple events of differing types.14

17.7 R Functions

The event.chart function of Lee et al.394 will draw a variety of charts for dis-
playing raw survival time data, for both single and multiple events per sub-
ject. Relationships with covariables can also be displayed. The event.history

function of Dubin et al.166 draws an event history graph for right-censored
survival data, including time-dependent covariate status. These function are
in the Hmisc package.

The analyses described in this chapter can be viewed as special cases of the
Cox proportional hazards model.132 The programs for Cox model analyses
described in Section 20.13 can be used to obtain the results described here, as
long as there is at least one stratification factor in the model. There are, how-
ever, several R functions that are pertinent to the homogeneous or stratified
case. The R function survfit, and its particular renditions of the print, plot,
lines, and points generic functions (all part of the survival package written
by Terry Therneau), will compute, print, and plot Kaplan–Meier and Nelson
survival estimates. Confidence intervals for S(t) may be based on S,Λ, or
logΛ. The rms package’s front-end to the survival package’s survfit function
is npsurv for “nonparametric survival”. It and other functions described in
later chapters use Therneau’s Surv function to combine the response variable
and event indicator into a single R“survival time”object. In its simplest form,
use Surv(y, event), where y is the failure/right–censoring time and event is
the event/censoring indicator, usually coded T/F, 0 = censored 1 = event or
1 = censored 2 = event. If the event status variable has other coding (e.g., 3
means death), use Surv(y, s==3). To handle interval time-dependent covari-
ables, or to use Andersen and Gill’s counting process formulation of the Cox
model,23 use the notation Surv(tstart, tstop, status). The counting process
notation allows subjects to enter and leave risk sets at random. For each
time interval for each subject, the interval is made up of tstart< t ≤tstop.
For time-dependent stratification, there is an optional origin argument to
Surv that indicates the hazard shape time origin at the time of crossover
to a new stratum. A type argument is used to handle left– and interval–
censoring, especially for parametric survival models. Possible values of type

are "right","left","interval","counting","interval2","mstate".
The Surv expression will usually be used inside another function, but it is

fine to save the result of Surv in another object and to use this object in the
particular fitting function.

npsurv is invoked by the following, with default parameter settings indi-
cated.
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require(rms)

units (y) ← "Month "

# Default is "Day" - used for axis labels , etc.

npsurv (Surv (y, event ) ∼ svar1 + svar2 + ... , data , subset ,

type =c("kaplan-meier ", "fleming-harrington ", "fh2"),

error =c("greenwood ", "tsiatis"), se.fit =TRUE ,

conf.int =.95 ,

conf.type =c("log","log-log","plain ","none "), ...)

If there are no stratification variables (svar1, . . . ), omit them. To print a table
of estimates, use

f ← npsurv (...)

print (f) # print brief summary of f

summary(f, times , censored =FALSE ) # in survival

For failure times stored in days, use

f ← npsurv (Surv (futime , event ) ∼ sex)

summary(f, seq(30, 180, by =30))

to print monthly estimates.
There is a plot method To plot the object returned by survfit and npsurv.

This invokes plot.survfit.
Objects created by npsurv can be passed to the more comprehensive plot-

ting function survplot (here, actually survplot.npsurv) for other options that
include automatic curve labeling and showing the number of subjects at risk
at selected times. See Figure 17.6 for an example. Stratified estimates, with
four treatments distinguished by line type and curve labels, could be drawn
by

units (y) ← "Year "

f ← npsurv (Surv (y, stat ) ∼ treatment )

survplot (f, ylab ="Fraction Pain-Free ")

The groupkm in rms computes and optionally plots SKM(u) or logΛKM(u) (if
loglog=TRUE) for fixed u with automatic stratification on a continuous predic-
tor x. As in cut2 (Section 6.2) you can specify the number of subjects per
interval (default is m=50), the number of quantile groups (g), or the actual cut-
points (cuts). groupkm plots the survival or log–log survival estimate against
mean x in each x interval.

The bootkm function in the Hmisc package bootstraps Kaplan–Meier sur-
vival estimates or Kaplan–Meier estimates of quantiles of the survival time
distribution. It is easy to use bootkm to compute, for example, a nonparametric
confidence interval for the ratio of median survival times for two groups.

See the Web site for a list of functions from other users for nonparametric
estimation of S(t) with left–, right–, and interval–censored data. The adaptive
linear spline log-hazard fitting function heft361 is freely available.
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17.8 Further Reading

1 Some excellent general references for survival analysis are [57, 83, 114, 133, 154,
197, 282, 308, 331, 350, 382, 392, 444, 484, 574, 604]. Govindarajulu et al.229 have
a nice review of frailty models in survival analysis, for handling clustered time-
to-event data.

2 See Goldman,220 Bull and Spiegelhalter,83, Lee et al.394, and Dubin et al.166

for ways to construct descriptive graphs depicting right–censored data.
3 Some useful references for left–truncation are [83,112,244,524]. Mandel435 care-

fully described the difference between censoring and truncation.
4 See [384, p. 164] for some ideas for detecting informative censoring. Bilker and

Wang54 discuss right–truncation and contrast it with right–censoring.
5 Arjas29 has applications based on properties of the cumulative hazard function.
6 Kooperberg et al.361,594 have an adaptive method for fitting hazard functions

using linear splines in the log hazard. Binquet et al.56 studied a related approach
using quadratic splines. Mudholkar et al.466 presented a generalized Weibull
model allowing for a variety of hazard shapes.

7 Hollander et al.299 provide a nonparametric simultaneous confidence band for
S(t), surprisingly using likelihood ratio methods. Miller459 showed that if the
parametric form of S(t) is known to be Weibull with known shape parameter (an
unlikely scenario), the Kaplan–Meier estimator is very inefficient (i.e., has high
variance) when compared with the parametric maximum likelihood estimator.
See [666] for a discussion of how the efficiency of Kaplan–Meier estimators can
be improved by interpolation as opposed to piecewise flat step functions. That
paper also discusses a variety of other estimators, some of which are significantly
more efficient than Kaplan–Meier.

8 See [112,244,438,570,614,619] for methods of estimating S or Λ in the presence
of left–truncation. See Turnbull616 for nonparametric estimation of S(t) with
left–, right–, and interval–censoring, and Kooperberg and Clarkson360 for a
flexible parametric approach to modeling that allows for interval–censoring.
Lindsey and Ryan413 have a nice tutorial on the analysis of interval–censored
data.

9 Hogan and Laird297,298 developed methods for dealing with mixtures of fa-
tal and nonfatal outcomes, including some ideas for handling outcome-related
dropouts on the repeated measurements. See also Finkelstein and Schoenfeld.193

The 30 April 1997 issue of Statistics in Medicine (Vol. 16) is devoted to methods
for analyzing multiple endpoints as well as designing multiple endpoint stud-
ies. The papers in that issue are invaluable, as is Therneau and Hamilton606

and Therneau and Grambsch.604 Huang and Wang311 presented a joint model
for recurrent events and a terminating event, addressing such issues as the fre-
quency of recurrent events by the time of the terminating event.

10 See Lunn and McNeil429 and Marubini and Valsecchi [444, Chapter 10] for
practical approaches to analyzing competing risks using ordinary Cox propor-
tional hazards models. A nice overview of competing risks with comparisons of
various approaches is found in Tai et al.599, Geskus214, and Koller et al.358.
Bryant and Dignam78 developed a semiparametric procedure in which com-
peting risks are adjusted for nonparametrically while a parametric cumulative
incidence function is used for the event of interest, to gain precision. Fine and
Gray192 developed methods for analyzing competing risks by estimating sub-
distribution functions. Nishikawa et al.478 developed some novel approaches to
competing risk analysis involving time to adverse drug events competing with
time to withdrawal from therapy. They also dealt with different severities of
events in an interesting way. Putter et al.517 has a nice tutorial on competing
risks, multi-state models, and associated R software. Fiocco et al.194 developed
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an approach to avoid the problems caused by having to estimate a large num-
ber of regression coefficients in multi-state models. Ambrogi et al.22 provide
clinically useful estimates from competing risks analyses.

11 Jiang, Chappell, and Fine322 present methods for estimating the distribution
of event times of nonfatal events in the presence of terminating events such as
death.

12 Shen and Thall568 have developed a flexible parametric approach to multi-state
survival analysis.

13 Lancar et al.372 developed a method for analyzing repeated events of varying
severities.

14 Lawless and Nadeau384 have a very good description of models dealing with
recurrent events. They use the notion of the cumulative mean function, which
is the expected number of events experienced by a subject by a certain time.
Lawless383 contrasts this approach with other approaches. See Aalen et al.3

for a nice example in which multivariate failure times (time to failure of fill-
ings in multiple teeth per subject) are analyzed. Francis and Fuller204 devel-
oped a graphical device for depicting complex event history data. Therneau and
Hamilton606 have very informative comparisons of various methods for model-
ing multiple events, showing the importance of whether the analyst starts the
clock over after each event. Kelly and Lim343 have another very useful paper
comparing various methods for analyzing recurrent events. Wang and Chang650

demonstrated the difficulty of using Kaplan–Meier estimates for recurrence time
data.

17.9 Problems

1. Make a rough drawing of a hazard function from birth for a man who de-
velops significant coronary artery disease at age 50 and undergoes coronary
artery bypass surgery at age 55.

2. Define in words the relationship between the hazard function and the sur-
vival function.

3. In a study of the life expectancy of light bulbs as a function of the bulb’s
wattage, 100 bulbs of various wattage ratings were tested until each had
failed. What is wrong with using the product-moment linear correlation
test to test whether wattage is associated with life length concerning (a)
distributional assumptions and (b) other assumptions?

4. A placebo-controlled study is undertaken to ascertain whether a new drug
decreases mortality. During the study, some subjects are withdrawn be-
cause of moderate to severe side effects. Assessment of side effects and
withdrawal of patients is done on a blinded basis. What statistical tech-
nique can be used to obtain an unbiased treatment comparison of survival
times? State at least one efficacy endpoint that can be analyzed unbiasedly.

5. Consider long-term follow-up of patients in the support dataset. What pro-
portion of the patients have censored survival times? Does this imply that
one cannot make accurate estimates of chances of survival? Make a his-
togram or empirical distribution function estimate of the censored follow-
up times. What is the typical follow-up duration for a patient in the study
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who has survived so far? What is the typical survival time for patients who
have died? Taking censoring into account, what is the median survival time
from the Kaplan–Meier estimate of the overall survival function? Estimate
the median graphically or using any other sensible method.

6. Plot Kaplan–Meier survival function estimates stratified by dzclass. Esti-
mate the median survival time and the first quartile of time until death
for each of the four disease classes.

7. Repeat Problem 6 except for tertiles of meanbp.
8. The commonly used log-rank test for comparing survival times between

groups of patients is a special case of the test of association between the
grouping variable and survival time in a Cox proportional hazards regres-
sion model. Depending on how one handles tied failure times, the log-rank
χ2 statistic exactly equals the score χ2 statistic from the Cox model, and
the likelihood ratio and Wald χ2 test statistics are also appropriate. To
obtain global score or LR χ2 tests and P -values you can use a statement as
the following, where cph is in the rms package. It is similar to the survival

package’s coxph function.

cph(Survobject ∼ predictor )

Here Survobject is a survival time object created by the Surv function. Ob-
tain the log-rank (score) χ2 statistic, degrees of freedom, and P -value for
testing for differences in survival time between levels of dzclass. Interpret
this test, referring to the graph you produced in Problem 6 if needed.

9. Do preliminary analyses of survival time using the Mayo Clinic primary bil-
iary cirrhosis dataset described in Section 8.9. Make graphs of Altschuler–
Nelson or Kaplan–Meier survival estimates stratified separately by a few
categorical predictors and by categorized versions of one or two continuous
predictors. Estimate median failure time for the various strata. You may
want to suppress confidence bands when showing multiple strata on one
graph. See [361] for parametric fits to the survival and hazard function for
this dataset.



Chapter 18

Parametric Survival Models

18.1 Homogeneous Models (No Predictors)

The nonparametric estimator of S(t) is a very good descriptive statistic for
displaying survival data. For many purposes, however, one may want to make
more assumptions to allow the data to be modeled in more detail. By speci-
fying a functional form for S(t) and estimating any unknown parameters in
this function, one can

1. easily compute selected quantiles of the survival distribution;
2. estimate (usually by extrapolation) the expected failure time;
3. derive a concise equation and smooth function for estimating S(t), Λ(t),

and λ(t); and
4. estimate S(t) more precisely than SKM(t) or SΛ(t) if the parametric form

is correctly specified.

18.1.1 Specific Models

Parametric modeling requires choosing one or more distributions. TheWeibull
and exponential distributions were discussed in Chapter 18. Other commonly
used survival distributions are obtained by transforming T and using a stan-
dard distribution. The log transformation is most commonly employed. The
log-normal distribution specifies that log(T ) has a normal distribution with
mean μ and variance σ2. Stated another way, log(T ) ∼ μ + σε, where ε
has a standard normal distribution. Then S(t) = 1 − Φ((log(t) − μ)/σ),
where Φ is the standard normal cumulative distribution function. The log-
logistic distribution is given by S(t) = [1 + exp(−(log(t) − μ)/σ)]−1. Here
log(T ) ∼ μ+σε where ε follows a logistic distribution [1+exp(−u)]−1. The log
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extreme value distribution is given by S(t) = exp[− exp((log(t)−μ)/σ)], and
log(T ) ∼ μ+ σε, where ε ∼ 1− exp[− exp(u)].

The generalized gamma and generalized F distributions provide a richer
variety of distribution and hazard functions127, 128. Spline hazard
models286, 287, 361 are other excellent alternatives.

18.1.2 Estimation

Maximum likelihood (ML) estimation is used to estimate the unknown
parameters of S(t). The general method presented in Chapter 9 must be
augmented, however, to allow for censored failure times. The basic idea is as
follows. Again let T be a random variable representing time until the event,
Ti be the (possibly censored) failure time for the ith observation, and Yi

denote the observed failure or censoring time min(Ti, Ci), where Ci is the
censoring time. If Yi is uncensored, observation i contributes a factor to the
likelihood equal to the density function for T evaluated at Yi, f(Yi). If Yi

instead represents a censored time so that Ti = Y +
i , it is only known that

Ti exceeds Yi. The contribution to the likelihood function is the probability
that Ti > Ci (equal to Prob{Ti > Yi}). This probability is S(Yi). The joint
likelihood over all observations i = 1, 2, . . . , n is

L =

n∏
i:Yi uncensored

f(Yi)

n∏
i:Yi censored

S(Yi). (18.1)

There is one more component to L: the distribution of censoring times if
these are not fixed in advance. Recall that we assume that censoring is non-
informative, that is, it is independent of the risk of the event. This inde-
pendence implies that the likelihood component of the censoring distribution
simply multiplies L and that the censoring distribution contains little infor-
mation about the survival distribution. In addition, the censoring distribution
may be very difficult to specify. For these reasons we can maximize L sepa-
rately to estimate parameters of S(t) and ignore the censoring distribution.

Recalling that f(t) = λ(t)S(t) and Λ(t) = − logS(t), the log likelihood
can be written as

logL =

n∑
i:Yi uncensored

logλ(Yi)−
n∑

i=1

Λ(Yi). (18.2)

All observations then contribute an amount to the log likelihood equal to the
negative of the cumulative hazard evaluated at the failure/censoring time.
In addition, uncensored observations contribute an amount equal to the log
of the hazard function evaluated at the time of failure. Once L or logL
is specified, the general ML methods outlined earlier can be used without
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change in most situations. The principal difference is that censored observa-
tions contribute less information to the statistical inference than uncensored
observations. For distributions such as the log-normal that are written only
in terms of S(t), it may be easier to write the likelihood in terms of S(t)
and f(t).

As an example, we turn to the exponential distribution, for which log
L has a simple form that can be maximized explicitly. Recall that for this
distribution λ(t) = λ and Λ(t) = λt. Therefore,

logL =

n∑
i:Yi uncensored

logλ−
n∑

i=1

λYi. (18.3)

Letting nu denote the number of uncensored event times,

logL = nu logλ−
n∑

i=1

λYi. (18.4)

Letting w denote the sum of all failure/censoring times (“person years of
exposure”):

w =

n∑
i=1

Yi, (18.5)

the derivatives of logL are given by

∂ logL

∂λ
= nu/λ− w

∂2 logL

∂λ2
= −nu/λ

2. (18.6)

Equating the derivative of logL to zero implies that the MLE of λ is

λ̂ = nu/w (18.7)

or the number of failures per person-years of exposure. By inserting the MLE
of λ into the formula for the second derivative we obtain the observed esti-
mated information, w2/nu. The estimated variance of λ̂ is thus nu/w

2 and

the standard error is n
1/2
u /w. The precision of the estimate depends primarily

on nu.
Recall that the expected life length μ is 1/λ for the exponential distribu-

tion. The MLE of μ is w/nu and its estimated variance is w2/n3
u. The MLE

of S(t), Ŝ(t), is exp(−λ̂t), and the estimated variance of log(Λ̂(t)) is simply
1/nu.

As an example, consider the sample listed previously,

1 3 3 6+ 8+ 9 10+.
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Here nu = 4 and w = 40, so the MLE of λ is 0.1 failure per person-period.
The estimated standard error is 2/40 = 0.05. Estimated expected life length
is 10 units with a standard error of 5 units. Estimated median failure time is
log(2)/0.1 = 6.931. The estimated survival function is exp(−0.1t), which at
t = 1, 3, 9, 10 yields 0.90, 0.74, 0.41, and 0.37, which can be compared to the
product limit estimates listed earlier (0.85, 0.57, 0.29, 0.29).

Now consider the Weibull distribution. The log likelihood function is

logL =

n∑
i:Yi uncensored

log[αγY γ−1
i ]−

n∑
i=1

αY γ
i . (18.8)

Although logL can be simplified somewhat, it cannot be solved explicitly for
α and γ. An iterative method such as the Newton–Raphson method is used
to compute the MLEs of α and γ. Once these estimates are obtained, the
estimated variance–covariance matrix and other derived quantities such as
Ŝ(t) can be obtained in the usual manner.

For the dataset used in the exponential fit, the Weibull fit follows.

α̂ = 0.0728

γ̂ = 1.164

Ŝ(t) = exp(−0.0728t1.164) (18.9)

Ŝ−1(0.5) = [(log 2)/α̂]1/γ̂ = 6.935 (estimated median).

This fit is very close to the exponential fit since γ̂ is near 1.0. Note that the
two medians are almost equal. The predicted survival probabilities for the
Weibull model for t = 1, 3, 9, 10 are, respectively, 0.93, 0.77, 0.39, 0.35.

Sometimes a formal test can be made to assess the fit of the proposed
parametric survival distribution. For the data just analyzed, a formal test of
exponentiality versus a Weibull alternative is obtained by testing H0 : γ = 1
in the Weibull model. A score test yielded χ2 = 0.14 with 1 d.f., p = 0.7,
showing little evidence for non-exponentiality (note that the sample size is
too small for this test to have any power).

18.1.3 Assessment of Model Fit

The fit of the hypothesized survival distribution can often be checked eas-
ily using graphical methods. Nonparametric estimates of S(t) and Λ(t)
are primary tools for this purpose. For example, the Weibull distribution
S(t) = exp(−αtγ) can be rewritten by taking logarithms twice:

log[− logS(t)] = logΛ(t) = logα+ γ(log t). (18.10)
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The fit of a Weibull model can be assessed by plotting log Λ̂(t) versus log t
and checking whether the curve is approximately linear. Also, the plotted
curve provides approximate estimates of α (the antilog of the intercept) and
γ (the slope). Since an exponential distribution is a special case of a Weibull
distribution when γ = 1, exponentially distributed data will tend to have a
graph that is linear with a slope of 1.

For any assumed distribution S(t), a graphical assessment of goodness of
fit can be made by plotting S−1[SΛ(t)] or S

−1[SKM(t)] against t and checking
for linearity. For log distributions, S specifies the distribution of log(T ), so
we plot against log t. For a log-normal distribution we thus plot Φ−1[SΛ(t)]
against log t, where Φ−1 is the inverse of the standard normal cumulative
distribution function. For a log-logistic distribution we plot logit[SΛ(t)] versus
log t. For an extreme value distribution we use log− log plots as with the
Weibull distribution. Parametric model fits can also be checked by plotting
the fitted Ŝ(t) and SΛ(t) against t on the same graph.

18.2 Parametric Proportional Hazards Models

In this section we present one way to generalize the survival model to a
survival regression model. In other words, we allow the sample to be hetero-
geneous by adding predictor variables X = {X1, X2, . . . , Xk}. As with other
regression models, X can represent a mixture of binary, polytomous, continu-
ous, spline-expanded, and even ordinal predictors (if the categories are scored
to satisfy the linearity assumption). Before discussing ways in which the re-
gression part of a survival model might be specified, first recall how regression
effects have been modeled in other settings. In multiple linear regression, the
regression effect Xβ = β0 + β1X1 + β2X2 + . . . + βkXk can be thought of
as an increment in the expected value of the response Y . In binary logistic
regression, Xβ specifies the log odds that Y = 1, or exp(Xβ) multiplies the
odds that Y = 1.

18.2.1 Model

The most widely used survival regression specification is to allow the hazard
function λ(t) to be multiplied by exp(Xβ). The survival model is thus gener-
alized from a hazard function λ(t) for the failure time T to a hazard function
λ(t) exp(Xβ) for the failure time given the predictors X :

λ(t|X) = λ(t) exp(Xβ). (18.11)
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This regression formulation is called the proportional hazards (PH) model.
The λ(t) part of λ(t|X) is sometimes called an underlying hazard function or
a hazard function for a standard subject, which is a subject with Xβ = 0. Any
parametric hazard function can be used for λ(t), and as we show later, λ(t)
can be left completely unspecified without sacrificing the ability to estimate
β, by the use of Cox’s semi-parametric PH model.132 Depending on whether
the underlying hazard function λ(t) has a constant scale parameter, Xβ may
or may not include an intercept β0. The term exp(Xβ) can be called a relative
hazard function and in many cases it is the function of primary interest as it
describes the (relative) effects of the predictors.

The PH model can also be written in terms of the cumulative hazard and
survival functions:

Λ(t|X) = Λ(t) exp(Xβ)

S(t|X) = exp[−Λ(t) exp(Xβ)] = exp[−Λ(t)]exp(Xβ). (18.12)

Λ(t) is an “underlying” cumulative hazard function. S(t|X), the probability
of surviving past time t given the values of the predictors X , can also be
written as

S(t|X) = S(t)exp(Xβ), (18.13)

where S(t) is the “underlying” survival distribution, exp(−Λ(t)). The effect
of the predictors is to multiply the hazard and cumulative hazard functions
by a factor exp(Xβ), or equivalently to raise the survival function to a power
equal to exp(Xβ).

18.2.2 Model Assumptions and Interpretation
of Parameters

In the general regression notation of Section 2.2, the log hazard or log cumu-
lative hazard can be used as the property of the response T evaluated at time
t that allows distributional and regression parts to be isolated and checked.
The PH model can be linearized with respect to Xβ using the following
identities.

logλ(t|X) = log λ(t) +Xβ

logΛ(t|X) = logΛ(t) +Xβ. (18.14)

No matter which of the three model statements are used, there are certain
assumptions in a parametric PH survival model. These assumptions are listed
below.

1. The true form of the underlying functions (λ, Λ, and S) should be specified
correctly.
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2. The relationship between the predictors and log hazard or log cumulative
hazard should be linear in its simplest form. In the absence of interaction
terms, the predictors should also operate additively.

3. The way in which the predictors affect the distribution of the response
should be by multiplying the hazard or cumulative hazard by exp(Xβ)
or equivalently by adding Xβ to the log hazard or log cumulative hazard
at each t. The effect of the predictors is assumed to be the same at all
values of t since logλ(t) can be separated from Xβ. In other words, the
PH assumption implies no t by predictor interaction.

The regression coefficient for Xj , βj , is the increase in log hazard or log
cumulative hazard at any fixed point in time if Xj is increased by one unit
and all other predictors are held constant. This can be written formally as

βj = logλ(t|X1, X2, . . . , Xj +1, Xj+1, . . . , Xk)− logλ(t|X1, . . . , Xj , . . . , Xk),
(18.15)

which is equivalent to the log of the ratio of the hazards at time t. The
regression coefficient can just as easily be written in terms of a ratio of hazards
at time t. The ratio of hazards at Xj + d versus Xj, all other factors held
constant, is exp(βjd). Thus the effect of increasing Xj by d is to increase the
hazard of the event by a factor of exp(βjd) at all points in time, assuming Xj

is linearly related to logλ(t). In general, the ratio of hazards for an individual
with predictor variable values X∗ compared to an individual with predictors
X is

X∗ : X hazard ratio = [λ(t) exp(X∗β)]/[λ(t) exp(Xβ)]

= exp(X∗β)/ exp(Xβ) = exp[(X∗ −X)β]. (18.16)

If there is only one predictor X1 and that predictor is binary, the PH model
can be written

λ(t|X1 = 0) = λ(t)

λ(t|X1 = 1) = λ(t) exp(β1). (18.17)

Here exp(β1) is the X1 = 1 : X1 = 0 hazard ratio. This simple case has
no regression assumption but assumes PH and a form for λ(t). If the single
predictor X1 is continuous, the model becomes

λ(t|X1) = λ(t) exp(β1X). (18.18)

Without further modification (such as taking a transformation of the predic-
tor), the model assumes a straight line in the log hazard or that for all t, an
increase in X by one unit increases the hazard by a factor of exp(β1).

As in logistic regression, much more general regression specifications can
be made, including interaction effects. Unlike logistic regression, however, a
model containing, say age, sex, and age × sex interaction is not equivalent to
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fitting two separate models. This is because even though males and females
are allowed to have unequal age slopes, both sexes are assumed to have the

Table 18.1 Mortality differences and ratios when hazard ratio is 0.5

Subject 5-Year Difference Mortality
Survival Ratio (T/C)
C T

1 0.98 0.99 0.01 0.01/0.02 = 0.5
2 0.80 0.89 0.09 0.11/0.2 = 0.55
3 0.25 0.50 0.25 0.5/0.75 = 0.67

underlying hazard function proportional to λ(t) (i.e., the PH assumption
holds for sex in addition to age).

18.2.3 Hazard Ratio, Risk Ratio, and Risk
Difference

Other ways of modeling predictors can also be specified besides a multiplica-
tive effect on the hazard. For example, one could postulate that the effect of
a predictor is to add to the hazard of failure instead of to multiply it by a
factor. The effect of a predictor could also be described in terms of a mor-
tality ratio (relative risk), risk difference, odds ratio, or increase in expected
failure time. However, just as an odds ratio is a natural way to describe an
effect on a binary response, a hazard ratio is often a natural way to describe
an effect on survival time. One reason is that a hazard ratio can be constant.

Table 18.1 provides treated (T) to control (C) survival (mortality) dif-
ferences and mortality ratios for three hypothetical types of subjects. We
suppose that subjects 1, 2, and 3 have increasingly worse prognostic factors.
For example, the age at baseline of the subjects might be 30, 50, and 70 years,
respectively. We assume that the treatment affects the hazard by a constant
multiple of 0.5 (i.e., PH is in effect and the constant hazard ratio is 0.5). Note
that ST = S0.5

C . Notice that the mortality difference and ratio depend on the
survival of the control subject. A control subject having “good” predictor
values will leave little room for an improved prognosis from the treatment.

The hazard ratio is a basis for describing the mechanism of an effect. In the
above example, it is reasonable that the treatment affect each subject by low-
ering her hazard of death by a factor of 2, even though less sick subjects have
a low mortality difference. Hazard ratios also lead to good statistical tests
for differences in survival patterns and to predictive models. Once the model
is developed, however, survival differences may better capture the impact of
a risk factor. Absolute survival differences rather than relative differences
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(hazard ratios) also relate more closely to statistical power. For example,
even if the effect of a treatment is to halve the hazard rate, a population
where the control survival is 0.99 will require a much larger sample than will
a population where the control survival is 0.3.

Figure 18.1 depicts the relationship between survival S(t) of a control
subject at any time t, relative reduction in hazard (h), and difference in
survival S(t)−S(t)h. This figure demonstrates that absolute clinical benefit

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Survival for Control Subject

Im
pr

ov
em

en
t i

n 
S

ur
vi

va
l

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 18.1 Absolute clinical benefit as a function of survival in a control subject and
the relative benefit (hazard ratio). The hazard ratios are given for each curve.

is primarily a function of the baseline risk of a subject. Clinical benefit will
also be a function of factors that interact with treatment, that is, factors
that modify the relative benefit of treatment. Once a model is developed
for estimating S(t|X), this model can be used to estimate absolute benefit
as a function of baseline risk factors as well as factors that interact with a
treatment. Let X1 be a binary treatment indicator and let A = {X2, . . . , Xp}
be the other factors (which for convenience we assume do not interact with
X1). Then the estimate of S(t|X1 = 0, A) − S(t|X1 = 1, A) can be plotted
against S(t|X1 = 0) or against levels of variables in A to display absolute
benefit versus overall risk or specific subject characteristics. 1

18.2.4 Specific Models

Let Xβ denote the linear combination of predictors excluding an intercept
term. Using the PH formulation, an exponential survival regression model218

can be stated as
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λ(t|X) = λ exp(Xβ)

S(t|X) = exp[−λt exp(Xβ)] = exp(−λt)exp(Xβ). (18.19)

The parameter λ can be thought of as the antilog of an intercept term since
the model could be written λ(t|X) = exp[(logλ) +Xβ]. The effect of X on
the expected or median failure time is as follows.

E{T |X} = 1/[λ exp(Xβ)]

T0.5|X = (log 2)/[λ exp(Xβ)]. (18.20)

The exponential regression model can be written in another form that is more
numerically stable by replacing the λ parameter with an intercept term in
Xβ, specifically λ = exp(β0). After redefining Xβ to include β0, λ can be
dropped in all the above formulas.

The Weibull regression model is defined by one of the following functions
(assuming that Xβ does not contain an intercept).

λ(t|X) = αγtγ−1 exp(Xβ)

Λ(t|X) = αtγ exp(Xβ)

S(t|X) = exp[−αtγ exp(Xβ)] (18.21)

= [exp(−αtγ)]exp(Xβ).

Note that the parameter α in the homogeneous Weibull model has been
replaced with α exp(Xβ). The median survival time is given by

T0.5|X = {log 2/[α exp(Xβ)]}1/γ . (18.22)

As with the exponential model, the parameter α could be dropped (and
replaced with exp(β0)) if an intercept β0 is added to Xβ.

For numerical reasons it is sometimes advantageous to write the Weibull
PH model as

S(t|X) = exp(−Λ(t|X)), (18.23)

where
Λ(t|X) = exp(γ log t+Xβ). (18.24)

18.2.5 Estimation

The parameters in λ and β are estimated by maximizing a log likelihood
function constructed in the same manner as described in Section 18.1. The
only difference is the insertion of exp(Xiβ) in the likelihood function:
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logL =

n∑
i:Yi uncensored

log[λ(Yi) exp(Xiβ)]−
n∑

i=1

Λ(Yi) exp(Xiβ). (18.25)

Once β̂, the MLE of β, is computed along with the large-sample standard
error estimates, hazard ratio estimates and their confidence intervals can
readily be computed. Letting s denote the estimated standard error of β̂j ,
a 1 − α confidence interval for the Xj + 1 : Xj hazard ratio is given by

exp[β̂j ± zs], where z is the 1 − α/2 critical value for the standard normal
distribution.

Once the parameters of the underlying hazard function are estimated, the
MLE of λ(t), λ̂(t), can be derived. The MLE of λ(t|X), the hazard as a
function of t and X , is given by

λ̂(t|X) = λ̂(t) exp(Xβ̂). (18.26)

The MLE of Λ(t), Λ̂(t), can be derived from the integral of λ̂(t) with respect
to t. Then the MLE of S(t|X) can be derived:

Ŝ(t|X) = exp[−Λ̂(t) exp(Xβ̂)]. (18.27)

For the Weibull model, we denote the MLEs of the hazard parameters α and
γ by α̂ and γ̂. The MLE of λ(t|X), Λ(t|X), and S(t|X) for this model are

λ̂(t|X) = α̂γ̂tγ̂−1 exp(Xβ̂)

Λ̂(t|X) = α̂tγ̂ exp(Xβ̂) (18.28)

Ŝ(t|X) = exp[−Λ̂(t|X)].

