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Preface

The success of the open-source statistical software “R” has made a significant
impact on the teaching and research of statistics in the last decade. Analysing data is
now easier and more affordable than ever, but choosing the most appropriate sta-
tistical methods remains a challenge for many users. To understand and interpret
software output, it is necessary to engage with the fundamentals of statistics.

However, many readers do not feel comfortable with complicated mathematics.
In this book, we attempt to find a healthy balance between explaining statistical
concepts comprehensively and showing their application and interpretation using R.

This book will benefit beginners and self-learners from various backgrounds as
we complement each chapter with various exercises and detailed and comprehen-
sible solutions. The results involving mathematics and rigorous proofs are separated
from the main text, where possible, and are kept in an appendix for interested
readers. Our textbook covers material that is generally taught in introductory-level
statistics courses to students from various backgrounds, including sociology,
biology, economics, psychology, medicine, and others. Most often, we introduce
the statistical concepts using examples and illustrate the calculations both manually
and using R.

However, while we provide a gentle introduction to R (in the appendix), this is
not a software book. Our emphasis lies on explaining statistical concepts correctly
and comprehensively, using exercises and software to delve deeper into the subject
matter and learn about the conceptual challenges that the methods present.

This book’s homepage, http://chris.userweb.mwn.de/book/, contains additional
material, most notably the software codes needed to answer the software exercises,
and data sets. In the remainder of this book, we will use grey boxes

to introduce the relevant R commands. In many cases, the code can be directly
pasted into R to reproduce the results and graphs presented in the book; in others,
the code is abbreviated to improve readability and clarity, and the detailed code can
be found online.
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Many years of teaching experience, from undergraduate to postgraduate level,
went into this book. The authors hope that the reader will enjoy reading it and find it a
useful reference for learning. We welcome critical feedback to improve future edi-
tions of this book. Comments can be sent to christian.heumann@stat.uni-
muenchen.de, shalab@iitk.ac.in, and michael.schomaker@uct.
ac.za who contributed equally to this book.

We thank Melanie Schomaker for producing some of the figures and giving
graphical advice, Alice Blanck from Springer for her continuous help and support,
and Lyn Imeson for her dedicated commitment which improved the earlier versions
of this book. We are grateful to our families who have supported us during the
preparation of this book.

München, Germany Christian Heumann
Cape Town, South Africa Michael Schomaker
Kanpur, India Shalabh
November 2016
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1Introduction andFramework

Statistics is a collection of methods which help us to describe, summarize, interpret,
and analyse data. Drawing conclusions from data is vital in research, administra-
tion, and business. Researchers are interested in understanding whether a medical
intervention helps in reducing the burden of a disease, how personality relates to
decision-making, whether a new fertilizer increases the yield of crops, how a polit-
ical system affects trade policy, who is going to vote for a political party in the
next election, what are the long-term changes in the population of a fish species,
and many more questions. Governments and organizations may be interested in the
life expectancy of a population, the risk factors for infant mortality, geographical
differences in energy usage, migration patterns, or reasons for unemployment. In
business, identifying people who may be interested in a certain product, optimizing
prices, and evaluating the satisfaction of customers are possible areas of interest.

No matter what the question of interest is, it is important to collect data in a
way which allows its analysis. The representation of collected data in a data set or
data matrix allows the application of a variety of statistical methods. In the first
part of the book, we are going to introduce methods which help us in describing
data, and the second and third parts of the book focus on inferential statistics, which
means drawing conclusions from data. In this chapter, we are going to introduce the
framework of statistics which is needed to properly collect, administer, evaluate, and
analyse data.

1.1 Population, Sample, and Observations

Let us first introduce some terminology and related notations used in this book.
The units on which we measure data—such as persons, cars, animals, or plants—
are called observations. These units/observations are represented by the Greek
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4 1 Introduction and Framework

symbol ω. The collection of all units is called population and is represented by Ω .
When we refer toω ∈ Ω , wemean a single unit out of all units, e.g. one person out of
all persons of interest. If we consider a selection of observationsω1,ω2, . . . , ωn , then
these observations are called sample. A sample is always a subset of the population,
{ω1, ω2, . . . ,ωn} ⊆ Ω .

Example 1.1.1

• If we are interested in the social conditions under which Indian people live, then
we would define all inhabitants of India asΩ and each of its inhabitants as ω. If we
want to collect data from a few inhabitants, then those would represent a sample
from the total population.

• Investigating the economic power of Africa’s platinum industry would require to
treat each platinum-related company asω, whereas all platinum-related companies
would be collected in Ω . A few companies ω1, ω2, . . . ,ωn comprise a sample of
all companies.

• We may be interested in collecting information about those participating in a
statistics course. All participants in the course constitute the population Ω , and
each participant refers to a unit or observation ω.

Remark 1.1.1 Sometimes, the concept of a population is not applicable or difficult
to imagine. As an example, imagine that we measure the temperature in New Delhi
every hour. A sample would then be the time series of temperatures in a specific
time window, for example from January to March 2016.A population in the sense of
observational units does not exist here.But nowassume thatwemeasure temperatures
in several different cities; then, all the cities form the population, and a sample is any
subset of the cities.

1.2 Variables

If we have specified the population of interest for a specific research question, we
can think of what is of interest about our observations. A particular feature of these
observations can be collected in a statistical variable X . Any information we are
interested in may be captured in such a variable. For example, if our observations
refer to human beings, X may describe marital status, gender, age, or anything else
which may relate to a person. Of course, we can be interested in many different
features, each of them collected in a different variable Xi , i = 1, 2, . . . , p. Each
observation ω takes a particular value for X . If X refers to gender, each observation,
i.e. each person, has a particular value x which refers to either “male” or “female”.

The formal definition of a variable is

X : Ω → S
ω �→ x

(1.1)
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This definition states that a variable X takes a value x for each observation ω ∈ Ω ,
whereby the number of possible values is contained in the set S.

Example 1.2.1

• If X refers to gender, possible x-values are contained in S = {male, female}. Each
observation ω is either male or female, and this information is summarized in X .

• Let X be the country of origin for a car. Possible values to be takenby anobservation
ω (i.e. a car) are S = {Italy,South Korea,Germany,France, India,China, Japan,
USA, . . .}.

• A variable X which refers to age may take any value between 1 and 125. Each
person ω is assigned a value x which represents the age of this person.

1.2.1 Qualitative and QuantitativeVariables

Qualitative variables are the variables which take values x that cannot be ordered in
a logical or natural way. For example,

• the colour of the eye,
• the name of a political party, and
• the type of transport used to travel to work

are all qualitative variables. Neither is there any reason to list blue eyes before brown
eyes (or vice versa) nor does it make sense to list buses before trains (or vice versa).

Quantitative variables represent measurable quantities. The values which these
variables can take can be ordered in a logical and natural way. Examples of quanti-
tative variables are

• size of shoes,
• price for houses,
• number of semesters studied, and
• weight of a person.

Remark 1.2.1 It is common to assign numbers to qualitative variables for practical
purposes in data analyses (see Sect. 1.4 for more detail). For instance, if we consider
the variable “gender”, then each observation can take either the “value” male or
female. We may decide to assign 1 to female and 0 to male and use these numbers
instead of the original categories. However, this is arbitrary, and we could have also
chosen “1” for male and “0” for female, or “2” for male and “10” for female. There
is no logical and natural order on how to arrange male and female, and thus, the
variable gender remains a qualitative variable, even after using numbers for coding
the values that X can take.
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1.2.2 Discrete and ContinuousVariables

Discrete variables are variables which can only take a finite number of values.
All qualitative variables are discrete, such as the colour of the eye or the region of
a country. But also quantitative variables can be discrete: the size of shoes or the
number of semesters studied would be discrete because the number of values these
variables can take is limited.

Variables which can take an infinite number of values are called continuous
variables. Examples are the time it takes to travel to university, the length of an
antelope, and the distance between two planets. Sometimes, it is said that continuous
variables are variables which are “measured rather than counted”. This is a rather
informal definition which helps to understand the difference between discrete and
continuous variables. The crucial point is that continuous variables can, in theory,
take an infinite number of values; for instance, the height of a personmay be recorded
as 172 cm.However, the actual height on themeasuring tapemight be 172.3cmwhich
was rounded off to 172 cm. If one had a better measuring instrument, we may have
obtained 172.342 cm. But the real height of this person is a number with indefinitely
many decimal places such as 172.342975328…cm. No matter what we eventually
report or obtain, a variable which can take an infinite amount of values is defined to
be a continuous variable.

1.2.3 Scales

The thoughts and considerations from above indicate that different variables contain
different amounts of information. A useful classification of these considerations is
given by the concept of the scale of a variable. This concept will help us in the
remainder of this book to identify which methods are the appropriate ones to use in
a particular setting.

Nominal scale. The values of a nominal variable cannot be ordered. Examples are
the gender of a person (male–female) or the status of an application (pending–not
pending).

Ordinal scale. The values of an ordinal variable can be ordered. However, the differ-
ences between these values cannot be interpreted in a meaningful way. For exam-
ple, the possible values of education level (none–primary education–secondary
education–university degree) can be ordered meaningfully, but the differences
between these values cannot be interpreted. Likewise, the satisfactionwith a prod-
uct (unsatisfied–satisfied–very satisfied) is an ordinal variable because the values
this variable can take can be ordered, but the differences between “unsatisfied–
satisfied” and “satisfied–very satisfied” cannot be compared in a numerical way.

Continuous scale. The values of a continuous variable can be ordered. Furthermore,
the differences between these values can be interpreted in a meaningful way. For
instance, the height of a person refers to a continuous variable because the values
can be ordered (170 cm, 171 cm, 172 cm, …), and differences between these
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values can be compared (the difference between 170 and 171cm is the same
as the difference between 171 and 172 cm). Sometimes, the continuous scale is
divided further into subscales. While in the remainder of the book we typically
do not need these classifications, it is still useful to reflect on them:

Interval scale. Only differences between values, but not ratios, can be interpreted.
An example for this scale would be temperature (measured in ◦C): the difference
between −2 ◦C and 4 ◦C is 6 ◦C, but the ratio of 4/ − 2 = −2 does not mean that
−4 ◦C is twice as cold as 2 ◦C.

Ratio scale. Both differences and ratios can be interpreted. An example is speed:
60 km/h is 40 km/h more than 20 km/h. Moreover, 60 km/h is three times faster
than 20 km/h because the ratio between them is 3.

Absolute scale. The absolute scale is the same as the ratio scale, with the excep-
tion that the values are measured in “natural” units. An example is “number of
semesters studied” where no artificial unit such as km/h or ◦C is needed: the
values are simply 1, 2, 3, . . ..

1.2.4 Grouped Data

Sometimes, data may be available only in a summarized form: instead of the original
value, one may only know the category or group the value belongs to. For example,

• it is often convenient in a survey to ask for the income (per year) by means of
groups: [e0–e20,000), [e20,000–e30,000), . . ., > e100,000;

• if there are many political parties in an election, those with a low number of voters
are often summarized in a new category “Other Parties”;

• insteadof capturing the number of claimsmadeby an insurance company customer,
the variable “claimed” may denote whether or not the customer claimed at all
(yes–no).

If data is available in grouped form, we call the respective variable capturing
this information a grouped variable. Sometimes, these variables are also known as
categorical variables. This is, however, not a complete definitionbecause categorical
variables refer to any type of variable which takes a finite, possibly small, number of
values. Thus, any discrete and/or nominal and/or ordinal and/or qualitative variable
may be regarded as a categorical variable. Any grouped or categorical variable which
can only take two values is called a binary variable.

To gain a better understanding on how the definitions from the above sections
relate to each other see Fig. 1.1. Qualitative data is always discrete, but quantitative
data can be both discrete (e.g. size of shoes or a grouped variable) and continuous
(e.g. temperature). Nominal variables are always qualitative and discrete (e.g. colour
of the eye), whereas continuous variables are always quantitative (e.g. temperature).
Categorical variables can be both qualitative (e.g. colour of the eye) and quantitative
(satisfaction level on a scale from 1 to 5). Categorical variables are never continuous.
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Fig. 1.1 Summary of variable classifications

1.3 Data Collection

When collecting data, we may ask ourselves how to facilitate this in detail and
how much data needs to be collected. The latter question will be partly answered
in Sect. 9.5; but in general, we can think of collecting data either on all subjects of
interest, such as in a national census, or on a representative sample of the population.
Most commonly, we gather data on a sample (described in the Part I of this book) and
then draw conclusions about the population of interest (discussed in the Part III of
this book). A sample might either be chosen by us or obtained through third parties
(hospitals, government agencies), or created during an experiment. This depends on
the context as described below.

Survey. A survey typically (but not always) collects data by asking questions (in
person or by phone) or providing questionnaires to study participants (as a printout
or online). For example, an opinion poll before a national election provides evidence
about the future government: potential voters are asked by phonewhich party they are
going to vote for in the next election; on the day of the election, this information can
be updated by asking the same question to a sample of voters who have just delivered
their vote at the polling station (so-called exit poll). A behavioural research survey
may ask members of a community about their knowledge and attitudes towards drug
use. For this purpose, the study coordinators can send people with a questionnaire
to this community and interview members of randomly selected households.

Ideally, a survey is conducted in a way which makes the chosen sample repre-
sentative of the population of interest. If a marketing company interviews people in
a pedestrian zone to find their views about a new chocolate bar, then these people

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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may not be representative of those who will potentially be interested in this product.
Similarly, if students are asked to fill in an online survey to evaluate a lecture, it
may turn out that those who participate are on average less satisfied than those who
do not. Survey sampling is a complex topic on its own. The interested reader may
consult Groves et al. (2009) or Kauermann and Küchenhoff (2011).

Experiment. Experimental data is obtained in “controlled” settings. This can mean
many things, but essentially it is data which is generated by the researcher with full
control over one or many variables of interest. For instance, suppose there are two
competing toothpastes, both ofwhich promise to reduce pain for peoplewith sensitive
teeth. If the researcher decided to randomly assign toothpaste A to half of the study
participants, and toothpaste B to the other half, then this is an experiment because
it is only the researcher who decides which toothpaste is to be used by any of the
participants. It is not decided by the participant. The data of the variable toothpaste
is controlled by the experimenter. Consider another example where the production
process of a product can potentially be reduced by combining two processes. The
management could decide to implement the newprocess in three production facilities,
but leave it as it is in the other facilities. The production process for the different
units (facilities) is therefore under control of the management. However, if each
facility could decide for themselves if they wanted a change or not, it would not be
an experiment because factors not directly controlled by themanagement, such as the
leadership style of the facility manager, would determine which process is chosen.

Observational Data. Observational data is data which is collected routinely, without
a researcher designing a survey or conducting an experiment. Suppose a blood sample
is drawn from each patient with a particular acute infection when they arrive at a
hospital. This data may be stored in the hospital’s folders and later accessed by a
researcher who is interested in studying this infection. Or suppose a government
institution monitors where people live and move to. This data can later be used to
explore migration patterns.

Primary and Secondary Data. Primary data is data we collect ourselves, i.e. via a
survey or experiment. Secondary data, in contrast, is collected by someone else. For
example, data from a national census, publicly available databases, previous research
studies, government reports, historical data, and data from the internet, among others,
are secondary data.

1.4 Creating a Data Set

There is a unique way in which data is prepared and collected to utilize statistical
analyses. The data is stored in a data matrix (=data set) with p columns and n rows
(see Fig. 1.2). Each row corresponds to an observation/unit ω and each column to
a variable X . This means that, for example, the entry in the fourth row and second
column (x42) describes the value of the fourth observation on the second variable.
The examples below will illustrate the concept of a data set in more detail.
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⎛
⎜⎜⎜⎝

ω Variable 1 Variable 2 · · · Variable p

1 x11 x12 · · · x1p
2 x21 x22 · · · x2p

...
...

...
...

n xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠

Fig. 1.2 Data set or data matrix

⎛
⎜⎜⎜⎝

ω Music Mathematics Biology Geography
StudentA 65 70 85 45
StudentB 77 82 80 60
StudentC 78 73 93 68
StudentD 88 71 63 58
StudentE 75 83 63 57

⎞
⎟⎟⎟⎠

Fig. 1.3 Data set of marks of five students

Example 1.4.1 Suppose five students take examinations inmusic,mathematics, biol-
ogy, and geography. Their marks, measured on a scale between 0 and 100 (where
100 is the best mark), can be written down as illustrated in Fig. 1.3. Note that each
row refers to a student and each column to a variable. We consider a larger data set
in the next example.

Example 1.4.2 Consider the data set described in AppendixA.4. A pizza delivery
service captures information related to each delivery, for example the delivery time,
the temperature of the pizza, the name of the driver, the date of the delivery, the
name of the branch, and many more. To capture the data of all deliveries during one
month, we create a data matrix. Each row refers to a particular delivery, therefore
representing the observations of the data. Each column refers to a variable. In Fig. 1.4,
the variables X1 (delivery time in minutes), X2 (temperature in ◦C), and X12 (name
of branch) are listed.

⎛
⎜⎜⎜⎝

Delivery Delivery Time Temperature · · · Branch
1 35.1 68.3 · · · East (1)
2 25.2 71.0 · · · East (1)
...

...
...

...
1266 35.7 60.8 · · · West (2)

⎞
⎟⎟⎟⎠

Fig. 1.4 Pizza data set
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Table 1.1 Coding list for
branch

Variable Values Code

Branch East 1

West 2

Centre 3

Missing 4

The first row tells us about the features of the first pizza delivery: the delivery
time was 35.1 min, the pizza arrived with a temperature of 68.3 ◦C, and the pizza
was delivered from the branch in the East of the city. In total, there were n = 1266
deliveries. For nominal variables, such as branch, wemay decide to produce a coding
list, as illustrated in Table1.1: instead of referring to the branches as “East”, “West”,
and “Centre”, we may simply call them 1, 2, and 3. As we will see in Chap.11, this
has benefits for some analysis methods, though this is not needed in general.

If some values are missing, for example because they were never captured or even
lost, then this requires special attention. In Table1.1, we assign missing values the
number “4” and therefore treat them as a separate category. If weworkwith statistical
software (see below), we may need other coding such as NA in the statistical software
R or in Stata. More detail can be found in AppendixA.

Another consideration when collecting data is that of transformations: we may
have captured the velocity of cars in kilometres per hour, but may need to present
the data in miles per hour; we have captured the temperature in degrees Celsius,
whereas we need to communicate results in degrees Fahrenheit, or we have created a
satisfaction score which we want to range from −5 to +5, while the score currently
runs from 0 to 20. This is not a problem at all. We can simply create a new variable
which reflects the required transformation. However, valid transformations depend
on the scale of a variable. Variables on an interval scale can use transformations of
the following kind:

g(x) = a + bx, b > 0. (1.2)

For ratio scales, only the following transformations are valid:

g(x) = bx, b > 0. (1.3)

In the above equation, a is set to 0 because ratios only stay the same if we respect a
variable’s natural point of origin.

Example 1.4.3 The temperature in ◦F relates to the temperature in ◦C as follows:

Temperature in ◦F = 32 + 1.8 Temperature in ◦C
g(x) = a + b x

This means that 25 ◦C relates to (32 + 1.8 · 25) ◦F = 77 ◦F. If X1 is a variable
representing temperature by ◦C, we can simply create a new variable X2 which is
temperature in ◦F. Since temperature is measured on an interval scale, this transfor-
mation is valid.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Changing currencies is also possible. If we would like to represent the price of a
product not in South African Rand but in e, we simply apply the transformation

Price in South African Rand = b · Price in e

whereby b is the currency exchange rate.

1.4.1 Statistical Software

There are number of statistical software packages which allow data collection, man-
agement, and–most importantly–analysis. In this book, we focus on the statistical
software R which is freely available at http://cran.r-project.org/. A gentle introduc-
tion to R is provided in AppendixA. A data matrix can be created manually using
commands such as matrix(), data.frame(), and others. Any data can be edited
using edit(). However, typically analysts have already typed their data into data-
bases or spreadsheets, for example in Excel, Access, or MySQL. In most of these
applications, it is possible to save the data as an ASCII file (.dat), as a tab-delimited
file (.txt), or as a comma-separated values file (.csv). All of these formats allow easy
switching between different software and database applications. Such data can easily
be read into R by means of the following commands:

setwd('C:/directory')
read.table('pizza_delivery.dat')
read.table('pizza_delivery.txt')
read.csv('pizza_delivery.csv')

where setwd specifies the working directory. Alternatively, loading the library
foreign allows the import of data from many different statistical software pack-
ages, notably Stata, SAS, Minitab, SPSS, among others. A detailed description of
data import and export can be found in the respective R manual available at http://
cran.r-project.org/doc/manuals/r-release/R-data.pdf. Once the data is read into R,
it can be viewed with

fix() # option 1
View() # option 2

Wecan also can get an overview of the data directly in the R-console by displaying
only the top lines of the data with head(). Both approaches are visualized in Fig. 1.5
for the pizza data introduced in Example 1.4.2.

http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf
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Fig. 1.5 Viewing data in R

1.5 Key Points and Further Issues

Note:

� The scale of variables is not only a formalism but an essential framework
for choosing the correct analysis methods. This is particularly relevant
for association analysis (Chap.4), statistical tests (Chap.10), and linear
regression (Chap.11).

� Even if variables are measured on a nominal scale (i.e. if they are cate-
gorical/qualitative), we may choose to assign a number to each category
of this variable. This eases the implementation of some analysismethods
introduced later in this book.

� Data is usually stored in a data matrix where the rows represent the
observations and the columns are variables. It can be analysed with
statistical software. We use R (R Core Team 2016) in this book. A
gentle introduction is provided in AppendixA and throughout the book.
A more comprehensive introduction can be found in other books, for
example in Albert and Rizzo (2012), Crawley (2013), or Ligges (2008).
Even advanced books, e.g. Adler (2012) or Everitt and Hothorn (2011),
can offer insights to beginners.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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1.6 Exercises

Exercise 1.1 Describe both the population and the observations for the following
research questions:

(a) Evaluation of the satisfaction of employees from an airline.
(b) Description of the marks of students from an assignment.
(c) Comparison of two drugs which deal with high blood pressure.

Exercise 1.2 A national park conducts a study on the behaviour of their leopards.
A few of the park’s leopards are registered and receive a GPS device which allows
measuring the position of the leopard. Use this example to describe the following
concepts: population, sample, observation, value, and variable.

Exercise 1.3 Which of the following variables are qualitative, and which are quan-
titative? Specify which of the quantitative variables are discrete and which are
continuous:

Time to travel to work, shoe size, preferred political party, price for a canteen meal, eye
colour, gender, wavelength of light, customer satisfaction on a scale from 1 to 10, delivery
time for a parcel, blood type, number of goals in a hockey match, height of a child, subject
line of an email.

Exercise 1.4 Identify the scale of the following variables:

(a) Political party voted for in an election
(b) The difficulty of different levels in a computer game
(c) Production time of a car
(d) Age of turtles
(e) Calender year
(f) Price of a chocolate bar
(g) Identification number of a student
(h) Final ranking at a beauty contest
(i) Intelligence quotient.

Exercise 1.5 Make yourself familiar with the pizza data set from AppendixA.4.

(a) First, browse through the introduction to R in AppendixA. Then, read in the
data.

(b) View the data both in the R data editor and in the R console.
(c) Create a new data matrix which consists of the first 5 rows and first 5 variables

of the data. Print this data set on the R console. Now, save this data set in your
preferred format.

(d) Add a new variable “NewTemperature” to the data set which converts the tem-
perature from ◦C to ◦F.
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(e) Attach the data and list the values from the variable “NewTemperature”.
(f) Use “?” to make yourself familiar with the following commands: str, dim,

colnames, names, nrow, ncol, head, and tail.Apply these commands
to the data to get more information about it.

Exercise 1.6 Consider the research questions of describing parents’ attitudes towards
immunization, what proportion of themwants immunization against chicken pox for
their last-born child, and whether this proportion differs by gender and age.

(a) Which data collection method is the most suitable one to answer the above
questions: survey or experiment?

(b) Howwould you capture the attitudes towards immunization in a single variable?
(c) Which variables are needed to answer all the above questions? Describe the scale

of each of them.
(d) Reflect on what an appropriate data set would look like. Now, given this data

set, try to write down the above research questions as precisely as possible.

→ Solutions to all exercises in this chapter can be found on p. 321



2FrequencyMeasures andGraphical
RepresentationofData

In Chap. 1, we highlighted that different variables contain different levels of informa-
tion. When summarizing or visualizing one or more variable(s), it is this information
which determines the appropriate statistical methods to use.

Suppose we are interested in studying the employment opportunities and starting
salaries of university graduates with a master’s degree. Let the variable X denote the
starting salaries measured in e/year. Now suppose 100 graduate students provide
their initial salaries. Let us write down the salary of the first student as x1, the
salary of the second student as x2, and so on. We therefore have 100 observations
x1, x2, . . . , x100. How canwe summarize those 100 values best to extract meaningful
information from them? The answer to this question depends upon several aspects
like the nature of the recorded data, e.g. how many observations have been obtained
(either small in number or large in number) or how the data was recorded (either
exact values were obtained or the values were obtained in intervals). For example, the
starting salaries may be obtained as exact values, say 51,500 e/year, 32,350 e/year,
etc. Alternatively, these values could have been summarized in categories such as low
income (<30,000 e/year), medium income (30,000–50,000 e/year), high income
(50,000–70,000e/year), and very high income (>70,000e/year). Another approach
is to ask whether the students were employed or not after graduating and record the
data in terms of “yes” or “no”. It is evident that the latter classification is less detailed
than the grouped income datawhich is less detailed than the exact data. Depending on
which conceptualization of “starting salary” we use, we need to choose the approach
to summarize the data, that is the 100 values relating to the 100 graduated students.

2.1 Absolute and Relative Frequencies

Discrete Data. Let us first consider a simple example to illustrate our notation.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_2
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Example 2.1.1 Suppose there are ten people in a supermarket queue. Each of them
is either coded as “F” (if the person is female) or “M” (if the person is male). The
collected data may look like

M, F, M, F, M, M, M, F, M, M.

There are now two categories in the data: male (M) and female (F).We use a1 to refer
to themale category and a2 to refer to the female category. Since there are sevenmale
and three female students, we have 7 values in category a1, denoted as n1 = 7, and 3
values in category a2, denoted as n2 = 3. The number of observations in a particular
category is called the absolute frequency. It follows that n1 = 7 and n2 = 3 are the
absolute frequencies of a1 and a2, respectively. Note that n1 + n2 = n = 10, which
is the same as the total number of collected observations. We can also calculate
the relative frequencies of a1 and a2 as f1 = f (a1) = n1

n = 7
10 = 0.7 = 70% and

f2 = f (a2) = n2
n = 3

10 = 0.3 = 30%, respectively. This gives us information about
the proportions of male and female customers in the queue.

We now extend these concepts to a general framework for the summary of data
on discrete variables. Suppose there are k categories denoted as a1, a2, . . . , ak
with n j ( j = 1, 2, . . . , k) observations in category a j . The absolute frequency n j is
defined as the number of units in the j th category a j . The sumof absolute frequencies
equals the total number of units in the data:

∑k
j=1 n j = n. The relative frequencies

of the j th class are defined as

f j = f (a j ) = n j

n
, j = 1, 2, . . . , k. (2.1)

The relative frequencies always lie between 0 and 1 and
∑k

j=1 f j = 1.

GroupedContinuousData. Data on continuous variables usually has a large number
(k) of different values. Sometimes k may even be the same as n and in such a case
the relative frequencies become f j = 1

n for all j . However, it is possible to define
intervals in which the observed values are contained.

Example 2.1.2 Consider the following n = 20 results of the written part of a driving
licence examination (a maximum of 100 points could be achieved):

28, 35, 42, 90, 70, 56, 75, 66, 30, 89, 75, 64, 81, 69, 55, 83, 72, 68, 73, 16.

We can summarize the results in class intervals such as 0–20, 21–40, 41–60, 61–80,
and 81–100, and the data can be presented as follows:

Class intervals 0–20 21–40 41–60 61–80 81–100
Absolute frequencies n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative frequencies f1 = 1
20 f2 = 3

20 f3 = 3
20 f4 = 9

20 f5 = 5
20

We have
∑5

j=1 n j = 20 = n and
∑5

j=1 f j = 1.
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Table 2.1 Frequency distribution for discrete data

Class intervals (a j ) a1 a2 ... ak

Absolute frequencies (n j ) n1 n2 ... nk

Relative frequencies ( f j ) f1 f2 ... fk

Now, suppose the n observations can be classified into k class intervals
a1, a2, . . . , ak , where a j ( j = 1, 2, . . . , k) contains n j observationswith

∑k
j=1 n j =

n. The relative frequency of the j th class is f j = n j/n and
∑k

j=1 f j = 1. Table 2.1
displays the frequency distribution of a discrete variable X .

Example 2.1.3 Consider the pizza delivery service data (Example 1.4.2, Appen-
dix A.4). We are interested in the pizza deliveries by branch and generate the respec-
tive frequency table, showing the distribution of the data, using the table command
in R (after reading in and attaching the data) as

table(branch) # absolute frequencies
table(branch)/length(branch) # relative frequencies

a j Centre East West
n j 421 410 435

f j
421
1266 ≈ 0.333 410

1266 ≈ 0.323 435
1266 ≈ 0.344

We have n = ∑
j n j = 1266 deliveries and

∑
j f j = 1. We can see from this table

that each branch has a similar absolute number of pizza deliveries and each branch
contributes to about one-third of the total number of deliveries.

2.2 Empirical Cumulative Distribution Function

Another approach to summarize and visualize the (frequency) distribution of vari-
ables is the empirical cumulative distribution function, often abbreviated as
“ECDF”. As the name itself suggests, it gives us an idea about the cumulative rela-
tive frequencies up to a certain point. For example, say we want to know how many
people scored up to 60 points in Example 2.1.2. Then, this can be calculated by
adding the number of people in the class intervals 0–20, 21–40, and 41–60, which
corresponds to n1 + n2 + n3 = 1 + 3 + 3 = 7 and is the cumulative frequency. If
we want to know the relative frequency of people obtaining up to 60 points, we have
to add the relative frequencies of the people in the class intervals 0–20, 21–40, and
41–60 as f1 + f2 + f3 = 1

20 + 3
20 + 3

20 = 7
20 .

http://dx.doi.org/10.1007/978-3-319-46162-5_1
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Before discussing the empirical cumulative distribution function in amore general
framework, let us first understand the concept of ordered values. Suppose the values
of height of four people are observed as x1 = 180 cm, x2 = 160 cm, x3 = 175 cm,
and x4 = 170 cm. We arrange these values in an order, say ascending order, i.e. first
the smallest value (denoted as x(1)) and lastly the largest value (denoted as x(4)). We
obtain

x(1) = x2 = 160 cm, x(2) = x4 = 170 cm,

x(3) = x3 = 175 cm, x(4) = x1 = 180 cm.

The values x(1), x(2), x(3), and x(4) are called ordered values for which x(1) < x(2) <
x(3) < x(4) holds. Note that x1 is not necessarily the smallest value but x(1) is
necessarily the smallest value. In general, if we have n observations x1, x2, . . . , xn ,
then the ordered data is x(1) ≤ x(2) ≤ · · · ≤ x(n).

Consider n observations x1, x2, . . . , xn of a variable X , which are arranged in
ascending order as x(1) ≤ x(2) ≤ · · · ≤ x(n) (and are thus on an at least ordinal scale).
The empirical cumulative distribution function F(x) is defined as the cumulative
relative frequencies of all values a j , which are smaller than, or equal to, x :

F(x) =
∑

a j≤x

f (a j ). (2.2)

This definition implies that F(x) is a monotonically non-decreasing function, 0 ≤
F(x) ≤ 1, limx→−∞ F(x) = 0 (the lower limit of F is 0), limx→+∞ F(x) = 1 (the
upper limit of F is 1), and F(x) is right continuous.

2.2.1 ECDF for Ordinal Variables

The empirical cumulative distribution function of ordinal variables is a step function.

Example 2.2.1 Consider a customer satisfaction survey from a car service company.
The 200 customers who had a car service done within the last 30 days were asked to
respond regarding their overall level of satisfaction with the quality of the car service
on a scale from 1 to 5 based on the following options: 1 = not satisfied at all, 2 =
unsatisfied, 3 = satisfied, 4 = very satisfied, and 5 = perfectly satisfied. Based on
the frequency of each option, we can calculate the relative frequencies and then
plot the empirical cumulative distribution function, either manually (takes longer)
or by using R (quick):

Satisfaction level (a j ) j = 1 j = 2 j = 3 j = 4 j = 5
n j 4 16 90 70 20
f j 4/200 16/200 90/200 70/200 20/200
Fj 4/200 20/200 110/200 180/200 200/200
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Fig. 2.1 ECDF for the satisfaction survey

The Fj ’s are calculated as follows:

F1 = f1, F3 = f1 + f2 + f3,

F2 = f1 + f2, F4 = f1 + f2 + f3 + f4.

The ECDF for this data can be obtained by summarizing the data in a vector and
using the plot.ecdf() function in R, see Fig. 2.1:

sv <- c(rep(1,4),rep(2,16),rep(3,90),rep(4,70),rep(5,20))
plot.ecdf(sv)

The ECDF can be used to obtain the relative frequencies for values contained in
certain intervals as

H(c ≤ x ≤ d) = relative frequency of values x with c ≤ x ≤ d.

It further follows that:

H(x ≤ a j ) = F(a j ) (2.3)

H(x < a j ) = H(x ≤ a j ) − f (a j ) = F(a j ) − f (a j ) (2.4)

H(x > a j ) = 1 − H(x ≤ a j ) = 1 − F(a j ) (2.5)

H(x ≥ a j ) = 1 − H(X < a j ) = 1 − F(a j ) + f (a j ) (2.6)

H(a j1 ≤ x ≤ a j2) = F(a j2) − F(a j1) + f (a j1) (2.7)

H(a j1 < x ≤ a j2) = F(a j2) − F(a j1) (2.8)

H(a j1 < x < a j2) = F(a j2) − F(a j1) − f (a j2) (2.9)

H(a j1 ≤ x < a j2) = F(a j2) − F(a j1) − f (a j2) + f (a j1) (2.10)
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Example 2.2.2 Suppose, in Example 2.2.1, we want to know how many customers
are not satisfied with their car service. Then, using the data relating to the responses
“1” and “2”, we observe from the ECDF that (16 + 4)/200% = 10% of the cus-
tomers were not satisfied with the car service. This relates to using rule (2.3):
H(X ≤ 2) = F(2) = 0.1 or 10 %. Similarly, the proportion of customers who are
more than satisfied can be obtained using (2.5) as H(X > 3) = 1 − H(x ≤ 3) =
1 − 110/200 = 0.45% or 45 %.

2.2.2 ECDF for ContinuousVariables

In general, we can apply formulae (2.2)–(2.10) to continuous data as well. However,
before demonstrating their use, let us consider a somewhat different setting. Let us
assume that a continuous variable of interest is only available in the form of grouped
data. We may assume that the observations within each group, i.e. each category
or each interval, are distributed uniformly over the entire interval. The ECDF then
consists of straight lines connecting the lower and upper values of the ECDF in each
of the intervals. To understand this concept inmore detail, we introduce the following
notation:

k number of groups (or intervals),
e j−1 lower limit of j th interval,
e j upper limit of j th interval,
d j = e j − e j−1 width of the j th interval,
n j number of observations in the j th interval.

Under the assumption that all values in a particular interval are distributed uni-
formly within this interval, the empirical cumulative distribution function relates to a
polygonal chain connecting the points (0, 0),

(
e1, F(e1)

)
,
(
e2, F(e2)

)
, . . . , (ek, 1).

The ECDF can then be defined as

F(x) =

⎧
⎪⎨

⎪⎩

0, x < e0

F(e j−1) + f j
d j

(x − e j−1), x ∈ [e j−1, e j )

1, x ≥ ek

(2.11)

with F(e0) = 0. The idea behind (2.11) is presented in Fig. 2.2. For any interval
[e j−1, e j ), the respective lower and upper limits of the ECDF are F(e j ) and F(e j−1).
If we assume values to be distributed uniformly over this interval, we can connect
F(e j ) and F(e j−1) with a straight line. To obtain F(x) with x > e j−1 and x < e j ,
we simply add the height of the ECDF between F(e j−1) and F(x) to F(e j−1).

Example 2.2.3 Consider Example 2.1.3 of the pizza delivery service. Suppose we
are interested in determining the distribution of the pizza delivery times. Using
the function plot.ecdf() in R, we obtain the ECDF of the continuous data, see
Fig. 2.3a. Note that the structure of the curve is a step function but now almost looks
like a continuous curve. The reason for this is that when the number of observations is
large, then the lengths of class intervals become small. When these small lengths are
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Fig. 2.2 Illustration of the
ECDF for continuous data
available in groups/intervals∗

ej−1

F (ej−1)

ejx

F (x)

dj

fj

joined together, they appear like a continuous curve. As the number of observations
increases, the smoothness of the curve increases too. If the number of observations
is not large, e.g. suppose the data is reported as a summary from the drivers, i.e.
whether the delivery took<15 min, between 15 and 20 min, between 20 and 25 min,
and so on, then we can construct the ECDF by creating a table summarizing the data
features as in Table 2.2.

Figure 2.3b shows the ECDF based on the grouped data evaluated in Table 2.2. It
is interesting to see that the graphs emerging from the use of the grouped data and
ungrouped data are similar in this specific example.

Suppose we are interested in calculating how many deliveries were completed
within the desired time limit of 30 min, with a tolerance of maximum 10 %
deviation, i.e. a deviation of 3 min. We can evaluate the ECDF at x = 33 min.

Table 2.2 The values needed to calculate the ECDF for the grouped pizza delivery time data in
Example 2.2.3

Delivery time j e j−1 e j n j f j F(e j )

[0; 10] 1 0 10 0 0.0000 0.0000

(10; 15] 2 10 15 3 0.0024 0.0024

(15; 20] 3 15 20 21 0.0166 0.0190

(20; 25] 4 20 25 75 0.0592 0.0782

(25; 30] 5 25 30 215 0.1698 0.2480

(30; 35] 6 30 35 373 0.2946 0.5426

(35; 40] 7 35 40 350 0.2765 0.8191

(40; 45] 8 40 45 171 0.1351 0.9542

(45; 50] 9 45 50 52 0.0411 0.9953

(50; 55] 10 50 55 6 0.0047 1.0000
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(b) Grouped continuous data

Fig. 2.3 Empirical cumulative distribution function for pizza delivery time

Based on (2.11),we calculate H(X ≤ 33) = F(33) = F(30) + f (6)/5(33 − 30) =
0.2480 + 0.2946/5 · 3 = 0.42476. Thus, we conclude, based on the grouped data,
that only about 42 % of the deliveries were completed in the desired time frame.

2.3 Graphical Representation of aVariable

Frequency tables and empirical cumulative distribution functions are useful in provid-
ing a numerical summary of a variable. Graphs are an alternative way to summarize
a variable’s information. In many situations, they have the advantage of conveying
the information hidden in the data more compactly. Similarly, someone’s mood can
bemore easily understood when looking at a smiley © than by reading an essay about
one’s mood in a long paragraph.

2.3.1 Bar Chart

A simple tool to visualize the relative or absolute frequencies of observed values of
a variable is a bar chart. A bar chart can be used for nominal and ordinal variables,
as long as the number of categories is not very large. It consists of one bar for each
category. The height of each bar is determined by either the absolute frequency or
the relative frequency of the respective category and is shown on the y-axis. If the
variable is measured on an ordinal level, then it is recommended to arrange the bars
on the x-axis according to their ranks or values. If the number of categories is large,
then the number of bars will be large too and the bar chart, in turn, may not remain
informative.
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Fig. 2.4 Bar charts

Example 2.3.1 Consider Example 2.1.1 inwhich ten people, queueing in a supermar-
ket, were classified as being either male (M) or female (F). The absolute frequencies
for males and females are n1 = 7 and n2 = 3, respectively. Since there are two cate-
gories,M and F, two bars are needed to construct the chart—one for themale category
and another for the female category. The heights of the bars are determined as either
n1 = 7 and n2 = 3 or f1 = 0.7 and f2 = 0.3. These graphs are shown in Fig. 2.4.

Example 2.3.2 Consider the data in Example 2.1.3, where the pizza delivery times
for each branch are recorded over a period of 1 month. The frequency table forms the
basis for the bar chart, either using the absolute or relative frequencies on the y-axis.
Figure 2.5 shows the bar charts for the number and proportion of pizza deliveries per
branch. The graphs can be produced in R by applying the barplot command to a
frequency table:

barplot(table(branch))
barplot(table(branch)/length(branch))

Remark 2.3.1 Insteadof vertical bars, horizontal bars canbedrawnusing the optional
argument horiz=TRUE in the barplot command.
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Fig. 2.5 Bar charts for the pizza deliveries per branch

2.3.2 Pie Chart

Pie charts are another option to visualize the absolute and relative frequencies of
nominal and ordinal variables. A pie chart is a circle partitioned into segments,
where each of the segments represents a category. The size of each segment depends
upon the relative frequency and is determined by the angle f j · 360◦.

Example 2.3.3 To illustrate the construction of a pie chart, let us consider again
Example 2.1.1 in which ten people in a supermarket queue were classified as being
either male (M) or female (F): M, F, M, F, M, M, M, F, M, M. The pie chart for this
data will have two segments: one for males and another one for females. The relative
frequencies are f1 = 7/10 and f2 = 3/10, respectively. The size of the segment
for the first category (M) is f1 · 360◦ = (7/10) · 360◦ = 252◦, and the size of the
segment for the second category (F) is f2 · 360◦ = (3/10) · 360◦ = 108◦. The pie
chart is shown in Fig. 2.6a.

Example 2.3.4 Consider again Example 2.2.1, where 200 customers were asked
about their level of satisfaction (5 categories) with their car service. The pie chart
for this example consists of five segments representing the categories 1, 2, 3, 4,
and 5. The size of the j th segment is f j · 360◦, j = 1, 2, 3, 4, 5. For example, for
category 1, there are 4 out of 200 customers, who are not satisfied at all. The angle
of the segment “not satisfied at all” therefore is f1 · 360◦ = 4/200 · 360◦ = 7.2◦.
Similarly, we can calculate the angle of the other segments and obtain a pie chart as
shown in Fig. 2.6b using the pie command in R

pie(table(sv))
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Fig. 2.6 Pie charts

Remark 2.3.2 Note that the area of a segment is not proportional to the absolute
frequency of the respective category. Instead, the area of the segment is proportional
to the angle f j · 360◦ (and depends also on the radius of the whole circle). It has been
argued that this may cause improper interpretations as the human eye may catch the
segment’s area more easily than the angle of a segment. Pie charts should therefore
be used with caution.

2.3.3 Histogram

If a variable consists of a large number of different values, the number of categories
used to construct bar charts will consequently be large too. A bar chart may thus not
give a clear summary when applied to a continuous variable. Instead, a histogram is
the appropriate choice to represent the distribution of values of continuous variables.
It is based on the idea to categorize the data into different groups and plot the bars
for each category with height h j = f j/d j , where d j = e j − e j−1 denotes the width
of the j th class interval or category. An important consideration for this concept is
that the area of the bars (=height × width) is proportional to the relative frequency.
This means that the widths of the bars need not necessarily to be the same because
different widths can be adjusted with different heights of the bars.

Example 2.3.5 Consider Example 2.1.2, where n = 20 people were divided into five
class intervals 0–20, 21–40, 41–60, 61–80, and 81–100 based on their performance
in a written driving licence examination. The frequency table is given as
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Class intervals 0–20 21–40 41–60 61–80 81–100
Absolute freq n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative freq f1 = 1
20 f2 = 3

20 f3 = 3
20 f4 = 9

20 f5 = 5
20

Height f j/d j h1 = 1
400 h2 = 3

400 h3 = 3
400 h4 = 9

400 h5 = 4
400

Fig. 2.7 Histogram for the
scores of the people
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The histogram for this grouped data set has five categories and therefore it has
five bars. Since the widths of class intervals are the same, the heights of the bars
are proportional to the relative frequency of the respective category. The resulting
histogram is displayed in Fig. 2.7.

Example 2.3.6 RecallExample2.2.3 and thevariable “pizzadelivery time”.Table 2.3
shows the summary of the grouped data and the values needed to calculate the his-
togram. Figure 2.8a shows the histogramwith equal widths of delivery time intervals.
We see a symmetric distribution of the pizza delivery times, but many delivery times
exceeding the target time of 30 min. If the histogram is required to have different
widths for different bars, i.e. different delivery time intervals for different categories,
then it can also be constructed as shown in Fig. 2.8b. This representation is different
from Fig. 2.8a. The following commands in R are used to construct the histograms
for absolute and relative frequencies, respectively:

hist(time) # show abs. frequencies
hist(time, freq=F) # show rel. frequencies

Remark 2.3.3 The R command truehist() from the library MASS presents an alter-
native to the hist() command. The default specifications are somewhat different,
and many users prefer it to the command hist.
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Table 2.3 Values needed to calculate the histogram for the grouped pizza delivery time data

Delivery time j e j−1 e j d j f j h j

[0; 10] 1 0 10 10 0.0000 0.00000

(10; 15] 2 10 15 5 0.0024 0.00047

(15; 20] 3 15 20 5 0.0166 0.00332

(20; 25] 4 20 25 5 0.0592 0.01185

(25; 30] 5 25 30 5 0.1698 0.03397

(30; 35] 6 30 35 5 0.2946 0.05893

(35; 40] 7 35 40 5 0.2765 0.05529

(40; 45] 8 40 45 5 0.1351 0.02701

(45; 50] 9 45 50 5 0.0411 0.00821

(50; 55] 10 50 55 5 0.0047 0.00094
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Fig. 2.8 Histogram for pizza delivery time

2.4 Kernel Density Plots

A disadvantage of histograms is that continuous data is categorized artificially. The
choice of the class intervals is crucial for the final look of the graph. A more elegant
way to deal with this problem is to smooth the histogram in the sense that each obser-
vation may contribute to different classes with different weights, and the distribution
is represented by a continuous function rather than a step function. A kernel density
plot can be produced by using the following function:
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Fig. 2.9 Construction of kernel density plots

f̂n(x) = 1

nh

n∑

i=1

K

(
x − xi

h

)

, h > 0, (2.12)

where n is the sample size, h is the bandwidth, and K is a kernel function, for
example

K (x) =
{

1
2 if − 1 ≤ x ≤ 1
0 elsewhere

(rectangular kernel)

K (x) =
{

3
4 (1 − x2) if |x | < 1
0 elsewhere.

(Epanechnikov kernel)

To better understand this concept, consider Fig. 2.9a. The tick marks on the x-axis
represent five observations: 3, 6, 7, 8, and 10. On each observation xi as well as its
surrounding values, we apply a kernel function, which is the Epanechnikov kernel in
the figure. This means that we have five functions (grey, dashed lines), which refer to
the five observations. These functions are largest at the observation itself and become
gradually smaller as the distance from the observation increases. Summing up the
functions, as described in Eq. (2.12), yields the solid black line, which is the kernel
density plot of the five observations. It is a smooth curve, which represents the data
distribution. The degree of smoothness can be controlled by the bandwidth h, which
is chosen as 2 in Fig. 2.9a.
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Fig. 2.10 Kernel density plot for delivery time

The choice of the kernel may affect the overall look of the plot. Above, we have
given the functions for the rectangular and Epanechnikov kernels. However, another
common function for kernel density plots is the normal distribution function, which
is introduced in Sect. 8.2.2, see Fig. 2.9b for a comparison of different kernels. The
kernel which is based on the normal distribution is called the “Gaussian kernel” and
is the default in R, where a kernel density plot can be produced combining the plot
and density commands:

example <- c(3,6,7,8,10)
plot(density(example, kernel='gaussian'))

Please note that kernel functions are not defined arbitrarily and need to satisfy cer-
tain conditions, such as those required for probability density functions as explained
in Chap. 7, Theorem 7.2.1.

Example 2.4.1 Let us consider the pizza data which we introduced earlier and in
Appendix A.4. We can summarize the delivery time by using a kernel density plot
using the R command plot(density(time)) and compare it with a histogram,
see Fig. 2.10a. We see that the delivery times are symmetric around 35 min. If we
shorten the bandwidth to a half of the default bandwidth (option adjust=0.5), the
kernel density plot becomes more wiggly, which is illustrated in Fig. 2.10b.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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2.5 Key Points and Further Issues

Note:

� Bar charts and histograms are not the same graphical tools. Bar charts
visualize the categories of nominal or ordinal variables whereas his-
tograms visualize the distribution of continuous variables. A bar chart
does not require to have ordered values on the x-axis, but a histogram
always requires the values on the x-axis to be on a continuous scale and
to be ordered. The interpretation of a histogram is simplified if the class
intervals are equally sized, since then the heights of the rectangles of
the histogram are proportional to the absolute or relative frequencies.

� The ECDF can be used only for ordinal and continuous variables, see
Sect. 7.2 for the theoretical background of the cumulative distribution
function.

� A pie chart summarizes observations from a discrete (nominal, ordi-
nal or grouped continuous) variable. It is only useful if the number of
different values (categories) is small. It is to be kept in mind that the
area of each segment is not proportional to the absolute frequency of
the respective category. The angle of the segment is proportional to the
relative frequency of the respective category.

� Other possibilities to visualize the distribution of variables are, for exam-
ple, box plots (Sect. 3.3) and stratified plots (Sects. 4.1.3, 4.3.1, and 4.4).

2.6 Exercises

Exercise 2.1 Consider the results of the national elections in South Africa in 2014
and 2009:

Party Results 2014 (%) Results 2009 (%)
ANC (African National Congress) 62.15 65.90
DA (Democratic Alliance) 22.23 16.66
EFF (Economic Freedom Fighters) 6.35 –
IFP (Inkatha Freedom Party) 2.40 4.55
COPE (Congress of the People) 0.67 7.42
Others 6.20 5.47

(a) Summarize the results of the 2014 elections in a bar chart. Do it manually and
by using R.

(b) How would you compare the results of the 2009 and 2014 elections? Offer a
simple solution that can be represented in a single plot. Construct this plot in R.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Exercise 2.2 Consider a variable X describing the time until the first goal was scored
in the matches of the 2006 football World Cup competition. Only matches with at
least one goal are considered, and goals during the x th minute of extra time are
denoted as 90 + x :

6 24 90+1 8 4 25 3 83 89 34 25 24 18 6
23 10 28 4 63 6 60 5 40 2 22 26 23 26
44 49 34 2 33 9 16 55 23 13 23 4 8 26
70 4 6 60 23 90+5 28 49 6 57 33 56 7

(a) What is the scale of X?
(b) Write down the frequency table of X based on the following categories: [0, 15),

[15, 30), [30, 45), [45, 60), [60, 75), [75, 90), [90, 96).
(c) Draw the histogram for X with intervals relating to the groups from the frequency

table.
(d) Now use R to reproduce the histogram. Compare the histogram to a kernel

density plot of your choice.
(e) Calculate the empirical cumulative distribution function for the grouped data.
(f) Use R to plot the ECDF (via a step function) for

(i) the original data and
(ii) the grouped data.

(g) Consider the grouped data. Now assume that the values within each interval are
distributed uniformly. Determine the proportion of first goals which occurred

(i) in the first half, i.e. during the first 45 min,
(ii) in the last 10 min or during the extra time,
(iii) between the 20th and 65th min, i.e. what is H(20 ≤ X ≤ 65)?

(h) Determine the time point at which in 80 % of the matches the first goal was
scored at or before this time point.

Exercise 2.3 Suppose we have the following information to construct a histogram
for a continuous variable with 2000 observations:

j e j−1 e j d j h j

1 0 1 1 0.125
2 1 4 3 0.125
3 4 7 3 0.125
4 7 8 1 0.125

(a) Determine the relative frequencies for each interval.
(b) Determine the absolute frequencies.
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Exercise 2.4 A university survey was conducted on 500 first-year students to obtain
knowledge about the size of their accommodation (in square metres).

j Size of accommodation (m2)
e j−1 ≤ x ≤ e j

F(x)

1 8–14 0.25
2 14–22 0.40
3 22–34 0.75
4 34–50 0.97
5 50–82 1.00

(a) Determine the absolute frequencies for each category.
(b) What proportion of people live in a flat of at least 34 m2?

Exercise 2.5 Consider a survey in which 100 people were asked to rate on a scale
from 1 to 10 howmuch they agree with the statement that “there is too much football
on television”. The results are summarized below:

Score 0 1 2 3 4 5 6 7 8 9 10
Responses 0 1 3 8 8 27 30 11 6 4 2

(a) Calculate and draw the ECDF of the scores.
(b) Determine F(3) and F(9).
(c) Consider the situation, where the data is summarized in the two categories “dis-

agree” (score ≤ 5) and “agree” (score > 5). What would the ECDF look like
under the approach outlined in (2.11)? Determine F(3) and F(9) for the sum-
marized data.

(d) Explain the differences between (b) and (c).

Exercise 2.6 It is possible to produce professional graphics in R. However, it is
advantageous to go beyond the default options. To demonstrate this, consider Exam-
ple 2.1.3 about the pizza delivery data, which is described in Appendix A.4.

(a) Set the working directory in R (setwd()), read in the data (read.csv()), and
attach the data. Draw a histogram of the variable “temperature”. Type ?hist,
and view the options. Adjust the histogram so that you are satisfied with (i) axes
labelling, (ii) axes range, and (iii) colour. Now use the lines() command to
add a dashed vertical line at 65 ◦C (which is the minimum temperature the pizza
should have at the time of delivery).

(b) Consider a different approach, which constructs plots by means of multiple lay-
ers using ggplot2. You need an Internet connection to install the package using
the command install.packages(’ggplot2’). Browse through the help
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pages on http://docs.ggplot2.org/current/. Look specifically at the examples for
ggplot, qplot, scale_histogram, and scale_y_continuous. Try to
understand the roles of “aesthetics” and “geoms”. Now, after loading the library
via library(ggplot2), create a ggplot object for the pizza data,which declares
“temperature” to be the x-variable. Now add a layer with geom_histogram to
create a histogram with interval width of 2.5 and dark grey bars which are
50 % transparent. Change the y-axis labelling by adding the relevant layer using
scale_y_continuous. Plot the graph.

(c) Now create a normal bar chart for the variable “driver” in R. Type ?barplot
and ?par to see the options one can pass on to barchart() to adjust the graph.
Make the graph look good.

(d) Now create the same bar chart with ggplot2. Use qplot instead of ggplot
to create the plot. Use an option which makes each bar to consist of segments
relating to the day of delivery, so that one can see the number of deliveries by
driver to highlight during which days the drivers delivered most often. Browse
through “themes” and “scales” on the help page, and add layers that make the
background black and white and the bars on a grey scale.

→ Solutions to all exercises in this chapter can be found on p. 325

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,
Springer, Heidelberg

http://docs.ggplot2.org/current/


3Measures of CentralTendency and
Dispersion

Adata set may contain many variables and observations. However, we are not always
interested in each of themeasured values but rather in a summarywhich interprets the
data. Statistical functions fulfil the purpose of summarizing the data in a meaningful
yet concise way.

Example 3.0.1 Suppose someone from Munich (Germany) plans a holiday in
Bangkok (Thailand) during the month of December and would like to get infor-
mation about the weather when preparing for the trip. Suppose last year’s maximum
temperatures during the day (in degrees Celsius) for December 1–31 are as follows:

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29.

How do we draw conclusions from this data? Looking at the individual values gives
us a feeling about the temperatures one can experience in Bangkok, but it does not
provide us with a clear summary. It is evident that the average of these 31 values as
“Sum of all values/Total number of observations” (22 + 24 + · · · + 28 + 29)/31 =
26.48 is meaningful in the sense that we know what temperature to expect “on
average”. To choose the right clothing for the holidays, we may also be interested in
knowing the temperature range to understand the variability in temperature, which
is between 21 and 31 ◦C. Summarizing 31 individual values with only three numbers
(26.48, 21, and 31) will provide sufficient information to plan the holidays.

In this chapter, we focus on the most important statistical concepts to summarize
data: these are measures of central tendency and variability. The applications of each
measure depend on the scale of the variable of interest, see Appendix D.1 for a
detailed summary.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_3
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3.1 Measures of Central Tendency

A natural human tendency is to make comparisons with the “average”. For example,
a student scoring 40% in an examination will be happy with the result if the average
score of the class is 25%. If the average class score is 90%, then the student may not
feel happy even if he got 70% right. Some other examples of the use of “average”
values in common life are mean body height, mean temperature in July in some
town, the most often selected study subject, the most popular TV show in 2015, and
average income. Various statistical concepts refer to the “average” of the data, but
the right choice depends upon the nature and scale of the data as well as the objective
of the study. We call statistical functions which describe the average or centre of the
data location parameters or measures of central tendency.

3.1.1 Arithmetic Mean

The arithmetic mean is one of the most intuitive measures of central tendency.
Suppose a variable of size n consists of the values x1, x2, . . . , xn . The arithmetic
mean of this data is defined as

x̄ = 1

n

n∑

i=1

xi . (3.1)

In informal language, we often speak of “the average” or just “the mean” when using
the formula (3.1).

To calculate the arithmetic mean for grouped data, we need the following fre-
quency table:

Class intervals a j a1 = e0 − e1 a2 = e1 − e2 … ak = ek−1 − ek
Absolute freq. n j n1 n2 … nk
Relative freq. f j f1 f2 … fk

Note thata1, a2, . . . , ak are the k class intervals and each intervala j ( j = 1, 2, . . . , k)
contains n j observations with

∑k
j=1 n j = n. The relative frequency of the j th class

is f j = n j/n and
∑k

j=1 f j = 1. The mid-value of the j th class interval is defined as
m j = (e j−1 + e j )/2, which is the mean of the lower and upper limits of the interval.
The weighted arithmetic mean for grouped data is defined as

x̄ = 1

n

k∑

j=1

n jm j =
k∑

j=1

f jm j . (3.2)
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Example 3.1.1 Consider again Example 3.0.1 where we looked at the temperature
in Bangkok during December. The measurements were

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29 .

The arithmetic mean is therefore

x̄ = 22 + 24 + 21 + · · · + 28 + 29

31
= 26.48 ◦C.

In R, the arithmetic mean can be calculated using the mean command:

weather <- c(22,24,21,,30,28,29)
mean(weather)
[1] 26.48387

Let us assume the data in Example 3.0.1 is summarized in categories as
follows:

Class intervals < 20 (20 − 25] (25, 30] (30, 35] > 35
Absolute frequencies n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

Relative frequencies f1 = 0 f2 = 12
31 f3 = 18

31 f4 = 1
31 f5 = 0

We can calculate the (weighted) arithmetic mean as

x̄ =
k∑

j=1

f jm j = 0 + 12

31
· 22.5 + 18

31
· 27.5 + 1

31
32.5 + 0 ≈ 25.7.

In R, we use the weighted.mean function to obtain the result. The function requires
to specify the (hypothesized) means for each group, for example the middle values
of the class intervals, as well as the weights.

weighted.mean(c(22.5,27.5,32.5),c(12/31,18/31,1/31))

Interestingly, the results of themean and the weightedmean differ. This is because
we use themiddle of each class as an approximation of themeanwithin the class. The
implication is that we assume that the values are uniformly distributed within each
interval. This assumption is obviously not met. If we had knowledge about the mean
in each class, like in this example, we would obtain the correct result as follows:

x̄ =
k∑

j=1

f j x̄ j = 0 + 12

31
· 23.83333 + 18

31
· 28 + 1

31
32.5 + 0 = 26.48387.

However, the weighted mean is meant to estimate the arithmetic mean in those
situations where only grouped data is available. It is therefore typically used to
obtain an approximation of the true mean.
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Properties of the Arithmetic Mean.

(i) The sum of the deviations of each variable around the arithmetic mean is zero:
n∑

i=1

(xi − x̄) =
n∑

i=1

xi − nx̄ = nx̄ − nx̄ = 0. (3.3)

(ii) If the data is linearly transformed as yi = a + bxi , where a and b are known
constants, it holds that

ȳ = 1

n

n∑

i=1

yi = 1

n

n∑

i=1

(a + bxi ) = 1

n

n∑

i=1

a + b

n

n∑

i=1

xi = a + bx̄ . (3.4)

Example 3.1.2 Recall Examples 3.0.1 and 3.1.1 where we considered the tempera-
tures in December in Bangkok. We measured them in degrees Celsius, but someone
from the USA might prefer to know them in degrees Fahrenheit. With a linear trans-
formation, we can create a new temperature variable as

Temperature in ◦F = 32 + 1.8 Temperature in ◦C.

Using ȳ = a + bx̄ , we get ȳ = 32 + 1.8 · 26.48 ≈ 79.7 ◦F.

3.1.2 Median and Quantiles

The median is the value which divides the observations into two equal parts such
that at least 50% of the values are greater than or equal to the median and at least
50% of the values are less than or equal to the median. The median is denoted by
x̃0.5; then, in terms of the empirical cumulative distribution function, the condition
F(x̃0.5) = 0.5 is satisfied. Consider the n observations x1, x2, . . . , xn which can
be ordered as x(1) ≤ x(2) ≤ · · · ≤ x(n). The calculation of the median depends on
whether the number of observations n is odd or even. When n is odd, then x̃0.5 is the
middle ordered value. When n is even, then x̃0.5 is the arithmetic mean of the two
middle ordered values:

x̃0.5 =
{
x((n+1)/2) if n is odd
1
2 (x(n/2) + x(n/2+1)) if n is even.

(3.5)

Example 3.1.3 Consider again Examples 3.0.1–3.1.2 where we evaluated the tem-
perature in Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31, are as
follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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We have n = 31, and therefore x̃0.5 = x((n+1)/2) = x((31+1)/2) = x(16) = 26. There-
fore, at least 50% of the 31 observations are greater than or equal to 26 and at least
50% are less than or equal to 26. If one value was missing, let us say the last observa-
tion, then themedian would be calculated as 1

2 (x(30/2) + x(30/2+1)) = 1
2 (26 + 26) =

26. In R, we would have obtained the results using the median command:

median(weather)

If we deal with grouped data, we can calculate the median under the assumption
that the values within each class are equally distributed. Let K1, K2, . . . , Kk be
k classes with observations of size n1, n2, . . . , nk , respectively. First, we need to
determine which class is the median class, i.e. the class that includes the median. We
define the median class as the class Km for which

m−1∑

j=1

f j < 0.5 and
m∑

j=1

f j ≥ 0.5 (3.6)

hold. Then, we can determine the median as

x̃0.5 = em−1 + 0.5 − ∑m−1
j=1 f j

fm
dm (3.7)

where em−1 denotes the lower limit of the interval Km and dm is the width of the
interval Km .

Example 3.1.4 Recall Example 3.1.1 where we looked at the grouped temperature
data:

Class intervals <20 (20–25] (25, 30] (30, 35] >35
n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

f j f1 = 0 f2 = 12
31 f3 = 18

31 f4 = 1
31 f5 = 0

∑
j f j 0 12

31
30
31 1 1

For the third class (m = 3), we have

m−1∑

j=1

f j = 12

31
< 0.5 and

m∑

j=1

f j = 30

31
≥ 0.5.

We can therefore calculate the median as

x̃0.5 = em−1 + 0.5 − ∑m−1
j=1 f j

fm
dm = 25 + 0.5 − 12

31
18
31

· 5 ≈ 25.97.
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Fig. 3.1 Arithmetic mean and median for different data

Comparing the Mean with the Median. In the above examples, the mean and the
median turn out to be quite similar to each other. This is because we looked at data
which is symmetrically distributed around its centre, i.e. on average, we can expect
26 ◦C with deviations that are similar above and below the average temperature.
A similar example is given in Fig. 3.1a: we see that the raw data is summarized by
using ticks at the bottom of the graph and by using a kernel density estimator. The
mean and the median are similar here because the distribution of the observations
is symmetric around the centre. If we have skewed data (Fig. 3.1b), then the mean
and the median may differ. If the data has more than one centre, such as in Fig. 3.1c,
neither the median nor the mean has meaningful interpretations. If we have outliers
(Fig. 3.1d), then it is wise to use the median because the mean is sensitive to outliers.
These examples show that depending on the situation of interest either the mean, the
median, both or neither of them can be useful.
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Quantiles. Quantiles are a generalization of the idea of the median. The median is
the value which splits the data into two equal parts. Similarly, a quantile partitions
the data into other proportions. For example, a 25%-quantile splits the data into two
parts such that at least 25% of the values are less than or equal to the quantile and at
least 75% of the values are greater than or equal to the quantile. In general, let α be a
number between zero and one. The (α × 100)%-quantile, denoted as x̃α , is defined as
the value which divides the data in proportions of (α × 100)% and (1 − α) × 100%
such that at least α × 100% of the values are less than or equal to the quantile and
at least (1 − α) × 100% of the values are greater than or equal to the quantile. In
terms of the empirical cumulative distribution function, we can write F(x̃α) = α. It
follows immediately that for n observations, at least nα values are less than or equal
to x̃α and at least n(1 − α) observations are greater than or equal to x̃α . The median
is the 50%-quantile x̃0.5. If α takes the values 0.1, 0.2, . . . , 0.9, the quantiles are
called deciles. If α · 100 is an integer number (e.g. α × 100 = 95), the quantiles are
called percentiles, i.e. the data is divided into 100 equal parts. If α takes the values
0.2, 0.4, 0.6, and 0.8, the quantiles are known as quintiles and they divide the data
into five equal parts. If α takes the values 0.25, 0.5, and 0.75, the quantiles are called
quartiles.

Consider n ordered observations x(1) ≤ x(2) ≤ · · · ≤ x(n). The α · 100%-quantile
x̃α is calculated as

x̃α =
⎧
⎨

⎩

x(k) if nα is not an integer number,
choose k as the smallest integer > nα,

1
2 (x(nα) + x(nα+1)) if nα is an integer.

(3.8)

Example 3.1.5 Recall Examples 3.0.1–3.1.4 where we evaluated the temperature in
Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31 are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

To determine the quartiles, i.e. the 25, 50, and 75% quantiles, we calculate nα as
31 · 0.25 = 7.75, 31 · 0.5 = 15.5, and 31 · 0.75 = 23.25. Using (3.8), it follows that

x̃0.25 = x(8) = 25, x̃0.5 = x(16) = 26,

x̃0.75 = x(24) = 29.

In R, we obtain the same results using the quantile function. The probs argument
is used to specify α. By default, the quartiles are reported.

quantile(weather)
quantile(weather, probs=c(0,0.25,0.5,0.75,1))

However, please note that R offers nine different ways to obtain quantiles, each
of which can be chosen by the type argument. See Hyndman and Fan (1996) for
more details.
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(a) QQ-plot for Luigi and Domenico
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(b) QQ-plot for Mario and Salvatore

Fig. 3.2 QQ-plots for the pizza delivery time for different drivers

3.1.3 Quantile–Quantile Plots (QQ-Plots)

If we plot the quantiles of two variables against each other, we obtain a Quantile–
Quantile plot (QQ-plot). This provides a simple summary ofwhether the distributions
of the two variables are similar with respect to their location or not.

Example 3.1.6 Consider again thepizzadatawhich is described inAppendixA.4.We
may be interested in the delivery time for different drivers to see if their performance
is the same. Figure3.2a shows a QQ-plot for the delivery time of driver Luigi and
the delivery time of driver Domenico. Each point refers to the α% quantile of both
drivers. If the point lies on the bisection line, then they are identical and we conclude
that the quantiles of the both drivers are the same. If the point is below the line, then
the quantile is higher for Luigi, and if the point is above the line, then the quantile is
lower for Luigi. So if all the points lie exactly on the line, we can conclude that the
distributions of both the drivers are the same. We see that all the reported quantiles
lie below the line, which implies that all the quantiles of Luigi have higher values
than those of Domenico. This means that not only on an average, but also in general,
the delivery times are higher for Luigi. If we look at two other drivers, as displayed
in Fig. 3.2b, the points lie very much on the bisection line.We can therefore conclude
that the delivery times of these two drivers do not differ much.

In R, we can generate QQ-plots by using the qqplot command:

qqplot()
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Fig. 3.3 Different patterns for a QQ-plot

As a summary, let us consider four important patterns:

(a) If all the pairs of quantiles lie (nearly) on a straight line at an angle of 45% from
the x-axis, then the two samples have similar distributions (Fig. 3.3a).

(b) If the y-quantiles are lower than the x-quantiles, then the y-values have a ten-
dency to be lower than the x-values (Fig. 3.3b).

(c) If the x-quantiles are lower than the y-quantiles, then the x-values have a ten-
dency to be lower than the y-values (Fig. 3.3c).

(d) If the QQ-plot is like Fig. 3.3d, it indicates that there is a break point up to which
the y-quantiles are lower than the x-quantiles and after that point, the y-quantiles
are higher than the x-quantiles.

3.1.4 Mode

Consider a situation in which an ice cream shop owner wants to know which flavour
of ice cream is the most popular among his customers. Similarly, a footwear shop
owner may like to find out what design and size of shoes are in highest demand. To
answer this type of questions, one can use the mode which is another measure of
central tendency.

The mode x̄M of n observations x1, x2, . . . , xn is the value which occurs the
most compared with all other values, i.e. the value which has maximum absolute
frequency. It may happen that two or more values occur with the same frequency in
which case the mode is not uniquely defined. A formal definition of the mode is

x̄M = a j ⇔ n j = max {n1, n2, . . . , nk} . (3.9)

Themode is typically applied to any type of variable forwhich the number of different
values is not too large. If continuous data is summarized in groups, then the mode
can be used as well.

Example 3.1.7 Recall the pizza data set described in Appendix A.4. The pizza deliv-
ery service has three branches, in the East, West, and Centre, respectively. Suppose
we want to know which branch delivers the most pizzas. We find that most of the de-
liveries have been made in theWest, see Fig. 3.4a; therefore the mode is x̄M = West.
Similarly, suppose we also want to find the mode for the categorized pizza deliv-
ery time: if we group the delivery time in intervals of 5min, then we see that the
most frequent delivery time is the interval “30−35”min, see Fig. 3.4b. The mode is
therefore x̄M = [30, 35).
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Fig. 3.4 Results from the pizza data set

3.1.5 Geometric Mean

Consider n observations x1, x2, . . . , xn which are all positive and collected on a
quantitative variable. The geometric mean x̄G of this data is defined as

x̄G = n

√√√√
n∏

i=1

xi =
(

n∏

i=1

xi

) 1
n

. (3.10)

The geometric mean plays an important role in fields where we are interested in
products of observations, such as when we look at percentage changes in quantities.
We illustrate its interpretation and use by looking at the average growth of a quantity
in the sense that we allow a starting value, such as a certain amount of money or a
particular population, to change over time. Suppose we have a starting value at some
baseline time point 0 (zero), which may be denoted as B0. At time t , this value may
have changed and we therefore denote it as Bt , t = 1, 2, . . . , T . The ratio of Bt and
Bt−1,

xt = Bt

Bt−1
,

is called the t th growth factor. The growth rate rt is defined as

rt = ((xt − 1) · 100)%
and gives us an idea about the growth or decline of our value at time t . We can
summarize these concepts in the following table:
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Time Inventory Growth factor Growth rate
t Bt xt rt
0 B0 – –
1 B1 x1 = B1/B0 ((x1 − 1) · 100)%
2 B2 x2 = B2/B1 ((x2 − 1) · 100)%
.
.
.

.

.

.
.
.
.

.

.

.

T BT xT = BT /BT−1 ((xT − 1) · 100)%

We can calculate Bt (t = 1, 2, . . . , T ) by using the growth factors:
Bt = B0 · x1 · x2 · . . . · xt .

The average growth factor from B0 to BT is the geometricmean or geometric average
of the growth factors:

x̄G = T√x1 · x2 · . . . · xT

= T

√
B0 · x1 · x2 · . . . · xT

B0

= T

√
BT

B0
. (3.11)

Therefore, Bt at time t can be calculated as Bt = B0 · x̄ tG .

Example 3.1.8 Suppose someone wants to deposit money, say e1000, in a bank.
The bank advisor proposes a 5-year savings plan with the following plan for interest
rates: 1% in the first year, 1.5% in the second year, 2.5% in the third year, and 3%
in the last 2years. Now he would like to calculate the average growth factor and
average growth rate for the invested money. The concept of the geometric mean can
be used as follows:

Year Euro Growth factor Growth rate (%)
0 1000 – –
1 1010 1.01 1.0
2 1025.15 1.015 1.5
3 1050.78 1.025 2.5
4 1082.30 1.03 3.0
5 1114.77 1.03 3.0

The geometric mean is calculated as

x̄G = (1.01 · 1.015 · 1.025 · 1.03 · 1.03) 1
5 = 1.021968

which means that he will have on average about 2.2% growth per year. The savings
after 5years can be calculated as

e 1000 · 1.0219685 = e 1114.77.
It is easy to compare two different saving plans with different growth strategies using
the geometric mean.
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3.1.6 Harmonic Mean

The harmonic mean is typically used whenever different xi contribute to the mean
with a different weight wi , i.e. when we implicitly assume that the weight of each
xi is not one. It can be calculated as

x̄H = w1 + w2 + · · · + wk
w1
x1

+ w2
x2

+ · · · + wk
xk

=
∑k

i=1 wi∑k
i=1

wi
xi

. (3.12)

For example, when calculating the average speed, each weight relates to the rela-
tive distance travelled, ni/n, with speed xi . Using wi = ni/n and

∑
i wi = ∑

i ni/
n = 1, the harmonic mean can be written as

x̄H = 1
∑k

i=1
wi
xi

. (3.13)

Example 3.1.9 Suppose an investor bought shares worthe1000 for two consecutive
months. The price for a share was e50 in the first month and e200 in the second
month. What is the average purchase price? The number of shares purchased in
the first month is 1000/50 = 20. The number of shares purchased in the second
month is 1000/200 = 5. The total number of shares purchased is thus 20 + 5 = 25,
and the total investment is e2000. It is evident that the average purchase price is
2000/25 = e80. This is in fact the harmonic mean calculated as

x̄H = 1
0.5
50 + 0.5

200

= 80

because the weight of each purchase is ni/n = 1000/2000 = 0.5. If the investment
was e1200 in the first month and e800 in the second month, then we could use the
harmonic mean with weights 1200/2000 = 0.6 and 800/2000 = 0.4, respectively,
to obtain the results.

3.2 Measures of Dispersion

Measures of central tendency, as introduced earlier, give us an idea about the loca-
tion where most of the data is concentrated. However, two different data sets may
have the same value for the measure of central tendency, say the same arithmetic
means, but they may have different concentrations around the mean. In this case, the
location measures may not be adequate enough to describe the distribution of the
data. The concentration or dispersion of observations around any particular value is
another property which characterizes the data and its distribution. We now introduce
statistical methods which describe the variability or dispersion of data.
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Example 3.2.1 Suppose three students Christine, Andreas, and Sandro arrive at dif-
ferent times in the class to attend their lectures. Let us look at their arrival time in
the class after or before the starting time of lecture, i.e. let us look how early or late
they were (in minutes).

Week 1 2 3 4 5 6 7 8 9 10
Christine 0 0 0 0 0 0 0 0 0 0
Andreas −10 +10 −10 +10 −10 +10 −10 +10 −10 +10
Sandro 3 5 6 2 4 6 8 4 5 7

We see thatChristine always arrives on time (time difference of zero).Andreas arrives
sometimes 10min early and sometimes 10min late. However, the arithmetic mean of
both students is the same—on average, they both arrive on time! This interpretation
is obviously not meaningful. The difference between both students is the variability
in arrival times that cannot be measured with the mean or median. For this reason, we
need to introduce measures of dispersion (variability). With the knowledge of both
location and dispersion, we can give a much more nuanced comparison between the
different arrival times. For example, consider the third student Sandro. He is always
late; sometimes more, sometimes less. However, while on average he comes late, his
behaviour is more predictable than that of Andreas. Both location and dispersion are
needed to give a fair comparison.

Example 3.2.2 Consider another example in which a supplier for the car industry
needs to deliver 10 car doors with an exact width of 1.00 m. He supplies 5 doors with
a width of 1.05m and the remaining 5 doors with a width of 0.95 m. The arithmetic
mean of all the 10 doors is 1.00 m. Based on the arithmetic mean, one may conclude
that all the doors are good but the fact is that none of the doors are usable as they will
not fit into the car. This knowledge can be summarized by a measure of dispersion.

The above examples highlight that the distribution of a variable needs to be char-
acterized by a measure of dispersion in addition to a measure of location (central
tendency). Now we introduce various measures of dispersion.

3.2.1 Range and Interquartile Range

Consider a variable X with n observations x1, x2, . . . , xn . Order these n observations
as x(1) ≤ x(2) ≤ · · · ≤ x(n). The range is a measure of dispersion defined as the
difference between the maximum and minimum value of the data as

R = x(n) − x(1). (3.14)

The interquartile range is defined as the difference between the 75th and 25th
quartiles as

dQ = x̃0.75 − x̃0.25. (3.15)

It covers the centre of the distribution and contains 50% of the observations.
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Remark 3.2.1 Note that the interquartile range is defined as the interval [x̃0.25; x̃0.75]
in some literature. However, in line with most of the statistical literature, we define
the interquartile range to be a measure of dispersion, i.e. the difference between x̃0.75
and x̃0.25.

Example 3.2.3 Recall Examples 3.0.1–3.1.5 where we looked at the temperature in
Bangkok during December. The ordered values x(i), i = 1, . . . , 31, are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26
(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31
(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

We obtained the quantiles in Example 3.1.5 as x̃0.25 = 25 and x̃0.75 = 29. The in-
terquartile range is therefore dQ = 29 − 25 = 4, which means that 50% of the data
is centred between 25 and 29 ◦C. The range is R = 31 − 21 = 10 ◦C, meaning that
the temperature is varying at most by 10 ◦C. In R, there are several ways to ob-
tain quartiles, minimum and maximum values, e.g. by using min, max, quantiles,
range, among others. All numbers can be easily obtained by the summary command
which we recommend using.

summary(weather)

3.2.2 Absolute Deviation,Variance, and Standard Deviation

Another measure of dispersion is the variance. The variance is one of the most
importantmeasures in statistics and is needed throughout this book.Weuse the idea of
“absolute deviation” to give somemore background andmotivation for understanding
the variance as a measure of dispersion, followed by some examples.

Consider the deviations of n observations around a certain value “A” and combine
them together, for instance, via the arithmetic mean of all the deviations:

D = 1

n

n∑

i=1

(xi − A). (3.16)

This measure has the drawback that the deviations (xi − A), i = 1, 2, . . . , n, can be
either positive or negative and, consequently, their sum can potentially be very small
or even zero. Using D as a measure of variability is therefore not a good idea since
D may be small even for a large variability in the data.
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Using absolute values of the deviations solves this problem, and we introduce the
following measure of dispersion:

D(A) = 1

n

n∑

i=1

|xi − A|. (3.17)

It can be shown that the absolute deviation attains its minimum when A corresponds
to the median of the data:

D(x̃0.5) = 1

n

n∑

i=1

|xi − x̃0.5|. (3.18)

We call D(x̃0.5) the absolute median deviation. When A = x̄ , we speak of the
absolute mean deviation given by

D(x̄) = 1

n

n∑

i=1

|xi − x̄ |. (3.19)

Another solution to avoid the positive and negative signs of deviation in (3.16) is to
consider the squares of deviations xi − A, rather than using the absolute value. This
provides another measure of dispersion as

s2(A) = 1

n

n∑

i=1

(xi − A)2 (3.20)

which is known as the mean squared error (MSE) with respect to A. The MSE
is another important measure in statistics, see Chap.9, Eq. (9.4), for details. It can
be shown that s2(A) attains its minimum value when A = x̄ . This is the (sample)
variance

s̃2 = 1

n

n∑

i=1

(xi − x̄)2. (3.21)

After expanding s̃2, we can write (3.21) as

s̃2 = 1

n

n∑

i=1

x2i − x̄2. (3.22)

The positive square root of the variance is called the (sample) standard deviation,
defined as

s̃ =
√√√√1

n

n∑

i=1

(xi − x̄)2. (3.23)

The standard deviation has the same unit of measurement as the data whereas the
unit of the variance is the square of the units of the observations. For example, if X is
weight, measured in kg, then x̄ and s̃ are also measured in kg, while s̃2 is measured
in kg2 (which may be more difficult to interpret). The variance is a measure which
we use in other chapters to obtain measures of association between variables and to

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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draw conclusions from a sample about a population of interest; however, the standard
deviation is typically preferred for a descriptive summary of the dispersion of data.

The standard deviation measures how much the observations vary or how they
are dispersed around the arithmetic mean. A low value of the standard deviation
indicates that the values are highly concentrated around the mean. A high value of
the standard deviation indicates lower concentration of the observations around the
mean, and some of the observed values may even be far away from the mean. If there
are extreme values or outliers in the data, then the arithmetic mean is more sensitive
to outliers than the median. In such a case, the absolute median deviation (3.18) may
be preferred over the standard deviation.

Example 3.2.4 Consider again Example 3.2.1 where we evaluated the arrival times
of Christine, Andreas, and Sandro in their lecture. Using the arithmetic mean, we
concluded that both Andreas and Christine arrive on time, whereas Sandro is always
late; however, we saw that the variation of arrival times differs substantially among
the three students. To describe and quantify this variability formally, we calculate
the variance and absolute median deviation:

s̃2C = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((0 − 0)2 + · · · + (0 − 0)2) = 0

s̃2A = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((−10 − 0)2 + · · · + (10 − 0)2) ≈ 111.1

s̃2S = 1

10

10∑

i=1

(xi − x̄)2 = 1

10
((3 − 5)2 + · · · + (7 − 5)2) ≈ 3.3

D(x̃0.5,C ) = 1

10

n∑

i=1

|xi − x̃0.5| = |0 − 0| + · · · + |0 − 0| = 0

D(x̃0.5,A) = 1

10

n∑

i=1

|xi − x̃0.5| = | − 10 − 0| + · · · + |10 − 0| = 10

D(x̃0.5,S) = 1

10

n∑

i=1

|xi − x̃0.5| = |3 − 5| + · · · + |7 − 5| = 1.4.

We observe that the variation/dispersion/variability is the lowest for Christine and
highest forAndreas.Bothmedian absolute deviation andvariance allowa comparison
between the two students. If we take the square root of the variance, we obtain the
standard deviation. For example, s̃S = √

3.3 ≈ 1.8, which means that the average
difference of the observations from the arithmetic mean is 1.8.

In R, we can use the var command to calculate the variance. However, note
that R uses 1/(n − 1) instead of 1/n in calculating the variance. The idea behind
the multiplication by 1/(n − 1) in place of 1/n is discussed in Chap.9, see also
Theorem 9.2.1.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Variance for Grouped Data. The variance for grouped data can be calculated using

s2b = 1

n

k∑

j=1

n j (a j − x̄)2 = 1

n

⎛

⎝
k∑

j=1

n ja
2
j − nx̄2

⎞

⎠ = 1

n

k∑

j=1

n ja
2
j − x̄2,

(3.24)

where a j is the middle value of the j th interval. However, when the data is artificially
grouped and the knowledge about the original ungrouped data is available, we can
also use the arithmetic mean of the j th class:

s2b = 1

n

k∑

j=1

n j (x̄ j − x̄)2. (3.25)

The two expressions (3.24) and (3.25) represent the variance between the different
classes, i.e. they describe the variability of the class specific means x̄ j , weighted by
the size of each class n j , around the overall mean x̄ . It is evident that the variance
within each class is not taken into account in these formulae. The variability of
measurements in each class, i.e. the variability of ∀xi ∈ K j , is another important
component to determine the overall variance in the data. It is therefore not surprising
that using only the between variance s̃2b will underestimate the total variance and
therefore

s2b ≤ s2. (3.26)

If the data within each class is known, we can use the Theorem of Variance
Decomposition (see p. 136 for the theoretical background) to determine the variance.
This allows us to represent the total variance as the sum of the variance between
the different classes and the variance within the different classes as

s̃2 = 1

n

k∑

j=1

n j (x̄ j − x̄)2

︸ ︷︷ ︸
between

+ 1

n

k∑

j=1

n j s̃
2
j

︸ ︷︷ ︸
within

. (3.27)

In (3.27), s̃2j is the variance of the j th class:

s̃2j = 1

n j

∑

xi∈K j

(xi − x̄ j )
2. (3.28)

The proof of (3.27) is given in Appendix C.1, p. 423.

Example 3.2.5 Recall theweather data used inExamples 3.0.1–3.2.3 and thegrouped
data specified as follows:

Class intervals <20 (20–25] (25, 30] (30, 35] >35
n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0
x̄ j – 23.83 28 31 –
s̃2j – 1.972 2 0 –
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We know that x̄ = 26.48 and n = 31. The first step is to calculate the mean and
variances in each class using (3.28). We then obtain x̄ j and s2j as listed above. The
within and between variances are as follows:

1

n

k∑

j=1

n j s̃
2
j = 1

31
(12 · 1.972 + 18 · 2 + 1 · 0) ≈ 1.925

1

n

k∑

j=1

n j (x̄ j − x̄)2 = 1

31
(12 · [23.83 − 26.48]2 + 18 · [28 − 26.48]2

+1 · [31 − 26.48]2) ≈ 4.71.

The total variance is therefore s̃2 ≈ 6.64. Estimating the variance using all 31 ob-
servations would yield the same results. However, it becomes clear that without
knowledge about the variance within each class, we cannot reliably estimate s̃2. In
the above example, the variance between the classes is 3 times lower than the total
variance which is a serious underestimation.

Linear Transformations. Let us consider a linear transformation yi = a + bxi
(b 
= 0) of the original data xi , (i = 1, 2, . . . , n). We get the arithmetic mean of
the transformed data as ȳ = a + bx̄ and for the variance:

s̃2y = 1

n

n∑

i=1

(yi − ȳ)2 = b2

n

n∑

i=1

(xi − x̄)2

= b2s̃2x . (3.29)

Example 3.2.6 Let xi , i = 1, 2, . . . , n, denote measurements on time. These data
could have been recorded and analysed in hours, but we may be interested in a
summary inminutes.We canmake a linear transformation yi = 60 xi . Then, ȳ = 60x̄
and s̃2y = 602s̃2x . If themean and variance of the xi ’s have already been obtained, then
themean and variance of the yi ’s can be obtained directly using these transformations.

Standardization.Avariable is called standardized if its mean is zero and its variance
is 1. Standardization can be achieved by using the following transformation:

yi = xi − x̄

s̃x
= − x̄

s̃x
+ 1

s̃x
xi = a + bxi . (3.30)

It follows that ȳ = ∑n
i=1(xi − x̄)/s̃x = 0 and s̃2y = ∑n

i=1(xi − x̄)2/s̃2x = 1. There
are many statistical methods which require standardization, see, for example,
Sect. 10.3.1 for details in the context of statistical tests.

Example 3.2.7 Let X be a variablewhichmeasures air pollution by using the concen-
tration of atmospheric particulate matter (inµg/m3). Suppose we have the following
10 measurements:

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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30 25 12 45 50 52 38 39 45 33.

We calculate x̄ = 36.9, s̃2x = 136.09, and s̃x = 11.67. To get a standardized vari-
able Y , we transform all the observations xi ’s as

yi = xi − x̄

s̃x
= − x̄

s̃x
+ 1

s̃x
xi = − 36.9

11.67
+ 1

11.67
xi = −3.16 + 0.086xi .

Now y1 = −3.16 + 0.086 · 30 = −0.58, y2 = −3.16 + 0.086 · 25 = −1.01, . . .,
are the standardized observations. The scale command in R allows standard-
ization, and we can obtain the standardized observations corresponding to the
10 measurements as

air <- c(30,25,12,45,50,52,38,39,45,33)
scale(air)

Please note that the scale command uses 1/(n − 1) for calculating the variance,
as already outlined above. Thus, the results provided by scale are not identical to
those using (3.30).

3.2.3 Coefficient of Variation

Consider a situation where two different variables have arithmetic means x̄1 and x̄2
with standard deviations s̃1 and s̃2, respectively. Suppose we want to compare the
variability of hotel prices in Munich (measured in euros) and London (measured
in British pounds). How can we provide a fair comparison? Since the prices are
measured in different units, and therefore likely have arithmetic means which differ
substantially, it does not make much sense to compare the standard deviations di-
rectly. The coefficient of variation v is a measure of dispersion which uses both the
standard deviation and mean and thus allows a fair comparison. It is properly defined
only when all the values of a variable are measured on a ratio scale and are positive
such that x̄ > 0 holds. It is defined as

v = s

x̄
. (3.31)

The coefficient of variation is a unit-free measure of dispersion. It is often used when
themeasurements of two variables are different but can be put into relation by using a
linear transformation yi = bxi . It is possible to show that if all values xi of a variable
X are transformed into a variable Y with values yi = b · xi , b > 0, then v does not
change.
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Example 3.2.8 If we want to compare the variability of hotel prices in two selected
cities in Germany and England, we could calculate the mean prices, together with
their standard deviation. Suppose a sample of prices of say 100 hotels in two selected
cities in Germany and England is available and suppose we obtain the mean and
standard deviations of the two cities as x1 = e130, x2 = £230, s1 = e99, and s2 =
£212. Then, v1 = 99/130 ≈ 0.72 and v2 = 212/230 = 0.92. This indicates higher
variability in hotel prices in England. However, if the data distribution is skewed
or bimodal, then it may be wise not to choose the arithmetic mean as a measure of
central tendency and likewise the coefficient of variation.

3.3 Box Plots

So far we have described various measures of central tendency and dispersion. It can
be tedious to list those measures in summary tables. A simple and powerful graph
is the box plot which summarizes the distribution of a continuous (or sometimes an
ordinal) variable by using its median, quartiles, minimum, maximum, and extreme
values.

Figure3.5a shows a typical box plot. The vertical length of the box is the in-
terquartile range dQ = x̃0.75 − x̃0.25, which shows the region that contains 50% of
the data. The bottom end of the box refers to the first quartile, and the top end of the
box refers to the third quartile. The thick line in the box is the median. It becomes
immediately clear that the box indicates the symmetry of the data: if the median is
in the middle of the box, the data should be symmetric, otherwise it is skewed. The
whiskers at the end of the plot mark the minimum and maximum values of the data.
Looking at the box plot as a whole tells us about the data distribution and the range
and variability of observations. Sometimes, it may be advisable to understand which
values are extreme in the sense that they are “far away” from the centre of the distri-
bution. In many software packages, including R, values are defined to be extreme if
they are greater than 1.5 box lengths away from the first or third quartile. Sometimes,
they are called outliers. Outliers and extreme values are defined differently in some
software packages and books.

Median

1st Quartile

3rd Quartile

minimum

maximum

(a) Box plot without extreme values

Median

1st Quartile

3rd Quartile

extreme values

extreme values

(b) Box plot with extreme values
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The boxplot command in R draws a box plot. The range option controlswhether
extreme values should be plotted, and if yes, how one wants to define such values.

boxplot(variable, range=1.5)

Example 3.3.1 Recall Examples 3.0.1–3.2.5 where we looked at the temperature in
Bangkok during December. We have already calculated the median (26◦C) and the
quartiles (25, 29◦C).Theminimumandmaximumvalues are 21◦Cand31◦C.Thebox
plot for this data is shown in Fig. 3.5a. One can see that the temperature distribution
is slightly skewed with more variability for lower temperatures. The interquartile
range is 4, and therefore, any value >29 + 4 × 1.5 = 35 or <25 − 4 × 1.5 = 19
would be an extreme value. However, there are no extreme values in the data.

Example 3.3.2 Consider again the pizza data described in Appendix A.4. We use R
to plot the box plot for the delivery time via boxplot(time) (Fig. 3.5b). We see
a symmetric distribution with a median delivery time of about 35min. Most of the
deliveries took between 30 and 40min. The extreme values indicate that there were
some exceptionally short and long delivery times.
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(b) Boxplot for pizza data

3.4 Measures of Concentration

A completely different concept used to describe a quantitative variable is the idea of
concentration. For a variable X , it summarizes the proportion of each observation
with respect to the sum of all observations

∑n
i=1 xi . Let us look at a simple example

to demonstrate its usefulness.
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Table 3.1 Concentration of
farmland: two different
situations

Farmer (i) xi (Area, in hectare)

1 20

2 20

3 20

4 20

5 20
∑5

i=1 xi = 100

Farmer (i) xi (Area, in hectare)

1 0

2 0

3 0

4 0

5 100
∑5

i=1 xi = 100

Example 3.4.1 Consider a village with 5 farms. Each farmer has a farm of a certain
size. How canwe evaluate the land distribution?Do all farmers have a similar amount
of land or do one or two farmers have a big advantage because they have considerably
more space?

Table3.1 shows two different situations: in the table on the left, we see an equal
distribution of land, i.e. each farmer owns 20 hectares of farmland. This means X is
not concentrated, rather it is equally distributed. A statistical function describing the
concentration could return a value of zero in such a case. Consider another extreme
where one farmer owns all the farmland and the others do not own anything, as shown
on the right side of Table3.1. This is an extreme concentration of land: one person
owns everything and thus, we say the concentration is high. A statistical function
describing the concentration could return a value of one in such a case.

3.4.1 Lorenz Curve

The Lorenz curve is a popular method to display concentrations graphically. Con-
sider n observations x1, x2, . . . , xn of a variable X . Assume that all the observations
are positive. The sum of all the observations is

∑n
i=1 xi = nx̄ if the data is un-

grouped. First, we need to order the data: 0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(n). To plot the
Lorenz curve, we need

ui = i

n
, i = 0, . . . , n, (3.32)

and

vi =
∑i

j=1 x( j)∑n
j=1 x( j)

, i = 1, . . . , n; v0 := 0, (3.33)
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u0 = 0 u1 u2 u3 u4 u5 = 1
v0 = 0

v1
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v3

v4

v5 = 1

u0 = 0 u1 u2 u3 u4 u5 = 1
v0 = 0
v1

v2

v3

v4

v5 = 1

Fig. 3.5 Lorenz curves for no concentration (left) and some concentration (right)∗

where
∑i

j=1 x( j) is the cumulative total of observations up to the i th observation.
The idea is that vi describe the contribution of all values ≤ i in comparison with
the sum of all values. Plotting ui against vi for all i shows how much the sum of all
xi , for all observations ≤ i , contributes to the total sum. In other words, the point
(ui , vi ) says that ui · 100% of observations contain vi · 100% of the sum of all xi
less than or equal to i . Obviously, if all xi are identical, the Lorenz curve will be a
straight diagonal line, also known as the identity line or line of equality. If the xi
are of different sizes, then the Lorenz curve falls below the line of equality. This is
illustrated in the following example.

Example 3.4.2 Recall Example 3.4.1wherewe looked at the distribution of farmland
among 5 farmers. On the upper panel of Table3.1, we observed an equal distribution
of land among the farmers: x1 = 20, x2 = 20, x3 = 20, x4 = 20, and x5 = 20. We
obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 20/100, v2 = 40/100, . . . , v5 =
1. This yields a Lorenz curve as displayed on the left side of Fig. 3.5: there is no
concentration.We can interpret each point. For example, (u2, v2) = (0.4, 0.4)means
that 40% of farmers own 40% of the land.

The lower panel of Table3.1 describes the situation with strong concentration. For
this table, we obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 0, v2 = 0, . . . , v5 =
1. Therefore, for example, 80% of farmers own 0% of the land which shows strong
inequality.Most oftenwe do not have such extreme situations. In this case, the Lorenz
curve is bent towards the lower right corner of the plot, see the right side of Fig. 3.5.

We can plot the Lorenz curve in R using the Lc command in the library ineq.
The Lorenz curve for the left table of Example 3.4.1 is plotted in R as follows:

library(ineq)
x <- c(20,20,20,20,20)
plot(Lc(x))
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Fig. 3.6 Lorenz curve and
the Gini coefficient∗

ui−1 ui

vi−1

vi

F

Fi

We can use the same approach as above to obtain the Lorenz curve when we have
grouped data. We simply describe the contributions for each class rather than for
each observation and approximate the values in each class by using its mid-point.
More formally we can write:

ũi =
i∑

j=1

f j , i = 1, 2, . . . , k; ũ0 := 0 (3.34)

and

ṽi =
∑i

j=1 f j a j
∑k

j=1 f j a j
=

∑i
j=1 n ja j

nx̄
, i = 1, 2, . . . , k; ṽ0 := 0. (3.35)

3.4.2 Gini Coefficient

We have seen in Sect. 3.4.1 that the Lorenz curve corresponds to the identity line, that
is the diagonal line of equality, for no concentration. When there is some concentra-
tion, then the curve deviates from this line. The amount of deviation depends on the
strength of concentration. Suppose we want to design a measure of concentration
which is 0 for no concentration and 1 for perfect (i.e. extreme) concentration.We can
simply measure the area between the Lorenz curve and the identity line and multiply
it by 2. For no concentration, the area will be zero and hence the measure will be
zero. If there is perfect concentration, then the curve will coincide with the axes, the
area will be close to 0.5, and twice the area will be close to one. The measure based
on such an approach is called the Gini coefficient:

G = 2 · F. (3.36)

Note that F is the area between the curve and the bisection or diagonal line.
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The Gini coefficient can be estimated by adding up the areas of the trapeziums Fi
as displayed in Fig. 3.6:

F =
n∑

i=1

Fi − 0.5,

where
Fi = ui−1 + ui

2
(vi − vi−1).

It can be shown that this corresponds to

G = 1 − 1

n

n∑

i=1

(vi−1 + vi ), (3.37)

but the proof is omitted. The same formula can be used for grouped data except that
ṽ is used instead of v. Since

0 ≤ G ≤ n − 1

n
, (3.38)

one may prefer to use the standardized Gini coefficient

G+ = n

n − 1
G, (3.39)

which takes a maximum value of 1.

Example 3.4.3 We return to our farmland example. Suppose we have 7 farmers with
farms of different sizes:

Farmer 1 2 3 4 5 6 7
Farmland size xi 20 14 59 9 36 23 3

Using the ordered values, we can calculate ui and vi using (3.32) and (3.33):

i x(i) ui vi

1 3 1
7 = 0.1429 3

164 = 0.0183

2 9 2
7 = 0.2857 12

164 = 0.0732

3 14 3
7 = 0.4286 26

164 = 0.1585

4 20 4
7 = 0.5714 46

164 = 0.2805

5 23 5
7 = 0.7143 69

164 = 0.4207

6 36 6
7 = 0.8571 105

164 = 0.6402

7 59 7
7 = 1.0000 164

164 = 1.0000
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Fig. 3.7 Lorenz curve for
Example 3.4.3∗
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The Lorenz curve is displayed in Fig. 3.7. Using this information, it is easy to
calculate the Gini coefficient:

G = 1 − 1

7
(0.0183 + [0.0183 + 0.0732] + [0.0732 + 0.1585] + [0.1585 + 0.2805]

+[0.2805 + 0.4207] + [0.4207 + 0.6402] + [0.6402 + 1]) = 0.402

We know that G = 0.4024 ≤ 6
7 = n−1

n . To standardize the coefficient, we therefore
have to use (3.39):

G+ = 7

6
G = 7

6
· 0.4024 = 0.4695 .

In R, we can obtain the non-standardized Gini Coefficient using the ineq function
in the library ineq.

library(ineq)
farm <- c(20,14,59,9,36,23,3)
ineq(farm)
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3.5 Key Points and Further Issues

Note:

� A summary on how to descriptively summarize data is given in Appen-
dix D.1.

� The median is preferred over the arithmetic mean when the data distri-
bution is skewed or there are extreme values.

� If data of a continuous variable is grouped, and the original ungrouped
data is not known, additional assumptions are needed to calculate mea-
sures of central tendency and dispersion. However, in some cases, these
assumptions may not be satisfied, and the formulae provided may give
imprecise results.

� QQ-plots are not only descriptive summaries but can also be used to test
modelling assumptions, see Chap.11.9 for more details.

� The distribution of a continuous variable can be easily summarized using
a box plot.

3.6 Exercises

Exercise 3.1 A hiking enthusiast has a new app for his smartphone which summa-
rizes his hikes by using a GPS device. Let us look at the distance hiked (in km) and
maximum altitude (in m) for the last 10 hikes:

Distance 12.5 29.9 14.8 18.7 7.6 16.2 16.5 27.4 12.1 17.5
Altitude 342 1245 502 555 398 670 796 912 238 466

(a) Calculate the arithmetic mean and median for both distance and altitude.
(b) Determine the first and third quartiles for both the distance and the altitude

variables. Discuss the shape of the distribution given the results of (a) and (b).
(c) Calculate the interquartile range, absolute median deviation, and standard de-

viation for both variables. What is your conclusion about the variability of the
data?

(d) One metre corresponds to approximately 3.28 ft. What is the average altitude
when measured in feet rather than in metres?

(e) Draw and interpret the box plot for both distance and altitude.
(f) Assume distance ismeasured as only short (5–15km),moderate (15–20km), and

long (20–30km). Summarize the grouped data in a frequency table. Calculate
the weighted arithmetic mean under the assumption that the raw data is not

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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known. Determine the weighted median under the assumption that the values
within each class are equally distributed.

(g) What is the variance for the grouped data when the raw data is known, i.e. when
one has knowledge about the variance in each class? How does it compare with
the variance one obtains when the raw data is unknown?

(h) Use R to reproduce the results of (a), (b), (c), (e), and (f).

Exercise 3.2 A gambler notes down his wins and losses (in e) from playing 10
games of roulette in a casino.

Round 1 2 3 4 5 6 7 8 9 10
Won/Lost 200 600 −200 −200 −200 −100 −100 −400 0

(a) Assume x̄ = − e90 and s = e294.7881. What is the result of round 10?
(b) Determine the mode and the interquartile range.
(c) A different gambler plays 33 rounds of roulette. His results are x̄ = e12 and

s = e1000. Is it meaningful to compare the variability of results of the two
players by using the coefficient of variation? If yes, determine the coefficients
of variation; if no, why is a comparison not possible?

Exercise 3.3 A fashion boutique has summarized its daily sales of designer socks in
different groups: men’s socks, women’s socks, and children’s socks. Unfortunately,
the data for men’s socks was lost. Determine the missing values.

n Arithmetic mean Standard deviation
in e in e

Women’s wear 45 16
√
6

Men’s wear ? ? ?
Children’s wear 20 7.5

√
3

Total 100 15
√
19.55

Exercise 3.4 The number of members of a millionaires’ club were as follows:

Year 2011 2012 2013 2014 2015 2016
Members 23 24 27 25 30 28

(a) What is the average growth rate of the membership?
(b) Based on the results of (a), how many members would one expect in 2018?
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Fig. 3.8 QQ-plots

(c) The president of the club is interested in the number of members in 2025, the
year when his presidency ends. Would it make sense to predict the number of
members for 2025?

In 2015, the members invested e250 million on the stock market. 10 members
contributed 16% of the investment sum, 8 members contributed e60 million, 8
members contributede70million, and another 4members contributed the remaining
amount.

(d) Draw the Lorenz curve for this data.
(e) Calculate and interpret the standardized Gini coefficient.

Exercise 3.5 Consider the monthly salaries Y (in Swiss francs) of a well-reputed
software company, as well as the length of service (in months, X ), and gender (Z ).
Figure3.8 shows the QQ-plots for both Y and X given Z . Interpret both graphs.

Exercise 3.6 There is no built-in function in R to calculate the mode of a variable.
Program such a function yourself. Hint: type ?table and ?names to recall the
functionality of these functions. Combine them in an intelligent way.

Exercise 3.7 Consider a country in which 90% of the wealth is owned by 20% of
the population, the so-called upper class. For simplicity, let us assume that the wealth
is distributed equally within this class.

(a) Draw the Lorenz curve for this country.
(b) Now assume a revolution takes place in the country and all members of the upper

class have to give away their wealth which is then distributed equally across the
remaining population. Draw the Lorenz curve for this scenario.

(c) What would the curve from (b) look like if the entire upper class left the country?
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Exercise 3.8 A bus route in the mountainous regions of Romania has a length of
418km. The manager of the bus company serving the route wants his buses to finish
a tripwithin 8h. The bus travels the first 180kmwith an average speed of 48km/h, the
next 117km with an average speed of 37km/h, and the last section with an average
speed of 52km/h.

(a) What is the average speed with which the bus travels?
(b) Will the bus finish the trip in time?

Exercise 3.9 Four friends have a start-up company which sells vegan ice cream.
Their initial financial contributions are as follows:

Person 1 2 3 4
Contribution (in e) 800 10300 4700 2220

(a) Calculate and draw the Lorenz curve.
(b) Determine and interpret the standardized Gini coefficient.
(c) Does G+ change if each of the friends contributes only half the amount of

money? If yes, how much? If no, why not?
(d) Use R to draw the above Lorenz curve and to calculate the Gini coefficient.

Exercise 3.10 Recall the pizza delivery data which is described in Appendix A.4.
Use R to read in and analyse the data.

(a) Calculate the mean, median, minimum, maximum, first quartile, and third quar-
tile for all quantitative variables.

(b) Determine and interpret the 99% quantile for delivery time and temperature.
(c) Write a function which calculates the absolute mean deviation. Use the function

to calculate the absolute mean deviation of temperature.
(d) Scale the delivery time and calculate the mean and variance for this variable.
(e) Draw a box plot for delivery time and temperature. The box plots should not

highlight extreme values.
(f) Use the cut command to create a new variable which summarizes delivery time

in steps of 10min. Calculate the arithmetic mean of this variable.
(g) Reproduce the QQ-plots shown in Example 3.1.6.

→ Solutions to all exercises in this chapter can be found on p. 333

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,
Springer, Heidelberg
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In Chaps. 2 and 3 we discussed how to analyse a single variable using graphs and
summary statistics. However, in many situations we may be interested in the interde-
pendence of two or more variables. For example, suppose we want to know whether
male and female students in a college have any preference between the subjects
mathematics and biology, i.e. if there is any evidence that male students prefer math-
ematics over biology and female students prefer biology over mathematics or vice
versa. Supposewe choose an equal number ofmale and female students and ask them
about their preferred subject. We expect that if there is no association between the
two variables “gender of student” (male or female) and “subject” (mathematics or
biology), then an equal proportion ofmale and female students should choose the sub-
jects biology and mathematics, respectively. Any difference in the proportions may
indicate a preference ofmales or females for a particular subject. Similarly, in another
example, we may want to find out whether female employees of an organization are
paid less than male employees or vice versa. Let us assume again that we choose
an equal number of male and female employees and assume further that the salary
is measured as a binary variable (low- versus high-salary group). We then expect
that if there is no gender discrimination, the number of male and female employees
in the lower- and higher-salary groups in the organization should be approximately
equal. In both examples, the variables considered are binary and nominal (although
the salary can also be seen as ordinal) and the data is summarized in terms of fre-
quency measures. There may, however, be situations in which we are interested in
associations between ordinal or continuous variables. Consider a data set in which
height, weight, and age of infants are given. Usually, the height and weight of infants
increase with age. Also, the height of infants increases with their weight and vice
versa. Clearly, there is an interrelation or association among the three variables. In
another example, two persons have to judge participants of a dance competition and
rank them according to their performance. Now if we want to learn about the fairness
in the judgment, we expect that both the judges give similar ranks to each candidate,

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_4
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i.e. both judges give high ranks to good candidates and low ranks to not so good
candidates. We are therefore interested in studying the association between the ranks
given by the two judges. In all these examples, the intention lies in measuring the
degree of association between two (or more) variables. We therefore need to study
different ways of measuring the association level for different types of variables. In
this chapter, we present measures and graphical summaries for the association of
two variables—dependent on their scale.

4.1 Summarizing the Distribution of Two DiscreteVariables

When both variables are discrete, then it is possible to list all combinations of values
of the two variables and to count how often these combinations occur in the data.
Consider the salary example in the introduction to this chapter in which both the
variables were binary. There are four possible combinations of variable categories
(female and low-salary group, female and high-salary group, male and low-salary
group, and male and high-salary group). A complete description of the joint occur-
rence of these two variables can be given by counting, for each combination, the
number of units for which this combination is measured. In the following, we gen-
eralize this concept to two variables where each can have an arbitrary (but fixed)
number of values or categories.

4.1.1 Contingency Tables for Discrete Data

Suppose we have data on two discrete variables. This data can be described in a
two-dimensional contingency table.

Example 4.1.1 An airline conducts a customer satisfaction survey. The survey
includes questions about travel class and satisfaction levels with respect to different
categories such as seat comfort, in-flight service, meals, safety, and other indicators.
Consider the information on X , denoting the travel class (Economy = “E”, Business
= “B”, First = “F”), and “Y”, denoting the overall satisfaction with the flight on a
scale from 1 to 4 as 1 (poor), 2 (fair), 3 (good), and 4 (very good). A possible response
from 12 customers may look as follows:

Passenger number
i 1 2 3 4 5 6 7 8 9 10 11 12

Travel class E E E B E B F E E B E B
Satisfaction 2 4 1 3 1 2 4 3 2 4 3 3

We can calculate the absolute frequencies for each of the combination of observed
values. For example, there are 2 passengers (passenger numbers 3 and 5) who were
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Table 4.1 Contingency table for travel class and satisfaction

Overall rating of flight quality Total (row)

Poor Fair Good Very good

Travel class Economy
business
first

2 2 2 1 7

0 1 2 1 4

0 0 0 1 1

Total
(column)

2 3 4 3 12

flying in economy class and rated the flight quality as poor, there were no passengers
from both business class and first class who rated the flight quality as poor; there
were 2 passengers who were flying in economy class and rated the quality as fair
(2), and so on. Table4.1 is a two-dimensional table summarizing this information.

Note that we not only summarize the joint frequency distribution of the two
variables but also the distributions of the individual variables. Summing up the rows
and columns of the table gives the respective frequency distributions. For example,
the last column of the table demonstrates that 7 passengers were flying in economy
class, 4 passengers were flying in business class and 1 passenger in first class.

Now we extend this example and discuss a general framework to summarize
the absolute frequencies of two discrete variables in contingency tables. We use
the following notations: Let x1, x2, . . . , xk be the k classes of a variable X and let
y1, y2, . . . , yl be the l classes of another variable Y . We assume that both X and Y
are discrete variables. It is possible to summarize the absolute frequencies ni j related
to (xi , y j ), i = 1, 2, . . . , k, j = 1, 2, . . . , l, in a k × l contingency table as shown
in Table4.2.

Table 4.2 k × l contingency table

Y

y1 y j yl Total
(rows)

x1 n11 · · · n1 j · · · n1l n1+
x2 n21 · · · n2 j · · · n2l n2+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

X xi ni1 · · · ni j · · · nil ni+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xk nk1 · · · nkj · · · nkl nk+
Total
(columns)

n+1 · · · n+ j · · · n+l n
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We denote the sum of the i th row as ni+ = ∑l
j=1 ni j and the sum over the j th

column as n+ j = ∑k
i=1 ni j . The total number of observations is therefore

n =
k∑

i=1

ni+ =
l∑

j=1

n+ j =
k∑

i=1

l∑

j=1

ni j . (4.1)

Remark 4.1.1 Note that it is also possible to use the relative frequencies fi j = ni j/n
instead of the absolute frequencies ni j in Table4.2, see Example 4.1.2.

4.1.2 Joint,Marginal, and Conditional Frequency Distributions

When the data on two variables are summarized in a contingency table, there are
several concepts which can help us in studying the characteristics of the data. For
example, how the values of both the variables behave jointly, how the values of
one variable behave when another variable is kept fixed etc. These features can be
studied using the concepts of joint frequency distribution, marginal frequency distri-
bution, and conditional frequency distribution. If relative frequency is used instead
of absolute frequency, then we speak of the joint relative frequency distribution, mar-
ginal relative frequency distribution, and conditional relative frequency distribution.

Definition 4.1.1 Using the notations of Table4.2, we define the following:

The frequencies ni j represent the joint frequency distribution of X and Y .

The frequencies ni+ represent the marginal frequency distribution of X .

The frequencies n+ j represent the marginal frequency distribution of Y .

We define f X |Y
i | j = ni j/n+ j to be the conditional frequency distribution of

X given Y = y j .

We define f Y |X
j |i = ni j/ni+ to be the conditional frequency distribution of Y

given X = xi

The frequencies fi j represent the joint relative frequency distribution of X
and Y .

The frequencies fi+ = ∑l
j=1 fi j represent the marginal relative frequency

distribution of X .

The frequencies f+ j = ∑k
i=1 fi j represent the marginal relative frequency

distribution of Y .

We define f X |Y
i | j = fi j/ f+ j to be the conditional relative frequency distrib-

ution of X given Y = y j .

We define f Y |X
j |i = fi j/ fi+ to be the conditional relative frequency distribu-

tion of Y given X = xi .
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Table 4.3 Contingency table for travel class and satisfaction

Overall rating of flight quality

Poor Fair Good Very good Total (rows)

Travel class Economy 10 33 15 4 62

Business 0 3 20 2 25

First 0 0 5 8 13

Total
(columns)

10 36 40 14 100

Note that for a bivariate joint frequency distribution, there will only be two mar-
ginal (or relative) frequency distributions but possibly more than two conditional (or
relative) frequency distributions.

Example 4.1.2 Recall the setup of Example 4.1.1. We now collect and evaluate the
responses of 100 customers (instead of 12 passengers as in Example 4.1.1) regarding
their choice of the travel class and their overall satisfaction with the flight quality.

The data is provided in Table4.3 where each of the cell entries illustrates how
many out of 100 passengers answered xi and y j : for example, the first entry “10”
indicates that 10 passengers were flying in economy class and described the overall
service quality as poor.

• The marginal frequency distributions are displayed in the last column and last row,
respectively. For example, the marginal distribution of X refers to the frequency
table of “travel class” (X ) and tells us that 62 passengers were flying in economy
class, 25 in business class, and 13 in first class. Similarly, the marginal distribution
of “overall rating of flight quality” (Y ) tells us that 10 passengers rated the quality
as poor, 36 as fair, 40 as good, and 14 as very good.