Confidence intervals for S(t|X) are best derived using general matrix notation

to obtain an estimate s of the standard error of log[λ̂(t|X)] from the estimated
information matrix of all hazard and regression parameters. A confidence
interval for Ŝ will be of the form

Ŝ(t|X)exp(±zs). (18.29)

The MLEs of β and of the hazard shape parameters lead directly to MLEs
of the expected and median life length. For the Weibull model the MLE of
the median life length given X is

T̂0.5|X = {log 2/[α̂ exp(Xβ̂)]}1/γ̂ . (18.30)

For the exponential model, the MLE of the expected life length for a subject
having predictor values X is given by

Ê(T |X) = [λ̂ exp(Xβ̂)]−1, (18.31)

where λ̂ is the MLE of λ.
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β1

t

X1 =1

X1 =0

Fig. 18.2 PH model with one binary predictor. Y -axis is log λ(t) or logΛ(t). For
logΛ(t), the curves must be non-decreasing. For log λ(t), they may be any shape.

18.2.6 Assessment of Model Fit

Three assumptions of the parametric PH model were listed in Section 18.2.2.
We now lay out in more detail what relationships need to be satisfied. We
first assume a PH model with a single binary predictor X1. For a general
underlying hazard function λ(t), all assumptions of the model are displayed
in Figure 18.2. In this case, the assumptions are PH and a shape for λ(t).

If λ(t) is Weibull, the two curves will be linear if log t is plotted instead
of t on the x-axis. Note also that if there is no association between X and
survival (β1 = 0), estimates of the two curves will be close and will intertwine
due to random variability. In this case, PH is not an issue.

If the single predictor is continuous, the relationships in Figures 18.3
and 18.4 must hold. Here linearity is assumed (unless otherwise specified)
besides PH and the form of λ(t). In Figure 18.3, the curves must be parallel
for any choices of times t1 and t2 as well as each individual curve being lin-
ear. Also, the difference between ordinates needs to conform to the assumed
distribution. This difference is log[λ(t2)/λ(t1)] or log[Λ(t2)/Λ(t1)].

Figure 18.4 highlights the PH assumption. The relationship between the
two curves must hold for any two values c and d of X1. The shape of the
function for a given value of X1 must conform to the assumed λ(t). For a
Weibull model, the functions should each be linear in log t.

When there are multiple predictors, the PH assumption can be displayed in
a way similar to Figures 18.2 and 18.4 but with the population additionally
cross-classified by levels of the other predictors besides X1. If there is one
binary predictor X1 and one continuous predictor X2, the relationship in
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t=t1

t=t2

X1

Fig. 18.3 PH model with one continuous predictor. Y -axis is log λ(t) or logΛ(t); for
logΛ(t), drawn for t2 > t1. The slope of each line is β1.

(d-c) β1
X1= c

X1= d

t

Fig. 18.4 PH model with one continuous predictor. Y -axis is log λ(t) or logΛ(t). For
log λ, the functions need not be monotonic.

Figure 18.5 must hold at each time t if linearity is assumed for X2 and there
is no interaction between X1 and X2. Methods for verifying the regression
assumptions (e.g., splines and residuals) and the PH assumption are covered
in detail under the Cox PH model in Chapter 20.

The method for verifying the assumed shape of S(t) in Section 18.1.3 is also
useful when there are a limited number of categorical predictors. To validate
a Weibull PH model one can stratify on X and plot logΛKM(t|X stratum)
against log t. This graph simultaneously assesses PH in addition to shape
assumptions—all curves should be parallel as well as straight. Straight but
nonparallel (non-PH) curves indicate that a series of Weibull models with
differing γ parameters will fit.
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slope = β2

β1

X1 =1

X2

X1 =0

Fig. 18.5 Regression assumptions, linear additive PH or AFT model with two pre-
dictors. For PH, Y -axis is log λ(t) or logΛ(t) for a fixed t. For AFT, Y -axis is log(T ).

18.3 Accelerated Failure Time Models

18.3.1 Model

Besides modeling the effect of predictors by a multiplicative effect on the
hazard function, other regression effects can be specified. The accelerated
failure time (AFT) model is commonly used; it specifies that the predictors
act multiplicatively on the failure time or additively on the log failure time.
The effect of a predictor is to alter the rate at which a subject proceeds along
the time axis (i.e., to accelerate the time to failure [331, pp. 33–35]). The
model is2

S(t|X) = ψ((log(t)−Xβ)/σ), (18.32)

where ψ is any standardized survival distribution function. The parameter σ is
called the scale parameter. The model can also be stated as (log(T )−Xβ)/σ ∼
ψ or log(T ) = Xβ + σε, where ε is a random variable from the distribution
ψ. Sometimes the untransformed T is used in place of log(T ). When the log
form is used, the models are said to be log-normal, log-logistic, and so on.

The exponential and Weibull are the only two distributions that can de-
scribe either a PH or an AFT model.3

18.3.2 Model Assumptions and Interpretation
of Parameters

The log λ or logΛ transformation of the PH model has the following equiva-
lent for AFT models.
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ψ−1[S(t|X)] = (log(t)−Xβ)/σ. (18.33)

Letting as before ε denote a random variable from the distribution S, the
model is also

log(T ) = Xβ + σε. (18.34)

So the property of the response T of interest for regression modeling is log(T ).
In the absence of censoring, we could check the model by plotting an X
against logT and checking that the residuals log(T )−Xβ̂ are distributed as
ψ to within a scale factor.

The assumptions of the AFT model are thus the following.

1. The true form of ψ (the distributional family) is correctly specified.
2. In the absence of nonlinear and interaction terms, each Xj affects log(T )

or ψ−1[S(t|X)] linearly.
3. Implicit in these assumptions is that σ is a constant independent of X .

A one-unit change in Xj is then most simply understood as a βj change in
the log of the failure time. The one-unit change in Xj increases the failure
time by a factor of exp(βj).

The median survival time is obtained by solving ψ((log(t)−Xβ)/σ) = 0.5
giving

T0.5|X = exp[Xβ + σψ−1(0.5)] (18.35)

18.3.3 Specific Models

Common choices for the distribution function ψ in Equation 18.32 are the
extreme value distribution ψ(u) = exp(− exp(u)), the logistic distribution
ψ(u) = [1 + exp(u)]−1, and the normal distribution ψ(u) = 1 − Φ(u). The
AFT model equivalent of the Weibull model is obtained by using the extreme
value distribution, negating β, and replacing γ with 1/σ in Equation 18.24:

S(t|X) = exp[− exp((log(t)−Xβ)/σ)]

T0.5|X = [log(2)]σ exp(Xβ). (18.36)

The exponential model is obtained by restricting σ = 1 in the extreme value
distribution.

The log-normal regression model is

S(t|X) = 1− Φ((log(t)−Xβ)/σ), (18.37)

and the log-logistic model is

S(t|X) = [1 + exp((log(t)−Xβ)/σ)]−1. (18.38)
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The t distribution allows for more flexibility by varying the degrees of free-
dom. Figure 18.6 depicts possible hazard functions for the log t distribution
for varying σ and degrees of freedom. However, this distribution does not
have a late increasing hazard phase typical of human survival.

require(rms)

haz ← survreg.auxinfo$t$hazard

times ← c(seq (0, .25 , length =100) , seq (.26 , 2, length =150))

high ← c(6, 1.5 , 1.5 , 1.75 )

low ← c(0, 0, 0, .25)

dfs ← c(1, 2, 3, 5, 7, 15, 500)

cols ← rep (1, 7)

ltys ← 1:7

i ← 0

for (scale in c(.25 , .6 , 1, 2)) {

i ← i + 1

plot(0, 0, xlim=c(0,2), ylim=c(low [i], high[i]),

xlab=expression (t), ylab=expression (lambda (t)), type="n")

col ← 1.09

j ← 0

for (df in dfs) {

j ← j+1

## Divide by t to get hazard for log t distribution

lines(times ,

haz(log (times), 0, c(log (scale), df))/times ,

col =cols[j], lty=ltys[j])

if(i==1) text(1.7 , .23 + haz(log (1.7), 0,

c(log (scale ),df))/1.7 , format (df))

}

title (paste ("Scale:", format (scale )))

} # Figure 18.6

All three of these parametric survival models have median survival time
T0.5|X = exp(Xβ).

18.3.4 Estimation

Maximum likelihood estimation is used much the same as in Section 18.2.5.
Care must be taken in the choice of initial values; iterative methods are
especially prone to problems in choosing the initial σ̂. Estimation works better
if σ is parameterized as exp(δ). Once β and σ (exp(δ)) are estimated, MLEs of
secondary parameters such as survival probabilities and medians can readily
be obtained:

Ŝ(t|X) = ψ((log(t)−Xβ̂)/σ̂)

T̂0.5|X = exp[Xβ̂ + σ̂ψ−1(0.5)]. (18.39)
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Fig. 18.6 log(T ) distribution for σ = 0.25, 0.6, 1, 2 and for degrees of freedom
1, 2, 3, 5, 7, 15, 500 (almost log-normal). The top left plot has degrees of freedom writ-
ten in the plot.

For normal and logistic distributions, T̂0.5|X = exp(Xβ̂). The MLE of the

effect on log(T ) of increasing Xj by d units is β̂jd if Xj is linear and additive.
The delta (statistical differential) method can be used to compute an esti-

mate of the variance of f = [log(t)−Xβ̂]/σ̂. Let (β̂, δ̂) denote the estimated
parameters, and let V̂ denote the estimated covariance matrix for these pa-
rameter estimates. Let F denote the vector of derivatives of f with respect to
(β0, β1, . . . , βp, δ); that is, F = [−1,−X1,−X2, . . . ,−Xp,−(log(t)−Xβ̂)]/σ̂.
The variance of f is then approximately

Var(f) = FV̂ F ′. (18.40)
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Letting s be the square root of the variance estimate and z1−α/2 be the
normal critical value, a 1− α confidence limit for S(t|X) is

ψ((log(t)−Xβ̂)/σ̂ ± z1−α/2 × s). (18.41)

18.3.5 Residuals

For an AFT model, standardized residuals are simply

r = (log(T )−Xβ̂)/σ. (18.42)

When T is right-censored, r is right-censored. Censoring must be taken into4

account, for example, by displaying Kaplan–Meier estimates based on groups
of residuals rather than showing individual residuals. The residuals can be
used to check for lack of fit as described in the next section. Note that exam-
ining individual uncensored residuals is not appropriate, as their distribution
is conditional on Ti < Ci, where Ci is the censoring time.

Cox and Snell134 proposed a type of general residuals that also work for
censored data. Using their method on the cumulative probability scale results
in the probability integral transformation. If the probability of failure before
time t given X is S(t|X), F (T |X) = 1 − S(T |X) has a uniform [0, 1] distri-
bution, where T is a subject’s actual failure time. When T is right-censored,
so is 1 − S(T |X). Substituting Ŝ for S results in an approximate uniform
[0, 1] distribution for any value of X . One minus the Kaplan–Meier estimate
of 1 − Ŝ(T |X) (using combined data for all X) is compared against a 45◦

line to check for goodness of fit. A more stringent assessment is obtained by
repeating this process while stratifying on X .

18.3.6 Assessment of Model Fit

For a single binary predictor, all assumptions of the AFT model are depicted
in Figure 18.7. That figure also shows the assumptions for any two values of
a single continuous predictor that behaves linearly. For a single continuous
predictor, the relationships in Figure 18.8 must hold for any two follow-up
times. The regression assumptions are isolated in Figure 18.5.

To verify the fit of a log-logistic model with age as the only predictor, one
could stratify by quartiles of age and check for linearity and parallelism of the
four logit SΛ(t) or SKM(t) curves over increasing t as in Figure 18.7, which
stresses the distributional assumption (no T byX interaction and linearity vs.
log(t)). To stress the linear regression assumption while checking for absence
of time interactions (part of the distributional assumptions), one could make
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log t

(d-c) β1 /σ X1= d

X1= c

Fig. 18.7 AFT model with one predictor. Y -axis is ψ−1[S(t|X)] = (log(t)−Xβ)/σ.
Drawn for d > c. The slope of the lines is σ−1.

t=t1

t=t2

X1

Fig. 18.8 AFT model with one continuous predictor. Y -axis is ψ−1[S(t|X)] =
(log(t)−Xβ)/σ. Drawn for t2 > t1. The slope of each line is β1/σ and the difference
between the lines is log(t2/t1)/σ.

a plot like Figure 18.8. For each decile of age, the logit transformation of the
1-, 3-, and 5-year survival estimates for that decile would be plotted against
the mean age in the decile. This checks for linearity and constancy of the
age effect over time. Regression splines will be a more effective method for
checking linearity and determining transformations. This is demonstrated in
Chapter 20 with the Cox model, but identical methods apply here.

As an example, consider data from Kalbfleisch and Prentice [331, pp. 1–2],
who present data from Pike508 on the time from exposure to the carcinogen
DMBA to mortality from vaginal cancer in rats. The rats are divided into
two groups on the basis of a pre-treatment regime. Survival times in days
(with censored times marked +) are found in Table 18.2.
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Table 18.2 Rat vaginal cancer data from Pike508

Group 1 143 164 188 188 190 192 206 209 213 216
220 227 230 234 246 265 304 216+ 244+

Group 2 142 156 163 198 205 232 232 233 233 233
233 239 240 261 280 280 296 296 323 204+

344+

getHdata (kprats )

kprats $group ← factor(kprats $group , 0:1, c( ' Group 1 ' , ' Group 2 ' ))
dd ← datadist (kprats ); options (datadist ="dd")

S ← with(kprats , Surv(t, death ))

f ← npsurv (S ∼ group , type="fleming ", data=kprats )

survplot (f, n.risk =TRUE , conf= ' none ' , # Figure 18.9

label.curves =list(keys= ' lines ' ), levels.only =TRUE)

title(sub=" Nonparametric estimates ", adj =0, cex=.7)

# Check fits of Weibull, log-logistic, log-normal

xl ← c(4.8 , 5.9)

survplot (f, loglog =TRUE , logt=TRUE , conf="none", xlim=xl ,

label.curves =list(keys= ' lines ' ), levels.only =TRUE)

title(sub="Weibull (extreme value)", adj =0, cex=.7)

survplot (f, fun=function (y)log(y/(1-y)), ylab="logit S(t)",

logt=TRUE , conf="none", xlim=xl ,

label.curves =list(keys= ' lines ' ), levels.only =TRUE)

title(sub=" Log-logistic ", adj =0, cex=.7)

survplot (f, fun=qnorm , ylab="Inverse Normal S(t)",

logt=TRUE , conf="none",

xlim=xl ,cex.label =.7 ,

label.curves =list(keys= ' lines ' ), levels.only =TRUE)

title(sub=" Log-normal ", adj =0, cex=.7)

The top left plot in Figure 18.9 displays nonparametric survival estimates for
the two groups, with the number of rats “at risk”at each 30-day mark written
above the x-axis. The remaining three plots are for checking assumptions of
three models. None of the parametric models presented will completely allow
for such a long period with no deaths. Neither will any allow for the early
crossing of survival curves. Log-normal and log-logistic models yield very sim-
ilar results due to the similarity in shapes between Φ(z) and [1 + exp(−z)]−1

for non-extreme z. All three transformations show good parallelism after the
early crossing. The log-logistic and log-normal transformations are slightly
more linear. The fitted models are:

fw ← psm(S ∼ group , data =kprats , dist = ' weibull ' )
fl ← psm(S ∼ group , data =kprats , dist = ' loglogistic ' ,

y=TRUE )

fn ← psm(S ∼ group , data =kprats , dist = ' lognormal ' )
latex (fw , fi= ' ' )



18.3 Accelerated Failure Time Models 443

s

S
ur

vi
va

l P
ro

ba
bi

lit
y

0 35 105 175 245 315

0.0

0.2

0.4

0.6

0.8

1.0

19 19 19 19 19 17 11 3 1 Group 1

21 21 21 21 21 18 15 7 6 2 Group 2

Group 1

Group 2

Nonparametric estimates

log Survival Time in s

lo
g(

−
lo

g 
S

ur
vi

va
l P

ro
ba

bi
lit

y)

4.8 5.0 5.2 5.4 5.6 5.8

−4

−3

−2

−1

0

1

Group 1

Group 2

Weibull (extreme value)

log Survival Time in s

lo
gi

t S
(t

)

4.8 5.0 5.2 5.4 5.6 5.8 6.0−4

−3

−2

−1

0

1

2

3

4

Group 1

Group 2

Log−logistic

log Survival Time in s

In
ve

rs
e 

N
or

m
al

 S
(t

)

4.8 5.0 5.2 5.4 5.6 5.8
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Group 1

Group 2

Log−normal

Fig. 18.9 Altschuler–Nelson–Fleming–Harrington nonparametric survival estimates
for rats treated with DMBA,508 along with various transformations of the estimates
for checking distributional assumptions of three parametric survival models.

Prob{T ≥ t} = exp[− exp(
log(t)−Xβ

0.1832976
)] where

Xβ̂ =

5.450859

+0.131983[Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.

latex (fl , fi= ' ' )
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Table 18.3 Group effects from three survival models

Model Group 2:1 Median Survival Time
Failure Time Ratio Group 1 Group 2

Extreme Value (Weibull) 1.14 217 248
Log-logistic 1.11 217 241
Log-normal 1.10 217 238

Prob{T ≥ t} = [1 + exp(
log(t)−Xβ

0.1159753
)]−1 where

Xβ̂ =

5.375675

+0.1051005[Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.

latex (fn , fi= ' ' )

Prob{T ≥ t} = 1− Φ(
log(t)−Xβ

0.2100184
) where

Xβ̂ =

5.375328

+0.0930606[Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.

The estimated failure time ratios and median failure times for the two
groups are given in Table 18.3. For example, the effect of going from Group 1
to Group 2 is to increase log failure time by 0.132 for the extreme value model,
giving a Group 2:1 failure time ratio of exp(0.132) = 1.14. This ratio is also
the ratio of median survival times. We choose the log-logistic model for its
simpler form. The fitted survival curves are plotted with the nonparametric
estimates in Figure 18.10. Excellent agreement is seen, except for 150 to 180
days for Group 2. The standard error of the regression coefficient for group
in the log-logistic model is 0.0636 giving a Wald χ2 for group differences of
(.105/.0636)2 = 2.73, P = 0.1.

survplot (f, conf.int=FALSE , # Figure 18.10

levels.only =TRUE , label.curves =list (keys = ' lines ' ))
survplot (fl , add=TRUE , label.curves =FALSE , conf.int=FALSE )

The Weibull PH form of the fitted extreme value model, using Equa-
tion 18.24, is
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Fig. 18.10 Agreement between fitted log-logistic model and nonparametric survival
estimates for rat vaginal cancer data.

Prob{T ≥ t} = exp{−t5.456 exp(Xβ̂)} where

Xβ̂ =

−29.74

−0.72[Group 2]

and [c] = 1 if subject is in group c, 0 otherwise.
A sensitive graphical verification of the distributional assumptions of the

AFT model is obtained by plotting the estimated survival distribution of
standardized residuals (Equation 18.3.5), censored identically to the way T
is censored. This distribution is plotted along with the theoretical distri-
bution ψ. The assessment may be made more stringent by stratifying the
residuals by important subject characteristics and plotting separate survival
function estimates; they should all have the same standardized distribution
(e.g., same σ).

r ← resid (fl , ' cens ' )
survplot (npsurv (r ∼ group , data=kprats ),

conf = ' none ' , xlab= ' Residual ' ,
label.curves =list (keys= ' lines ' ), levels.only =TRUE)

survplot (npsurv (r ∼ 1), conf= ' none ' , add=TRUE , col= ' red ' )
lines (r, lwd=1, col= ' blue ' ) # Figure 18.11

As an example, Figure 18.11 shows the Kaplan–Meier estimate of the dis-
tribution of residuals, Kaplan–Meier estimates stratified by group, and the
assumed log-logistic distribution. 5
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Fig. 18.11 Kaplan–Meier estimates of distribution of standardized censored residu-
als from the log-logistic model, along with the assumed standard log-logistic distri-
bution (dashed curve). The step functions in red is the estimated distribution of all
residuals, and the step functions in black are the estimated distributions of residuals
stratified by group, as indicated. The blue curve is the assumed log-logistic distribu-
tion.

Section 19.2 has a more in-depth example of this approach.

18.3.7 Validating the Fitted Model

AFT models may be validated for both calibration and discrimination accu-
racy using the same methods that are presented for the Cox model in Sec-
tion 20.11. The methods discussed there for checking calibration are based on
choosing a single follow-up time. Checking the distributional assumptions of
the parametric model is also a check of calibration accuracy in a sense. An-
other indirect calibration assessment may be obtained from a set of Cox–Snell
residuals (Section 18.3.5) or by using ordinary residuals as just described. A
higher resolution indirect calibration assessment based on plotting individual
uncensored failure times is available when the theoretical censoring times for
those observations are known. Let C denote a subject’s censoring time and F
the cumulative distribution of a failure time T . The expected value of F (T |X)
is 0.5 when T is an actual failure time random variable. The expected value
for an event time that is observed because it is uncensored is the expected
value of F (T |T ≤ C,X) = 0.5F (C|X). A smooth plot (using, say, loess) of

F (T |X)− 0.5F (C|X) against Xβ̂ should be a flat line through y = 0 if the

model is well calibrated. A smooth plot of 2F (T |X)/F (C|X) against Xβ̂ (or
anything else) should be a flat line through y = 1. This method assumes that
the model is calibrated well enough that we can substitute 1 − Ŝ(C|X) for
F (C|X).
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18.4 Buckley–James Regression Model

Buckley and James81 developed a method for estimating regression coeffi-
cients using least squares after imputing censored residuals. Their method
does not assume a distribution for survival time or the residuals, but is aimed
at estimating expected survival time or expected log survival time given pre-
dictor variables. This method has been generalized to allow for smooth non-
linear effects and interactions in the S bj function in the rms package, written
by Stare and Harrell585.

18.5 Design Formulations

Various designs can be formulated with survival regression models just as
with other regression models. By constructing the proper dummy variables,
ANOVA and ANOCOVA models can easily be specified for testing differences
in survival time between multiple treatments. Interactions and complex non-
linear effects may also be modeled.

18.6 Test Statistics

As discussed previously, likelihood ratio, score, and Wald statistics can be
derived from the maximum likelihood analysis, and the choice of test statistic
depends on the circumstance and on computational convenience.

18.7 Quantifying Predictive Ability

See Section 20.10 for a generalized measure of concordance between predicted
and observed survival time (or probability of survival) for right-censored data.

18.8 Time-Dependent Covariates

Time-dependent covariates (predictors) requires special likelihood functions
and add significant complexity to analyses in exchange for greater ver-
satility and enhanced predictive discrimination604. Nicolaie et al.477 and
D’Agostino et al.145 provide useful static covariate approaches to modeling
time-dependent predictors using landmark analysis.
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18.9 R Functions

Therneau’s survreg function (part of his survival package) can fit regression
models in the AFT family with left–, right–, or interval–censoring. The time
variable can be untransformed or log-transformed (the default). Distributions
supported are extreme value (Weibull and exponential), normal, logistic, and
Student-t. The version of survreg in rms that fits parametric survival models
in the same framework as lrm, ols, and cph is called psm. psm works with
print, coef, formula, specs, summary, anova, predict, Predict, fastbw, latex,
nomogram, validate, calibrate, survest, and survplot functions for obtaining
and plotting predicted survival probabilities. The dist argument to psm can be
"exponential", "extreme", "gaussian", "logistic", "loglogistic", "lognormal",
"t", or "weibull". To fit a model with no covariables, use the command

psm(Surv (d.time , event ) ∼ 1)

To restate a Weibull or exponential model in PH form, use the pphsm function.
An example of how many of the functions are used is found below.

units (d.time ) ← "Year"

f ← psm(Surv (d.time ,cdeath ) ∼ lsp(age ,65) *sex)

# default is Weibull

anova (f)

summary(f) # summarize effects with delta log T

latex (f) # typeset math. form of fitted model

survest(f, times =1) # 1y survival est. for all subjects

survest(f, expand.grid (sex="female ", age =30:80) , times =1:2)

# 1y, 2y survival estimates vs. age , for females

survest(f, data.frame (sex="female ",age =50))

# survival curve for an individual subject

survplot (f, sex=NA , age =50, n.risk =T)

# survival curves for each sex , adjusting age to 50

f.ph ← pphsm (f) # convert from AFT to PH

summary(f.ph ) # summarize with hazard ratios

# instead of changes in log(T)

Special functions work with objects created by psm to create S functions that
contain the analytic form for predicted survival probabilities (Survival), haz-
ard functions (Hazard), quantiles of survival time (Quantile), and mean or
expected survival time (Mean). Once the S functions are constructed, they can
be used in a variety of contexts. The survplot and survest functions have
a special argument for psm fits: what. The default is what="survival" to esti-
mate or plot survival probabilities. Specifying what="hazard" will plot hazard
functions. Predict also has a special argument for psm fits: time. Specifying a
single value for time results in survival probability for that time being plotted
instead of Xβ̂. Examples of many of the functions appear below, with the
output of the survplot command shown in Figure 18.12.

med ← Quantile (fl)

meant ← Mean (fl)
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haz ← Hazard (fl)

surv ← Survival (fl)

latex (surv , file = ' ' , type= ' Sinput ' )

surv ← function (times = NULL , lp = NULL ,

parms = -2.15437773933124 )

{

1/(1 + exp(( logb(times ) - lp)/exp(parms )))

}

# Plot estimated hazard functions and add median

# survival times to graph

survplot (fl , group , what="hazard ") # Figure 18.12

# Compute median survival time

m ← med(lp=predict(fl ,

data.frame (group =levels (kprats $group ))))

m

1 2
216.0857 240.0328

med(lp=range (fl$linear.predictors ))

[1] 216.0857 240.0328

m ← format (m, digits =3)

text (68, .02 , paste ("Group 1 median : ", m[1],"\n",

"Group 2 median : ", m[2], sep=""))

# Compute survival probability at 210 days

xbeta ← predict(fl ,

data.frame (group =c("Group 1","Group 2")))

surv (210, xbeta )

1 2
0.5612718 0.7599776

The S object called survreg.distributions in Therneau’s survival package
and the object survreg.auxinfo in the rms package have detailed information
for extreme-value, logistic, normal, and t distributions. For each distribution,
components include the deviance function, an algorithm for obtaining starting
parameter estimates, a LATEX representation of the survival function, and S
functions defining the survival, hazard, quantile functions, and basic survival
inverse function (which could have been used in Figure 18.9). See Figure 18.6
for examples. rms’s val.surv function is useful for indirect external valida-
tion of parametric models using Cox–Snell residuals and other approaches of
Section 18.3.7. The plot method for an object created by val.surv makes it
easy to stratify all computations by a variable of interest to more stringently
validate the fit with respect to that variable.

rms’s bj function fits the Buckley–James model for right-censored re-
sponses.
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Fig. 18.12 Estimated hazard functions for log-logistic fit to rat vaginal cancer data,
along with median survival times.

Kooperberg et al.’s adaptive linear spline log-hazard model360, 361, 594 has
been implemented in the S function hare. Their procedure searches for second-
order interactions involving predictors (and linear splines of them) and linear
splines in follow-up time (allowing for non-proportional hazards). hare is also
used to estimate calibration curves for parametric survival models (rms func-
tion calibrate) as it is for Cox models.

18.10 Further Reading

1 Wellek657 developed a test statistic for a specified maximum survival difference
after relating this difference to a hazard ratio.

2 Hougaard308 compared accelerated failure time models with proportional haz-
ard models.

3 Gore et al.226 discuss how an AFT model (the log-logistic model) gives rise to
varying hazard ratios.

4 See Hillis293 for other types of residuals and plots that use them.
5 See Gore et al.226 and Lawless382 for other methods of checking assumptions for

AFT models. Lawless is an excellent text for in-depth discussion of parametric
survival modeling. Kwong and Hutton369 present other methods of choosing
parametric survival models, and discuss the robustness of estimates when fitting
an incorrectly chosen accelerated failure time model.
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18.11 Problems

1. For the failure times (in days)

1 3 3+ 6+ 7+

compute MLEs of the following parameters of an exponential distribution
by hand: λ, μ, T0.5, and S(3 days). Compute 0.95 confidence limits for λ
and S(3), basing the latter on log[Λ(t)].

2. For the same data in Problem 1, compute MLEs of parameters of a Weibull
distribution. Also compute the MLEs of S(3) and T0.5.



Chapter 19

Case Study in Parametric Survival
Modeling and Model Approximation

Consider the random sample of 1000 patients from the SUPPORT study,352

described in Section 3.12. In this case study we develop a parametric sur-
vival time model (accelerated failure time model) for time until death for the
acute disease subset of SUPPORT (acute respiratory failure, multiple organ
system failure, coma). We eliminate the chronic disease categories because
the shapes of the survival curves are different between acute and chronic dis-
ease categories. To fit both acute and chronic disease classes would require a
log-normal model with σ parameter that is disease-specific.

Patients had to survive until day 3 of the study to qualify. The baseline
physiologic variables were measured during day 3.