• The conditional frequency distributions give us an idea about the behaviour of one
variable when the other one is kept fixed. For example, the conditional distribution
of the “overall rating of flight quality” (Y ) among passengers who were flying
in economy class ( fY |X=Economy) gives f Y |X

1|1 = 10/62 ≈ 16% which means that
approximately 16% of the customers in economy class are rating the quality as
poor, f Y |X

2|1 = 33/62 ≈ 53% of the customers in economy class are rating the

quality as fair, f Y |X
3|1 = 15/62 ≈ 24%of the customers in economy class are rating

the quality as good and f Y |X
4|1 = 4/62 ≈ 7% of the customers in economy class

are rating the quality as very good. Similarly, f Y |X
3|2 = 20/25 ≈ 80%whichmeans

that 80% of the customers in business class are rating the quality as good and
so on.

• The conditional frequency distribution of the “travel class” (X ) of passengers
given the “overall rating of flight quality” (Y ) is obtained by fX |Y=Satisfaction level.

For example, fX |Y=good gives f X |Y
1|3 = 15/40 = 37.5% which means that 37.5%
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of the passengers who rated the flight to be good travelled in economy class,
f X |Y
2|3 = 20/40 = 50% of the passengers who rated the flight to be good travelled

in business class and f X |Y
3|3 = 5/40 = 12.5%of the passengers who rated the flight

to be good travelled in first class.
• In total, we have 100 customers and hence

n =
k∑

i=1

ni+ = 62 + 25 + 13 =
l∑

j=1

n+ j = 10 + 36 + 40 + 14

=
k∑

i=1

l∑

j=1

ni j = 10 + 33 + 15 + 4 + +3 + 20 + 2 + 5 + 8 = 100

• Alternatively, we can summarize X and Y using the relative frequencies as follows:

Overall rating of flight quality
Poor Fair Good Very good Total (rows)

Travel class Economy 10
100

33
100

15
100

4
100

62
100

Business 0 3
100

20
100

2
100

25
100

First 0 0 5
100

8
100

13
100

Total (columns) 10
100

36
100

40
100

14
100 1

To produce the frequency table without the marginal distributions, we can use
the R command table(X,Y). To obtain the full contingency table including the
marginal distributions in R, one can use the function addmargins(). For the relative
frequencies, the function prop.table() can be used. In summary, a full contingency
table is obtained by using

addmargins(table(X,Y))
addmargins(prop.table(table(X,Y)))

4.1.3 Graphical Representation of Two Nominal
or Ordinal Variables

Bar charts (see Sect. 2.3.1) can be used to graphically summarize the association
between two nominal or two ordinal variables. The bar chart is drawn for X and the
categories of Y are represented by separated bars or stacked bars for each category
of X . In this way, we summarize the joint distribution of the contingency table.

Example 4.1.3 Consider Example 4.1.2. There are 62 passengers flying in the econ-
omy class. From these 62 passengers, 10 rated the quality of the flight as poor, 33 as
fair, 15 as good, and 4 as very good. This means for X = x1(= Economy), we can

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Fig. 4.1 Bar charts for travel class and rating of satisfaction

either place 4 bars next to each other, as in Fig. 4.1a, or we can stack them on top
of each other, as in Fig. 4.1b. The same can be done for the other categories of X ,
see Fig. 4.1. Stacked and stratified bar charts are prepared in R by calling the library
lattice and using the function bar chart. In detail, one needs to specify:

Class <- c(rep('1: Economy',62),rep('2: Business',25),
rep('3: First',13))
Rating <- c(rep('1=poor',10),rep('2=fair',33),...)
library(lattice)
barchart(table(Class,Rating),horizontal=FALSE,stack=FALSE)
barchart(table(Class,Rating),horizontal=FALSE,stack=TRUE)

Remark 4.1.2 There are several other options in R to specify stratified bar charts.
We refer the interested reader to Exercise 2.6 to explore how the R package ggplot2
can be used to make such graphics. Sometimes it can also be useful to visualize the
difference of two variables and not stack or stratify the bars, see Exercise 2.1.

Independence and Expected FrequenciesAn important statistical concept is inde-
pendence. In this section, we touch upon its descriptive aspects, see Chaps. 6
(Sect. 6.5) and 7 (Sect. 7.5) for more theoretical details. Two variables are considered
to be independent if the observations on one variable do not influence the observa-
tions on the other variable. For example, suppose two different persons roll a die
separately; then, the outcomes of their rolls do not depend on each other. So we
can say that the two observations are independent. In the context of contingency
tables, two variables are independent of each other when the joint relative frequency
equals the product of the marginal relative frequencies of the two variables, i.e. the

http://dx.doi.org/10.1007/978-3-319-46162-5_6
http://dx.doi.org/10.1007/978-3-319-46162-5_6
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Table 4.4 Observed and expected absolute frequencies for the airline survey

Overall rating of flight quality

Poor Fair Good Very good Total

Travel Economy 10 (6.2) 33 (22.32) 15 (24.8) 4 (8.68) 62

class Business 0 (2.5) 3 (9.0) 20 (10.0) 2 (3.5) 25

First 0 (1.3) 0 (4.68) 5 (5.2) 8 (1.82) 13

Total 10 36 40 14 100

following equation holds:
fi j = fi+ f+ j . (4.2)

The expected absolute frequencies under independence are obtained by

ñi j = n fi j = n
ni+
n

n+ j

n
= ni+n+ j

n
. (4.3)

Note that the absolute frequencies are always integers but the expected absolute
frequencies may not always be integers.

Example 4.1.4 Recall Example 4.1.2. The expected absolute frequencies for the
contingency table can be calculated using (4.3). For example,

ñ11 = 62 · 10
100

= 6.2, ñ12 = 62 · 36
100

= 22.32 etc.

Table4.4 lists both the observed absolute frequency and expected absolute frequency
(in brackets).

To calculate the expected absolute frequencies in R, we can access the “expected”
object returned from a χ2-test applied to the respective contingency table as follows:

chisq.test(table(Class,Rating))$expected

A detailed motivation and explanation of this command is given in Sect. 10.8.

4.2 Measures of Association for Two DiscreteVariables

When two variables are not independent, then they are associated. Their association
can be weak or strong. Now we describe some popular measures of association.
Measures of association describe the degree of association between two variables
and can have a direction as well. Note that if variables are defined on a nominal scale,
then nothing can be said about the direction of association, only about the strength.

Let us first consider a 2 × 2 contingency table which is a special case of a k × l
contingency table, see Table4.5.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Table 4.5 2 × 2 contingency table

Y

y1 y2 Total (row)

x1 a b a + b

X x2 c d c + d

Total (column) a + c b + d n

Table 4.6 2 × 2 contingency table

Persons

Not affected Affected Total (row)

Vaccinated 90 10 100

Vaccination Not vaccinated 40 60 100

Total (column) 130 70 200

The variables X and Y are independent if

a

a + c
= b

b + d
= a + b

n
(4.4)

or equivalently if

a = (a + b)(a + c)

n
. (4.5)

Note that some other forms of the conditions (4.4)–(4.5) can also be derived in
terms of a, b, c, and d.

Example 4.2.1 Suppose a vaccination against flu (influenza) is given to 200 persons.
Some of the persons may get affected by flu despite the vaccination. The data is
summarized in Table4.6. Using the notations of Table4.5, we have a = 90, b =
10, c = 40, d = 60, and thus, (a + b)(a + c)/n = 100 · 130/200 = 65which is less
than a = 90. Hence, being affected by flu is not independent of the vaccination,
i.e. whether one is vaccinated or not has an influence on getting affected by flu.
In the vaccinated group, only 10 of 100 persons are affected by flu while in the
group not vaccinated 60 of 100 persons are affected. Another interpretation is that
if independence holds, then we would expect 65 persons to be not affected by flu in
the vaccinated group but we observe 90 persons. This shows that vaccination has a
protective effect.

To gain a better understanding about the strength of association between two
variables, we need to develop the concept of dependence and independence further.
The following three subsections illustrate this in more detail.
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4.2.1 Pearson’sχ2 Statistic

We now introduce Pearson’s χ2 statistic which is used for measuring the association
between variables in a contingency table and plays an important role in the construc-
tion of statistical tests, see Sect. 10.8. The χ2 statistic or χ2 coefficient for a k × l
contingency table is given as

χ2 =
k∑

i=1

l∑

j=1

(
ni j − ñi j

)2

ñi j
=

k∑

i=1

l∑

j=1

(
ni j − ni+n+ j

n

)2

ni+n+ j
n

. (4.6)

A simpler formula for 2 × 2 contingency tables is

χ2 = n(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
. (4.7)

The idea behind the χ2 coefficient is that when the relationship between two
variables is stronger, then the deviations between observed and expected frequencies
are expected to be higher (because the expected frequencies are calculated assuming
independence) and this indicates a stronger relationship between the two variables. If
observed and expected frequencies are identical or similar, then this is an indication
that the association between the two variables is weak and the variables may even be
independent. Theχ2 statistic for a k × l contingency table sums up all the differences
between the observed and expected frequencies, squares them, and scales them with
respect to the expected frequencies. The squaring of the differencemakes the statistic
independent of the positive and negative signs of the difference between observed
and expected frequencies. The range of values for χ2 is

0 ≤ χ2 ≤ n(min(k, l) − 1). (4.8)

Note that min(k, l) is the minimum function and simply returns the smaller of the
two numbers k and l. For example, min(3, 4) returns the value 3. Consequently the
values of χ2 obtained from (4.6) can be compared with the range from (4.8). A
value of χ2 close to zero indicates a weak association and a value of χ2 close to
n(min(k, l) − 1) indicates a strong association between the two variables. Note that
the range of χ2 depends on n, k and l, i.e. the sample size and the dimension of the
contingency table.

The χ2 statistic is a symmetricmeasure in the sense that its value does not depend
on which variable is defined as X and which as Y .

Example 4.2.2 Consider Examples 4.1.2 and 4.1.4. Using the values from Table4.4,
we can calculate the χ2 statistic as

χ2 = (10 − 6.2)2

6.2
+ (33 − 22.32)2

22.32
+ · · · + (8 − 1.82)2

1.82
= 57.95064

Themaximumpossible value for theχ2 statistic is 100(min(4, 3) − 1) = 200. Thus,
χ2 ≈ 57 indicates a moderate association between “travel class” and “overall rating
of flight quality” of the passengers. In R, we obtain this result as follows:

chisq.test(table(Class,Rating))$statistic

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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4.2.2 Cramer’s V Statistic

A problem with Pearson’s χ2 coefficient is that the range of its maximum value
depends on the sample size and the size of the contingency table. These values
may vary in different situations. To overcome this problem, the coefficient can be
standardized to lie between 0 and 1 so that it is independent of the sample size as well
as the dimension of the contingency table. Since n(min(k, l) − 1) was the maximal
value of the χ2 statistic, dividing χ2 by this maximal value automatically leads to a
scaled version with maximal value 1. This idea is used by Cramer’s V statistic which
for a k × l contingency table is given by

V =
√

χ2

n(min(k, l) − 1)
. (4.9)

The closer the value of V gets to 1, the stronger the association between the two
variables.

Example 4.2.3 Consider Example 4.2.2. The obtained χ2 statistic is 57.95064. To
obtain Cramer’s V , we just need to calculate

V =
√

χ2

n(min(k, l) − 1)
=

√
57.95064

100(3 − 1)
≈ 0.54. (4.10)

This indicates a moderate association between “travel class” and “overall rating of
flight quality” because 0.54 lies in the middle of 0 and 1. In R, there are two options
to calculate V : (i) to calculate the χ2 statistic and then adjust it as in (4.9), (ii) to use
the functions assocstats and xtabs contained in the package vcd as follows:

library(vcd)
assocstats(xtabs(∼Class+Rating))

4.2.3 Contingency Coefficient C

Another option to standardize χ2 is given by a corrected version of Pearson’s con-
tingency coefficient:

Ccorr = C

Cmax
=

√
min(k, l)

min(k, l) − 1

√
χ2

χ2 + n
, (4.11)

with

C =
√

χ2

χ2 + n
and Cmax =

√
min(k, l) − 1

min(k, l)
. (4.12)

It always lies between 0 and 1. The closer the value of C is to 1, the stronger the
association.
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Example 4.2.4 We know from Example 4.2.2 that the χ2 statistic for travel class and
satisfaction level is 57.95064. To calculateCcorr, we need the following calculations:

C =
√

57.95064

57.95064 + 100
= 0.606, Cmax =

√
min(4, 3) − 1

min(4, 3)
=

√
2

3
= 0.816,

Ccorr = C

Cmax
= 0.606

0.816
≈ 0.74 .

There is a moderate to strong association between “travel class” and “overall rating
of flight quality” of the passengers. We can compute C in R using the vcd package
as follows:

library(vcd)
Cmax = sqrt((min(c(3,4))-1)/min(c(3,4)))
assocstats(xtabs(∼Class+Rating))$cont/Cmax

4.2.4 Relative Risks and Odds Ratios

We now introduce the concepts of odds ratios and relative risks. Consider a 2 × 2
contingency table as introduced in Table4.5. Now suppose we have two variables
X and Y with their conditional distributions f X |Y

i | j and f Y |X
j |i . In the context of a

2 × 2 contingency table, f X |Y
1|1 = n11/n+1, f

X |Y
1|2 = n12/n+2, f

X |Y
2|2 = n22/n+2, and

f X |Y
2|1 = n21/n+1. The relative risks are defined as the ratio of two conditional dis-

tributions, for example

f X |Y
1|1
f X |Y
1|2

= n11/n+1

n12/n+2
= a/(a + c)

b/(b + d)
and

f X |Y
2|1
f X |Y
2|2

= n21/n+1

n22/n+2
= c/(a + c)

d/(b + d)
. (4.13)

The odds ratio is defined as the ratio of these relative risks from (4.13) as

OR = f X |Y
1|1 / f X |Y

1|2
f X |Y
2|1 / f X |Y

2|2
= f X |Y

1|1 f X |Y
2|2

f X |Y
2|1 f X |Y

1|2
= a d

b c
. (4.14)

Alternatively, the odds ratio can be defined as the ratio of the chances for “disease”,
a/b (number of smokers with the disease divided by the number of non-smokers
with the disease), and no disease, c/d (number of smokers with no disease divided
by the number of non-smokers with no disease).

The relative risks compare proportions, while the odds ratio compares odds.
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Example 4.2.5 A classical example refers to the possible association of smoking
with a particular disease. Consider the following data on 240 individuals:

Smoking Total (row)
Yes No

Disease Yes 34 66 100
No 22 118 140

Total (column) 56 184 240

We calculate the following relative risks:

f X |Y
1|1
f X |Y
1|2

= 34/56

66/184
≈ 1.69 and

f X |Y
2|1
f X |Y
2|2

= 22/56

118/184
≈ 0.61 . (4.15)

Thus, the proportion of individuals with the disease is 1.69 times higher among
smokers when compared with non-smokers. Similarly, the proportion of healthy
individuals is 0.61 times smaller among smokers when compared with non-smokers.

The relative risks are calculated to compare the proportion of sick or healthy
patients between smokers and non-smokers. Using these two relative risks, the odds
ratio is obtained as

OR = 34 × 118

66 × 22
= 2.76.

We can interpret this outcome as follows: (i) the chances of smoking are 2.76 times
higher for individuals with the disease compared with healthy individuals (follows
from definition (4.14)). We can also say that (ii) the chances of having the particular
disease is 2.76 times higher for smokers compared with non-smokers. If we inter-
change either one of the “Yes” and “No” columns or the “Yes” and “No” rows, we
obtain OR = 1/2.76 ≈ 0.36, giving us further interpretations: (iii) the chances of
smoking are 0.36 times lower for individuals without disease compared with indi-
viduals with the disease, and (iv) the chance of having the particular disease is 0.36
times lower for non-smokers compared with smokers. Note that all four interpreta-
tions are correct and one needs to choose the right interpretation in the light of the
experimental situation and the question of interest.

4.3 Association Between Ordinal and ContinuousVariables

4.3.1 Graphical Representation of Two ContinuousVariables

A simple way to graphically summarize the association between two continuous
variables is to plot the paired observations of the two variables in a two-dimensional
coordinate system. If n paired observations for two continuous variables X and Y
are available as (xi , yi ), i = 1, 2, . . . , n, then all such observations can be plotted
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rBravais−Pearson =0.91, rSpearman =0.87
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Fig. 4.2 Scatter plots

in a single graph. This graph is called a scatter plot. Such a plot reveals possible
relationships and trends between the two variables. For example, Figs. 4.2 and 4.3
show scatter plots with six different types of association.

• Figure4.2a shows increasing values of Y for increasing values of X . We call this
relationship positive association. The relationship between X and Y is nearly linear
because all the points lie around a straight line.

• Figure4.2b shows decreasing values of Y for increasing values of X . We call this
relationship negative association.

• Figure4.2c tells us the same as Fig. 4.2a, except that the positive association is
weaker.
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rBravais−Pearson =0.03, rSpearman =−0.01
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Fig. 4.3 Continues Fig. 4.2—more scatter plots

• Figure4.2d tells us the same as Fig. 4.2b, except that the negative association is
weaker.

• Figure4.3a shows that as the X -values increase, the values of Y neither increase
nor decrease. This indicates that there is no clear relationship between X and Y
and highlights the lack of association between X and Y .

• Figure4.3b illustrates a nonlinear relationship between X - and Y -values.

Example 4.3.1 To explore the possible relationship between the overall number of
tweets with the number of followers on Twitter, we take a sample of 10 prime
ministers and heads of state in different countries as of June 2014 and obtain the
following data:

Name Tweets Followers
Angela Merkel 25 7194
Barack Obama 11,800 43,400,000
Jacob Zuma 99 324,000

Dilma Rousseff 1934 2,330,000
Sauli Niinistö 199 39,000
Vladimir Putin 2539 189,000

Francois Hollande 4334 639,000
David Cameron 952 688,000
Enrique P. Nieto 3245 2,690,000

John Key 2468 110,000

The tweets are denoted by xi and the followers are denoted by yi , i = 1, 2, . . . , 10.
We plot paired observations (xi , yi ) into a cartesian coordinate system. For example,
we plot (x1, y1) = (25, 7194) forAngelaMerkel, (x2, y2) = (11, 800, 43, 400, 000)
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Fig. 4.4 Scatter plot
between tweets and followers
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for Barack Obama, and so on. Figure4.4 shows the scatter plot for the number of
tweets and the number of followers (on a log-scale).

One can see that there is a positive association between the number of tweets and
the number of followers. This does, however, not imply a causal relationship: it is
not necessarily because someone tweets more he/she has more followers or because
someone has more followers he/she tweets more; the scatter plot just describes that
those with more tweets have more followers. In R, we produce this scatter plot by
the plot command:

tweets <- c(25,11800,99,...)
followers <- c(7194,43400000,...)
plot(tweets,followers)

4.3.2 Correlation Coefficient

Suppose two variables X and Y are measured on a continuous scale and are linearly
related like Y = a + b X where a and b are constant values. The correlation coef-
ficient r(X, Y ) = r measures the degree of linear relationship between X and Y
using

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2 · ∑n
i=1(yi − ȳ)2

= Sxy√
Sxx Syy

, (4.16)

with

Sxx =
n∑

i=1

(xi − x̄)2 = ns̃2X , Syy =
n∑

i=1

(yi − ȳ)2 = ns̃2Y , (4.17)

and

Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xi yi − nx̄ ȳ . (4.18)
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Karl Pearson (1857–1936) presented the first rigorous treatment of correlation and
acknowledged Auguste Bravais (1811–1863) for ascertaining the initial mathemati-
cal formulae for correlation. This is why the correlation coefficient is also known as
the Bravais–Pearson correlation coefficient.

The correlation coefficient is independent of the units of measurement of X and
Y . For example, if someone measures the height and weight in metres and kilograms
respectively and another person measures them in centimetres and grams, respec-
tively, then the correlation coefficient between the two sets of data will be the same.
The correlation coefficient is symmetric, i.e. r(X, Y ) = r(Y, X). The limits of r are
−1 ≤ r ≤ 1. If all the points in a scatter plot lie exactly on a straight line, then the
linear relationship between X and Y is perfect and |r | = 1, see also Exercise 4.7. If
the relationship between X and Y is (i) perfectly linear and increasing, then r = +1
and (ii) perfectly linear and decreasing, then r = −1. The signs of r thus determine
the direction of the association. If r is close to zero, then it indicates that the variables
are independent or the relationship is not linear. Note that if the relationship between
X and Y is nonlinear, then the degree of linear relationship may be low and r is then
close to zero even if the variables are clearly not independent. Note that r(X, X) = 1
and r(X,−X) = −1.

Example 4.3.2 Look again at the scatter plots in Figs. 4.2 and 4.3.We observe strong
positive linear correlation in Fig. 4.2a (r = 0.91), strong negative linear correlation
in Fig. 4.2b (r = −0.92), moderate positive linear correlation in Fig. 4.2c (r = 0.50),
moderate negative linear association in Fig. 4.2d (r = −0.56), no visible correlation
in Fig. 4.3a (r = 0.03), and strong nonlinear (but not so strong linear) correlation in
Fig. 4.3b (r = 0.64).

Example 4.3.3 In a decathlon competition, a group of athletes are competing with
each other in 10 different track and field events. Suppose we are interested in how
the results of the 100-m race relate to the results of the long jump competition. The
correlation coefficient for the 100-m race (X , in seconds) and the long jump event
(Y , in metres) for 5 athletes participating in the 2004 Olympic Games (see also
Appendix A.4) are listed in Table4.7.

To calculate the correlation coefficient, we need the following summary statistics:

x̄ = 1

5
(10.85 + 10.44 + 10.50 + 10.89 + 10.62) = 10.66

ȳ = 1

5
(7.84 + 7.96 + 7.81 + 7.47 + 7.74) = 7.764

Sxx = (10.85 − 10.66)2 + (10.44 − 10.66)2 + · · · + (10.62 − 10.66)2 = 0.1646

Table 4.7 Results of 100-m
race and long jump of 5
athletes

i xi yi

Roman Sebrle 10.85 7.84

Bryan Clay 10.44 7.96

Dmitriy Karpov 10.50 7.81

Dean Macey 10.89 7.47

Chiel Warners 10.62 7.74
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Syy = (7.84 − 7.764)2 + (7.96 − 7.764)2 + · · · + (7.74 − 7.764)2 = 0.13332

Sxy = (10.85 − 10.66)(7.84 − 7.764) + · · · + (10.62 − 10.66)(7.74 − 7.764)

= −0.1027

The correlation coefficient therefore is

r = Sxy√
Sxx Syy

= −0.1027√
0.1646 × 0.13332

≈ −0.69 .

Since −0.69 is negative, we can say that (i) there is a negative correlation between
the 100-m race and the long jump event, i.e., shorter running times result in longer
long jump results, and (ii) this association is moderate to strong.

In R, we can obtain the results (after attaching the data) as follows:

cor(X.100m,X.Long.jump, method='pearson')

4.3.3 Spearman’s Rank Correlation Coefficient

Consider a situation where n objects are ranked with respect to two variables X and
Y . For instance, the variables could represent the opinion of two different judges
in a talent competition who rank the participants with respect to their performance.
This means that for each judge, the worst participant (with the lowest score xi ) is
assigned rank 1, the second worst participant (with the second lowest score xi ) will
receive rank 2, and so on. Thus, every participant has been given two ranks by two
different judges. Suppose we want to measure the degree of association between the
two different judgments; that is, the two different sets of ranks. We expect that under
perfect agreement, both the judges give the same judgment in the sense that they give
the same ranks to each candidate. However, if they are not in perfect agreement, then
there may be some variation in the ranks assigned by them. To measure the degree of
agreement, or, in general, the degree of association, one can use Spearman’s rank
correlation coefficient. As the name says, this correlation coefficient uses only the
ranks of the values and not the values themselves. Thus, this measure is suitable
for both ordinal and continuous variables. We introduce the following notations:
let R(xi ) denote the rank of the i th observation on X , i.e. the rank xi among the
ordered values of X . Similarly, R(yi ) denotes the rank of the i th observation of y.
The difference between the two rank values is di = R(xi ) − R(yi ). Spearman’s rank
correlation coefficient is defined as

R = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
. (4.19)

The values of R lie between −1 and +1 and measure the degree of correlation
between the ranks of X and Y . Note that it does not matter whether we choose an
ascending or descending order of the ranks, the value of R remains the same. When
all the observations are assigned exactly the same ranks, then R = 1 and when all
the observations are assigned exactly the opposite ranks, then R = −1.
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Example 4.3.4 Look again at the scatter plots in Figs. 4.2 and 4.3. We observe
strong positive correlation in Fig. 4.2a (R = 0.87), strong negative correlation in
Fig. 4.2b (R = −0.92), moderate positive correlation in Fig. 4.2c (R = 0.51), mod-
erate negative association in Fig. 4.2d (R = −0.55), no visible correlation in Fig. 4.3a
(R = −0.01), and strong nonlinear correlation in Fig. 4.3b (R = 0.99).

Example 4.3.5 Let us follow Example 4.3.3 a bit further and calculate Spearman’s
rank correlation coefficient for the first five observations of the decathlon data. Again
we list the results of the 100-m race (X ) and the results of the long jump competition
(Y ). In addition, we assign ranks to both X and Y . For example, the shortest time
receives rank 1, whereas the longest time receives rank 5. Similarly, the shortest long
jump result receives rank 1, the longest long jump result receives rank 5.

i xi R(xi ) yi R(yi ) di d2i
Roman Sebrle 10.85 4 7.84 4 0 0
Bryan Clay 10.44 1 7.96 5 −4 16
Dmitriy Karpov 10.50 2 7.81 3 −1 1
Dean Macey 10.89 5 7.47 1 −4 16
Chiel Warners 10.62 3 7.74 2 −1 1
Total 34

Using (4.19), Spearman’s rank correlation coefficient can be calculated as

R = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
= 1 − 6 · 34

5 · 24 = −0.7.

We therefore have a moderate to strong negative association between the 100-m
race and the long jump event. We now know that for the 5 athletes above longer
running times relate to shorter jumping distances which in turn means that a good
performance in one discipline implies a good performance in the other discipline. In
R, we can obtain the same results by using the cor command:

cor(X.100m,X.Long.jump, method='spearman')

If two or more observations take the same values for xi (or yi ), then there is a
tie. In such situations, the respective ranks can simply be averaged, though more
complicated solutions also exist (one of which is implemented in the R function
cor). For example, if in Example 4.3.5 Bryan Clay’s was 10.50 s instead of 10.44 s,
then both Bryan Clay and Dmitriy Karpov had the same time. Instead of assigning
the ranks 1 and 2 to them, we assign the ranks 1.5 to each of them.

The differences between the correlation coefficient and the rank correlation coeffi-
cient aremanifold: firstly, Pearson’s correlation coefficient can be used for continuous
variables only, but not for nominal or ordinal variables. The rank correlation coeffi-
cient can be used for either two continuous or two ordinal variables or a combination
of an ordinal and a continuous variable, but not for two nominal variables. More-
over, the rank correlation coefficient responds to any type of relationship whereas
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Pearson’s correlation measures the degree of a linear relationship only—see also
Fig. 4.3b. Another difference between the two correlation coefficients is that Pear-
son uses the entire information contained in the continuous data in contrast to the
rank correlation coefficient which uses only ordinal information contained in the
ordered data.

4.3.4 Measures Using Discordant and Concordant Pairs

Another concept which uses ranks to measure the association between ordinal vari-
ables is based on concordant and discordant observation pairs. It is best illustrated
by means of an example.

Example 4.3.6 Suppose an online book store conducts a survey on their customer’s
satisfaction with respect to both the timeliness of deliveries (X ) and payment options
(Y ). Let us consider the following 2 × 3 contingency table with a summary of the
responses of 100 customers. We assume that the categories for both variables can
be ordered and ranks can be assigned to different categories, see the numbers in
brackets in Table4.8. There are 100 observation pairs (xi , yi ) which summarize the
response of the customers with respect to both X and Y . For example, there are 18
customers who were unsatisfied with the timeliness of the deliveries and complained
that there are not enough payment options. If we compare two responses (xi1 , yi1) and
(xi2 , yi2), it might be possible that one customer is more happy (or more unhappy)
than the other customer with respect to both X and Y or that one customer is more
happy with respect to X but more unhappy with respect to Y (or vice versa). If the
former is the case, then this is a concordant observation pair; if the latter is true, then
it is a discordant pair. For instance, a customer who replied “enough” and “satisfied”
is more happy than a customer who replied “not enough” and “unsatisfied” because
he is more happy with respect to both X and Y .

In general, a pair is

• concordant if i2 > i1 and j2 > j1 (or i2 < i1 and j2 < j1),
• discordant if i2 < i1 and j2 > j1 (or i2 > i1 and j2 < j1),
• tied if i1 = i2 (or j1 = j2).

Table 4.8 Payment options and timeliness survey with 100 participating customers

Timeliness

Unsatisfied Satisfied Very satisfied Total

(1) (2) (3)

Payment
options

Not enough (1) 7 11 26 44

Enough (2) 10 15 31 56

Total 17 26 57 100
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Obviously, if we have only concordant observations, then there is a strong posi-
tive association because a higher value of X (in terms of the ranking) implies a
higher value of Y . However, if we have only discordant observations, then there is
a clear negative association. The measures which are introduced below simply put
the number of concordant and discordant pairs into relation. This idea is reflected in
Goodman and Kruskal’s γ which is defined as

γ = K

K + D
− D

K + D
= K − D

K + D
, (4.20)

where

K =
∑

i<m

∑

j<n

ni j nmn, D =
∑

i<m

∑

j>n

ni j nmn

describe the number of concordant and discordant observation pairs, respectively.
An alternative measure is Stuart’s τc given as

τc = 2min(k, l)(K − D)

n2(min(k, l) − 1)
. (4.21)

Bothmeasures are standardized to lie between−1 and 1, where larger values indicate
a stronger association and the sign indicates the direction of the association.

Example 4.3.7 Consider Example 4.3.6. A customerwho replied “enough” and “sat-
isfied” is more happy than a customer who replied “not enough” and “unsatisfied”
because the observation pairs, using ranks, are (2, 2) and (1, 1) and therefore i2 > i1
and j2 > j1. There are 7 × 15 such pairs. Similarly those who said “not enough”
and “unsatisfied” are less happy than those who said “enough” and “very satisfied”
(7 × 31 pairs). Table 4.5 summarizes the comparisons in detail.

Table 4.5a shows that (x1, y1) = (not enough, unsatisfied) is concordant to
(x2, y2) = (enough, satisfied) and (x2, y3) = (enough, very satisfied) and tied to
(x2, y1) = (enough, unsatisfied), (x1, y2) = (not enough, satisfied), and (x1, y3) =
(not enough, very satisfied). Thus for these comparisons, we have 0 discordant pairs,
(7 × 15) + (7 × 31) concordant pairs and 7 × (10 + 11 + 26) tied pairs. Table 4.5b–
f show how the task can be completed. While tiresome, systematically working
through the table (and making sure to not count pairs more than once) yields

K = 7 × (15 + 31) + 11 × 31 = 663

D = 10 × (11 + 26) + 15 × 26 = 760.

As a visual rule of thumb, working from the top left to the bottom right yields the
concordant pairs; and working from the bottom left to the top right yields the discor-
dant pairs. It follows that K = (663 − 760)/(663 + 760) ≈ −0.07 which indicates
no clear relationship between the two variables. A similar result is obtained using
τc which is 4 × (760 − 663)/1002 ≈ 0.039. This rather lengthy task can be made
much quicker by using the ord.gamma and ord.tau commands from the R library
ryouready:
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(a) y1 y2 y3
x1 t t
x2 t c c

(b) y1 y2 y3
x1 t t
x2 d t c

(c) y1 y2 y3
x1 t t
x2 d d t

(d) y1 y2 y3
x1 t d d
x2 t t

(e) y1 y2 y3
x1 c t d
x2 t t

(f) y1 y2 y3
x1 c c t
x2 t t

Fig.4.5 Scheme to visualize concordant (c), discordant (d), and tied (t) pairs in a 2 × 3 contingency
table

library(ryouready)
ex <- matrix(c(7,11,26,10,15,31),ncol=3,byrow=T)
ord.gamma(ex)
ord.tau(ex)

4.4 Visualization of Variables fromDifferent Scales

If we want to jointly visualize the association between a variable X , which is either
nominal or ordinal and another variable Y , which is continuous, then we can use any
graph which is suitable for the continuous variable (see Chaps. 2 and 3) and produce
it for each category of the nominal/ordinal variable. We recommend using stratified
box plots or stratified ECDF’s, as they are easy to read when summarized in a single
figure; however, it is also possible to place histograms next to each other or on top of
each other, or overlay kernel density plots, but we do not illustrate this here in more
detail.

Example 4.4.1 Consider again our pizza delivery example (AppendixA.4). If we
are interested in the pizza delivery times by branch, we may simply plot the box
plots and ECDF’s of delivery time by branch. Figure4.6 shows that the shortest
delivery times can be observed in the branch in the East. Producing these graphs
in R is straightforward: The boxplot command can be used for two variables by
separating them with the ∼ sign. For the ECDF, we have to produce a plot for each
branch and overlay them with the “add=TRUE” option.

boxplot(time∼branch)
plot.ecdf(time[branch=='East'])
plot.ecdf(time[branch=='West'], add=TRUE)
plot.ecdf(time[branch=='Centre'], add=TRUE)

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Fig. 4.6 Distribution of pizza delivery time stratified by branch

4.5 Key Points and Further Issues

Note:

� How to use different measures of association:

2 nominal variables → Pearson’sχ2, relative risks, odds ratio,
Cramer’s V , and Ccorr

2 ordinal variables → Spearman’s rank correlation coeffi-
cient, γ, τc

2 continuous variables → Pearson’s correlation coefficient,
Spearman’s correlation coefficient

� For two variables which are measured on different scales, for exam-
ple continuous/ordinal or ordinal/nominal, one should use measures of
association suitable for the less informative of the two scales.

� Another graphical representation of both a continuous and discrete vari-
able is stratified confidence interval plots (error plots), see Chap.9.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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4.6 Exercises

Exercise 4.1 Anewspaper asks two of its staff to review the coffee quality at different
trendy cafés. The coffee can be rated on a scale from 1 (miserable) to 10 (excellent).
The results of the two coffee enthusiasts X and Y are as follows:

Café i xi yi
1 3 6
2 8 7
3 7 10
4 9 8
5 5 4

(a) Calculate and interpret Spearman’s rank correlation coefficient.
(b) Does Spearman’s R differ depending onwhether ranks are assigned in a decreas-

ing or increasing order?
(c) Suppose the coffee can only be rated as either good (>5) or bad (≤5). Do the

chances of a good rating differ between the two journalists?

Exercise 4.2 A total of 150 customers of a petrol station are asked about their satis-
faction with their car and motorbike insurance. The results are summarized below:

Satisfied Unsatisfied Total
Car 33 25 58
Car (diesel engine) 29 31 60
Motorbike 12 20 32
Total 74 76 150

(a) Determine and interpret Pearson’s χ2 statistic, Cramer’s V , and Ccorr.
(b) Combine the categories “car” and “car (diesel engine)” and produce the corre-

sponding 2 × 2 table. Calculate χ2 as efficiently as possible and give a mean-
ingful interpretation of the odds ratio.

(c) Compare the results from (a) and (b).

Exercise 4.3 There has been a big debate about the usefulness of speed limits on
public roads. Consider the following table which lists the speed limits for country
roads (in miles/h) and traffic deaths (per 100 million km) for different countries in
1986 when the debate was particularly serious:

(a) Draw the scatter plot for the two variables.
(b) Calculate the Bravais–Pearson and Spearman correlation coefficients.
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Country Speed limit Traffic deaths
Denmark 55 4.1
Japan 55 4.7
Canada 60 4.3

Netherlands 60 5.1
Italy 75 6.1

(c) What are the effects on the correlation coefficients if the speed limit is given in
km/h rather than miles/h (1 mile/h ≈ 1.61km/h)?

(d) Consider one more observation: the speed limit for England was 70miles/h and
the death rate was 3.1.

(i) Add this observation to the scatter plot.
(ii) Calculate the Bravais–Pearson correlation coefficient given this additional

observation.

Exercise 4.4 The famous passenger liner Titanic hit an iceberg in 1912 and sank. A
total of 337 passengers travelled in first class, 285 in second class, and 721 in third
class. In addition, there were 885 staff members on board. Not all passengers could
be rescued. Only the following were rescued: 135 from the first class, 160 from the
second class, 541 from the third class and 674 staff.

(a) Determine and interpret the contingency table for the variables “travel class”
and “rescue status”.

(b) Use a contingency table to summarize the conditional relative frequency distri-
butions of rescue status given travel class. Could there be an association of the
two variables?

(c) What would the contingency table from (a) look like under the independence
assumption? Calculate Cramer’s V statistic. Is there any association between
travel class and rescue status?

(d) Combine the categories “first class” and “second class” as well as “third class”
and “staff”. Create a contingency table based on these new categories. Determine
and interpret Cramer’s V , the odds ratio, and relative risks of your choice.

(e) Given the results from (a) to (d), what are your conclusions?

Exercise 4.5 To study the association of the monthly average temperature (in ◦C,
X ) and hotel occupation (in %, Y ), we consider data from three cities: Polenca
(Mallorca, Spain) as a summer holiday destination, Davos (Switzerland) as a winter
skiing destination, and Basel (Switzerland) as a business destination.
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Fig. 4.7 Temperature and hotel occupancy for the different cities

Months Davos Polenca Basel
X Y X Y X Y

Jan −6 91 10 13 1 23
Feb −5 89 10 21 0 82
Mar 2 76 14 42 5 40
Apr 4 52 17 64 9 45
May 7 42 22 79 14 39
Jun 15 36 24 81 20 43
Jul 17 37 26 86 23 50
Aug 19 39 27 92 24 95
Sep 13 26 22 36 21 64
Oct 9 27 19 23 14 78
Nov 4 68 14 13 9 9
Dec 0 92 12 41 4 12

(a) Calculate the Bravais–Pearson correlation coefficient. The following summary
statistics are available:

∑36
i=1 xi yi = 22, 776, x̄ = 12.22, ȳ = 51.28, s̃2x = 76.95,

and s̃2y = 706.98.
(b) Interpret the scatter plot in Fig. 4.7 which visualizes temperature and hotel occu-

pancy for Davos (D), Polenca (P), and Basel (B).
(c) Use R to calculate the correlation coefficient separately for each city. Interpret

the results and discuss the use of the correlation coefficient if more than two
variables are available.
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Exercise 4.6 Consider a neighbourhood survey on the use of a local park. Respon-
dents were asked whether the park may be used for summer music concerts and
whether dog owners should put their dogs on a lead. The results are summarized in
the following contingency table:

Put dogs on a lead
Agree No opinion Disagree Total

Use for concerts Agree 82 4 0 86
No opinion 8 43 9 60
Disagree 0 2 10 12
Total 90 49 19 158

(a) Calculate and interpret Goodman and Kruskal’s γ.
(b) Now ignore the ordinal structure of the data and calculate Cramer’s V .
(c) Create the contingency table which is obtained when the categories “no opinion”

and “agree” are combined.
(d) What is the relative risk of disagreement with summer concerts depending on

the opinion about using leads?
(e) Calculate the odds ratio and offer two interpretations of it.
(f) Determine γ for the table calculated in (c).
(g) What is your final interpretation and what may be the best measure to use in this

example?

Exercise 4.7 Consider n observations for which yi = a + bxi , b > 0, holds. Show
that r = 1.

Exercise 4.8 Make yourself familiar with the Olympic decathlon data described in
Appendix A.4. Read in and attach the data in R.

(a) Use R to calculate and interpret the Bravais–Pearson correlation coefficient
between the results of the discus and the shot-put events.

(b) There are 10 continuous variables. How many different correlation coefficients
can you calculate? How would you summarize them?

(c) Apply the cor command to the whole data and interpret the output.
(d) Omit the two rows which contain missing data and interpret the output again.

Exercise 4.9 We are interested in the pizza delivery data which is described in
Appendix A.4.

(a) Read in the data and create two new binary variables which describe whether
a pizza was hot (>65 ◦C) and the delivery time was short (<30min). Create a
contingency table for the two new variables.

(b) Calculate and interpret the odds ratio for the contingency table from (a).
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(c) UseCramer’sV , Stuart’s τc, Goodman andKruskal’sγ, and a stacked bar chart to
explore the association between the categorical time and temperature variables.

(d) Draw a scatter plot for the continuous time and temperature variables. Determine
both the Bravais–Pearson and Spearman correlation coefficients.

(e) Use methods of your choice to explore the relationship between temperature
and driver, operator, number of ordered pizzas and bill. Is it clear which of the
variables influence the pizza temperature?

→ Solutions to all exercises in this chapter can be found on p. 345
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5Combinatorics

5.1 Introduction

Combinatorics is a special branch of mathematics. It has many applications not
only in several interesting fields such as enumerative combinatorics (the classical
application), but also in other fields, for example in graph theory and optimization.

First, we try to motivate and understand the role of combinatorics in statistics.
Consider a simple example in which someone goes to a cafe. The person would
like a hot beverage and a cake. Assume that one can choose among three different
beverages, for example cappuccino, hot chocolate, and green tea, and three different
cakes, let us say carrot cake, chocolate cake, and lemon tart. The personmay consider
different beverage and cake combinations when placing the order, for example carrot
cake and cappuccino, carrot cake and tea, and hot chocolate and lemon tart. From a
statistical perspective, the customer is evaluating the possible combinations before
making a decision. Depending on their preferences, the order will be placed by
choosing one of the combinations.

In this example, it is easy to calculate the number of possible combinations.
There are three different beverages and three different cakes to choose from, leading
to nine different (3 × 3) beverage and cake combinations. However, suppose there
is a choice of 15 hot beverages and 8 different cakes. How many orders can be
made? (Answer: 15 × 8) What if the person decides to order two cakes, how will it
affect the number of possible combinations of choices? It will be a tedious task to
count all the possibilities. So we need a systematic approach to count such possible
combinations. Combinatorics deals with the counting of different possibilities in a
systematic approach.

People often use the urn model to understand the system in the counting process.
The urn model deals with the drawing of balls from an urn. The balls in the urn

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_5
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(a) (b) (c)

(d) – – – ...

(e) – –

Fig.5.1 a Representation of the urn model. Drawing from the urn model bwith replacement and c
without replacement. Compositions of three drawn balls: d all balls are distinguishable and e some
balls are not distinguishable

represent the units of a population, or the features of a population. The balls may
vary in colour or size to represent specific properties of a unit or feature.We illustrate
this concept in more detail in Fig. 5.1.

Suppose there are 5 balls of three different colours—two black, one grey, and two
white (see Fig. 5.1a). This can be generalized to a situation in which there are n balls
in the urn and we want to draw m balls. Suppose we want to know

• how many different possibilities exist to draw m out of n balls (thus determining
the number of distinguishable combinations).

To deal with such a question, we first need to decide whether a ball will be put back
into the urn after it is drawn or not. Figure5.1b illustrates that a grey ball is drawn
from the urn and then placed back (illustrated by the two-headed arrow). We say the
ball is drawn with replacement. Figure5.1c illustrates a different situation in which
the grey ball is drawn from the urn and is not placed back into the urn (illustrated by
the one-headed arrow). We say the ball is drawn without replacement.

Further, we may be interested in knowing the

• total number of ways in which the chosen set of balls can be arranged in a distin-
guishable order (which we will define as permutations later in this chapter).

To answer the question howmany permutations exist, we first need to decide whether
all the chosen balls are distinguishable from each other or not. For example, in
Fig. 5.1d, the three chosen balls have different colours; therefore, they are distin-
guishable. There are many options on how they can be arranged. In contrast, some
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of the chosen balls in Fig. 5.1e are the same colour, they are therefore not distin-
guishable. Consequently, the number of combinations is much more limited. The
concept of balls and urns just represents the features of observations from a sample.
We illustrate this in more detail in the following example.

Example 5.1.1 Say a father promises his daughter three scoops of ice cream if she
cleans up her room. For simplicity, let us assume the daughter has a choice of four
flavours: chocolate, banana, cherry, and lemon. Howmany different choices does the
daughter have? If each scoop has to be a different flavour she obviously has much
less choice than if the scoops can have the same flavour. In the urn model, this is rep-
resented by the concept of “with/without replacement”. The urn contains 4 balls of 4
different colours which represent the ice cream flavours. For each of the three scoops,
a ball is drawn to determine the flavour. If we draw with replacement, each flavour
can be potentially chosen multiple times; however, if we draw without replacement
each flavour can be chosen only once. Then, the number of possible combinations
is easy to calculate: it is 4, i.e. (chocolate, banana, and cherry); (chocolate, banana,
and lemon); (chocolate, cherry, and lemon); and (banana, cherry, and lemon). But
what if we have more choices? Or if we can draw flavours multiple times? We then
need calculation rules which help us counting the number of options.

Now, let us assume that the daughter picked the flavours (chocolate [C], banana
[B], and lemon [L]). Like many other children, she prefers to eat her most favourite
flavour (chocolate) last, and her least favourite flavour (cherry) first. Therefore, the
order in which the scoops are placed on top of the cone are important! In how
many different ways can the scoops be placed on top of the cone? This relates
to the question of the number of distinguishable permutations. The answer is 6:
(C,B,L)–(C,L,B)–(B,L,C)–(B,C,L)–(L,B,C)–(L,C,B). But what if the daughter did
pick a flavour multiple times, e.g. (chocolate, chocolate, lemon)? Since the two
chocolate scoops are non-distinguishable, there are fewer permutations: (chocolate,
chocolate, and lemon)–(chocolate, lemon, and chocolate)–(lemon, chocolate, and
chocolate).

The bottom line of this example is that the number of combinations/options is
determined by (i) whether we draw with or without replacement (i.e. allow flavours
to be chosen more than once) and (ii) whether the arrangement in a particular order
(=permutation) is of any specific interest.

Consider the urn example again. Suppose three balls of different colours, black,
grey, and white, are drawn. Now there are two options: The first option is to take into
account the order in which the balls are drawn. In such a situation, two possible sets
of balls such as (black, grey, and white) and (white, black, and grey) constitute two
different sets. Such a set is called an ordered set. In the second option, we do not
take into account the order in which the balls are drawn. In such a situation, the two
possible sets of balls such as (black, grey, and white) and (white, black, and grey)
are the same sets and constitute an unordered set of balls.
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Definition 5.1.1 A group of elements is said to be ordered if the order in which
these elements are drawn is of relevance. Otherwise, it is called unordered.

Examples.

• Ordered samples:

– The first three places in an Olympic 100m race are determined by the order
in which the athletes arrive at the finishing line. If 8 athletes are competing
with each other, the number of possible results for the first three places is of
interest. In the urn language, we are taking draws without replacement (since
every athlete can only have one distinct place).

– In a raffle with two prizes, the first drawn raffle ticket gets the first prize and the
second raffle ticket gets the second prize.

– There exist various esoteric tarot card games which claim to foretell someone’s
fortune with respect to several aspects of life. The order in which the cards are
shown on the table is important for the interpretation.

• Unordered samples:

– The selected members for a national football team. The order in which the
selected names are announced is irrelevant.

– Out of 10 economists, 10 medical doctors, and 10 statisticians, an advisory
committee consisting of 4 economists, 3 medical doctors, and 2 statisticians is
elected.

– Fishing 20 fish from a lake.
– A bunch of 10 flowers made from 21 flowers of 4 different colours.

Definition 5.1.2 The factorial function n! is defined as

n! =
{
1 for n = 0

1 · 2 · 3 · · · n for n > 0.
(5.1)

Example 5.1.2 It follows from the definition of the factorial function that

0! = 1, 1! = 1 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6 .

This can be calculated in R as follows:

factorial(n)
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5.2 Permutations

Definition 5.2.1 Consider a set of n elements. Each ordered composition of these n
elements is called a permutation.

We distinguish between two cases: If all the elements are distinguishable, then we
speak of permutation without replacement. However, if some or all of the elements
are not distinguishable, then we speak of permutation with replacement. Please note
that the meaning of “replacement” here is just a convention and does not directly
refer to the drawings, e.g. from the urn model considered in Example 5.1.1.

5.2.1 Permutations without Replacement

If all the n elements are distinguishable, then there are

n! (5.2)

different compositions of these elements.

Example 5.2.1 There were three candidate cities for hosting the 2020 Olympic
Games: Tokyo (T), Istanbul (I), and Madrid (M). Before the election, there were
3! = 6 possible outcomes, regarding the final rankings of the cities:

(M,T, I), (M, I,T), (T,M, I), (T, I,M), (I,M,T), (I,T,M).

5.2.2 Permutations with Replacement

Assume that not all n elements are distinguishable. The elements are divided into
groups, and these groups are distinguishable. Suppose, there are s groups of sizes
n1, n2, . . . , ns . The total number of different ways to arrange the n elements in s
groups is:

n!
n1! n2! n3! · · · ns ! . (5.3)

Example 5.2.2 Consider the data in Fig. 5.1e. There are two groups consisting of two
black balls (n1 = 2) and one white ball (n2 = 1). So there are the following three
possible combinations to arrange the balls: (black, black, and white), (black, white,
and black), and (white, black, and black). This can be determined by calculating

3!
2! 1! = 3 · 2 · 1

2 · 1 · 1 = 3 .
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5.3 Combinations

Definition 5.3.1 The Binomial coefficient for any integersm and n with n ≥ m ≥ 0
is denoted and defined as (

n

m

)
= n!

m! (n − m)! . (5.4)

It is read as “n choose m” and can be calculated in R using the following command:

choose(n,m)

There are several calculation rules for the binomial coefficient:
(
n

0

)
= 1,

(
n

1

)
= n,

(
n

m

)
=

(
n

n − m

)
,

(
n

m

)
=

m∏

i=1

n + 1 − i

i
. (5.5)

We now answer the question of how many different possibilities exist to draw m
out of n elements, i.e. m out of n balls from an urn. It is necessary to distinguish
between the following four cases:

(1) Combinations without replacement and without consideration of the order of
the elements.

(2) Combinations without replacement and with consideration of the order of the
elements.

(3) Combinations with replacement and without consideration of the order of the
elements.

(4) Combinations with replacement and with consideration of the order of the ele-
ments.

5.3.1 Combinations without Replacement and without
Consideration of the Order

When there is no replacement and the order of the elements is also not relevant, then
the total number of distinguishable combinations in drawing m out of n elements is

(
n

m

)
. (5.6)

Example 5.3.1 Suppose a company elects a new board of directors. The board con-
sists of 5 members and 15 people are eligible to be elected. Howmany combinations
for the board of directors exist? Since a person cannot be elected twice, we have a
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situation where there is no replacement. The order is also of no importance: either
one is elected or not. We can thus apply (5.6) which yields

(
15

5

)
= 15!

10!5! = 3003

possible combinations. This result can be obtained in R by using the command
choose(15,5).

5.3.2 Combinations without Replacement and with Consideration
of the Order

The total number of different combinations for the setting without replacement and
with consideration of the order is

n!
(n − m)! =

(
n

m

)
m! . (5.7)

Example 5.3.2 Consider a horse race with 12 horses. A possible bet is to forecast
the winner of the race, the second horse of the race, and the third horse of the race.
The total number of different combinations for the horses in the first three places is

12!
(12 − 3)! = 12 · 11 · 10 = 1320 .

This result can be explained intuitively: for the first place, there is a choice of 12
different horses. For the second place, there is a choice of 11 different horses (12
horses minus the winner). For the third place, there is a choice of 10 different horses
(12 horses minus the first and second horses). The total number of combinations is
the product 12 · 11 · 10. This can be calculated in R as follows:

12 ∗ 11 ∗ 10

5.3.3 Combinations with Replacement and without Consideration
of the Order

The total number of different combinations with replacement and without consider-
ation of the order is

(
n + m − 1

m

)
= (n + m − 1)!

m! (n − 1)! =
(
n + m − 1

n − 1

)
. (5.8)

Note that these are the two representations which follow from the definition of the
binomial coefficient but typically only the first representation is used in textbooks.
We will motivate the second representation after Example 5.3.3.
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Example 5.3.3 A farmer has 2 fields and aspires to cultivate one out of 4 different
organic products per field. Then, the total number of choices he has is

(
4 + 2 − 1

2

)
=

(
5

2

)
= 5!

2! 3! = 3! · 4 · 5
1 · 2 · 3! = 10. (5.9)

If 4 different organic products are denoted as a, b, c, and d, then the following
combinations are possible:

(a, a) (a, b) (a, c) (a, d)
(b, b) (b, c) (b, d)

(c, c) (c, d)
(d, d)

Please note that, for example, (a,b) is identical to (b,a) because the order in which
the products a and b are cultivated on the first or second field is not important in this
example.

We now try to give an intuitive explanation of formula (5.9) using Example 5.3.3.
We have n = 4 products and m = 2 fields and apply the following technical “trick”:
we sort the combinations by the product symbols (a, b, c, or d).Whenwe switch from
one product to the next (e.g. from b to c), we make a note by adding a vertical line
|. Whenever a product is skipped, we add a line too. For example, the combination
(a, c) is denoted by a||c|, the combination (d, d) by |||dd, (c, c) by ||cc|, and (a, a)
by aa|||. Therefore, the number of characters equates to the 2 chosen symbols of the
set (a, b, c, d) plus the 3 vertical lines, in summary (4 + 2) − 1 = 5 places where
3 = n − 1 places are selected for the vertical line |. How many different line/letter
combinations exist? There are 3 out of 5 possible positions for |, i.e. (53

) = 10 possible
combinations, and this is nothing but the right-hand side of (5.9).

5.3.4 Combinations with Replacement and with Consideration of
the Order

The total number of different combinations for the integersm and n with replacement
and when the order is of relevance is

nm . (5.10)

Example 5.3.4 Consider a credit card with a four-digit personal identification num-
ber (PIN) code. The total number of possible combinations for the PIN is

nm = 104 = 10, 000.

Note that every digit in the first, second, third, and fourth places (m = 4) can be
chosen out of ten digits from 0 to 9 (n = 10).



5.4 Key Points and Further Issues 105

5.4 Key Points and Further Issues

Note:

� The rules of combinatorics are as follows:

Combinations without replacement with replacement

without order

(
n

m

) (
n + m − 1

m

)

with order

(
n

m

)
m! nm

� Combinations with and without replacement are also often called com-
binations with and without repetition.

� The permutation rules are as follows:
without replacement with replacement

Permutations n! n!
n1! · · · ns !

5.5 Exercises

Exercise 5.1 At a party with 10 guests, every guest shakes hands with each other
guest. How many handshakes can be counted in total?

Exercise 5.2 A language teacher is concerned about the vocabularies of his students.
He thus tests 5 students in each lecture. What are the total number of possible
combinations

(a) if a student is tested only once per lecture and
(b) if a student is tested more than once per lecture?

Use R to quantify numbers which you cannot calculate manually.

Exercise 5.3 “Gobang” is a popular game in which two players set counters on a
board with 381 knots. One needs to place 5 consecutive counters in a row to win
the game. There are also rules on how to remove counters from the other player.
Consider a match where 64 counters have already been placed on the board. How
many possible combinations exist to place 64 counters on the board?
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Exercise 5.4 A shop offers a special tray of beer: “Munich’s favourites”. Customers
are allowed to fill the tray, which holds 20 bottles, with any combination ofMunich’s
6 most popular beers (from 6 different breweries).

(a) What are the number of possible combinations to fill the tray?
(b) A customer insists of having at least one beer from each brewery in his tray.

How many options does he have to fill the tray?

Exercise 5.5 The FIFA World Cup 2018 in Russia consists of 32 teams. How many
combinations for the top 3 teams exist when

(a) taking into account the order of these top 3 teams and
(b) without taking into account the order of these top 3 teams?

Exercise 5.6 An online book store assigns membership codes to each member. For
administrative reasons, these codes consist of four letters between “A” and “L”.
A special discount period increased the total number of members from 18, 200 to
20, 500. Are there enough combinations of codes left to be assigned for the new
membership codes?

Exercise 5.7 In the old scoring system of ice skating (valid until 2004), eachmember
of a jury of 9 people judged the performance of the skaters on a scale between 0 and
6. It was a decimal scale and thus scores such as 5.1 and 5.2 were possible. Calculate
the number of possible score combinations from the jury.

Exercise 5.8 It is possible in Pascal’s triangle (Fig. 5.2, left) to view each entry as
the sum of the two entries directly above it. For example, the 3 on the fourth line

1 5 10 10 5 1 5
0

5
1

5
2

5
3

5
4

5
5

)
1 4 6 4 1 4

0
4
1

4
2

4
3

4
4

)
1 3 3 1 3

0
3
1

3
2

3
3

)
1 2 1 2

0
2
1

2
2

)
1 1 1

0
1
1

)
1 0

0

)

Fig. 5.2 Excerpt from Pascal’s triangle (left) and its representation by means of binomial coeffi-
cients (right)
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from the top is the sum of the 1 and 2 above the 3. Another interpretation refers
to a geometric representation of the binomial coefficient,

(n
k

)
(Fig. 5.2, right) with

k = 0, 1, 2, . . . being the column index and n = 0, 1, 2, . . . being the row index.

(a) Show that each entry in the bold third diagonal line can be represented via
(n
2

)
.

(b) Now show that the sum of two consecutive entries in the bold third diagonal line
always corresponds to quadratic numbers.

→ Solutions to all exercises in this chapter can be found on p. 358



6Elements of ProbabilityTheory

Let us first consider some simple examples to understand the need for probability
theory. Often one needs to make a decision whether to carry an umbrella or not when
leaving the house; a company might wonder whether to introduce a new advertise-
ment to possibly increase sales or to continue with their current advertisement; or
someone may want to choose a restaurant based on where he can get his favourite
dish. In all these situations, randomness is involved. For example, the decision of
whether to carry an umbrella or not is based on the possibility or chance of rain.
The sales of the company may increase, decrease, or remain unchanged with a new
advertisement. The investment in a new advertising campaign may therefore only
be useful if the probability of its success is higher than that of the current adver-
tisement. Similarly, one may choose the restaurant where one is most confident of
getting the food of one’s choice. In all such cases, an event may be happening or not
and depending on its likelihood, actions are taken. The purpose of this chapter is to
learn how to calculate such likelihoods of events happening and not happening.

6.1 Basic Concepts and Set Theory

A simple (not rigorous) definition of a random experiment requires that the exper-
iment can be repeated any number of times under the same set of conditions, and
its outcome is known only after the completion of the experiment. A simple and
classical example of a random experiment is the tossing of a coin or the rolling of a
die. When tossing a coin, it is unknown what the outcome will be, head or tail, until
the coin is tossed. The experiment can be repeated and different outcomes may be
observed in each repetition. Similarly, when rolling a die, it is unknown how many
dots will appear on the upper surface until the die is rolled. Again, the die can be
rolled repeatedly and different numbers of dots are obtained in each trial. A possible
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outcome of a random experiment is called a simple event (or elementary event)
and denoted by ωi . The set of all possible outcomes, {ω1,ω2, . . . , ωk}, is called the
sample space and is denoted as Ω , i.e. Ω = {ω1,ω2, . . . , ωk}. Subsets of Ω are
called events and are denoted by capital letters such as A, B,C . The set of all simple
events that are contained in the event A is denoted by ΩA. The event Ā refers to
the non-occurring of A and is called a composite or complementary event. Also
Ω is an event. Since it contains all possible outcomes, we say that Ω will always
occur and we call it a sure event or certain event. On the other hand, if we consider
the null set ∅ = {} as an event, then this event can never occur and we call it an
impossible event. The sure event therefore is the set of all elementary events, and
the impossible event is the set with no elementary events.

The above concepts of “events” form the basis of a definition of “probability”.
Once we understand the concept of probability, we can develop a framework to make
conclusions about the population of interest, using a sample of data.

Example 6.1.1 (Rolling a die) If a die is rolled once, then the possible outcomes
are the number of dots on the upper surface: 1, 2, . . . , 6. Therefore, the sample
space is the set of simple events ω1 = “1”, ω2 = “2”, . . . , ω6 = “6” and Ω =
{ω1, ω2, . . . ,ω6}. Any subset of Ω can be used to define an event. For example, an
event A may be “an even number of dots on the upper surface of the die”. There are
three possibilities that this event occurs: ω2,ω4, or ω6. If an odd number shows up,
then the composite event Ā occurs instead of A. If an event is defined to observe only
one particular number, say ω1 = “1”, then it is an elementary event. An example of
a sure event is “a number which is greater than or equal to 1” because any number
between 1 and 6 is greater than or equal to 1. An impossible event is “the number is
7”.

Example 6.1.2 (Rolling two dice) Suppose we throw two dice simultaneously and
an event is defined as the “number of dots observed on the upper surface of both the
dice”; then, there are 36 simple events defined as (number of dots on first die, number
of dots on second die), i.e. ω1 = (1, 1), ω2 = (1, 2), . . . , ω36 = (6, 6). Therefore Ω

is

Ω =

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

One can define different events and their corresponding sample spaces. For exam-
ple, if an event A is defined as “upper faces of both the dice contain the same number
of dots”, then the sample space is ΩA = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
If another event B is defined as “the sum of numbers on the upper faces is 6”, then



6.1 Basic Concepts and Set Theory 111

Fig. 6.1 A ∪ B and A ∩ B∗

A B A B

Fig. 6.2 A\B and
Ā = Ω\A∗

A B A Ā

the sample space is ΩB = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. A sure event is “get
either an even number or an odd number”; an impossible event would be “the sum
of the two dice is greater than 13”.

It is possible to view events as sets of simple events. This helps to determine how
different events relate to each other. A popular technique to visualize this approach is
to useVenn diagrams. In Venn diagrams, two or more sets are visualized by circles.
Overlapping circles imply that both events have one or more identical simple events.
Separated circles mean that none of the simple events of event A are contained in
the sample space of B. We use the following notations:

A ∪ B The union of events A ∪ B is the set of all simple events of A and B which
occurs if at least one of the simple events of A or B occurs (Fig. 6.1, left
side, grey shaded area). Please note that we use the word “or” from a
statistical perspective: “A or B” means that either a simple event from A
occurs, or a simple event from B occurs, or a simple event which is part
of both A and B occurs.

A ∩ B The intersection of events A ∩ B is the set of all simple events A and B
which occur when a simple event occurs that belongs to A and B (Fig. 6.1,
right side, grey shaded area).

A\B The event A\B contains all simple events of A, which are not contained
in B. The event “A but not B” or “A minus B” occurs, if A occurs but B
does not occur. Also A\B = A ∩ B̄ (Fig. 6.2, left side, grey shaded area).

Ā The event Ā contains all simple events ofΩ , which are not contained in A.
The complementary event of A (which is “Not-A” or “ Ā” occurs whenever
A does not occur (Fig. 6.2, right side, grey shaded area).

A ⊆ B A is a subset of B. This means that all simple events of A are also part of
the sample space of B.
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Example 6.1.3 Consider Example 6.1.1 where the sample space of rolling a die was
determined as Ω = {ω1, ω2, . . . ,ω6} with ω1 = “1”, ω2 = “2”, . . . , ω6 = “6”.

• If A = {ω1,ω2,ω3, ω4, ω5} and B is the set of all odd numbers, then B =
{ω1, ω3,ω5} and thus B ⊆ A.

• If A = {ω2,ω4, ω6} is the set of even numbers and B = {ω3,ω6} is the set of all
numbers which are divisible by 3, then A ∪ B = {ω2,ω3, ω4,ω6} is the collection
of simple events for which the number is either even or divisible by 3 or both.

• If A = {ω1, ω3,ω5} is the set of odd numbers and B = {ω3, ω6} is the set of the
numbers which are divisible by 3, then A ∩ B = {ω3} is the set of simple events
in which the numbers are odd and divisible by 3.

• If A = {ω1, ω3,ω5} is the set of odd numbers and B = {ω3, ω6} is the set of the
numbers which are divisible by 3, then A\B = {ω1,ω5} is the set of simple events
in which the numbers are odd but not divisible by 3.

• If A = {ω2, ω4,ω6} is the set of even numbers, then Ā = {ω1,ω3, ω5} is the set of
odd numbers.

Remark 6.1.1 Some textbooks also use the following notations:

A + B for A ∪ B
AB for A ∩ B
A − B for A\B.

We can use these definitions and notations to derive the following properties of a
particular event A:

A ∪ A = A A ∩ A = A
A ∪ Ω = Ω A ∩ Ω = A
A ∪ ∅ = A A ∩ ∅ = ∅
A ∪ Ā = Ω A ∩ Ā = ∅.

Definition 6.1.1 Two events A and B are disjoint if A ∩ B = ∅ holds, i.e. if both
events cannot occur simultaneously.

Example 6.1.4 The events A and Ā are disjoint events.

Definition 6.1.2 The events A1, A2, . . . , Am are said to be mutually or pairwise
disjoint, if Ai ∩ A j = ∅ whenever i �= j = 1, 2, ...,m.

Example 6.1.5 Recall Example 6.1.1. If A = {ω1,ω3,ω5} and B = {ω2,ω4, ω6} are
the sets of odd and even numbers, respectively, then the events A and B are disjoint.
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Definition 6.1.3 The events A1, A2, . . . , Am form a complete decomposition ofΩ
if and only if

A1 ∪ A2 ∪ · · · ∪ Am = Ω

and

Ai ∩ A j = ∅ (for all i �= j).

Example 6.1.6 Consider Example 6.1.1. The elementary events A1 = {ω1}, A2 =
{ω2}, . . . , A6 = {ω6} form a complete decomposition. Other complete decomposi-
tions are, e.g.

• A1 = {ω1,ω3, ω5}, A2 = {ω2,ω4,ω6}
• A1 = {ω1}, A2 = {ω2, ω3,ω4, ω5,ω6}
• A1 = {ω1,ω2, ω3}, A2 = {ω4, ω5,ω6}.

6.2 Relative Frequency and Laplace Probability

There is a close connection between the relative frequency and the probability of
an event. A random experiment is described by its possible outcomes, for example
getting a number between 1 and 6 when rolling a die. Suppose an experiment has m
possible outcomes (events) A1, A2, . . . , Am and the experiment is repeated n times.
Now we can count how many times each of the possible outcome has occurred. In
other words, we can calculate the absolute frequency ni = n(Ai ) which is equal to
the number of times an event Ai , i = 1, 2, . . . ,m, occurs. The relative frequency
fi = f (Ai ) of a random event Ai , with n repetitions of the experiment, is calculated
as

fi = f (Ai ) = ni
n

. (6.1)

Example 6.2.1 Consider roulette, a game frequently played in casinos. The roulette
table consists of 37 numbers from 0 to 36. Out of these 37 numbers, 18 numbers are
red, 18 are black and one (zero) is green. Players can place their bets on either a single
number or a range of numbers, the colours red or black, whether the number is odd
or even, among many other choices. A casino employee spins a wheel (containing
pockets representing the 37 numbers) in one direction and then spins a ball over the
wheel in the opposite direction. The wheel and ball gradually slow down and the
ball finally settles in a pocket. The pocket number in which the ball sits down when
the wheel stops is the winning number. Consider three possible outcomes A1: “red”,
A2:“black”, and A3: “green (zero)”. Suppose the roulette ball is spun n = 500 times.
All the outcomes are counted and recorded as follows: A1 occurs 240 times, A2
occurs 250 times and A3 occurs 10 times. Then, the absolute frequencies are given
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by n1 = n(A1) = 240, n2 = n(A2) = 250, and n3 = n(A3) = 10. We therefore get
the relative frequencies as

f1 = f (A1) = 240

500
= 0.48 , f2 = f (A2) = 250

500
= 0.5,

f3 = f (A3) = 10

500
= 0.02.

If we assume that the experiment is repeated a large number of times (mathe-
matically, this would mean that n tends to infinity) and the experimental conditions
remain the same (at least approximately) over all the repetitions, then the relative
frequency f (A) converges to a limiting value for A. This limiting value is interpreted
as the probability of A and denoted by P(A), i.e.

P(A) = lim
n→∞

n(A)

n
where n(A) denotes the number of times an event A occurs out of n times.

Example 6.2.2 Suppose a fair coin is tossed n = 20 times andwe observe the number
of heads n(A1) = 8 times and number of tails n(A2) = 12 times. The meaning
of a fair coin in this case is that the probabilities of head and tail are equal (i.e.
0.5). Then, the relative frequencies in the experiment are f (A1) = 8/20 = 0.4 and
f (A2) = 12/20 = 0.6. When the coin is tossed a large number of times and n tends
to infinity, then both f (A1) and f (A2)will have a limiting value 0.5 which is simply
the probability of getting a head or tail in tossing a fair coin.

Example 6.2.3 In Example 6.2.1, the relative frequency of f (red) = f (A1) tends to
18/37 as n tends to infinity because 18 out of 37 numbers are red.

The readerwill gain amore theoretical understanding of how repeated experiments
relate to expected quantities in the following chapters after learning the Theorem of
Large Numbers described in Appendix A.3.

A different definition of probability was given by Pierre-Simon Laplace (1749–
1827). We call an experiment a Laplace experiment if the number of possible
simple events is finite and all the outcomes are equally probable. The probability of
an arbitrary event A is then defined as follows:

Definition 6.2.1 The proportion

P(A) = |A|
|Ω| = Number of “favourable simple events” for A

Total number of possible simple events
(6.2)

is called the Laplace probability, where |A| is the cardinal number of A, i.e. the
number of simple events contained in the set A, and |Ω| is the cardinal number of
Ω , i.e. the number of simple events contained in the set Ω .

The cardinal numbers |A| and |Ω| are often calculated using the combinatoric
rules introduced in Chap.5.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Example 6.2.4 (Example 6.1.2 continued) The sample space contains 36 simple
events. All of these simple events have equal probability 1/36. To calculate the
probability of the event A that the sum of the dots on the two dice is at least 4 and at
most 6, we count the favourable simple events which fulfil this condition. The simple
events are (1, 3), (2, 2), (3, 1) (sum is 4), (1, 4), (2, 3), (4, 1), (3, 2) (sum is 5) and
(1, 5), (2, 4), (3, 3), (4, 2), (5, 1) (sum is 6). In total, there are (3 + 4 + 5) = 12
favourable simple events, i.e.

A = {(1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (4, 1),
(3, 2), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} .

The probability of the event A is therefore 12/36 = 1/3.

6.3 The Axiomatic Definition of Probability

An important foundation for modern probability theory was established by
A.N. Kolmogorov in 1933 when he proposed the following axioms of probability.

Axiom 1 Every random event A has a probability in the (closed) interval [0, 1], i.e.
0 ≤ P(A) ≤ 1.

Axiom 2 The sure event has probability 1, i.e.

P(Ω) = 1.

Axiom 3 If A1 and A2 are disjoint events, then

P(A1 ∪ A2) = P(A1) + P(A2).

holds.

Remark Axiom 3 also holds for three or more disjoint events and is called the
theorem of additivity of disjoint events. For example, if A1, A2, and A3 are disjoint
events, then P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3).

Example 6.3.1 Suppose the two events in tossing a coin are A1: “appearance of head”
and A2: “appearance of tail” which are disjoint. The event A1 ∪ A2: “appearance of
head or tail” has the probability

P(A1 ∪ A2) = P(A1) + P(A2) = 1/2 + 1/2 = 1.

Example 6.3.2 Suppose an event is defined as the number of points observed on the
upper surface of a die when rolling it. There are six events, i.e. the natural numbers
1, 2, 3, 4, 5, 6. These events are disjoint and they have equal probability of occurring:
P(1) = P(2) = · · · = P(6) = 1/6. The probability of getting an even number is
then

P(“even number”) = P(2) + P(4) + P(6) = 1/6 + 1/6 + 1/6 = 1/2.
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6.3.1 Corollaries Following from Kolomogorov’s Axioms

We already know that A ∪ Ā = Ω (sure event). Since A and Ā are disjoint, using
Axiom 3 we have

P(A ∪ Ā) = P(A) + P( Ā) = 1 .

Based on this, we have the following corollaries.

Corollary 1 The probability of the complementary event of A, (i.e. Ā) is

P( Ā) = 1 − P(A). (6.3)

Example 6.3.3 Suppose a box of 30 chocolates contains chocolates of 6 differ-
ent flavours with 5 chocolates of each flavour. Suppose an event A is defined as
A = {“marzipan flavour”}. The probability of finding a marzipan chocolate (with-
out looking into the box) is P(“marzipan”) = 5/30. Then, the probability of the
complementary event Ā, i.e. the probability of not finding a marzipan chocolate is
therefore

P(“no marzipan flavour”) = 1 − P(“marzipan flavour”) = 25/30.

Corollary 2 The probability of occurrence of an impossible event ∅ is zero:

P(∅) = P(Ω̄) = 1 − P(Ω) = 0.

Corollary 3 Let A1 and A2 be not necessarily disjoint events. The probability of
occurrence of A1 or A2 is

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2). (6.4)

The rule in (6.4) is known as the additive theorem of probability. Again we use
the word “or” in the statistical sense: either A1 is occurring, A2 is occurring, or both
of them. This means we have to add the probabilities P(A1) and P(A2) but need to
make sure that the simple events which are contained in both sets are not counted
twice, thus we subtract P(A1 ∩ A2).

Example 6.3.4 There are 10 actors acting in a play. Two actors, one of whom is
male, are portraying evil characters. In total, there are 6 female actors. Let an event
A describe whether the actor is male and another event B describe whether the
character is evil. Suppose we want to know the probability of a randomly chosen
actor being male or evil. We can then calculate

P(actor is male or evil) =
= P(actor is male) + P(actor is evil) − P(actor is male and evil)

= 4

10
+ 2

10
− 1

10
= 1

2
.
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Corollary 4 If A ⊆ B then P(A) ≤ P(B).

Proof We use the representation B = A ∪ ( Ā ∩ B) where A and Ā ∩ B are the
disjoint events. Then using Axiom 3 and Axiom 1, we get

P(B) = P(A) + P( Ā ∩ B) ≥ P(A) .

6.3.2 Calculation Rules for Probabilities

The introduced axioms and corollaries can be summarized as follows:

(1) 0 ≤ P(A) ≤ 1
(2) P(Ω) = 1
(3) P(A1 ∪ A2) = P(A1) + P(A2), if A1 and A2 are disjoint
(4) P(∅) = 0
(5) P( Ā) = 1 − P(A)

(6) P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2)

(7) P(A) ≤ P(B), if A ⊆ B

6.4 Conditional Probability

Consider the following example to understand the concept of conditional probability:
Suppose a new medical test is developed to diagnose a particular infection of the
blood. The test is conducted on blood samples from 100 randomly selected patients
and the outcomes of the tests are presented in Table6.1.

There are the following four possible outcomes:

• The blood sample has an infection and the test diagnoses it, i.e. the test is correctly
diagnosing the infection.

• The blood sample does not have an infection and the test does not diagnose it, i.e.
the test is correctly diagnosing that there is no infection.

• The blood sample has an infection and the test does not diagnose it, i.e. the test is
incorrect in stating that there is no infection.

• The blood sample does not have an infection but the test diagnoses it, i.e. the test
is incorrect in stating that there is an infection.

Table6.2 contains the relative frequencies of Table6.1. In the following, we in-
terpret the relative frequencies as probabilities, i.e. we assume that the values in
Table6.2 would be observed if the number n of patients was much larger than 100.

It can be seen that the probability that a test is positive is P(T+) = 0.30 + 0.10 =
0.40 and the probability that an infection is present is P(I P) = 0.30 + 0.15 = 0.45.
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Table 6.1 Absolute frequencies of test results and infection status

Infection Total (row)

Present Absent

Test Positive (+) 30 10 40

Negative (−) 15 45 60

Total (column) 45 55 Total = 100

Table 6.2 Relative frequencies of patients and test

Infection Total (row)

Present (IP) Absent (IA)

Test Positive (+) 0.30 0.10 0.40

Negative (−) 0.15 0.45 0.60

Total (column) 0.45 0.55 Total = 1

If one already knows that the test is positive and wants to determine the probability
that the infection is indeed present, then this can be achieved by the respective
conditional probability P(I P|T+) which is

P(I P|T+) = P(I P ∩ T+)

P(T+)
= 0.3

0.4
= 0.75.

Note that I P ∩ T+ denotes the “relative frequency of blood samples in which the
disease is present and the test is positive” which is 0.3.

More generally, recall Definition 4.1.1 from Chap.4 where we defined condi-
tional, joint, and marginal frequency distributions in contingency tables. The present
example simply applies these rules to the contingency tables of relative frequencies
and interprets the relative frequencies as an approximation to the probabilities of
interest, as already explained.

We use the intersection operator ∩ to describe events which occur for A = a
and B = b. This relates to the joint relative frequencies. The marginal relative fre-
quencies (i.e. probabilities P(A = a)) can be observed from the column and row
sums, respectively; and the conditional probabilities can be observed as the joint
frequencies in relation to the marginal frequencies.

For simplicity, assume that all simple events inΩ = {ω1,ω2, . . . , ωk} are equally
probable, i.e. P(ω j ) = 1

k , j = 1, 2, . . . , k. Let A and B be two events containing nA

and nB numbers of simple events. Let further A ∩ B contain nAB numbers of simple
events. The Laplace probability using (6.2) is

P(A) = nA

k
, P(B) = nB

k
, P(A ∩ B) = nAB

k
.

Assume that we have prior information that A has already occurred. Nowwe want to
find out how the probability of B is to be calculated. Since A has already occurred,
we know that the sample space is reduced by the number of simple events which

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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are contained in A. There are nA such simple events. Thus, the total sample space
Ω is reduced by the sample space of A. Therefore, the simple events in A ∩ B are
those simple events which are realized when B is realized. The Laplace probability
for B under the prior information on A, or under the condition that A is known, is
therefore

P(B|A) = nAB/k

nA/k
= P(A ∩ B)

P(A)
. (6.5)

This can be generalized to the case when the probabilities for simple events are
unequal.

Definition 6.4.1 Let P(A) > 0. Then the conditional probability of event B oc-
curring, given that event A has already occurred, is

P(B|A) = P(A ∩ B)

P(A)
. (6.6)

The roles of A and B can be interchanged to define P(A|B) as follows. Let P(B) > 0.
The conditional probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
. (6.7)

We now introduce a few important theorems which are relevant to calculating
conditional and other probabilities.

Theorem 6.4.1 (Multiplication Theorem of Probability) For two arbitrary events A
and B, the following holds:

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A). (6.8)

This theorem follows directly from the two definitions (6.6) and (6.7) (but does not
require that P(A) > 0 and P(B) > 0).

Theorem 6.4.2 (Law of Total Probability) Assume that A1, A2, . . . , Am are events
such that ∪m

i=1Ai = Ω and Ai ∩ A j = ∅ for all i �= j, P(Ai ) > 0 for all i , i.e. A1,

A2, . . . , Am form a complete decomposition of Ω = ∪m
i=1Ai in pairwise disjoint

events, then the probability of an event B can be calculated as

P(B) =
m∑

i=1

P(B|Ai )P(Ai ) . (6.9)
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6.4.1 Bayes’ Theorem

Bayes’ Theorem gives a connection between P(A|B) and P(B|A). For events A and
B with P(A) > 0 and P(B) > 0, using (6.6) and (6.7) or (6.8), we get

P(A|B) = P(A ∩ B)

P(B)
= P(A ∩ B)

P(A)

P(A)

P(B)

= P(B|A)P(A)

P(B)
. (6.10)

Let A1, A2, . . . , Am be events such that∪m
i=1Ai = Ω and Ai ∩ A j = ∅ for all i �=

j, P(Ai ) > 0 for all i , and B is another event than A, then using (6.9) and (6.10),
we get

P(A j |B) = P(B|A j )P(A j )
∑

i P(B|Ai )P(Ai )
. (6.11)

The probabilities P(Ai ) are called prior probabilities, P(B|Ai ) are sometimes
called model probabilities and P(A j |B) are called posterior probabilities.

Example 6.4.1 Suppose someone rents movies from two different DVD stores.
Sometimes it happens that the DVD does not work because of scratches. We con-
sider the following events: Ai (i = 1, 2): “the DVD is rented from store i”. Further
let B denote the event that the DVD is working without any problems. Assume we
know that P(A1) = 0.6 and P(A2) = 0.4 (note that A2 = Ā1) and P(B|A1) = 0.95,
P(B|A2) = 0.75 and we are interested in the probability that a rented DVD works
fine. We can then apply the Law of Total Probability and get

P(B)
(6.9)= P(B|A1)P(A1) + P(B|A2)P(A2)

= 0.6 · 0.95 + 0.4 · 0.75 = 0.87.

We may also be interested in the probability that the movie was rented from store 1
and is working which is

P(B ∩ A1)
(6.8)= P(B|A1)P(A1) = 0.95 · 0.6 = 0.57.

Now suppose we have a properly working DVD. What is the probability that it is
rented from store 1? This is obtained as follows:

P(A1|B)
(6.7)= P(A1 ∩ B)

P(B)
= 0.57

0.87
= 0.6552.

Now assume we have a DVD which does not work, i.e. B̄ occurs. The probability
that a DVD is not working given that it is from store 1 is P(B̄|A1) = 0.05. Similarly,
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P(B̄|A2) = 0.25 for store 2. We can now calculate the conditional probability that
a DVD is from store 1 given that it is not working:

P(A1|B̄)
(6.11)= P(B̄|A1)P(A1)

P(B̄|A1)P(A1) + P(B̄|A2)P(A2)

= 0.05 · 0.6
0.05 · 0.6 + 0.25 · 0.4 = 0.2308.

The result about P(B̄) used in the denominator can also be directly obtained by using
P(B̄) = 1 − 0.87 = 0.13.

6.5 Independence

Intuitively, two events are independent if the occurrence or non-occurrence of one
event does not affect the occurrence or non-occurrence of the other event. In other
words, two events A and B are independent if the probability of occurrence of B has
no effect on the probability of occurrence of A. In such a situation, one expects that

P(A|B) = P(A) and P(A|B̄) = P(A) .

Using this and (6.7), we can write

P(A|B) = P(A ∩ B)

P(B)

= P(A ∩ B̄)

P(B̄)
= P(A|B̄). (6.12)

This yields:

P(A ∩ B)P(B̄) = P(A ∩ B̄)P(B)

P(A ∩ B)(1 − P(B)) = P(A ∩ B̄)P(B)

P(A ∩ B) = (P(A ∩ B̄) + P(A ∩ B))P(B)

P(A ∩ B) = P(A)P(B) . (6.13)

This leads to the following definition of stochastic independence.

Definition 6.5.1 Two random events A and B are called (stochastically) indepen-
dent if

P(A ∩ B) = P(A)P(B) , (6.14)

i.e. if the probability of simultaneous occurrence of both events A and B is the
product of the individual probabilities of occurrence of A and B.
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This definition of independence can be extended to the case of more than two
events as follows:

Definition 6.5.2 The n events A1, A2, . . . , An are stochastically mutually indepen-
dent, if for any subset of m events Ai1 , Ai2 , . . . , Aim (m ≤ n)

P(Ai1 ∩ Ai2 · · · ∩ Aim ) = P(Ai1)P(Ai2) · . . . · P(Aim ) (6.15)

holds.

A weaker form of independence is pairwise independence. If condition (6.15) is
fulfilled only for two arbitrary events, i.e.m = 2, then the events are called pairwise
independent. The difference between pairwise independence and general stochastic
independence is explained in the following example.

Example 6.5.1 Consider an urn with four balls. The following combinations of ze-
roes and ones are printed on the balls: 110, 101, 011, 000. One ball is drawn from
the urn. Define the following events:

A1 : The first digit on the ball is 1.

A2 : The second digit on the ball is 1.

A3 : The third digit on the ball is 1.

Since there are two favourable simple events for each of the events A1, A2 and A3,
we get

P(A1) = P(A2) = P(A3) = 2

4
= 1

2
.

The probability that all the three events simultaneously occur is zero because there
is no ball with 111 printed on it. Therefore, A1, A2, and A3 are not stochastically
independent because

P(A1)P(A2)P(A3) = 1

8
�= 0 = P(A1 ∩ A2 ∩ A3).

However,

P(A1 ∩ A2) = 1

4
= P(A1)P(A2) ,

P(A1 ∩ A3) = 1

4
= P(A1)P(A3) ,

P(A2 ∩ A3) = 1

4
= P(A2)P(A3) ,

which means that the three events are pairwise independent.



6.6 Key Points and Further Issues 123

6.6 Key Points and Further Issues

Note:

� We summarize some important theorems and laws:

• The Laplace probability is the ratio

P(A) = |A|
|Ω| = Number of “favourable simple events” for A

Total number of possible simple events
.

• The Law of Total Probability is

P(B) =
m∑

i=1

P(B|Ai )P(Ai ).

• Bayes’ Theorem is

P(A j |B) = P(B|A j )P(A j )
∑

i P(B|Ai )P(Ai )
.

• n events A1, A2, . . . , An are (stochastically) independent, if

P(A1 ∩ A2 · · · ∩ An) = P(A1)P(A2) · . . . · P(An).

� In Sect. 10.8, we present the χ2-independence test, which can test
whether discrete random variables (see Chap.7) are independent or not.

6.7 Exercises

Exercise 6.1

(a) SupposeΩ = {0, 1, . . . , 15}, A = {0, 8}, B = {1, 2, 3, 5, 8, 10, 12},C = {0, 4,
9, 15}. Determine A ∩ B, B ∩ C , A ∪ C , C \ A, Ω \ (B ∪ A ∪ C).

(b) Now consider the three pairwise disjoint events E , F , G with Ω = E ∪
F ∪ G and P(E) = 0.2 and P(F) = 0.5. Calculate P(F̄), P(G), P(E ∩ G),
P(E \ E), and P(E ∪ F).

Exercise 6.2 A driving licence examination consists of two parts which are based on
a theoretical and a practical examination. Suppose 25% of people fail the practical
examination, 15% of people fail the theoretical examination, and 10% of people fail
both the examinations. If a person is randomly chosen, then what is the probability
that this person

http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(a) fails at least one of the examinations?
(b) only fails the practical examination, but not the theoretical examination?
(c) successfully passes both the tests?
(d) fails any of the two examinations?

Exercise 6.3 A new board game uses a twelve-sided die. Suppose the die is rolled
once, what is the probability of getting

(a) an even number?
(b) a number greater than 9?
(c) an even number greater than 9?
(d) an even number or a number greater than 9?

Exercise 6.4 The Smiths are a family of six. They are celebrating Christmas and
there are 12 gifts, two for each family member. The name tags for each family
member have been attached to the gifts. Unfortunately the name tags on the gifts are
damaged by water. Suppose each family member draws two gifts at random. What
is the probability that someone

(a) gets his/her two gifts, rather than getting the gifts for another family member?
(b) gets none of his/her gifts, but rather gets the gifts for other family members?

Exercise 6.5 A chef from a popular TV cookery show sometimes puts too much salt
in his pumpkin soup and the probability of this happening is 0.2. If he is in love
(which he is with probability 0.3), then the probability of using too much salt is 0.6.

(a) Create a contingency table for the probabilities of the two variables “in love”
and “too much salt”.

(b) Determine whether the two variables are stochastically independent or not.

Exercise 6.6 Dr. Obermeier asks his neighbour to take care of his basil plant while
he is away on leave. He assumes that his neighbour does not take care of the basil
with a probability of 1

3 . The basil dies with probability 1
2 when someone takes care

of it and with probability 3
4 if no one takes care of it.

(a) Calculate the probability of the basil plant surviving after its owner’s leave.
(b) It turns out that the basil eventually dies. What is the probability that

Dr. Obermeier’s neighbour did not take care of the plant?

Exercise 6.7 Abank considers changing its credit card policy. Currently 5%of credit
card owners are not able to pay their bills in any month, i.e. they never pay their bills.
Among those who are generally able to pay their bills, there is still a 20% probability
that the bill is paid too late in a particular month.
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(a) What is the probability that someone is not paying his bill in a particular month?
(b) A credit card owner did not pay his bill in a particular month. What is the

probability that he never pays back the money?
(c) Should the bank consider blocking the credit card if a customer does not pay his

bill on time?

Exercise 6.8 There are epidemics which affect animals such as cows, pigs, and oth-
ers. Suppose 200 cows are tested to see whether they are infected with a virus or not.
Let event A describe whether a cow has been transported by a truck recently or not
and let B denote the event that a cow has been tested positive with a virus. The data
are summarized in the following table:

B B̄ Total
A 40 60 100
Ā 20 80 100
Total 60 140 200

(a) What is the probability that a cow is infected and has been transported by a truck
recently?

(b) What is the probability of having an infected cow given that it has been trans-
ported by the truck?

(c) Determine and interpret P(B).

Exercise 6.9 A football practice target is a portable wall with two holes (which are
the target) in it for training shots. Suppose there are two players A and B. The
probabilities of hitting the target by A and B are 0.4 and 0.5, respectively.

(a) What is the probability that at least one of the players succeeds with his shot?
(b) What is the probability that exactly one of the players hits the target?
(c) What is the probability that only B scores?

→ Solutions to all exercises in this chapter can be found on p. 361

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,
Springer, Heidelberg
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In the first part of the book we highlighted how to describe data. Now, we discuss
the concepts required to draw statistical conclusions from a sample of data about a
population of interest. For example, suppose we know the starting salary of a sample
of 100 students graduating in law. We can use this knowledge to draw conclusions
about the expected salary for the population of all students graduating in law. Simi-
larly, if a newly developed drug is given to a sample of selected tuberculosis patients,
then some patients may show improvement and some patients may not, but we are
interested in the consequences for the entire population of patients. In the remainder
of this chapter, we describe the theoretical concepts required for making such con-
clusions. They form the basis for statistical tests and inference which are introduced
in Chaps. 9–11.

7.1 RandomVariables

Random variables help us to view the collected data as an outcome of a random
experiment. Consider the simple experiment of tossing a coin. If a coin is tossed,
then one can observe either “head” (H ) or “tail” (T ). The occurrence of “head” or
“tail” is random, and the exact outcome will only be known after the coin is tossed.
We can toss the coin many times and obtain a sequence of outputs. For example, if
a coin is tossed seven times, then one of the outcomes may be H, H, T, H, T, T, T .
This outcome is the consequence of a random experiment, and it may be helpful if
we can distill the sequence of outcomes in meaningful numbers. One option is to
summarize them by a variable X , which takes the values x1 = 1 (denoting head)
and x2 = 0 (denoting tail). We have learnt from Chap. 6 that this can be described
in the framework of a random experiment where Ω = {ω1, ω2} with the events
A1 = {ω1} = 1 = head and A2 = {ω2} = 0 = tail. The random variable X is

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
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127

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_6


128 7 RandomVariables

Table 7.1 Examples of random variables

X Event Realizations of X

Roll of a die Ai : number i (i = 1, 2, . . . , 6) x = i

Lifetime of TV Ai : survival time is i months
(i = 1, 2, . . .)

x = i

Roulette A1: red x1 = 1

A2: black x2 = 2

A3: green (zero) x3 = 0

now mapped to real numbers, and therefore, it describes the possible outcome of
any coin toss experiment. The observed outcomes H, H, T, H, T, T, T relate to a
specific sample, a unique realization of this experiment. We can write X (ω1) = 1
and X (ω2) = 0 with ω1,ω2 ∈ Ω and 1, 0 ∈ R where R is the set of real numbers.
We know that in any coin tossing experiment, the probability of head being observed
is P(X (ω1) = 1) = 0.5 and of tail being observed is P(X (ω2) = 0) = 0.5. We
may therefore view X as a random variable which collects the possible outcomes of
a random experiment and captures the uncertainty associated with them.

Definition 7.1.1 Let Ω represent the sample space of a random experiment, and let
R be the set of real numbers. A random variable is a function X which assigns to
each element ω ∈ Ω one and only one number X (ω) = x, x ∈ R, i.e.

X : Ω → R. (7.1)

Example 7.1.1 The features of a die roll experiment, a roulette game, or the lifetime
of a TV can all be described by a random variable, see Table 7.1. The events involve
randomness, and if we have knowledge about the random process, we can assign
probabilities P(X = xi ) to each event, e.g. when rolling a die, the probability of
getting a “1” is P(X = 1) = 1/6 and the probability of getting a “2” is P(X = 2) =
1/6.

Note that it is a convention to denote random variables by capital letters (e.g. X )
and their values by small letters (e.g. x). It is evident from the coin tossing experiment
that we need to know P(X = x) to describe the respective random variable. We
assume in this chapter that we have this knowledge. However, Chaps. 9–11 show
how a sample of data can be used to estimate unknown probabilities and other
quantities given a prespecified uncertainty level. More generally, we can say that it
is mandatory to know P(X ∈ A) for all possible A which are subsets of R. If we
choose A = (−∞, x], x ∈ R, we have

P(X ∈ A) = P(X ∈ (−∞, x]) = P(−∞ < X ≤ x) = P(X ≤ x).

This consideration gives rise to the definition of the cumulative distribution func-
tion. Recall that we developed the concept of the empirical cumulative distribution
function (ECDF) in Chap. 2, Sect. 2.2, but the definition there was empirical. Now,
we develop it theoretically.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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7.2 Cumulative Distribution Function (CDF)

Definition 7.2.1 The cumulativedistribution function (CDF)of a randomvariable
X is defined as

F(x) = P(X ≤ x). (7.2)

As in Chap. 2, we can see that the CDF is useful in obtaining the probabilities related
to the occurrence of random events. Note that the empirical cumulative distribu-
tion function (ECDF, Sect. 2.2) and the cumulative distribution function are closely
related and therefore have a similar definition and similar calculation rules. How-
ever, in Chap. 2, we work with the cumulative distribution of observed values in a
particular sample whereas in this chapter, we deal with random variables modelling
the distribution of a general population.

TheDefinition7.2.1 implies the followingproperties of the cumulative distribution
function:

• F(x) is a monotonically non-decreasing function
(if x1 ≤ x2, it follows that F(x1) ≤ F(x2)),

• limx→−∞ F(x) = 0 (the lower limit of F is 0),
• limx→+∞ F(x) = 1 (the upper limit of F is 1),
• F(x) is continuous from the right, and
• 0 ≤ F(x) ≤ 1 for all x ∈ R.

Another notation for F(x) = P(X ≤ x) is FX (x), but we use F(x).

7.2.1 CDF of Continuous RandomVariables

Before giving some examples about the meaning and interpretation of the CDF, we
first need to consider some definitions and theorems.

Definition 7.2.2 A random variable X is said to be continuous if there is a function
f (x) such that for all x ∈ R

F(x) =
∫ x

−∞
f (t)dt (7.3)

holds. F(x) is the cumulative distribution function (CDF) of X , and f (x) is the
probability density function (PDF) of x and d

dx F(x) = f (x) for all x that are
continuity points of f .

Theorem 7.2.1 For a function f (x) to be a probability density function (PDF) of
X, it needs to satisfy the following conditions:

(1) f (x) ≥ 0 for all x ∈ R,
(2)

∫ ∞
−∞ f (x)dx = 1.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Theorem 7.2.2 Let X be a random variable with CDF F(x). If x1 < x2, where x1
and x2 are known constants, P(x1 ≤ X ≤ x2) = F(x2) − F(x1) = ∫ x2

x1
f (x)dx.

Theorem 7.2.3 The probability of a continuous random variable taking a particular
value x0 is zero:

P(X = x0) = 0. (7.4)

The proof is provided in Appendix C.2.

Example 7.2.1 Consider the continuous randomvariable “waiting time for the train”.
Suppose that a train arrives every 20 min. Therefore, the waiting time of a particular
person is random and can be any time contained in the interval [0, 20]. We can start
describing the required probability density function as

f (x) =
{
k for 0 ≤ x ≤ 20
0 otherwise

where k is an unknown constant. Now, using condition (2) of Theorem 7.2.1, we
have

1 =
∫ 20

0
f (x)dx = [kx]200 = 20k

which needs to be fulfilled. This yields k = 1/20 which is always greater than 0,
and therefore, condition (1) of Theorem 7.2.1 is also fulfilled. It follows that

f (x) =
{

1
20 for 0 ≤ x ≤ 20
0 otherwise

is the probability density function describing the waiting time for the train. We can
now use Definition 7.2.2 to determine the cumulative distribution function:

F(x) =
∫ x

0
f (t)dt =

∫ x

0

1

20
dt = 1

20
[t]x0 = 1

20
x .

Suppose we are interested in calculating the probability of a waiting time between
15 and 20 min. This can be calculated using Theorem 7.2.2:

P(15 ≤ X ≤ 20) = F(20) − F(15) = 20

20
− 15

20
= 0.25.

We can obtain this probability from the graph of the CDF as well, see Fig. 7.1 where
both the PDF and CDF of this example are illustrated.

Defining a function, for example the CDF, is simple in R: One can use the
function command followed by specifying the variables the function evaluates
in round brackets (e.g. x) and the function itself in braces (e.g. x/20). Functions can
be plotted using the curve command:

cdf <- function(x){1/20 ∗ x}
curve(cdf,from=0,to=20)
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Fig.7.1 Probability density function (PDF) and cumulative distribution function (CDF) for waiting
time in Example 7.2.1

Alternatively, theplot command canbe used to plot vectors against each other; for
example, after defining a function, we can define a sequence
(x<-seq(0,20,0.01)), evaluate this sequence via the specified function
(cdf(x)), and plot them against each other and connect the points from the sequence
with a line (plot(x,cdf(x),type=’l’)).

This example illustrates how the cumulative distribution function can be used
to obtain probabilities of interest. Most importantly, if we want to calculate the
probability that the random variable X takes values in the interval [x1, x2], we simply
have to look at the difference of the respective CDF values at x1 and x2. Figure 7.2a
highlights that the interval probability corresponds to the difference of the CDF
values on the y-axis.

We can also use the probability density function to visualize P(x1 ≤ X ≤ x2).
We know from Theorem 7.2.1 that

∫ ∞
−∞ f (x)dx = 1, and therefore, the area under

the PDF equals 1. Thus, we can interpret interval probabilities as the area under the
PDF between x1 and x2. This is presented in Fig. 7.2b.

7.2.2 CDF of Discrete RandomVariables

Definition 7.2.3 A random variable X is defined to be discrete if its probability
space is either finite or countable, i.e. if it takes only a finite or countable number of
values. Note that a set V is said to be countable, if its elements can be listed, i.e.
there is a one-to-one correspondence between V and the positive integers.

Example 7.2.2 Consider the example of tossing of a coin where each trial results
in either a head (H ) or a tail (T ), each occurring with the same probability
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(a)

x1 x2

F (x1)

F (x2)

x
(b)

x1 x2

F (x2)− F (x1)

Fig. 7.2 Graphical representation of the probability P(x1 ≤ X ≤ x2) a via the CDF and b via the
PDF∗

0.5. When the coin is tossed multiple times, we may observe sequences such as
H, T, H, H, T, H, H, T , and T, . . .. The sample space is Ω = {H, T }. Let the
random variable X denote the number of trials required to get the third head, then
X = 4 for the given sequence above. Clearly, the space of X is the set (3, 4, 5, . . .).
We can see that X is a discrete random variable because its space is finite and can
be counted. We can also assign certain probabilities to each of these values, e.g.
P(X = 3) = p1 and P(X = 4) = p2.

Definition 7.2.4 Let X be a discrete random variable which takes k different values.
The probability mass function (PMF) of X is given by

f (X) = P(X = xi ) = pi for each i = 1, 2, . . . , k. (7.5)

It is required that the probabilities pi satisfy the following conditions:

(1) 0 ≤ pi ≤ 1,

(2)
∑k

i=1 pi = 1.
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Definition 7.2.5 Given (7.5), we can write the CDF of a discrete random variable as

F(x) =
k∑

i=1

I{xi≤x} pi , (7.6)

where I is an indicator function defined as

I{xi≤x} =
{
1 if xi ≤ x
0 otherwise.

The CDF of a discrete variable is always a step function.

Working with the CDF for Discrete Random variables

We can easily calculate various types of probabilities for discrete random variables
using the CDF. Let a and b be some known constants, then

P(X ≤ a) = F(a), (7.7)

P(X < a) = P(X ≤ a) − P(X = a) = F(a) − P(X = a), (7.8)

P(X > a) = 1 − P(X ≤ a) = 1 − F(a), (7.9)

P(X ≥ a) = 1 − P(X < a) = 1 − F(a) + P(X = a), (7.10)

P(a ≤ X ≤ b) = P(X ≤ b) − P(X < a)

= F(b) − F(a) + P(X = a), (7.11)

P(a < X ≤ b) = F(b) − F(a), (7.12)

P(a < X < b) = F(b) − F(a) − P(X = b), (7.13)

P(a ≤ X < b) = F(b) − F(a) − P(X = b) + P(X = a). (7.14)

Remark 7.2.1 The Eqs. (7.7)–(7.14) can also be used for continuous variables, but in
this case, P(X = a) = P(X = b) = 0 (see Theorem 7.2.3), and therefore, Eqs. (7.7)–
(7.14) can be modified accordingly.

Example 7.2.3 Consider the experiment of rolling a die. There are six possible out-
comes. If we define the random variable X as the number of dots observed on
the upper surface of the die, then the six possible outcomes can be described as
x1 = 1, x2 = 2, . . . , x6 = 6. The respective probabilities are P(X = xi ) = 1/6; i =
1, 2, . . . , 6. The PMF and CDF are therefore defined as follows:

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if x = 1
1/6 if x = 2
1/6 if x = 3
1/6 if x = 4
1/6 if x = 5
1/6 if x = 6
0 elsewhere.

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if −∞ < x < 1
1/6 if 1 ≤ x < 2
2/6 if 2 ≤ x < 3
3/6 if 3 ≤ x < 4
4/6 if 4 ≤ x < 5
5/6 if 5 ≤ x < 6
1 if 6 ≤ x < ∞.
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Fig. 7.3 Probability density function and cumulative distribution function for rolling a die in
Example 7.2.3. “•” relates to an included value and “◦” to an excluded value

Both the CDF and the PDF are displayed in Fig. 7.3.
We can use the CDF to calculate any desired probability, e.g. P(X ≤ 5) =

F(5) = 5/6. This is shown in Fig. 7.3b where for X = 5, we obtain F(5) = 5/6
when evaluating on the y-axis. Similarly, P(3 < X ≤ 5) = F(5) − F(3) =
(5/6) − (3/6) = 2/6 can be interpreted as the difference of F(5) and F(3) on the
y-axis.

7.3 Expectation andVariance of a RandomVariable

Wehave seen that both the probability density function (or probabilitymass function)
and the cumulative distribution function are helpful in characterizing the features of
a random variable. Some other features of random variables are characterized by the
concepts of expectation and variance.

7.3.1 Expectation

Definition 7.3.1 The expectation of a continuous random variable X , having the
probability density function f (x) with

∫ |x | f (x)dx < ∞, is defined as

E(X) =
∫ +∞

−∞
x f (x)dx . (7.15)
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For a discrete randomvariable X , which takes the values x1, x2, . . .with respective
probabilities p2, p2, . . ., the expectation of X is defined as

E(X) =
k∑

i=1

xi pi = x1P(X = x1) + x2P(X = x2) + · · · + xk P(X = xk). (7.16)

The expectation of X , i.e. E(X), is usually denoted by μ = E(X) and relates to the
arithmetic mean of the distribution of the population. It reflects the central tendency
of the population.

Example 7.3.1 Consider again Example 7.2.1 where the waiting time for a train was
described by the following probability density function:

f (x) =
{

1
20 for 0 ≤ x ≤ 20
0 otherwise.

We can calculate the expectation as follows:

E(X) =
∫ ∞

−∞
x f (x) dx =

∫ 0

−∞
x f (x) dx +

∫ 20

0
x f (x) dx +

∫ ∞

20
x f (x) dx

= 0 +
∫ 20

0

1

20
x dx + 0 =

[
1

40
x2

]20

0
= 400

40
− 0 = 10.

The “average” waiting time for the train is therefore 10 min. This means that if a
person has to wait for the train every day, then the person will experience waiting
times varying randomly between 0 and 20min and, on average, has towait for 10min.

Example 7.3.2 Consider again the die roll experiment from Example 7.2.3. The
probabilities for the occurrence of any xi , i = 1, 2, . . . , 6, are P(X = xi ) = 1/6.
The expectation can thus be calculated as

E(X) =
6∑

i=1

xi pi

= 1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3) + 4 · P(X = 4)

+ 5 · P(X = 5) + 6 · P(X = 6)

= (1 + 2 + 3 + 4 + 5 + 6)
1

6
= 21

6
= 3.5.

7.3.2 Variance

The variance describes the variability of a random variable. It gives an idea about the
concentration or dispersion of values around the arithmetic mean of the distribution.
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Definition 7.3.2 The variance of a random variable X is defined as

Var(X) = E[X − E(X)]2. (7.17)

The variance of a continuous random variable X is

Var(X) =
∫ +∞

−∞
(x − E(X))2 f (x)dx (7.18)

where E(X) = ∫ +∞
−∞ x f (x)dx . Similarly, the variance of a discrete random variable

X is

Var(X) =
∑

i=1

(xi − E(X))2 pi (7.19)

where E(X) = ∑
i xi pi . The variance is usually denoted by σ2 = Var(X).

Definition 7.3.3 The positive square root of the variance is called the standard
deviation.

Example 7.3.3 Recall Examples 7.2.1 and 7.3.1. We can calculate the variance of
the waiting time for a train using the probability density function

f (x) =
{ 1

20 for 0 ≤ x ≤ 20
0 otherwise

and E(X) = 10 (already calculated in Example 7.3.1). Using (7.18), we obtain:

Var(X) =
∫ ∞

−∞
(x − E(x))2 f (x) dx =

∫ ∞

−∞
(x − 10)2 f (x) dx

=
∫ 0

−∞
(x − 10)2 f (x) dx +

∫ 20

0
(x − 10)2 f (x) dx +

∫ ∞

20
(x − 10)2 f (x) dx

= 0 +
∫ 20

0
(x − 10)2 · 1

20
dx + 0 =

∫ 20

0

1

20
(x2 − 20x + 100) dx

=
[
1

20

(
1

3
x3 − 10x2 + 100x

)]20

0
= 33

1

3
.

The standard deviation is
√
331

3 min2 ≈ 5.77min.

Recall that in Chap. 3, we introduced the sample variance and the sample stan-
dard deviation. We already know that the standard deviation has the same unit of
measurement as the variable, whereas the unit of the variance is the square of the
measurement unit. The standard deviationmeasures how the values of a random vari-
able are dispersed around the population mean. A low value of the standard deviation
indicates that the values are highly concentrated around the mean. A high value of
the standard deviation indicates lower concentration of the data values around the
mean, and the observed values may be far away from the mean. These considerations
are helpful in making connections between random variables and samples of data,
see Chap. 9 for the construction of confidence intervals.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Example 7.3.4 Recall Example 7.3.2 where we calculated the expectation of a die
roll experiment as E(X) = 3.5. With xi ∈ {1, 2, 3, 4, 5, 6} and pi = 1/6 for all i =
1, 2, 3, 4, 5, 6, the variance for this example corresponds to

Var(X) =
∑

i=1

(xi − E(X))2 pi = (1 − 3.5)2 · 1
6

+ (2 − 3.5)2 · 1
6

+ (3 − 3.5)2 · 1
6

+(4 − 3.5)2 · 1
6

+ (5 − 3.5)2 · 1
6

+ (6 − 3.5)2 · 1
6

≈ 2.92.

Theorem 7.3.1 The variance of a random variable X can be expressed as

Var(X) = E(X2) − [E(X)]2. (7.20)

The proof is given in Appendix C.2.

Example 7.3.5 In Examples 7.2.1, 7.3.1, and 7.3.3, we evaluated the waiting time
for a train using the PDF

f (X) =
{

1
20 for 0 < X ≤ 20
0 otherwise.

We calculated the expectation and variance in Eqs. (7.15) and (7.17) as 10 min and
331

3 min2, respectively. Theorem 7.3.1 tells us that we can calculate the variance in
a different way as follows:

E(X2) =
∫ ∞

−∞
x2 f (x) dx =

∫ 20

0

1

20
x2 dx

=
[
1

60
x3

]20

0
= 133

1

3

Var(X) = E(X2) − [E(X)]2 = 133
1

3
− 102 = 33

1

3
.

This yields the same result as Eq. (7.18) but is much quicker.

7.3.3 Quantiles of a Distribution

We introduced the concept of quantiles in Chap. 3, Sect. 3.1.2. Now, we define
quantiles in terms of the distribution function.

Definition 7.3.4 The value xp for which the cumulative distribution function is

F(xp) = p (0 < p < 1) (7.21)

is called the p-quantile.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3


138 7 RandomVariables

Fig. 7.4 First quartile,
median, and third quartile∗

x0.25 x0.5 x0.75

0.25

0.5

0.75

x

It follows from Definition 7.3.4 that xp is the value which divides the cumulative
distribution function into two parts: the probability of observing a value left of xp is
p, whereas the probability of observing a value right of xp is 1− p. For example, the
0.25-quantile x0.25 describes the x-value for which the probability of observing x0.25
or any smaller value is 0.25. Figure 7.4 shows the 0.25-quantile (first quartile), the 0.5-
quantile (median), and the 0.75-quantile (third quartile) in a cumulative distribution
function.

Example 7.3.6 Recall Examples 7.2.1, 7.3.1, 7.3.5 and Fig. 7.1b where we described
the waiting time for a train by using the following CDF:

F(x) = 1

20
x .

The first quartile x0.25 is 5 because F(5) = 5/20 = 0.25. This means that the
probability of waiting for the train for 5 min or less is 25 % and of waiting for longer
than 5 min is 75 %.

For continuous variables, there is a unique value which describes the p-quantile.
However, for discrete variables, this may not necessarily be true. In this case, the
p-quantile is chosen such that

F(xp) ≥ p,

F(x) < p for x < xp

holds.

Example 7.3.7 The cumulative distribution function for rolling a die is described in
Example 7.2.3 and Fig. 7.3b. The first quartile x0.25 is 2 because F(2) = 2/6 > 0.25
and F(x) < 0.25 for x < 2.

7.3.4 Standardization

Standardization transforms a random variable in such a way that it has an expectation
of zero and a variance of one. More details on the need for standardization are
discussed in Chap. 10.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Definition 7.3.5 A random variable Y is called standardized when

E(Y ) = 0 and Var(Y ) = 1.

Theorem 7.3.2 Suppose a random variable X has mean E(X) = μ and Var(X) =
σ2. Then, it can be standardized as follows:

Y = X − μ

σ
= X − E(X)√

Var(X)
. (7.22)

Example 7.3.8 In Examples 7.2.1, 7.3.1, and 7.3.5, we considered the waiting time
X for a train. The random variable X can take values between 0 and 20min, and we
calculated E(X) = 10 and Var(X) = 331

3 . The standardized variable of X is

Y = X − μ

σ
= X − 10√

331
3

.

One can show that E(Y ) = 0 and Var(Y ) = 1, see also Exercise 7.10 for more
details.

7.4 Tschebyschev’s Inequality

If we do not know the distribution of a random variable X , we can still make state-
ments about the probability that X takes values in a certain interval (which has to
be symmetric around the expectation μ) if the mean μ and the variance σ2 of X are
known.

Theorem 7.4.1 (Tschebyschev’s inequality) Let X be a random variable with
E(X) = μ and Var(X) = σ2. It holds that

P(|X − μ| ≥ c) ≤ Var(X)

c2
. (7.23)

This is equivalent to

P(|X − μ| < c) ≥ 1 − Var(X)

c2
. (7.24)

The proof is given in Appendix C.2.

Example 7.4.1 In Examples 7.2.1, 7.3.1, and 7.3.5, we have worked with a random
variable which describes the waiting time for a train. We determined E(X) = 10 and
Var(X) = 331

3 . We can calculate the probability of waiting between 10− 7 = 3 and
10 + 7 = 17 min:

P(|X − μ| < c) ≥ 1 − Var(X)

c2

P(|X − 10| < 7) ≥ 1 − 331
3

72
≈ 0.32.
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The probability is therefore at least 0.32. However, if we apply our distributional
knowledge that F(x) = 1

20 x (for 0 ≤ X ≤ 20), then we obtain a much more precise
result which is

P(3 < X < 17) = F(17) − F(3) = 17

20
− 3

20
= 0.7.

We can clearly see that Tschebyschev’s inequality gives us the correct answer, that
is P(3 < X < 17) is greater 0.32. Nevertheless, the approximation to the exact
probability, 0.7, is rather poor. One needs to keep in mind that only the lack of
distributional knowledge makes the inequality useful.

7.5 Bivariate RandomVariables

There are many situations in which we are interested in analysing more than one
variable, say two variables. When we have more than one variable, then not only
their individual distributions but also their joint distribution can be of interest. For
example, we know that driving a car after drinking alcohol is not necessarily safe. If
we consider two variables, the blood alcohol content X and number of car accidents
Y , then we may be interested in the probability of having a high blood alcohol
content and a car accident at the same time. If we analyse (X, Y ) jointly, then we are
interested in their joint bivariate distribution fXY (x, y). This distribution can either
be discrete or continuous.

Discrete Bivariate Random Variables. Suppose we have two categorical variables
X and Y which can take the values x1, x2, . . . , xI and y1, y2, . . . , yJ , respectively.
Their joint probability distribution function is characterized by

P(X = xi , Y = y j ) = pi j (i = 1, 2, . . . , I ; j = 1, 2, . . . , J )

with
∑I

i=1
∑J

j=1 pi j = 1. This means that the probability of observing xi and y j
together is pi j . We can summarize this information in a contingency table as follows:

Y
1 2 . . . J Total

1 p11 p12 … p1J p1+
2 p21 p22 … p2J p2+

X
.
.
.

.

.

.
.
.
.