19.1 Descriptive Statistics

First we create a variable acute to flag the categories of interest, and print
univariable descriptive statistics for the data subset.

require(rms)

getHdata (support) # Get data frame from web site

acute ← support$dzclass %in% c( ' ARF/MOSF ' , ' Coma ' )
latex (describe (support[acute ,]), file = ' ' )

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 19
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support[acute, ]
35 Variables 537 Observations

age : Age
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 529 1 60.7 28.49 35.22 47.93 63.67 74.49 81.54 85.56

lowest : 18.04 18.41 19.76 20.30 20.31
highest: 91.62 91.82 91.93 92.74 95.51

death : Death at any time up to NDI date:31DEC94
n missing unique Info Sum Mean

537 0 2 0.67 356 0.6629
sex

n missing unique
537 0 2

female (251, 47%), male (286, 53%)

hospdead : Death in Hospital
n missing unique Info Sum Mean

537 0 2 0.7 201 0.3743

slos : Days from Study Entry to Discharge
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 85 1 23.44 4.0 5.0 9.0 15.0 27.0 47.4 68.2

lowest : 3 4 5 6 7, highest: 145 164 202 236 241

d.time : Days of Follow-Up
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 340 1 446.1 4 6 16 182 724 1421 1742

lowest : 3 4 5 6 7, highest: 1977 1979 1982 2011 2022

dzgroup
n missing unique

537 0 3

ARF/MOSF w/Sepsis (391, 73%), Coma (60, 11%), MOSF w/Malig (86, 16%)

dzclass
n missing unique

537 0 2

ARF/MOSF (477, 89%), Coma (60, 11%)

num.co : number of comorbidities
n missing unique Info Mean

537 0 7 0.93 1.525

0 1 2 3 4 5 6
Frequency 111 196 133 51 31 10 5
% 21 36 25 9 6 2 1
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edu : Years of Education
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

411 126 22 0.96 12.03 7 8 10 12 14 16 17

lowest : 0 1 2 3 4, highest: 17 18 19 20 22

income
n missing unique

335 202 4

under $11k (158, 47%), $11-$25k (79, 24%), $25-$50k (63, 19%)
>$50k (35, 10%)

scoma : SUPPORT Coma Score based on Glasgow D3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 11 0.82 19.24 0 0 0 0 37 55 100

0 9 26 37 41 44 55 61 89 94 100
Frequency 301 50 44 19 17 43 11 6 8 6 32
% 56 9 8 4 3 8 2 1 1 1 6

charges : Hospital Charges
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

517 20 516 1 86652 11075 15180 27389 51079 100904 205562 283411

lowest : 3448 4432 4574 5555 5849
highest: 504660 538323 543761 706577 740010

totcst : Total RCC cost
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

471 66 471 1 46360 6359 8449 15412 29308 57028 108927 141569

lowest : 0 2071 2522 3191 3325
highest: 269057 269131 338955 357919 390460

totmcst : Total micro-cost
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

331 206 328 1 39022 6131 8283 14415 26323 54102 87495 111920

lowest : 0 1562 2478 2626 3421
highest: 144234 154709 198047 234876 271467

avtisst : Average TISS, Days 3–25
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

536 1 205 1 29.83 12.46 14.50 19.62 28.00 39.00 47.17 50.37

lowest : 4.000 5.667 8.000 9.000 9.500
highest: 58.500 59.000 60.000 61.000 64.000

race
n missing unique

535 2 5

white black asian other hispanic
Frequency 417 84 4 8 22
% 78 16 1 1 4



456 19 Parametric Survival Modeling and Model Approximation

meanbp : Mean Arterial Blood Pressure Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 109 1 83.28 41.8 49.0 59.0 73.0 111.0 124.4 135.0

lowest : 0 20 27 30 32, highest: 155 158 161 162 180

wblc : White Blood Cell Count Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

532 5 241 1 14.1 0.8999 4.5000 7.9749 12.3984 18.1992 25.1891 30.1873

lowest : 0.05000 0.06999 0.09999 0.14999 0.19998
highest: 51.39844 58.19531 61.19531 79.39062 100.00000

hrt : Heart Rate Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 111 1 105 51 60 75 111 126 140 155

lowest : 0 11 30 36 40, highest: 189 193 199 232 300

resp : Respiration Rate Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 45 1 23.72 8 10 12 24 32 39 40

lowest : 0 4 6 7 8, highest: 48 49 52 60 64

temp : Temperature (celcius) Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 61 1 37.52 35.50 35.80 36.40 37.80 38.50 39.09 39.50

lowest : 32.50 34.00 34.09 34.90 35.00
highest: 40.20 40.59 40.90 41.00 41.20

pafi : PaO2/(.01*FiO2) Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

500 37 357 1 227.2 86.99 105.08 137.88 202.56 290.00 390.49 433.31

lowest : 45.00 48.00 53.33 54.00 55.00
highest: 574.00 595.12 640.00 680.00 869.38

alb : Serum Albumin Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

346 191 34 1 2.668 1.700 1.900 2.225 2.600 3.100 3.400 3.800

lowest : 1.100 1.200 1.300 1.400 1.500
highest: 4.100 4.199 4.500 4.699 4.800

bili : Bilirubin Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

386 151 88 1 2.678 0.3000 0.4000 0.6000 0.8999 2.0000 6.5996 13.1743

lowest : 0.09999 0.19998 0.29999 0.39996 0.50000
highest: 22.59766 30.00000 31.50000 35.00000 39.29688

crea : Serum creatinine Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 84 1 2.232 0.6000 0.7000 0.8999 1.3999 2.5996 5.2395 7.3197

lowest : 0.3 0.4 0.5 0.6 0.7, highest: 10.4 10.6 11.2 11.6 11.8
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sod : Serum sodium Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 38 1 138.1 129 131 134 137 142 147 150

lowest : 118 120 121 126 127, highest: 156 157 158 168 175

ph : Serum pH (arterial) Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

500 37 49 1 7.416 7.270 7.319 7.380 7.420 7.470 7.510 7.529

lowest : 6.960 6.989 7.069 7.119 7.130
highest: 7.560 7.569 7.590 7.600 7.659

glucose : Glucose Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

297 240 179 1 167.7 76.0 89.0 106.0 141.0 200.0 292.4 347.2

lowest : 30 42 52 55 68, highest: 446 468 492 576 598

bun : BUN Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

304 233 100 1 38.91 8.00 11.00 16.75 30.00 56.00 79.70 100.70

lowest : 1 3 4 5 6, highest: 123 124 125 128 146

urine : Urine Output Day 3
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

303 234 262 1 2095 20.3 364.0 1156.5 1870.0 2795.0 4008.6 4817.5

lowest : 0 5 8 15 20, highest: 6865 6920 7360 7560 7750

adlp : ADL Patient Day 3
n missing unique Info Mean

104 433 8 0.87 1.577

0 1 2 3 4 5 6 7
Frequency 51 19 7 6 4 7 8 2
% 49 18 7 6 4 7 8 2

adls : ADL Surrogate Day 3
n missing unique Info Mean

392 145 8 0.89 1.86

0 1 2 3 4 5 6 7
Frequency 185 68 22 18 17 20 39 23
% 47 17 6 5 4 5 10 6

sfdm2
n missing unique

468 69 5

no(M2 and SIP pres) (134, 29%), adl>=4 (>=5 if sur) (78, 17%)
SIP>=30 (30, 6%), Coma or Intub (5, 1%), <2 mo. follow-up (221, 47%)
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adlsc : Imputed ADL Calibrated to Surrogate
n missing unique Info Mean .05 .10 .25 .50 .75 .90 .95

537 0 144 0.96 2.119 0.000 0.000 0.000 1.839 3.375 6.000 6.000

lowest : 0.0000 0.4948 0.4948 1.0000 1.1667
highest: 5.7832 6.0000 6.3398 6.4658 7.0000

Next, patterns of missing data are displayed.

plot (naclus (support[acute ,])) # Figure 19.1

The Hmisc varclus function is used to quantify and depict associations between
predictors, allowing for general nonmonotonic relationships. This is done by
using Hoeffding’s D as a similarity measure for all possible pairs of predictors
instead of the default similarity, Spearman’s ρ.

ac ← support [acute ,]

ac$dzgroup ← ac$dzgroup [drop=TRUE] # Remove unused levels

label (ac$dzgroup ) ← ' Disease Group '
attach (ac)

vc ← varclus (∼ age + sex + dzgroup + num.co + edu + income +

scoma + race + meanbp + wblc + hrt + resp +

temp + pafi + alb + bili + crea + sod + ph +

glucose + bun + urine + adlsc , sim= ' hoeffding ')
plot(vc) # Figure 19.2

19.2 Checking Adequacy of Log-Normal Accelerated
Failure Time Model

Let us check whether a parametric survival time model will fit the data, with
respect to the key prognostic factors. First, Kaplan–Meier estimates stratified
by disease group are computed, and plotted after inverse normal transforma-
tion, against log t. Parallelism and linearity indicate goodness of fit to the
log normal distribution for disease group. Then a more stringent assessment
is made by fitting an initial model and computing right-censored residuals.
These residuals, after dividing by σ̂, should all have a normal distribution
if the model holds. We compute Kaplan–Meier estimates of the distribution
of the residuals and overlay the estimated survival distribution with the the-
oretical Gaussian one. This is done overall, and then to get more stringent
assessments of fit, residuals are stratified by key predictors and plots are
produced that contain multiple Kaplan–Meier curves along with a single the-
oretical normal curve. All curves should hover about the normal distribution.
To gauge the natural variability of stratified residual distribution estimates,
the residuals are also stratified by a random number that has no bearing on
the goodness of fit.

dd ← datadist (ac)

# describe distributions of variables to rms
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Fig. 19.1 Cluster analysis showing which predictors tend to be missing on the same
patients
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Fig. 19.2 Hierarchical clustering of potential predictors using Hoeffding D as a
similarity measure. Categorical predictors are automatically expanded into dummy
variables.

options(datadist = ' dd ' )

# Generate right-censored survival time variable

years ← d.time /365.25

units (years ) ← ' Year '
S ← Surv (years , death )

# Show normal inverse Kaplan-Meier estimates

# stratified by dzgroup

survplot (npsurv (S ∼ dzgroup), conf = ' none ' ,
fun=qnorm ,logt=TRUE) # Figure 19.3
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f ← psm (S ∼ dzgroup + rcs(age ,5) + rcs(meanbp ,5),

dist= ' lognormal ' , y=TRUE)

r ← resid (f)

survplot (r, dzgroup , label.curve =FALSE)

survplot (r, age , label.curve =FALSE)

survplot (r, meanbp , label.curve =FALSE)

random ← runif(length (age )); label(random ) ← ' Random Number '
survplot (r, random , label.curve =FALSE) # Fig. 19.4

Now remove from consideration predictors that are missing in more than 0.2
of patients. Many of these were collected only for the second half of SUP-
PORT. Of those variables to be included in the model, find which ones have
enough potential predictive power to justify allowing for nonlinear relation-
ships or multiple categories, which spend more d.f. For each variable compute
Spearman ρ2 based on multiple linear regression of rank(x), rank(x)2, and the

log Survival Time in Years
−3 −2 −1 0 1 2

−2

−1

0

1

2

dzgroup=ARF/MOSF w/Sepsis

dzgroup=Coma

dzgroup=MOSF w/Malig

Fig. 19.3 Φ−1(SKM (t)) stratified by dzgroup. Linearity and semi-parallelism indi-
cate a reasonable fit to the log-normal accelerated failure time model with respect to
one predictor.

survival time, truncating survival time at the shortest follow-up for survivors
(356 days; see Section 4.1).

shortest.follow.up ← min(d.time [death ==0], na.rm =TRUE)

d.timet ← pmin (d.time , shortest.follow.up )

w ← spearman2 (d.timet ∼ age + num.co + scoma + meanbp +

hrt + resp + temp + crea + sod + adlsc +

wblc + pafi + ph + dzgroup + race , p=2)

plot (w, main = ' ' ) # Figure 19.5
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A better approach is to use the complete information in the failure and censor-
ing times by computing Somers’ Dxy rank correlation allowing for censoring.

w ← rcorrcens (S ∼ age + num.co + scoma + meanbp + hrt + resp +

temp + crea + sod + adlsc + wblc + pafi + ph +

dzgroup + race)

plot(w, main= ' ' ) # Figure 19.6

Remaining missing values are imputed using the “most normal” values, a
procedure found to work adequately for this particular study. Race is imputed
using the modal category.

# Compute number of missing values per variable

sapply (llist (age ,num.co ,scoma ,meanbp ,hrt ,resp ,temp ,crea ,sod ,

adlsc ,wblc ,pafi ,ph), function (x) sum(is.na (x)))

age num.co scoma meanbp hrt resp temp crea sod adlsc
0 0 0 0 0 0 0 0 0 0

wblc pafi ph
5 37 37
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Fig. 19.4 Kaplan-Meier estimates of distributions of normalized, right-censored
residuals from the fitted log-normal survival model. Residuals are stratified by im-
portant variables in the model (by quartiles of continuous variables), plus a random
variable to depict the natural variability (in the lower right plot). Theoretical standard
Gaussian distributions of residuals are shown with a thick solid line.
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Fig. 19.5 Generalized Spearman ρ2 rank correlation between predictors and trun-
cated survival time
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Fig. 19.6 Somers’ Dxy rank correlation between predictors and original survival
time. For dzgroup or race, the correlation coefficient is the maximum correlation from
using a dummy variable to represent the most frequent or one to represent the second
most frequent category.’,scap=’Somers’ Dxy rank correlation between predictors and
original survival time
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# Can also do naplot(naclus(support[acute ,]))

# Can also use the Hmisc naclus and naplot functions

# Impute missing values with normal or modal values

wblc.i ← impute (wblc , 9)

pafi.i ← impute (pafi , 333 .3)

ph.i ← impute (ph , 7.4)

race2 ← race

levels (race2 ) ← list (white = ' white ' ,other =levels (race )[-1])
race2 [is.na (race2 )] ← ' white '
dd ← datadist (dd , wblc.i , pafi.i , ph.i , race2 )

Now that missing values have been imputed, a formal multivariable redun-
dancy analysis can be undertaken. The Hmisc package’s redun function goes
farther than the varclus pairwise correlation approach and allows for non-
monotonic transformations in predicting each predictor from all the others.

redun (∼ crea + age + sex + dzgroup + num.co + scoma + adlsc +

race2 + meanbp + hrt + resp + temp + sod + wblc.i +

pafi.i + ph.i , nk=4)

Redundancy Analysis

redun(formula = ∼crea + age + sex + dzgroup + num.co + scoma +
adlsc + race2 + meanbp + hrt + resp + temp + sod + wblc.i +
pafi.i + ph.i, nk = 4)

n: 537 p: 16 nk: 4

Number of NAs: 0

Transformation of target variables forced to be linear

R2 cutoff: 0.9 Type: ordinary

R2 with which each variable can be predicted from all other variables:

crea age sex dzgroup num.co scoma adlsc race2 meanbp
0.133 0.246 0.132 0.451 0.147 0.418 0.153 0.151 0.178

hrt resp temp sod wblc.i pafi.i ph.i
0.258 0.131 0.197 0.135 0.093 0.143 0.171

No redundant variables

Now turn to a more efficient approach for gauging the potential of each
predictor, one that makes maximal use of failure time and censored data is to
all continuous variables to have a maximum number of knots in a log-normal
survival model. This approach must use imputation to have an adequate
sample size. A semi-saturated main effects additive log-normal model is fitted.
It is necessary to limit restricted cubic splines to 4 knots, force scoma to be
linear, and to omit ph.i in order to avoid a singular covariance matrix in
the fit.

k ← 4

f ← psm(S ∼ rcs(age ,k)+sex+dzgroup+pol(num.co ,2)+ scoma +

pol(adlsc ,2)+ race+rcs(meanbp ,k)+ rcs(hrt ,k)+
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rcs(resp ,k)+rcs(temp ,k)+ rcs(crea ,3)+ rcs(sod ,k)+

rcs(wblc.i ,k)+rcs(pafi.i ,k), dist = ' lognormal ' )
plot (anova (f)) # Figure 19.7

Figure 19.7 properly blinds the analyst to the form of effects (tests of lin-
earity). Next fit a log-normal survival model with number of parameters
corresponding to nonlinear effects determined from the partial χ2 tests in
Figure 19.7. For the most promising predictors, five knots can be allocated,
as there are fewer singularity problems once less promising predictors are
simplified.

sex
temp
race
sod

num.co
hrt

wblc.i
adlsc
resp

scoma
pafi.i
age

meanbp
crea

dzgroup

0 10 20 30

χ2 − df

Fig. 19.7 Partial χ2 statistics for association of each predictor with response from
saturated main effects model, penalized for d.f.

f ← psm(S ∼ rcs(age ,5)+ sex+dzgroup+num.co +

scoma +pol(adlsc ,2)+ race2 +rcs(meanbp ,5)+

rcs(hrt ,3)+ rcs(resp ,3)+ temp +

rcs(crea ,4)+ sod+rcs(wblc.i ,3)+ rcs(pafi.i ,4),

dist = ' lognormal ' )
print (f, latex =TRUE , coefs =FALSE )

Parametric Survival Model: Log Normal Distribution

psm(formula = S ~ rcs(age, 5) + sex + dzgroup + num.co + scoma +
pol(adlsc, 2) + race2 + rcs(meanbp, 5) + rcs(hrt, 3) + rcs(resp,
3) + temp + rcs(crea, 4) + sod + rcs(wblc.i, 3) + rcs(pafi.i,
4), dist = "lognormal")
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Model Likelihood Discrimination
Ratio Test Indexes

Obs 537 LR χ2 236.83 R2 0.594
Events 356 d.f. 30 Dxy 0.485
σ 2.230782 Pr(> χ2) < 0.0001 g 0.033

gr 1.959

a ← anova (f)

Table 19.1 Wald Statistics for S

χ2 d.f. P

age 15.99 4 0.0030
Nonlinear 0.23 3 0.9722

sex 0.11 1 0.7354
dzgroup 45.69 2 < 0.0001
num.co 4.99 1 0.0255
scoma 10.58 1 0.0011
adlsc 8.28 2 0.0159
Nonlinear 3.31 1 0.0691

race2 1.26 1 0.2624
meanbp 27.62 4 < 0.0001
Nonlinear 10.51 3 0.0147

hrt 11.83 2 0.0027
Nonlinear 1.04 1 0.3090

resp 11.10 2 0.0039
Nonlinear 8.56 1 0.0034

temp 0.39 1 0.5308
crea 33.63 3 < 0.0001
Nonlinear 21.27 2 < 0.0001

sod 0.08 1 0.7792
wblc.i 5.47 2 0.0649
Nonlinear 5.46 1 0.0195

pafi.i 15.37 3 0.0015
Nonlinear 6.97 2 0.0307

TOTAL NONLINEAR 60.48 14 < 0.0001
TOTAL 261.47 30 < 0.0001
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19.3 Summarizing the Fitted Model

First let’s plot the shape of the effect of each predictor on log survival time.
All effects are centered so that they can be placed on a common scale. This
allows the relative strength of various predictors to be judged. Then Wald
χ2 statistics, penalized for d.f., are plotted in descending order. Next, rela-
tive effects of varying predictors over reasonable ranges (survival time ratios
varying continuous predictors from the first to the third quartile) are charted.

ggplot (Predict(f, ref.zero =TRUE), vnames = ' names ' ,
sepdiscrete = ' vertical ' , anova =a) # Figure 19.8

latex (a, file = ' ' ,label = ' tab:support-anovat ' ) # Table 19.1

plot (a) # Figure 19.9

options(digits =3)

plot (summary(f), log=TRUE , main= ' ' ) # Figure 19.10

19.4 Internal Validation of the Fitted Model
Using the Bootstrap

Let us decide whether there was significant overfitting during the development
of this model, using the bootstrap.

# First add data to model fit so bootstrap can re-sample

# from the data

g ← update (f, x=TRUE , y=TRUE)

set.seed (717)

latex (validate (g, B=300), digits =2, size = ' Ssize ' )

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.49 0.51 0.46 0.05 0.43 300
R2 0.59 0.66 0.54 0.12 0.47 300
Intercept 0.00 0.00 −0.05 0.05 −0.05 300
Slope 1.00 1.00 0.90 0.10 0.90 300
D 0.48 0.55 0.42 0.13 0.35 300
U 0.00 0.00 −0.01 0.01 −0.01 300
Q 0.48 0.56 0.43 0.12 0.36 300
g 1.96 2.05 1.87 0.19 1.77 300
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Fig. 19.8 Effect of each predictor on log survival time. Predicted values have been
centered so that predictions at predictor reference values are zero. Pointwise 0.95
confidence bands are also shown. As all y-axes have the same scale, it is easy to see
which predictors are strongest.

Judging from Dxy and R2 there is a moderate amount of overfitting. The
slope shrinkage factor (0.9) is not troublesome, however. An almost unbiased
estimate of future predictive discrimination on similar patients is given by
the corrected Dxy of 0.43. This index equals the difference between the prob-
ability of concordance and the probability of discordance of pairs of predicted
survival times and pairs of observed survival times, accounting for censoring.

Next, a bootstrap overfitting-corrected calibration curve is estimated. Pa-
tients are stratified by the predicted probability of surviving one year, such
that there are at least 60 patients in each group.
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Fig. 19.9 Contribution of variables in predicting survival time in log-normal model

0.10 0.50 1.00 2.00 3.50

age − 74.5:47.9
num.co − 2:1
scoma − 37:0
adlsc − 3.38:0

meanbp − 111:59
hrt − 126:75
resp − 32:12

temp − 38.5:36.4
crea − 2.6:0.9
sod − 142:134

wblc.i − 18.2:8.1
pafi.i − 323:142

sex − female:male
dzgroup − Coma:ARF/MOSF w/Sepsis

dzgroup − MOSF w/Malig:ARF/MOSF w/Sepsis
race2 − other:white

Fig. 19.10 Estimated survival time ratios for default settings of predictors. For
example, when age changes from its lower quartile to the upper quartile (47.9y to
74.5y), median survival time decreases by more than half. Different shaded areas of
bars indicate different confidence levels (.9, 0.95, 0.99).

set.seed (717)

cal ← calibrate (g, u=1, B=300)

plot (cal , subtitles =FALSE )

cal ← calibrate (g, cmethod= ' KM ' , u=1, m=60, B=120, pr=FALSE )

plot (cal , add=TRUE ) # Figure 19.11
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Fig. 19.11 Bootstrap validation of calibration curve. Dots represent apparent cali-
bration accuracy; × are bootstrap estimates corrected for overfitting, based on bin-
ning predicted survival probabilities and computing Kaplan-Meier estimates. Black
curve is the estimated observed relationship using hare and the blue curve is the
overfitting-corrected hare estimate. The gray-scale line depicts the ideal relationship.

19.5 Approximating the Full Model

The fitted log-normal model is perhaps too complex for routine use and for
routine data collection. Let us develop a simplified model that can predict
the predicted values of the full model with high accuracy (R2 = 0.967). The
simplification is done using a fast backward step-down against the full model
predicted values.

Z ← predict(f) # X*beta hat

a ← ols(Z ∼ rcs(age ,5)+ sex+dzgroup+num.co +

scoma +pol(adlsc ,2)+ race2 +

rcs(meanbp ,5)+ rcs(hrt ,3)+ rcs(resp ,3)+

temp +rcs(crea ,4)+ sod+rcs(wblc.i ,3)+

rcs(pafi.i ,4), sigma =1)

# sigma=1 is used to prevent sigma hat from being zero when

# R2=1.0 since we start out by approximating Z with all

# component variables

fastbw (a, aics =10000) # fast backward stepdown

Deleted Chi -Sq d.f. P Residual d.f. P AIC R2
sod 0.43 1 0.512 0.43 1 0.5117 -1.57 1.000
sex 0.57 1 0.451 1.00 2 0.6073 -3.00 0.999
temp 2.20 1 0.138 3.20 3 0.3621 -2.80 0.998
race2 6.81 1 0.009 10.01 4 0.0402 2.01 0.994
wblc.i 29.52 2 0.000 39.53 6 0.0000 27.53 0.976
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num.co 30.84 1 0.000 70.36 7 0.0000 56.36 0.957
resp 54.18 2 0.000 124.55 9 0.0000 106.55 0.924
adlsc 52.46 2 0.000 177.00 11 0.0000 155.00 0.892
pafi.i 66.78 3 0.000 243.79 14 0.0000 215.79 0.851
scoma 78.07 1 0.000 321.86 15 0.0000 291.86 0.803
hrt 83.17 2 0.000 405.02 17 0.0000 371.02 0.752
age 68.08 4 0.000 473.10 21 0.0000 431.10 0.710
crea 314.47 3 0.000 787.57 24 0.0000 739.57 0.517
meanbp 403.04 4 0.000 1190.61 28 0.0000 1134.61 0.270
dzgroup 441.28 2 0.000 1631.89 30 0.0000 1571.89 0.000

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
[1,] -0.5928 0.04315 -13.74 0

Factors in Final Model

None

f.approx ← ols(Z ∼ dzgroup + rcs(meanbp ,5) + rcs(crea ,4) +

rcs(age ,5) + rcs(hrt ,3) + scoma +

rcs(pafi.i ,4) + pol(adlsc ,2)+

rcs(resp ,3), x=TRUE )

f.approx $stats

n Model L.R. d.f. R2 g Sigma
537.000 1688.225 23.000 0.957 1.915 0.370

We can estimate the variance–covariance matrix of the coefficients of the
reduced model using Equation 5.2 in Section 5.5.2. The computations below
result in a covariance matrix that does not include elements related to the
scale parameter. In the code x is the matrix T in Section 5.5.2.

V ← vcov (f,regcoef.only =TRUE) # var(full model)

X ← cbind (Intercept =1, g$x) # full model design

x ← cbind (Intercept =1, f.approx $x) # approx. model design

w ← solve (t(x) %*% x, t(x)) %*% X # contrast matrix

v ← w %*% V %*% t(w)

Let’s compare the variance estimates (diagonals of v) with variance estimates
from a reduced model that is fitted against the actual outcomes.

f.sub ← psm(S ∼ dzgroup + rcs (meanbp ,5) + rcs(crea ,4) +

rcs(age ,5) + rcs(hrt ,3) + scoma + rcs(pafi.i ,4) +

pol(adlsc ,2)+ rcs (resp ,3), dist= ' lognormal ' )

diag(v)/diag(vcov(f.sub , regcoef.only=TRUE))

Intercept dzgroup =Coma dzgroup =MOSF w/Malig
0.981 0.979 0.979

meanbp meanbp ' meanbp ' '
0.977 0.979 0.979

meanbp ' ' ' crea crea '
0.979 0.979 0.979

crea ' ' age age '
0.979 0.982 0.981
age ' ' age ' ' ' hrt
0.981 0.980 0.978
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hrt ' scoma pafi.i
0.976 0.979 0.980

pafi.i ' pafi.i ' ' adlsc
0.980 0.980 0.981

adlsc∧2 resp resp '
0.981 0.978 0.977

r ← diag (v)/diag (vcov(f.sub ,regcoef.only =TRUE ))

r[c(which.min (r), which.max (r))]

hrt ' age
0.976 0.982

The estimated variances from the reduced model are actually slightly smaller
than those that would have been obtained from stepwise variable selection
in this case, had variable selection used a stopping rule that resulted in the
same set of variables being selected. Now let us compute Wald statistics for
the reduced model.

f.approx $var ← v

latex (anova (f.approx , test= ' Chisq ' , ss=FALSE ), file = ' ' ,
label = ' tab:support-anovaa ' )

The results are shown in Table 19.2. Note the similarity of the statistics
to those found in the table for the full model. This would not be the case had
deleted variables been very collinear with retained variables.

The equation for the simplified model follows. The model is also depicted
graphically in Figure 19.12. The nomogram allows one to calculate mean and
median survival time. Survival probabilities could have easily been added as
additional axes.

# Typeset mathematical form of approximate model

latex (f.approx , file = ' ' )

E(Z) = Xβ, where

Xβ̂ =

−2.51

−1.94[Coma] − 1.75[MOSF w/Malig]

+0.068meanbp − 3.08×10
−5

(meanbp − 41.8)
3
+ + 7.9×10

−5
(meanbp − 61)

3
+

−4.91×10
−5

(meanbp − 73)
3
+ + 2.61×10

−6
(meanbp − 109)

3
+ − 1.7×10

−6
(meanbp − 135)

3
+

−0.553crea − 0.229(crea − 0.6)
3
+ + 0.45(crea − 1.1)

3
+ − 0.233(crea − 1.94)

3
+

+0.0131(crea − 7.32)
3
+

−0.0165age − 1.13×10
−5

(age − 28.5)
3
+ + 4.05×10

−5
(age − 49.5)

3
+

−2.15×10
−5

(age− 63.7)
3
+ − 2.68×10

−5
(age− 72.7)

3
+ + 1.9×10

−5
(age− 85.6)

3
+

−0.0136hrt + 6.09×10
−7

(hrt− 60)
3
+ − 1.68×10

−6
(hrt− 111)

3
+ + 1.07×10

−6
(hrt − 140)

3
+

−0.0135 scoma

+0.0161pafi.i − 4.77×10
−7

(pafi.i− 88)
3
+ + 9.11×10

−7
(pafi.i− 167)

3
+
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Table 19.2 Wald Statistics for Z

χ2 d.f. P

dzgroup 55.94 2 < 0.0001
meanbp 29.87 4 < 0.0001
Nonlinear 9.84 3 0.0200

crea 39.04 3 < 0.0001
Nonlinear 24.37 2 < 0.0001

age 18.12 4 0.0012
Nonlinear 0.34 3 0.9517

hrt 9.87 2 0.0072
Nonlinear 0.40 1 0.5289

scoma 9.85 1 0.0017
pafi.i 14.01 3 0.0029
Nonlinear 6.66 2 0.0357

adlsc 9.71 2 0.0078
Nonlinear 2.87 1 0.0904

resp 9.65 2 0.0080
Nonlinear 7.13 1 0.0076

TOTAL NONLINEAR 58.08 13 < 0.0001
TOTAL 252.32 23 < 0.0001

−5.02×10
−7

(pafi.i− 276)
3
+ + 6.76×10

−8
(pafi.i− 426)

3
+ − 0.369 adlsc + 0.0409 adlsc

2

+0.0394resp − 9.11×10
−5

(resp − 10)
3
+ + 0.000176(resp − 24)

3
+ − 8.5×10

−5
(resp − 39)

3
+

and [c] = 1 if subject is in group c, 0 otherwise; (x)+ = x if x > 0, 0
otherwise.

# Derive S functions that express mean and quantiles

# of survival time for specific linear predictors

# analytically

expected.surv ← Mean(f)

quantile.surv ← Quantile(f)

latex (expected.surv , file = ' ' , type = ' Sinput ' )

expected.surv ← function (lp = NULL ,

parms = 0.802352037606488 )

{

names (parms ) ← NULL

exp(lp + exp(2 * parms )/2)

}

latex (quantile.surv , file = ' ' , type = ' Sinput ' )

quantile.surv ← function (q = 0.5 , lp = NULL ,

parms = 0.802352037606488 )
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{

names (parms ) ← NULL

f ← function (lp, q, parms ) lp + exp(parms ) * qnorm (q)

names (q) ← format (q)

drop (exp(outer (lp, q, FUN = f, parms = parms )))

}

median.surv ← function (x) quantile.surv (lp=x)

# Improve variable labels for the nomogram

f.approx ← Newlabels (f.approx , c( ' Disease Group ' ,
' Mean Arterial BP ' , ' Creatinine ' , ' Age ' , ' Heart Rate ' ,
' SUPPORT Coma Score ' , ' PaO2/(.01 *FiO2) ' , ' ADL ' ,
' Resp. Rate ' ))

nom ←
nomogram (f.approx ,

pafi.i =c(0, 50, 100, 200, 300, 500, 600, 700, 800,

900),

fun=list( ' Median Survival Time '=median.surv ,

' Mean Survival Time ' =expected.surv),

fun.at =c(.1 ,.25 ,.5 ,1,2,5,10,20 ,40))

plot(nom , cex.var =1, cex.axis =.75 , lmgp=.25)

# Figure 19.12

19.6 Problems

Analyze the Mayo Clinic PBC dataset.

1. Graphically assess whether Weibull (extreme value), exponential, log-
logistic, or log-normal distributions will fit the data, using a few apparently
important stratification factors.

2. For the best fitting parametric model from among the four examined,
fit a model containing several sensible covariables, both categorical and
continuous. Do a Wald test for whether each factor in the model has an
association with survival time, and a likelihood ratio test for the simulta-
neous contribution of all predictors. For classification factors having more
than two levels, be sure that the Wald test has the appropriate degrees
of freedom. For continuous factors, verify or relax linearity assumptions.
If using a Weibull model, test whether a simpler exponential model would
be appropriate. Interpret all estimated coefficients in the model. Write the
full survival model in mathematical form. Generate a predicted survival
curve for a patient with a given set of characteristics.

See [361] for an analysis of this dataset using linear splines in time and in the
covariables.
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Chapter 20

Cox Proportional Hazards Regression
Model

20.1 Model

20.1.1 Preliminaries

The Cox proportional hazards model132 is the most popular model for the
analysis of survival data. It is a semiparametric model; it makes a parametric 1

assumption concerning the effect of the predictors on the hazard function,
but makes no assumption regarding the nature of the hazard function λ(t)
itself. The Cox PH model assumes that predictors act multiplicatively on the
hazard function but does not assume that the hazard function is constant (i.e.,
exponential model), Weibull, or any other particular form. The regression
portion of the model is fully parametric; that is, the regressors are linearly
related to log hazard or log cumulative hazard. In many situations, either
the form of the true hazard function is unknown or it is complex, so the
Cox model has definite advantages. Also, one is usually more interested in
the effects of the predictors than in the shape of λ(t), and the Cox approach
allows the analyst to essentially ignore λ(t), which is often not of primary
interest.

The Cox PH model uses only the rank ordering of the failure and censoring
times and thus is less affected by outliers in the failure times than fully
parametric methods. The model contains as a special case the popular log-
rank test for comparing survival of two groups. For estimating and testing
regression coefficients, the Cox model is as efficient as parametric models
(e.g., Weibull model with PH) even when all assumptions of the parametric
model are satisfied.171

When a parametric model’s assumptions are not true (e.g., when a Weibull
model is used and the population is not from a Weibull survival distribution
so that the choice of model is incorrect), the Cox analysis is more efficient

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7 20
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than the parametric analysis. As shown below, diagnostics for checking Cox
model assumptions are very well developed.

20.1.2 Model Definition

The Cox PH model is most often stated in terms of the hazard function:

λ(t|X) = λ(t) exp(Xβ). (20.1)

We do not include an intercept parameter in Xβ here. Note that this is
identical to the parametric PH model stated earlier. There is an important
difference, however, in that now we do not assume any specific shape for λ(t).
For the moment, we are not even interested in estimating λ(t). The reason
for this departure from the fully parametric approach is due to an ingenious
conditional argument by Cox.132 Cox argued that when the PH model holds,
information about λ(t) is not very useful in estimating the parameters of
primary interest, β. By special conditioning in formulating the log likelihood
function, Cox showed how to derive a valid estimate of β that does not require
estimation of λ(t) as λ(t) dropped out of the new likelihood function. Cox’s
derivation focuses on using the information in the data that relates to the
relative hazard function exp(Xβ).

20.1.3 Estimation of β

Cox’s derivation of an estimator of β can be loosely described as follows. Let
t1 < t2 < . . . < tk represent the unique ordered failure times in the sample of
n subjects; assume for now that there are no tied failure times (tied censoring
times are allowed) so that k = n. Consider the set of individuals at risk of
failing an instant before failure time ti. This set of individuals is called the
risk set at time ti, and we use Ri to denote this risk set. Ri is the set of
subjects j such that the subject had not failed or been censored by time ti;
that is, the risk set Ri includes subjects with failure/censoring time Yj ≥ ti.

The conditional probability that individual i is the one that failed at ti,
given that the subjects in the set Ri are at risk of failing, and given further
that exactly one failure occurs at ti, is

Prob{subject i fails at ti|Ri and one failure at ti} =

Prob{subject i fails at ti|Ri}
Prob{ one failure at ti|Ri} (20.2)

using the rules of conditional probability. This conditional probability equals

λ(ti) exp(Xiβ)∑
j∈Ri

λ(ti) exp(Xjβ)
=

exp(Xiβ)∑
j∈Ri

exp(Xjβ)
=

exp(Xiβ)∑
Yj≥ti

exp(Xjβ)
(20.3)
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independent of λ(t). To understand this likelihood, consider a special case
where the predictors have no effect; that is, β = 0 [93, pp. 48–49]. Then
exp(Xiβ) = exp(Xjβ) = 1 and Prob{subject i is the subject that failed at
ti|Ri and one failure occurred at ti} is 1/ni where ni is the number of subjects
at risk at time ti.

By arguing that these conditional probabilities are themselves condition-
ally independent across the different failure times, a total likelihood can be
computed by multiplying these individual likelihoods over all failure times.
Cox termed this a partial likelihood for β:

L(β) =
∏

Yi uncensored

exp(Xiβ)∑
Yj≥Yi

exp(Xjβ)
. (20.4)

The log partial likelihood is

logL(β) =
∑

Yi uncensored

{Xiβ − log[
∑

Yj≥Yi

exp(Xjβ)]}. (20.5)

Cox and others have shown that this partial log likelihood can be treated as
an ordinary log likelihood to derive valid (partial) MLEs of β. Note that this
log likelihood is unaffected by the addition of a constant to any or all of the
Xs. This is consistent with the fact that an intercept term is unnecessary and
cannot be estimated since the Cox model is a model for the relative hazard
and does not directly estimate the underlying hazard λ(t).

When there are tied failure times in the sample, the true partial log likeli-
hood function involves permutations so it can be time-consuming to compute.
When the number of ties is not large, Breslow70 has derived a satisfactory
approximate log likelihood function. The formula given above, when applied
without modification to samples containing ties, actually uses Breslow’s ap-
proximation. If there are ties so that k < n and t1, . . . , tk denote the unique
failure times as we originally intended, Breslow’s approximation is written as

logL(β) =

k∑
i=1

{Siβ − di log[
∑
Yj≥ti

exp(Xjβ)]}, (20.6)

where Si =
∑

j∈Di
Xj, Di is the set of indexes j for subjects failing at time

ti, and di is the number of failures at ti.
Efron171 derived another approximation to the true likelihood that is sig-

nificantly more accurate than the Breslow approximation and often yields
estimates that are very close to those from the more cumbersome permuta-
tion likelihood:288

logL(β) =

k∑
i=1

{Siβ −
di∑
j=1

log[
∑
Yj≥ti

exp(Xjβ)

− j − 1

di

∑
l∈Di

exp(Xlβ)]}. (20.7)
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In the special case when all tied failure times are from subjects with iden-
tical Xiβ, the Efron approximation yields the exact (permutation) marginal
likelihood (Therneau, personal communication, 1993).

Kalbfleisch and Prentice330 showed that Cox’s partial likelihood, in the
absence of predictors that are functions of time, is a marginal distribution of
the ranks of the failure/censoring times.

See Therneau and Grambsch604 and Huang and Harrington310 for descrip-
tions of penalized partial likelihood estimation methods for improving mean
squared error of estimates of β in a similar fashion to what was discussed in
Section 9.10.

20.1.4 Model Assumptions and Interpretation
of Parameters

The Cox PH regression model has the same assumptions as the parametric
PH model except that no assumption is made regarding the shape of the
underlying hazard or survival functions λ(t) and S(t). The Cox PH model
assumes, in its most basic form, linearity and additivity of the predictors
with respect to log hazard or log cumulative hazard. It also assumes the PH
assumption of no time by predictor interactions; that is, the predictors have
the same effect on the hazard function at all values of t. The relative hazard
function exp(Xβ) is constant through time and the survival functions for
subjects with different values of X are powers of each other. If, for example,
the hazard of death at time t for treated patients is half that of control
patients at time t, this same hazard ratio is in effect at any other time point.
In other words, treated patients have a consistently better hazard of death
over all follow-up time.

The regression parameters are interpreted the same as in the parametric
PH model. The only difference is the absence of hazard shape parameters
in the model, since the hazard shape is not estimated in the Cox partial
likelihood procedure.

20.1.5 Example

Consider again the rat vaginal cancer data from Section 18.3.6. Figure 20.1
displays the nonparametric survival estimates for the two groups along with
estimates derived from the Cox model (by a method discussed later).

require(rms)
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group ← c(rep( ' Group 1 ' ,19), rep( ' Group 2 ' ,21))
group ← factor (group )

dd ← datadist (group ); options(datadist = ' dd ' )
days ←

c(143 ,164 ,188 ,188 ,190 ,192 ,206 ,209 ,213 ,216 ,220 ,227 ,230 ,

234 ,246 ,265 ,304 ,216 ,244 ,142 ,156 ,163 ,198 ,205 ,232 ,232 ,

233 ,233 ,233 ,233 ,239 ,240 ,261 ,280 ,280 ,296 ,296 ,323 ,204 ,344)

death ← rep (1,40)

death [c(18 ,19 ,39 ,40)] ← 0

units (days ) ← ' Day '
df ← data.frame (days , death , group )

S ← Surv (days , death )

f ← npsurv (S ∼ group , type= ' fleming ' )
for(meth in c( ' exact ' , ' breslow ' , ' efron ' )) {

g ← cph(S ∼ group , method =meth , surv =TRUE , x=TRUE , y=TRUE)

# print(g) to see results

}

f.exp ← psm(S ∼ group , dist= ' exponential ' )
fw ← psm(S ∼ group , dist= ' weibull ' )
phform ← pphsm (fw)

co ← gray(c(0, .8))

survplot (f, lty=c(1, 1), lwd=c(1, 3), col =co ,

label.curves=FALSE , conf= ' none ' )
survplot (g, lty=c(3, 3), lwd=c(1, 3), col =co , # Efron approx.

add =TRUE , label.curves=FALSE , conf.type = ' none ' )
legend (c(2, 160), c(.38 , .54),

c( ' Nonparametric Estimates ' , ' Cox-Breslow Estimates ' ),
lty=c(1, 3), cex=.8, bty= ' n ' )

legend (c(2, 160), c(.18 , .34), cex=.8 ,

c( ' Group 1 ' , ' Group 2 '), lwd=c(1,3), col =co, bty = 'n ' )

The predicted survival curves from the fitted Cox model are in good agree-
ment with the nonparametric estimates, again verifying the PH assumption
for these data. The estimates of the group effect from a Cox model (using the
exact likelihood since there are ties, along with both Efron’s and Breslow’s
approximations) as well as from a Weibull model and an exponential model
are shown in Table 20.1. The exponential model, with its constant hazard,
cannot accommodate the long early period with no failures. The group pre-
dictor was coded as X1 = 0 and X1 = 1 for Groups 1 and 2, respectively. For
this example, the Breslow likelihood approximation resulted in β̂ closer to
that from maximizing the exact likelihood. Note how the group effect (47%
reduction in hazard of death by the exact Cox model) is underestimated by
the exponential model (9% reduction in hazard). The hazard ratio from the
Weibull fit agrees with the Cox fit.
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Fig. 20.1 Altschuler–Nelson–Fleming–Harrington nonparametric survival estimates
and Cox-Breslow estimates for rat data508

Table 20.1 Group effects using three versions of the partial likelihood and three
parametric models

Model Group Regression S.E. Wald Group 2:1
Coefficient P -Value Hazard Ratio

Cox (Exact) −0.629 0.361 0.08 0.533
Cox (Efron) −0.569 0.347 0.10 0.566
Cox (Breslow) −0.596 0.348 0.09 0.551
Exponential −0.093 0.334 0.78 0.911
Weibull (AFT) 0.132 0.061 0.03 –
Weibull (PH) −0.721 – – 0.486

20.1.6 Design Formulations

Designs are no different for the Cox PH model than for other models except
for one minor distinction. Since the Cox model does not have an intercept
parameter, the group omitted from X in an ANOVA model will go into the
underlying hazard function. As an example, consider a three-group model for
treatments A, B, and C. We use the two dummy variables

X1 = 1 if treatment is A, 0 otherwise, and

X2 = 1 if treatment is B, 0 otherwise.
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The parameter β1 is the A : C log hazard ratio or difference in hazards at
any time t between treatment A and treatment C. β2 is the B : C log hazard
ratio (exp(β2) is the B : C hazard ratio, etc.). Since there is no intercept
parameter, there is no direct estimate of the hazard function for treatment
C or any other treatment; only relative hazards are modeled.

As with all regression models, a Wald, score, or likelihood ratio test for
differences between any treatments is conducted by testing H0 : β1 = β2 = 0
with 2 d.f.

20.1.7 Extending the Model by Stratification

A unique feature of the Cox PH model is its ability to adjust for factors that
are not modeled. Such factors usually take the form of polytomous stratifi-
cation factors that either are too difficult to model or do not satisfy the PH
assumption. For example, a subject’s occupation or clinical study site may
take on dozens of levels and the sample size may not be large enough to
model this nominal variable with dozens of dummy variables. Also, one may
know that a certain predictor (either a polytomous one or a continuous one
that is grouped) may not satisfy PH and it may be too complex to model the
hazard ratio for that predictor as a function of time.

The idea behind the stratified Cox PH model is to allow the form of the
underlying hazard function to vary across levels of the stratification factors.
A stratified Cox analysis ranks the failure times separately within strata.
Suppose that there are b strata indexed by j = 1, 2, . . . , b. Let C denote the
stratum identification. For example, C = 1 or 2 may stand for the female and
male strata, respectively. The stratified PH model is

λ(t|X,C = j) = λj(t) exp(Xβ), or

S(t|X,C = j) = Sj(t)
exp(Xβ). (20.8)

Here λj(t) and Sj(t) are, respectively, the underlying hazard and survival
functions for the jth stratum. The model does not assume any connection
between the shapes of these functions for different strata.

In this stratified analysis, the data are stratified by C but, by default, a
common vector of regression coefficients is fitted across strata. These common
regression coefficients can be thought of as “pooled” estimates. For example,
a Cox model with age as a (modeled) predictor and sex as a stratification
variable essentially estimates the common slope of age by pooling information
about the age effect over the two sexes. The effect of age is adjusted by sex
differences, but no assumption is made about how sex affects survival. There
is no PH assumption for sex. Levels of the stratification factor C can represent
multiple stratification factors that are cross-classified. Since these factors are
not modeled, no assumption is made regarding interactions among them.



482 20 Cox Proportional Hazards Regression Model

At first glance it appears that stratification causes a loss of efficiency.
However, in most cases the loss is small as long as the number of strata is not
too large with regard to the total number of events. A stratum that contains
no events contributes no information to the analysis, so such a situation
should be avoided if possible.

The stratified or “pooled” Cox model is fitted by formulating a separate
log likelihood function for each stratum, but with each log likelihood having a
common β vector. If different strata are made up of independent subjects, the
strata are independent and the likelihood functions are multiplied together
to form a joint likelihood over strata. Log likelihood functions are thus added
over strata. This total log likelihood function is maximized once to derive a
pooled or stratified estimate of β and to make an inference about β. No infer-
ence can be made about the stratification factors. They are merely “adjusted
for.”

Stratification is useful for checking the PH and linearity assumptions for
one or more predictors. Predicted Cox survival curves (Section 20.2) can
be derived by modeling the predictors in the usual way, and then stratified
survival curves can be estimated by using those predictors as stratification
factors. Other factors for which PH is assumed can be modeled in both in-
stances. By comparing the modeled versus stratified survival estimates, a
graphical check of the assumptions can be made. Figure 20.1 demonstrates
this method although there are no other factors being adjusted for and strat-
ified Cox estimates are KM estimates. The stratified survival estimates are
derived by stratifying the dataset to obtain a separate underlying survival
curve for each stratum, while pooling information across strata to estimate
coefficients of factors that are modeled.

Besides allowing a factor to be adjusted for without modeling its effect,
a stratified Cox PH model can also allow a modeled factor to interact with
strata.143, 180, 603 For the age–sex example, consider the following model with
X1 denoting age and C = 1, 2 denoting females and males, respectively.

λ(t|X1, C = 1) = λ1(t) exp(β1X1)

λ(t|X1, C = 2) = λ2(t) exp(β1X1 + β2X1). (20.9)

This model can be simplified to

λ(t|X1, C = j) = λj(t) exp(β1X1 + β2X2) (20.10)

if X2 is a product interaction term equal to 0 for females and X1 for males.
The β2 parameter quantifies the interaction between age and sex: it is the
difference in the age slope between males and females. Thus the interaction
between age and sex can be quantified and tested, even though the effect of
sex is not modeled!

The stratified Cox model is commonly used to adjust for hospital differ-
ences in a multicenter randomized trial. With this method, one can allow
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for differences in outcome between q hospitals without estimating q − 1 pa-
rameters. Treatment × hospital interactions can be tested efficiently without
computational problems by estimating only the treatment main effect, after
stratifying on hospital. The score statistic (with q − 1 d.f.) for testing q − 1
treatment × hospital interaction terms is then computed (“residual χ2” in a
stepwise procedure with treatment × hospital terms as candidate predictors).

The stratified Cox model turns out to be a generalization of the condi-
tional logistic model for analyzing matched set (e.g., case-control) data.71

Each stratum represents a set, and the number of “failures” in the set is the
number of “cases” in that set. For r : 1 matching (r may vary across sets), the
Breslow70 likelihood may be used to fit the conditional logistic model exactly.
For r : m matching, an exact Cox likelihood must be computed.

20.2 Estimation of Survival Probability and Secondary
Parameters

As discussed above, once a partial log likelihood function is derived, it is
used as if it were an ordinary log likelihood function to estimate β, estimate
standard errors of β, obtain confidence limits, and make statistical tests. Point
and interval estimates of hazard ratios are obtained in the same fashion as
with parametric PH models discussed earlier.

The Cox model and parametric survival models differ markedly in how one
estimates S(t|X). Since the Cox model does not depend on a choice of the
underlying survival function S(t), fitting a Cox model does not result directly
in an estimate of S(t|X). However, several authors have derived secondary
estimates of S(t|X). One method is the discrete hazard model of Kalbfleisch
and Prentice [331, pp. 36–37, 84–87]. Their estimator has two advantages: it
is an extension of the Kaplan–Meier estimator and is identical to SKM if the
estimated value of β happened to be zero or there are no covariables being
modeled; and it is not affected by the choice of what constitutes a “standard”
subject having the underlying survival function S(t). In other words, it would
not matter whether the standard subject is one having age equal to the mean
age in the sample or the median age in the sample; the estimate of S(t|X)
as a function of X = age would be the same (this is also true of another
estimator which follows).

Let t1, t2, . . . , tk denote the unique failure times in the sample. The discrete
hazard model assumes that the probability of failure is greater than zero only
at observed failure times. The probability of failure at time tj given that the
subject has not failed before that time is also the hazard of failure at time
tj since the model is discrete. The hazard at tj for the standard subject is
written λj . Letting αj = 1 − λj , the underlying survival function can be
written
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S(ti) =

i−1∏
j=0

αj , i = 1, 2, . . . , k (α0 = 1). (20.11)

A separate equation can be solved using the Newton–Raphson method to
estimate each αj . If there is only one failure at time ti, there is a closed-form
solution for the maximum likelihood estimate of αi, ai, letting j denote the
subject who failed at ti. β̂ denotes the partial MLE of β.

α̂i = [1− exp(Xj β̂)/
∑

Ym≥Yj

exp(Xmβ̂)]exp(−Xj β̂). (20.12)

If β̂ = 0, this formula reduces to a conditional probability component of the
product-limit estimator, 1− (1/number at risk).

The estimator of the underlying survival function is

Ŝ(t) =
∏

j:tj≤t

α̂j , (20.13)

and the estimate of the probability of survival past time t for a subject with
predictor values X is

Ŝ(t|X) = Ŝ(t)exp(Xβ̂). (20.14)

When the model is stratified, estimation of the αj and S is carried out sep-

arately within each stratum once β̂ is obtained by pooling over strata. The
stratified survival function estimates can be thought of as stratified Kaplan–
Meier estimates adjusted for X , with the adjustment made by assuming PH
and linearity. As mentioned previously, these stratified adjusted survival es-
timates are useful for checking model assumptions and for providing a simple
way to incorporate factors that violate PH.

The stratified estimates are also useful in themselves as descriptive statis-
tics without making assumptions about a major factor. For example, in a
study from Califf et al.88 to compare medical therapy with coronary artery
bypass grafting (CABG), the model was stratified by treatment but adjusted
for a variety of baseline characteristics by modeling. These adjusted survival
estimates do not assume a form for the effect of surgery. Figure 20.2 displays
unadjusted (Kaplan–Meier) and adjusted survival curves, with baseline pre-
dictors adjusted to their mean levels in the combined sample. Notice that
valid adjusted survival estimates are obtained even though the curves cross
(i.e., PH is violated for the treatment variable). These curves are essentially
product limit estimates with respect to treatment and Cox PH estimates with
respect to the baseline descriptor variables.

The Kalbfleisch–Prentice discrete underlying hazard model estimates of
the αj are one minus estimates of the hazard function at the discrete failure
times. However, these estimated hazard functions are usually too “noisy” to
be useful unless the sample size is very large or the failure times have been
grouped (say by rounding).
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Fig. 20.2 Unadjusted (Kaplan–Meier) and adjusted (Cox–Kalbfleisch–Prentice) es-
timates of survival. Left, Kaplan–Meier estimates for patients treated medically and
surgically at Duke University Medical Center from November 1969 through December
1984. These survival curves are not adjusted for baseline prognostic factors. Right,
survival curves for patients treated medically or surgically after adjusting for all
known important baseline prognostic characteristics.88

Just as Kalbfleisch and Prentice have generalized the Kaplan–Meier es-
timator to allow for covariables, Breslow70 has generalized the Altschuler–
Nelson–Aalen–Fleming–Harrington estimator to allow for covariables. Using
the notation in Section 20.1.3, Breslow’s estimate is derived through an esti-
mate of the cumulative hazard function:

Λ̂(t) =
∑
i:ti<t

di∑
Yi≥ti

exp(Xiβ̂)
. (20.15)

For any X , the estimates of Λ and S are

Λ̂(t|X) = Λ̂(t) exp(Xβ̂)

Ŝ(t|X) = exp[−Λ̂(t) exp(Xβ̂)]. (20.16)

More asymptotic theory has been derived from the Breslow estimator than
for the Kalbfleisch–Prentice estimator. Another advantage of the Breslow
estimator is that it does not require iterative computations for di > 1. Law-
less [382, p. 362] states that the two survival function estimators differ little
except in the right-hand tail when all dis are unity. Like the Kalbfleisch–
Prentice estimator, the Breslow estimator is invariant under different choices
of “standard subjects” for the underlying survival S(t). 2

Somewhat complex formulas are available for computing confidence limits
of Ŝ(t|X).615 3
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20.3 Sample Size Considerations

One way of estimating the minimum sample size for a Cox model analy-
sis aimed at estimating survival probabilities is to consider the simplest case
where there are no covariates. Thus the problem reduces to using the Kaplan-
Meier estimate to estimate S(t). Let’s further simplify things to assume there
is no censoring. Then the Kaplan-Meier estimate is just one minus the em-
pirical cumulative distribution function. By the Dvoretzky-Kiefer-Wolfowitz
inequality, the maximum absolute error in an empirical distribution function
estimate of the true continuous distribution function is less than or equal to
ε with probability of at least 1 − 2e−2nε2. For the probability to be at least
0.95, n = 184. Thus in the case of no censoring, one needs 184 subjects to
estimate the survival curve to within a margin of error of 0.1 everywhere.
To estimate the subject-specific survival curves (S(t|X)) will require greater
sample sizes, as will having censored data. It is a fair approximation to think
of 184 as the needed number of subjects suffering the event or being censored
“late.”

Turning to estimation of a hazard ratio for a single binary predictor X
that has equal numbers of X = 0 and X = 1, if the total sample size is n
and the number of events in the two categories are respectively e0 and e1,
the variance of the log hazard ratio is approximately v = 1

e0
+ 1

e1
. Letting z

denote the 1− α/2 standard normal critical value, the multiplicative margin
of error (MMOE) with confidence 1 − α is given by exp(z

√
v). To achieve

a MMOE of 1.2 in estimating eβ̂ with equal numbers of events in the two
groups and α = 0.05 requires a total of 462 events.

20.4 Test Statistics

Wald, score, and likelihood ratio statistics are useful and valid for drawing
inferences about β in the Cox model. The score test deserves special mention
here. If there is a single binary predictor in the model that describes two
groups, the score test for assessing the importance of the binary predictor
is virtually identical to the Mantel–Haenszel log-rank test for comparing the
two groups. If the analysis is stratified for other (nonmodeled) factors, the
score test from a stratified Cox model is equivalent to the corresponding
stratified log-rank test. Of course, the likelihood ratio or Wald tests could
also be used in this situation, and in fact the likelihood ratio test may be
better than the score test (i.e., type I errors by treating the likelihood ratio
test statistic as having a χ2 distribution may be more accurate than using
the log-rank statistic).

The Cox model can be thought of as a generalization of the log-rank pro-
cedure since it allows one to test continuous predictors, perform simultaneous
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tests of various predictors, and adjust for other continuous factors without
grouping them. Although a stratified log-rank test does not make assump-
tions regarding the effect of the adjustment (stratifying) factors, it makes the
same assumption (i.e., PH) as the Cox model regarding the treatment effect
for the statistical test of no difference in survival between groups.

20.5 Residuals

Therneau et al.605 discussed four types of residuals from the Cox model:
martingale, score, Schoenfeld, and deviance. The first three have been proven
to be very useful, as indicated in Table 20.2. 4

Table 20.2 Types of residuals for the Cox model

Residual Purposes

Martingale Assessing adequacy of a hypothesized predictor
transformation. Graphing an estimate of a
predictor transformation (Section 20.6.1).

Score Detecting overly influential observations
(Section 20.9). Robust estimate of

covariance matrix of β̂ (Section 9.5).410

Schoenfeld Testing PH assumption (Section 20.6.2).
Graphing estimate of hazard ratio function
(Section 20.6.2).

20.6 Assessment of Model Fit

As stated before, the Cox model makes the same assumptions as the para-
metric PH model except that it does not assume a given shape for λ(t) or
S(t). Because the Cox PH model is so widely used, methods of assessing its fit
are dealt with in more detail than was done with the parametric PH models.

20.6.1 Regression Assumptions

Regression assumptions (linearity, additivity) for the PH model are displayed
in Figures 18.3 and 18.5. As mentioned earlier, the regression assumptions can
be verified by stratifying by X and examining log Λ̂(t|X) or log[ΛKM(t|X)]
estimates as a function of X at fixed time t. However, as was pointed out
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in logistic regression, the stratification method is prone to problems of high
variability of estimates. The sample size must be moderately large before
estimates are precise enough to observe trends through the “noise.” If one
wished to divide the sample by quintiles of age and 15 events were thought to
be needed in each stratum to derive a reliable estimate of log[ΛKM(2 years)],
there would need to be 75 events in the entire sample. If the Kaplan–Meier
estimates were needed to be adjusted for another factor that was binary, twice
as many events would be needed to allow the sample to be stratified by that
factor.

Figure 20.3 displays Kaplan–Meier three-year log cumulative hazard esti-
mates stratified by sex and decile of age. The simulated sample consists of
2000 hypothetical subjects (389 of whom had events), with 1174 males (146
deaths) and 826 females (243 deaths). The sample was drawn from a pop-
ulation with a known survival distribution that is exponential with hazard
function

λ(t|X1, X2) = .02 exp[.8X1 + .04(X2 − 50)], (20.17)

where X1 represents the sex group (0 = male, 1 = female) and X2 age in
years, and censoring is uniform. Thus for this population PH, linearity, and
additivity hold. Notice the amount of variability and wide confidence limits
in the stratified nonparametric survival estimates.

n ← 2000

set.seed (3)

age ← 50 + 12 * rnorm (n)

label (age) ← ' Age '
sex ← factor (1 + (runif (n) ≤ .4), 1:2, c( ' Male ' , ' Female ' ))
cens ← 15 * runif (n)

h ← .02 * exp(.04 * (age - 50) + .8 * (sex == ' Female ' ))
ft ← -log (runif (n)) / h

e ← ifelse (ft ≤ cens , 1, 0)

print (table (e))

e
0 1

1611 389

ft ← pmin(ft , cens)

units (ft) ← ' Year '
Srv ← Surv(ft, e)

age.dec ← cut2(age , g=10, levels.mean =TRUE)

label (age.dec ) ← ' Age '
dd ← datadist (age , sex , age.dec ); options (datadist = ' dd ')
f.np ← cph(Srv ∼ strat(age.dec ) + strat(sex), surv=TRUE)

# surv=TRUE speeds up computations, and confidence limits when

# there are no covariables are still accurate.

p ← Predict (f.np , age.dec , sex , time=3, loglog =TRUE)

# Treat age.dec as a numeric variable (means within deciles)

p$age.dec ← as.numeric ( as.character(p$age.dec ))

ggplot (p, ylim=c(-5 , -.5 ))
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Fig. 20.3 Kaplan–Meier log Λ estimates by sex and deciles of age, with 0.95 confi-
dence limits. Solid line is for males, dashed line for females.

As with the logistic model and other regression models, the restricted cubic
spline function is an excellent tool for modeling the regression relationship
with very few assumptions. A four-knot spline Cox PH model in two variables
(X1, X2) that assumes linearity in X1 and no X1×X2 interaction is given by

λ(t|X) = λ(t) exp(β1X1 + β2X2 + β3X
′
2 + β4X

′′
2 ),

= λ(t) exp(β1X1 + f(X2)), (20.18)

where X ′
2 and X ′′

2 are spline component variables as described earlier and
f(X2) is the spline function or spline transformation of X2 given by

f(X2) = β2X2 + β3X
′
2 + β4X

′′
2 . (20.19)

In linear form the Cox model without assuming linearity in X2 is

log λ(t|X) = logλ(t) + β1X1 + f(X2). (20.20)

By computing partial MLEs of β2, β3, and β4, one obtains the estimated
transformation of X2 that yields linearity in log hazard or log cumulative
hazard.

A similar model that does not assume PH in X1 is the Cox model stratified
on X1. Letting the stratification factor be C = X1, this model is
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logλ(t|X2, C = j) = logλj(t) + β1X2 + β2X
′
2 + β3X

′′
2

= logλj(t) + f(X2). (20.21)

This model does assume no X1 ×X2 interaction.
Figure 20.4 displays the estimated spline function relating age and sex to

log[Λ(3)] in the simulated dataset, using the additive model stratified on sex.

f.noia ← cph(Srv ∼ rcs(age ,4) + strat (sex), x=TRUE , y=TRUE)

# Get accurate C.L. for any age by specifying x=TRUE y=TRUE

# Note : for evaluating shape of regression , we would not

# ordinarily bother to get 3-year survival probabilities -

# would just use X * beta

# We do so here to use same scale as nonparametric estimates

w ← latex (f.noia , inline =TRUE , digits =3)

latex (anova (f.noia ), table.env =FALSE , file = ' ' )

χ2 d.f. P

age 72.33 3 < 0.0001
Nonlinear 0.69 2 0.7067

TOTAL 72.33 3 < 0.0001

p ← Predict(f.noia , age , sex , time =3, loglog =TRUE)

ggplot (p, ylim =c(-5 , -.5 ))
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Fig. 20.4 Cox PH model stratified on sex, using spline function for age, no inter-
action. 0.95 confidence limits also shown. Solid line is for males, dashed line is for
females.
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A formal test of the linearity assumption of the Cox PH model in the
above example is obtained by testing H0 : β2 = β3 = 0. The χ2 statistic with
2 d.f. is 0.69, P = 0.7. The fitted equation, after simplifying the restricted
cubic spline to simpler (unrestricted) form, is Xβ̂ = −1.46 + 0.0255age +
2.59×10−5(age−30.3)3−0.000101(age−45.1)3++9.73×10−5(age−54.6)3+−
2.22 × 10−5(age− 69.6)3+. Notice that the spline estimates are closer to the
true linear relationships than were the Kaplan–Meier estimates, and the con-
fidence limits are much tighter. The spline estimates impose a smoothness
on the relationship and also use more information from the data by treating
age as a continuous ordered variable. Also, unlike the stratified Kaplan–Meier
estimates, the modeled estimates can make the assumption of no age × sex
interaction. When this assumption is true, modeling effectively boosts the
sample size in estimating a common function for age across both sex groups.
Of course, this assumption can be tested and interactions can be modeled if
necessary.

A Cox model that still does not assume PH for X1 = C but which allows
for an X1 ×X2 interaction is

logλ(t|X2, C = j) = logλj(t) + β1X2 + β2X
′
2 + β3X

′′
2

+ β4X1X2 + β5X1X
′
2 (20.22)

+ β6X1X
′′
2 .

This model allows the relationship between X2 and log hazard to be a smooth
nonlinear function and the shape of the X2 effect to be completely different
for each level of X1 if X1 is dichotomous. Figure 20.5 displays a fit of this
model at t = 3 years for the simulated dataset.

f.ia ← cph(Srv ∼ rcs(age ,4) * strat (sex), x=TRUE , y=TRUE ,

surv =TRUE)

w ← latex (f.ia , inline =TRUE , digits =3)

latex (anova (f.ia ), table.env =FALSE , file = ' ' )

χ2 d.f. P
age (Factor+Higher Order Factors) 72.82 6 < 0.0001
All Interactions 1.05 3 0.7886
Nonlinear (Factor+Higher Order Factors) 1.80 4 0.7728

age × sex (Factor+Higher Order Factors) 1.05 3 0.7886
Nonlinear 1.05 2 0.5911
Nonlinear Interaction : f(A,B) vs. AB 1.05 2 0.5911

TOTAL NONLINEAR 1.80 4 0.7728
TOTAL NONLINEAR + INTERACTION 1.80 5 0.8763
TOTAL 72.82 6 < 0.0001

p ← Predict(f.ia , age , sex , time =3, loglog =TRUE )

ggplot (p, ylim =c(-5 , -.5 ))
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Fig. 20.5 Cox PH model stratified on sex, with interaction between age spline and
sex. 0.95 confidence limits are also shown. Solid line is for males, dashed line for
females.

The fitted equation is Xβ̂ = −1.8+0.0493age−2.15×10−6(age−30.3)3+−
2.82×10−5(age−45.1)3++5.18×10−5(age−54.6)3+−2.15×10−5(age−69.6)3++
[Female][−0.0366age + 4.29 × 10−5(age − 30.3)3+ − 0.00011(age − 45.1)3+ +
6.74× 10−5(age− 54.6)3+− 2.32× 10−7(age− 69.6)3+]. The test for interaction
yielded χ2 = 1.05 with 3 d.f., P = 0.8. The simultaneous test for linearity
and additivity yielded χ2 = 1.8 with 5 d.f., P = 0.9. Note that allowing the
model to be very flexible (not assuming linearity in age, additivity between
age and sex, and PH for sex) still resulted in estimated regression functions
that are very close to the true functions. However, confidence limits in this
unrestricted model are much wider.

Figure 20.6 displays the estimated relationship between left ventricular
ejection fraction (LVEF) and log hazard ratio for cardiovascular death in a
sample of patients with significant coronary artery disease. The relationship
is estimated using three knots placed at quantiles 0.05, 0.5, and 0.95 of LVEF.
Here there is significant nonlinearity (Wald χ2 = 9.6 with 1 d.f.). The graphs
leads to a transformation of LVEF that better satisfies the linearity assump-
tion: min(LVEF, 0.5). This transformation has the best log likelihood“for the
money” as judged by the Akaike information criterion (AIC = −2 log L.R.
−2× no. parameters = 127). The AICs for 3, 4, 5, and 6-knot spline fits were,
respectively, 126, 124, 122, and 120.

Had the suggested transformation been more complicated than a trunca-
tion, a tentative transformation could have been checked for adequacy by
expanding the new transformed variable into a new spline function and test-
ing it for linearity.
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Cox Regression Model, n=979 events=198
    Statistic        X2  df
Model        L.R.  129.92 2  AIC= 125.92
Association  Wald  157.45 2  p=  0.000
Linearity    Wald    9.59 1  p=  0.002

Fig. 20.6 Restricted cubic spline estimate of relationship between LVEF and relative
log hazard from a sample of 979 patients and 198 cardiovascular deaths. Data from
the Duke Cardiovascular Disease Databank.