I pI1 pI2 . . . pI J pI+
Total p+1 p+2 . . . p+J 1

Each cell contains a “piece” of the joint distribution. The entries p+1, p+2, . . . ,

p+J in the bottom row of the table summarize themarginal distribution of Y , which
is the distribution of Y without giving reference to X . The entries p1+, p+2, . . . , pI+
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in the last column summarize the marginal distribution of X . The marginal distribu-
tions can therefore be expressed as

P(X = xi ) =
J∑

j=1

pi j = pi+ i = 1, 2, . . . , I,

P(Y = y j ) =
I∑

i=1

pi j = p+ j j = 1, 2, . . . , J .

The conditional distributions of X given Y = y j and Y given X = x j are given
as follows:

P(X = xi |Y = y j ) = pi | j = pi j
p+ j

i = 1, 2, . . . , I,

P(Y = y j |X = xi ) = p j |i = pi j
pi+

j = 1, 2, . . . , J.

They summarize the distribution of X for a given value of y j (or the distribution of Y
for a given value of xi ) and play a crucial role in the construction of regressionmodels
such as the linear regression model introduced in Chap. 11. Please also recall the
definitions of Sect. 4.1 where we introduced conditional and marginal distributions
for data samples rather than random variables.

Example 7.5.1 Suppose we have a contingency table on smoking behaviour X
(1 = never smoking, 2 = smoking sometimes, and 3 = smoking regularly)
and education level Y (1 = primary education, 2 = Secondary education, and
3 = tertiary education):

Y
1 2 3 Total

X 1 0.10 0.20 0.30 0.60
2 0.10 0.10 0.10 0.30
3 0.08 0.01 0.01 0.10
Total 0.28 0.31 0.41 1

The cell entries represent the joint distributionof smokingbehaviour and education
level. We can interpret each entry as the probability of observing X = xi and
Y = y j simultaneously. For example, p23 = P (“smoking sometimes and tertiary
education”) = 0.10. The marginal distribution of X is contained in the last column
of the table and lists the probabilities of smoking (unconditional on education level),
e.g. the probability of being a non-smoker in this population is 60 %. We can also
interpret the conditional distributions: P(X |Y = 3) represents the distribution of
smoking behaviour among those who have tertiary education. If we are interested
in the probability of smoking sometimes given tertiary education is completed, then
we calculate P(X = 2|Y = 3) = p2|3 = 0.10

0.41 = 0.24.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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x1 x2

y1

y2

Fig. 7.5 Area covering all points of (X, Y ) with (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2)∗

Continuous Bivariate Random Variables.

Definition 7.5.1 A bivariate random variable (X, Y ) is continuous if there is a func-
tion fXY (x, y) such that

FXY (x, y) = P(X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

−∞
fXY (x, y) dx dy (7.25)

holds.

The function FXY (x, y) is the joint cumulative distribution function of X and
Y ; the joint distribution function is denoted by fXY (x, y), and fXY (x, y) has to fulfil
the usual conditions of a density function. Necessary and sufficient conditions that
a function FXY (x, y) is a bivariate cumulative distribution function are as follows:

lim
x→−∞ FXY (x, y) = 0 lim

y→−∞ FXY (x, y) = 0

lim
x→∞ FXY (x, y) = 1 lim

y→∞ FXY (x, y) = 1

and F(x2, y2) − F(x1, y2) − F(x2, y1) + F(x1, y1) ≥ 0 for all x1 < x2, y1 < y2.

The last condition is sometimes referred to as the rectangle inequality. As in
the univariate case, we can use the cumulative distribution function to calcu-
late interval probabilities; similarly, we look at the rectangular area defined by
(x1, y1), (x1, y2), (x2, y1), and (x2, y2) in the bivariate case (instead of an interval
[a, b]), see Fig. 7.5.

We can calculate the desired probabilities as follows:

P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =
∫ y2

y1

∫ x2

x1
fXY (x, y) dx dy.

The marginal distributions of X and Y are

fX (x) =
∫ ∞

−∞
fXY (x, y)dy, fY (y) =

∫ ∞

−∞
fXY (x, y)dx,
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Fig. 7.6 Joint and marginal distribution for Example 7.5.2

respectively. Similar to the discrete case, fX (x) and fY (y) also describe the distri-
bution of X unconditional on Y and the distribution of Y unconditional on X . The
cumulative marginal distributions are

FX (x) =
∫ x

−∞
fX (t)dt, FY (y) =

∫ y

−∞
fY (t)dt.

The conditional distributions can be obtained by the ratio of the joint and marginal
distributions:

fX |Y (x, y) = f (x, y)

f (y)
, fY |X (x, y) = f (x, y)

f (x)
.

Example 7.5.2 Consider the function

fXY (x, y) =
{
x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 elsewhere.

Suppose X and Y represent the concentrations of two drugs in the human body.
Then, fXY (x, y) may represent the sum of two drug concentrations in the human
body. Since there are infinite possible realizations of both X and Y , we represent
their joint distribution in a figure rather than a table, see Fig. 7.6a.

The marginal distributions for X and Y can be calculated as follows:

fX (x) =
∫ ∞

−∞
fXY (x, y)dy =

∫ 1

0
(x + y) dy =

[
xy + 1

2
y2

]1

0
= x + 1

2
,

fY (x) =
∫ ∞

−∞
fXY (x, y)dx =

∫ 1

0
(x + y) dx =

[
1

2
x2 + xy

]1

0
= y + 1

2
.

Figure 7.6b depicts the marginal distribution for X . The slope of the marginal dis-
tribution is essentially the slope of the surface of the joint distribution shown in
Fig. 7.6a. It is easy to see in this simple example that the marginal distribution of
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X is nothing but a cut in the surface of the joint distribution. Note that the condi-
tional distributions fX |Y (x, y) and fY |X (x, y) can be easily calculated; for example,
fX |Y (x, y) = f (x, y)/ f (y) = (x + y)/(y + 0.5).

Stochastic Independence.

Definition 7.5.2 Two continuous random variables X and Y are said to be stochas-
tically independent if

fXY (x, y) = fX (x) fY (y). (7.26)

For discrete variables, this is equivalent to

P(X = xi , Y = y j ) = P(X = xi )P(Y = y j ) (7.27)

being valid for all (i, j).

Example 7.5.3 In Example 7.5.2, we considered the function

fXY (x, y) =
{
x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 elsewhere

with the marginal distributions of X and Y as fX = x + 0.5 and fY = y + 0.5,
respectively. Since fX · fY = (x + 1

2 )(y + 1
2 ) �= fXY , it follows that X and Y are not

independent. The interpretation is that the concentrations of the two drugs are not
independent.

7.6 Calculation Rules for Expectation andVariance

Calculation Rules for the Expectation. For any constant values a and b, and any
random variables X and Y , the following rules hold:

E(a) = a, (7.28)

E(bX) = bE(X), (7.29)

E(a + bX) = a + bE(X), (7.30)

E(X + Y ) = E(X) + E(Y ) (additivity). (7.31)

The proof of rule (7.30) is given in Appendix C.2.

Example 7.6.1 Consider again Example 7.2.3 where we illustrated how the outcome
of a die roll experiment can be captured by a random variable. There were 6 events,
and X could take the values x1 = 1, x2 = 2, . . . , x6 = 6. The probability of the
occurrence of any numberwas P(X = xi ) = 1/6, and the expectationwas calculated
as 3.5. Consider two different situations:
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(i) Suppose the die takes the value 10, 20, 30, 40, 50, and 60 instead of the values
1, 2, 3, 4, 5, and 6. The random variable Y = 10X describes this suitably, and
its expectation is

E(Y ) = E(10X) = 10E(X) = 10 · 3.5 = 35

which follows from (7.29).
(ii) If we are rolling two dices X1 and X2, then the expectation for the sum of the

two outcomes is

E(X) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7

due to (7.31).

Calculation Rules for the Variance. Let a and b be any known constants and X be
a random variable (discrete or continuous). Then, we have the following rules:

Var(a) = 0, (7.32)

Var(bX) = b2 Var(X), (7.33)

Var(a + bX) = b2 Var(X). (7.34)

The proof of rule (7.34) is given in Appendix C.2.

Example 7.6.2 In Examples 7.2.1, 7.3.1, 7.3.3, and 7.3.5, we evaluated a random
variable describing the waiting time for a train. Now, suppose that a person first has
to catch a bus to get to the train station. If this bus arrives only every 60 min, then
the PDF of the random variable Y denoting the waiting time for the bus is

f (Y ) =
{

1
60 for 0 < x ≤ 60
0 otherwise .

We can use Eqs. (7.15) and (7.17) to determine both the expectation and variance
of Y . However, the waiting time for the bus is governed by the relation Y = 3X
where X is the waiting time for the train. Therefore, we can calculate E(Y ) =
E(3X) = 3E(X) = 3 · 10 = 30 min by using rule (7.29) and the variance as
Var(Y ) = Var(3X) = 32 Var(X) = 9 · 331

3 = 300 using rule (7.33). The total
waiting time is the sum of the two waiting times.

7.6.1 Expectation andVariance of the Arithmetic Mean

Definition 7.6.1 We define the random variables X1, X2, . . . , Xn to be i.i.d. (inde-
pendently identically distributed), if all Xi follow the same distribution and are
stochastically independent of each other.

Let X1, X2, . . . , Xn be n i.i.d. random variables with E(Xi ) = μ and Var(Xi ) =
σ2, i = 1, 2, . . . , n. The arithmetic mean of these variables is given by

X̄ = 1

n

n∑

i=1

Xi ,
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which is again a random variable that follows a distribution with certain expectation
and variance. A function of random variables is called a statistic. By using (7.29)
and (7.31), we obtain

E(X̄) = 1

n

n∑

i=1

E(Xi ) = μ. (7.35)

If we apply (7.34) and recall that the variables are independent of each other, we can
also calculate the variance as

Var(X̄) = 1

n2

n∑

i=1

Var(Xi ) = σ2

n
. (7.36)

Example 7.6.3 If we toss a coin, we obtain either head or tail, and therefore,
P(“head”) = P(“tail”) = 1

2 . If we toss the coin n times, we have for each toss

Xi =
{
0
1

for “tail”
for “head”

, i = 1, . . . , n.

It is straightforward to calculate the expectation and variance for each coin toss:

E(Xi ) = 0 · 1
2

+ 1 · 1
2

= 1

2
,

Var(Xi ) = (0 − 1

2
)2 · 1

2
+ (1 − 1

2
)2 · 1

2
= 1

4
· 1
2

+ 1

4
· 1
2

= 1

4
.

The arithmetic mean X̄ = 1
n

∑n
i=1 Xi describes the relative frequency of heads when

the coin is tossed n times. We can now apply (7.35) and (7.36) to calculate

E(X̄) = 1

n

n∑

i=1

1/2 = 1/2

and

Var(X̄) = 1

n2

n∑

i=1

1

4
= 1

4n
.

With this example, the interpretation of formulae (7.35) and (7.36) becomes clearer:
if the probability of head is 0.5 for a single toss, then it is also 0.5 for the mean of all
tosses. If we toss a coin many times, then the variance decreases when n increases.
This means that a larger sample size yields a higher precision for the calculated
arithmetic mean. This observation shows the basic conclusion of the next chapter:
the higher the sample size, the more secure we are of our conclusions.

7.7 Covariance and Correlation

The variance measures the variability of a variable. Similarly, the covariance mea-
sures the covariation or association between X and Y .
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7.7.1 Covariance

Definition 7.7.1 The covariance between X and Y is defined as

� = Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]. (7.37)

The covariance is positive if, on average, larger values of X correspond to larger
values of Y ; it is negative if, on average, greater values of X correspond to smaller
values of Y .

The probability density function of any bivariate random variable (X, Y ) is char-
acterized by the expectation and variance of both X and Y ,

E(X) = μX , Var(X) = σ2
X ,

E(Y ) = μY , Var(Y ) = σ2
Y ,

aswell as their covariance.Wecan summarize these features byusing the expectation
vector

E

(
X
Y

)
=

(
E(X)

E(Y )

)
=

(
μX

μY

)

and the covariance matrix

Cov

(
X
Y

)
=

(
Cov(X, X) Cov(X, Y )

Cov(Y, X) Cov(Y, Y )

)
=

(
σ2
X �
� σ2

Y

)
.

Important properties of covariance are

(i) Cov(X, Y ) = Cov(Y, X),
(ii) Cov(X, X) = Var(X),
(iii) Cov(aX + b, cY + d) = ac Cov(X, Y ),
(iv) Cov(X, Y ) = E(XY ) − E(X)E(Y ) where E(XY ) = ∫ ∫

xy f (x, y)dxdy for
continuous variables and E(XY ) = ∑

i
∑

j xi y j pi j for discrete variables,
(v) If X and Y are independent, it follows that E(XY ) = E(X)E(Y ) = μXμY , and

therefore, Cov(X, Y ) = μXμY − μXμY = 0.

Theorem 7.7.1 (Additivity Theorem) The variance of the sum (subtraction) of X
and Y is given by

Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X, Y ).

If X and Y are independent, it follows that Cov(X, Y ) = 0 and therefore Var(X ±
Y ) = Var(X) + Var(Y ). We omit the proof of this theorem.

Example 7.7.1 Recall Example 7.6.2 where we considered the waiting time Y for
a bus to the train station and the waiting time X for the waiting time for a train.
Suppose their joint bivariate probability density function can be written as

fXY (x, y) =
{

1
1200 for 0 ≤ x ≤ 60, 0 ≤ y ≤ 20
0 elsewhere.
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To calculate the covariance between X and Y , we need to calculate E(XY ):

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xy f (x, y)dx dy =

∫ 60

0

∫ 20

0
xy

1

1200
dx dy

=
∫ 60

0

[
x

1200

y2

2

]20

0
dy =

∫ 60

0

400x

2400
dy =

[
1

6

x2

2

]60

0
= 3600

12
= 300 .

We know from Example 7.6.2 that E(X) = 10,E(Y ) = 30,Var(X) = 331
3 , and

Var(Y ) = 300. The covariance is thus

Cov(X, Y ) = E(XY ) − E(X)E(Y ) = 300 − 30 · 10 = 0.

This makes sense as the waiting times for the train and the bus should be independent
of each other. Using rule (7.31), we conclude that the total expected waiting time is

E(X + Y ) = E(X) + E(Y ) = 10 + 30 = 40min.

The respective variance is

Var(X + Y ) = Var(X) + Var(Y ) − 2Cov(X, Y ) = 33
1

3
+ 300 − 2 · 0 = 333

1

3
due to Theorem 7.7.1.

7.7.2 Correlation Coefficient

Definition 7.7.2 The correlation coefficient of X and Y is defined as

ρ(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

. (7.38)

We already know from Chap. 4 that the correlation coefficient is a measure of
the degree of linear relationship between X and Y . It can take values between −1
and 1,−1 ≤ ρ(X, Y ) ≤ 1. However in Chap. 4, we considered the correlation of
two samples, i.e. realizations of random variables; here, we describe the correlation
coefficient of the population. Ifρ(X, Y ) = 0, then X andY are said to be uncorrelated.
If there is a perfect linear relationship between X and Y , then ρ = 1 for a positive
relationship and ρ = −1 for a negative relationship, see Appendix C.2 for the proof.

Theorem 7.7.2 If X and Y are independent, they are also uncorrelated. However,
if they are uncorrelated then they are not necessarily independent.

Example 7.7.2 In Example 7.6.2, we estimated the covariance between the waiting
time for the bus and the waiting time for the train: Cov(X, Y ) = 0. The correlation
coefficient is therefore also 0 indicating no linear relationship between the waiting
times for bus and train.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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7.8 Key Points and Further Issues

Note:

� Note that there is a difference between the empirical cumulative distri-
bution function introduced in Chap. 2 and the CDF introduced in this
chapter. InChap. 2,weworkwith the cumulative distributionof observed
values in a particular sample, whereas in this chapter, we deal with ran-
dom variables modelling the distribution of a general population.

� The expectation and the variance of a random variable are defined as
follows:

Expectation Variance

Discrete
∑n

i=1 xi pi
∑n

i=1(xi − E(X))2 pi

Continuous
∫ +∞
−∞ x f (x)dx

∫ +∞
−∞ (x − E(X))2 f (x)dx

� Some important calculation rules are:

E(a + bX) = a + bE(X); Var(a + bX) = b2 Var(X);

E(X + Y ) = E(X) + E(Y ); Var(X ± Y ) = Var(X) + Var(Y )

±2Cov(X, Y )

� Bivariate random variables (X, Y ) have a joint CDF FXY (x, y) which
specifies the probability P(X ≤ x; Y ≤ y). The conditional distribution
of X |Y [Y |X ] is the PDF of X [Y ] for a given value Y = y [X = x].
The marginal distribution of X [Y ] is the distribution of X [Y ] without
referring to the values of Y [X ].

7.9 Exercises

Exercise 7.1 Consider the following cumulative distribution function of a random
variable X :

F(x) =
⎧
⎨

⎩

0 if x < 2
− 1

4 x
2 + 2x − 3 if 2 ≤ x ≤ 4

1 if x > 4.

(a) What is the PDF of X?
(b) Calculate P(X < 3) and P(X = 4).
(c) Determine E(X) and Var(X).

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Exercise 7.2 Joeymanipulates a die to increase his chances of winning a board game
against his friends. In each round, a die is rolled and larger numbers are generally an
advantage. Consider the random variable X denoting the outcome of the rolled die
and the respective probabilities P(X = 1 = 2 = 3 = 5) = 1/9, P(X = 4) = 2/9,
and P(X = 6) = 3/9.

(a) Calculate and interpret the expectation and variance of X .
(b) Imagine that the board game contains an action which makes the players use

1/X rather than X . What is the expectation of Y = 1/X? Is E(Y ) = E(1/X) =
1/E(X)?

Exercise 7.3 An innovative winemaker experiments with new grapes and adds a
new wine to his stock. The percentage sold by the end of the season depends on the
weather and various other factors. It can be modelled using the random variable X
with the CDF as

F(x) =
⎧
⎨

⎩

0 if x < 0
3x2 − 2x3 if 0 ≤ x ≤ 1
1 if x > 1.

(a) Plot the cumulative distribution function with R.
(b) Determine f (x).
(c) What is the probability of selling at least one-third of his wine, but not more

than two thirds?
(d) Define the CDF in R and calculate the probability of c) again.
(e) What is the variance of X?

Exercise 7.4 A quality index summarizes different features of a product by means
of a score. Different experts may assign different quality scores depending on their
experience with the product. Let X be the quality index for a tablet. Suppose the
respective probability density function is given as follows:

f (x) =
{
cx(2 − x) if 0 ≤ x ≤ 2

0 elsewhere.

(a) Determine c such that f (x) is a proper PDF.
(b) Determine the cumulative distribution function.
(c) Calculate the expectation and variance of X .
(d) Use Tschebyschev’s inequality to determine the probability that X does not

deviate more than 0.5 from its expectation.
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Exercise 7.5 Consider the joint PDF for the type of customer service X (0 =
telephonic hotline, 1 = Email) and of satisfaction score Y (1 = unsatisfied, 2 = sat-
isfied, 3 = very satisfied):

X\Y 1 2 3
0 0 1/2 1/4
1 1/6 1/12 0

(a) Determine and interpret the marginal distributions of both X and Y .
(b) Calculate the 75 % quantile for the marginal distribution of Y .
(c) Determine and interpret the conditional distribution of satisfaction level for X =

1.
(d) Are the two variables independent?
(e) Calculate and interpret the covariance of X and Y .

Exercise 7.6 Consider a continuous random variable X with expectation 15 and
variance 4. Determine the smallest interval [15 − c, 15 + c] which contains at least
90 % of the values of X .

Exercise 7.7 Let X andY be two randomvariables forwhichonly6possible events—
A1, A2, A3, A4, A5, A6—are defined:

i 1 2 3 4 5 6
P(Ai ) 0.3 0.1 0.1 0.2 0.2 0.1
Xi −1 2 2 −1 −1 2
Yi 0 2 0 1 2 1

(a) What is the joint PDF of X and Y ?
(b) Calculate the marginal distributions of X and Y .
(c) Are both variables independent?
(d) Determine the joint PDF for U = X + Y .
(e) Calculate E(U ) and Var(U ) and compare it with E(X) + E(Y ) and Var(X) +

Var(Y ), respectively.

Exercise 7.8 Recall the urn model we introduced in Chap. 5. Consider an urn with
eight balls: four of them are white, three are black, and one is red. Now, two balls
are drawn from the urn. The random variables X and Y are defined as follows:

X =
⎧
⎨

⎩

1 black ball
2 red ball in the first draw
3 white ball

Y =
⎧
⎨

⎩

1 black ball
2 red ball in the second draw
3 white ball.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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(a) When are X and Y independent—when the two balls are drawnwith replacement
or without replacement?

(b) Assume the balls are drawn such that X and Y are dependent. Use the conditional
distribution P(Y |X) to determine the joint PDF of X and Y .

(c) Calculate E(X),E(Y ), and ρ(X, Y ).

Exercise 7.9 If X is the amount of money spent on food and other expenses during
a day (in e) and Y is the daily allowance of a businesswoman, the joint density of
these two variables is given by

fXY (x, y) =
{
c
( 100−x

x

)
if 10 ≤ x ≤ 100, 40 ≤ y ≤ 100

0 elsewhere.

(a) Choose c such that fXY (x, y) is a probability density function.
(b) Find the marginal distribution of X .
(c) Calculate the probability that more than e75 are spent.
(d) Determine the conditional distribution of Y given X .

Exercise 7.10 Consider n i.i.d. random variables Xi with E(Xi ) = μ and Var(Xi ) =
σ2 and the standardized variable Y = X−μ

σ . Show that E(Y ) = 0 and Var(Y ) = 1.

→ Solutions to all exercises in this chapter can be found on p. 365

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,
Springer, Heidelberg
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We introduced the concept of probability density and probability mass functions of
random variables in the previous chapter. In this chapter, we are introducing some
common standard discrete and continuous probability distributions which are widely
used for either practical applications or constructing statistical methods described
later in this book. Suppose we are interested in determining the probability of a cer-
tain event. The determination of probabilities depends upon the nature of the study
and various prevailing conditions which affect it. For example, the determination of
the probability of a head when tossing a coin is different from the determination of
the probability of rain in the afternoon. One can speculate that some mathematical
functions can be defined which depict the behaviour of probabilities under different
situations. Such functions have special properties and describe how probabilities
are distributed under different conditions. We have already learned that they are
called probability distribution functions. The form of such functions may be sim-
ple or complicated depending upon the nature and complexity of the phenomenon
under consideration. Let us first recall and extend the definition of independent and
identically distributed random variables:

Definition 8.0.1 The random variables X1, X2, . . . , Xn are called independent and
identically distributed (i.i.d) if the Xi (i = 1, 2, . . . , n) have the samemarginal cumu-
lative distribution function F(x) and if they are mutually independent.

Example 8.0.1 Suppose a researcher plans a survey on the weight of newborn babies
in a country. The researcher randomly contacts 10 hospitals with a maternity ward
and asks them to randomly select 20 of the newborn babies (no twins) born in the last
6 months and records their weights. The sample therefore consists of 10 × 20 = 200
baby weights. Since the hospitals and the babies are randomly selected, the babies’
weights are therefore not known beforehand. The 200 weights can be denoted by the
random variables X1, X2, . . . , X200. Note that the weights Xi are random variables

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_8
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because, depending on the size of the population, different samples consisting of
200 babies can be randomly selected. Also, the babies’ weights can be seen as
stochastically independent (an example of stochastically dependent weights would
be the weights of twins if they are included in the sample). After collecting the
weights of 200 babies, the researcher has a sample of 200 realized values (i.e. the
weights in grams). The values are now known and denoted by x1, x2, . . . , x200.

8.1 Standard Discrete Distributions

First, we discuss some standard distributions for discrete random variables.

8.1.1 Discrete UniformDistribution

The discrete uniform distribution assumes that all possible outcomes have equal
probability of occurrence. A more formal definition is given as follows:

Definition 8.1.1 Adiscrete randomvariable X with k possible outcomes x1, x2, . . . ,
xk is said to follow a discrete uniform distribution if the probability mass function
(PMF) of X is given by

P(X = xi ) = 1

k
, ∀i = 1, 2, . . . , k. (8.1)

If the outcomes are the natural numbers xi = i (i = 1, 2, . . . , k), the mean and vari-
ance of X are obtained as

E(X) = k + 1

2
, (8.2)

Var(X) = 1

12
(k2 − 1). (8.3)

Example 8.1.1 If we roll a fair die, the outcomes “1”, “2”, . . ., “6” have equal prob-
ability of occurring, and hence, the random variable X “number of dots observed on
the upper surface of the die” has a uniform discrete distribution with PMF

P(X = i) = 1

6
, for all i = 1, 2, . . . , 6.

The mean and variance of X are

E(X) = 6 + 1

2
= 3.5,

Var(X) = 1

12
(62 − 1) = 35/12.
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Fig. 8.1 Frequency
distribution of 1000
generated discrete uniform
random numbers with
possible outcomes
(2, 5, 8, 10)
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Using the function sample() in R, it is easy to generate random numbers from a
discrete uniform distribution. The following command generates a random sample
of size 1000 from a uniform distribution with the four possible outcomes 2, 5, 8, 10
and draws a bar chart of the observed numbers. The use of the set.seed() function
allows to reproduce the generated random numbers at any time. It is necessary to
use the option replace=TRUE to simulate draws with replacement, i.e. to guarantee
that a value can occur more than once.

set.seed(123789)
x <- sample(x=c(2,5,8,10), size=1000, replace=T,
prob=c(1/4,1/4,1/4,1/4))
barchart(table(x), ylim=c(0,300))

A bar chart of the frequency distribution of the 1000 sampled numbers with the
possible outcomes (2, 5, 8, 10) using the discrete uniform distribution is given in
Fig. 8.1. We see that the 1000 generated random numbers are not exactly uniformly
distributed, e.g. the numbers 5 and 10 occur more often than the numbers 2 and 8.
In fact, they are only approximately uniform. We expect that the deviance from
a perfect uniform distribution is getting smaller as we generate more and more
random numbers but will probably never be zero for a finite number of draws. The
random numbers reflect the practical situation that a sample distribution is only an
approximation to the theoretical distribution fromwhich the samplewas drawn.More
details on how to work with random variables in R are given in Appendix A.3.
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8.1.2 Degenerate Distribution

Definition 8.1.2 A random variable X has a degenerate distribution at a, if a is
the only possible outcome with P(X = a) = 1. The CDF in such a case is given by

F(x) =
{
0 if x < a
1 if x ≥ a.

Further, E(X) = a and Var(X) = 0.
The degenerate distribution indicates that there is only one possible fixed outcome,

and therefore, no randomness is involved. It follows thatwe need at least two different
possible outcomes to have randomness in the observations of a random variable or
random experiment. The Bernoulli distribution is such a distribution where there are
only two outcomes, e.g. success and failure or male and female. These outcomes are
usually denoted by the values “0” and “1”.

8.1.3 Bernoulli Distribution

Definition 8.1.3 A random variable X has a Bernoulli distribution if the PMF of X
is given as

P(X = x) =
{
p if x = 1
1 − p if x = 0.

The cumulative distribution function (CDF) of X is

F(x) =
⎧
⎨

⎩

0 if x < 0
1 − p if 0 ≤ x < 1
1 if x ≥ 1.

The mean (expectation) and variance of a Bernoulli random variable are calculated
as

E(X) = 1 · p + 0 · (1 − p) = p (8.4)

and
Var(X) = (1 − p)2 · p + (0 − p)2 · (1 − p) = p(1 − p), (8.5)

respectively.

A Bernoulli distribution is useful when there are only two possible outcomes, and
our interest lies in any of the two outcomes, e.g. whether a customer buys a certain
product or not, or whether a hurricane hits an island or not. The outcome of an event
A is usually coded as 1 which occurs with probability p. If the event of interest does
not occur, i.e. the complementary event Ā occurs, the outcome is coded as 0 which
occurs with probability 1 − p. So p is the probability that the event of interest A
occurs.
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Example 8.1.2 A company organizes a raffle at an end-of-year function. There are
300 lottery tickets in total, and 50 of them are marked as winning tickets. The event
A of interest is “ticket wins” (coded as X = 1), and the probability p of having a
winning ticket is a priori (i.e. before any lottery ticket has been drawn)

P(X = 1) = 50

300
= 1

6
= p and P(X = 0) = 250

300
= 5

6
= 1 − p.

According to (8.4) and (8.5), the mean (expectation) and variance of X are

E(X) = 1

6
and Var(X) = 1

6
· 5
6

= 5

36
respectively.

8.1.4 Binomial Distribution

Consider n independent trials or repetitions of a Bernoulli experiment. In each trial
or repetition, we may observe either A or Ā. At the end of the experiment, we have
thus observed A between 0 and n times. Suppose we are interested in the probability
of A occurring k times, then the binomial distribution is useful.

Example 8.1.3 Consider a coin tossing experiment where a coin is tossed ten times
and the event of interest is A = “head”. The random variable X “number of heads in
10 experiments” has the possible outcomes k = 0, 1, . . . , 10. A question of interest
may be: What is the probability that a head occurs in 7 out of 10 trials; or in 5 out
of 10 trials? We assume that the order in which heads (and tails) appear is not of
interest, only the total number of heads is of interest.

Questions of this kind are answered by the binomial distribution. This distribution
can either be motivated as a repetition of n Bernoulli experiments (as in the above
coin tossing example) or by the urn model (see Chap. 5): assume there are M white
and N − M black balls in the urn. Suppose n balls are drawn randomly from the urn,
the colour of the ball is recorded and the ball is placed back into the urn (samplingwith
replacement). Let A be the event of interest that a white ball is drawn from the urn.
The probability of A is p = M/N (the probability of drawing a black ball is 1 − p =
(N − M)/N ). Since the balls are drawn with replacement, these probabilities do not
change from draw to draw. Further, let X be the random variable counting the number
ofwhite balls drawn from the urn in the n experiments. Since the order of the resulting
colours of balls is not of interest in this case, there are

(n
k

)
combinations where k

balls are white and n − k balls are black. Since the balls are drawn with replacement,
every outcome of the n experiments is independent of all others. The probability that
X = k, k = 0, 1, . . . , n, can therefore be calculated as

P(X = k) =
(
n

k

)
pk(1 − p)n−k (k = 0, 1, . . . , n). (8.6)

Please note that we can use the product pk(1 − p)n−k because the draws are inde-
pendent. The binomial coefficient

(n
k

)
is necessary to count the number of possible

orders of the black and white balls.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Definition 8.1.4 A discrete random variable X is said to follow a binomial distribu-
tionwith parameters n and p if its PMF is given by (8.6).We also write X ∼ B(n; p).
The mean and variance of a binomial random variable X are given by

E(X) = np, (8.7)

Var(X) = np(1 − p). (8.8)

Remark 8.1.1 A Bernoulli random variable is therefore B(1; p) distributed.

Example 8.1.4 Consider an unfair coin where the probability of observing a tail (T )
is p(T ) = 0.6. Let us denote tails by “1” and heads by “0”. Suppose the coin is
tossed three times. In total, there are the 23 = 8 following possible outcomes:

Outcome X = x
1 1 1 3
1 1 0 2
1 0 1 2
0 1 1 2
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0

Note that the first outcome, viz. (1, 1, 1) leads to x = 3, the next 3 outcomes, viz.,
(1, 1, 0), (1, 0, 1), (0, 1, 1) obtained by (= (3

2

)
) lead to x = 2, the next 3 outcomes,

viz., (1, 0, 0), ((0, 1, 0), (0, 0, 1) obtained by (= (3
1

)
) lead to x = 1, and the last

outcome, viz. (0, 0, 0) obtained by (= (3
0

)
) leads to x = 0. We can, for example,

calculate

P(X = 2) =
(
3

2

)
0.62(1 − 0.6)1 = 0.432 (or 43.2%).

Further, the mean and variance of X are

E(X) = np = 3 · 0.6 = 1.8, and Var(X) = np(1 − p) = 3 · 0.6 · 0.4 = 0.72.

Functions for the binomial distribution, as well as many other distributions, are
implemented in R. For each of these distributions,we can easily determine the density
function (PMF, PDF) for given values and parameters, determine the CDF, calculate
quantiles and draw randomnumbers. AppendixA.3 givesmore details. Nevertheless,
we illustrate the concept of dealing with distributions in R in the following example.

Example 8.1.5 Suppose we roll an unfair die 50 times with the probability of a tail
ptail = 0.6. We thus deal with a B(50, 0.6) distribution which can be plotted using
the dbinom command. The prefix d stands for “density”.
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Fig. 8.2 PMF of a
B(50, 0.6) distribution
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n <- 50
p <- 0.6
k <- 0:n
pmf <- dbinom(k,n,p)
plot(k,pmf, type=h)

Aplot of thePMFof abinomial distributionwithn = 50 and p = 0.6 (i.e. B(50, 0.6))
is given in Fig. 8.2.

Note that we can also calculate the CDF with R. We can use the pbinom(x,n,p)
command, where the prefix p stands for probability, to calculate the CDF at any
point. For example, suppose we are interested in P(X ≥ 30) = 1 − F(29), that is
the probability of observing thirty or more tails; then we write

1-pbinom(29,50,0.6)
[1] 0.5610349

Similarly, we can determine quantiles. For instance, the 80 % quantile q which
describes that P(X ≤ q) ≥ 0.8 can be obtained by the qbinom(q,n,p) command
as follows:

qbinom(0.8,50,0.6)
[1] 33

If we want to generate 100 random realizations from a B(50, 0.6) distribution we
can use the rbinom command.

rbinom(100,50,0.6)

The binomial distribution has some nice properties. One of them is described in
the following theorem:
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Theorem 8.1.1 Let X ∼ B(n; p) and Y ∼ B(m; p) and assume that X and Y are
(stochastically) independent. Then

X + Y ∼ B(n + m; p). (8.9)

This is intuitively clear since we can interpret this theorem as describing the addi-
tive combination of two independent binomial experiments with n andm trials, with
equal probability p, respectively. Since every binomial experiment is a series of inde-
pendent Bernoulli experiments, this is equivalent to a series of n + m independent
Bernoulli trials with constant success probability p which in turn is equivalent to a
binomial distribution with n + m trials.

8.1.5 Poisson Distribution

Consider a situation in which the number of events is very large and the probability
of success is very small: for example, the number of alpha particles emitted by a
radioactive substance entering a particular region in a given short time interval. Note
that the number of emitted alpha particles is very high but only a few particles are
transmitted through the region in a given short time interval. Some other examples
where Poisson distributions are useful are the number of flu cases in a country within
one year, the number of tropical storms within a given area in one year, or the number
of bacteria found in a biological investigation.

Definition 8.1.5 Adiscrete randomvariable X is said to followaPoisson distribution
with parameter λ > 0 if its PMF is given by

P(X = x) = λx

x ! exp (−λ) (x = 0, 1, 2, . . .). (8.10)

We also write X ∼ Po(λ). The mean and variance of a Poisson random variable are
identical:

E(X) = Var(X) = λ.

Example 8.1.6 Suppose a country experiences X = 4 tropical storms on average per
year. Then the probability of suffering from only two tropical storms is obtained by
using the Poisson distribution as

P(X = 2) = λx

x ! exp(−λ) = 42

2! exp(−4) = 0.146525.

Ifwe are interested in the probability that notmore than 2 storms are experienced, then
we can apply rules (7.7)–(7.13) from Chap. 7: P(X ≤ 2) = P(X = 2) + P(X =
1) + P(X = 0) = F(2) = 0.2381033. We can calculate P(X = 1) and P(X = 0)
from (8.10) or using R. Similar to Example 8.1.5, we use the prefix d to obtain
the PMF and the prefix p to work with the CDF, i.e. we can use dpois(x,λ) and
ppois(x,λ) to determine P(X = x) and P(X ≤ x), respectively.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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dpois(2,4) + dpois(1,4) + dpois(0,4)
[1] 0.2381033
ppois(2,4)
[1] 0.2381033

8.1.6 Multinomial Distribution

Wenowconsider randomexperimentswhere k distinct or disjoint events A1, A2, . . . ,

Ak can occur with probabilities p1, p2, . . . , pk , respectively, with the restriction∑k
j=1 p j = 1. For example, if eight parties compete in a political election, we may

be interested in the probability that a person votes for party A j , j = 1, 2, . . . , 8.
Similarly one might be interested in the probability whether tuberculosis is detected
in the lungs (A1), in other organs (A2), or both (A3). Practically, we often use the
multinomial distribution to model the distribution of categorical variables. This can
be interpreted as a generalization of the binomial distribution (where only two distinct
events can occur) to the situation where more than two events or outcomes can
occur. If the experiment is repeated n times independently, we are interested in the
probability that

A1 occurs n1-times, A2 occurs n2-times, . . . , Ak occurs nk-times

with
∑k

j=1 n j = n. Since several events can occur, the outcome of one (of the n)
experiments is conveniently described by binary indicator variables. Let Vi j , i =
1, . . . , n, j = 1, . . . , k, denote the event “A j is observed in experiment i”, i.e.

Vi j =
{
1 if A j occurs in experiment i
0 if A j does not occur in experiment i

with probabilities P(Vi j = 1) = p j , j = 1, 2, . . . , k; then, the outcome of one
experiment is a vector of length k,

Vi = (Vi1, . . . , Vi j , . . . , Vik) = (0, . . . , 1, . . . , 0),

with “1” being present in only one position, i.e. in position j , if A j occurs in exper-
iment i . Now, define (for each j = 1, . . . , k) X j = ∑n

i=1 Vi j . Then, X j is counting
how often event A j was observed in the n independent experiments (i.e. how often
Vi j was 1 in the n experiments).

Definition 8.1.6 The random vector X = (X1, X2, . . . , Xk) is said to follow a
multinomial distribution if its PMF is given as

P(X1 = n1, X2 = n2, . . . , Xk = nk) = n!
n1!n2! · · · nk ! · pn11 pn22 · · · pnkk (8.11)

with the restrictions
∑k

j=1 n j = n and
∑k

j=1 p j = 1. We also write X ∼ M(n; p1,
. . . , pk). The mean of X is the (component-wise) vector

E(X) = (E(X1),E(X2), . . . ,E(Xk))

= (np1, np2, . . . , npk).
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The (i, j)th element of the covariance matrix V (X) is

Cov(Xi , X j ) =
{
npi (1 − pi ) if i = j
−npi p j if i �= j.

Remark 8.1.2 Due to the restriction that
∑k

j=1 n j = ∑k
j=1 X j = n, X1, . . . , Xk are

not stochastically independent which is reflected by the negative covariance. This
is also intuitively clear: if one X j gets higher, another X j ′ , j �= j ′, has to become
lower to satisfy the restrictions.

We use the multinomial distribution to describe the randomness of categorical
variables. Suppose we are interested in the variable “political party”; there might
be eight political parties, and we could thus summarize this variable by eight binary
variables, each of themdescribing the event of party A j , j = 1, 2, . . . , 8, being voted
for. In this sense, X = (X1, X2, . . . , X8) follows a multinomial distribution.

Example 8.1.7 Consider a simple example of the urn model. The urn contains 50
balls of three colours: 25 red balls, 15 white balls, and 10 black balls. The balls are
drawn from the urn with replacement. The balls are placed back into the urn after
every draw, which means the draws are independent. Therefore, the probability of
drawing a red ball in every draw is p1 = 25

50 = 0.5. Analogously, p2 = 0.3 (for white
balls) and p3 = 0.2 (for black balls). Consider n = 4 draws. The probability of the
random event of drawing “2 red balls, 1 white ball, and 1 black ball” is:

P(X1 = 2, X2 = 1, X3 = 1) = 4!
2!1!1! (0.5)

2(0.3)1(0.2)1 = 0.18. (8.12)

We would have obtained the same result in R using the dmultinom function:

dmultinom(c(2,1,1),prob=c(0.5,0.3,0.2))

This example demonstrates that the multinomial distribution relates to an exper-
iment with replacement and without considering the order of the draws. Instead of
the urn model, consider another example where we may interpret these three proba-
bilities as probabilities of voting for candidate A j , j = 1, 2, 3, in an election. Now,
suppose we ask four voters about their choice, then the probability of candidate A1
receiving 2 votes, candidate A2 receiving 1 vote, and candidate A3 receiving 1 vote
is 18 % as calculated in (8.12).

Remark 8.1.3 In contrast to most of the distributions, the CDF of the multinomial
distribution, i.e. the function calculating P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk), is not
contained in the base R-distribution. Please note that for k = 2, the multinomial
distribution reduces to the binomial distribution.
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8.1.7 Geometric Distribution

Consider a situation inwhichwe are interested in determining howmany independent
Bernoulli trials are needed until the event of interest occurs for the first time. For
instance, we may be interested in how many tickets to buy in a raffle until we win
for the first time, or how many different drugs to try to successfully tackle a severe
migraine, etc. The geometric distribution can be used to determine the probability
that the event of interest happens at the kth trial for the first time.

Definition 8.1.7 A discrete random variable X is said to follow a geometric distri-
bution with parameter p if its PMF is given by

P(X = k) = p(1 − p)k−1, k = 1, 2, 3, . . . (8.13)

The mean (expectation) and variance are given by E(X) = 1/p and Var(X) =
1/p(1/p − 1), respectively.

Example 8.1.8 Let us consider an experiment where a coin is tossed until “head” is
obtained for the first time. The probability of getting a head is p = 0.5 for each toss.
Using (8.13), we can determine the following probabilities:

P(X = 1) = 0.5

P(X = 2) = 0.5(1 − 0.5) = 0.25

P(X = 3) = 0.5(1 − 0.5)2 = 0.125

P(X = 4) = 0.5(1 − 0.5)3 = 0.0625

. . . . . .

Using the command structure for obtaining PMF’s in R (Appendix A as well as
Examples 8.1.5 and 8.1.6), we can determine the latter probability of P(X = 4) as
follows:

dgeom(3,0.5)

Note that the definition of X in R slightly differs from our definition. In R, k is
the number of failures before the first success. This means we need to specify k − 1
in the dgeom function rather than k. The mean and variance for this setting are

E(X) = 1

0.5
= 2; Var(X) = 1

0.5

(
1

0.5
− 1

)
= 2.

8.1.8 Hypergeometric Distribution

We can again use the urn model to motivate another distribution, the hypergeometric
distribution. Consider an urn with We randomly draw n balls without replacement,
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M white balls
N − M black balls

N total balls

i.e. we do not place a ball back into the urn once it is drawn. The order in which the
balls are drawn is assumed to be of no interest; only the number of drawn white balls
is of relevance. We define the following random variable

X : “number of white balls (x) among the n drawn balls”.

To be more precise, among the n drawn balls, x are white and n − x are black. There
are

(M
x

)
possibilities to choose x white balls from the total of M white balls, and

analogously, there are
(N−M
n−x

)
possibilities to choose (n − x) black balls from the

total of N − M black balls. In total, we draw n out of N balls. Recall the probability
definitionofLaplace as thenumber of simple favourable events dividedbyall possible
events. The number of combinations for all possible events is

(N
n

)
; the number of

favourable events is
(M
x

)(N−M
n−x

)
because we draw, independent of each other, x out

of M balls and n − x out of N − M balls. Hence, the PMF of the hypergeometric
distribution is

P(X = x) =
(M
x

)(N−M
n−x

)
(N
n

) (8.14)

for x ∈ {max(0, n − (N − M)), . . . ,min(n, M)}.

Definition 8.1.8 A random variable X is said to follow a hypergeometric distribu-
tion with parameters n, M, N , i.e. X ∼ H(n, M, N ), if its PMF is given by (8.14).

Example 8.1.9 The German national lottery draws 6 out of 49 balls from a rotating
bowl. Each ball is associated with a number between 1 and 49. A simple bet is to
choose 6 numbers between 1 and 49. If 3 or more chosen numbers correspond to
the numbers drawn in the lottery, then one wins a certain amount of money. What
is the probability of choosing 4 correct numbers? We can utilize the hypergeometric
distribution with x = 4, M = 6, N = 49, and n = 6 to calculate such probabilities.
The interpretation is that we “draw” (i.e. bet on) 4 out of the 6 winning balls and
“draw” (i.e. bet on) another 2 out of the remaining 43 (49 − 6) losing balls. In total,
we draw 6 out of 49 balls. Calculating the number of the favourable combinations and
all possible combinations leads to the application of the hypergeometric distribution
as follows:

P(X = 4) =
(M
x

)(N−M
n−x

)
(N
n

) =
(6
4

)(43
2

)
(49
6

) ≈ 0.001 (or 0.1%).

Wewould have obtained the same results using the dhyper command. Its arguments
are x, M, N, n, and thus, we specify

dhyper(4,6,43,6)
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Fig. 8.3 The H(6, 43, 6)
distribution
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The H(6, 43, 6) distribution is also visualized in Fig. 8.3. It is evident that the
cumulative probability of choosing 2 or fewer correct numbers is greater than 0.9
(or 90 %), but it is very unlikely to have 3 or more numbers right. This may explain
why the national lottery pays out money only for 3 or more correct numbers.

8.2 Standard Continuous Distributions

Now, we discuss some standard probability distributions of (absolute) continuous
randomvariables. Characteristics of continuous randomvariables are that the number
of possible outcomes is uncountably infinite and that they have a continuous distribu-
tion function F(x). It follows that the point probabilities are zero, i.e. P(X = x) = 0.
Further,we assume a unique density function f exists, such that F(x) = ∫ x

−∞ f (t)dt .

8.2.1 Continuous UniformDistribution

A continuous analogue to the discrete uniform distribution is the continuous uniform
distribution on a closed interval in R.

Definition 8.2.1 A continuous random variable X is said to follow a (continuous)
uniformdistribution in the interval [a, b], i.e. X ∼ U (a, b), if its probability density
function (PDF) is given by

f (x) =
{ 1

b−a if a ≤ x ≤ b (a < b)
0 otherwise.

The mean and variance of X ∼ U (a, b) are

E(X) = a + b

2
and Var(X) = (b − a)2

12
,

respectively.
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Example 8.2.1 Suppose a train arrives at a subway station regularly every 10 min.
If a passenger arrives at the station without knowing the timetable, then the waiting
time to catch the train is uniformly distributed with density

f (x) =
{

1
10 if 0 ≤ x ≤ 10
0 otherwise.

The “average” waiting time is E(X) = (10 + 0)/2 = 5min. The probability of wait-
ing for the train for less than 3min is obviously 0.3 (or 30%) which can be calculated
in R using the punif(x,a,b) command (see also Appendix A.3):

punif(3,0,10)

8.2.2 Normal Distribution

The normal distribution is one of the most important distributions used in statistics.
The namewas given byCarl FriedrichGauss (1777–1855), aGermanmathematician,
astronomer, geodesist, and physicistwho observed thatmeasurements in geodesy and
astronomy randomly deviate in a symmetric way from their true values. The normal
distribution is therefore also often called a Gaussian distribution.

Definition 8.2.2 A random variable X is said to follow a normal distribution with
parameters μ and σ2 if its PDF is given by

f (x) = 1

σ
√
2π

exp

(
− (x − μ)2

2σ2

)
; −∞ < x < ∞, −∞ < μ < ∞, σ2 > 0.

(8.15)
We write X ∼ N (μ,σ2). The mean and variance of X are

E(X) = μ ; and Var(X) = σ2,

respectively. If μ = 0 and σ2 = 1, then X is said to follow a standard normal
distribution, X ∼ N (0, 1). The PDF of a standard normal distribution is given by

φ(x) = 1√
2π

exp(− x2

2
); −∞ < x < ∞.

The density of a normal distribution has its maximum (see Fig. 8.4) at x = μ.
The density is also symmetric around μ. The inflexion points of the density are at
(μ − σ) and (μ + σ) (Fig. 8.4). A lower σ indicates a higher concentration around
the mean μ. A higher σ indicates a flatter density (Fig. 8.5).

The cumulative distribution function of X ∼ N (μ,σ2) is

F(x) =
∫ x

−∞
φ(t)dt (8.16)

which is often denoted as Φ(x). The value of Φ(x) for various values of x can be
obtained in R following the rules introduced in Appendix A.3. For example,
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μ − σ μ + σμ

Fig. 8.4 PDF of a normal distribution∗

N(0, 1)

N(0, 0.5)

N(0, 2)

0

Fig. 8.5 PDF of N (0, 2), N (0, 1) and N (0, 0.5) distributions∗

pnorm(1.96, mean = 0, sd = 1)

calculates Φ(1.96) as approximately 0.975. This means, for a standard normal dis-
tribution the probability P(X ≤ 1.96) ≈ 0.975.

Remark 8.2.1 There is no explicit formula to solve the integral in Eq. (8.16). It has
to be solved by numerical (or computational) methods. This is the reason why CDF
tables are presented in almost all statistical textbooks, see Table C.1 in Appendix C.

Example 8.2.2 An orange farmer sells his oranges in wooden boxes. The weights of
the boxes vary and are assumed to be normally distributed with μ = 15 kg and σ2 =
9
4 kg2. The farmer wants to avoid customers being unsatisfied because the boxes are
too low in weight. He therefore asks the following question: What is the probability
that a boxwith aweight of less than 13 kg is sold?Using thepnorm(x,μ,σ) command
in R, we get
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pnorm(13,15,sqrt(9/4))
[1] 0.09121122

To calculate the probability in Example 8.2.2 manually, we first have to introduce
some theoretical results.

Calculation rules for normal random variables.

Let X ∼ N (μ, σ2). Using the transformation

Z = X − μ

σ
∼ N (0, 1), (8.17)

every normally distributed random variable can be transformed into a standard nor-
mal random variable. We call this transformation the Z -transformation. We can use
this transformation to derive convenient calculation rules. The probability for X ≤ b
is

P(X ≤ b) = P

(
X − μ

σ
≤ b − μ

σ

)
= P

(
Z ≤ b − μ

σ

)
= Φ

(
b − μ

σ

)
. (8.18)

Consequently, the probability for X > a is

P(X > a) = 1 − P(X ≤ a) = 1 − Φ

(
a − μ

σ

)
. (8.19)

The probability that X realizes a value in the interval [a, b] is

P(a ≤ X ≤ b) = P

(
a − μ

σ
≤ Z ≤ b − μ

σ

)
= Φ

(
b − μ

σ

)
− Φ

(
a − μ

σ

)
.

(8.20)
Because of the symmetry of the probability density function φ(x) around its mean 0,
the following equation holds for the distribution function Φ(x) of a standard normal
random variable for any value a:

Φ(−a) = 1 − Φ(a). (8.21)

It follows that P(−a < Z < a) = 2 · Φ(a) − 1, see also Fig. 8.6.

Example 8.2.3 Recall Example 8.2.2 where a farmer sold his oranges. He was inter-
ested in P(X ≤ 13) for X ∼ N (15, 9/4). Using (8.17), we get

P(X ≤ 13) = Φ

(
13 − 15

3
2

)

= Φ

(
−4

3

)
= 1 − Φ

(
4

3

)
≈ 0.091 (or 9.1%).

To obtain Φ(4/3) ≈ 90.9%, we could either use R (pnorm(4/3)) or use
Table C.1.
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Fig. 8.6 Distribution function of the standard normal distribution

Distribution of the Arithmetic Mean.

Assume that X ∼ N (μ,σ2). Consider a random sample X = (X1, X2, . . . , Xn) of
independent and identically distributed random variables Xi with Xi ∼ N (μ, σ2).
Then, the arithmetic mean X̄ = 1

n

∑n
i=1 Xi follows a normal distribution with mean

E(X̄) = 1

n

n∑

i=1

E(Xi ) = μ

and variance

Var(X̄) = 1

n2

n∑

i=1

Var(Xi ) = σ2

n
(8.22)

where Cov(Xi , X j ) = 0 for i �= j . In summary, we get

X̄ ∼ N

(
μ,

σ2

n

)
.

Remark 8.2.2 In fact, in Eq. (8.22), we have used the fact that the sum of normal
random variables also follows a normal distribution, i.e.

(X1 + X2) ∼ N
(
μ1 + μ2,σ

2
1 + σ2

2

)
.

This result can be generalized to n (not necessarily identically distributed but inde-
pendent) normal random variables. In fact, it holds that if X1, X2, . . . , Xn are inde-
pendent normal variables with means μ1, μ2, . . . , μn and variances σ2

1,σ
2
2, . . . , σ

2
n ,

then for any real numbers a1, a2, . . . , an , it holds that

(a1X1 + a2X2 + · · · + an Xn) ∼ N
(
a1μ1 + a2μ2 + · · · anμn, a21σ21 + a22σ22 + · · · a2nσ2n

)
.
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In general, it cannot be taken for granted that the sum of two random variables
follows the same distribution as the two variables themselves. As an example, con-
sider the sum of two independent uniform distributions with X1 ∼ U [0, 10] and
X2 ∼ U [20, 30]. It holds that E(X1 + X2) = E(X1) + E(X2) and Var(X1 + X2) =
Var(X1) + Var(X2), but X1 + X2 is obviously not uniformly distributed.

8.2.3 Exponential Distribution

The exponential distribution is useful in many situations, for example when one is
interested in the waiting time, or lifetime, until an event of interest occurs. If we
assume that the future lifetime is independent of the lifetime that has already taken
place (i.e. no “ageing” process is working), the waiting times can be considered to
be exponentially distributed.

Definition 8.2.3 A random variable X is said to follow an exponential distribution
with parameter λ > 0 if its PDF is given by

f (x) =
{

λ exp(−λx) if x ≥ 0
0 otherwise.

(8.23)

We write X ∼ Exp(λ). The mean and variance of an exponentially distributed ran-
dom variable X are

E(X) = 1

λ
and Var(X) = 1

λ2 ,

respectively. The CDF of the exponential distribution is given as

F(x) =
{
1 − exp(−λx) if x ≥ 0
0 otherwise.

(8.24)

Note, that P(X > x) = 1 − F(x) = exp(−λx) (x ≥ 0). An interesting property of
the exponential distribution is itsmemorylessness: if time t has already been reached,
the probability of reaching a time greater than t + Δ does not depend on t . This can
be written as

P(X > t + Δ|X > t) = P(X > Δ) t,Δ > 0.

The result can be derived using basic probability rules as follows:

P(X > t + Δ|X > t) = P(X > t + Δ and X > t)

P(X > t)
= P(X > t + Δ)

P(X > t)

= exp[−λ(t + Δ)]
exp[−λt] = exp[−λΔ]

= 1 − F(Δ) = P(X > Δ).

For example, suppose someone stands in a supermarket queue for t minutes. Say
the person forgot to buy milk, so she leaves the queue, gets the milk, and stands in
the queue again. If we use the exponential distribution to model the waiting time,
we say that it does not matter what time it is: the random variable “waiting time
from standing in the queue until paying the bill” is not influenced by how much
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time has elapsed already; it does not matter if we queued before or not. Please note
that the memorylessness property is shared by the geometric and the exponential
distributions.

There is also a relationship between the Poisson and the exponential distribution:

Theorem 8.2.1 The number of events Y occurring within a continuum of time is
Poisson distributed with parameter λ if and only if the time between two events is
exponentially distributed with parameter λ.

The continuum of time depends on the problem at hand. It may be a second, aminute,
3 months, a year, or any other time period.

Example 8.2.4 Let Y be the random variable which counts the “number of accesses
per second for a search engine”. Assume that Y is Poisson distributed with parameter
λ = 10 (E(Y ) = 10,Var(Y ) = 10). The random variable X , “waiting time until the
next access”, is then exponentially distributed with parameter λ = 10. We therefore
get

E(X) = 1

10
, Var(X) = 1

102
.

In this example, the continuum is 1 s. The expected number of accesses per second
is therefore E(Y ) = 10, and the expected waiting time between two accesses is
E(X) = 1/10 s. The probability of experiencing a waiting time of less than 0.1 s is

F(0.1) = 1 − exp(−λx) = 1 − exp(−10 · 0.1) ≈ 0.63.

In R, we can obtain the same result as

pexp(0.1,10)
[1] 0.6321206

8.3 Sampling Distributions

All the distributions introduced in this chapter up to now are motivated by practical
applications. However, there are theoretical distributions which play an important
role in the construction and development of various statistical tools such as those
introduced inChaps. 9–11.We call these distributions “sampling distributions”.Now,
we discuss the χ2-, t-, and F-distributions.

8.3.1 χ2-Distribution

Definition 8.3.1 Let Z1, Z2 . . . , Zn be n independent and identically N (0, 1)-
distributed random variables. The sum of their squares,

∑n
i=1 Z

2
i , is then χ2-

distributed with n degrees of freedom and is denoted as χ2
n . The PDF of the χ2-

distribution is given in Eq. (C.7) in Appendix C.3.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The χ2-distribution is not symmetric. A χ2-distributed random variable can only
realize values greater than or equal to zero. Figure 8.7a shows the χ2

1-, χ2
2-, and

χ2
5-distributions. It can be seen that the “degrees of freedom” specify the shape of

the distribution. Their interpretation and meaning will nevertheless become clearer
in the following chapters. The quantiles of the CDF of different χ2-distributions can
be obtained in R using the qchisq(p,df) command. They are also listed in Table
C.3 for different values of n.