Other methods based on smoothed residual plots are also valuable tools
for selecting predictor transformations. Therneau et al.605 describe residuals
based on martingale theory that can estimate transformations of any number
of predictors omitted from a Cox model fit, after adjusting for other vari-
ables included in the fit. Figure 20.7 used various smoothing methods on the
points (LVEF, residual). First, the R loess function96 was used to obtain a
smoothed scatterplot fit and approximate 0.95 confidence bars. Second, an 5

ordinary least squares model, representing LVEF as a restricted cubic spline
with five default knots, was fitted. Ideally, both fits should have used weighted
regression as the residuals do not have equal variance. Predicted values from
this fit along with 0.95 confidence limits are shown. The loess and spline-
linear regression agree extremely well. Third, Cleveland’s lowess scatterplot
smoother111 was used on the martingale residuals against LVEF. The sug-
gested transformation from all three is very similar to that of Figure 20.6. For
smaller sample sizes, the raw residuals should also be displayed. There is one
vector of martingale residuals that is plotted against all of the predictors.
When correlations among predictors are mild, plots of estimated predictor
transformations without adjustment for other predictors (i.e., marginal trans-
formations) may be useful. Martingale residuals may be obtained quickly by

fixing β̂ = 0 for all predictors. Then smoothed plots of predictor against
residual may be made for all predictors. Table 20.3 summarizes some of the
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Fig. 20.7 Three smoothed estimates relating martingale residuals605 to LVEF.

Table 20.3 Uses of martingale residuals for estimating predictor transformations

Purpose Method

Estimate transformation for Force β̂1 = 0 and compute
a single variable residuals from the null regression

Check linearity assumption for Compute β̂1 and compute
a single variable residuals from the linear regression

Estimate marginal Force β̂1, . . . , β̂p = 0 and compute
transformations for p variables residuals from the global null model

Estimate transformation for Estimate p− 1 βs, forcing β̂i = 0
variable i adjusted for other Compute residuals from mixed
p− 1 variables global/null model

ways martingale residuals may be used. See section 10.5 for more information6

on checking the regression assumptions. The methods for examining interac-
tion surfaces described there apply without modification to the Cox model
(except that the nonparametric regression surface does not apply because of
censoring).

20.6.2 Proportional Hazards Assumption

Even though assessment of fit of the regression part of the Cox PH model
corresponds with other regression models such as the logistic model, the Cox
model has its own distributional assumption in need of validation. Here, of
course, the distributional assumption is not as stringent as with other survival



20.6 Assessment of Model Fit 495

models, but we do need to validate how the survival or hazard functions
for various subjects are connected. There are many graphical and analyti-
cal methods of verifying the PH assumption. Two of the methods have al-
ready been discussed: a graphical examination of parallelism of logΛ plots,
and a comparison of stratified with unstratified models (as in Figure 20.1).
Muenz467 suggested a simple modification that will make nonproportional
hazards more apparent: plot ΛKM1

(t)/ΛKM2
(t) against t and check for flat-

ness. The points on this curve can be passed through a smoother. One can also
plot differences in log(− logS(t)) against t.143 Arjas29 developed a graphical
method based on plotting the estimated cumulative hazard versus the cumu-
lative number of events in a stratum as t progresses.

There are other methods for assessing whether PH holds that may be more
direct. Gore et al.,226 Harrell and Lee,266 and Kay340 (see also Anderson and
Senthilselvan27) describe a method for allowing the log hazard ratio (Cox
regression coefficient) for a predictor to be a function of time by fitting spe-
cially stratified Cox models. Their method assumes that the predictor being
examined for PH already satisfies the linear regression assumption. Follow-
up time is stratified into intervals and a separate model is fitted to compute
the regression coefficient within each interval, assuming that the effect of the
predictor is constant only within that small interval. It is recommended that
intervals be constructed so that there is roughly an equal number of events
in each. The number of intervals should allow at least 10 or 20 events per
interval.

The interval-specific log hazard ratio is estimated by excluding all subjects
with event/censoring time before the start of the interval and censoring all
events that occur after the end of the interval. This process is repeated for
all desired time intervals. By plotting the log hazard ratio and its confidence
limits versus the interval, one can assess the importance of a predictor as
a function of follow-up time and learn how to model non-PH using more
complicated models containing predictor by time interactions. If the hazard
ratio is approximately constant within broad time intervals, the time strat-
ification method can be used for fitting and testing the predictor × time
interaction [266, p. 827]; [98].

Consider as an example the rat vaginal cancer data used in Figures 18.9,
18.10, and 20.1. Recall that the PH assumption appeared to be satisfied for
the two groups although Figure 18.9 demonstrated some non-Weibullness.
Figure 20.8 contains a Λ ratio plot.467

f ← cph(S ∼ strat (group ), surv=TRUE )

# For both strata , eval. S(t) at combined set of death times

times ← sort (unique (days[death == 1]))

est ← survest(f, data.frame (group =levels (group )),

times =times , conf.type ="none ")$surv

cumhaz ← - log(est)

plot (times , cumhaz [2,] / cumhaz [1,], xlab ="Days ",

ylab ="Cumulative Hazard Ratio ", type ="s")

abline (h=1, col=gray (.80 ))
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Fig. 20.8 Estimate of Λ2/Λ1 based on − log of Altschuler–Nelson–Fleming–
Harrington nonparametric survival estimates.

Table 20.4 Interval-specific group effects from rat data by artificial censoring

Time Observations Deaths Log Hazard Standard
Interval Ratio Error
[0, 209) 40 12 −0.47 0.59
[209, 234) 27 12 −0.72 0.58
234 + 14 12 −0.50 0.64

hazard.ratio.plot (g$x, g$y, e=12, pr=TRUE )

The number of observations is declining over time because computations in
each interval were based on animals followed at least to the start of that
interval. The overall Cox regression coefficient was −0.57 with a standard
error of 0.35. There does not appear to be any trend in the hazard ratio over
time, indicating a constant hazard ratio or proportional hazards (Table 20.4).

Now consider the Veterans Administration Lung Cancer dataset [331, pp.
60, 223–4]. Log Λ plots indicated that the four cell types did not satisfy
PH. To simplify the problem, omit patients with “large” cell type and let
the binary predictor be 1 if the cell type is “squamous” and 0 if it is “small”
or “adeno.” We are assessing whether survival patterns for the two groups
“squamous” versus “small” or “adeno” have PH. Interval-specific estimates of
the squamous : small,adeno log hazard ratios (using Efron’s likelihood) are
found in Table 20.5. Times are in days.
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Table 20.5 Interval-specific effects of squamous cell cancer in VA lung cancer data

Time Observations Deaths Log Hazard Standard
Interval Ratio Error
[0, 21) 110 26 −0.46 0.47
[21, 52) 84 26 −0.90 0.50
[52, 118) 59 26 −1.35 0.50
118 + 28 26 −1.04 0.45

Table 20.6 Interval-specific effects of performance status in VA lung cancer data

Time Observations Deaths Log Hazard Standard
Interval Ratio Error
[0, 19] 137 27 −0.053 0.010
[19, 49) 112 26 −0.047 0.009
[49, 99) 85 27 −0.036 0.012
99 + 28 26 −0.012 0.014

getHdata (valung )

with (valung , {

hazard.ratio.plot (1 * (cell == ' Squamous ' ), Surv(t, dead),

e=25, subset =cell != ' Large ' ,
pr=TRUE , pl=FALSE )

hazard.ratio.plot (1 * kps , Surv (t, dead ), e=25,

pr=TRUE , pl=FALSE ) })

There is evidence of a trend of a decreasing hazard ratio over time which
is consistent with the observation that squamous cell patients had equal or
worse survival in the early period but decidedly better survival in the late
phase.

From the same dataset now examine the PH assumption for Karnofsky
performance status using data from all subjects, if the linearity assumption is
satisfied. Interval-specific regression coefficients for this predictor are given in
Table 20.6. There is good evidence that the importance of performance status
is decreasing over time and that it is not a prognostic factor after roughly
99 days. In other words, once a patient survives 99 days, the performance
status does not contain much information concerning whether the patient will
survive 120 days. This non-PH would be more difficult to detect from Kaplan–
Meier plots stratified on performance status unless performance status was
stratified carefully. 7

Figure 20.9 displays a log hazard ratio plot for a larger dataset in which
more time strata can be formed. In 3299 patients with coronary artery disease,
827 suffered cardiovascular death or nonfatal myocardial infarction. Time
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Fig. 20.9 Stratified hazard ratios for pain/ischemia index over time. Data from the
Duke Cardiovascular Disease Databank.

was stratified into intervals containing approximately 30 events, and within
each interval the Cox regression coefficient for an index of anginal pain and
ischemia was estimated. The pain/ischemia index, one component of which is
unstable angina, is seen to have a strong effect for only six months. After that,
survivors have stabilized and knowledge of the angina status in the previous
six months is not informative.

Another method for graphically assessing the log hazard ratio over time is
based on Schoenfeld’s partial residuals503, 557 with respect to each predictor in
the fitted model. The residual is the contribution of the first derivative of the
log likelihood function with respect to the predictor’s regression coefficient,
computed separately at each risk set or unique failure time. In Figure 20.10
the “loess-smoothed”96 (with approximate 0.95 confidence bars) and “super-
smoothed”207 relationship between the residual and unique failure time is
shown for the same data as Figure 20.9. For smaller n, the raw residuals
should also be displayed to convey the proper sense of variability. The agree-
ment with the pattern in Figure 20.9 is evident.

Pettitt and Bin Daud503 suggest scaling the partial residuals by the infor-
mation matrix components. They also propose a score test for PH based on
the Schoenfeld residuals. Grambsch and Therneau233 found that the Pettitt–
Bin Daud standardization is sometimes misleading in that non-PH in one
variable may cause the residual plot for another variable to display non-
PH. The Grambsch–Therneau weighted residual solves this problem and also
yields a residual that is on the same scale as the log relative hazard ratio.
Their residual is

β̂ + dRV̂ , (20.23)
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Fig. 20.10 Smoothed weighted233 Schoenfeld557 residuals for the same data in Fig-
ure 20.9. Test for PH based on the correlation (ρ) between the individual weighted
Schoenfeld residuals and the rank of failure time yielded ρ = −0.23, z = −6.73, P =
2 × 10−11.

where d is the total number of events, R is the n × p matrix of Schoenfeld
residuals, and V̂ is the estimated covariance matrix for β̂. This new residual
can also be the basis for tests for PH, by correlating a user-specified function
of unique failure times with the weighted residuals. 8

The residual plot is computationally very attractive since the score residual
components are byproducts of Cox maximum likelihood estimation. Another
attractive feature is the lack of need to categorize the time axis. Unless ap-
proximate confidence intervals are derived from smoothing techniques, a lack
of confidence intervals from most software is one disadvantage of the method.

9

Formal tests for PH can be based on time-stratified Cox regression esti-
mates.27, 266 Alternatively, more complex (and probably more efficient) formal
tests for PH can be derived by specifying a form for the time by predictor in-
teraction (using what is called a time-dependent covariable in the Cox model)
and testing coefficients of such interactions for significance. The obsolete Ver-
sion 5 SAS PHGLM procedure used a computationally fast procedure based on
an approximate score statistic that tests for linear correlation between the
rank order of the failure times in the sample and Schoenfeld’s partial resid-
uals.258, 266 This test is available in R (for both weighted and unweighted 10

residuals) using Therneau’s cox.zph function in the survival package. For the
results in Figure 20.10, the test for PH is highly significant (correlation coef-
ficient = −0.23, normal deviate z = −6.73). Since there is only one regression
parameter, the weighted residuals are a constant multiple of the unweighted
ones, and have the same correlation coefficient. 11
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Table 20.7 Time-specific hazard ratio estimates of squamous cell cancer effect in VA
lung cancer data, by fitting two Weibull distributions with unequal shape parameters

t log Hazard
Ratio

10 −0.36
36 −0.64
83.5 −0.83
200 −1.02

Another method for checking the PH assumption which is especially ap-
plicable to a polytomous predictor involves taking ratios of parametrically
estimated hazard functions estimated separately for each level of the predic-
tor. For example, suppose that a risk factor X is either present (X = 1) or
absent (X = 0), and suppose that separate Weibull distributions adequately
fit the survival pattern of each group. If there are no other predictors to ad-
just for, define the hazard function for X = 0 as αγtγ−1 and the hazard for
X = 1 as δθtθ−1. The X = 1 : X = 0 hazard ratio is

αγtγ−1

δθtθ−1
=

αγ

δθ
tγ−θ. (20.24)

The hazard ratio is constant if the two Weibull shape parameters (γ and θ)
are equal. These Weibull parameters can be estimated separately and a Wald
test statistic of H0 : γ = θ can be computed by dividing the square of their
difference by the sum of the squares of their estimated standard errors, or
better by a likelihood ratio test. A plot of the estimate of the hazard ratio12

above as a function of t may also be informative.
In the VA lung cancer data, the MLEs of the Weibull shape parameters

for squamous cell cancer is 0.77 and for the combined small + adeno is 0.99.
Estimates of the reciprocals of these parameters, provided by some software
packages, are 1.293 and 1.012 with respective standard errors of 0.183 and
0.0912. A Wald test for differences in these reciprocals provides a rough test
for a difference in the shape estimates. The Wald χ2 is 1.89 with 1 d.f. indi-
cating slight evidence for non-PH.

The fitted Weibull hazard function for squamous cell cancer is .0167t0.23

and for adeno + small is 0.0144t−0.01. The estimated hazard ratio is then
1.16t−0.22 and the log hazard ratio is 0.148 − 0.22 log t. By evaluating this
Weibull log hazard ratio at interval midpoints (arbitrarily using t = 200
for the last (open) interval) we obtain log hazard ratios that are in good
agreement with those obtained by time-stratifying the Cox model (Table 20.5)
as shown in Table 20.7.

There are many methods of assessing PH using time-dependent covari-
ables in the Cox model.226, 583 Gray237, 238 mentions a flexible and efficient
method of estimating the hazard ratio function using time-dependent covari-
ables that areX × spline term interactions. Gray’s method uses B-splines and
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requires one to maximize a penalized log-likelihood function. Verweij and van
Houwelingen641 developed a more nonparametric version of this approach.
Hess289 uses simple restricted cubic splines to model the time-dependent co-
variable effects (see also [4, 287, 398, 498]). Suppose that k = 4 knots are used
and that a covariable X is already transformed correctly. The model is

logλ(t|X) = logλ(t) + β1X + β2Xt+ β3Xt′ + β4Xt′′, (20.25)

where t′, t′′ are constructed spline variables (Equation 2.25). The X + 1 : X
log hazard ratio function is estimated by

β̂1 + β̂2t+ β̂3t
′ + β̂4t

′′. (20.26)

This method can be generalized to allow for simultaneous estimation of the
shape of the X effect and X × t interaction using spline surfaces in (X, t)
instead of (X1, X2) (Section 2.7.2). 13

Table 20.8 summarizes many facets of verifying assumptions for PH mod-
els. The trade-offs of the various methods for assessing proportional hazards
are given in Table 20.9. 14

20.7 What to Do When PH Fails

When a factor violates the PH assumption and a test of association is not
needed, the factor can be adjusted for through stratification as mentioned
earlier. This is especially attractive if the factor is categorical. For continuous
predictors, one may want to stratify into quantile groups. The continuous
version of the predictor can still be adjusted for as a covariable to account
for any residual linearity within strata.

When a test of significance is needed and the P -value is impressive, the
“principle of conservatism” could be invoked, as the P -value would likely
have been more impressive had the factor been modeled correctly. Predicted
survival probabilities using this approach will be erroneous in certain time
intervals.

An efficient test of association can be done using time-dependent covari-
ables [444, pp. 208–217]. For example, in the model

λ(t|X) = λ0(t) exp(β1X + β2X × log(t+ 1)) (20.27)

one tests H0 : β1 = β2 = 0 with 2 d.f. This is similar to the approach used
by [72]. Stratification on time intervals can also be used:27, 226, 266

λ(t|X) = λ0(t) exp(β1X + β2X × [t > c]). (20.28)
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Table 20.8 Assumptions of the Proportional Hazards Model

Variables Assumptions Verification

Response Variable T
Time Until Event

Shape of λ(t|X) for fixed X
as t ↑
Cox: none
Weibull: tθ

Shape of SKM(t)

Interaction Between X
and T

Proportional hazards—effect
of X does not depend on T
(e.g., treatment effect is con-
stant over time)

• Categorical X:
check parallelism of strati-
fied log[− logS(t)] plots as
t ↑

• Muenz467 cum. hazard ra-
tio plots

• Arjas29 cum. hazard plots
• Check agreement of strati-

fied and modeled estimates
• Hazard ratio plots
• Smoothed Schoenfeld resid-

ual plots and correlation
test (time vs. residual)

• Test time-dependent co-
variable such as X× log(t+
1)

• Ratio of parametrically es-
timated λ(t)

Individual Predictors X

Shape of λ(t|X) for fixed t as
X ↑
Linear:
log λ(t|X) = log λ(t) + βX
Nonlinear: log λ(t|X) =
log λ(t) + f(X)

• k-level ordinal X : linear

term + k − 2 dummy vari-
ables

• Continuous X: polynom-
ials, spline functions,
smoothed martingale
residual plots

Interaction Between X1

and X2

Additive effects: effect of X1

on log λ is independent of X2

and vice versa

Test nonadditive terms (e.g.,
products)

If this step-function model holds, and if a sufficient number of subjects have
late follow-up, you can also fit a model for early outcomes and a separate
one for late outcomes using interval-specific censoring as discussed in Section
20.6.2. The dual model approach provides easy to interpret models, assuming
that proportional hazards is satisfied within each interval.

Kronborg and Aaby367 and Dabrowska et al.143 provide tests for differences
in Λ(t) at specific t based on stratified PH models. These can also be used
to test for treatment effects when PH is violated for treatment but not for
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adjustment variables. Differences in mean restricted life length (differences in
areas under survival curves up to a fixed finite time) can also be useful for
comparing therapies when PH fails.335

Table 20.9 Comparison of methods for checking the proportional hazards assump-
tion and for allowing for non-proportional hazards

Method Requires Requires Computa- Yields Yields Requires Must Choose
Grouping Grouping tional Formal Estimate of Fitting 2 Smoothing

X t Efficiency Test λ2(t)/λ1(t) Models Parameter
log[− log],
Muenz,

x x x

Arjas plots
Dabrowska
log Λ̂

x x x x

difference
plots

Stratified vs. x x x
Modeled
Estimates

Hazard ratio
plot

x ? x x ?

Schoenfeld
residual

x x x

plot
Schoenfeld
residual

x x

correlation
test

Fit time-
dependent

x x

covariables
Ratio of
parametric

x x x x x

estimates
of λ(t)

Parametric models that assume an effect other than PH, for example, the
log-logistic model,226 can be used to allow a predictor to have a constantly
increasing or decreasing effect over time. If one predictor satisfies PH but
another does not, this approach will not work. 15

20.8 Collinearity

See Section 4.6 for the general approach using variance inflation factors.
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20.9 Overly Influential Observations

Therneau et al.605 describe the use of score residuals for assessing influence in
Cox and related regression models. They show that the infinitesimal jackknife
estimate of the influence of observation i on β equals V s′, where V is the
estimated variance–covariance matrix of the p regression estimates b and s =
(si1, si2, . . . , sip) is the vector of score residuals for the p regression coefficients
for the ith observation. Let Sn×p denote the matrix of score residuals over
all observations. Then an approximation to the unstandardized change in b
(DFBETA) is SV . Standardizing by the standard errors of b found from the
diagonals of V , e = (V11, V22, . . . , Vpp)

1/2, yields

DFBETAS = SV Diag(e)−1, (20.29)

where Diag(e) is a diagonal matrix containing the estimated standard errors.
As discussed in Section 20.13, identification of overly influential observa-

tions is facilitated by printing, for each predictor, the list of observations
containing DFBETAS > u for any parameter associated with that predictor.
The choice of cutoff u depends on the sample size among other things. A
typical choice might be u = 0.2 indicating a change in a regression coefficient
of 0.2 standard errors.

20.10 Quantifying Predictive Ability

To obtain a unitless measure of predictive ability for a Cox PH model we
can use the R index described in Section 9.8.3, which is the square root of
the fraction of log likelihood explained by the model of the log likelihood
that could be explained by a perfect model, penalized for the complexity of
the model. The lowest (best) possible −2 log likelihood for the Cox model is
zero, which occurs when the predictors can perfectly rank order the survival
times. Therefore, as was the case with the logistic model, the quantity L∗

from Section 9.8.3 is zero and an R index that is penalized for the number of
parameters in the model is given by

R2 = (LR− 2p)/L0, (20.30)

where p is the number of parameters estimated and L0 is the −2 log likelihood
when β is restricted to be zero (i.e., there are no predictors in the model). R
will be near one for a perfectly predictive model and near zero for a model
that does not discriminate between short and long survival times. The R
index does not take into account any stratification factors. If stratification
factors are present, R will be near one if survival times can be perfectly ranked
within strata even though there is overlap between strata.
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Schemper546 and Korn and Simon365 have reported that R2 is too sen-
sitive to the distribution of censoring times and have suggested alterna-
tives based on the distance between estimated Cox survival probabilities
(using predictors) and Kaplan–Meier estimates (ignoring predictors). Kent
and O’Quigley345 also report problems with R2 and suggest a more complex
measure. Schemper548 investigated the Maddala–Magee431, 432 index R2

LR de-
scribed in Section 9.8.3, applied to Cox regression:

R2
LR = 1− exp(−LR/n)

= 1− ω2/n, (20.31)

where ω is the null model likelihood divided by the fitted model likelihood.
For many situations, R2

LR performed as well as Schemper’s more complex
measure546, 549 and hence it is preferred because of its ease of calculation
(assuming that PH holds). Ironically, Schemper548 demonstrated that the n
in the formula for this index is the total number of observations, not the
number of events (but see O’Quigley, Xu, and Stare481). To make the R2

index have a maximum value of 1.0, we use the Nagelkerke471 R2
N discussed

in Section 9.8.3. 16

An easily interpretable index of discrimination for survival models is de-
rived from Kendall’s τ and Somers’ Dxy rank correlation,579 the Gehan–
Wilcoxon statistic for comparing two samples for survival differences, and
the Brown–Hollander–Korwar nonparametric test of association for censored
data.76, 170, 262, 268 This index, c, is a generalization of the area under the ROC
curve discussed under the logistic model, in that it applies to a continuous
response variable that can be censored. The c index is the proportion of all
pairs of subjects whose survival time can be ordered such that the subject
with the higher predicted survival is the one who survived longer. Two sub-
jects’ survival times cannot be ordered if both subjects are censored or if one
has failed and the follow-up time of the other is less than the failure time
of the first. The c index is a probability of concordance between predicted
and observed survival, with c = 0.5 for random predictions and c = 1 for a
perfectly discriminating model. The c index is mildly affected by the amount
of censoring. Dxy is obtained from 2(c − 0.5). While c (and Dxy) is a good
measure of pure discrimination ability of a single model, it is not sensitive
enough to allow multiple models to be compared447. 17

Since high hazard means short survival time, when the linear predictor
Xβ̂ from a Cox model is compared with observed survival time, Dxy will be
negative. Some analysts may want to negate reported values of Dxy.
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20.11 Validating the Fitted Model

Separate bootstrap or cross-validation assessments can be made for calibra-
tion and discrimination of Cox model survival and log relative hazard esti-
mates.18

20.11.1 Validation of Model Calibration

One approach to validation of the calibration of predictions is to obtain un-
biased estimates of the difference between Cox predicted and Kaplan–Meier
survival estimates at a fixed time u. Here is one sequence of steps.

1. Obtain cutpoints (e.g., deciles) of predicted survival at time u so as to
have a given number of subjects (e.g., 50) in each interval of predicted
survival. These cutpoints are based on the distribution of Ŝ(u|X) in the
whole sample for the“final”model (for data-splitting, instead use the model
developed in the training sample). Let k denote the number of intervals
used.

2. Compute the average Ŝ(u|X) in each interval.
3. Compare this with the Kaplan–Meier survival estimates at time u, strat-

ified by intervals of Ŝ(u|X). Let the differences be denoted by d =
(d1, . . . , dk).

4. Use bootstrapping or cross-validation to estimate the overoptimism in d
and then to correct d to get a more fair assessment of these differences.
For each repetition, repeat any stepwise variable selection or stagewise
significance testing using the same stopping rules as were used to derive
the “final”model. No more than B = 200 replications are needed to obtain
accurate estimates.

5. If desired, the bias-corrected d can be added to the original stratified
Kaplan–Meier estimates to obtain a bias-corrected calibration curve.

However, any statistical method that uses binning of continuous variables
(here, the predicted risk), is arbitrary and has lower precision than smooth
estimates that allow for interpolation. A far better approach to estimating
calibration curves for survival models is to use the flexible adaptive hazard
regression approach of Kooperberg et al.361 as discussed on P. 450. Their
method does not assume linearity or proportional hazards. Hazard regres-
sion can be used to estimate the relationship between (suitably transformed)
predicted survival probabilities and observed outcomes, i.e., to derive a cali-
bration curve. The bootstrap is used to de-bias the estimates to correct for
overfitting, allowing estimation of the likely future calibration performance
of the fitted model.

As an example, consider a dataset of 20 random uniformly distributed
predictors for a sample of size 200. Let the failure time be another random
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uniform variable that is independent of all the predictors, and censor half of
the failure times at random. Due to fitting 20 predictors to 100 events, there
will apparently be fair agreement between predicted and observed survival
over all strata (smooth black curve from hazard regression in Figure 20.11).
However, the bias-corrected calibration (blue curve from hazard regression)
gives a more truthful answer: examining the Xs across levels of predicted
survival demonstrate that predicted and observed survival are weekly related,
in more agreement with how the data were generated. For the more arbitrary
Kaplan-Meier approach, we divide the observations into quintiles of predicted
0.5-year survival, so that there are 40 observations per stratum.

n ← 200

p ← 20

set.seed (6)

xx ← matrix (rnorm (n * p), nrow=n, ncol =p)

y ← runif (n)

units (y) ← "Year "

e ← c(rep(0, n / 2), rep(1, n / 2))

f ← cph(Surv (y, e) ∼ xx , x=TRUE , y=TRUE ,

time.inc =.5 , surv=TRUE )

cal ← calibrate (f, u=.5 , B=200)

Using Cox survival estimates at 0.5 Years

plot (cal , ylim =c(.4 , 1), subtitles =FALSE )

calkm ← calibrate (f, u=.5 , m=40, cmethod= ' KM ' , B=200)

Using Cox survival estimates at 0.5 Years

plot (calkm , add=TRUE) # Figure 20.11

20.11.2 Validation of Discrimination and Other
Statistical Indexes

Here bootstrapping and cross-validation are used as for logistic models (Sec-
tion 10.9). We can obtain bootstrap bias-corrected estimates of c or equiv-
alently Dxy. To instead obtain a measure of relative calibration or slope
shrinkage, we can bootstrap the apparent estimate of γ = 1 in the model

λ(t|X) = λ(t) exp(γXb). (20.32)

Besides being a measure of calibration in itself, the bootstrap estimate of
γ also leads to an unreliability index U which measures how far the model
maximum log likelihood (which allows for an overall slope correction) is from
the log likelihood evaluated at“frozen”regression coefficients (γ = 1) (see [267]

and Section 10.9).
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Fig. 20.11 Calibration of random predictions using Efron’s bootstrap with B = 200
resamples. Dataset has n = 200, 100 uncensored observations, 20 random predic-
tors, model χ2

20 = 19. The smooth black line is the apparent calibration estimated
by adaptive linear spline hazard regression361, and the blue line is the bootstrap
bias– (overfitting–) corrected calibration curve estimated also by hazard regression.
The gray scale line is the line of identity representing perfect calibration. Black dots
represent apparent calibration accuracy obtained by stratifying into intervals of pre-
dicted 0.5y survival containing 40 events per interval and plotting the mean predicted
value within the interval against the stratum’s Kaplan-Meier estimate. The blue ×
represent bootstrap bias-corrected Kaplan-Meier estimates.

U =
LR(γ̂Xb)− LR(Xb)

L0
, (20.33)

where L0 is the −2 log likelihood for the null model (Section 9.8.3). Similarly,
a discrimination index D267 can be derived from the −2 log likelihood at the
shrunken linear predictor, penalized for estimating one parameter (γ) (see
also [633, p. 1318] and [123]):

D =
LR(γ̂Xb)− 1

L0
. (20.34)

D is the same as R2 discussed above when p = 1 (indicating only one reesti-
mated parameter, γ), the penalized proportion of explainable log likelihood
that was explained by the model. Because of the remark of Schemper,546 all
of these indexes may unfortunately be functions of the censoring pattern.

An index of overall quality that penalizes discrimination for unreliability is

Q = D − U =
LR(Xb)− 1

L0
. (20.35)
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Q is a normalized and penalized −2 log likelihood that is evaluated at the
uncorrected linear predictor.

For the random predictions used in Figure 20.11, the bootstrap estimates
with B = 200 resamples are found in Table 20.10.

latex (validate (f, B=200), digits =3, file = ' ' , caption= ' ' ,
table.env =TRUE , label = ' tab:cox-val-random ' )

Table 20.10 Bootstrap validation of a Cox model with random predictors

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.213 0.335 0.147 0.188 0.025 200
R2 0.092 0.191 0.042 0.150 −0.058 200
Slope 1.000 1.000 0.389 0.611 0.389 200
D 0.021 0.048 0.009 0.039 −0.019 200
U −0.002 −0.002 0.028 −0.031 0.028 200
Q 0.023 0.050 −0.020 0.070 −0.047 200
g 0.516 0.878 0.339 0.539 −0.023 200

It can be seen that the apparent correlation (Dxy = −0.21) does not hold
up after correcting for overfitting (Dxy = −0.02). Also, the slope shrinkage
(0.39) indicates extreme overfitting.

See [633, Section 6] and [640] and Section 18.3.7 for still more useful meth-
ods for validating the Cox model.

20.12 Describing the Fitted Model

As with logistic modeling, once a Cox PH model has been fitted and all
its assumptions verified, the final model needs to be presented and inter-
preted. The fastest way to describe the model is to interpret each effect in
it. For each predictor the change in log hazard per desired units of change
in the predictor value may be computed, or the antilog of this quantity,
exp(βj × change in Xj), may be used to estimate the hazard ratio holding
all other factors constant. When Xj is a nonlinear factor, changes in predicted
Xβ for sensible values of Xj such as quartiles can be used as described in
Section 10.10. Of course for nonmodeled stratification factors, this method is
of no help. Figure 20.12 depicts a way to display estimated surgical : medical
hazard ratios in the presence of a significant treatment by disease severity
interaction and a secular trend in the benefit of surgical therapy (treatment
by year of diagnosis interaction).

Often, the use of predicted survival probabilities may make the model
more interpretable. If the effect of only one factor is being displayed and
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Fig. 20.12 A display of an interaction between treatment and extent of disease, and
between treatment and calendar year of start of treatment. Comparison of medical and
surgical average hazard ratios for patients treated in 1970, 1977, and 1984 according
to coronary disease severity. Circles represent point estimates; bars represent 0.95
confidence limits of hazard ratios. Ratios less than 1.0 indicate that coronary bypass
surgery is more effective.88

that factor is polytomous or predictions are made for specific levels, survival
curves (with or without adjustment for other factors not shown) can be drawn
for each level of the predictor of interest, with follow-up time on the x-axis.
Figure 20.2 demonstrated this for a factor which was a stratification factor.
Figure 20.13 extends this by displaying survival estimates stratified by treat-
ment but adjusted to various levels of two modeled factors, one of which, year
of diagnosis, interacted with treatment.

When a continuous predictor is of interest, it is usually more informative
to display that factor on the x-axis with estimated survival at one or more
time points on the y-axis. When the model contains only one predictor, even
if that predictor is represented by multiple terms such as a spline expansion,
one may simply plot that factor against the predicted survival. Figure 20.14
depicts the relationship between treadmill exercise score, which is a weighted
linear combination of several predictors in a Cox model, and the probability
of surviving five years.

When displaying the effect of a single factor after adjusting for multiple
predictors which are not displayed, care only need be taken for the values
to which the predictors are adjusted (e.g., grand means). When instead the
desire is to display the effect of multiple predictors simultaneously, an im-
portant continuous predictor can be displayed on the x-axis while separate
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curves or graphs are made for levels of other factors. Figure 20.15, which
corresponds to the logΛ plots in Figure 20.5, displays the joint effects of age
and sex on the three-year survival probability. Age is modeled with a cubic
spline function, and the model includes terms for an age × sex interaction.

p ← Predict(f.ia , age , sex , time =3)

ggplot (p)
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Fig. 20.13 Cox–Kalbfleisch–Prentice survival estimates stratifying on treatment and
adjusting for several predictors, showing a secular trend in the efficacy of coronary
artery bypass surgery. Estimates are for patients with left main disease and normal
(LVEF=0.6) or impaired (LVEF=0.4) ventricular function.516

Besides making graphs of survival probabilities estimated for given levels
of the predictors, nomograms have some utility in specifying a fitted Cox
model. A nomogram can be used to computeXβ̂, the estimated log hazard for
a subject with a set of predictor values X relative to the “standard” subject.
The central line in the nomogram will be on this linear scale unlike the logistic
model nomograms given in Section 10.10 which further transformed Xβ̂ into
[1 + exp(−Xβ̂)]−1. Alternatively, the central line could be on the nonlinear

exp(Xβ̂) hazard ratio scale or survival at fixed t. 19

A graph of the estimated underlying survival function Ŝ(t) as a function

of t can be coupled with the nomogram used to compute Xβ̂. The survival

for a specific subject, Ŝ(t|X) is obtained from Ŝ(t)exp(Xβ̂). Alternatively, one

could graph Ŝ(t)exp(Xβ̂) for various values of Xβ̂ (e.g., Xβ̂ = −2,−1, 0, 1, 2)
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Fig. 20.14 Cox model predictions with respect to a continuous variable. X-axis
shows the range of the treadmill score seen in clinical practice and Y -axis shows the
corresponding five-year survival probability predicted by the Cox regression model
for the 2842 study patients.440
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Fig. 20.15 Survival estimates for model stratified on sex, with interaction.

so that the desired survival curve could be read directly, at least to the nearest
tabulated Xβ̂. For estimating survival at a fixed time, say two years, one only
need to provide the constant Ŝ(t). The nomogram could even be adapted to

include a nonlinear scale Ŝ(2)exp(Xβ̂) to allow direct computation of two-year
survival.
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20.13 R Functions

Harrell’s cpower, spower, and ciapower (in the Hmisc package) perform power
calculations for Cox tests in follow-up studies. cpower computes power for
a two-sample Cox (log-rank) test with random patient entry over a fixed
duration and a given length of minimum follow-up. The expected number of
events in each group is estimated by assuming exponential survival. cpower
uses a slight modification of the method of Schoenfeld558 (see [501]). Separate
specification of noncompliance in the active treatment arm and“drop-in”from
the control arm into the active arm are allowed, using the method of Lachin
and Foulkes.370 The ciapower function computes power of the Cox interaction
test in a 2 × 2 setup using the method of Peterson and George.501 It does
not take noncompliance into account. The spower function simulates power
for two-sample tests (the log-rank test by default) allowing for very complex
conditions such as continuously varying treatment effect and noncompliance
probabilities.

The rms package cph function is a slight modification of the coxph func-
tion written by Terry Therneau (in his survival package to work in the rms

framework. cph computes MLEs of Cox and stratified Cox PH models, overall
score and likelihood ratio χ2 statistics for the model, martingale residuals, the
linear predictor (Xβ̂ centered to have mean 0), and collinearity diagnostics.
Efron, Breslow, and exact partial likelihoods are supported (although the
exact likelihood is very computationally intensive if ties are frequent). The
function also fits the Andersen–Gill23 generalization of the Cox PH model.
This model allows for predictor values to change over time in the form of step
functions as well as allowing time-dependent stratification (subjects can jump
to different hazard function shapes). The Andersen–Gill formulation allows
multiple events per subject and permits subjects to move in and out of risk at
any desired time points. The latter feature allows time zero to have a more
general definition. (See Section 9.5 for methods of adjusting the variance–

covariance matrix of β̂ for dependence in the events per subject.) The print-
ing function corresponding to cph prints the Nagelkerke index R2

N described
in Section 20.10, and has a latex option for better output. cph works in con-
junction with the generic functions such as specs, predict, summary, anova,

fastbw, which.influence, latex, residuals, coef, nomogram, and Predict de-
scribed in Section 20.13, the same as the logistic regression function lrm does.
For the purpose of plotting predicted survival at a single time, Predict has an
additional argument time for plotting cph fits. It also has an argument loglog
which if TRUE causes instead log-log survival to be plotted on the y-axis. cph
has all the arguments described in Section 20.13 and some that are specific
to it.

Similar to functions for psm, there are Survival, Quantile, and Mean functions
which create other R functions to evaluate survival probabilities and perform
other calculations, based on a cph fit with surv=TRUE. These functions, un-
like all the others, allow polygon (linear interpolation) estimation of survival
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probabilities, quantiles, and mean survival time as an option. Quantile is the
only automatic way for obtaining survival quantiles with cph. Quantile esti-
mates will be missing when the survival curve does not extend long enough.
Likewise, survival estimates will be missing for t > maximum follow-up time,
when the last event time is censored. Mean computes the mean survival time
if the last failure time in each stratum is uncensored. Otherwise, Mean may
be used to compute restricted mean lifetime using a user-specified trunca-
tion point.334 Quantile and Mean are especially useful with plot and nomogram.
Survival is useful with nomogram.

The R program below demonstrates how several cph-related functions work
well with the nomogram function. Here predicted three-year survival probabil-
ities and median survival time (when defined) are displayed against age and
sex from the previously simulated dataset. The fact that a nonlinear effect
interacts with a stratified factor is taken into account.

surv ← Survival (f.ia)

surv.f ← function (lp) surv (3, lp , stratum= ' sex=Female ' )
surv.m ← function (lp) surv (3, lp , stratum= ' sex=Male ' )
quant ← Quantile (f.ia)

med.f ← function (lp) quant (.5 , lp , stratum= ' sex=Female ' )
med.m ← function (lp) quant (.5 , lp , stratum= ' sex=Male ' )
at.surv ← c(.01 , .05 , seq(.1 ,.9 ,by=.1), .95 , .98 , .99 , .999)

at.med ← c(0, .5 , 1, 1.5 , seq(2, 14, by =2))

n ← nomogram (f.ia , fun=list(surv.m , surv.f , med.m ,med.f ),

funlabel =c( ' S(3 | Male) ' , ' S(3 | Female ) ' ,
' Median (Male ) ' , ' Median (Female ) ' ),

fun.at =list (c(.8 ,.9 ,.95 ,.98 ,.99),

c(.1 ,.3 ,.5 ,.7 ,.8 ,.9 ,.95 ,.98),

c(8,10,12), c(1,2,4,8,12)))

plot (n, col.grid =FALSE , lmgp=.2)

latex (f.ia , file = ' ' , digits =3)

Prob{T ≥ t | sex = i} = Si(t)
eXβ

, where

Xβ̂ =

−1.8

+0.0493age− 2.15×10−6(age− 30.3)3+ − 2.82×10−5(age− 45.1)3+

+5.18×10−5(age− 54.6)3+ − 2.15×10−5(age− 69.6)3+

+[Female][−0.0366age+ 4.29×10−5(age− 30.3)3+ − 0.00011(age− 45.1)3+

+6.74×10−5(age− 54.6)3+ − 2.32×10−7(age− 69.6)3+]

and [c] = 1 if subject is in group c, 0 otherwise; (x)+ = x if x > 0, 0
otherwise.
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t SMale(t) SFemale(t)

0 1.000 1.000
1 0.993 0.902
2 0.984 0.825
3 0.975 0.725
4 0.967 0.648
5 0.956 0.576
6 0.947 0.520
7 0.938 0.481
8 0.928 0.432
9 0.920 0.395

10 0.909 0.358
11 0.904 0.314
12 0.892 0.268
13 0.886 0.223
14 0.877 0.203

Points
0 10 20 30 40 50 60 70 80 90 100

age (sex=Male)
10 20 30 40 50 60 70 90

age (sex=Female)
10 30 50 60 70 80 90 100

Total Points
0 10 20 30 40 50 60 70 80 90 100

Linear Predictor
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

S(3 | Male)
0.90.950.980.99

S(3 | Female)
0.10.30.50.70.80.90.95

Median (Male)
1012

Median (Female)
124812

Fig. 20.16 Nomogram from a fitted stratified Cox model that allowed for interaction
between age and sex, and nonlinearity in age. The axis for median survival time is
truncated on the left where the median is beyond the last follow-up time.

rcspline.plot (lvef , d.time , event =cdeath , nk =3)

The corresponding smoothed martingale residual plot for LVEF in Figure 20.7
was created with
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cox ← cph(Surv(d.time , cdeath ) ∼ lvef , iter.max =0)

res ← resid(cox)

g ∼ loess(res ∼ lvef)

plot(g, coverage =0.95 , confidence =7, xlab="LVEF",

ylab="Martingale Residual ")

g ← ols (res ∼ rcs(lvef ,5))

plot(g, lvef=NA , add =T, lty =2)

lines (lowess (lvef , res , iter=0), lty =3)

legend (.3 , 1.15 , c("loess Fit and 0.95 Confidence Bars",

"ols Spline Fit and 0.95 Confidence Limits ",

"lowess Smoother "), lty =1:3, bty="n")

Because we desired residuals with respect to the omitted predictor LVEF,
the parameter iter.max=0 had to be given to make cph stop the estimation
process at the starting parameter estimates (default of zero). The effect of this
is to ignore the predictors when computing the residuals; that is, to compute
residuals from a flat line rather than the usual residuals from a fitted straight
line.

The residuals function is a slight modification of Therneau’s residuals.-

coxph function to obtain martingale, Schoenfeld, score, deviance residuals, or
approximate DFBETA or DFBETAS. Since martingale residuals are always
stored by cph (assuming there are covariables present), residuals merely has
to pick them off the fit object and reinsert rows that were deleted due to
missing values. For other residuals, you must have stored the design matrix
and Surv object with the fit by using ..., x=TRUE, y=TRUE. Storing the design
matrix with x=TRUE ensures that the same transformation parameters (e.g.,
knots) are used in evaluating the model as were used in fitting it. To use
residuals you can use the abbreviation resid. See the help file for residuals

for an example of how martingale residuals may be used to quickly plot
univariable (unadjusted) relationships for several predictors.

Figure 20.10, which used smoothed scaled Schoenfeld partial residuals557

to estimate the form of a predictor’s log hazard ratio over time, was made
with

Srv ← Surv(dm.time ,cdeathmi )

cox ← cph(Srv ∼ pi , x=T, y=T)

cox.zph (cox , "rank") # Test for PH for each column of X

res ← resid(cox , "scaledsch ")

time ← as.numeric (names(res ))

# Use dimnames(res)[[1]] if more than one predictor

f ← loess(res ∼ time , span =0.50)

plot(f, coverage =0.95 , confidence =7, xlab="t",

ylab="Scaled Schoenfeld Residual ", ylim=c(-.1 ,.25 ))

lines (supsmu (time , res),lty =2)

legend (1.1,.21 ,c("loess Smoother with span =0.50 and 0.95 C.L.",

"Super Smoother "), lty =1:2, bty="n")

The computation and plotting of scaled Schoenfeld residuals could have been
done automatically in this case by using the single command plot(cox.zph

(cox)), although cox.zph defaults to plotting against the Kaplan–Meier trans-
formation of follow-up time.
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The hazard.ratio.plot function in rms repeatedly estimates Cox regression
coefficients and confidence limits within time intervals. The log hazard ra-
tios are plotted against the mean failure/censoring time within the interval.
Figure 20.9 was created with

hazard.ratio.plot (pi, S) # S was Surv (dm.time , ...)

If you have multiple degree of freedom factors, you may want to score them
into linear predictors before using hazard.ratio.plot. The predict function
with argument type="terms" will produce a matrix with one column per factor
to do this (Section 20.13).

Therneau’s cox.zph function implements Harrell’s Schoenfeld residual cor-
relation test for PH. This function also stores results that can easily be passed
to a plotting method for cox.zph to automatically plot smoothed residuals
that estimate the effect of each predictor over time.

Therneau has also written an R function survdiff that compares two or
more survival curves using the G − ρ family of rank tests (Harrington and
Fleming273).

The rcorr.cens function in the Hmisc library computes the c index and the
corresponding generalization of Somers’ Dxy rank correlation for a censored
response variable. rcorr.cens also works for uncensored and binary responses
(see ROC area in Section 10.8), although its use of all possible pairings makes
it slow for this purpose. The survival package’s survConcordance has an ex- 20

tremely fast algorithm for the c index and a fairly accurate estimator of its
standard error.

The calibrate function for cph constructs a bootstrap or cross-validation
optimism-corrected calibration curve for a single time point by resampling
the differences between average Cox predicted survival and Kaplan–Meier es-
timates (see Section 20.11.1). But more precise is calibrate’s default method
based on adaptive semiparametric regression discussed in the same section.
Figure 20.11 is an example.

The validate function for cph fits validates several statistics describing Cox
model fits—slope shrinkage, R2

N, D, U,Q, and Dxy. The val.surv function
can also be of use in externally validating a Cox model using the methods
presented in Section 18.3.7.

20.14 Further Reading

1 Good general texts for the Cox PH model include Cox and Oakes,133 Kalbfleisch
and Prentice,331 Lawless,382 Collett,114 Marubini and Valsecchi,444 and Klein
and Moeschberger.350 Therneau and Grambsch604 describe the many ways the
standard Cox model may be extended.

2 Cupples et al.141 and Marubini and Valsecchi [444, pp. 201–206] present good
description of various methods of computing “adjusted survival curves.”

3 See Altman and Andersen15 for simpler approximate formulas. Cheng et al.103

derived methods for obtaining pointwise and simultaneous confidence bands for
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S(t) for future subjects, and Henderson282 has a comprehensive discussion of
the use of Cox models to estimate survival time for individual subjects.

4 Aalen2 and Valsecchi et al.625 discuss other residuals useful in graphically check-
ing survival model assumptions. León and Tsai400 derived residuals for estimat-
ing covariate transformations that are different from martingale residuals.

5 [411] has other methods for generating confidence intervals for martingale resid-
ual plots.

6 Lin et al.411 describe other methods of checking transformations using cumu-
lative martingale residuals.

7 A parametric analysis of the VA dataset using linear splines and incorporating
X × t interactions is found in [361].

8 Winnett and Sasieni671 show how to use scaled Schoenfeld residuals in an iter-
ative fashion to actually model effects that are not in proportional hazards.

9 See [233, 503] for some methods for obtaining confidence bands for Schoen-
feld residual plots. Winnett and Sasieni670 discuss conditions in which the
Grambsch–Therneau scaling of the Schoenfeld residuals does not perform ade-
quately for estimating β(t).

10 [475, 519] compared the power of the test for PH based on the correlation be-
tween failure time and Schoenfeld residuals with the power of several other
tests.

11 See Lin et al.411 for another approach to deriving a formal test of PH using
residuals. Other graphical methods for examining the PH assumption are due
to Gray,236 who used hazard smoothing to estimate hazard ratios as a function
of time, and Thaler,602 who developed a nonparametric estimator of the hazard
ratio over time for time-dependent covariables. See Valsecchi et al.625 for other
useful graphical assessments of PH.

12 A related test of constancy of hazard ratios may be found in [519]. Also, see
Schemper547 for related methods.

13 See [547] for a variation of the standard Cox likelihood to allow for non-PH.
14 An excellent review of graphical methods for assessing PH may be found in

Hess.290. Sahoo and Sengupta537 provide some new graphical methods for as-
sessing PH irrespective of satisfaction of the other model assumptions.

15 Schemper547 provides a way to determine the effect of falsely assuming PH by
comparing the Cox regression coefficient with a well-described average log haz-
ard ratio. Zucker691 shows how dependent a weighted log-rank test is on the true
hazard ratio function, when the weights are derived from a hypothesized hazard
ratio function. Valsecchi et al.625 proposed a method that is robust to non-PH
that occurs in the late follow-up period. Their method uses down-weighting of
certain types of “outliers.” See Herndon and Harrell287 for a flexible paramet-
ric PH model with time-dependent covariables, which uses the restricted cubic
spline function to specify λ(t). Putter et al.518 and Muggeo and Tagliavia468

have nice approaches that use time-dependent covariates to model time inter-
actions to allow non-proportional hazards. Perperoglou et al.498,499 developed
a systematic approach that allows one to continuously vary the amount of non
PH allowed, through the use of a structure matrix that connects predictors
with functions of time. Schuabel et al.543 have a good exposition of internal
time-dependent covariates.

16 See van Houwelingen and le Cessie [633, Eq. 61] and Verweij and van Houwelin-
gen640 for an interesting index of cross-validated predictive accuracy. Schemper
and Henderson552 relate explained variation to predictive accuracy in Cox mod-
els. Hielscher et al.291 compares and illustrates several measures of explained
variation as does Choodari-Oskooei et al.106. Choodari-Oskooei et al.105 stud-
ied explained randomness and predictive accuracy measures.

17 See similar indexes in Schemper544 and a related idea in [633, Eq. 63]. Man-
del, Galai, and Simchen436 presented a time-varying c index. See Korn and
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Simon,365 Schemper and Stare,554 and Henderson282 for nice comparisons of
various measures. Pencina and D’Agostino489 provide more details about the c
index and derived new interval estimates. They also discussed the relationship
between c and a version of Kendall’s τ . Pencina et al.491 found advantages of c.
Uno et al.618 described exactly how c depends on the amount of censoring and
proposed a new index, requiring one to choose a time cutoff, that is invariant to
the amount of censoring. Henderson et al.283 discussed the benefits of using the
probability of a serious prognostication error (e.g., being off by a factor of 2.0
or worse on the time scale) as an accuracy measure. Schemper550 shows that
models with very important predictors can have very low absolute prediction
ability, and he discusses measures of predictive accuracy from a general stand-
point. Lawless and Yuan386 present prediction error estimators and confidence
limits, focusing on such measures as error in predicted median or mean survival
time. Schmid and Potapov555 studied the bias of several variations on the c in-
dex under non-proportional hazards and/or nonrandom censoring. Gönen and
Heller223 developed a c-index that is censoring-independent.

18 Altman and Royston18 have a good discussion of validation of prognostic models
and present several examples of validation using a simple discrimination index.
Thomas Gerds has an R package pec that provides many validation methods
and accuracy indexes.

19 Kattan et al.338 describe how to make nomograms for deriving predicted sur-
vival probabilities when there are competing risks.

20 Hielscher et al.291 provides an overview of software for computing accuracy
indexes with censored data.



Chapter 21

Case Study in Cox Regression

21.1 Choosing the Number of Parameters and Fitting
the Model

Consider the randomized trial of estrogen for treatment of prostate cancer87

described in Chapter 8. Let us now develop a model for time until death
(of any cause). There are 354 deaths among the 502 patients. To be able
to efficiently estimate treatment benefit, to test for differential treatment
effect, or to estimate prognosis or absolute treatment benefit for individual
patients, we need a multivariable survival model. In this case study we do not
make use of data reductions obtained in Chapter 8 but show simpler (partial)
approaches to data reduction. We do use the transcan results for imputation.

First let’s assess the wisdom of fitting a full additive model that does not
assume linearity of effect for any predictor. Categorical predictors are ex-
panded using dummy variables. For pf we could lump the last two categories
as before since the last category has only two patients. Likewise, we could
combine the last two levels of ekg. Continuous predictors are expanded by
fitting four-knot restricted cubic spline functions, which contain two nonlin-
ear terms and thus have a total of three d.f. Table 21.1 defines the candidate
predictors and lists their d.f. The variable stage is not listed as it can be
predicted with high accuracy from sz,sg,ap,bm (stage could have been used
as a predictor for imputing missing values on sz, sg). There are a total of 36
candidate d.f. that should not be artificially reduced by “univariable screen-
ing” or graphical assessments of association with death. This is about 1/10
as many predictor d.f. as there are deaths, so there is some hope that a fitted
model may validate. Let us also examine this issue by estimating the amount
of shrinkage using Equation 4.3. We first use transcan impute missing data.

require(rms)
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Table 21.1 Initial allocation of degrees of freedom

Predictor Name d.f. Original Levels

Dose of estrogen rx 3 placebo, 0.2, 1.0, 5.0 mg
estrogen

Age in years age 3
Weight index: wt(kg)−ht(cm)+200 wt 3
Performance rating pf 2 normal, in bed < 50% of

time, in bed > 50%, in
bed always

History of cardiovascular disease hx 1 present/absent
Systolic blood pressure/10 sbp 3
Diastolic blood pressure/10 dbp 3
Electrocardiogram code ekg 5 normal, benign, rhythm

disturb., block, strain,
old myocardial infarction,
new MI

Serum hemoglobin (g/100ml) hg 3
Tumor size (cm2) sz 3
Stage/histologic grade combination sg 3
Serum prostatic acid phosphatase ap 3
Bone metastasis bm 1 present/absent

getHdata (prostate )

levels (prostate $ekg)[ levels (prostate $ekg) %in%

c( ' old MI ' , ' recent MI ' )] ← ' MI '
# combines last 2 levels and uses a new name , MI

prostate $pf.coded ← as.integer (prostate $pf)

# save original pf , re-code to 1-4

levels (prostate $pf) ← c(levels (prostate $pf )[1:3] ,

levels (prostate $pf )[3])

# combine last 2 levels

w ← transcan (∼ sz + sg + ap + sbp + dbp + age +

wt + hg + ekg + pf + bm + hx , imputed=TRUE ,

data =prostate , pl=FALSE , pr=FALSE )

attach (prostate )

sz ← impute (w, sz , data =prostate )

sg ← impute (w, sg , data =prostate )

age ← impute (w, age ,data =prostate )

wt ← impute (w, wt , data =prostate )

ekg ← impute (w, ekg ,data =prostate )

dd ← datadist (prostate ); options(datadist = ' dd ' )
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units (dtime ) ← ' Month '
S ← Surv (dtime , status != ' alive ' )

f ← cph(S ∼ rx + rcs(age ,4) + rcs(wt ,4) + pf + hx +

rcs(sbp ,4) + rcs(dbp ,4) + ekg + rcs(hg ,4) +

rcs(sg ,4) + rcs(sz ,4) + rcs(log(ap),4) + bm)

print (f, latex =TRUE , coefs =FALSE )

Cox Proportional Hazards Model

cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 4) + pf + hx

+ rcs(sbp, 4) + rcs(dbp, 4) + ekg + rcs(hg, 4)

+ rcs(sg, 4) + rcs(sz, 4) + rcs(log(ap), 4) + bm)

Model Tests Discrimination
Indexes

Obs 502 LR χ2 136.22 R2 0.238
Events 354 d.f. 36 Dxy 0.333
Center -2.9933 Pr(> χ2) 0.0000 g 0.787

Score χ2 143.62 gr 2.196
Pr(> χ2) 0.0000

The likelihood ratio χ2 statistic is 136.2 with 36 d.f. This test is highly
significant so some modeling is warranted. The AIC value (on the χ2 scale) is
136.2−2×36 = 64.2. The rough shrinkage estimate is 0.74 (100.2/136.2) so we
estimate that 0.26 of the model fitting will be noise, especially with regard to
calibration accuracy. The approach of Spiegelhalter582 is to fit this full model
and to shrink predicted values. We instead try to do data reduction (blinded
to individual χ2 statistics from the above model fit) to see if a reliable model
can be obtained without shrinkage. A good approach at this point might
be to do a variable clustering analysis followed by single degree of freedom
scoring for individual predictors or for clusters of predictors. Instead we do
an informal data reduction. The strategy is described in Table 21.2. For ap,
more exploration is desired to be able to model the shape of effect with such a
highly skewed distribution. Since we expect the tumor variables to be strong
prognostic factors we retain them as separate variables. No assumption is
made for the dose-response shape for estrogen, as there is reason to expect a
non-monotonic effect due to competing risks for cardiovascular death.

heart ← hx + ekg %nin% c( ' normal ' , ' benign ' )
label (heart ) ← ' Heart Disease Code '
map ← (2*dbp + sbp)/3

label (map) ← ' Mean Arterial Pressure /10 '
dd ← datadist (dd , heart , map)

f ← cph(S ∼ rx + rcs(age ,4) + rcs(wt ,3) + pf.coded +
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Table 21.2 Final allocation of degrees of freedom

Variables Reductions d.f. Saved

wt Assume variable not important enough 1
for 4 knots; use 3 knots

pf Assume linearity 1
hx,ekg Make new 0,1,2 variable and assume 5

linearity: 2 = hx and ekg not normal
or benign, 1 = either, 0 = none

sbp,dbp Combine into mean arterial bp and 4
use 3 knots: map = (2 dbp + sbp)/3

sg Use 3 knots 1
sz Use 3 knots 1
ap Look at shape of effect of ap in detail, −1

and take log before expanding as spline
to achieve numerical stability: add 1 knots

heart + rcs(map ,3) + rcs(hg ,4) +

rcs(sg ,3) + rcs(sz ,3) + rcs(log(ap),5) + bm ,

x=TRUE , y=TRUE , surv=TRUE , time.inc =5*12)

print (f, latex =TRUE , coefs =3)

Cox Proportional Hazards Model

cph(formula = S ~ rx + rcs(age, 4) + rcs(wt, 3) + pf.coded +

heart + rcs(map, 3) + rcs(hg, 4) + rcs(sg, 3) +

rcs(sz, 3) + rcs(log(ap), 5) + bm, x = TRUE, y = TRUE,

surv = TRUE, time.inc = 5 * 12)

Model Tests Discrimination
Indexes

Obs 502 LR χ2 118.37 R2 0.210
Events 354 d.f. 24 Dxy 0.321
Center -2.4307 Pr(> χ2) 0.0000 g 0.717

Score χ2 125.58 gr 2.049
Pr(> χ2) 0.0000

Coef S.E. Wald Z Pr(> |Z|)
rx=0.2 mg estrogen -0.0002 0.1493 0.00 0.9987
rx=1.0 mg estrogen -0.4160 0.1657 -2.51 0.0121
rx=5.0 mg estrogen -0.1107 0.1571 -0.70 0.4812
. . .
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Table 21.3 Wald Statistics for S

χ2 d.f. P

rx 8.01 3 0.0459
age 13.84 3 0.0031
Nonlinear 9.06 2 0.0108

wt 8.21 2 0.0165
Nonlinear 2.54 1 0.1110

pf.coded 3.79 1 0.0517
heart 23.51 1 < 0.0001
map 0.04 2 0.9779
Nonlinear 0.04 1 0.8345

hg 12.52 3 0.0058
Nonlinear 8.25 2 0.0162

sg 1.64 2 0.4406
Nonlinear 0.05 1 0.8304

sz 12.73 2 0.0017
Nonlinear 0.06 1 0.7990

ap 6.51 4 0.1639
Nonlinear 6.22 3 0.1012

bm 0.03 1 0.8670
TOTAL NONLINEAR 23.81 11 0.0136
TOTAL 119.09 24 < 0.0001

# x, y for predict , validate , calibrate;

# surv, time.inc for calibrate

latex (anova (f),file= ' ' ,label= ' tab :coxcase-anova1 ' )# Table 21.3

The total savings is thus 12 d.f. The likelihood ratio χ2 is 118 with 24 d.f.,
with a slightly improved AIC of 70. The rough shrinkage estimate is slightly
better at 0.80, but still worrisome. A further data reduction could be done,
such as using the transcan transformations determined from self-consistency
of predictors, but we stop here and use this model.

From Table 21.3 there are 11 parameters associated with nonlinear effects,
and the overall test of linearity indicates the strong presence of nonlinearity
for at least one of the variables age,wt,map,hg,sz,sg,ap. There is no strong
evidence for a difference in survival time between doses of estrogen.

21.2 Checking Proportional Hazards

Now that we have a tentative model, let us examine the model’s distributional
assumptions using smoothed scaled Schoenfeld residuals. A messy detail is
how to handle multiple regression coefficients per predictor. Here we do an
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approximate analysis in which each predictor is scored by adding up all that
predictor’s terms in the model, to transform that predictor to optimally relate
to the log hazard (at least if the shape of the effect does not change with
time). In doing this we are temporarily ignoring the fact that the individual
regression coefficients were estimated from the data. For dose of estrogen,
for example, we code the effect as 0 (placebo), −0.00025 (0.2 mg), −0.416
(1.0 mg), and −0.111 (5.0 mg), and age is transformed using its fitted spline
function. In the rms package the predict function easily summarizes multiple
terms and produces a matrix (here, z) containing the total effects for each
predictor. Matrix factors can easily be included in model formulas.

z ← predict(f, type= ' terms ' )
# required x=T above to store design matrix

f.short ← cph(S ∼ z, x=TRUE , y=TRUE )

# store raw x, y so can get residuals

The fit f.short based on the matrix of single d.f. predictors z has the
same LR χ2 of 118 as the fit f, but with a falsely low 11 d.f. All regression
coefficients are unity.

Now we compute scaled Schoenfeld residuals separately for each predictor
and test the PH assumption using the “correlation with time” test. Also plot
smoothed trends in the residuals. The plot method for cox.zph objects uses
cubic splines to smooth the relationship.

phtest ← cox.zph(f.short , transform = ' identity ' )
phtest

rho chisq p
rx 0.10232 4.00823 0.0453
age -0.05483 1.05850 0.3036
wt 0.01838 0.11632 0.7331
pf.coded -0.03429 0.41884 0.5175
heart 0.02650 0.30052 0.5836
map 0.02055 0.14135 0.7069
hg -0.00362 0.00511 0.9430
sg -0.05137 0.94589 0.3308
sz -0.01554 0.08330 0.7729
ap 0.01720 0.11858 0.7306
bm 0.04957 0.95354 0.3288
GLOBAL NA 7.18985 0.7835

plot (phtest , var= ' rx ' ) # Figure 21.1

Perhaps only the drug effect significantly changes over time (P = 0.05 for
testing the correlation rho between the scaled Schoenfeld residual and time),
but when a global test of PH is done penalizing for 11 d.f., the P value is
0.78. A graphical examination of the trends doesn’t find anything interesting
for the last 10 variables. A residual plot is drawn for rx alone and is shown in
Figure 21.1. We ignore the possible increase in effect of estrogen over time. If
this non-PH is real, a more accurate model might be obtained by stratifying
on rx or by using a time × rx interaction as a time-dependent covariable.
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Fig. 21.1 Raw and spline-smoothed scaled Schoenfeld residuals for dose of estrogen,
nonlinearly coded from the Cox model fit, with ± 2 standard errors.

21.3 Testing Interactions

Note that the model has several insignificant predictors. These are not
deleted, as that would not improve predictive accuracy and it would make
accurate confidence intervals hard to obtain. At this point it would be rea-
sonable to test prespecified interactions. Here we test all interactions with
dose. Since the multiple terms for many of the predictors (and for rx) make
for a great number of d.f. for testing interaction (and a loss of power), we do
approximate tests on the data-driven coding of predictors. P -values for these
tests are likely to be somewhat anti-conservative.

z.dose ← z[,"rx"] # same as saying z[,1] - get first column

z.other ← z[,-1] # all but the first column of z

f.ia ← cph(S ∼ z.dose * z.other) # Figure 21.4:

latex (anova (f.ia ), file = ' ' , label = ' tab:coxcase-anova2 ' )

The global test of additivity in Table 21.4 has P = 0.27, so we ignore the
interactions (and also forget to penalize for having looked for them below!).

21.4 Describing Predictor Effects

Let us plot how each predictor is related to the log hazard of death, including
0.95 confidence bands. Note in Figure 21.2 that due to a peculiarity of the
Cox model the standard error of the predicted Xβ̂ is zero at the reference
values (medians here, for continuous predictors).
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Table 21.4 Wald Statistics for S

χ2 d.f. P

z.dose (Factor+Higher Order Factors) 18.74 11 0.0660
All Interactions 12.17 10 0.2738

z.other (Factor+Higher Order Factors) 125.89 20 < 0.0001
All Interactions 12.17 10 0.2738

z.dose × z.other (Factor+Higher Order Factors) 12.17 10 0.2738
TOTAL 129.10 21 < 0.0001
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Fig. 21.2 Shape of each predictor on log hazard of death. Y -axis shows Xβ̂, but
the predictors not plotted are set to reference values. Note the highly non-monotonic
relationship with ap, and the increased slope after age 70 which occurs in outcome
models for various diseases.
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ggplot (Predict(f), sepdiscrete = ' vertical ' , nlevels=4,

vnames = ' names ' ) # Figure 21.2

21.5 Validating the Model

We first validate this model for Somers’ Dxy rank correlation between pre-
dicted log hazard and observed survival time, and for slope shrinkage. The
bootstrap is used (with 300 resamples) to penalize for possible overfitting, as
discussed in Section 5.3.

set.seed (1) # so can reproduce results

v ← validate (f, B=300)

Divergence or singularity in 83 samples

latex (v, file = ' ' )

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.3208 0.3454 0.2954 0.0500 0.2708 217
R2 0.2101 0.2439 0.1754 0.0685 0.1417 217
Slope 1.0000 1.0000 0.7941 0.2059 0.7941 217
D 0.0292 0.0348 0.0238 0.0110 0.0182 217
U −0.0005 −0.0005 0.0023 −0.0028 0.0023 217
Q 0.0297 0.0353 0.0216 0.0138 0.0159 217
g 0.7174 0.7918 0.6273 0.1645 0.5529 217

Here “training”refers to accuracy when evaluated on the bootstrap sample
used to fit the model, and “test” refers to the accuracy when this model is
applied without modification to the original sample. The apparent Dxy is
0.32, but a better estimate of how well the model will discriminate prognoses
in the future is Dxy = 0.27. The bootstrap estimate of slope shrinkage is 0.79,
close to the simple heuristic estimate. The shrinkage coefficient could easily
be used to shrink predictions to yield better calibration.