Theorem 8.3.1 Consider two independent random variables which areχ2
m- andχ2

n-
distributed, respectively. The sum of these two random variables isχ2

n+m-distributed.

An important example of a χ2-distributed random variable is the sample variance
(S2X ) of an i.i.d. sample of size n from a normally distributed population, i.e.

(n − 1)S2X
σ2 ∼ χ2

n−1. (8.25)

8.3.2 t-Distribution

Definition 8.3.2 Let X and Y be two independent random variables where X ∼
N (0, 1) and Y ∼ χ2

n . The ratio

X√
Y/n

∼ tn

follows a t-distribution (Student’s t-distribution) with n degrees of freedom. The
PDF of the t-distribution is given in Eq. (C.8) in Appendix C.3.

Figure 8.7b visualizes the t1-, t5-, and t30-distributions. The quantiles of different
t-distributions can be obtained in R using the qt(p,df) command. They are also
listed in Table C.2 for different values of n.

An application of the t-distribution is the following: if we draw a sample of size
n from a normal population N (μ,σ2) and calculate the arithmetic mean X̄ and the
sample variance S2X , then the following theorem holds:

Theorem 8.3.2 (Student’s theorem) Let X = (X1, X2, . . . , Xn) with Xi
iid.∼ N

(μ,σ2). The ratio

(X̄ − μ)
√
n

SX
= (X̄ − μ)

√
n√

1
n−1

∑n
i+1(Xi − X̄)2

∼ tn−1 (8.26)

is then t-distributed with n − 1 degrees of freedom.



8.3 Sampling Distributions 173

0 1 2 3 4
0

2

χ2
1

χ2
2

χ2
5

x

f(x)

(a) χ2 distributions
-2 -1 0 1 2

0

0.5

t1

t5

t30

x

f(x)

(b) t distributions

Fig. 8.7 Probability density functions of χ2 and t distributions∗

8.3.3 F-Distribution

Definition 8.3.3 Let X and Y be independent χ2
m and χ2

n-distributed random vari-
ables, then the distribution of the ratio

X/m

Y/n
∼ Fm,n (8.27)

follows the Fisher F-distribution with (m, n) degrees of freedom. The PDF of the
F-distribution is given in Eq. (C.9) in Appendix C.3.

If X is a χ2
1-distributed random variable, then the ratio (8.27) is F1,n-distributed.

The square root of this ratio is tn-distributed since the square root of a χ2
1-distributed

random variable is N (0, 1)-distributed. If W is F-distributed, Fm,n , then 1/W is
Fn,m-distributed. Figure 8.8 visualizes the F5,5, F5,10 and F5,30 distributions. The

Fig. 8.8 Probability density
functions for different
F-distributions∗
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0

1

F5,5

F5,10

F5,30

x

f(x)



174 8 Probability Distributions

quantiles of different F-distributions can be obtained in R using the qf(p,df1,df2)
command.

One application of the F-distribution relates to the ratio of two sample variances of
two independent samples of sizem and n, where each sample is an i.i.d. sample from
a normal population, i.e. N (μX , σ2) and N (μY , σ2). For the sample variances S2X =
1

m−1

∑m
i=1(Xi − X̄)2 and S2Y = 1

n−1

∑n
i=1(Yi − Ȳ )2 from the two populations, the

ratio
S2X
S2Y

∼ Fm−1,n−1

is F-distributed with (m − 1) degrees of freedom in the numerator and (n − 1)
degrees of freedom in the denominator.

8.4 Key Points and Further Issues

Note:

� Examples of different distributions are:

Distribution Example
Uniform Rolling a die (discrete)

Waiting for a train (continuous)
Bernoulli Any binary variable such as gender
Binomial Number of “heads” when tossing a coin n times
Poisson Number of particles emitted by a radioactive source

entering a small area in a given time interval
Multinomial Categorical variables such as “party voted for”
Geometric Number of raffle tickets until first ticket wins
Hypergeometric National lotteries; Fisher’s test, see p. 428
Normal Height or weight of women (men)
Exponential Survival time of a PC
χ2 Sample variance; χ2 tests, see p. 235 ff
t Confidence interval for the mean, see p. 197
F Tests in the linear model, see p. 272
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Note:

� One can use R to determine values of densities (PDF/PMF), cumula-
tive probability distribution functions (CDF), quantiles of the CDF, and
random numbers:

First letter Function Further letters Example
d Density distribution name dnorm
p Probability distribution name pnorm
q Quantiles distribution name qnorm
r Random number distribution name rnorm

We encourage the use of R to obtain quantiles of sampling distributions,
but Tables C.1–C.3 also list some of them.

� In this chapter, we assumed the parameters such as μ,σ,λ, and others to
be known. In Chap. 9, we will propose how to estimate these parameters
from the data. In Chap. 10, we test statistical hypotheses about these
parameters.

� For n i.i.d. random variables X1, X2, . . . , Xn , the arithmetic mean X̄
converges to a N (μ,σ2/n) distribution as n tends to infinity. SeeAppen-
dix C.3 as well as Exercise 8.11 for the Theorem of Large Numbers and
the Central Limit Theorem, respectively.

8.5 Exercises

Exercise 8.1 A company producing cereals offers a toy in every sixth cereal package
in celebration of their 50th anniversary. A father immediately buys 20 packages.

(a) What is the probability of finding 4 toys in the 20 packages?
(b) What is the probability of finding no toy at all?
(c) The packages contain three toys. What is the probability that among the 5 pack-

ages that are given to the family’s youngest daughter, she finds two toys?

Exercise 8.2 A study on breeding birds collects information such as the length of
their eggs (inmm). Assume that the length is normally distributed withμ = 42.1mm
and σ2 = 20.82. What is the probability of

(a) finding an egg with a length greater than 50 mm?
(b) finding an egg between 30 and 40 mm in length?

Calculate the results both manually and by using R.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Exercise 8.3 A dodecahedron is a die with 12 sides. Suppose the numbers on the die
are 1–12. Consider the random variable X which describes which number is shown
after rolling the die once.What is the distribution of X?Determine E(X) andVar(X).

Exercise 8.4 Felix states that he is able to distinguish a freshly ground coffee blend
from an ordinary supermarket coffee. One of his friends asks him to taste 10 cups
of coffee and tell him which coffee he has tasted. Suppose that Felix has actually no
clue about coffee and simply guesses the brand. What is the probability of at least 8
correct guesses?

Exercise 8.5 An advertising board is illuminated by several hundred bulbs. Some
of the bulbs are fused or smashed regularly. If there are more than 5 fused bulbs on
a day, the owner of the board replaces them, otherwise not. Consider the following
data collected over a month which captures the number of days (ni ) on which i bulbs
were broken:

Fused bulbs 0 1 2 3 4 5

ni 6 8 8 5 2 1

(a) Suggest an appropriate distribution for X : “number of broken bulbs per day”.
(b) What is the average number of broken bulbs per day? What is the variance?
(c) Determine the probabilities P(X = x) using the distribution you chose in (a)

and using the average number of broken bulbs you calculated in (b). Compare
the probabilities with the proportions obtained from the data.

(d) Calculate the probability that at least 6 bulbs are fused, which means they need
to be replaced.

(e) Consider the random variable Y : “time until next bulb breaks”. What is the
distribution of Y ?

(f) Calculate and interpret E(Y ).

Exercise 8.6 Marco’s company organizes a raffle at an end-of-year function. There
are 4000 raffle tickets to be sold, of which 500 win a prize. The price of each ticket
is e1.50. The value of the prizes, which are mostly electrical appliances produced
by the company, varies between e80 and e250, with an average value of e142.

(a) Marco wants to have a 99 % guarantee of receiving three prizes. How much
money does he need to spend? Use R to solve the question.

(b) Use R to plot the function which describes the relationship between the number
of tickets bought and the probability of winning at least three prizes.

(c) Given the value of the prizes and the costs of the tickets, is it worth taking part
in the raffle?
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Exercise 8.7 A country has a ratio between male and female births of 1.05 which
means that 51.22 % of babies born are male.

(a) What is the probability for a mother that the first girl is born during the first three
births?

(b) What is the probability of getting 2 girls among 4 babies?

Exercise 8.8 A fishermen catches, on average, three fish in an hour. Let Y be a
random variable denoting the number of fish caught in one hour and let X be the
time interval between catching two fishes. We assume that X follows an exponential
distribution.

(a) What is the distribution of Y ?
(b) Determine E(Y ) and E(X).
(c) Calculate P(Y = 5) and P(Y < 1).

Exercise 8.9 A restaurant sells three different types of dessert: chocolate, brownies,
yogurt with seasonal fruits, and lemon tart. Years of experience have shown that the
probabilities with which the desserts are chosen are 0.2, 0.3, and 0.5, respectively.

(a) What is the probability that out of 5 guests, 2 guests choose brownies, 1 guest
chooses yogurt, and the remaining 2 guests choose lemon tart?

(b) Suppose two out of the five guests are known to always choose lemon tart. What
is the probability of the others choosing lemon tart as well?

(c) Determine the expectation and variance assuming a group of 20 guests.

Exercise 8.10 A reinsurance company works on a premium policy for natural disas-
ters. Based on experience, it is known that W = “number of natural disasters from
October to March” (winter) is Poisson distributed with λW = 4. Similarly, the ran-
dom variable S = “number of natural disasters from April to September” (summer)
is Poisson distributed with λS = 3. Determine the probability that there is at least 1
disaster during both summer andwinter based on the assumption that the two random
variables are independent.

Exercise 8.11 Read Appendix C.3 to learn about the Theorem of Large Numbers
and the Central Limit Theorem.

(a) Draw1000 realizations froma standard normal distribution using R and calculate
the arithmetic mean. Repeat this process 1000 times. Evaluate the distribution
of the arithmetic mean by drawing a kernel density plot and by calculating the
mean and variance of it.
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(b) Repeat the procedure in (a) with an exponential distributionwithλ = 1. Interpret
your findings in the light of the Central Limit Theorem.

(c) Repeat the procedure in (b) using 10,000 rather than 1000 realizations. How do
the results change and why?

→ Solutions to all exercises in this chapter can be found on p. 375

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,
Springer, Heidelberg
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9Inference

9.1 Introduction

The first four chapters of this book illustrated how one can summarize a data set
both numerically and graphically. The validity of interpretations made from such
a descriptive analysis is valid only for the data set under consideration and cannot
necessarily be generalized to other data. However, it is desirable to make conclusions
about the entire population of interest and not only about the sample data. In this
chapter, we describe the framework of statistical inference which allows us to
infer from the sample data about the population of interest–at a given, prespecified
uncertainty level–and knowledge about the random process generating the data.

Consider an example where the objective is to forecast an election outcome.
This requires us to determine the proportion of votes that each of the k participating
parties is going to receive, i.e. to calculate or estimate p1, p2, . . . , pk . If it is possible
to ask every voter about their party preference, then one can simply calculate the
proportions p1, p2, . . . , pk for each party. However, it is logistically impossible to
ask all eligible voters (which form the population in this case) about their preferred
party. It seems more realistic to ask only a small fraction of voters and infer from
their responses to the responses of the whole population. It is evident that there might
be differences in responses between the sample and the population—but the more
voters are asked, the closer we are to the population’s preference, i.e. the higher
the precision of our estimates for p1, p2, . . . , pk (the meaning of “precision” will
become clearer later in this chapter). Also, it is intuitively clear that the sample must
be a representative sample of the voters’ population to avoid any discrepancy or bias
in the forecasting. When we speak of a representative sample, we mean that all the
characteristics present in the population are contained in the sample too. There are
manyways to get representative randomsamples. In fact, there is a branchof statistics,
called sampling theory, which studies this subject [see, e.g. Groves et al. (2009) or
Kauermann and Küchenhoff (2011) for more details]. A simple random sample is
one where each voter has an equal probability of being selected in the sample and

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_9
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each voter is independently chosen from the same population. In the following, we
will assume that all samples are simple random samples. To further formalize the
election forecast problem, assume that we are interested in the true proportionswhich
each party receives on the election day. It is practically impossible to make a perfect
prediction of these proportions because there are too many voters to interview, and
moreover, a voter may possibly make their final decision possibly only when casting
the vote and not before. The votermay change his/her opinion at anymoment andmay
differ from what he/she claimed earlier. In statistics, we call these true proportions
parameters of the population. The task is then to estimate these parameters on the
basis of a sample. In the election example, the intuitive estimates for the proportions
in the population are the proportions in the sample andwe call them sample estimates.
How to find good and precise estimates are some of the challenges that are addressed
by the concept of statistical inference. Now, it is possible to describe the election
forecast problem in a statistical and operational framework: estimate the parameters
of a population by calculating the sample estimates. An important property of every
good statistical inference procedure is that it provides not only estimates for the
population parameters but also information about the precision of these estimates.

Consider another example in which we would like to study the distribution of
weight of children in different age categories and get an understanding of the “nor-
mal” weight. Again, it is not possible to measure the weight of all the children of
a specific age in the entire population of children in a particular country. Instead,
we draw a random sample and use methods of statistical inference to estimate the
weight of children in each age group. More specifically, we have several populations
in this problem. We could consider all boys of a specific age and all girls of a spe-
cific age as two different populations. For example, all 3-year-old boys will form
one possible population. Then, a random sample is drawn from this population. It is
reasonable to assume that the distribution of the weight of k-year-old boys follows a
normal distribution with some unknown parameters μkb and σ2

kb. Similarly, another
population of k-year-old girls is assumed to follow a normal distribution with some
unknown parameters μkg and σ2

kg . The indices kb and kg are used to emphasize
that the parameters may vary by age and gender. The task is now to calculate the
estimates of the unknown parameters (in the population) of the normal distributions
from the samples. Using quantiles, a range of “normal”weights can then be specified,
e.g. the interval from the 1% quantile to the 99% quantile of the estimated normal
distribution or, alternatively, all weights which are not more than twice the standard
deviation away from the mean. Children with weights outside this interval may be
categorized as underweight or overweight. Note that we make a specific assumption
for the distribution class; i.e. we assume a normal distribution for the weights and
estimate its parameters. We call this a parametric estimation problem because it is
based on distributional assumptions. Otherwise, if no distributional assumptions are
made, we speak of a nonparametric estimation problem.
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9.2 Properties of Point Estimators

Aswe discussed in the introduction, the primary goal in statistical inference is to find
a good estimate of (a) population parameter(s). The parameters are associated with
the probability distribution which is believed to characterize the population; e.g. μ
and σ2 are the parameters in a normal distribution N (μ,σ2). If these parameters are
known, then one can characterize the entire population. In practice, these parameters
are unknown, so the objective is to estimate them. One can attempt to obtain them
based on a function of the sample values. But what does this function look like; and
if there is more than one such function, then which is the best one? What is the best
approach to estimate the population parameters on the basis of a given sample of
data? The answer is given by various statistical concepts such as bias, variability,
consistency, efficiency, sufficiency, and completeness of the estimates. We are going
to introduce them now.

Assume x = (x1, x2 . . . , xn) are the observations of a random sample from a pop-
ulation of interest. The random sample represents the realized values of a random
variable X . It can be said that x1, x2 . . . , xn are the n observations collected on the
random variable X . Any function of random variables is called a statistic. For exam-
ple, X̄ = 1

n

∑n
i=1 Xi , max(X1, X2, . . . , Xn) etc. are functions of X1, X2, . . . , Xn ,

so they are a statistic. It follows that a statistic is also a random variable. Consider
a statistic T (X) which is used to estimate a population parameter θ (which may be
either a scalar or a vector). We say T (X) is an estimator of θ. To indicate that we
estimate θ using T (X), we use the “hat” ( ˆ ) symbol, i.e. we write θ̂ = T (X). When
T is calculated from the sample values x1, x2 . . . , xn , we write T (x) and call it an
estimate of θ. It becomes clear that T (X) is a randomvariable but T (x) is its observed
value (dependent on the actual sample). For example, T (X) = X̄ = 1

n

∑n
i=1 Xi is

an estimator and a statistic, but T (x) = x̄ = 1
n

∑n
i=1 xi is its estimated value from

the realized sample values x1, x2, . . . , xn . Since the sample values are realizations
from a random variable, each sample leads to a different value of the estimate of
the population parameter. The population parameter is assumed to be a fixed value.
Parameters can also be assumed to be random, for example in Bayesian statistics,
but this is beyond the scope of this book.

9.2.1 Unbiasedness and Efficiency

Definition 9.2.1 An estimator T (X) is called an unbiased estimator of θ if

Eθ(T (X)) = θ . (9.1)

The index θ denotes that the expectation is calculated with respect to the distribution
whose parameter is θ.
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The bias of an estimator T (X) is defined as

Biasθ(T (X)) = Eθ(T (X)) − θ . (9.2)

It follows that an estimator is said to be unbiased if its bias is zero.

Definition 9.2.2 The variance of T (X) is defined as

Varθ(T (X)) = E
{
[T (X) − E(T (X))]2

}
. (9.3)

Both bias and variance are measures which characterize the properties of an esti-
mator. In statistical theory, we search for “good” estimators in the sense that the bias
and the variance are as small as possible and therefore the accuracy is as high as
possible. Readers interested in a practical example may consult Examples 9.2.1 and
9.2.2, or the explanations for Fig. 9.1.

It turns out that we cannot minimize both measures simultaneously as there is
always a so-called bias–variance tradeoff. A measure which combines bias and vari-
ance into one measure is the mean squared error.

Definition 9.2.3 The mean squared error (MSE) of T (X) is defined as

MSEθ(T (X)) = E
{
[T (X) − θ]2

}
. (9.4)

The expression (9.4) can be partitioned into two parts: the variance and the squared
bias, i.e.

MSEθ(T (X)) = Varθ(T (X)) + [Biasθ(T (X))]2 . (9.5)

This can be proven as follows:

MSEθ(T (X)) = E[T (X) − θ]2
= E[(T (X) − Eθ(T (X)) + (Eθ(T (X) − θ)]2
= E[T (X) − Eθ(T (X))]2 + [Eθ(T (X)) − θ]2
= Varθ(T (X)) + [Biasθ(T (X))]2 .

Note that the calculation is based on the result that the cross product term is zero.
The mean squared error can be used to compare different biased estimators.

Definition 9.2.4 An estimator T1(X) is said to beMSE-better than another estimator
T2(X) for estimating θ if

MSEθ(T1(X)) < MSEθ(T2(X)) ,

where θ ∈ Θ and Θ is the parameter space, i.e. the set of all possible values of θ.
Often, Θ is R or all positive real values R+. For example, for a normal distribution,
N (μ,σ2), μ can be any real value and σ2 has to be a number greater than zero.
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Unfortunately, we cannot find an MSE-optimal estimator in the sense that an
estimator is MSE-better than all other possible estimators for all possible values of
θ. This becomes clear if we define the constant estimator T (x) = c (independent
of the actual sample): if θ = c, i.e. if the constant value equals the true population
parameter we want to estimate, then the MSE of this constant estimator is zero
(but it will be greater than zero for all other values of θ, and the bias increases
more as we move c far away from the true θ). Usually, we can only find estimators
which are locally best (in a certain subset of Θ). This is why classical statistical
inference restricts the search for best estimators to the class of unbiased estimators.
For unbiased estimators, the MSE is equal to the variance of an estimator. In this
context, the following definition is used for comparing two (unbiased) estimators.

Definition 9.2.5 An unbiased estimator T1(X) is said to be more efficient than
another unbiased estimator T2(X) for estimating θ if

Varθ(T1(X)) ≤ Varθ(T2(X)) , ∀θ ∈ Θ ,

and
Varθ(T1(X)) < Varθ(T2(X))

for at least one θ ∈ Θ . It turns out that restricting our search of best estimators to
unbiased estimators is sometimes a successful strategy; i.e. for many problems, a
best or most efficient estimate can be found. If such an estimator exists, it is said to
be UMVU (uniformly minimum variance unbiased). Uniformly means that it has the
lowest variance among all other unbiased estimators for estimating the population
parameter(s) θ.

Consider the illustration in Fig. 9.1 to better understand the introduced concepts.
Suppose we throw three darts at a target and the goal is to hit the centre of the target,
i.e. the innermost circle of the dart board. The centre represents the population
parameter θ. The three darts play the role of three estimates θ̂1, θ̂2, θ̂3 (based on
different realizations of the sample) of the population parameter θ. Four possible
situations are illustrated in Fig. 9.1. For example, in Fig. 9.1b, we illustrate the case
of an estimator which is biased but has low variance: all three darts are “far” away
from the centre of the target, but they are “close” together. If we look at Fig. 9.1a, c,
we see that all three darts are symmetrically grouped around the centre of the target,
meaning that there is no bias; however, in Fig. 9.1a there is much higher precision
than in Fig. 9.1c. It is obvious that Fig. 9.1a presents an ideal situation: an estimator
which is unbiased and has minimum variance.

Theorem 9.2.1 Let X = (X1, X2 . . . , Xn) be an i.i.d. (random) sample of a random
variable X with population mean E(Xi ) = μ and population variance Var(Xi ) =
σ2, for all i = 1, 2, . . . , n. Then the arithmetic mean X̄ = ∑n

i=1 Xi is an unbiased
estimator of μ and the sample variance S2 = 1

n−1

∑n
i=1(Xi − X̄)2 is an unbiased

estimator of σ2.



186 9 Inference

Fig. 9.1 Illustration of bias and variance

Note that the theorem holds, in general, for i.i.d. samples, irrespective of the choice
of the distribution of the Xi ’s. Note again that we are looking at the situation before
we have any observations on X . Therefore, we again use capital letters to denote
that the Xi ’s are random variables which are not known beforehand (i.e. before we
actually record the observations on our selected sampling units).

Remark 9.2.1 The empirical variance S̃2 = 1
n

∑n
i=1(Xi − X̄)2 is a biased estimate

of σ2 and its bias is − 1
nσ2.

Example 9.2.1 Let X1, X2 . . . , Xn be identically and independently distributed vari-
ables whose population mean is μ and population variance is σ2. Then X̄ =
1
n

∑n
i=1 Xi is an unbiased estimator of μ. This can be shown as follows:

E(X̄) = E

(
1

n

n∑

i=1

Xi

)
(7.29)= 1

n

n∑

i=1

E(Xi ) = 1

n

n∑

i=1

μ = μ.
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The variance of X̄ can be calculated as follows:

Var(X̄) = 1

n2

n∑

i=1

Var(Xi ) ,
[
Cov(Xi , X j ) = 0 using independence of Xi ’s

]

= 1

n2

n∑

i=1

σ2 = σ2

n
.

Weconclude that X̄ is an unbiased estimator ofμ and its variance is σ2

n irrespective
of the choice of the distribution of X . We have learned about the distribution of X̄
already in Chap.8, see also Appendix C.3 for the Theorem of Large Numbers and
the Central Limit Theorem; however, we would like to highlight the property of
“unbiasedness” in the current context.

Now, we consider another example to illustrate that estimators may not always be
unbiased but may have the same variance.

Example 9.2.2 Let X1, X2 . . . , Xn be identically and independently distributed vari-
ables whose populationmean isμ and population variance is σ2. Then X̃ = X̄ + 1 =
1
n

∑n
i=1(Xi + 1) is a biased estimator of μ. This can be shown as follows:

E(X̃)
(7.31)= E

(
1

n

n∑

i=1

Xi

)
+ E

(
1

n

n∑

i=1

1

)

(7.29)= 1

n

n∑

i=1

E(Xi ) + 1

n
· n = 1

n

n∑

i=1

μ + 1

= μ + 1 �= μ .

However, the variance of X̃ is

Var(X̃) = Var
(
X̄ + 1

) (7.34)= Var(X̄) = σ2

n
.

If we compare the two estimators X̃ = 1
n

∑n
i=1(Xi + 1) and X̄ = 1

n

∑n
i=1(Xi ), we

see that both have the same variance but the former (X̃) is biased. The efficiency
of both estimators is thus the same. It further follows that the mean squared error
of X̄ is smaller than the mean squared error of X̃ because the MSE consists of the
sum of the variance and the squared bias. Therefore X̄ is MSE-better than X̃ . The
comparison of bias, variance and MSE tells us that we should prefer X̄ over X̃ when
estimating the population mean. This is intuitive, but the argument we make is a
purely statistical one.

Theorem 9.2.1 contains the following special cases:

• The sample mean X̄ = 1
n

∑n
i=1 Xi based on an i.i.d. random sample X1, X2, . . . ,

Xn from a normally distributed population N (μ,σ2) is an unbiased point estimator
of μ.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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• The sample variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2 based on an i.i.d. random sample

X1, X2, . . . , Xn from a normally distributed population N (μ, σ2) is an unbiased
point estimator of σ2. The sample variance S̃2 = 1

n

∑n
i=1(Xi − X̄)2 is a biased

estimator for σ2, but it is asymptotically unbiased in the sense that its bias tends
to zero as the sample size n tends to infinity.

• The sample mean X̄ = 1
n

∑n
i=1 Xi based on an i.i.d. random sample X1, X2, . . . ,

Xn from a Bernoulli distributed population B(1, p) is an unbiased point estimator
of the probability p.

For illustration, we show the validity of the third statement. Let us consider an i.i.d.
random sample Xi , i = 1, 2 . . . , n, from a Bernoulli distribution, where Xi = 1 if
an event occurs and Xi = 0 otherwise. Here, p is the probability of occurrence of
an event in the population, i.e. p = P(Xi = 1). Note that p is also the population
mean: E(Xi ) = 1 · p + 0 · (1 − p) = p, i = 1, 2, . . . , n. The arithmetic mean (rel-
ative frequency) is an unbiased estimator of p because

E(X̄) = 1

n

n∑

i=1

E(Xi ) = 1

n

n∑

i=1

p = p,

and thus, we can write the estimate of p as

p̂ = 1

n

n∑

i=1

Xi . (9.6)

Example 9.2.3 Suppose a random sample of size n = 20 of the weight of 10-year-
old children in a particular city is drawn. Let us assume that the children’s weight
in the population follows a normal distribution N (μ, σ2). The sample provides the
following values of weights (in kg):

40.2, 32.8, 38.2, 43.5, 47.6, 36.6, 38.4, 45.5, 44.4, 40.3
34.6, 55.6, 50.9, 38.9, 37.8, 46.8, 43.6, 39.5, 49.9, 34.2

To obtain an estimate of the population mean μ, we calculate the arithmetic mean of
the observations as

μ̂ = x̄ = 1

n

n∑

i=1

xi = 1

20
(40.2 + 32.8 + · · · + 34.2) = 41.97,

because it is an unbiased estimator of μ. Similarly, we use S2 to estimate σ2 because
it is unbiased in comparison to S̃2. Using s2X as an estimate for σ2 for the given
observations, we get

σ̂2 = s2x = 1

n − 1

n∑

i=1

(xi − x̄)2

= 1

19
((40.2 − 41.97)2 + · · · + (34.2 − 41.97)2) ≈ 36.85.
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The square root of 36.85 is approximately 6.07 which is the standard deviation. Note
that the standard deviation based on the sample values divided by the square root of
the sample size, i.e. σ̂/

√
20, is called the standard error of the mean X̄ (SEM). As

already introduced in Chap.3, we obtain these results in R using the mean and var
commands.

Example 9.2.4 A library draws a random sample of size n = 100 members from the
members’ database to see how many members have to pay a penalty for returning
books late, i.e. xi = 1. It turns out that 39members in the sample have to pay a penalty.
Therefore, an unbiased estimator of the population proportion of all members of the
library who return books late is

p̂ = x̄ = 1

n

n∑

i=1

xi = 1

100
· 39 = 39

100
= 0.39.

Remark 9.2.2 Unbiasedness and efficiency can also be defined asymptotically: we
say, for example, that an estimator is asymptotically unbiased, if the bias approaches
zero when the sample size tends to infinity. The concept of asymptotic efficiency
involves some mathematical knowledge which is beyond the intended scope of
this book. Loosely speaking, an asymptotic efficient estimator is an estimator
which achieves the lowest possible (asymptotic) variance under given distribu-
tional assumptions. The estimators introduced in Sect. 9.3.1, which are based on the
maximum likelihood principle, have these properties (under certain mathematically
defined regularity conditions).

Next, we illustrate the properties of consistency and sufficiency of an estimator.

9.2.2 Consistency of Estimators

For a good estimator, as the sample size increases, the values of the estimator should
get closer to the parameter being estimated. This property of estimators is referred
to as consistency.

Definition 9.2.6 Let T1, T2, . . . , Tn, be a sequence of estimators for the parameter
θ where Tn = Tn(X1, X2, . . . , Xn) is a function of X1, X2, . . . , Xn . The sequence
{Tn} is a consistent sequence of estimators for θ if for every ε > 0,

lim
n→∞ P [|Tn − θ| < ε] = 1

or equivalently
lim
n→∞ P [|Tn − θ| ≥ ε] = 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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This definition says that as the sample size n increases, the probability that Tn is
getting closer to θ is approaching 1. This means that the estimator Tn is getting
closer to the parameter θ as n grows larger. Note that there is no information on how
fast Tn is converging to θ in the sense of convergence defined above.

Example 9.2.5 Let X1, X2 . . . , Xn be identically and independently distributed vari-
ables with expectation μ and variance σ2. Then for X̄n = 1

n

∑n
i=1 Xi , we have

E(X̄n) = μ and Var(X̄n) = σ2/n. For any ε > 0, we can write the following:

P
[|X̄n − μ| ≥ ε

] = P

[
|X̄n − μ| ≥ cσ√

n

]

where ε = cσ/
√
n. Using Tschebyschev’s inequality (Theorem 7.4.1, p. 139), we

get 1
c2

= σ2/nε2, and therefore

P

[
|X̄n − μ| ≥ cσ√

n

]
≤ 1

c2
= σ2

nε2

and

lim
n→∞ P

[
|X̄n − μ| ≥ cσ√

n

]
≤ lim

n→∞
σ2

nε2
= 0,

provided σ2 is finite. Hence X̄n, n = 1, 2, . . . , converges to μ and therefore X̄n is a
consistent estimator of μ.

Remark 9.2.3 We call this type of consistency weak consistency. Another definition
is MSE consistency, which says that an estimator is MSE consistent if MSE −→ 0
as n → ∞. If the estimator is unbiased, it is sufficient that Var −→ 0 as n → ∞. If
Tn(X) is MSE consistent, it is also weakly consistent. Therefore, it follows that an
unbiased estimator with its variance approaching zero as the sample size approaches
infinity is both MSE consistent and weakly consistent.

In Example 9.2.5, the variance of Tn(X) = X̄n is σ2/n which goes to zero as n
goes to ∞ and therefore X̄n is both weakly consistent and MSE consistent.

9.2.3 Sufficiency of Estimators

Sufficiency is another criterion to judge the quality of an estimator. Before delving
deeper into the subject matter, we first try to understand some basic concepts.

Consider two independent random variables X and Y , each following a N (μ, 1)
distribution. We conclude that both X and Y contain information about μ. Consider
two estimators of μ as μ̂1 = X + Y and μ̂2 = X − Y . Suppose we want to know
whether to use μ̂1 or μ̂2 to estimate μ. We notice that E(μ̂1) = E(X) + E(Y ) = μ +
μ = 2μ, E(μ̂2) = E(X) − E(Y ) = μ − μ = 0, Var(μ̂1) = Var(X) + Var(Y ) = 1 +
1 = 2 and Var(μ̂2) = Var(X) + Var(Y ) = 1 + 1 = 2. Using the additivity property
of the normal distribution, which was introduced in Remark 8.2.2, we can say that
μ̂1 ∼ N (2μ, 2) and μ̂2 ∼ N (0, 2). So μ̂1 contains information about μ, whereas μ̂2

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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does not contain any information about μ. In other words, μ̂2 loses the information
about μ. We call this property “loss of information”.

If we want to make conclusions about μ using both X and Y , we need to acknowl-
edge that the dimension of them is 2. On the other hand, if we use μ̂1 or equivalently
μ̂1/2 ∼ N (μ, 1

2 ), then we need to concentrate only on one variable and we say that
it has dimension 1. It follows that μ̂1 and μ̂1/2 provide the same information about
μ as provided by the entire sample on both X and Y . So we can say that either μ̂1
or μ̂1/2 is sufficient to provide the same information about μ that can be obtained
on the basis of the entire sample. This is the idea behind the concept of sufficiency
and it results in the reduction of dimension. In general, we can say that if all the
information about μ contained in the sample of size n can be obtained, for example,
through the sample mean then it is sufficient to use this one-dimensional summary
statistic to make inference about μ.

Definition 9.2.7 Let X1, X2, . . . , Xn be a random sample from a probability density
function (or probability mass function) f (x, θ). A statistic T is said to be sufficient
for θ if the conditional distribution of X1, X2, . . . , Xn given T = t is independent
of θ.

The Neyman–Fisher Factorization Theorem provides a practical way to find suf-
ficient statistics.

Theorem 9.2.2 (Neyman–Fisher Factorization Theorem (NFFT)) Let X1, X2, . . . ,

Xn be a random sample from a probability density function (or probability mass
function) f (x, θ). A statistic T = T (x1, x2, . . . , xn) is said to be sufficient for θ if
and only if the joint density of X1, X2, . . . , Xn can be factorized as

f (x1, x2, . . . , xn; θ) = g(t, θ) · h(x1, x2, . . . , xn)

where h(x1, x2, . . . , xn) is nonnegative and does not involve θ; and g(t, θ) is a non-
negative function of θ which depends on x1, x2, . . . , xn only through t, which is a
particular value of T .

This theorem holds for discrete random variables too. Any one-to-one function of
a sufficient statistic is also sufficient. A function f is called one-to-one if whenever
f (a) = f (b) then a = b.

Example 9.2.6 Let X1, X2, . . . , Xn be a random sample from N (μ, 1) where μ is
unknown. We attempt to find a sufficient statistic for μ. Consider the following
function as the joint distribution of x1, x2, . . . , xn (whose interpretation will become
clearer in the next section):

f (x1, x2, . . . , xn;μ) =
(

1√
2π

)n

exp

(
−1

2

n∑

i=1

(xi − μ)2

)

=
(

1√
2π

)n

exp

(
−nμ2

2
+ μ

n∑

i=1

xi

)
exp

(
−1

2

n∑

i=1

x2i

)
.
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Here

g(t,μ) =
(

1√
2π

)n

exp

(
−nμ2

2
+ μ

n∑

i=1

xi

)
,

h(x1, x2, . . . , xn) = exp

(
−1

2

n∑

i=1

x2i

)
,

t = t (x1, x2, . . . , xn) =
n∑

i=1

xi .

Using the Neyman–Fisher Factorization Theorem, we conclude that T = T (X1,

X2, . . . , Xn) = ∑n
i=1 Xi is a sufficient statistic for μ. Also, T = T (X1,

X2, . . . , Xn) = X̄ is sufficient for μ as it is a one-to-one statistic of
∑n

i=1 Xi . On
the other hand, T = X̄2 is not sufficient for μ as it is not a one-to-one function of∑n

i=1 Xi . The important point here is that X̄ is a function of the sufficient statistic and
hence a good estimator for μ. It is thus summarizing the sample information about
the parameter of interest in a complete yet parsimonious way. Another, multivariate,
example of sufficiency is given in Appendix C.4.

9.3 Point Estimation

In the previous section, we introduced and discussed various properties of estimators.
In this section, we want to show how one can find estimators with good properties. In
the general case, properties such as unbiasedness and efficiency cannot be guaranteed
for a finite sample. But often, the properties can be shown to hold asymptotically.

9.3.1 Maximum Likelihood Estimation

We have used several estimators throughout the book without stating explicitly that
they are estimators. For example, we used the sample mean (X̄ ) to estimate μ in
a N (μ, σ2) distribution; we also used the sample proportion (relative frequency) to
estimate p in a B(1, p) distribution, etc. The obvious question is how to obtain a good
statistic to estimate an unknown parameter, for example how to determine that the
sample mean can be used to estimate μ. We need a general framework for parameter
estimation. The method of maximum likelihood provides such an approach. For the
purpose of illustration, we introduce the method of maximum likelihood estimation
with an example using the Bernoulli distribution.

Example 9.3.1 Consider an i.i.d. random sample X = (X1, X2, . . . , Xn) from a
Bernoulli population with p = P(Xi = 1) and (1 − p) = P(Xi = 0). The joint
probabilitymass function for a given set of realizations x1, x2, . . . , xn (i.e. the data) is



9.3 Point Estimation 193

P(X1 = x1, X2 = x2, . . . , Xn = xn|p) = P(X1 = x1|p) · · · · · P(Xn = xn|p)

=
n∏

i=1

pxi (1 − p)1−xi . (9.7)

This is a function of (x1, x2, . . . , xn) given the parameter p. The product results
from the fact that the draws are independent and the fact that pxi (1 − p)1−xi = p if
xi = 1 and pxi (1 − p)1−xi = 1 − p if xi = 0. That is, the term pxi (1 − p)1−xi cov-
ers results from both possible outcomes. Now, consider a random sample where the
values x = (x1, x2, . . . , xn) are known, for example x = (0, 1, 0, 0, . . . , 1). Then,
(9.7) can be seen as a function of p because (x1, x2, . . . , xn) is known. In this case,
after obtaining a sample of data, the function is called the likelihood function and
can be written as

L(x1, x2, . . . , xn|p) =
n∏

i=1

px1(1 − p)1−xi . (9.8)

The joint density function of X1, X2, . . . , Xn is called the likelihood function.
For better understanding, consider a sample of size 5with x = (x1 = 1, x2 = 1, x3 =
0, x4 = 1, x5 = 0). The likelihood (function) is

L(1, 1, 0, 1, 0|p) = p · p · (1 − p) · p · (1 − p) = p3(1 − p)2 . (9.9)

The maximum likelihood estimation principle now says that the estimator p̂ of p
is the value of p which maximizes the likelihood (9.8) or (9.9). In other words,
the maximum likelihood estimate is the value which maximizes the probability of
observing the realized sample from the likelihood function. In general, i.e. for any
sample, we have to maximize the likelihood function (9.9) with respect to p. We use
the well-known principle of maxima–minima to maximize the likelihood function in
this case. In principle, any other optimization procedure can also be used, for example
numerical algorithms such as the Newton–Raphson algorithm. If the likelihood is
differentiable, the first-order condition for the maximum is that the first derivative
with respect to p is zero. For maximization, we can transform the likelihood by a
strictly monotone increasing function. This guarantees that the potential maximum
is taken at the same point as in the original likelihood. A good and highly common
choice is the natural logarithm since it transforms products in sums and sums are
easy to differentiate by differentiating each term in the sum. The log-likelihood in
our example is therefore

l(1, 1, 0, 1, 0|p) = ln L(1, 1, 0, 1, 0, |p) = ln
{
p3(1 − p)2

}
(9.10)

= 3 ln(p) + 2 ln(1 − p) (9.11)

where ln denotes the natural logarithm function and we use the rules

ln(a · b) = ln(a) + ln(b) , a > 0, b > 0

ln
(a
b

)
= ln(a) − ln(b) , a > 0, b > 0

ln
(
ab

)
= b ln(a) , a > 0 .
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Fig. 9.2 Illustration of the likelihood and log-likelihood function of a binomial distribution

Taking the first derivative of (9.10) with respect to p results in

∂l(1, 1, 0, 1, 0|p)
∂ p

= 3

p
− 2

1 − p
. (9.12)

Setting (9.12) to zero and solving for p leads to

3

p
− 2

1 − p
= 0

3

p
= 2

1 − p
3(1 − p) = 2p

5p = 3

p̂ML = 3

5
= 1

5
(1 + 1 + 0 + 1 + 0) = x̄ .

The value of the second-order partial derivative of (9.9) with respect to p at p = p̂ML
is negativewhich ensures that p̂MLmaximizes the likelihood function. It follows from
this example that the maximum likelihood estimate for p leads to the well-known
arithmetic mean. Figure9.2 shows the likelihood function and the log-likelihood
function as functions of p, where p ∈ [0, 1]. The figures show that the likelihood
function and the log-likelihood function have the same maxima at p = 3/5 = 0.6.

Maximum likelihood estimators have some important properties: they are usually
consistent, asymptotically unbiased, asymptotically normally distributed, asymptot-
ically efficient, and sufficient. Even if they are not, a function of a sufficient statistic
can always be found which has such properties. This is the reason why maximum
likelihood estimation is popular. By “asymptotically” we mean that the properties
hold as n tends to infinity, i.e. as the sample size increases. There might be other
good estimators in a particular context, for example estimators that are efficient and
not only asymptotically efficient; however, in general, the ML principle is a great
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choice in many circumstances. We are going to use it in the following sections and
chapters, for instance for general point estimation and in the linear regression model
(Chap.11).

Remark 9.3.1 More examples of maximum likelihood estimators are given in
Exercises 9.1–9.3.

9.3.2 Method of Moments

Themethod of moments is another well-known method to derive the estimators for
population parameters. Below, we outline this principle briefly by way of example.

The idea is that the population parameters of interest can be related to themoments
(e.g. expectation, variance) of the distribution of the considered random variables.

A simple case is the estimator for the expected value E(X) = μ of a population
using an i.i.d. random sample X = (X1, . . . , Xn). In this case, μ̂ = X̄ is the natural
moment estimator of μ. Further, since E(X2) = σ2 + μ2, an estimator of σ2 + μ2 is
1
n

∑n
i=1 X

2
i . Using X̄2 as an estimator for μ2, this results in the biased, but asymp-

totically unbiased estimate

σ̂2 = 1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

Xi

)2

= 1

n

n∑

i=1

(Xi − X̄)2 .

An extension of this method is the generalizedmethod of moments (GMM). GMM
estimators have interesting properties: under relatively week conditions (not further
discussed here), they are consistent and asymptotically normal, as well as efficient
in the class of those estimators that do not use any additional information besides
the information included in the moment conditions. Usually, they require a two-step
estimating approach or an iterative estimating procedure.

The least squares estimator for a linear regression model with i.i.d. random
errors, discussed in detail in Chap.11, can be seen as a special case of a GMM
estimator.

9.4 Interval Estimation

9.4.1 Introduction

Let us first consider an example to understand what we mean by interval estimation.
Consider a situation in which a lady wants to know the time taken to travel from her
home to the train station. Suppose she makes 20 trips and notes down the time taken.
To get an estimate of the expected time, one can use the arithmetic mean. Let us say
x̄ = 25min. This is the point estimate for the expected travelling time. It may not be
appropriate to say that she will always take exactly 25min to reach the train station.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Rather the time may vary by a few minutes each time. To take this into account, the
time can be estimated in the form of an interval: it may then be found that the time
varies mostly between 20 and 30min. Such a statement is more informative. Both
expectation and variation of the data are taken into account. The interval (20, 30min)
provides a range in which most of the values are expected to lie. We call this concept
interval estimation.

A point estimate on its own does not take into account the precision of the estimate.
The deviation between the point estimate and the true parameter (e.g. |x̄ − μ|) can be
substantial, especially when the sample size is small. To incorporate the information
about the precision of an estimate in the estimated value, a confidence interval can
be constructed. It is a random interval with lower and upper bounds, Il(X) and
Iu(X), such that the unknown parameter θ is covered by a prespecified probability
of at least 1 − α:

Pθ(Il(X) ≤ θ ≤ Iu(X)) ≥ 1 − α. (9.13)

The probability 1 − α is called the confidence level or confidence coefficient, Il(X)

is called the lower confidence bound or lower confidence limit and Iu(X) is called
the upper confidence bound or upper confidence limit. It is important to note that
the bounds are random and the parameter is a fixed value. This is the reason why
we say that the true parameter is covered by the interval with probability 1 − α and
not that the probability that the interval contains the parameter is 1 − α. Please note
that some software packages use the term “error bar” when referring to confidence
intervals.

Frequency interpretation of the confidence interval: Suppose N independent
samples X( j), j = 1, 2, . . . , N , of size n are sampled from the same population
and N confidence intervals of the form [Il(X( j)), Iu(X( j))] are calculated. If N is
large enough, then on an average N (1 − α) of the intervals (9.13) cover the true
parameter.

Example 9.4.1 Let a random variable follow a normal distribution with μ = 10 and
σ2 = 1. Suppose we draw a sample of n = 10 observations repeatedly. The sample
will differ in each draw, and hence, the mean and the confidence interval will also
differ. The data sets are realizations from random variables. Have a look at Fig. 9.3
which illustrates the mean and the 95% confidence intervals for 6 random samples.
They vary with respect to the mean and the confidence interval width. Most of the
means are close toμ = 10, but not all. Similarly,most confidence intervals, but not all,
include μ. This is the idea of the frequency interpretation of the confidence interval:
different samples will yield different point and interval estimates. Most of the times
the interval will cover μ, but not always. The coverage probability is specified by
1 − α, and the frequency interpretation means that we expect that (approximately)
(1 − α) · 100% of the intervals to cover the true parameter μ. In that sense, the
location of the interval will give us some idea about where the true but unknown
population parameter μ lies, while the length of the interval reflects our uncertainty
about μ: the wider the interval is, the higher is our uncertainty about the location
of μ.
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Fig. 9.3 Frequency
interpretation of confidence
intervals

We now introduce the following confidence intervals:

• Confidence interval for the mean μ of a normal distribution.
• Confidence interval for the probability p of a binomial random variable.
• Confidence interval for the odds ratio.

9.4.2 Confidence Interval for theMean of a Normal Distribution

Confidence Interval for μ When σ2 = σ2
0 is Known.

Let X1, X2, . . . , Xn be an i.i.d. sample from a N (μ, σ2
0) distribution where σ2

0 is
assumed to be known. We use the point estimate X̄ = 1

n

∑n
i=1 Xi to estimate μ

and construct a confidence interval around the mean μ. Using the Central Limit
Theorem (AppendixC.3, p. 426), it follows that X̄ follows a N (μ,σ2

0/n) distribution.
Therefore

√
n(X̄ − μ)/σ0 ∼ N (0, 1), and it follows that

Pμ

(∣∣∣∣

√
n(X̄ − μ)

σ0

∣∣∣∣ ≤ z1− α
2

)
= 1 − α (9.14)

where z1−α/2 denotes the (1 − α/2) quantile of the standard normal distribution
N (0, 1). We solve this inequality for the unknown μ and get the desired confidence
interval as follows:

Pμ

[
−z1− α

2
≤

(√
n(X̄ − μ)

σ0

)
≤ z1− α

2

]
= 1 − α

or

Pμ

[
X̄ − z1−α/2

σ0√
n

≤ μ ≤ X̄ + z1−α/2
σ0√
n

]
= 1 − α .
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The confidence interval for μ is thus obtained as

[Il(X), Iu(X)] =
[
X̄ − z1−α/2

σ0√
n
, X̄ + z1−α/2

σ0√
n

]
. (9.15)

This is known as (1 − α)% confidence interval for μ or the confidence interval for
μ with confidence coefficient α.

We can use the R function qnorm or TableC.1 to obtain z1− α
2
, see also Sects. 8.4,

A.3, and C.7. For example, for α = 0.05 and α = 0.01 we get z1− α
2
= z0.975 = 1.96

and z1− α
2
= z0.995 = 2.576 using qnorm(0.975) and qnorm(0.995). This gives us

the quantiles we need to determine a 95% and 99% confidence interval, respectively.

Example 9.4.2 We consider again Example 9.2.3 where we evaluated the weight of
10-year-old children. Assume that the variance is known to be 36; then the upper and
lower limits of a 95% confidence interval for the expected weightμ can be calculated
as follows:

Il(X) = X̄ − z1−α/2
σ0√
n

= 41.97 − 1.96

√
36√
20

≈ 39.34 ,

Iu(X) = X̄ + z1−α/2
σ0√
n

= 41.97 + 1.96

√
36√
20

≈ 44.59.

We get the confidence interval [Iu(X), Io(X)] = [39.34, 44.59]. With 95% confi-
dence, the true parameter μ is covered by the interval [39.34, 44.59].

Confidence Interval for μ When σ2 is Unknown.

Let X1, X2, . . . , Xn be an i.i.d. sample from N (μ, σ2) where σ2 is assumed to be
unknown and is being estimated by the sample variance S2X .We know fromSect. 8.3.1
that

(n − 1)S2X
σ2 ∼ χ2

n−1 .

It can be shown that X̄ and S2X are stochastically independent. Thus, we know that
√
n(X̄ − μ)

SX
∼ tn−1

follows a t-distribution with n − 1 degrees of freedom. We can use this result to
determine the confidence interval for μ as

Pμ

[
−t1− α

2 ,n−1 ≤
(√

n(X̄ − μ)

SX

)
≤ t1− α

2 ,n−1

]
= 1 − α

or

Pμ

[
X̄ − t1− α

2 ,n−1
SX√
n

≤ μ ≤ X̄ + t1− α
2 ,n−1

SX√
n

]
= 1 − α .

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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The confidence interval for μ is thus obtained as

[Il(X), Iu(X)] =
[
X̄ − tn−1;1−α/2 · SX√

n
, X̄ + tn−1;1−α/2 · SX√

n

]
(9.16)

which is the 100(1 − α)% confidence interval for μ or the confidence interval for μ
with confidence coefficient α.

The interval (9.16) is, in general, wider than the interval (9.15) for identical α and
identical sample size n, since the unknown parameter σ2 is estimated by S2X which
induces additional uncertainty. The quantiles for the t-distribution can be obtained
using the R command qt or Table C.2.

Example 9.4.3 Consider Example 9.4.2 where we evaluated the weight of 10-year-
old children. We have already calculated the point estimate of μ as x̄ = 41.97. With
t19;0.975 = 2.093, obtained via qt(0.975,19) or TableC.2, the upper and lower
limits of a 95% confidence interval for μ are obtained as

Iu(X) = x̄ − t19;0.975 · sX√
n

= 41.97 − 2.093 · 6.07√
20

≈ 39.12 ,

Io(X) = x̄ + t19;0.975 · sX√
n

= 41.97 + 2.093 · 6.07√
20

≈ 44.81 .

Therefore, the confidence interval is [Il(X), Iu(X)] = [39.13, 44.81]. In R, we can
use the conf.int value of the t.test command to get a confidence interval for the
mean (see also Example 10.3.3 for more details on t.test). The default is a 95%
confidence interval, but it can be changed easily if desired:

x <- c(40.2, 32.8, 38.2, 43.5, ..., 49.9, 34.2)
t.test(x,conf.level = 0.95)$conf.int
[1] 39.12384 44.80616

There is no unique best way to draw the calculated confidence intervals in R.
Among many other options, one can simply work with the plot functionality or
use geom_errorbar in conjunction with a ggplot object created with the library
ggplot2, or use the plotCI command in the library plotrix.

9.4.3 Confidence Interval for a Binomial Probability

Let X1, X2, . . . , Xn be an i.i.d. sample from a Bernoulli distribution B(1, p). Then
Y = ∑n

i=1 Xi has a binomial distribution B(n, p).
We have already introduced p̂ as an estimator for p:

p̂ = 1

n

n∑

i=1

Xi = 1

n
Y.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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From (8.8), we know that Var(Y ) = np(1 − p). Applying rule (7.33), the variance
of the estimator p̂ is

Var( p̂) = p(1 − p)

n

and it can be estimated by

S2p̂ = p̂(1 − p̂)

n
.

Nowadays, the exact confidence intervals of the binomial distribution function can
be easily calculated using computer implementations. Nevertheless, (i) for a suffi-
ciently large sample size n, (ii) if p is not extremely low or high, and (iii) if the
condition np(1 − p) ≥ 9 is fulfilled, we can use an approximation based on the nor-
mal distribution to calculate confidence intervals. To be more specific, one can show
that

Z = p̂ − p√
p̂(1 − p̂)/n

approx .∼ N (0, 1). (9.17)

This gives us

P

[
p̂ − z1−α/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + z1−α/2

√
p̂(1 − p̂)

n

]
≈ 1 − α, (9.18)

and we get a confidence interval for p as
[
p̂ − z1−α/2

√
p̂(1 − p̂)

n
, p̂ + z1−α/2

√
p̂(1 − p̂)

n

]
. (9.19)

Example 9.4.4 We look again at Example 9.2.4 where we evaluated the proportion
of members who had to pay a penalty. Out of all borrowers, 39% brought back their
books late and thus had to pay a fee. A 95% confidence interval for the probability
p of bringing back a book late can be constructed using the normal approximation,
sincen p̂(1 − p̂) = 100 · 0.39 · 0.61 = 23.79 > 9.With z1−α/2 = z0.975 = 1.96 and
p̂ = 0.39, we get the 95% confidence interval as

[
0.39 − 1.96

√
0.39 · 0.61

100
, 0.39 + 1.96

√
0.39 · 0.61

100

]
= [0.294, 0.486].

In R, an exact confidence interval can be found using the function binom.test:

binom.test(x=39,n=100)$conf.int
[1] 0.2940104 0.4926855

One can see that the exact and approximate confidence limits differ slightly due
to the normal approximation which approximates the exact binomial probabilities.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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9.4.4 Confidence Interval for the Odds Ratio

In Chap.4, we introduced the odds ratio to determine the strength of association
between two binary variables. One may be interested in the dispersion of the odds
ratio and hence calculate a confidence interval for it. Recall the notation for 2 × 2
contingency tables:

Y Total (row)
y1 y2

x1 a b a + bX
x2 c d c + d

Total (column) a + c b + d n

In the spirit of the preceding sections, we can interpret the entries in this con-
tingency table as population parameters. For example, a describes the absolute fre-
quency of observations in the population for which Y = y1 and X = x1. If we have
a sample then we can estimate a by the number of observed observations n11 for
which Y = y1 and X = x1. We can thus view n11 to be an estimator for a, n12 to be
an estimator for b, n21 to be an estimator for c, and n22 to be an estimator for d. It
follows that

ÔR = n11n22
n12n21

(9.20)

serves as the point estimate for the population odds ratio OR = ad/bc. To construct
a confidence interval for the odds ratio, we need to work on a log-scale. The log odds
ratio,

θ0 = ln OR = ln a − ln b − ln c + ln d, (9.21)

takes the natural logarithm of the odds ratio. It is evident that it can be estimated
using the observed absolute frequencies of the joint frequency distribution of X and
Y :

θ̂0 = ln ÔR = ln
n11n22
n12n21

. (9.22)

It can be shown that θ̂0 follows approximately a normal distribution with expectation
θ0 and standard deviation

σ̂θ̂0
=

(
1

n11
+ 1

n22
+ 1

n12
+ 1

n21

) 1
2

. (9.23)

Following the reasoning explained in the earlier section on confidence intervals for
binomial probabilities, we can calculate the 100(1 − α)% confidence interval for θ0
under a normal approximation as follows:

[
θ̂0 − z1− α

2
σ̂θ̂0

, θ̂0 + z1− α
2
σ̂θ̂0

]
= [Iu, Io] . (9.24)

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Since we are interested in the confidence interval of the odds ratio, and not the log
odds ratio, we need to transform back the lower and upper bound of the confidence
interval as [

exp(Iu), exp(Io)
]

. (9.25)

Example 9.4.5 Recall Example 4.2.5 from Chap.4 where we were interested in the
association of smoking with a particular disease. The data is summarized in the
following 2 × 2 contingency table:

Smoking Total (row)
Yes No

Yes 34 66 100
Disease

No 22 118 140
Total (column) 56 184 240

The odds ratio was estimated to be 2.76, and we therefore concluded that the chances
of having the particular disease is 2.76 times higher for smokers compared with non-
smokers. To calculate a 95% confidence intervals, we need θ̂0 = ln(2.76), z1− α

2
≈

1.96 and

σ̂θ̂0
=

(
1

n11
+ 1

n22
+ 1

n12
+ 1

n21

) 1
2

=
(

1

34
+ 1

118
+ 1

66
+ 1

22

) 1
2 ≈ 0.314.

The confidence interval for the log odds ratio is

[ln(2.76) − 1.96 · 0.314, ln(2.76) + 1.96 · 0.314] ≈ [0.40, 1.63] .

Exponentiation of the confidence interval bounds yields the 95% confidence interval
for the odds ratio as

[1.49, 5.11] .

There are many ways to obtain the same results in R. One option is to use the
oddsratio function of the library epitools. Note that we need to specify “wald”
under the methods option to get confidence intervals which use the normal approxi-
mation as we did in this case.

library(epitools)
smd <- matrix(c(34,22,66,118),ncol=2,nrow=2) #data
oddsratio(smd,method='wald')

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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9.5 Sample Size Determinations

Confidence intervals help us estimating the precision of point estimates. What if
we are required to adhere to a prespecified precision level? We know that the vari-
ance decreases as the sample size increases. In turn, confidence intervals become
narrower. On the other hand, increasing the sample size has its own consequences.
For example, the cost and time involved in setting up experiments, or conducting
a survey, increases. In these situations it is important to find a balance between the
variability of the estimates and the sample size. We cannot control the variability in
the data in most of the situations, but it is possible to control the sample size and
therefore the precision of our estimates. For example, we can control the number
of people to be interviewed in a survey—given the resources which are available.
We discuss how to determine the number of observations needed to get a particular
precision (length) of the confidence interval. We find the answers to such questions
using the formulae for confidence intervals.

Sample Size Calculation forμ.

Let us consider the situation where we are interested in estimating the population
mean μ. The length of the confidence interval (9.15) for the point estimate X̄ is

2z1−α/2
σ0√
n
. (9.26)

We would now like to fix the width of the confidence interval and come up with
a sample size which is required to achieve this width. Let us fix the length of the
confidence interval as

Δ = 2z1−α/2
σ0√
n
. (9.27)

Assume we have knowledge of σ0. The knowledge about σ0 can be obtained, for
example, through a pilot study or past experience with the experiment. We are inter-
ested in obtaining the value of n forwhich a confidence interval has a fixed confidence
width of Δ or less. Rearranging (9.27) gives us

n ≥
[
2
z1−α/2σ0

Δ

]2
. (9.28)

This means a minimum or optimum sample size is

nopt =
[
2
z1−α/2σ0

Δ

]2
. (9.29)

The sample size nopt ensures that the 1 − α confidence interval for μ has at most
length Δ. But note that we have assumed that σ0 is known. If we do not know σ0
(which is more likely in practice), we have to make an assumption about it, e.g. by
using an estimate from a former study, a pilot study, or other external information.
Practically, (9.28) is used in the case of known and unknown σ2

0.
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Example 9.5.1 A call centre is interested in determining the expected length of a
telephone call as precisely as possible. The requirements are that the 95% confidence
interval forμ should have awidth of 1min. Suppose that the call centre has developed
a pilot study in which σ0 was estimated to be 5min. The sample size n that is needed
to estimate the expected length of the phone calls with the desired precision is:

n ≥
[
2z1−α/2σ0

Δ

]2
=

[
2 × 1.96 × 5

1

]2
≈ 384.

This means that at least 384 calls are required to get the desired confidence interval
width.

Sample Size Calculation for p.

We can follow the earlier reasoning and determine the optimum sample size for a
specific confidence interval width using the confidence interval definition (9.19).
Since the width of the confidence interval is

Δ = 2z1−α/2

√
p̂(1 − p̂)

n
,

we get

n ≥
[
2
z1−α/2

Δ

]2
p̂(1 − p̂). (9.30)

Example 9.5.2 A factory may be interested in the probability of an error in an oper-
ating process. The length of the confidence interval should be ±2%, i.e. Δ = 0.04.
Suppose it is speculated that the error probability is 10%; we may then use p̂ = 0.1
as our prior judgment for the true value of p. This yields

n ≥
[
2
z1−α/2

Δ

]2
p̂(1 − p̂) =

[
2 × 1.96

0.04

]2
0.1 · (1 − 0.1) ≈ 865. (9.31)

This means we need a sample size of at least 865 to obtain the desired width of the
confidence interval for p.

The above examples for both μ and p have shown us that without external knowl-
edge about the research question of interest, it is difficult to come up with an appro-
priate sample size. Results may vary considerably depending on what type of infor-
mation is assumed to be known. With limited knowledge, it can be useful to report
results for different widths of confidence intervals and hypothesized values of p or
σ0.

Sample size calculations can be highly complex in many practical situations and
may not remain as simple as in the examples considered here. For example, Chap.10
uses additional concepts in the context of hypothesis testing, such as the power,
which can be taken into consideration when estimating sample sizes. However,

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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in this case, calculations and interpretations become more difficult and complex.
A detailed overview of sample size calculations can be found in Chow et al. (2007)
and Bock (1997).

9.6 Key Points and Further Issues

Note:

� We have introduced important point estimates for the parameters of a nor-
mal and a binomial distribution:

x̄ for μ, S2 for σ2, x̄ for p.

In general, the choice of these point estimates is not arbitrary but follows
some principles of statistical inference such as maximum likelihood esti-
mation, or least squares estimation (introduced in Chap.11).

� The maximum likelihood estimator is usually consistent, asymptotically
unbiased, asymptotically normally distributed, and asymptotically effi-
cient.

� The validity of all results in this chapter depends on the assumption that
the data is complete and has no missing values. Incomplete data may yield
different conclusions.

� A confidence interval is defined in terms of upper and lower confidence
limits and covers the true target parameter with probability 1 − α. Confi-
dence intervals are often constructed as follows:

point estimate ± quantile · √
variance of point estimate︸ ︷︷ ︸

standard error

.

� More detailed introductions to inference are presented in Casella and
Berger (2002) and Young and Smith (2005).

9.7 Exercises

Exercise 9.1 Consider an i.i.d. sample of size n from a Po(λ) distributed random
variable X .

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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(a) Determine the maximum likelihood estimate for λ.
(b) What does the log-likelihood function look like for the following realizations:

x1 = 4, x2 = 3, x3 = 8, x4 = 6, x5 = 6? Plot the function using R. Hint: The
curve command can be used to plot functions.

(c) Use the Neyman–Fisher Factorization Theorem to argue that the maximum like-
lihood estimate obtained in (a) is a sufficient statistic for λ.

Exercise 9.2 Consider an i.i.d. sample of size n from a N (μ,σ2) distributed random
variable X .

(a) Determine the maximum likelihood estimator for μ under the assumption that
σ2 = 1.

(b) Now determine the maximum likelihood estimator for μ for an arbitrary σ2.
(c) What is the maximum likelihood estimate for σ2?

Exercise 9.3 Let X1, X2, . . . , Xn be n i.i.d. random variables which follow a uni-
form distribution, U (0, θ). Write down the likelihood function and argue, without
differentiating the function, what the maximum likelihood estimate of θ is.

Exercise 9.4 Let X1, X2, . . . , Xn be n i.i.d. random variables which follow an expo-
nential distribution. An intelligent statistician proposes to use the following two
estimators to estimate μ = 1/λ:

(i) Tn(X) = nXmin with Xmin = min(X1, . . . , Xn) and Xmin ∼ Exp(nλ),
(ii) Vn(X) = n−1 ∑n

i=1 Xi .

(a) Are both Tn(X) and Vn(X) (asymptotically) unbiased for μ?
(b) Calculate the mean squared error of both estimators. Which estimator is more

efficient?
(c) Is Vn(X) MSE consistent, weakly consistent, both, or not consistent at all?

Exercise 9.5 A national park in Namibia determines the weight (in kg) of a sample
of common eland antelopes:

450 730 700 600 620 660 850 520 490 670 700 820
910 770 760 620 550 520 590 490 620 660 940 790

Calculate

(a) the point estimate of μ and σ2 and
(b) the confidence interval for μ (α = 0.05).

under the assumption that the weight is normally distributed.

(c) Use R to reproduce the results from (b).
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Exercise 9.6 We are interested in the heights of the players of the two basketball
teams “Brose Baskets Bamberg” and “Bayer Giants Leverkusen” as well as the
football team “SV Werder Bremen”. The following summary statistics are given:

N Minimum Maximum Mean Std. dev.
Bamberg 16 185 211 199.06 7.047
Leverkusen 14 175 210 196.00 9.782
Bremen 23 178 195 187.52 5.239

Calculate a 95% confidence interval forμ for all three teams and interpret the results.

Exercise 9.7 A married couple tosses a coin after each dinner to determine who has
to wash the dishes. If the coin shows “head”, then the husband has to wash the dishes,
and if the coin shows “tails”, then the wife has to wash the dishes. After 98 dinners,
the wife notes that the coin has shown head 59 times.

(a) Estimate the probability that the wife has to wash the dishes.
(b) Calculate and interpret the 95% confidence interval for p.
(c) Howmany dinners are needed to estimate the true probability for the coin show-

ing “head” with a precision of ±0.5% under the assumption that the coin is
fair?

Exercise 9.8 Suppose 93 out of 104 pupils have passed the final examination at a
certain school.

(a) Calculate a 95%confidence interval for the probability of failing the examination
both by manual calculations and by using R, and compare the results.

(b) At county level 3.2% of pupils failed the examination. Are the school’s pupils
worse than those in the whole county?

Exercise 9.9 To estimate the audience rate for several TV stations, 3000 households
are asked to allow a device, which records which TV station is watched, to be
installed on their TVs. 2500 agreed to participate. Assume it is of interest to estimate
the probability of someone switching on the TV and watching the show “Germany’s
next top model”.

(a) What is the precision with which the probability can be estimated?
(b) What source of bias could potentially influence the estimates?
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Exercise 9.10 An Olympic decathlon athlete is interested in his performance com-
pared with the performance of other athletes. He is a good runner and interested in
his 100m results compared with those of other athletes.

(a) He uses the decathlon data from this book (Appendix A.2) to come up with
σ̂ = s = 0.233. What sample size does he need to calculate a 95% confidence
interval for the mean running time which is precise to ±0.1s?

(b) Calculate a 95% confidence interval for the mean running time (x̄ = 10.93) of
the 30 athletes captured in the data set in Chap. A.2. Interpret the width of this
interval compared with the width determined in a).

(c) The runner’s own best time is 10.86 s. He wants to be among the best 10% of all
athletes. Calculate an appropriate confidence interval to compare his time with
the 10% best times.

Exercise 9.11 Consider the pizza delivery data described in Chap. A.4. We distin-
guish between pizzas delivered on time (i.e. in less than 30min) and not delivered on
time (i.e. in more than 30min). The contingency table for delivery time and operator
looks as follows:

Operator Total
Laura Melissa

<30min 163 151 314
≥30min 475 477 952
Total 638 628 1266

(a) Calculate and interpret the odds ratio and its 95% confidence interval.
(b) Reproduce the results from (a) using R.

→ Solutions to all exercises in this chapter can be found on p. 384



10HypothesisTesting

10.1 Introduction

We introduced point and interval estimation of parameters in the previous chapter.
Sometimes, the research question is less ambitious in the sense that we are not inter-
ested in precise estimates of a parameter, but we only want to examine whether
a statement about a parameter of interest or the research hypothesis is true or not
(although we will see later in this chapter that there is a connection between confi-
dence intervals and statistical tests, called duality). Another related issue is that once
an analyst estimates the parameters on the basis of a random sample, (s)he would
like to infer something about the value of the parameter in the population. Statisti-
cal hypothesis tests facilitate the comparison of estimated values with hypothetical
values.

Example 10.1.1 As a simple example, consider the case where we want to find out
whether the proportion of votes for a party P in an election will exceed 30% or
not. Typically, before the election, we will try to get representative data about the
election proportions for different parties (e.g. by telephone interviews) and thenmake
a statement like “yes”, we expect that P will get more than 30% of the votes or “no”,
we do not have enough evidence that P will get more than 30% of the votes. In
such a case, we will only know after the election whether our statement was right or
wrong. Note that the term representative data only means that the sample is similar
to the population with respect to the distributions of some key variables, e.g. age,
gender, and education. Since we use one sample to compare it with a fixed value
(30%), we call it a one-sample problem.

Example 10.1.2 Consider another example in which a clinical study is conducted
to compare the effectiveness of a new drug (B) to an established standard drug (A)
for a specific disease, for example too high blood pressure. Assume that, as a first
step, we want to find out whether the new drug causes a higher reduction in blood
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pressure than the already established older drug. A frequently used study design for
this question is a randomized (i.e. patients are randomly allocated to one of the two
treatments) controlled clinical trial (double blinded, i.e. neither the patient nor the
doctor know which of the drugs a patient is receiving during the trial), conducted in
a fixed time interval, say 3months. A possible hypothesis is that the average change
in the blood pressure in group B is higher than in group A, i.e. δB > δA where
δ j = μ j0 − μ j3, j = A, B and μ j0 is the average blood pressure at baseline before
measuring the blood pressure again after 3months (μ j3). Note that we expect both
the differences δA and δB to be positive, since otherwise we would have some doubt
that either drug is effective at all. As a second step (after statistically proving our
hypothesis), we are interested in whether the improvement of B compared to A is
relevant in a medical or biological sense and is valid for the entire population or
not. This will lead us again to the estimation problems of the previous chapter, i.e.
quantifying an effect using point and interval estimation. Sincewe are comparing two
drugs, we need to have two samples from each of the drugs; hence, we have a two-
sample problem. Since the patients receiving A are different from those receiving
B in this example, we refer to it as a “two-independent-samples problem”.

Example 10.1.3 In another example, we consider an experiment in which a group
of students receives extra mathematical tuition. Their ability to solve mathematical
problems is evaluated before and after the extra tuition.We are interested in knowing
whether the ability to solve mathematical problems increases after the tuition, or not.
Since the same group of students is used in a pre–post experiment, this is called a
“two-dependent-samples problem” or a “paired data problem”.

10.2 Basic Definitions

10.2.1 One- andTwo-Sample Problems

In one-sample problems, the data is usually assumed to arise as one sample from a
defined population. In two-sample problems, the data originates in the form of two
samples possibly from twodifferent populations. The heterogeneity is oftenmodelled
by assuming that the two populations only differ in some parameters or key quantities
such as expectation (i.e. mean), median, or variance. As in our introductory example,
the samples can either be independent (as in the drug Example 10.1.2) or dependent
(as in the evaluation Example 10.1.3).

10.2.2 Hypotheses

A researcher may have a research question for which the truth about the population
of interest is unknown. Suppose data can be obtained using a survey, observation, or
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an experiment: if, given a prespecified uncertainty level, a statistical test based on
the data supports the hypothesis about the population, we say that this hypothesis is
statistically proven. Note that the research question has to be operationalized before
it can be tested by a statistical test. Consider the drug Example 10.1.2: we want to
examine whether the new drug B has a greater blood pressure lowering effect than
the standard drug A. We have several options to operationalize this research question
into a statistical set-up. One is to test whether the average reduction (from baseline to
3months) of the blood pressure is higher (and positive) for drug B than drug A. We
then state our hypotheses in terms of expected values (i.e. μ). Why do we have to use
the expected values μ and not simply compare the arithmetic means x̄? The reason is
that the superiority of B shown in the sample will only be valid for this sample and
not necessarily for another sample.We need to show the superiority of B in the entire
population, and hence, our hypothesis needs to reflect this. Another option would
be, for example, to use median changes in blood pressure values instead of mean
changes in blood pressure values. An important point is that the research hypothesis
which we want to prove has to be formulated as the statistical alternative hypothesis,
often denoted by H1. The reason for this will become clearer later in this chapter.
The opposite of the research hypothesis has to be formulated as the statistical null
hypothesis, denoted by H0. In the drug example, the alternative and null hypotheses
are, respectively,

H1 : δB > δA

and

H0 : δB ≤ δA.

We note that the two hypotheses are disjoint and the union of them covers all possible
differences of δB and δA. There is a boundary value (δB = δA) which separates the
two hypotheses. Since we want to show the superiority of B, the hypothesis was
formulated as a one-sided hypothesis. Note that there are different ways to formulate
two-sample hypotheses; for example, H1 : δB > δA is equivalent to H1 : δB − δA >

0. In fact, it is very common to formulate two-sample hypotheses as differences,
which we will see later in this chapter.

10.2.3 One- andTwo-SidedTests

Wedistinguish betweenone-sided and two-sidedhypotheses and tests. In the previous
section, we gave an example of a one-sided test.

For an unknown population parameter θ (e.g. μ) and a fixed value θ0 (e.g. 5), the
following three cases have to be distinguished:

Case Null hypothesis Alternative hypothesis
(a) θ = θ0 θ �= θ0 Two-sided test problem
(b) θ ≥ θ0 θ < θ0 One-sided test problem
(c) θ ≤ θ0 θ > θ0 One-sided test problem
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Example 10.2.1 One-sample problems often test whether a target value is achieved
or not. For example, consider the null hypothesis as

• H0 : average filling weight of packages of flour = 1kg
• H0 : average body height (men) = 178cm.

The alternative hypothesis H1 is formulated as deviation from the target value. If
deviations in both directions are interesting, then H1 is formulated as a two-sided
hypothesis,

• H1 : average body height (men) �= 178cm.

If deviations in a specific direction are the subject of interest, then H1 is formulated
as a one-sided hypothesis, for example,

• H1 : average filling weight of flour packages is lower than 1kg.
• H1 : average filling weight of flour packages is greater than 1kg.

Two-sample problems often examine differences of two samples. Suppose the
null hypothesis H0 is related to the average weight of flour packages filled by two
machines, say 1 and 2. Then, the null hypothesis is

• H0 : average weight of flour packages filled by machine 1 = average weight of
flour packages filled by machine 2.

Then, H1 can be formulated as a one-sided or two-sided hypothesis. If we want to
prove that machine 1 and machine 2 have different filling weights, then H1 would
be formulated as a two-sided hypothesis

• H1 : average filling weight of machine 1 �= average filling weight of machine 2.

If we want to prove that machine 1 has lower average filling weight than machine 2,
H1 would be formulated as a one-sided hypothesis

• H1 : average filling weight of machine 1 < average filling weight of machine 2.

If we want to prove that machine 2 has lower filling weight than machine 1, H1
would be formulated as a one-sided hypothesis

• H1 : average filling weight of machine 1 > average filling weight of machine 2.

Remark 10.2.1 Note that we have not considered the following situation: H0 : θ �=
θ0, H1 : θ = θ0. In general, with the tests described in this chapter, we cannot prove
the equality of a parameter to a predefined value and neither can we prove the
equality of two parameters, as in H0 : θ1 �= θ2, H1 : θ1 = θ2. We can, for example,
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not prove (statistically) that machines 1 and 2 in the previous example provide equal
filling weight. This would lead to the more complex class of equivalence tests, which
is a topic beyond the scope of this book.

10.2.4 Type I andType II Error

If we undertake a statistical test, two types of error can occur.

• The hypothesis H0 is true but is rejected; this error is called type I error.
• The hypothesis H0 is not rejected although it is wrong; this is called type II error.

When a hypothesis is tested, then the following four situations are possible:

H0 is true H0 is not true
H0 is not rejected Correct decision Type II error
H0 is rejected Type I error Correct decision

The significance level is the probability of type I error, P(H1|H0) = α, which is the
probability of rejecting H0 (accepting H1) if H0 is true. If we construct a test, the
significance level α is prespecified, e.g. α = 0.05. A significance test is constructed
such that the probability of a type I error does not exceed αwhile the probability of a
type II error depends on the true but unknown parameter values in the population(s)
and the sample size. Therefore, the two errors are not symmetrically treated in a
significance test. In fact, the type II error β, P(H0|H1) = β is not controlled by
the construction of the test and can become very high, sometimes up to 1 − α.
This is the reason why a test not rejecting H0 is not a (statistical) proof of H0.
In mathematical statistics, one searches for the best test which maintains α and
minimizes β. Minimization of both α and β simultaneously is not possible. The
reason is that when α increases then β decreases and vice versa. So one of the errors
needs to be fixed and the other error is minimized. Consequently, the error which
is considered more serious is fixed and then the other error is minimized. The tests
discussed in the below sections are obtained based on the assumption that the type I
error is more serious than the type II error. So the test statistics are obtained by fixing
α and then minimizing β. In fact, the null hypothesis is framed in such a way that
it implies that the type I error is more serious than the type II error. The probability
1 − β = P(H1|H1) is called the power of the test. It is the probability of making a
decision in favour of the research hypothesis H1, if it is true, i.e. the probability of
detecting a correct research hypothesis.
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10.2.5 How to Conduct a Statistical Test

In general, we can follow the steps described below to test a hypothesis about a
population parameter based on a sample of data.

(1) Define the distributional assumptions for the random variables of interest, and
specify them in terms of population parameters (e.g. θ or μ and σ). This is neces-
sary for parametric tests. There are other types of tests, so-called nonparametric
tests, where the assumptions can be relaxed in the sense that we do not have to
specify a particular distribution, see Sect. 10.6ff. Moreover, for some tests the
distributional assumptions can be relaxed if the sample size is large.

(2) Formulate the null hypothesis and the alternative hypothesis as described in
Sects. 10.2.2 and 10.2.3.

(3) Fix a significance value (often called type I error) α, for example α = 0.05, see
also Sect. 10.2.4.

(4) Construct a test statistic T (X) = T (X1, X2, . . . , Xn). The distribution of T has
to be known under the null hypothesis H0. We note again that (X1, X2, . . . ,

Xn) refers to the random variables before drawing the actual sample and
x1, x2, . . . , xn are the realized values (observations) in the sample.

(5) Construct a critical region K for the statistic T , i.e. a region where—if T falls
in this region—H0 is rejected, such that

PH0(T (X) ∈ K ) ≤ α .

The notation PH0(·)means that this inequality must hold for all parameter values
θ that belong to the null hypothesis H0. Since we assume that we know the
distribution of T (X) under H0, the critical region is defined by those values of
T (X) which are unlikely (i.e. with probability of less than α) to be observed
under the null hypothesis. Note that although T (X) is a random variable, K is a
well-defined region, see Fig. 10.1 for an example.

(6) Calculate t (x) = T (x1, x2, . . . , xn) based on the realized sample values X1 =
x1, X2 = x2, . . . , Xn = xn .

(7) Decision rule: if t (x) falls into the critical region K , the null hypothesis H0
is rejected. The alternative hypothesis is then statistically proven. If t (x) falls
outside the critical region, H0 is not rejected.

t (x) ∈ K : H0 rejected ⇒ H1 is statistically significant,

t (x) /∈ K : H0 not rejected and therefore accepted.

The next two paragraphs show how to arrive at the test decisions from step 7 in
a different way. Readers interested in an example of a statistical test may jump
to Sect. 10.3.1 and possibly also Example 10.3.1.
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10.2.6 Test Decisions Using the p-Value

Statistical software usually does not show us all the steps of hypothesis testing as
outlined in Sect. 10.2.5. It is common that instead of calculating and reporting the
critical values, the test statistic is printed together with the so-called p-value. It is
possible to use the p-value instead of critical regions for making test decisions. The
p-value of the test statistic T (X) is defined as follows:

two-sided case: PH0(|T | ≥ t (x)) = p-value

one-sided case: PH0(T ≥ t (x)) = p-value

PH0(T ≤ t (x)) = p-value

It can be interpreted as the probability of observing results equal to, or more extreme
than those actually observed if the null hypothesis was true. Then, the decision rule
is

H0 is rejected if the p-value is smaller than the prespecified significance level α.
Otherwise, H0 cannot be rejected.

Example 10.2.2 Assume that we are dealingwith a two-sided test and assume further
that the test statistic T (x) is N (0, 1)-distributed under H0. The significance level is
α = 0.05. If we observe, for example, t = 3, then the p-value is PH0(|T | ≥ 3). This
can be calculated in R as

2*(1-pnorm(3))

because pnorm() is used to calculate P(X ≤ x), and therefore, 1-pnorm() can be
used to calculate P(X > x). We have to multiply with two because we are deal-
ing with a two-sided hypothesis. The result is p = 0.002699796. Therefore, H0 is
rejected. The one-sided p-value is half of the two-sided p-value, i.e. P(T ≥ 3) =
P(T ≤ 3) = 0.001349898, and is not necessarily reported by R. It is therefore impor-
tant to look carefully at the R output when dealing with one-sided hypotheses.

The p-value is sometimes also called the significance, although we prefer the term
p-value. We use the term significance only in the context of a test result: a test is
(statistically) significant if (and only if) H0 can be rejected.

Unfortunately, the p-value is often over-interpreted: both a test and the p-value
can only provide a yes/no decision: either H0 is rejected or not. Interpreting the p-
value as the probability that the null hypothesis is true is wrong! It is also incorrect to
say that the p-value is the probability of making an error during the test decision. In
our (frequentist) context, hypotheses are true or false and no probability is assigned
to them. It can also be misleading to speak of “highly significant” results if the p-
value is very small. A last remark: the p-value itself is a random variable: under the
null hypothesis, it follows a uniform distribution, i.e. p ∼ U (0, 1).
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10.2.7 Test Decisions Using Confidence Intervals

There is an interesting and useful relationship between confidence intervals and
hypothesis tests. If the null hypothesis H0 is rejected at the significance level α, then
there exists a 100(1 − α)% confidence interval which yields the same conclusion as
the test: if the appropriate confidence interval does not contain the value θ0 targeted
in the hypothesis, then H0 is rejected. We call this duality. For example, recall
Example 10.1.2 where we were interested in whether the average change in blood
pressure for drug B is higher than for drug A, i.e. H1 : δB > δA. This hypothesis is
equivalent to H1 : δB − δA > δ0 = 0. In the following section, we develop tests to
decide whether H1 is statistically significant or not. Alternatively, we could construct
a 100(1 − α)% confidence interval for the difference δB − δA and evaluate whether
the interval contains δ0 = 0 or not; if yes, we accept H0; otherwise, we reject it. For
some of the tests introduced in following section, we refer to the confidence intervals
which lead to the same results as the corresponding test.

10.3 Parametric Tests for Location Parameters

10.3.1 Test for theMeanWhen theVariance is Known (One-Sample
Gauss Test)

We develop a hypothesis test to test whether the unknown mean (expectation) μ of a
N (μ,σ2)-distributed random variable X either differs from a specific value μ = μ0
or is smaller (or greater) than μ0. We assume that the variance σ2 = σ2

0 is known.
We apply the scheme of Sect. 10.2.5 step by step to develop the test procedure and
then give an illustrative example.

1. Distributional assumption: The random variable X follows a N (μ,σ2
0)- distribu-

tion with known variance σ2
0. We assume that an i.i.d. random sample is drawn from

X1, X2, . . . , Xn where the Xi s follow the same distribution as X , i = 1, 2, . . . , n.

2. Define any of the following set of hypotheses H0 and H1:

H0 : μ = μ0 versus H1 : μ �= μ0, (two-sided test)

H0 : μ ≤ μ0 versus H1 : μ > μ0, (one-sided test)

H0 : μ ≥ μ0 versus H1 : μ < μ0, (one-sided test).

3. Specify the probability of a type I error α: Often α = 0.05 = 5% is chosen.

4. Construct a test statistic: The unknown mean, i.e. the expectation μ, is usually
estimated by the sample mean x̄ . We already know that if the Xi s are i.i.d., then the
sample mean is normally distributed. Under the assumption that H0 is true,

X̄ = 1

n

n∑

i=1

Xi
H0∼ N (μ0,σ

2
0/n),
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where
H0∼ means the “distribution under H0”. If we standardize the mean under H0,

we get a N (0, 1)-distributed test statistic

T (X) = X̄ − μ0

σ0

√
n

H0∼ N (0, 1),

see also Theorem 7.3.2. Note that T (X) follows a normal distribution even if the
Xi s are not normally distributed and if n is large enough which follows from the
Central Limit Theorem (Appendix C.3). One can conclude that the distributional
assumption from step 1 is thus particularly important for small samples, but not
necessarily important for large samples. As a rule of thumb, n ≥ 30 is considered
to be a large sample. This rule is based on the knowledge that a t-distribution with
more than 30 degrees of freedom gets very close to a N (0, 1)-distribution.

5. Critical region: Since the test statistic T (X) is N (0, 1)-distributed, we get the
following critical regions, depending on the hypothesis:

Case H0 H1 Critical region K
(a) μ = μ0 μ �= μ0 K = (−∞,−z1−α/2) ∪ (z1−α/2,∞)

(b) μ ≤ μ0 μ > μ0 K = (z1−α,∞)

(c) μ ≥ μ0 μ < μ0 K = (−∞, zα = −z1−α)

For case (a) with H0: μ = μ0 and H1: μ �= μ0, we are interested in extreme
values of the test statistic on both tails: very small values and very large values of the
test statistic give us evidence that H0 is wrong (because the statistic is mainly driven
by the difference of the sample mean and the test value μ0 for a fixed variance),
see Fig. 10.1. In such a two-sided test, when the distribution of the test statistic is
symmetric, we divide the critical region into two equal parts and assign each region
of size α/2 to the left and right tails of the distribution. For α = 0.05, 2.5% of the
most extreme values towards the right end of the distribution and 2.5% of the most
extreme values towards the left end of the distribution give us enough evidence that
H0 is wrong and can be rejected and that H1 is accepted. It is also clear why α is

zα/2 = −z1−α/2 z1−α/2

Fig. 10.1 Critical region of a two-sided one-sample Gauss-test H0: μ = μ0 versus H1: μ �= μ0.
The critical region K = (−∞,−z1−α/2) ∪ (z1−α/2,∞) has probability mass α if H0 is true∗

http://dx.doi.org/10.1007/978-3-319-46162-5_7


218 10 Hypothesis Testing

z1−α

Fig. 10.2 Critical region of a one-sided one-sample Gauss test H0: μ ≤ μ0 versus H1: μ > μ0.
The critical region K = (z1−α,∞) has probability mass α if H0 is true∗

the probability of a type I error: the most extreme values in the two tails together
have 5% probability and are just the probability that the test statistic falls into the
critical region although H0 is true. Also, these areas are those which have the least
probability of occurring if H0 is true. For α = 0.05, we get z1− α

2
= 1.96.

For case (b), only one direction is of interest. The critical region lies on the right
tail of the distribution of the test statistic. A very large value of the test statistic has
a low probability of occurrence if H0 is true. An illustration is given in Fig. 10.2: for
α = 0.05, we get z1−α = 1.64 and any values greater than 1.64 are unlikely to be
observed under H0. Analogously, the critical region for case (c) is constructed. Here,
the shaded area (critical region) is on the left-hand side. In this case, for α = 0.05,
we get zα = −z1−α = −1.64.

6. Realization of the test statistic: For an observed sample x1, x2, . . . , xn , the arith-
metic mean

x̄ = 1

n

n∑

i=1

xi

is used to calculate the realized (observed) test statistic t (x) = T (x1, x2,. . . , xn) as

t (x) = x̄ − μ0

σ0

√
n.

7. Test decision: If the realized test statistic from step 6 falls into the critical region,
H0 is rejected (and therefore, H1 is statistically proven). Table10.1 summarizes the
test decisions depending on t (x) and the quantiles defining the appropriate critical
regions.

Example 10.3.1 A bakery supplies loaves of bread to supermarkets. The stated sell-
ing weight (and therefore the required minimum expected weight) is μ = 2 kg.
However, not every package weighs exactly 2kg because there is variability in the
weights. It is therefore important to find out if the average weight of the loaves
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Table 10.1 Rules to make test decisions for the one-sample Gauss test (and the two-sample Gauss
test, the one-sample approximate binomial test, and the two-sample approximate binomial test—
which are all discussed later in this chapter)

Case H0 H1 Reject H0 if

(a) μ = μ0 μ �= μ0 |t (x)| > z1−α/2

(b) μ ≥ μ0 μ < μ0 t (x) < zα
(c) μ ≤ μ0 μ > μ0 t (x) > z1−α

is significantly smaller than 2kg. The weight X (measured in kg) of the loaves is
assumed to be normally distributed.We assume that the variance σ2

0 = 0.12 is known
from experience. A supermarket draws a sample of n = 20 loaves and weighs them.
The average weight is calculated as x̄ = 1.97 kg. Since the supermarket wants to be
sure that the weights are, on average, not lower than 2kg, a one-sided hypothesis
is appropriate and is formulated as H0: μ ≥ μ0 = 2 kg versus H1: μ < μ0 = 2 kg.
The significance level is specified as α = 0.05, and therefore, z1−α = 1.64. The test
statistic is calculated as

t (x) = x̄ − μ0

σ0

√
n = 1.97 − 2

0.1

√
20 = −1.34.

The null hypothesis is not rejected, since t (x) = −1.34 > −1.64 = −z1−0.05 =
z0.05.

Interpretation: The sample average x̄ = 1.97 kg is below the target value ofμ = 2 kg.
But there is not enough evidence to reject the hypothesis that the sample comes from
a N (2, 0.12)-distributed population. The probability to observe a sample of size
n = 20 with an average of at most 1.97 in a N (2, 0.12)-distributed population is
greater than α = 0.05 = 5%. The difference between x̄ = 1.97 kg and the target
value μ = 2 kg is not statistically significant.

Remark 10.3.1 The Gauss test assumes the variance to be known, which is often
not the case in practice. The t-test (Sect. 10.3.2) assumes that the variance needs to
be estimated. The t-test is therefore commonly employed when testing hypotheses
about the mean. Its usage is outlined below. In R, the command Gauss.test from
the library compositions offers an implementation of the Gauss test.

10.3.2 Test for theMeanWhen theVariance is Unknown
(One-Sample t-Test)

If the variance σ2 is unknown, hypotheses about the mean μ of a normal random
variable X ∼ N (μ,σ2) can be tested in a similar way to the one-sample Gauss
test. The difference is that the unknown variance is estimated from the sample. An
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unbiased estimator of σ2 is the sample variance

S2X = 1

n − 1

n∑

i=1

(Xi − X̄)2.

The test statistic is therefore

T (X) = X̄ − μ0

SX

√
n,

which follows a t-distribution with n − 1 degrees of freedom if H0 is true, as we
know from Theorem 8.3.2.

Critical regions and test decisions
Since T (X) follows a t-distribution under H0, the critical regions refer to the regions
of the t-distribution which are unlikely to be observed under H0:

Case H0 H1 Critical region K
(a) μ = μ0 μ �= μ0 K = (−∞,−tn−1;1−α/2) ∪ (tn−1;1−α/2,∞)

(b) μ ≥ μ0 μ < μ0 K = (−∞,−tn−1;1−α)

(c) μ ≤ μ0 μ > μ0 K = (tn−1;1−α,∞)

The hypothesis H0 is rejected if the realized test statistic, i.e.

t (x) = x̄ − μ0

sX

√
n,

falls into the critical region. The critical regions are based on the appropriate quantiles
of the t-distribution with (n − 1) degrees of freedom, as outlined in Table10.2.

Example 10.3.2 We again consider Example 10.3.1. Now we assume that the vari-
ance of the loaves is unknown. Suppose a random sample of size n = 20 has an
arithmetic mean of x̄ = 1.9668 and a sample variance of s2 = 0.09272. We want to
test whether this result contradicts the two-sided hypothesis H0: μ = 2, that is case
(a). The significance level is fixed at α = 0.05. For the realized test statistic t (x), we
calculate

t (x) = x̄ − μ0

sX

√
n = 1.9668 − 2

0.0927

√
20 = −1.60.

Table 10.2 Rules to make test decisions for the one-sample t-test (and the two-sample t-test, and
the paired t-test, both explained below)

Case H0 H1 Reject H0, if

(a) μ = μ0 μ �= μ0 |t (x)| > tn−1;1−α/2

(b) μ ≥ μ0 μ < μ0 t (x) < −tn−1;1−α

(c) μ ≤ μ0 μ > μ0 t (x) > tn−1;1−α

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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H0 is not rejected since |t | = 1.60 < 2.09 = t19;0.975, where the quantiles ±2.09
are defining the critical region (see Table C.2 or use R: qt(0.975,19)). The same
results can be obtained in R using the t.test() function, see Example 10.3.3 for
more details. Or, we can directly calculate the (two-sided) p-value as

2*(1-pt(abs(1.6), df=19))

This yields a p-value of 0.1260951 which is not smaller than α, and therefore,
H0 is not rejected.

10.3.3 Comparing theMeans of Two Independent Samples

In a two-sample problem, we may be interested in comparing the means of two inde-
pendent samples. Assume that we have two samples of two normally distributed vari-
ables X ∼ N (μX ,σ

2
X ) and Y ∼ N (μY ,σ

2
Y ) of size n1 and n2, i.e. X1, X2, . . . , Xn1

are i.i.d. with the same distribution as X and Y1, Y2, . . . , Yn2 are i.i.d. with the same
distribution as Y . We can specify the following hypotheses:

Case Null hypothesis Alternative hypothesis
(a) μX = μY μX �= μY Two-sided test problem
(b) μX ≥ μY μX < μY One-sided test problem
(c) μX ≤ μY μX > μY One-sided test problem

We distinguish another three cases:

1. σ2
X and σ2

Y are known.
2. σ2

X and σ2
Y are unknown, but they are assumed to be equal, i.e. σ2

X = σ2
Y .

3. Both σ2
X and σ2

Y are unknown and unequal (σ2
X �= σ2

Y ).

Case 1: The variances are known (two-sample Gauss test).
If the null hypothesis H0: μX = μY is true, then, using the usual rules for the normal
distribution and the independence of the samples,

X̄ ∼ N

(
μX ,

σ2
X

n1

)
,

Ȳ ∼ N

(
μY ,

σ2
Y

n2

)
,

and

(X̄ − Ȳ ) ∼ N

(
μY − μY ,

σ2
X

n1
+ σ2

Y

n2

)
.
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It follows that the test statistic

T (X,Y) = X̄ − Ȳ
√

σ2
X

n1
+ σ2

Y
n2

(10.1)

follows a standard normal distribution, T (X,Y) ∼ N (0, 1). The realized test statistic
is

t (x, y) = x̄ − ȳ
√

σ2
X

n1
+ σ2

Y
n2

. (10.2)

The test procedure is identical to the procedure of the one-sample Gauss test intro-
duced in Sect. 10.3.1; that is, the test decision is based on Table10.1.

Case 2: The variances are unknown, but equal (two-sample t-test).
Wedenote the unknown variance of both distributions as σ2 (i.e. both the populations
are assumed tohavevarianceσ2).Weestimateσ2 byusing the pooled sample variance
where each sample is assigned weights relative to the sample size:

S2 = (n1 − 1)S2X + (n2 − 1)S2Y
n1 + n2 − 2

. (10.3)

The test statistic

T (X,Y) = X̄ − Ȳ

S

√
n1 · n2
n1 + n2

(10.4)

with S as in (10.3) follows a t-distribution with n1 + n2 − 2 degrees of freedom if
H0 is true. The realized test statistic is

t (x, y) = x̄ − ȳ

s

√
n1 · n2
n1 + n2

. (10.5)

The test procedure is identical to the procedure of the one-sample t-test; that is, the
test decision is based on Table10.2.

Case 3: The variances are unknown and unequal (Welch test).
We test H0: μX = μY versus H1: μX �= μY given σ2

X �= σ2
Y and both σ2

X and σ2
Y

are unknown. This problem is also known as the Behrens–Fisher problem and is the
most frequently used test when comparing two means in practice. The test statistic
can be written as

T (X,Y) =
∣∣X̄ − Ȳ

∣∣
√

S2X
n1

+ S2Y
n2

, (10.6)

which is approximately t-distributed with v degrees of freedom:

v =
(
s2x
n1

+ s2y
n2

)2

/

⎛

⎜⎝
(
s2x/n1

)2

n1 − 1
+

(
s2y/n2

)2

n2 − 1

⎞

⎟⎠ (10.7)
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where s2x and s2y are the estimated values of S2X = 1
n−1

∑n
i=1(Xi − X̄)2 and S2Y =

1
n−1

∑n
i=1(Yi − Ȳ )2, respectively. The test procedure, using the observed test statistic

t (x, y) = |x̄ − ȳ|
√

s2X
n1

+ s2Y
n2

, (10.8)

is identical to the procedure of the one-sample t-test; that is, the test decision is based
on Table10.2 except that the degrees of freedom are not n − 1 but v. If v is not an
integer, it can be rounded off to an integer value.

Example 10.3.3 A small bakery sells cookies in packages of 500 g. The cookies are
handmade and the packaging is either done by the baker himself or his wife. Some
customers conjecture that the wife is more generous than the baker. One customer
does an experiment: he buys packages of cookies packed by the baker and his wife
on 16 different days and weighs the packages. He gets the following two samples
(one for the baker, one for his wife).

Weight (wife) (X ) 512 530 498 540 521 528 505 523
Weight (baker) (Y ) 499 500 510 495 515 503 490 511

We want to test whether the complaint of the customers is justified. Let us start
with the following simple hypotheses:

H0 : μx = μy versus H1 : μx �= μy,

i.e. we only want to test whether the weights are different, not that the wife is making
heavier cookie packages. Since the variances are unknown, we assume that case 3 is
the right choice.We calculate and obtain x̄ = 519.625, ȳ = 502.875, s2X = 192.268,
and s2Y = 73.554. The test statistic is:

t (x, y) = |x̄ − ȳ|
√

s2X
n1

+ s2Y
n2

= |519.625 − 502.875|√
192.268

8 + 73.554
8

≈ 2.91.

The degrees of freedom are:

v =
(
192.268

8
+ 73.554

8

)2

/

(
(192.268/8)2

7
+ (73.554/8)2

7

)
≈ 11.67 ≈ 12.

Since |t (x)| = 2.91> 2.18 = t12;0.975, it follows that H0 is rejected. Therefore, H1 is
statistically significant. This means that the mean weight of the wife’s packages is
different from the mean weight of the baker’s packages. Let us refine the hypothesis
and try to find out whether the wife’s packages have a higher mean weight. The
hypotheses are now:

H0 : μx ≤ μy versus H1 : μx > μy .
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The test statistic remains the same but the critical region and the degrees of freedom
change. Thus, H0 is rejected if t (x, y) > tv;1−α. Using tv;1−α = t12;0.95 ≈ 1.78 and
t (x, y) = 2.91, it follows that the null hypothesis can be rejected. The mean weight
of the wife’s packages is greater than the mean weight of the baker’s packages.

In R, we would have obtained the same result using the t.test command:

x <- c(512,530,498,540,521,528,505,523)
y <- c(499,500,510,495,515,503,490,511)
t.test(x,y,alternative='greater')

Welch Two-Sample t-test

data: x and y

t = 2.9058, df = 11.672, p-value = 0.006762

alternative hypothesis: true difference in means is greater

than 0...

Note that we have to specify the alternative hypothesis under the option alter-
native. The output shows us the test statistic (2.9058), the degrees of freedom
(11.672), the alternative hypothesis—but not the decision rule. We know that H0
is rejected if t (x, y) > tv;1−α, so the decision is easy in this case: we simply have
to calculate t12;0.95 using qt(0.95,12) in R. A simpler way to arrive at the same
decision is to use the p-value. We know that H0 is rejected if p < α which is the
case in this example. It is also worthwhile mentioning that R displays the hypothe-
ses slightly differently from ours: our alternative hypothesis is μx > μy which is
identical to the statement μx − μy > 0, as shown by R, see also Sect. 10.2.2.

If we specify two.sided as an alternative (which is the default), a confidence
interval for the mean difference is also part of the output:

t.test(x,y,alternative='two.sided')

...

95 % confidence interval:

4.151321 29.348679

It can be seen that the confidence interval of the difference does not cover the “0”.
Therefore, the null hypothesis is rejected. This is the duality property referred to
earlier in this chapter: the test decision is the same, no matter whether one evaluates
(i) the confidence interval, (ii) the test statistic, or (iii) the p-value.

Any kind of t-test can be calculated with the t.test command: for example,
the two-sample t-test requires to specify the option var.equal=TRUE while the
Welch test is calculated when the (default) option var.equal=FALSE is set. We can
also conduct a one-sample t-test. Suppose we are interested in whether the mean
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weight of the wife’s packages of cookies is greater than 500g; then, we could test
the hypotheses:

H0 : μx ≤ 500 versus H1 : μx > 500.

In R, we simply have to specify μ0:

t.test(x,mu=500,alternative='greater')

which gives us

One-Sample t-test

data: x

t = 4.0031, df = 7, p-value = 0.002585

alternative hypothesis: true mean is greater than 500

...

10.3.4 Test for Comparing theMeans of Two Dependent Samples
(Paired t-Test)

Suppose there are two dependent continuous random variables X and Y with E(X) =
μX and E(Y ) = μY . They could be dependent because wemeasure the same variable
twice on the same subjects at different times. Typically, this is the case in pre–post
experiments, for example when we measure the weight of a person before starting a
special diet and after finishing the diet; or when evaluating household expenditures
on electronic appliances in two consecutive years. We then say that the samples
are paired, or dependent. Since the same variable is measured twice on the same
subject, it makes sense to calculate a difference between the two respective values.
Let D = X − Y denote the randomvariable “difference of X andY ”. If H0:μX = μY

is true, then the expected difference is zero, and we get E(D) = μD = 0. This means
testing H0 : μX = μY is identical to testing μX − μY = μD = 0. We further assume
that D is normally distributed if H0:μX = μY is true (or equivalently if H0:μD = 0 is
true), i.e. D ∼ N (0,σ2

D). For a random sample (D1, D2, . . . , Dn) of the differences,
the test statistic

T (X,Y) = T (D) = D̄

SD

√
n (10.9)

is t-distributed with n − 1 degrees of freedom. The sample mean is D̄ = ∑n
i=1 /Din

and the sample variance is

S2D =
∑n

i=1(Di − D̄)2

n − 1
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which is an estimator of σ2
D . The realized test statistic is thus

t (d) = d̄

sd

√
n (10.10)

where d̄ = ∑n
i=1 di/n and s2d = ∑n

i=1(di − d̄)2/n − 1.
The two-sided test H0: μD = 0 versus H1: μD �= 0 and the one-sided tests H0:

μD ≤ 0 versus H1: μD > 0 or H0: μD ≥ 0 versus H1: μD < 0 can be derived as in
Sect. 10.3.2; that is, the test decision is based on Table10.2. In fact, the paired t-test
is a one-sample t-test on the differences of X and Y .

Example 10.3.4 In an experiment, n = 10 students have to solve different tasks
before and after drinking a cup of coffee. Let Y and X denote the random variables
“number of points before/after drinking a cup of coffee”. Assume that a higher
number of pointsmeans that the student is performing better. Since the test is repeated
on the same students, we have a paired sample. The data is given in the following
table:

i yi (before) xi (after) di = xi − yi (di − d̄)2

1 4 5 1 0
2 3 4 1 0
3 5 6 1 0
4 6 7 1 0
5 7 8 1 0
6 6 7 1 0
7 4 5 1 0
8 7 8 1 0
9 6 5 −1 4
10 2 5 3 4

Total 10 8

We calculate

d̄ = 1 and s2d = 8

9
= 0.9432,

respectively. For the realized test statistic t (d), using α = 0.05, we get

t (d) = 1

0.943

√
10 = 3.35 > t9;0.95 = 1.83,

such that H0: μX ≤ μY is rejected and H1: μX > μY is accepted. We can conclude
(for this example) that drinking coffee significantly increased the problem-solving
capacity of the students.
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In R, we would have obtained the same results using the t.test function and
specifying the option paired=TRUE:

yp <- c(4,3,5,6,7,6,4,7,6,2)
xp <- c(5,4,6,7,8,7,5,8,5,5)
t.test(xp,yp,paired=TRUE)

Paired t-test

data: xp and yp

t = 3.3541, df = 9, p-value = 0.008468

alternative hypothesis: true difference in means != 0

95 % confidence interval:

0.325555 1.674445

sample estimates:

mean of the differences

1

We can make the test decision using the R output in three different ways:

(i) We compare the test statistic (t = −3.35) with the critical value (1.83, obtained
via qt(0.95,9)).

(ii) We evaluate whether the p-value (0.008468) is smaller than the significance
level α = 0.05.

(iii) We evaluate whether the confidence interval for the mean difference covers “0”
or not.

10.4 Parametric Tests for Probabilities

10.4.1 One-Sample Binomial Test for the Probability p

Test construction and hypotheses.
Let X be a Bernoulli B(1; p) random variable with the two possible outcomes 1
and 0, which indicate occurrence and non-occurrence of an event of interest A. The
probability for A in the population is p. From the sample X = (X1, X2, . . . , Xn) of
independent B(1; p)-distributed random variables, we calculate the mean (relative
frequency) as p̂ = 1

n

∑n
i=1 Xi which is an unbiased estimate of p. The following

hypotheses may thus be of interest:

Case Null hypothesis Alternative hypothesis
(a) p = p0 p �= p0 Two-sided problem
(b) p ≥ p0 p < p0 One-sided problem
(c) p ≤ p0 p > p0 One-sided problem
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In the following, we describe two possible solutions, one exact approach and an
approximate solution. The approximate solution is based on the approximation of
the binomial distribution by the normal distribution, which is appropriate if n is
sufficiently large and the condition np(1 − p) ≥ 9 holds (i.e. p is neither too small
nor too large). First, we present the approximate solution and then the exact one.

Test statistic and test decisions.

(a) Approximate binomial test. We define the standardized test statistic as

T (X) = p̂ − p0√
p0(1 − p0)

√
n. (10.11)

It holds approximately that T (X) ∼ N (0, 1), given that the conditions that (i)
n is sufficiently large and (ii) np(1 − p) ≥ 9 are satisfied. The test can then
be conducted along the lines of the Gauss test in Sect. 10.3.1; that is, the test
decision is based on Table10.1.

Example 10.4.1 We return to Example 10.1.1. Let us assume that a representative
sample of size n = 2000 has been drawn from the population of eligible voters, from
which 700 (35%) have voted for the party of interest P . The research hypothesis
(which has to be stated as H1) is that more than 30% (i.e. p0 = 0.3) of the eligible
voters cast their votes for party P . The sample is in favour of H1 because p̂ = 35%,
but to draw conclusions for the proportion of voters of party P in the population,
we have to conduct a binomial test. Since n is large and np(1 − p) = 2000 · 0.35 ·
0.65 = 455 ≥ 9, the assumptions for the use of the test statistic (10.11) are satisfied.
We can write down the realized test statistic as

t (x) = p̂ − p0√
p0(1 − p0)

√
n = 0.35 − 0.3√

0.3(1 − 0.3)

√
2000 = 4.8795.

Using α = 0.05, it follows that T (X) = 4.8795 > z1−α = 1.64, and thus, the null
hypothesis H0 : p ≤ 0.3 can be rejected. Therefore, H1 : p > 0.3 is statistically
significant; that is, the proportion of votes for party P is greater than 30%.

(b) The exact binomial test can be constructed using the knowledge that under H0,
Y = ∑n

i=1 Xi (i.e. the number of successes) follows a binomial distribution. In
fact, we can use Y directly as the test statistic:

T (X) = Y ∼ B(n, p0) .

The observed test statistic is t (x) = ∑
i xi . For the two-sided case (a), the two

critical numbers cl and cr (cl < cr ) which define the critical region, have to be
found such that

PH0(Y ≤ cl) ≤ α

2
and PH0(Y ≥ cr ) ≤ α

2
.

The null hypothesis is rejected if the test statistic, i.e. Y , is greater than or equal
to cr or less than or equal to cl . For the one-sided case, a critical number c has
to be found such that

PH0(Y ≤ c) ≤ α
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for hypotheses of type (b) and

PH0(Y ≥ c) ≤ α

for hypotheses of type (c). If Y is less than the critical value c (for case (b)) or
greater than the critical value (for case (c)), the null hypothesis is rejected.

Example 10.4.2 We consider again Example 10.1.1 where we looked at the popula-
tion of eligible voters, from which 700 (35%) have voted for the party of interest P .
The observed test statistic is t (x) = ∑

i xi = 700 and the alternative hypothesis is
H1 : p ≥ 0.3, as in case (c). There are at least two ways in which we can obtain the
results:

(i) Long way: We can calculate the test statistic and compare it to the critical region.
To get the critical region, we search c such that

Pp=0.3(Y ≥ c) ≤ 0.05 ,

which equates to
Pp=0.3(Y < c) ≥ 0.95

and can be calculated in R as:

qbinom(p=0.95, prob=0.3, size=2000)
[1] 634

Since Y = 700 > c = 634 we reject the null hypothesis. As in Example 10.4.1,
we conclude that there is enough evidence that the proportion of votes for party
P is greater than 30%.

(ii) Short way: The above result can be easily obtained in R using the binom.
test() command. We need to specify the number of “successes” (here: 700),
the number of “failures” (2000 − 700 = 1300), and the alternative hypothesis:

binom.test(c(700,1300),p=0.3,alternative='greater')

data: c(700, 1300)

number of successes = 700, number of trials = 2000,

p-value = 8.395e-07

alternative hypothesis: true probability of success

is greater than 0.3

95 % confidence interval:

0.332378 1.000000

probability of success

0.35
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Both the p-value (which is smaller than α = 0.05) and the confidence interval
(for which we do not show the calculation) confirm the rejection of the null
hypothesis.
Note that

binom.test(x=700,n=2000,p=0.3, alternative='greater')

returns the same result.

10.4.2 Two-Sample Binomial Test

Test construction and hypotheses.
We consider now the case of two independent i.i.d. samples from Bernoulli distrib-
utions with parameters p1 and p2.

X = (X1, X2, . . . , Xn1), Xi ∼ B(1; p1)
Y = (Y1, Y2, . . . , Yn2), Yi ∼ B(1; p2).

The sums

X =
n1∑

i=1

Xi ∼ B(n1; p1), Y =
n2∑

i=1

Yi ∼ B(n2; p2)

follow binomial distributions. One of the following hypotheses may be of interest:

Case Null hypothesis Alternative hypothesis
(a) p1 = p2 p1 �= p2 Two-sided problem
(b) p1 ≥ p2 p1 < p2 One-sided problem
(c) p1 ≤ p2 p1 > p2 One-sided problem

Similar to the one-sample case, both exact and approximate tests exist. Here, we only
present the approximate test. The exact test of Fisher is presented in Appendix C.5,
p. 428. Let n1 and n2 denote the sample sizes. Then, X/n1 and Y/n2 are approxi-
mately normally distributed:

X

n1

approx .∼ N

(
p1,

p1(1 − p1)

n1

)
,

Y

n2

approx .∼ N

(
p2,

p2(1 − p2)

n2

)
.

Their difference D

D
approx .∼ N

(
0, p(1 − p)

(
1

n1
+ 1

n2

))
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is normally distributed too under H0 (given p = p1 = p2 holds). Since the proba-
bilities p1 and p2 are identical under H0, we can pool the two samples and estimate
p by

p̂ = X + Y

n1 + n2
. (10.12)

Test statistic and test decision.
The test statistic

T (X,Y) = D
√
p̂(1 − p̂)

(
1
n1

+ 1
n2

) , (10.13)

follows a N (0, 1)-distribution if n1 and n2 are sufficiently large and p is not near the
boundaries 0 and 1 (one could use, for example, again the condition np(1 − p) > 9
with n = n1 + n2). The realized test statistic can be calculated using the observed
difference d̂ = p̂1 − p̂2. The test can be conducted for the one-sided and the two-
sided case as the Gauss test introduced in Sect. 10.3.1; that is, the decision rules from
Table10.1 can be applied.

Example 10.4.3 Two competing lotteries claim that every fourth lottery ticket wins.
Suppose we want to test whether the probabilities of winning are different for the
two lotteries, i.e. H0 : p1 = p2 and H1 : p1 �= p2. We have the following data

n Winning Not winning
Lottery A 63 14 49
Lottery B 45 13 32

We can estimate the probabilities of a winning ticket for each lottery, as well as the
respective difference, as

p̂A = 14

63
, p̂B = 13

45
, d̂ = p̂A − p̂B = − 1

15
.

Under H0, an estimate for p following (10.12) is

p̂ = 14 + 13

63 + 45
= 27

108
= 0.25.

The test statistic can be calculated as

t (x, y) = − 1
15√

0.25(1 − 0.25)
( 1
63 + 1

45

) = −0.79.

H0 is not rejected since |t (x, y)| = 0.79 < 1.96 = z1−0.05/2. Thus, there is no statis-
tical evidence for different winning probabilities for the two lotteries. These hypothe-
ses can be tested in R using the Test of Fisher, see Appendix C.5, p. 428, for more
details.
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10.5 Tests for Scale Parameters

There are various tests available to test hypotheses about scale parameters. Such
tests are useful when one is interested in the dispersion of a variable, for example
in quality control where the variability of a process may be of interest. One-sample
tests of hypotheses for the variance of a normal distribution, e.g. hypotheses such
as H0 : σ2 = σ2

0, can be tested by the χ2-test for the variance, see Appendix C.5,
p. 430. Two-sample problems can be addressed by the F-test (which is explained in
Appendix C.5, p. 431); or by other tests such as the Levene test or Bartlett’s test,
which are also available in R (leveneTest in the package car, bartlett in the
base distribution of R).

10.6 Wilcoxon–Mann–Whitney (WMW) U-Test

Test construction and hypotheses.

The WMW U -test is often proposed as an alternative to the t-test because it also
focuses on location but not on the expected value μ. It is a nonparametric test
and useful in situations where skewed distributions are compared with each other.
We consider two independent random samples X = (X1, X2, . . . , Xn1) and Y =
(Y1, Y2, , . . . , Yn2) from two populations with observed values (x1, x2, . . . , xn1) and
(y1, y2, . . . , yn2), respectively. In this case, the null hypothesis H0 considering the
location can be formulated as

H0 : P(X > Y ) = P(Y > X) = 1

2
.

The null hypothesis can be interpreted in the following way: the probability that a
randomly drawn observation from the first population has a value x that is greater
(or lower) than the value y of a randomly drawn subject from the second population
is 1

2 . The alternative hypothesis H1 is then

H1 : P(X > Y ) �= P(Y > X) .

This means we are comparing the entire distribution of two variables. If there is a
location shift in the sense that one distribution is shifted left (or right) compared
with the other distribution, the null hypothesis will be rejected because this shift
can be seen as part of the alternative hypothesis P(X > Y ) �= P(Y > X). In fact,
under some assumptions, the hypothesis can even be interpreted as comparing two
medians, and this is what is often done in practice.

Observed test statistic.