Finally, we validate the model (without using the shrinkage coefficient) for
calibration accuracy in predicting the probability of surviving five years. The
bootstrap is used to estimate the optimism in how well predicted five-year
survival from the final Cox model tracks flexible smooth estimates, with-
out any binning of predicted survival probabilities or assuming proportional
hazards.
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cal ← calibrate (f, B=300, u=5*12, maxdim =4)

Using Cox survival estimates at 60 Months

plot (cal , subtitles =FALSE ) # Figure 21.3
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Fig. 21.3 Bootstrap estimate of calibration accuracy for 5-year estimates from the
final Cox model, using adaptive linear spline hazard regression361. The line nearer the
ideal line corresponds to apparent predictive accuracy. The blue curve corresponds to
bootstrap-corrected estimates.

The estimated calibration curves are shown in Figure 21.3, similar to what
was done in Figure 19.11. Bootstrap calibration demonstrates some overfit-
ting, consistent with regression to the mean. The absolute error is appreciable
for 5-year survival predicted to be very low or high.

21.6 Presenting the Model

To present point and interval estimates of predictor effects we draw a hazard
ratio chart (Figure 21.4), and to make a final presentation of the model
we draw a nomogram having multiple “predicted value” axes. Since the ap

relationship is so non-monotonic, use a 20 : 1 hazard ratio for this variable.

plot(summary (f, ap=c(1,20)), log =TRUE , main= ' ' ) # Figure 21.4
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0.50 1.00 2.00 3.50 5.50

age − 76:70
wt − 107:90

pf.coded − 4:1
heart − 2:0

map − 11:9.333333
hg − 14.69922:12.29883

sg − 11:9
sz − 21:5
ap − 20:1
bm − 1:0

rx − 0.2 mg estrogen:placebo
rx − 1.0 mg estrogen:placebo
rx − 5.0 mg estrogen:placebo

Fig. 21.4 Hazard ratios and multi-level confidence bars for effects of predictors in
model, using default ranges except for ap

The ultimate graphical display for this model will be a nomogram relating
the predictors to Xβ̂, estimated three– and five-year survival probabilities
and median survival time. It is easy to add as many “output” axes as desired
to a nomogram.

surv ← Survival (f)

surv3 ← function (x) surv(3*12, lp=x)

surv5 ← function (x) surv(5*12, lp=x)

quan ← Quantile (f)

med ← function (x) quan(lp=x)/12

ss ← c(.05 ,.1,.2,.3,.4,.5,.6,.7,.8,.9 ,.95)

nom ← nomogram (f, ap=c(.1,.5 ,1,2,3,4,5,10,20,30,40),

fun=list(surv3 , surv5 , med),

funlabel =c( ' 3-year Survival ' , ' 5-year Survival ' ,
' Median Survival Time (years ) '),

fun.at =list(ss , ss , c(.5 ,1:6)))

plot(nom , xfrac=.65 , lmgp=.35) # Figure 21.5

21.7 Problems

Perform Cox regression analyses of survival time using the Mayo Clinic PBC
dataset described in Section 8.9. Provide model descriptions, parameter esti-
mates, and conclusions.

1. Assess the nature of the association of several predictors of your choice.
For polytomous predictors, perform a log-rank-type score test (or k-sample
ANOVA extension if there are more than two levels). For continuous pre-
dictors, plot a smooth curve that estimates the relationship between the
predictor and the log hazard or log–log survival. Use both parametric
and nonparametric (using martingale residuals) approaches. Make a test
of H0 : predictor is not associated with outcome versus Ha : predictor
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Fig. 21.5 Nomogram for predicting death in prostate cancer trial

is associated (by a smooth function). The test should have more than 1
d.f. If there is no evidence that the predictor is associated with outcome.
Make a formal test of linearity of each remaining continuous predictor.
Use restricted cubic spline functions with four knots. If you feel that you
can’t narrow down the number of candidate predictors without examining
the outcomes, and the number is too great to be able to derive a reliable
model, use a data reduction technique and combine many of the variables
into a summary index.
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2. For factors that remain, assess the PH assumption using at least two meth-
ods, after ensuring that continuous predictors are transformed to be as
linear as possible. In addition, for polytomous predictors, derive log cu-
mulative hazard estimates adjusted for continuous predictors that do not
assume anything about the relationship between the polytomous factor
and survival.

3. Derive a final Cox PH model. Stratify on polytomous factors that do not
satisfy the PH assumption. Decide whether to categorize and stratify on
continuous factors that may strongly violate PH. Remember that in this
case you can still model the continuous factor to account for any residual
regression after adjusting for strata intervals. Include an interaction be-
tween two predictors of your choosing. Interpret the parameters in the final
model. Also interpret the final model by providing some predicted survival
curves in which an important continuous predictor is on the x-axis, pre-
dicted survival is on the y-axis, separate curves are drawn for levels of
another factor, and any other factors in the model are adjusted to speci-
fied constants or to the grand mean. The estimated survival probabilities
should be computed at t = 730 days.

4. Verify, in an unbiased fashion, your “final”model, for either calibration or
discrimination. Validate intermediate steps, not just the final parameter
estimates.



Appendix A

Datasets, R Packages, and Internet
Resources

Central Web Site and Datasets

The web site for information related to this book is biostat.mc.vanderbilt.
edu/rms, and a related web site for a full-semester course based on the book is
http://biostat.mc.vanderbilt.edu/CourseBios330. The main site con-
tains links to several other web sites and a link to the dataset repository that
holds most of the datasets mentioned in the text for downloading. These
datasets are in fully annotated R save (.sav suffixes) filesa; some of these
are also available in other formats. The datasets were selected because of
the variety of types of response and predictor variables, sample size, and
numbers of missing values. In R they may be read using the load function,
load(url()) to read directly from the Web, or by using the Hmisc package’s
getHdata function to do the same (as is done in code in the case studies).
From the web site there are links to other useful dataset sources. Links to
presentations and technical reports related to the text are also found on this
site, as is information for instructors for obtaining quizzes and answer sheets,
extra problems, and solutions to these and to many of the problems in the
text. Details about short courses based on the text are also found there. The
main site also has Chapter 7 from the first edition, which is a case study in
ordinary least squares modeling.

R Packages

The rms package written by the author maintains detailed information about
a model’s design matrix so that many analyses using the model fit are au-
tomated. rms is a large package of R functions. Most of the functions in rms

analyze model fits, validate them, or make presentation graphics from them,

a By convention these should have had .rda suffixes.
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but the packages also contain special model–fitting functions for binary and
ordinal logistic regression (optionally using penalized maximum likelihood),
unpenalized ordinal regression with a variety of link functions, penalized and
unpenalized least squares, and parametric and semiparametric survival mod-
els. In addition, rms handles quantile regression and longitudinal analysis
using generalized least squares. The rms package pays special attention to
computing predicted values in that design matrix attributes (e.g., knots for
splines, categories for categorical predictors) are “remembered” so that pre-
dictors are properly transformed while predictions are being generated. The
functions makes extensive use of a wealth of survival analysis software writ-
ten by Terry Therneau of the Mayo Foundation. This survival package is a
standard part of R.

The author’s Hmisc package contains other miscellaneous functions used
in the text. These are functions that do not operate on model fits that used
the enhanced design attributes stored by the rms package. Functions in Hmisc

include facilities for data reduction, imputation, power and sample size calcu-
lation, advanced table making, recoding variables, translating SAS datasets
into R data frames while preserving all data attributes (including variable
and value labels and special missing values), drawing and annotating plots,
and converting certain R objects to LATEX

371 typeset form. The latter capa-
bility, provided by a family of latex functions, completes the conversion to
LATEX of many of the objects created by rms. The packages contain several
LATEX methods that create LATEX code for typesetting model fits in algebraic
notation, for printing ANOVA and regression effect (e.g., odds ratio) tables,
and other applications. The LATEX methods were used extensively in the text,
especially for writing restricted cubic spline function fits in simplest notation.

The latest version of the rms package is available from CRAN (see below).
It is necessary to install the Hmisc package in order to use rms package. The
Web site also contains more in-depth overviews of the packages, which run on
UNIX, Linux, Mac, and Microsoft Windows systems. The packages may be
automatically downloaded and installed using R’s install.packages function
or using menus under R graphical user interfaces.

R-help, CRAN, and Discussion Boards

To subscribe to the highly informative and helpful R-help e-mail group, see the
Web site. R-help is appropriate for asking general questions about R including
those about finding or writing functions to do specific analyses (for questions
specific to a package, contact the author of that package). Another resource
is the CRAN repository at www.r-project.org. Another excellent resource
for askings questions about R is stackoverflow.com/questions/tagged/r.
There is a Google group regmod devoted to the book and courses.

stackoverflow.com/questions/tagged/r
www.r-project.org
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Multiple Imputation

The Impute E-mail list maintained by Juned Siddique of Northwestern Univer-
sity is an invaluable source of information regarding missing data problems.
To subscribe to this list, see the Web site. Other excellent sources of on-
line information are Joseph Schafer’s “Multiple Imputation Frequently Asked
Questions” site and Stef van Buuren and Karin Oudshoorn’s “Multiple Im-
putation Online” site, for which links exist on the main Web site.

Bibliography

An extensive annotated bibliography containing all the references in this text
as well as other references concerning predictive methods, survival analysis,
logistic regression, prognosis, diagnosis, modeling strategies, model valida-
tion, practical Bayesian methods, clinical trials, graphical methods, papers
for teaching statistical methods, the bootstrap, and many other areas may
be found at http://www.citeulike.org/user/harrelfe.

SAS

SAS macros for fitting restricted cubic splines and for other basic operations
are freely available from the main Web site. The Web site also has notes on
SAS usage for some of the methods presented in the text.

http://www.citeulike.org/user/harrelfe


References

Numbers following � are page numbers of citations.

1. O. O. Aalen. Nonparametric inference in connection with multiple decrement
models. Scan J Stat, 3:15–27, 1976. �413

2. O. O. Aalen. Further results on the non-parametric linear regression model in
survival analysis. Stat Med, 12:1569–1588, 1993. �518

3. O. O. Aalen, E. Bjertness, and T. Sønju. Analysis of dependent survival data
applied to lifetimes of amalgam fillings. Stat Med, 14:1819–1829, 1995. �421

4. M. Abrahamowicz, T. MacKenzie, and J. M. Esdaile. Time-dependent haz-
ard ratio: Modeling and hypothesis testing with applications in lupus nephritis.
JAMA, 91:1432–1439, 1996. �501

5. A. Agresti. A survey of models for repeated ordered categorical response data.
Stat Med, 8:1209–1224, 1989. �324

6. A. Agresti. Categorical data analysis. Wiley, Hoboken, NJ, second edition, 2002.
�271

7. H. Ahn and W. Loh. Tree-structured proportional hazards regression modeling.
Biometrics, 50:471–485, 1994. �41, 178

8. J. Aitchison and S. D. Silvey. The generalization of probit analysis to the case
of multiple responses. Biometrika, 44:131–140, 1957. �324

9. K. Akazawa, T. Nakamura, and Y. Palesch. Power of logrank test and Cox
regression model in clinical trials with heterogeneous samples. Stat Med, 16:583–
597, 1997. �4

10. O. O. Al-Radi, F. E. Harrell, C. A. Caldarone, B. W. McCrindle, J. P. Jacobs,
M. G. Williams, G. S. Van Arsdell, and W. G. Williams. Case complexity
scores in congenital heart surgery: A comparative study of the Aristotal Basic
Complexity score and the Risk Adjustment in Congenital Heart Surg (RACHS-
1) system. J Thorac Cardiovasc Surg, 133:865–874, 2007. �215

11. J. M. Alho. On the computation of likelihood ratio and score test based con-
fidence intervals in generalized linear models. Stat Med, 11:923–930, 1992. �
214

12. P. D. Allison. Missing Data. Sage University Papers Series on Quantitative
Applications in the Social Sciences, 07-136. Sage, Thousand Oaks CA, 2001. �
49, 58

© Springer International Publishing Switzerland 2015
F.E. Harrell, Jr., Regression Modeling Strategies, Springer Series
in Statistics, DOI 10.1007/978-3-319-19425-7

539



540 References

13. D. G. Altman. Categorising continuous covariates (letter to the editor). Brit J
Cancer, 64:975, 1991. �11, 19

14. D. G. Altman. Suboptimal analysis using ‘optimal’ cutpoints. Brit J Cancer,
78:556–557, 1998. �19

15. D. G. Altman and P. K. Andersen. A note on the uncertainty of a survival
probability estimated from Cox’s regression model. Biometrika, 73:722–724,
1986. �11, 517

16. D. G. Altman and P. K. Andersen. Bootstrap investigation of the stability of a
Cox regression model. Stat Med, 8:771–783, 1989. �68, 70, 341

17. D. G. Altman, B. Lausen, W. Sauerbrei, and M. Schumacher. Dangers of using
‘optimal’ cutpoints in the evaluation of prognostic factors. J Nat Cancer Inst,
86:829–835, 1994. �11, 19, 20

18. D. G. Altman and P. Royston. What do we mean by validating a prognostic
model? Stat Med, 19:453–473, 2000. �6, 122, 519

19. B. Altschuler. Theory for the measurement of competing risks in animal exper-
iments. Math Biosci, 6:1–11, 1970. �413

20. C. F. Alzola and F. E. Harrell. An Introduction to S and the Hmisc and Design
Libraries, 2006. Electronic book, 310 pages. �129

21. G. Ambler, A. R. Brady, and P. Royston. Simplifying a prognostic model: a
simulation study based on clinical data. Stat Med, 21(24):3803–3822, Dec. 2002.
�121

22. F. Ambrogi, E. Biganzoli, and P. Boracchi. Estimates of clinically useful mea-
sures in competing risks survival analysis. Stat Med, 27:6407–6425, 2008. �
421

23. P. K. Andersen and R. D. Gill. Cox’s regression model for counting processes:
A large sample study. Ann Stat, 10:1100–1120, 1982. �418, 513

24. G. L. Anderson and T. R. Fleming. Model misspecification in proportional
hazards regression. Biometrika, 82:527–541, 1995. �4

25. J. A. Anderson. Regression and ordered categorical variables. J Roy Stat Soc
B, 46:1–30, 1984. �324

26. J. A. Anderson and P. R. Philips. Regression, discrimination and measurement
models for ordered categorical variables. Appl Stat, 30:22–31, 1981. �324

27. J. A. Anderson and A. Senthilselvan. A two-step regression model for hazard
functions. Appl Stat, 31:44–51, 1982. �495, 499, 501

28. D. F. Andrews and A. M. Herzberg. Data. Springer-Verlag, New York, 1985. �
161

29. E. Arjas. A graphical method for assessing goodness of fit in Cox’s proportional
hazards model. J Am Stat Assoc, 83:204–212, 1988. �420, 495, 502

30. H. R. Arkes, N. V. Dawson, T. Speroff, F. E. Harrell, C. Alzola, R. Phillips,
N. Desbiens, R. K. Oye, W. Knaus, A. F. Connors, and T. Investigators. The
covariance decomposition of the probability score and its use in evaluating prog-
nostic estimates. Med Decis Mak, 15:120–131, 1995. �257

31. B. G. Armstrong and M. Sloan. Ordinal regression models for epidemiologic
data. Am J Epi, 129:191–204, 1989. See letter to editor by Peterson. �319, 320,
321, 324

32. D. Ashby, C. R. West, and D. Ames. The ordered logistic regression model
in psychiatry: Rising prevalence of dementia in old people’s homes. Stat Med,
8:1317–1326, 1989. �324

33. A. C. Atkinson. A note on the generalized information criterion for choice of a
model. Biometrika, 67:413–418, 1980. �69, 204

34. P. C. Austin. A comparison of regression trees, logistic regression, generalized
additive models, and multivariate adaptive regression splines for predicting AMI
mortality. Stat Med, 26:2937–2957, 2007. �41



References 541

35. P. C. Austin. Bootstrap model selection had similar performance for select-
ing authentic and noise variables compared to backward variable elimination: a
simulation study. J Clin Epi, 61:1009–1017, 2008. �70

36. P. C. Austin and E. W. Steyerberg. Events per variable (EPV) and the relative
performance of different strategies for estimating the out-of-sample validity of
logistic regression models. Statistical methods in medical research, Nov. 2014. �
112

37. P. C. Austin and E. W. Steyerberg. Graphical assessment of internal and exter-
nal calibration of logistic regression models by using loess smoothers. Stat Med,
33(3):517–535, Feb. 2014. �105

38. P. C. Austin, J. V. Tu, P. A. Daly, and D. A. Alter. Tutorial in Biostatistics:The
use of quantile regression in health care research: a case study examining gender
differences in the timeliness of thrombolytic therapy. Stat Med, 24:791–816,
2005. �392

39. D. Bamber. The area above the ordinal dominance graph and the area below
the receiver operating characteristic graph. J Mathe Psych, 12:387–415, 1975.
�257

40. J. Banks. Nomograms. In S. Kotz and N. L. Johnson, editors, Encyclopedia of
Stat Scis, volume 6. Wiley, New York, 1985. �104, 267

41. J. Barnard and D. B. Rubin. Small-sample degrees of freedom with multiple
imputation. Biometrika, 86:948–955, 1999. �58

42. S. A. Barnes, S. R. Lindborg, and J. W. Seaman. Multiple imputation techniques
in small sample clinical trials. Stat Med, 25:233–245, 2006. �47, 58

43. F. Barzi and M. Woodward. Imputations of missing values in practice: Results
from imputations of serum cholesterol in 28 cohort studies. Am J Epi, 160:34–45,
2004. �50, 58

44. R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language.
Wadsworth and Brooks/Cole, Pacific Grove, CA, 1988. �127

45. H. Belcher. The concept of residual confounding in regression models and some
applications. Stat Med, 11:1747–1758, 1992. �11, 19

46. D. A. Belsley. Conditioning Diagnostics: Collinearity and Weak Data in Re-
gression. Wiley, New York, 1991. �101

47. D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity. Wiley, New York, 1980. �91

48. R. Bender and A. Benner. Calculating ordinal regression models in SAS and
S-Plus. Biometrical J, 42:677–699, 2000. �324

49. J. K. Benedetti, P. Liu, H. N. Sather, J. Seinfeld, and M. A. Epton. Effective
sample size for tests of censored survival data. Biometrika, 69:343–349, 1982. �
73

50. K. Berhane, M. Hauptmann, and B. Langholz. Using tensor product splines
in modeling exposure–time–response relationships: Application to the Colorado
Plateau Uranium Miners cohort. Stat Med, 27:5484–5496, 2008. �37

51. K. N. Berk and D. E. Booth. Seeing a curve in multiple regression. Technomet-
rics, 37:385–398, 1995. �272

52. D. M. Berridge and J. Whitehead. Analysis of failure time data with ordinal
categories of response. Stat Med, 10:1703–1710, 1991. �319, 320, 324, 417

53. C. Berzuini and D. Clayton. Bayesian analysis of survival on multiple time
scales. Stat Med, 13:823–838, 1994. �401

54. W. B. Bilker and M. Wang. A semiparametric extension of the Mann-Whitney
test for randomly truncated data. Biometrics, 52:10–20, 1996. �420

55. D. A. Binder. Fitting Cox’s proportional hazards models from survey data.
Biometrika, 79:139–147, 1992. �213, 215

56. C. Binquet, M. Abrahamowicz, A. Mahboubi, V. Jooste, J. Faivre, C. Bonithon-
Kopp, and C. Quantin. Empirical study of the dependence of the results of
multivariable flexible survival analyses on model selection strategy. Stat Med,
27:6470–6488, 2008. �420



542 References

57. E. H. Blackstone. Analysis of death (survival analysis) and other time-related
events. In F. J. Macartney, editor, Current Status of Clinical Cardiology, pages
55–101. MTP Press Limited, Lancaster, UK, 1986. �420

58. S. E. Bleeker, H. A. Moll, E. W. Steyerberg, A. R. T. Donders, G. Derkson-
Lubsen, D. E. Grobbee, and K. G. M. Moons. External validation is necessary
in prediction research: A clinical example. J Clin Epi, 56:826–832, 2003. �122

59. M. Blettner and W. Sauerbrei. Influence of model-building strategies on the
results of a case-control study. Stat Med, 12:1325–1338, 1993. �123

60. D. D. Boos. On generalized score tests. Ann Math Stat, 46:327–333, 1992. �213
61. J. G. Booth and S. Sarkar. Monte Carlo approximation of bootstrap variances.

Am Statistician, 52:354–357, 1998. �122
62. R. Bordley. Statistical decisionmaking without math. Chance, 20(3):39–44,

2007. �5
63. R. Brant. Assessing proportionality in the proportional odds model for ordinal

logistic regression. Biometrics, 46:1171–1178, 1990. �324
64. S. R. Brazer, F. S. Pancotto, T. T. Long III, F. E. Harrell, K. L. Lee, M. P. Tyor,

and D. B. Pryor. Using ordinal logistic regression to estimate the likelihood of
colorectal neoplasia. J Clin Epi, 44:1263–1270, 1991. �324

65. A. R. Brazzale and A. C. Davison. Accurate parametric inference for small
samples. Statistical Sci, 23(4):465–484, 2008. �214

66. L. Breiman. The little bootstrap and other methods for dimensionality selection
in regression: X-fixed prediction error. J Am Stat Assoc, 87:738–754, 1992. �
69, 100, 112, 114, 123, 204

67. L. Breiman. Statistical modeling: The two cultures (with discussion). Statistical
Sci, 16:199–231, 2001. �11

68. L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple
regression and correlation (with discussion). J Am Stat Assoc, 80:580–619, 1985.
�82, 176, 390

69. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1984. �30,
41, 142

70. N. E. Breslow. Covariance analysis of censored survival data. Biometrics, 30:89–
99, 1974. �477, 483, 485

71. N. E. Breslow, N. E. Day, K. T. Halvorsen, R. L. Prentice, and C. Sabai. Esti-
mation of multiple relative risk functions in matched case-control studies. Am
J Epi, 108:299–307, 1978. �483

72. N. E. Breslow, L. Edler, and J. Berger. A two-sample censored-data rank test
for acceleration. Biometrics, 40:1049–1062, 1984. �501

73. G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly
Weather Rev, 78:1–3, 1950. �257

74. W. M. Briggs and R. Zaretzki. The skill plot: A graphical technique for evaluat-
ing continuous diagnostic tests (with discussion). Biometrics, 64:250–261, 2008.
�5, 11

75. G. Bron. The loss of the “Titanic”. The Sphere, 49:103, May 1912. The results
analysed and shown in a special “Sphere”diagram drawn from the official figures
given in the House of Commons. �291

76. B. W. Brown, M. Hollander, and R. M. Korwar. Nonparametric tests of inde-
pendence for censored data, with applications to heart transplant studies. In
F. Proschan and R. J. Serfling, editors, Reliability and Biometry, pages 327–354.
SIAM, Philadelphia, 1974. �505

77. D. Brownstone. Regression strategies. In Proceedings of the 20th Symposium
on the Interface between Computer Science and Statistics, pages 74–79, Wash-
ington, DC, 1988. American Statistical Association. �116

78. J. Bryant and J. J. Dignam. Semiparametric models for cumulative incidence
functions. Biometrics, 69:182–190, 2004. �420



References 543

79. S. F. Buck. A method of estimation of missing values in multivariate data
suitable for use with an electronic computer. J Roy Stat Soc B, 22:302–307,
1960. �52

80. S. T. Buckland, K. P. Burnham, and N. H. Augustin. Model selection: An
integral part of inference. Biometrics, 53:603–618, 1997. �10, 11, 214

81. J. Buckley and I. James. Linear regression with censored data. Biometrika,
66:429–36, 1979. �447

82. P. Buettner, C. Garbe, and I. Guggenmoos-Holzmann. Problems in defining
cutoff points of continuous prognostic factors: Example of tumor thickness in
primary cutaneous melanoma. J Clin Epi, 50:1201–1210, 1997. �11, 19

83. K. Bull and D. Spiegelhalter. Survival analysis in observational studies. Stat
Med, 16:1041–1074, 1997. �399, 401, 420

84. K. P. Burnham and D. R. Anderson. Model Selection and Multimodel Inference:
A Practical Information-Theoretic Approach. Springer, 2nd edition, Dec. 2003.
�69

85. S. Buuren. Flexible imputation of missing data. Chapman & Hall/CRC, Boca
Raton, FL, 2012. �54, 55, 58, 304

86. M. Buyse. R2: A useful measure of model performance when predicting a di-
chotomous outcome. Stat Med, 19:271–274, 2000. Letter to the Editor regarding
Stat Med 18:375–384; 1999. �272

87. D. P. Byar and S. B. Green. The choice of treatment for cancer patients based on
covariate information: Application to prostate cancer. Bulletin Cancer, Paris,
67:477–488, 1980. �161, 275, 521

88. R. M. Califf, F. E. Harrell, K. L. Lee, J. S. Rankin, and Others. The evolution of
medical and surgical therapy for coronary artery disease. JAMA, 261:2077–2086,
1989. �484, 485, 510

89. R. M. Califf, H. R. Phillips, and Others. Prognostic value of a coronary artery
jeopardy score. J Am College Cardiol, 5:1055–1063, 1985. �207

90. R. M. Califf, L. H. Woodlief, F. E. Harrell, K. L. Lee, H. D. White, A. Guerci,
G. I. Barbash, R. Simes, W. Weaver, M. L. Simoons, E. J. Topol, and T. Inves-
tigators. Selection of thrombolytic therapy for individual patients: Development
of a clinical model. Am Heart J, 133:630–639, 1997. �4

91. A. J. Canty, A. C. Davison, D. V. Hinkley, and V. Venture. Bootstrap diagnostics
and remedies. Can J Stat, 34:5–27, 2006. �122

92. J. Carpenter and J. Bithell. Bootstrap confidence intervals: when, which, what?
A practical guide for medical statisticians. Stat Med, 19:1141–1164, 2000. �122,
214

93. W. H. Carter, G. L. Wampler, and D. M. Stablein. Regression Analysis of
Survival Data in Cancer Chemotherapy. Marcel Dekker, New York, 1983. �477

94. Centers for Disease Control and Prevention CDC. National Center for Health
Statistics NCHS. National Health and Nutrition Examination Survey, 2010. �
365

95. M. S. Cepeda, R. Boston, J. T. Farrar, and B. L. Strom. Comparison of logistic
regression versus propensity score when the number of events is low and there
are multiple confounders. Am J Epi, 158:280–287, 2003. �272

96. J. M. Chambers and T. J. Hastie, editors. Statistical Models in S. Wadsworth
and Brooks/Cole, Pacific Grove, CA, 1992. �x, 29, 41, 128, 142, 245, 269, 493,
498

97. L. E. Chambless and K. E. Boyle. Maximum likelihood methods for com-
plex sample data: Logistic regression and discrete proportional hazards models.
Comm Stat A, 14:1377–1392, 1985. �215

98. R. Chappell. A note on linear rank tests and Gill and Schumacher’s tests of
proportionality. Biometrika, 79:199–201, 1992. �495

99. C. Chatfield. Avoiding statistical pitfalls (with discussion). Statistical Sci,
6:240–268, 1991. �91



544 References

100. C. Chatfield. Model uncertainty, data mining and statistical inference (with
discussion). J Roy Stat Soc A, 158:419–466, 1995. �vii, 9, 10, 11, 68, 100, 123,
204

101. S. Chatterjee and A. S. Hadi. Regression Analysis by Example. Wiley, New
York, fifth edition, 2012. �78, 101

102. S. C. Cheng, J. P. Fine, and L. J. Wei. Prediction of cumulative incidence
function under the proportional hazards model. Biometrics, 54:219–228, 1998.
�415

103. S. C. Cheng, L. J. Wei, and Z. Ying. Predicting Survival Probabilities with
Semiparametric Transformation Models. JASA, 92(437):227–235, Mar. 1997. �
517

104. F. Chiaromonte, R. D. Cook, and B. Li. Sufficient dimension reduction in
regressions with categorical predictors. Appl Stat, 30:475–497, 2002. �101

105. B. Choodari-Oskooei, P. Royston, and M. K. B. Parmar. A simulation study
of predictive ability measures in a survival model II: explained randomness and
predictive accuracy. Stat Med, 31(23):2644–2659, 2012. �518

106. B. Choodari-Oskooei, P. Royston, and M. K. B. Parmar. A simulation study of
predictive ability measures in a survival model I: Explained variation measures.
Stat Med, 31(23):2627–2643, 2012. �518

107. A. Ciampi, A. Negassa, and Z. Lou. Tree-structured prediction for censored
survival data and the Cox model. J Clin Epi, 48:675–689, 1995. �41

108. A. Ciampi, J. Thiffault, J. P. Nakache, and B. Asselain. Stratification by stepwise
regression, correspondence analysis and recursive partition. Comp Stat Data
Analysis, 1986:185–204, 1986. �41, 81

109. L. A. Clark and D. Pregibon. Tree-Based Models. In J. M. Chambers and T. J.
Hastie, editors, Statistical Models in S, chapter 9, pages 377–419. Wadsworth
and Brooks/Cole, Pacific Grove, CA, 1992. �41

110. T. G. Clark and D. G. Altman. Developing a prognostic model in the presence
of missing data: an ovarian cancer case study. J Clin Epi, 56:28–37, 2003. �57

111. W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots.
J Am Stat Assoc, 74:829–836, 1979. �29, 141, 238, 315, 356, 493

112. A. Cnaan and L. Ryan. Survival analysis in natural history studies of disease.
Stat Med, 8:1255–1268, 1989. �401, 420

113. T. J. Cole, C. J. Morley, A. J. Thornton, M. A. Fowler, and P. H. Hewson. A
scoring system to quantify illness in babies under 6 months of age. J Roy Stat
Soc A, 154:287–304, 1991. �324

114. D. Collett. Modelling Survival Data in Medical Research. Chapman and Hall,
London, 1994. �420, 517

115. D. Collett. Modelling Binary Data. Chapman and Hall, London, second edition,
2002. �213, 272, 315

116. A. F. Connors, T. Speroff, N. V. Dawson, C. Thomas, F. E. Harrell, D. Wagner,
N. Desbiens, L. Goldman, A. W. Wu, R. M. Califf, W. J. Fulkerson, H. Vidaillet,
S. Broste, P. Bellamy, J. Lynn, W. A. Knaus, and T. S. Investigators. The effec-
tiveness of right heart catheterization in the initial care of critically ill patients.
JAMA, 276:889–897, 1996. �3

117. E. F. Cook and L. Goldman. Asymmetric stratification: An outline for an effi-
cient method for controlling confounding in cohort studies. Am J Epi, 127:626–
639, 1988. �31, 231

118. N. R. Cook. Use and misues of the receiver operating characteristic curve in
risk prediction. Circulation, 115:928–935, 2007. �93, 101, 273

119. R. D. Cook. Fisher Lecture:Dimension reduction in regression. Statistical Sci,
22:1–26, 2007. �101

120. R. D. Cook and L. Forzani. Principal fitted components for dimension reduction
in regression. Statistical Sci, 23(4):485–501, 2008. �101



References 545

121. J. Copas. The effectiveness of risk scores: The logit rank plot. Appl Stat, 48:165–
183, 1999. �273

122. J. B. Copas. Regression, prediction and shrinkage (with discussion). J Roy Stat
Soc B, 45:311–354, 1983. �100, 101

123. J. B. Copas. Cross-validation shrinkage of regression predictors. J Roy Stat Soc
B, 49:175–183, 1987. �115, 123, 273, 508

124. J. B. Copas. Unweighted sum of squares tests for proportions. Appl Stat, 38:71–
80, 1989. �236

125. J. B. Copas and T. Long. Estimating the residual variance in orthogonal regres-
sion with variable selection. The Statistician, 40:51–59, 1991. �68

126. C. Cox. Location-scale cumulative odds models for ordinal data: A generalized
non-linear model approach. Stat Med, 14:1191–1203, 1995. �324

127. C. Cox. The generalized f distribution: An umbrella for parametric survival
analysis. Stat Med, 27:4301–4313, 2008. �424

128. C. Cox, H. Chu, M. F. Schneider, and A. Muñoz. Parametric survival analysis
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406. J. G. Liao and D. McGee. Adjusted coefficients of determination for logistic
regression. Am Statistician, 57:161–165, 2003. �273

407. D. Y. Lin. Cox regression analysis of multivariate failure time data: The marginal
approach. Stat Med, 13:2233–2247, 1994. �197, 213, 417, 418

408. D. Y. Lin. Non-parametric inference for cumulative incidence functions in com-
peting risks studies. Stat Med, 16:901–910, 1997. �415

409. D. Y. Lin. On fitting Cox’s proportional hazards models to survey data.
Biometrika, 87:37–47, 2000. �215

410. D. Y. Lin and L. J. Wei. The robust inference for the Cox proportional hazards
model. J Am Stat Assoc, 84:1074–1078, 1989. �197, 213, 487

411. D. Y. Lin, L. J. Wei, and Z. Ying. Checking the Cox model with cumulative
sums of martingale-based residuals. Biometrika, 80:557–572, 1993. �518

412. D. Y. Lin and Z. Ying. Semiparametric regression analysis of longitudinal data
with informative drop-outs. Biostatistics, 4:385–398, 2003. �47

413. J. C. Lindsey and L. M. Ryan. Tutorial in biostatistics: Methods for interval-
censored data. Stat Med, 17:219–238, 1998. �420

414. J. K. Lindsey. Models for Repeated Measurements. Clarendon Press, 1997. �143
415. J. K. Lindsey and B. Jones. Choosing among generalized linear models applied

to medical data. Stat Med, 17:59–68, 1998. �11
416. K. Linnet. Assessing diagnostic tests by a strictly proper scoring rule. Stat Med,

8:609–618, 1989. �114, 123, 257, 258
417. S. R. Lipsitz, L. P. Zhao, and G. Molenberghs. A semiparametric method of

multiple imputation. J Roy Stat Soc B, 60:127–144, 1998. �54
418. R. Little and H. An. Robust likelihood-based analysis of multivariate data with

missing values. Statistica Sinica, 14:949–968, 2004. �57, 59
419. R. J. Little. Missing Data. In Ency of Biostatistics, pages 2622–2635. Wiley,

New York, 1998. �59
420. R. J. A. Little. Missing-data adjustments in large surveys. J Bus Econ Stat,

6:287–296, 1988. �51
421. R. J. A. Little. Regression with missing X ’s: A review. J Am Stat Assoc,

87:1227–1237, 1992. �50, 51, 54
422. R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley,

New York, second edition, 2002. �48, 52, 54, 59
423. G. F. Liu, K. Lu, R. Mogg, M. Mallick, and D. V. Mehrotra. Should baseline be

a covariate or dependent variable in analyses of change from baseline in clinical
trials? Stat Med, 28:2509–2530, 2009. �160

424. K. Liu and A. R. Dyer. A rank statistic for assessing the amount of variation
explained by risk factors in epidemiologic studies. Am J Epi, 109:597–606, 1979.
�206, 256

425. R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani. A significance test
for the lasso. Technical report, arXiv, 2013. �68

426. J. S. Long and L. H. Ervin. Using heteroscedasticity consistent standard errors
in the linear regression model. Am Statistician, 54:217–224, 2000. �213

427. J. Lubsen, J. Pool, and E. van der Does. A practical device for the application
of a diagnostic or prognostic function. Meth Info Med, 17:127–129, 1978. �104

428. D. J. Lunn, J. Wakefield, and A. Racine-Poon. Cumulative logit models for
ordinal data: a case study involving allergic rhinitis severity scores. Stat Med,
20:2261–2285, 2001. �324

429. M. Lunn and D. McNeil. Applying Cox regression to competing risks. Biomet-
rics, 51:524–532, 1995. �420

430. X. Luo, L. A. Stfanski, and D. D. Boos. Tuning variable selection procedures
by adding noise. Technometrics, 48:165–175, 2006. �11, 100



References 559

431. G. S. Maddala. Limited-Dependent and Qualitative Variables in Econometrics.
Cambridge University Press, Cambridge, UK, 1983. �206, 256, 505

432. L. Magee. R2 measures based on Wald and likelihood ratio joint significance
tests. Am Statistician, 44:250–253, 1990. �206, 256, 505

433. L. Magee. Nonlocal behavior in polynomial regressions. Am Statistician, 52:20–
22, 1998. �21

434. C. Mallows. The zeroth problem. Am Statistician, 52:1–9, 1998. �11
435. M. Mandel. Censoring and truncation—Highlighting the differences. Am Statis-

tician, 61(4):321–324, 2007. �420
436. M. Mandel, N. Galae, and E. Simchen. Evaluating survival model performance:

a graphical approach. Stat Med, 24:1933–1945, 2005. �518
437. N. Mantel. Why stepdown procedures in variable selection. Technometrics,

12:621–625, 1970. �70
438. N. Mantel and D. P. Byar. Evaluation of response-time data involving transient

states: An illustration using heart-transplant data. J Am Stat Assoc, 69:81–86,
1974. �401, 420

439. P. Margolis, E. K. Mulholland, F. E. Harrell, S. Gove, and the WHO Young
Infants Study Group. Clinical prediction of serious bacterial infections in young
infants in developing countries. Pediatr Infect Dis J, 18S:S23–S31, 1999. �327

440. D. B. Mark, M. A. Hlatky, F. E. Harrell, K. L. Lee, R. M. Califf, and D. B. Pryor.
Exercise treadmill score for predicting prognosis in coronary artery disease. Ann
Int Med, 106:793–800, 1987. �512

441. G. Marshall, F. L. Grover, W. G. Henderson, and K. E. Hammermeister. As-
sessment of predictive models for binary outcomes: An empirical approach using
operative death from cardiac surgery. Stat Med, 13:1501–1511, 1994. �101

442. G. Marshall, B. Warner, S. MaWhinney, and K. Hammermeister. Prospective
prediction in the presence of missing data. Stat Med, 21:561–570, 2002. �57

443. R. J. Marshall. The use of classification and regression trees in clinical epidemi-
ology. J Clin Epi, 54:603–609, 2001. �41

444. E. Marubini and M. G. Valsecchi. Analyzing Survival Data from Clinical Trials
and Observational Studies. Wiley, Chichester, 1995. �213, 214, 415, 420, 501,
517

445. J. M. Massaro. Battery Reduction. 2005. �87
446. S. E. Maxwell and H. D. Delaney. Bivariate median splits and spurious statistical

significance. Psych Bull, 113:181–190, 1993. �19
447. M. May, P. Royston, M. Egger, A. C. Justice, and J. A. C. Sterne. Develop-

ment and validation of a prognostic model for survival time data: application
to prognosis of HIV positive patients treated with antiretroviral therapy. Stat
Med, 23:2375–2398, 2004. �505

448. G. P. McCabe. Principal variables. Technometrics, 26:137–144, 1984. �101
449. P. McCullagh. Regression models for ordinal data. J Roy Stat Soc B, 42:109–

142, 1980. �313, 324
450. P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and

Hall/CRC, second edition, Aug. 1989. �viii
451. D. R. McNeil, J. Trussell, and J. C. Turner. Spline interpolation of demographic

data. Demography, 14:245–252, 1977. �40
452. W. Q. Meeker and L. A. Escobar. Teaching about approximate confidence

regions based on maximum likelihood estimation. Am Statistician, 49:48–53,
1995. �214

453. N. Meinshausen. Hierarchical testing of variable importance. Biometrika,
95(2):265–278, 2008. �101

454. S. Menard. Coefficients of determination for multiple logistic regression analysis.
Am Statistician, 54:17–24, 2000. �215, 272

455. X. Meng. Multiple-imputation inferences with uncongenial sources of input.
Stat Sci, 9:538–558, 1994. �58



560 References

456. G. Michailidis and J. de Leeuw. The Gifi system of descriptive multivariate
analysis. Statistical Sci, 13:307–336, 1998. �81

457. M. E. Miller, S. L. Hui, and W. M. Tierney. Validation techniques for logistic
regression models. Stat Med, 10:1213–1226, 1991. �259

458. M. E. Miller, T. M. Morgan, M. A. Espeland, and S. S. Emerson. Group com-
parisons involving missing data in clinical trials: a comparison of estimates and
power (size) for some simple approaches. Stat Med, 20:2383–2397, 2001. �58

459. R. G. Miller. What price Kaplan–Meier? Biometrics, 39:1077–1081, 1983. �420
460. S. Minkin. Profile-likelihood-based confidence intervals. Appl Stat, 39:125–126,

1990. �214
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Entries in this font are names of software components. Page numbers in
bold denote the most comprehensive treatment of the topic.

Symbols
Dxy, 105, 142, 257, 257–259,269,

284, 318, 461, 505, 529
censored data, 505, 517

R2, 110, 111, 206, 272, 390, 391
adjusted, 74, 77, 105
generalized, 207
significant difference in, 215

c index, 93, 100, 105, 142,257,
257, 259, 318, 505, 517

censored data, 505
generalized, 318, 505

HbA1c, 365
15:1 rule, 72, 100

A
Aalen survival function estimator,

see survival function
abs.error.pred, 102
accelerated failure time, see

model
accuracy, 104, 111, 113, 114, 210,

354, 446
g-index, 105
absolute, 93, 102

apparent, 114, 269, 529
approximation, 119, 275,

287, 348, 469
bias-corrected, 100, 109,

114, 115, 141, 391, 529
calibration, 72–78,

88, 92, 93, 105, 111, 115, 141,
236, 237, 259, 260,
264, 269, 271, 284, 301, 322,
446, 467, 506

discrimination, 72, 92, 93,
105,111, 111, 257, 259,
269, 284, 287, 318, 331, 346,
467, 505, 506, 508

future, 211
index, 122, 123, 141

ACE, 82, 176, 179, 390, 391, 392
ace, 176, 392
acepack package, 176, 392
actuarial survival, 410
adequacy index, 207
AIC, 28, 69, 78, 88, 172, 204, 204,

210, 211, 214, 215,
240, 241, 269, 275, 277, 332,
374, 375
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AIC, 134, 135, 277
Akaike information criterion, see

AIC
analysis of covariance, see

ANOCOVA
ANOCOVA, 16, 223, 230, 447
ANOVA, 13, 32, 75, 230, 235, 317,

447, 480, 531
anova, 65, 127, 133, 134, 136,

149, 155, 278, 302, 306, 336,
342, 346, 464, 466

anova.gls, 149
areg.boot, 392–394
aregImpute, 51, 53–56, 59,

304, 305
Arjas plot, 495
asis, 132, 133
assumptions
accelerated failure time,

436, 437, 458
additivity, 37, 248
continuation ratio, 320,

321, 338
correlation pattern, 148, 153
distributional, 39, 97,

148, 317, 446, 525
linearity, 21–26
ordinality, 312, 319, 333, 340
proportional hazards, 429,

494–503
proportional odds, 313,

315, 317, 336, 362
AVAS, 390–392
case study, 393–398

avas, 392, 394, 395

B
B-spline, see spline function
battery reduction, 87
Bayesian modeling, 71, 209, 215
BIC, 211, 214, 269
binary response, see response
bj, 131, 135, 447, 449
bootcov, 134–136, 198–202,319
bootkm, 419

bootstrap, 106–109,114–116
.632, 115, 123
adjusting for imputation, 53
approximate Bayesian, 50
basic, 202, 203
BCa, 202, 203
cluster, 135, 197, 199, 213
conditional, 115, 122, 197
confidence intervals, see

confidence intervals, 199
covariance matrix, 135, 198
density, 107, 136
distribution, 201
estimating shrinkage, 77, 115
model uncertainty, 11, 113, 304
overfitting correction, 112,

114, 115, 257, 391
ranks, 117
variable selection, 70, 97,

113, 177, 260, 275, 282, 286
bplot, 134
Breslow survival function

estimator, see survival
function

Brier score, 142, 237,
257–259,271, 318

C
CABG, 484
calibrate, 135, 141, 269,

271, 284, 300, 319, 323, 355,
450, 467, 517

calibration, see accuracy
caliper matching, 372
cancor, 141
canonical correlation, 141
canonical variate, 82, 83, 129,

141, 167, 169, 393
CART, see recursive partitioning
casewise deletion, see missing

data
categorical predictor, see

predictor
categorization of continuous

variable, 8, 18–21
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catg, 132, 133
causal inference, 103
cause removal, 414
censoring, 401–402, 406, 424
informative, 402, 414, 415, 420
interval, 401, 418, 420
left, 401
right, 402, 418
type I, 401
type II, 402

ciapower, 513
classification, 4, 6
classifier, 4, 6
clustered data, 197, 417
clustering
hierarchical, 129, 166, 330
variable, 81, 101, 175, 355

ClustOfVar, 101
coef, 134
coefficient of discrimination, see

accuracy
collinearity, 78–79
competing risks, 414, 420
concordance probability, see c

index
conditional logistic model, see

logistic model
conditional probability, 320, 404,

476, 484
confidence intervals, 10, 30,

35, 64, 66, 96, 136, 185,
198, 273, 282, 391

bootstrap, 107, 109,
119, 122, 135, 149, 199,
201–203,214, 217

coverage, 35, 198, 199, 389
simultaneous, 136, 199,

202, 214, 420, 517
confounding, 31, 103, 231
confplot, 214
contingency table, 195, 228,

230, 235
contrast, see hypothesis test
contrast, 134, 136,

192, 193, 198, 199

convergence, 193, 264
coronary artery disease, 48, 207,

240, 245, 252, 492, 497
correlation structures, 147, 148
correspondence analysis, 81, 129
cost-effectiveness, 4
Cox model, 362, 375, 392,

475–517
case study, 521–531
data reduction example, 172
multiple imputation, 54

cox.zph, 499, 516, 517, 526
coxph, 131, 422, 513
cph, 131, 133, 135, 172, 422,

448,513, 513, 514, 516, 517
cpower, 513
cr.setup, 323, 340, 354
cross-validation, see validation of

model
cubic spline, see spline function
cumcategory, 357
cumulative hazard function, see

hazard function
cumulative probability model,

359, 361–363,370, 371
cut2, 129, 133, 334, 419
cutpoint, 21

D
data reduction, 79–88, 275
case study 1, 161–177
case study 2, 277
case study 3, 329–333

data-splitting, see validation of
model

data.frame, 309
datadist, 130, 130, 138, 292, 463
datasets, 535
cdystonia, 149
cervical dystonia, 149
diabetes, 317
meningitis, 266, 267
NHANES, 365
prostate, 161, 275, 521
SUPPORT, 59, 453



574 Index

Titanic, 291
degrees of freedom, 193
effective, 30, 41, 77, 96, 136,

210, 269
generalized, 10
phantom, 35, 111

delayed entry, 401
delta method, 439
describe, 129, 291, 453
deviance, 236, 449, 487, 516
DFBETA, 91
DFBETAS, 91
DFFIT, 91
DFFITS, 91
diabetes, see datasets, 365
difference in predictions, 192, 201
dimensionality, 88
discriminant analysis, 220, 230,

272
discrimination, see accuracy, see

accuracy
distribution, 317
t, 186
binomial, 73, 181, 194, 235
Cauchy, 362
exponential, 142, 407, 408,

425, 427, 451
extreme value, 362, 363, 427,

437
Gumbel, 362, 363
log-logistic, 9, 423,

427, 440, 442, 503
log-normal, 9, 106,

391, 423, 427, 442, 463, 464
normal, 187
Weibull, 39,408, 408, 420, 426,

432–437,444, 448
dose-response, 523
doubly nonlinear, 131
drop-in, 513
dropouts, 143
dummy variable, 1, see indicator

variable, 75, 129, 130,
209, 210

E
economists, 71
effective.df, 134, 136, 345, 346
Emax, 353
epidemiology, 38
estimation, 2, 98, 104
estimator
Buckley–James, 447, 449
maximum likelihood, 181
mean, 362
penalized, see maximum

likelihood, 175
quantile, 362
self-consistent, 525
smearing, 392, 393

explained variation, 273
exponential distribution, see

distribution
ExProb, 135
external validation, see validation

of model

F
failure time, 399
fastbw, 133, 134, 137, 280, 286,

351, 469
feature selection, 94
financial data, 3
fit.mult.impute, 54, 306
Fleming–Harrington survival

function estimator, see
survival function

formula, 134
fractional polynomial, 40
Function, 134, 135, 138, 149, 310,

395
functions, generating R code, 395

G
GAM, see generalized additive

model, see generalized
additive model

gam package, 390
GDF, see degrees of freedom
GEE, 147
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Gehan–Wilcoxon test, see
hypothesis test

gendata, 134, 136
generalized additive model,

29, 41, 138, 142, 390
case study, 393–398

getHdata, 59, 178, 535
ggplot, 134
ggplot2 package, xi, 134, 294
gIndex, 105
glht, 199
Glm, 131, 135, 271
glm, 131, 141, 271
Gls, 131, 135, 149
gls, 131, 149
goodness of fit, 236, 269,

427, 440, 458
Greenwood’s formula, see survival

function
groupkm, 419

H
hare, 450
hat matrix, 91
Hazard, 135, 448
hazard function, 135, 362,

375, 400, 402, 405, 409, 427,
475, 476

bathtub, 408
cause-specific, 414, 415
cumulative, 402–409

hazard ratio, 429–431,
433, 478, 479, 481

interval-specific, 495–497,502
hazard.ratio.plot, 517
hclust, 129
heft, 419
heterogeneity, unexplained, 4, 231,

400
histSpikeg, 294
Hmisc package, xi, 129, 133, 137,

167, 176, 273, 277, 294, 304,
319, 357, 392, 418, 458, 463,
513, 536

hoeffd, 129

Hoeffding D, 129, 166, 458
Hosmer–Lemeshow test, 236, 237
Hotelling test, see hypothesis test
Huber–White estimator, 196
hypothesis test, 1, 18, 32, 99
additivity, 37, 248
association, 2, 18, 32, 43, 66,

129, 235, 338, 486
contrast, 157, 192, 193, 198
equal slopes, 315, 321, 322,

338, 339, 458, 460, 495
exponentiality, 408, 426
Gehan-Wilcoxon, 505
global, 69, 97, 189, 205,

230, 232, 342, 526
Hotelling, 230
independence, 129, 166
Kruskal–Wallis, 2, 66, 129
linearity, 18, 32, 35, 36, 39, 42,

66, 91, 238
log-rank, 41, 363, 422, 475, 486,

513, 518
Mantel–Haenszel, 486
normal scores, 364
partial, 190
Pearson χ2, 195, 235
robust, 9, 81, 311
Van der Waerden, 364
Wilcoxon, 1, 73, 129,

230, 257, 311, 313, 325,
363, 364

I
ignorable nonresponse, see

missing data
imbalances, baseline, 400
improveProb, 142
imputation, 47–57, 83
chained equations, 55, 304
model for, 49, 50, 50–52,

59, 84, 129
multiple, 47, 53, 54, 54–56,

95, 129, 304, 382, 537
censored data, 54
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predictive mean matching, 51,
52, 55

single, 52, 56, 57, 138,
171, 275, 276, 334

impute, 129, 135, 138, 171,
276, 277, 334, 461

incidence
crude, 416
cumulative, 415

incomplete principal component
regression, 170, 275

indicator variable, 16, 17, 38, 39
infinite regression coefficient, 234
influential observations, 90–92,

116, 255, 256, 269, 504
information function, 182, 183
information matrix, 79, 188, 189,

191, 196, 208, 211, 232, 346
informative missing, see missing

data
interaction, 16, 36, 375
interquartile-range effect, 104, 136
intracluster correlation, 135, 141,

197, 417
isotropic correlation structure, see

correlation structures

J
jackknife, 113, 504

K
Kalbfleisch–Prentice estimator,

see survival function
Kaplan–Meier estimator, see

survival function
knots, 22
Kullback–Leibler information, 215

L
landmark survival time analysis,

447
lasso, 71, 100, 121, 175, 356
LATEX, 129, 536

latex, 129, 134, 135, 137, 138, 149,
246, 282, 292, 336, 342, 346,
453, 466, 470, 536

lattice package, 134
least squares
censored, 447

leave-out-one, see validation of
model

left truncation, 401, 420
life expectancy, 4, 408, 472
lift curve, 5
likelihood function, 182,

187, 188, 190,
194, 195, 424, 425, 476

partial, 477
likelihood ratio test, 185–186,

189–191,193–195,
198, 204, 205, 207, 228, 240

linear model, 73, 74, 143, 311, 359,
361, 362, 364, 368, 370, 372

case study, 143
linear spline, see spline function
link function, 15
Cauchy, 362
complementary log-log, 362
log-log, 362
probit, 362

lm, 131
lme, 149
local regression, see

nonparametric
loess, see nonparametric
loess, 29, 142, 493
log-rank, see hypothesis test
LOGISTIC, 315
logistic model
binary, 219–231
case study 1, 275–288
case study 2, 291–310

conditional, 483
continuation ratio, 319–323
case study, 338–340

extended continuation ratio,
321–322

case study, 340–355
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ordinal, 311
proportional odds, 73, 311, 312,

313–319, 333, 362, 364
case study, 333–338

logLik, 134, 135
longitudinal data, 143
lowess, see nonparametric
lowess, 141, 294
lrm, 65, 131, 134, 135, 201,

269, 269, 273, 277, 278,
296, 297, 302, 306, 319, 323,
335, 337, 339, 341, 342, 448,
513

lrtest, 134, 135
lsp, 133

M
Mallows’ Cp, 69
Mantel–Haenszel test, see

hypothesis test
marginal distribution, 26, 417,

478
marginal estimates, see

unconditioning
martingale residual, 487, 493, 494,

515, 516
matrix, 133
matrx, 133
maximal correlation, 390
maximum generalized variance,

82, 83
maximum likelihood, 147
estimation, 181, 231, 424, 425,

477
penalized, 11, 77, 78, 115, 136,

209–212, 269, 327, 328, 353
case study, 342–355

weighted, 208
maximum total variance, 81
Mean, 135, 319, 448, 472, 513, 514
meningitis, see datasets
mgcv package, 390
MGV, see maximum generalized

variance
MICE, 54, 55, 59

missing data, 143, 302
casewise deletion, 47, 48, 81,

296, 307, 384
describing patterns, see

naclus, naplot

imputation, see imputation
informative, 46, 424
random, 46

MLE, see maximum likelihood
model
accelerated failure time,

436–446, 453
case study, 453–473

Andersen–Gill, 513
approximate, 119–123,

275, 287, 349, 352–354,356
Buckley–James, 447, 449
comparing more than one, 92
Cox, see Cox model
cumulative link, see cumulative

probability model
cumulative probability, see

cumulative probability
model

extended linear, 146
generalized additive, see

generalized additive model,
359

generalized linear, 146, 359
growth curve, 146
linear, see linear model,

117, 199, 287, 317, 389
log-logistic, 437
log-normal, 437, 453
logistic, see logistic model
longitudinal, 143
ols, 146
ordinal, see ordinal model
parametric proportional

hazards, 427
quantile regression, see quantile

regression
semiparametric, see

semiparametric model
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validation, see validation of
model

model approximation, see model
model uncertainty, 170, 304
model validation, see validation

of model
modeling strategy, see strategy
monotone, 393
monotonicity, 66, 83, 84,

95, 129, 166, 389, 390, 393,
458

MTV, see maximum total
variance

multcomp package, 199, 202
multi-state model, 420
multiple events, 417

N
na.action, 131
na.delete, 131, 132
na.detail.response, 131
na.fail, 132
na.fun.response, 131
na.omit, 132
naclus, 47, 142, 302, 458, 461
naplot, 47, 302, 461
naprint, 135
naresid, 132, 135
natural spline, see restricted

cubic spline
nearest neighbor, 51
Nelson estimator, see survival

function, 422
Newlabels, 473
Newton–Raphson algorithm, 193,

195, 196, 209, 231, 426
NHANES, 365
nlme package, 131, 148, 149
noise, 34, 68, 69, 72, 209, 488, 523
nomogram, 104, 268,

310, 318, 353, 514, 531
nomogram, 135, 138, 149, 282, 319,

353, 473, 514
non-proportional hazards, 73, 450,

506

noncompliance, 402, 513
nonignorable nonresponse, see

missing data
nonparametric
correlation, 66
censored data, 517

generalized Spearman
correlation, 66, 376

independence test, 129, 166
regression, 29, 41, 105, 142, 245,

285
test, 2, 66, 129

nonproportional hazards, 495
npsurv, 418, 419
ns, 132, 133
nuisance parameter, 190, 191

O
object-oriented program, x, 127,

133
observational study, 3, 58,

230, 400
odds ratio, 222, 224, 318
OLS, see linear model
ols, 131, 135, 137, 350, 351,

448, 469, 470
optimism, 109, 111, 114, 391
ordered, 133
ordinal model, 311, 359, 361–363,

370, 371
case study, 327–356,359–387
probit, 364

ordinal response, see response
ordinality, see assumptions
orm, 131, 135, 319, 362, 363
outlier, 116, 294
overadjustment, 2
overfitting, 72, 109–110

P
parsimony, 87, 97, 119
partial effect plot, 104, 318
partial residual, see residual
partial test, see hypothesis test
PC, see principal component,

170, 172, 175, 275



Index 579

pcaPP package, 175
pec package, 519
penalized maximum likelihood,

see maximum likelihood
pentrace, 134, 136, 269, 323, 342,

344
person-years, 408, 425
plclust, 129
plot.lrm.partial, 339
plot.xmean.ordinaly, 319, 323, 333
plsmo, 358
Poisson model, 271
pol, 133
poly, 132, 133
polynomial, 21
popower, 319
posamsize, 319
power calculation, see cpower,

spower, ciapower, popower

pphsm, 448
prcomp, 141
preconditioning, 118, 123
predab.resample, 141, 269, 323
Predict, 130, 134, 136, 149,

198, 199, 202, 278, 299, 307,
319, 448, 466

predict, 127, 132, 136, 140, 309,
319, 469, 517, 526

predictor
continuous, 21, 40
nominal, 16, 210
ordinal, 38

principal component, 81, 87,
101, 275

sparse, 101, 175
princomp, 141, 171
PRINQUAL, 82, 83
product-limit estimator, see

survival function
propensity score, 3, 58, 231
proportional hazards model, see

Cox model
proportional odds model, see

logistic model

prostate, see datasets
psm, 131, 135, 448, 448,

460, 464, 513

Q
Q–R decomposition, 23
Q-Q plot, 148
qr, 192
Quantile, 135, 448, 472, 513, 514
quantile regression, 359, 360, 364,

370, 379, 392
composite, 361

quantreg, 131, 360

R
random forests, 100
rank correlation, see

nonparametric
Rao score test, 186–187,

191, 193–195, 198
rcorr, 166
rcorr.cens, 142, 461, 517
rcorrcens, 461
rcorrp.cens, 142
rcs, 133, 296, 297
rcspline.eval, 129
rcspline.plot, 273
rcspline.restate, 129
receiver operating characteristic

curve, 6, 11
area, 92, 93, 111, 257, 346
area, generalized, 318, 505

recursive partitioning, 10, 30, 31,
41, 46, 47, 51, 52, 83, 87,
100, 120, 142, 302, 349

redun, 80, 463
redundancy analysis, 80, 175
regression to the mean, 75, 530
resampling, 105, 112
resid, 134, 336, 337, 460, 516
residual
logistic score, 314, 336
martingale, 487, 493, 494,

515, 516
partial, 34, 272, 315, 321, 337
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Schoenfeld score, 314, 487,
498, 499, 516, 517, 525, 526

residuals, 132, 134, 269, 336, 337,
460, 516

residuals.coxph, 516
response
binary, 219–221
censored or truncated, 401
continuous, 389–398
ordinal, 311, 327, 359

restricted cubic spline, see spline
function

ridge regression, 77, 115, 209, 210
risk difference, 224, 430
risk ratio, 224, 430
rms package, xi, 129, 130–141,

149, 192, 193, 198, 199, 211,
214, 319, 362, 363, 418,
422, 535

robcov, 134, 135, 198, 202
robust covariance estimator, see

variance–covariance matrix
robustgam package, 390
ROC, see receiver operating

characteristic curve, 105
rpart, 142, 302, 303
Rq, 131, 135, 360
rq, 131
runif, 460

S
sample size, 73, 74, 148,

233, 363, 486
sample survey, 135, 197, 208, 417
sas.get, 129
sascode, 138
scientific quantity, 20
score function, 182, 183, 186
score test, see Rao score test,

235, 363
score.binary, 86
scored, 132, 133
scoring, hierarchical, 86
scree plot, 172

semiparametric model, 311, 359,
361–363,370, 371, 475

sensuc, 134
shrinkage, 75–78,87, 88,

209–212,342–348
similarity measure, 81, 330, 458
smearing estimator, see estimator
smoother, 390
Somers’ rank correlation, see Dxy

somers2, 346
spca package, 175
sPCAgrid, 175, 179
Spearman rank correlation, see

nonparametric
spearman2, 129, 460
specs, 134, 135
spline function, 22, 30,

167, 192, 393
B-spline, 23, 41, 132, 500
cubic, 23
linear, 22, 133
normalization, 26
restricted cubic, 24–28
tensor, 37, 247, 374, 375

spower, 513
standardized regression

coefficient, 103
state transition, 416, 420
step, 134
step halving, 196
strat, 133
strata, 133
strategy, 63
comparing models, 92
data reduction, 79
describing model, 103, 318
developing imputations, 49
developing model for effect

estimation, 98
developing models for

hypothesis testing, 99
developing predictive model, 95
global, 94
in a nutshell, ix, 95
influential observations, 90
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maximum number of
parameters, 72

model approximation, 118, 275,
287

multiple imputation, 53
prespecification of complexity,

64
shrinkage, 77
validation, 109, 110
variable selection, 63, 67

stratification, 225, 237, 238, 254,
418, 419, 481–483, 488

subgroup estimates, 34, 241, 400
summary, 127, 130, 134, 136, 149,

167, 198, 199, 201, 278, 292,
466

summary.formula, 302, 319, 357
summary.gls, 149
super smoother, 29
SUPPORT study, see datasets
suppression, 101
supsmu, 141, 273, 390
Surv, 172, 418, 422, 458, 516
survConcordance, 517
survdiff, 517
survest, 135, 448
survfit, 135, 418, 419
Survival, 135, 448, 513, 514
survival function
Aalen estimator, 412, 413
Breslow estimator, 485
crude, 416
Fleming–Harrington estimator,

412, 413, 485
Kalbfleisch–Prentice estimator,

484, 485
Kaplan–Meier estimator,

409–413, 414–416,420
multiple state estimator, 416,

420
Nelson estimator, 412, 413, 418,

485
standard error, 412

survival package, 131,
418, 422, 499, 513, 517, 536

survplot, 135, 419, 448, 458, 460
survreg, 131, 448
survreg.auxinfo, 449
survreg.distributions, 449

T
test of linearity, see hypothesis

test
test statistic, see hypothesis test
time to event, 399
and severity of event, 417

time-dependent covariable,
322, 418, 447, 499–503,
513, 518, 526

Titanic, see datasets
training sample, 111–113,122
transace, 176, 177
transcan, 51, 55, 80,83,

83–85, 129, 135, 138, 167,
170–172,175–177,
276, 277, 330, 334, 335, 521,
525

transform both sides regression,
176, 389, 392

transformation, 389, 393, 395
post, 133
pre, 179

tree model, see recursive
partitioning

truncation, 401

U
unconditioning, 119
uniqueness analysis, 94
univariable screening, 72
univarLR, 134, 135
unsupervised learning, 79

V
val.prob, 109, 135, 271
val.surv, 109, 449, 517
validate, 135, 141, 142,

260, 269, 271, 282, 286,
300, 301, 319, 323, 354, 466,
517
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validation of model, 109–116,
259, 299, 318, 322, 353, 446,
466, 506, 529

bootstrap, 114–116
cross, 113, 115, 116, 210
data-splitting, 111, 112, 271
external, 109, 110, 237,

271, 449, 517
leave-out-one, 113, 122,

215, 255
quantities to validate, 110
randomization, 113

varclus, 79, 129, 167, 330, 458,
463

variable selection, 67–72, 171
step-down, 70, 137,

275, 280, 282, 286, 377
variance inflation factors, 79, 135,

138, 255
variance stabilization, 390

variance–covariance matrix,
51, 54, 120, 129, 189,
191, 193, 196–198,208,
211, 215

cluster sandwich, 197, 202
Huber–White estimator, 147
sandwich, 147, 211, 217

variogram, 148, 153
vcov, 134, 135
vif, 135, 138

W
waiting time, 401
Wald statistic, 186, 189, 191, 192,

194, 196, 198, 206,244, 278
weighted analysis, see maximum

likelihood
which.influence, 134, 137, 269
working independence model, 197
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