To construct the test statistic, it is necessary to merge (x1, x2, . . . , xn1) and (y1, y2,
. . . , yn2) into one sorted sample, usually in ascending order, while keeping the infor-
mation which value belongs to which sample. For now, we assume that all values of
the two samples are distinct; that is, no ties are present. Then, each observation has
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a rank between 1 and (n1 + n2). Let R1+ be the sum of ranks of the x-sample and
let R2+ be the sum of ranks of the y-sample. The test statistic is defined asU , where
U is the minimum of the two values U1, U2, U = min(U1,U2) with

U1 = n1 · n2 + n1(n1 + 1)

2
− R1+, (10.14)

U2 = n1 · n2 + n2(n2 + 1)

2
− R2+. (10.15)

Test decision.
H0 is rejected if U < un1,n2;α. Here, un1,n2;α is the critical value derived from the
distribution of U under the null hypothesis. The exact (complex) distribution can,
for example, be derived computationally (in R). We are presenting an approximate
solution together with its implementation in R.

Since U1 +U2 = n1 · n2, it is sufficient to compute only Ri+ and U = min{Ui ,

n1n2 −Ui } (i = 1 or i = 2 are chosen such that Ri+ is calculated for the sample
with the lower sample size). For n1, n2 ≥ 8, one can use the approximation

T (X,Y) = U − n1·n2
2√

n1 · n2 · (n1 + n2 + 1)

12

approx .∼ N (0, 1) (10.16)

as the test statistic. For two-sided hypotheses, H0 is rejected if |t (x, y)| > z1−α/2;
for one-sided hypotheses H0 is rejected if |t (x, y)| > z1−α. In the case of ties, the
denominator of the test statistic in (10.16) can be modified as

T (X,Y) = U − n1·n2
2√√√√√

[
n1 · n2
n(n − 1)

] ⎡

⎣n3 − n

12
−

G∑

j=1

t3j − t j

12

⎤

⎦

approx .∼ N (0, 1),

where G is the number of different (groups of) ties and t j denotes the number of tied
ranks in tie group j .

Example 10.6.1 In a study, the reaction times (in seconds) to a stimulus were mea-
sured for two groups. One group drank a strong coffee before the stimulus and the
other group drank only the same amount of water. There were 9 study participants
in the coffee group and 10 participants in the water group. The following reaction
times were recorded:

Reaction time 1 2 3 4 5 6 7 8 9 10
Coffee group (C) 3.7 4.9 5.2 6.3 7.4 4.4 5.3 1.7 2.9
Water group (W) 4.5 5.1 6.2 7.3 8.7 4.2 3.3 8.9 2.6 4.8

We test with theU -test whether there is a location difference between the two groups.
First, the ranks of the combined sample are calculated as:
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1 2 3 4 5 6 7 8 9 10 Total
Value (C) 3.7 4.9 5.2 6.3 7.4 4.4 5.3 1.7 2.9
Rank (C) 5 10 12 15 17 7 13 1 3 83
Value (W) 4.5 5.1 6.2 7.3 8.7 4.2 3.3 8.9 2.6 4.8
Rank (W) 8 11 14 16 18 6 4 19 2 9 107

With RC+ = 83 and RW+ = 107, we get

U1 = n1 · n2 + n1(n1 + 1)

2
− RC+ = 9 · 10 + 9 · 10

2
− 83 = 52,

U2 = n1 · n2 + n2(n2 + 1)

2
− RW+ = 9 · 10 + 10 · 11

2
− 107 = 38.

With n1, n2 ≥ 8 and U = U2 = 38,

t (x, y) = U − n1·n2
2√

n1 · n2 · (n1 + n2 + 1)

12

= 38 − 9·10
2√

9 · 10 · (9 + 10 + 1)

12

≈ −0.572.

Since |t (x, y)| = 0.572 < z1−α/2 = 1.96, the null hypothesis cannot be rejected;
that is, there is no statistical evidence that the two groups have different reaction
times.

In R, one can use the wilcox.test command to obtain the results:

coffee <- c(3.7, 4.9, 5.2, 6.3, ..., 2.9)
water <- c(4.5, 5.1, 6.2, ..., 4.8)
wilcox.test(coffee, water)

The output is

Wilcoxon rank sum test

data: coffee.sample and water.sample

W = 38, p-value = 0.6038

alternative hypothesis: true location shift is not equal to 0

We can see that the null hypothesis is not rejected because p = 0.6038 > α =
0.05.Thedisplayed test statistic isW which equates to our statisticU2. The alternative
hypothesis in R is framed as location shift, an interpretation which has already been
given earlier in the chapter. Note that the test also suggests that the medians of the
two samples are not statistically different.
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10.7 χ2-Goodness-of-Fit Test

Test construction.
The χ2-goodness-of-fit test is one of the most popular tests for testing the goodness
of fit of the observed data to a distribution. The construction principle is very general
and can be used for variables of any scale. The test statistic is derived such that the
observed absolute frequencies are compared with the expected absolute frequencies
under the null hypothesis H0.

Example 10.7.1 Consider an experiment where a die is rolled n = 60 times. Under
the null hypothesis H0, we assume that the die is fair, i.e. pi = 1

6 , i = 1, 2, . . . , 6,
where pi = P(X = i). We could have also said that H0 is the hypothesis that the
rolls are following a discrete uniform distribution. Thus, the expected absolute fre-
quencies under H0 are npi = 60 · 1

6 = 10, while the observed frequencies in the
sample are Ni , i = 1, 2, . . . , 6. The Ni generally deviate from npi . The χ2-statistic
is based on the squared differences,

∑6
i=1(Ni − npi )2, and becomes large as the

differences between the observed and the expected frequencies become larger. The
χ2-test statistic is a modification of this sum by scaling each squared difference by
the expected frequencies, npi , and is explained below.

With a nominal variable, we can proceed as in Example 10.7.1. If the scale of the
variable is ordinal or continuous, the number of different values can be large. Note
that in the most extreme case, we can have as many different values as observations
(n), leading to Ni = 1 for all i = 1, 2, . . . , n. Then, it is necessary to group the data
into k intervals before applying the χ2-test. The reason is that the general theory of
the χ2-test assumes that the number k (which was 6 in Example 10.7.1 above) is
fixed and does not grow with the number of observations n; that is, the theory says
that the χ2-test only works properly if k is fixed and n is large. For this reason, we
group the sample X = (X1, X2, . . . , Xn) into k classes as shown in Sect. 2.1.

Class 1 2 · · · k Total
Number of observations n1 n2 · · · nk n

The choice of the class intervals is somewhat arbitrary. As a rule of thumb npi > 5
should hold for most class intervals. The general hypotheses can be formulated in
the form of distribution functions:

H0 : F(x) = F0(x) versus H1 : F(x) �= F0(x).

Test statistic.
The test statistic is defined as

T (X) = t (x) = χ2 =
k∑

i=1

(Ni − npi )2

npi
. (10.17)

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Here,

• Ni (i = 1, 2, . . . , k) are the absolute frequencies of observations of the sample X
in class i , Ni is a random variable with realization ni in the observed sample;

• pi (i = 1, 2, . . . , k) are calculated from the distribution under H0, F0(x), and are
the (hypothetical) probabilities that an observation of X falls in class i ;

• npi are the expected absolute frequencies in class i under H0.

Test decision.
For a significance level α, H0 is rejected if t (x) is greater than the (1 − α)-quantile
of the χ2-distribution with k − 1 − r degrees of freedom, i.e. if

t (x) = χ2 > ck−1−r,1−α.

Note that r is the number of parameters of F0(x), if these parameters are estimated
from the sample. The χ2-test statistic is only asymptotically χ2-distributed under
H0.

Example 10.7.2 Let F0(x) be the distribution function of the test distribution. If
one specifies a normal distribution such as F0(x) = N (3, 10), or a discrete uniform
distribution with pi = 0.25 (i = 1, 2, 3, 4), then r = 0, since no parameters have
to be estimated from the data. Otherwise, if we simply want to test whether the
data is generated from a normal distribution N (μ,σ2) or the data follows a normal
distribution N (μ,σ2), then μ and σ2 may be estimated from the sample by x̄ and s2.
Then, r = 2 and the number of degrees of freedom is reduced.

Example 10.7.3 Gregor Mendel (1822–1884) conducted crossing experiments with
pea plants of different shape and colour. Let us look at the outcome of a pea crossing
experiment with the following results:

Crossing result Round Round Edged Edged
Yellow Green Yellow Green

Observations 315 108 101 32

Mendel had the hypothesis that the four different types occur in proportions of
9:3:3:1, that is

p1 = 9

16
, p2 = 3

16
, p3 = 3

16
, p4 = 1

16
.

The hypotheses are

H0 : P(X = i) = pi versus H1 : P(X = i) �= pi , i = 1, 2, 3, 4.

With n = 556 observations, the test statistic can be calculated from the following
observed and expected frequencies:
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i Ni pi npi

1 315 9
16 312.75

2 108 3
16 104.25

3 101 3
16 104.25

4 32 1
16 34.75

The χ2-test statistic is calculated as

t (x) = χ2 = (315 − 312.75)2

312.75
+ · · · + (32 − 34.75)2

34.75
= 0.47.

Since χ2 = 0.47 < 7.815 = χ2
0.95,3 = c0.95,3, the null hypothesis is not rejected.

Statistically, there is no evidence thatMendelwaswrongwith his 9:3:3:1 assumption.
In R, the test can be conducted by applying the chisq.test command:

chisq.test(c(315, 108, 101, 32),
p=c(9/16,3/16,3/16,1/16))
qchisq(df=3, p=0.95)

which leads to the following output

Chi-squared test for given probabilities

data: c(315, 108, 101, 32)

X-squared = 0.47, df = 3, p-value = 0.9254

and the critical value is

[1] 7.814728

Remark 10.7.1 In this example, the data was already summarized in a frequency
table. For raw data, the table command can be used to preprocess the data, i.e. we
can use chisq.test(table(var1,var2)).

Another popular goodness-of-fit test is the test of Kolmogorov–Smirnov. There
are two different versions of this test, one for the one-sample scenario and one for the
two-sample scenario. The null hypothesis for the latter is that the two independent
samples come from the same distribution. In R, the command ks.test() can be
used to perform Kolmogorov–Smirnov tests.
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10.8 χ2-Independence Test and Otherχ2-Tests

In Chap.4, we introduced different methods to describe the association between
two variables. Several association measures are possibly suitable if the variables are
categorical, for example Cramer’s V , Goodman’s and Kruskal’s γ, Spearman’s rank
correlation coefficient, and the odds ratio. If we are not interested in the strength of
association but rather in finding out whether there is an association at all, one can
use the χ2-independence test.

Test construction.
In the following we assume that we observe a sample from a bivariate discrete
distribution of two variables X and Y which can be summarized in a contingency
table with absolute frequencies ni j , (i = 1, 2, . . . , I ; j = 1, 2 . . . , J ):

Y
1 2 · · · J

X 1 n11 n12 · · · n1J n1+
2 n21 n22 · · · n2J n2+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

I nI1 nI2 · · · nI J nI+
n+1 n+2 · · · n+J n

Remember that

ni+ is the i th row sum,
n+ j is the j th column sum, and
n is the total number of observations.

The hypotheses are H0: X and Y are independent versus H1 : X and Y are not
independent. If X and Y are independent, then the expected frequencies mi j are

m̂i j = nπ̂i j = ni+n+ j

n
. (10.18)

Test statistic.
Pearson’s χ2-test statistic was introduced in Chap.4, Eq. (4.6). It is

T (X,Y) = χ2 =
I∑

i=1

J∑

j=1

(ni j − mi j )
2

mi j
,

where mi j = nπi j = nπi+π+ j (expected absolute cell frequencies under H0).
Strictly speaking, mi j are the true, unknown expected frequencies under H0 and
are estimated by m̂i j = nπi+π+ j , such that the realized test statistic equates to

t (x, y) = χ2 =
I∑

i=1

J∑

j=1

(ni j − m̂i j )
2

m̂i j
. (10.19)

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Test decision.
The number of degrees of freedom under H0 is (I − 1)(J − 1), where I − 1 are the
parameters which have to be estimated for the marginal distribution of X , and J − 1
are the number of parameters for the marginal distribution of Y . The test decision is:

Reject H0, if t (x, y) = χ2 > c(I−1)(J−1);1−α.

Note that the alternative hypothesis H1 is very general. If H0 is rejected, nothing can
be said about the structure of the dependence of X and Y from the χ2-value itself.

Example 10.8.1 Consider the following contingency table. Here, X describes the
educational level (1: primary, 2: secondary, 3: tertiary) and Y the preference for a
specific political party (1: Party A, 2: Party B, 3: Party C). Our null hypothesis is that
the two variables are independent, and we want to show the alternative hypothesis
which says that there is a relationship between them.

Y Total
1 2 3

X 1 100 200 300 600
2 100 100 100 300
3 80 10 10 100

Total 280 310 410 1000

For the (estimated) expected frequencies m̂i j = ni+n+ j
n , we get

Y
1 2 3

X 1 168 186 246
2 84 93 123
3 28 31 41

For example: m̂11 = 600 · 280/1000 = 168. The test statistic is

t (x, y) =
I∑

i=1

J∑

j=1

(ni j − m̂i j )
2

m̂i j

= (100 − 168)2

168
+ · · · + (10 − 41)2

41
≈ 182.54.

Since χ2
4;0.95 = 9.49 < t (x, y) = 182.54, H0 is rejected.
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In R, either the summarized data (as shown below) can be used to calcu-
late the test statistic or the raw data (summarized in a contingency table via
table(var1,var2)):

ct <- matrix(nrow=3,ncol=3,byrow=T,
data=c(100,200,300,100,100,100,80,10,10))
chisq.test(ct)
qchisq(df=(3-1)*(3-1), p=0.95)

The output is

Pearson’s Chi-squared test

data: contingency.table

X-squared = 182.5428, df = 4, p-value < 2.2e-16

with the critical value

[1] 9.487729

which confirms our earliermanual calculations. The p-value is smaller thanα = 0.05
which further confirms that the null hypothesis has to be rejected.

For a binary outcome, the χ2-test of independence can be formulated as a test for
the null hypothesis that the proportions of the binary variable are equal in several
(≥2) groups, i.e. for a K × 2 (or 2 × K ) table. This test is called the χ2-test of
homogeneity.

Example 10.8.2 Consider two variables X and Y , where X is describing the rating
of a coffee brand with the categories “bad taste” and “good taste” and Y denotes
three age subgroups, e.g. “18–25”, “25–35”, and “35–45”. The observed data is

Y
18–25 25–35 35–45 Total

X Bad 10 30 65 105
Good 90 70 35 195
Total 100 100 100 300

Assume H0 is the hypothesis that the probabilities P(X = ‘good’|Y = ‘18–25’),
P(X = ‘good’|Y = ‘25–35’), and P(X = ‘good’|Y = ‘35–45’) are all equal. Then,
we can use the function either prop.test or chisq.test in R to test this
hypothesis:
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prop.test(x=rbind(c(10,30,65), c(90,70,35) ))
chisq.test(x=rbind(c(10,30,65), c(90,70,35) ))

This produces the following outputs:

3-sample test for equality of proportions

data: cbind(c(10, 30, 65), c(90, 70, 35))

X-squared = 68.1319, df = 2, p-value = 1.605e-15

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3

0.10 0.30 0.65

and

Pearson’s Chi-squared test

data: cbind(c(10, 30, 65), c(90, 70, 35))

X-squared = 68.1319, df = 2, p-value = 1.605e-15

The results (test statistic, p-value) are identical and H0 is rejected. Note that
prop.test strictly expects a K × 2 table (i.e. exactly 2 columns).

Remark 10.8.1 For 2 × 2-tables with small sample sizes and therefore small cell
frequencies, it is recommended to use the exact test of Fisher as described in Appen-
dix C.5.

Remark 10.8.2 The test described in Example 10.8.2 is a special case (since one
variable is binary) of the generalχ2-test of homogeneity. Theχ2-test of homogeneity
is valid for any K × C table, where K is the number of subgroups of a variable Y
and C is the number of values of the outcome X of interest. The null hypothesis H0
assumes that the conditional distributions of X given Y are identical in all subgroups,
i.e.

P(X = xc|Y = yk) = P(X = xc|Y = yk′)

forall c = 1, 2, . . . ,C; k, k′ = 1, 2, . . . , K , k �= k′. Again, the usual χ2-test statistic
can be used.
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10.9 Key Points and Further Issues

Note:

� A graphical summary on when to use the tests introduced in this chapter
is given in Appendices D.2 and D.3.

� To arrive at a test decision, i.e. accept H0 or reject it, it does not matter
whether one compares the test statistic to the critical region, one uses the
p-value obtained from statistical software, or one evaluates the appropri-
ate confidence interval. However, it is important not to misinterpret the
p-value (see Sect. 10.2.6) and to choose the correct confidence interval.

� There is a difference between relevance and significance. A testmight be
significant, but the point estimate of the quantity of interest may not be
relevant from a substantive point of view. Similarly, a test might not be
significant, but the point and interval estimates may still yield relevant
conclusions.

� The test statistic of the t-test (one-sample, two-sample, paired) is asymp-
totically normally distributed. This means that for relatively large n (as
a rule of thumb>30 per group) the sample does not need to come from a
normal distribution. However, the application of the t-test makes sense
only when the expectation μ can be interpreted meaningfully; this may
not be the case for skewed distributions or distributions with outliers.

10.10 Exercises

Exercise 10.1 Two people, A and B, are suspects for having committed a crime
together. Both of them are interrogated in separate rooms. The jail sentence depends
on who confesses to have committed the crime, and who does not:

B does not confess B does confess
A does not confess Each serves 1year A: 3years; B: goes free
A does confess A: goes free; B: 3years Each serves 2years

A has two hypotheses:

H0 : B does not confess versus H1 : B does confess.

Given the possible sentences he decides to not confess if H0 is true and to confess
otherwise. Explain the concepts of type I error and type II error for this situation.
Comment on the consequences if these errors are made.
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Exercise 10.2 A producer of chocolate bars hypothesizes that his production does
not adhere to theweight standard of 100 g. As ameasure of quality control, he weighs
15 bars and obtains the following results in grams:

96.40, 97.64, 98.48, 97.67, 100.11, 95.29, 99.80, 98.80, 100.53, 99.41, 97.64,
101.11, 93.43, 96.99, 97.92

It is assumed that the production process is standardized in the sense that the variation
is controlled to be σ = 2.

(a) What are the hypotheses regarding the expected weight μ for a two-sided test?
(b) Which test should be used to test these hypotheses?
(c) Conduct the test that was suggested to be used in (b). Use α = 0.05.
(d) The producer wants to show that the expected weight is smaller than 100 g.What

are the appropriate hypotheses to use?
(e) Conduct the test for the hypothesis in (d). Again use α = 0.05.

Exercise 10.3 Christian decides to purchase the new CD by Bruce Springsteen. His
first thought is to buy it online, via an online auction. He discovers that he can also
buy the CD immediately, without bidding at an auction, from the same online store.
He also looks at the price at an internet book store which was recommended to him
by a friend. He notes down the following prices (in e):

Internet book store 16.95

Online store, no auction 18.19, 16.98, 19.97, 16.98, 18.19, 15.99, 13.79, 15.90,
15.90, 15.90, 15.90, 15.90, 19.97, 17.72

Online store, auction 10.50, 12.00, 9.54, 10.55, 11.99, 9.30, 10.59, 10.50, 10.01,
11.89, 11.03, 9.52, 15.49, 11.02

(a) Calculate and interpret the arithmetic mean, variance, standard deviation, and
coefficient of variation for the online store, both for the auction and non-auction
offers.

(b) Test the hypothesis that the mean price at the online store (no auction) is unequal
to e16.95 (α = 0.05).

(c) Calculate a confidence interval for the mean price at the online store (no auction)
and interpret your findings in the light of the hypothesis in (b).

(d) Test the hypothesis that the mean price at the online store (auction) is less than
e16.95 (α = 0.05).

(e) Test the hypothesis that the mean non-auction price is higher than the mean
auction price. Assume that (i) the variances are equal in both samples and (ii)
the variances are unequal (α = 0.05).

(f) Test the hypothesis that the variance of the non-auction price is unequal to the
variance of the auction price (α = 0.05).
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(g) Use the U -test to compare the location of the auction and non-auction prices.
Compare the results with those of (e).

(h) Calculate the results of (a)–(g) with R.

Exercise 10.4 Ten of Leonard’s best friends try a new diet: the “Banting” diet. Each
of them weighs him/herself before and after the diet. The data is as follows:

Person (i) 1 2 3 4 5 6 7 8 9 10
Before diet (xi ) 80 95 70 82 71 70 120 105 111 90
After diet (yi ) 78 94 69 83 65 69 118 103 112 88

Choose a test and a confidence interval to test whether there is a difference between
the mean weight before and after the diet (α = 0.05).

Exercise 10.5 A company producing clothing often finds deficient T-shirts among
its production.

(a) The company’s controlling department decides that the production is no longer
profitable when there are more than 10% deficient shirts. A sample of 230 shirts
yields 30 shirts which contain deficiencies. Use the approximate binomial test
to decide whether the T-shirt production is profitable or not (α = 0.05).

(b) Test the same hypothesis as in (a) using the exact binomial test. You can use R
to determine the quantiles needed for the calculation.

(c) The company is offered a new cutting machine. To test whether the change of
machine helps to improve the production quality, 115 sample shirts are evaluated,
7 ofwhich have deficiencies. Use the two-sample binomial test to decidewhether
the new machine yields improvement or not (α = 0.05).

(d) Test the same hypothesis as in (c) using the test of Fisher in R.

Exercise 10.6 Two friends play a computer game and each of them repeats the same
level 10 times. The scores obtained are:

1 2 3 4 5 6 7 8 9 10
Player 1 91 101 112 99 108 88 99 105 111 104
Player 2 261 47 40 29 64 6 87 47 98 351

(a) Player 2 insists that he is the better player and suggests to compare their mean
performance. Use an appropriate test (α = 0.05) to test this hypothesis.

(b) Player 1 insists that he is the better player. He proposes to not focus on the mean
and to use theU -test for comparison.What are the advantages and disadvantages
of using this test compared with (a)? What are the results (α = 0.05)?
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Exercise 10.7 Otto loves gummy bears and buys 10 packets at a factory store. He
opens all packets and sorts them by their colour. He counts 222 white gummy bears,
279 red gummy bears, 251 orange gummy bears, 232 yellow gummy bears, and
266 green ones. He is disappointed since white (pineapple flavour) is his favourite
flavour. He hypothesizes that the producer of the bears does not uniformly distribute
the bears into the packets. Choose an appropriate test to find out whether Otto’s
speculation could be true.

Exercise 10.8 We consider Exercise 4.4 where we evaluated which of the passengers
from the Titanic were rescued. The data was summarized as follows:

1. Class 2. Class 3. Class Staff Total
Rescued 202 125 180 211 718
Not rescued 135 160 541 674 1510

(a) The hypothesis derived from the descriptive analysis was that travel class and
rescue status are not independent. Test this hypothesis.

(b) Interpret the following R output:

4-sample test for equality of proportions

data: titanic

X-squared = 182.06, df = 3, p-value < 2.2e-16

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3 prop 4

0.5994065 0.4385965 0.2496533 0.2384181

(c) Summarize the data in a 2×2 table: passengers from the first and second class
should be grouped together, and third class passengers and staff should be
grouped together as well. Is the probability of being rescued higher in the first
and second class? Provide an answer using the following three tests: exact test
of Fisher, χ2-independence test, and χ2-homogeneity test. You can use R to
conduct the test of Fisher.

Exercise 10.9 We are interested in understanding how well the t-test can detect
differences with respect to the mean. We use R to draw 3 samples each of 20 obser-
vations from three different normal distributions: X ∼ N (5, 22), Y1 ∼ N (4, 22), and
Y2 ∼ N (3.5, 22). The summary statistics of this experiment are as follows:

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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• x̄ = 4.97, s2x = 2.94,
• ȳ1 = 4.55, s2y1 = 2.46,
• ȳ2 = 3.27, s2y2 = 3.44.

(a) Use the t-test to compare the means of X and Y1.
(b) Use the t-test to compare the means of X and Y2.
(c) Interpret the results from (a) and (b).

Exercise 10.10 Access the theatre data described in Appendix A.4. The data sum-
marizes a survey conducted on visitors of a local Swiss theatre in terms of age, sex,
annual income, general expenditure on cultural activities, expenditure on theatre vis-
its, and the estimated expenditure on theatre visits in the year before the survey was
done.

(a) Compare the mean expenditure on cultural activities for men and women using
the Welch test (α = 0.05).

(b) Would the conclusions change if the two-sample t-test or the U -test were used
for comparison?

(c) Test the hypothesis that women spend on average more money on theatre visits
than men (α = 0.05).

(d) Compare the mean expenditure on theatre visits in the year of the survey and the
preceding year (α = 0.05).

Exercise 10.11 Use R to read in and analyse the pizza data described in Appen-
dix A.4 (assume α = 0.05).

(a) Themanager’s aim is to deliver pizzas in less than 30min and with a temperature
of greater than 65 ◦C.Use an appropriate test to evaluate whether these aims have
been reached on average.

(b) If it takes longer than 40min to deliver the pizza, then the customers are promised
a free bottle of wine. This offer is only profitable if less than 15% of deliveries
are too late. Test the hypothesis p < 0.15.

(c) The manager wonders whether there is any relationship between the operator
taking the phone call and the pizza temperature. Assume that a hot pizza is
defined to be one with a temperature greater 65 ◦C. Use the test of Fisher, the
χ2-independence test, and the χ2-test of homogeneity to test his hypothesis.

(d) Each branch employs the same number of staff. It would thus be desirable if each
branch receives the same number of orders. Use an appropriate test to investigate
this hypothesis.

(e) Is the proportion of calls taken by each operator the same in each branch?
(f) Test whether there is a relationship between drivers and branches.
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Exercise 10.12 The authors of this bookwent to visit historical sites in India.None of
them has a particularly strong interest in photography, and they speculated that each
of them would take about the same number of pictures on their trip. After returning
home, they counted 110, 118, and 105 pictures, respectively. Use an appropriate test
to find out whether their speculation was correct (α = 0.01).

→ Solutions to all exercises in this chapter can be found on p. 393

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,
Springer, Heidelberg
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We learnt about various measures of association in Chap. 4. Such measures are
used to understand the degree of relationship or association between two variables.
The correlation coefficient of Bravais–Pearson, for example, can help us to quantify
the degree of a linear relationship, but it does not tell us about the functional form
of a relationship. Moreover, any association of interest may depend on more than
one variable, and we would therefore like to explore multivariate relationships. For
example, consider a situationwherewemeasured the bodyweights and the long jump
results (distances) of school children taking part in a competition. The correlation
coefficient of Bravais–Pearson between the body weight and distance jumped can
tell us how strong or weak the association between the two variables is. It can also
tell us whether the distance jumped increases or decreases with the body weight in
the sense that a negative correlation coefficient indicates shorter jumps for higher
body weights, whereas a positive coefficient implies longer jumps for higher body
weights. Suppose we want to know how far a child with known body weight, say
50 kg, will jump. Such questions cannot be answered from the value and sign of the
correlation coefficient. Another question of interest may be to explore whether the
relationship between the body weight and distance jumped is linear or not. One may
also be interested in the joint effect of age and body weight on the distance jumped.
Could it be that older children, who have on average a higher weight than younger
children, perform better?What would be the association of weight and the long jump
results of children of the same age? Such questions are addressed by linear regression
analysis which we introduce in this chapter.

In many situations, the outcome does not depend on one variable but on several
variables. For example, the recovery time of a patient after an operation depends on
several factors such as weight, haemoglobin level, blood pressure, body temperature,
diet control, rehabilitation, and others. Similarly, the weather depends on many fac-
tors such as temperature, pressure, humidity, speed of winds, and others. Multiple

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5_11
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Fig. 11.1 Scatter plots

linear regression, introduced in Sect. 11.6, addresses the issue where the outcome
depends on more than one variable.

To begin with, we consider only two quantitative variables X and Y in which the
outcome Y depends on X and we explore the quantification of their relationship.

Examples Examples of associations in which we might be interested in are:

• body height (X ) and body weight (Y ) of persons,
• speed (X) and braking distance (Y ) measured on cars,
• money invested (in e) in the marketing of a product (X) and sales figures for this
product (in e) (Y ) measured in various branches,

• amount of fertilizer used (X ) and yield of rice (Y ) measured on different acres,
and

• temperature (X ) and hotel occupation (Y ) measured in cities.

11.1 The Linear Model

Consider the scatter plots from Fig. 4.2 on p. 80. Plotting X -values against Y -values
enables us to visualize the relationship between two variables. Figure 11.1a reviews
what a positive (linear) association between X and Y looks like: the higher the X
values, the higher the Y -values (and vice versa). The plot indicates that there may
be a linear relationship between X and Y . On the other hand, Fig. 11.1b displays a
scatter plot which shows no clear relationship between X and Y . The R2 measure,
shown in the two figures and explained in more detail later, equates to the squared
correlation coefficient of Bravais–Pearson.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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To summarize the observed association between X and Y , we can postulate the
following linear relationship between them:

Y = α + βX. (11.1)

This Eq. (11.1) represents a straight line where α is the intercept and β represents
the slope of the line. The slope indicates the change in the Y -value when the X -value
changes by one unit. If the sign of β is positive, it indicates that the value of Y
increases as the value of X increases. If the sign of β is negative, it indicates that the
value of Y decreases as the value of X increases.When X = 0, then Y = α. If α = 0,
then Y = βX represents a line passing through the origin. Suppose the height and
body weights in the example of school children are represented in Fig. 11.1a. This
has the following interpretation: when the height of a child increases by 1 cm, then
the body weight increases by β kilograms. The slope β in Fig. 11.1a would certainly
be positive because we have a positive linear relationship between X and Y . Note
that in this example, the intercept term has no particular meaning because when the
height X = 0, the body weight Y = α = 0. The scatter diagram in Fig. 11.1b does
not exhibit any clear relationship between X and Y . Still, the slope of a possible line
would likely be somewhere around 0.

It is obvious from Fig. 11.1a that by assuming a linear relationship between X
and Y , any straight line will not exactly match the data points in the sense that it
cannot pass through all the observations: the observations will lie above and below
the line. The line represents a model to describe the process generating the data.

In our context, a model is a mathematical representation of the relationship
between two or more variables. A model has two components—variables (e.g. X, Y )
and parameters (e.g. α, β). Amodel is said to be linear if it is linear in its parameters.
A model is said to be nonlinear if it is nonlinear in its parameters (e.g. β2 instead
of β). Now assume that each observation potentially deviates by ei from the line in
Fig. 11.1a. The linear model in Eq. (11.1) can then be written as follows to take this
into account:

Y = α + βX + e. (11.2)

Suppose we have n observations (x1, y1), (x2, y2), . . . , (xn, yn), then each obser-
vation satisfies

yi = α + βxi + ei . (11.3)

Each deviation ei is called an error. It represents the deviation of the data points
(xi , yi ) from the regression line. The line in Fig. 11.1a is the fitted (regression)
line which we will discuss in detail later. We assume that the errors ei are iden-
tically and independently distributed with mean 0 and constant variance σ 2, i.e.
E(ei ) = 0,Var(ei ) = σ 2 for all i = 1, 2, . . . , n. We will discuss these assumptions
in more detail in Sect. 11.7.

In the model (11.2), Y is called the response, response variable, dependent
variable or outcome; X is called the covariate, regressor or independent variable.
The scalars α and β are the parameters of the model and are described as regression
coefficients or parameters of the linearmodel. In particular,α is called the intercept
term and β is called the slope parameter.
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It may be noted that if the regression parametersα and β are known, then the linear
model is completely known. An important objective in identifying the model is to
determine the values of the regression parameters using the available observations
for X and Y . It can be understood from Fig. 11.1a that an ideal situation would be
when all the data points lie exactly on the line or, in other words, the error ei is zero
for each observation. It seems meaningful to determine the values of the parameters
in such a way that the errors are minimized.

There are several methods to estimate the values of the regression parameters. In
the remainder of this chapter, we describe themethods of least squares andmaximum
likelihood estimation.

11.2 Method of Least Squares

Suppose n sets of observations Pi = (xi , yi ), i = 1, 2, . . . , n, are obtained on two
variables P = (X, Y ) and are plotted in a scatter plot. An example of four observa-
tions, (x1, y1), (x2, y2), (x3, y3), and (x4, y4), is given in Fig. 11.2.

Themethod of least squares says that a line can be fitted to the given data set such
that the errors are minimized. This implies that one can determine α and β such that
the sum of the squared distances between the data points and the line Y = α + βX
is minimized. For example, in Fig. 11.2, the first data point (x1, y1) does not lie on
the plotted line and the deviation is e1 = y1 − (α + βx1). Similarly, we obtain the

x1 x2 x3 x4

y1

y2

y3

y4

e1
e2

e3 e4

�y = α+ βx

α

Slope

Fig. 11.2 Regression line, observations, and errors ei ∗
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difference of the other three data points from the line: e2, e3, e4. The error is zero if
the point lies exactly on the line. The problem we would like to solve in this example
is to minimize the sum of squares of e1, e2, e3, and e4, i.e.

min
α,β

4∑

i=1

(yi − α − βxi )
2. (11.4)

We want the line to fit the data well. This can generally be achieved by choosing
α and β such that the squared errors of all the n observations are minimized:

min
α,β

n∑

i=1

e2i = min
α,β

n∑

i=1

(yi − α − βxi )
2. (11.5)

If we solve this optimization problem by the principle of maxima and minima, we
obtain estimates of α and β as

β̂ = Sxy
Sxx

=
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2

=
∑n

i=1 xi yi−nx̄ ȳ
∑n

i=1 x
2
i −nx̄2

α̂ = ȳ − b̂x̄

}

, (11.6)

see Appendix C.6 for a detailed derivation. Here, α̂ and β̂ represent the estimates of
the parameters α and β, respectively, and are called the least squares estimator of
α and β, respectively. This gives us the model y = α̂ + β̂x which is called the fitted
model or the fitted regression line. The literal meaning of “regression” is to move
back. Since we are acquiring the data and then moving back to find the parameters
of the model using the data, it is called a regression model. The fitted regression
line y = α̂ + β̂x describes the postulated relationship between Y and X . The sign
of β determines whether the relationship between X and Y is positive or negative.
If the sign of β is positive, it indicates that if X increases, then Y increases too. On
the other hand, if the sign of β is negative, it indicates that if X increases, then Y
decreases. For any given value of X , say xi , the predicted value ŷi is calculated by

ŷi = α̂ + β̂xi

and is called the i th fitted value.
If we compare the observed data point (xi , yi )with the point suggested (predicted,

fitted) by the regression line, (xi , ŷi ), the difference between yi and ŷi is called the
residual and is given as

êi = yi − ŷi = yi − (α̂ + β̂xi ). (11.7)

This can be viewed as an estimator of the error ei . Note that it is not really an estimator
in the true statistical sense because ei is random and so it cannot be estimated.
However, since the ei are unknown and êi measures the same difference between the
estimated and true values of the y’s, see for example Fig. 11.2, it can be treated as
estimating the error ei .
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Example 11.2.1 A physiotherapist advises 12 of his patients, all of whom had the
same knee surgery done, to regularly perform a set of exercises. He asks them to
record how long they practise. He then summarizes the average time they practised
(X , time in minutes) and how long it takes them to regain their full range of motion
again (Y , time in days). The results are as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 24 35 64 20 33 27 42 41 22 50 36 31
yi 90 65 30 60 60 80 45 45 80 35 50 45

To estimate the linear regression line y = α̂ + β̂x , we first calculate x̄ = 35.41
and ȳ = 57.08. To obtain Sxy and Sxx we need the following table:

i xi yi (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄)2

1 24 90 −11.41 32.92 −375.61 130.19
2 35 65 −0.41 7.92 −3.25 0.17
3 64 30 28.59 −27.08 −774.22 817.39
4 20 60 −15.41 2.92 −45.00 237.47
5 33 60 −2.41 2.92 −7.27 5.81
6 27 80 −8.41 22.92 −192.75 70.73
7 42 45 6.59 −12.08 −79.61 43.43
8 41 45 5.59 −12.08 −67.53 31.25
9 22 80 −13.41 22.92 −307.36 179.83
10 50 35 14.59 −22.08 −322.14 212.87
11 36 50 0.59 −7.08 −4.18 0.35
12 31 45 −4.41 −12.08 53.27 19.45

Total −2125.65 1748.94

Using (11.6), we can now easily find the least squares estimates α̂ and β̂ as

β̂ = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2
= −2125.65

1748.94
≈ −1.22,

α̂ = ȳ − β̂ x̄ = 57.08 − (−1.215) · 35.41 = 100.28.

The fitted regression line is therefore

y = 100.28 − 1.22 · x .
We can interpret the results as follows:

• For an increase of 1min in exercising, the recovery time decreases by 1.22 days
because β̂ = −1.22. The negative sign of β̂ indicates that the relationship between
exercising time and recovery time is negative; i.e. as exercise time increases, the
recovery time decreases.

• When comparing two patients with a difference in exercising time of 10 min,
the linear model estimates a difference in recovery time of 12.2 days because
10 · 1.22 = 12.2.
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Fig. 11.3 Scatter plot and
regression line for
Example 11.2.1
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• The model predicts an average recovery time of 100.28−1.22 · 38 = 53.92 days
for a patient who practises the set of exercises for 38 min.

• If a patient did not exercise at all, the recovery time would be predicted as â =
100.28 days by the model. However, see item (i) in Sect. 11.2.1 below about
interpreting a regression line outside of the observed data range.

We can also obtain these results by using R. The command lm(Y∼X) fits a linear
model and provides the estimates of α̂ and β̂.

lm(Y∼X)

We can draw the regression line onto a scatter plot using the command abline,
see also Fig. 11.3.

plot(X,Y)
abline(a=100.28,b=-1.22)

11.2.1 Properties of the Linear Regression Line

There are a couple of interesting results related to the regression line and the least
square estimates.

(i) As a rule of thumb, one should interpret the regression line ŷi = α̂ + β̂xi only in
the interval [x(1), x(n)]. For example, if X denotes “Year”, with observed values
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from 1999 to 2015, and Y denotes the “annual volume of sales of a particular
company”, then a prediction for the year 2030 may not be meaningful or valid
because a linear relationship discovered in the past may not continue to hold in
the future.

(ii) For the points P̂i = (xi , ŷi ), forming the regression line, we can write

ŷi = α̂ + β̂xi = ȳ + β̂(xi − x̄). (11.8)

(iii) It follows for xi = x̄ that ŷi = ȳ, i.e. the point (x̄, ȳ) always lies on the regres-
sion line. The linear regression line therefore always passes through (x̄, ȳ).

(iv) The sum of the residuals is zero. The i th residual is defined as

êi = yi − ŷi = yi − (α̂ + β̂xi ) = yi − [ȳ + β̂(xi − x̄)].
The sum is therefore

n∑

i=1

êi =
n∑

i=1

yi −
n∑

i=1

ȳ − β̂

n∑

i=1

(xi − x̄)

= n ȳ − n ȳ − β̂(nx̄ − nx̄) = 0. (11.9)

(v) The arithmetic mean of ŷ is the same as the arithmetic mean of y:

¯̂y = 1

n

n∑

i=1

ŷi = 1

n
(n ȳ + β̂(nx̄ − nx̄)) = ȳ. (11.10)

(vi) The least squares estimate β̂ has a direct relationship with the correlation coef-
ficient of Bravais–Pearson:

β̂ = Sxy
Sxx

= Sxy√
Sxx

√
Syy

·
√

Syy
Sxx

= r

√
Syy
Sxx

. (11.11)

The slope of the regression line is therefore proportional to the correlation coef-
ficient r : a positive correlation coefficient implies a positive estimate of β and
vice versa. However, a stronger correlation does not necessarily imply a steeper
slope in the regression analysis because the slope depends upon

√
Syy/Sxx as

well.

11.3 Goodness of Fit

While one can easily fit a linear regression model, this does not mean that the model
is necessarily good. Consider again Fig. 11.1: In Fig. 11.1a, the regression line is
clearly capturing the linear trend seen in the scatter plot. The fit of the model to the
data seems good. Figure 11.1b shows however that the data points vary considerably
around the line. The quality of the model does not seem to be very good. If we would
use the regression line to predict the data, we would likely obtain poor results. It
is obvious from Fig. 11.1 that the model provides a good fit to the data when the
observations are close to the line and capture a linear trend.
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R2=0.97

(a) Strong linear relationship

R2=0.57

(b) Weak linear relationship

Fig. 11.4 Different goodness of fit for different data

A look at the scatter plot provides a visual and qualitative approach to judging
the quality of the fitted model. Consider Fig. 11.4a, b which both show a linear trend
in the data, but the observations in Fig. 11.4a are closer to the regression line than
those in Fig. 11.4b. Therefore, the goodness of fit is worse in the latter figure and any
quantitative measure should capture this.

A quantitative measure for the goodness of fit can be derived by means of vari-
ance decomposition of the data. The total variation of y is partitioned into two
components—sum of squares due to the fitted model and sum of squares due to
random errors in the data:

n∑

i=1

(yi − ȳ)2

︸ ︷︷ ︸
SQTotal

=
n∑

i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SQRegression

+
n∑

i=1

(yi − ŷi )
2

︸ ︷︷ ︸
SQError

. (11.12)

The proof of the above equation is given in Appendix C.6.
The left-hand side of (11.12) represents the total variability in y with respect to

ȳ. It is proportional to the sample variance (3.21) and is called SQTotal (total sum of
squares). The first term on the right-hand side of the equationmeasures the variability
which is explained by the fitted linear regressionmodel (SQRegression, sum of squares
due to regression); the second term relates to the error sum of squares (SQError) and
reflects the variation due to random error involved in the fitted model. Larger values
of SQError indicate that the deviations of the observations from the regression line are
large. This implies that the model provides a bad fit to the data and that the goodness
of fit is low.

Obviously, one would like to have a fit in which the error sum of squares is as
small as possible. To judge the goodness of fit, one can therefore look at the error
sum of squares in relation to the total sum of squares: in an ideal situation, if the error
sum of squares equals zero, the total sum of squares is equal to the sum of squares
due to regression and the goodness of fit is optimal. On the other hand, if the sum of
squares due to error is large, it will make the sum of squares due to regression smaller

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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and the goodness of fit should be bad. If the sum of squares due to regression is zero,
it is evident that the model fit is the worst possible. These thoughts are reflected in
the criterion for the goodness of fit, also known as R2:

R2 = SQRegression

SQTotal
= 1 − SQError

SQTotal
. (11.13)

It follows from the above definition that 0 ≤ R2 ≤ 1. The closer R2 is to 1, the better
the fit because SQError will then be small. The closer R2 is to 0, the worse the fit,
because SQError will then be large. If R2 takes any other value, say R2 = 0.7, it
means that only 70 % of the variation in data is explained by the fitted model, and
hence, in simple language, the model is 70 % good. An important point to remember
is that R2 is defined only when there is an intercept term in the model (an assumption
we make throughout this chapter). So it is not used to measure the goodness of fit in
models without an intercept term.

Example 11.3.1 Consider again Fig. 11.1: In Fig. 11.1a, the line and data points fit
well together. As a consequence R2 is high, R2 = 0.82. Figure 11.1b shows data
points with large deviations from the regression line; therefore, R2 is small, here
R2 = 0.002. Similarly, in Fig. 11.4a, an R2 of 0.97 relates to an almost perfect
model fit, whereas in Fig. 11.4b, the model describes the data only moderately well
(R2 = 0.57).

Example 11.3.2 Consider again Example 11.2.1 where we analysed the relationship
between exercise intensity and recovery time for patients convalescing from knee
surgery. To calculate R2, we need the following table:

i yi ŷi (yi − ȳ) (yi − ȳ)2 (ŷi − ȳ) (ŷi − ȳ)2

1 90 70.84 32.92 1083.73 13.76 189.34
2 65 57.42 7.92 62.73 0.34 0.12
3 30 22.04 −27.08 733.33 −35.04 1227.80
4 60 75.72 2.92 8.53 18.64 347.45
5 60 59.86 2.92 8.53 2.78 7.73
6 80 67.18 22.92 525.33 10.10 102.01
7 45 48.88 −12.08 145.93 −8.2 67.24
8 45 50.10 −12.08 145.93 −6.83 48.72
9 80 73.28 22.92 525.33 16.20 262.44
10 35 39.12 −22.08 487.53 −17.96 322.56
11 50 56.20 −7.08 50.13 −0.88 0.72
12 45 62.30 −12.08 145.93 5.22 27.25

Total 3922.96 2603.43

We calculate R2 with these results as

R2 = SQRegression

SQTotal
=

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

= 2603.43

3922.96
= 0.66.
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We conclude that the regression model provides a reasonable but not perfect fit to
the data because 0.66 is not close to 0, but also not very close to 1. About 66 % of the
variability in the data can be explained by the fitted linear regression model. The rest
is random error: for example, individual variation in the recovery time of patients
due to genetic and environmental factors, surgeon performance, and others.

We can also obtain this result in R by looking at the summary of the linear model:

summary(lm(Y∼X))

Please note thatwe give a detailed explanation of themodel summary in Sect. 11.7.

There is a direct relationship between R2 and the correlation coefficient of
Bravais–Pearson r :

R2 = r2 =
(

Sxy
√
Sxx Syy

)2

. (11.14)

The proof is given in Appendix C.6.

Example 11.3.3 Consider again Examples 11.3 and 11.5 where we analysed the
association of exercising time and time to regain full range of motion after knee
surgery.We calculated R2 = 0.66.We therefore know that the correlation coefficient
is r = √

R2 = √
0.66 ≈ 0.81.

11.4 Linear Regression with a Binary Covariate

Until now, we have assumed that the covariate X is continuous. It is however also
straightforward to fit a linear regression model when X is binary, i.e. if X has two
categories. In this case, the values of X in the first category are usually coded as
0 and the values of X in the second category are coded as 1. For example, if the
binary variable is “gender”, we replace the word “male” with the number 0 and
the word “female” with 1. We can then fit a linear regression model using these
numbers, but the interpretation differs from the interpretations in case of a continuous
variable. Recall the definition of the linear model, Y = α + βX + e with E(e) = 0;
if X = 0 (male) then E(Y |X = 0) = α and if X = 1 (female), then E(Y |X = 1) =
α + β · 1 = α + β. Thus, α is the average value of Y for males, i.e. E(Y |X = 0),
andβ = E(Y |X = 1) − E(Y |X = 0). It follows that those subjects with X = 1 (e.g.
females) have on average Y -valueswhich areβ units higher than subjects with X = 0
(e.g. males).
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Example 11.4.1 Recall Examples 11.2.1, 11.3.2, and 11.3.3 where we analysed the
association of exercising time and recovery time after knee surgery. We keep the
values of Y (recovery time, in days) and replace values of X (exercising time, in
minutes) with 0 for patients exercising for less than 40 min and with 1 for patients
exercising for 40min ormore.We have therefore a newvariable X indicatingwhether
a patient is exercising a lot (X = 1) or not (X = 0). To estimate the linear regression
line ŷ = α̂ + β̂x , we first calculate x̄ = 4/12 and ȳ = 57.08. To obtain Sxy and Sxx ,
we need the following table:

i xi yi (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄)2

1 0 90 − 4
12 32.92 −10.97 0.11

2 0 65 − 4
12 7.92 −2.64 0.11

3 1 30 8
12 −27.08 −18.05 0.44

4 0 60 − 4
12 2.92 −0.97 0.11

5 0 60 − 4
12 2.92 −0.97 0.11

6 0 80 − 4
12 22.92 −7.64 0.11

7 1 45 8
12 −12.08 −8.05 0.44

8 1 45 8
12 −12.08 −8.05 0.44

9 0 80 − 4
12 22.92 −7.64 0.11

10 1 35 8
12 −22.08 −14.72 0.44

11 0 50 − 4
12 −7.08 2.36 0.11

12 0 45 − 4
12 −12.08 4.03 0.11

Total Total −72.34 2.64

We can now calculate the least squares estimates of α and β using (11.6) as

β̂ = Sxy
Sxx

=
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2
= −72.34

2.64
≈ −27.4,

α̂ = ȳ − β̂ x̄ = 57.08 − (−27.4) · 4

12
= 66.2.

The fitted regression line is:

y = 66.2 − 27.4 · x .
The interpretation is:

• The average recovery time for patients doing little exercise is 66.2 − 27.4 · 0 =
66.2 days.

• Patients exercising heavily (x = 1) have, on average, a 27.4 days shorter recovery
period (β = −27.4) than patients with a short exercise time (x = 0).

• The average recovery time for patients exercising heavily is 38.8 days (66.2 −
27.4 · 1 for x = 1).

• These interpretations are visualized in Fig. 11.5. Because “exercise time” (X )
is considered to be a nominal variable (two categories representing the intervals
[0; 40) and (40;∞)), we can plot the regression line on a scatter plot as two parallel
lines.



11.5 Linear Regression with a Transformed Covariate 261

Fig. 11.5 Scatter plot and
regression lines for
Examples 11.4.1 and 11.5.1
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11.5 Linear Regression with a Transformed Covariate

Recall that amodel is said to be linearwhen it is linear in its parameters. The definition
of a linear model is not at all related to the linearity in the covariate. For example,

Y = α + β2X + e

is not a linear model because the right-hand side of the equation is not a linear
function in β. However,

Y = α + βX2 + e

is a linear model. This model can be fitted as for any other linear model: we obtain
α̂ and β̂ as usual and simply use the squared values of X instead of X . This can
be justified by considering X∗ = X2, and then, the model is written as Y = α +
βX∗ + e which is again a linear model. Only the interpretation changes: for each
unit increase in the squared value of X , i.e. X∗, Y increases by β units. Such an
interpretation is often not even needed. One could simply plot the regression line of
Y on X∗ to visualize the functional form of the effect. This is also highlighted in the
following example.

Example 11.5.1 Recall Examples 11.2.1, 11.3.2, 11.3.3, and 11.4.1 where we
analysed the association of exercising time and recovery time after knee surgery. We
estimated β̂ as −1.22 by using X as it is, as a continuous variable, see also Fig. 11.3.
When using a binary X , based on a cut-off of 40min, we obtained β̂ = −27.4, see
also Fig. 11.5. Ifwe nowuse

√
X rather than X , we obtain β̂ = −15.1. Thismeans for
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an increase of 1 unit of the square root of exercising time, the recovery time decreases
by 15.1 days. Such an interpretation will be difficult to understand for many people.
It is better to plot the linear regression line y = 145.8 − 15.1 · √x , see Fig. 11.5. We
can see that the new nonlinear line (obtained from a linear model) fits the data nicely
and it may even be preferable to a straight regression line. Moreover, the value of α

substantially increased with this modelling approach, highlighting that no exercis-
ing at all may severely delay recovery from the surgery (which is biologically more
meaningful). In R, we obtain these results by either creating a new variable

√
X or

by using the I() command which allows specifying transformations in regression
models.

newX <- sqrt(X)
lm(Y∼newX) #option 1
lm(Y∼I(sqrt(X))) #option 2

Generally the covariate X can be replaced by any transformation of it, such as
using log(X),

√
X , sin(X), or X2. The details are discussed in Sect. 11.6.3. It is

also possible to compare the quality and goodness of fit of models with different
transformations (see Sect. 11.8).

11.6 Linear Regression with Multiple Covariates

Up to now, we have only considered two variables—Y and X . We therefore assume
that Y is affected by only one covariate X . However, in many situations, there might
be more than one covariate which affects Y and consequently all of them are relevant
to the analysis (see also Sect. 11.10 on the difference between association and causa-
tion). For example, the yield of a crop depends on several factors such as quantity of
fertilizer, irrigation, and temperature, among others. In another example, in the pizza
data set (described in Appendix A.4), many variables could potentially be associated
with delivery time—driver, amount of food ordered, operator handling the order,
whether it is a weekend, and so on. A reasonable question to ask is: Do different
drivers have (on average) a different delivery time—given they deal with the same
operator, the amount of food ordered is the same, the day is the same, etc. These kind
of questions can be answered with multiple linear regression. The model contains
more than one, say p, covariates X1, X2, . . . , X p. The linear model (11.2) can be
extended as

Y = β0 + β1X1 + · · · + βp X p + e. (11.15)

Note that the intercept term is denoted here by β0. In comparison with (11.2), α = β0
and β = β1.
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Example 11.6.1 For the pizza delivery data, a particular linear model with multiple
covariates could be specified as follows:

Delivery Time = β0 + β1Number pizzas ordered + β2Weekend(0/1)

+β3Operator (0/1) + e.

11.6.1 Matrix Notation

If we have a data set of n observations, then every set of observations satisfies model
(11.15) and we can write

y1 = β0 + β1x11 + β2x12 + · · · + βpx1p +e1
y2 = β0 + β1x21 + β2x22 + · · · + βpx2p +e2
...

...
...

yn = β0 + β1xn1 + β2xn2 + · · · + βpxnp +en (11.16)

It is possible to write the n equations in (11.16) in matrix notation as

y = Xβ + e (11.17)

where

y =

⎛

⎜
⎜
⎜
⎝

y1
y2
...

yn

⎞

⎟
⎟
⎟
⎠

, X =

⎛

⎜
⎜
⎜
⎝

1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

1 xn1 xn2 · · · xnp

⎞

⎟
⎟
⎟
⎠

, β =

⎛

⎜
⎜
⎜
⎝

β0
β1
...

βp

⎞

⎟
⎟
⎟
⎠

, e =

⎛

⎜
⎜
⎜
⎝

e1
e2
...

en

⎞

⎟
⎟
⎟
⎠

.

The letters y,X,β, e are written in bold because they refer to vectors and matrices
rather than scalars. The capital letter X makes it clear that X is a matrix of order
n × p representing the n observations on each of the covariates X1, X2, . . . , X p.
Similarly, y is a n × 1 vector of n observations on Y, β is a p × 1 vector of regression
coefficients associated with X1, X2, . . . , X p, and e is a n × 1 vector of n errors. The
lower case letter x relates to a vector representing a variable which means we can
denote the multiple linear model from now on also as

y = β01 + β1x1 + · · · + βpxp + e (11.18)

where 1 is the n × 1 vector of 1’s. We assume that E(e) = 0 and Cov(e) = σ 2 I (see
Sect. 11.9 for more details).

We would like to highlight that X is not the data matrix. The matrix X is called
the design matrix and contains both a column of 1’s denoting the presence of the
intercept term and all explanatory variables which are relevant to the multiple linear
model (including possible transformations and interactions, see Sects. 11.6.3 and
11.7.3). The errors e reflect the deviations of the observations from the regression
line and therefore the difference between the observed and fitted relationships. Such
deviations may occur for various reasons. For example, the measured values can be
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affected by variables which are not included in the model, the variables may not be
accurately measured, there is unmeasured genetic variability in the study population,
and all of which are covered in the error e. The estimate of β is obtained by using the
least squares principle by minimizing

∑n
i=1 e

2
i = e′e. The least squares estimate

of β is given by
β̂ = (X′X)−1X′y. (11.19)

The vector β̂ contains the estimates of (β0, β1, . . . , βp)
′. We can interpret it as

earlier: β̂0 is the estimate of the intercept which we obtain because we have added the
column of 1’s (and is identical to α in (11.1)). The estimates β̂1, β̂2, . . . , β̂p refer to
the regression coefficients associated with the variables x1, x2, . . . , xp, respectively.
The interpretation of β̂ j is that it represents the partial change in yi when the value
of xi changes by one unit keeping all other covariates fixed.

A possible interpretation of the intercept term is that when all covariates equal
zero then

E(y) = β0 + β1 · 0 + · · · + βp · 0 = β0. (11.20)

There are many situations in real life for which there is no meaningful interpretation
of the intercept term because one or many covariates cannot take the value zero. For
instance, in the pizza data set, the bill can never be e0, and thus, there is no need
to describe the average delivery time for a given bill of e0. The intercept term here
serves the purpose of improvement of the model fit, but it will not be interpreted.

In some situations, it may happen that the average value of y is zero when all
covariates are zero. Then, the intercept term is zero as well and does not improve
the model. For example, suppose the salary of a person depends on two factors—
education level and type of qualification. If any person is completely illiterate, even
then we observe in practice that his salary is never zero. So in this case, there is a
benefit of the intercept term. In another example, consider that the velocity of a car
depends on two variables—acceleration and quantity of petrol. If these two variables
take values of zero, the velocity is zero on a plane surface. The intercept term will
therefore be zero as well and yields no model improvement.

Example 11.6.2 Consider the pizza data described in Appendix A.4. The data matrix
X is as follows:

X =

⎛

⎜
⎜
⎜
⎝

Day Date Time · · · Discount

Thursday 1-May-14 35.1 · · · 1
Thursday 1-May-14 25.2 · · · 0

...
...

Saturday 31-May-14 35.7 · · · 0

⎞

⎟
⎟
⎟
⎠

Suppose the manager has the hypothesis that the operator and the overall bill (as
a proxy for the amount ordered from the customer) influence the delivery time. We
can postulate a linear model to describe this relationship as

Delivery Time = β0 + β1Bill + β2Operator + e.
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The model in matrix notation is as follows:
⎛

⎜
⎜
⎜
⎝

35.1
25.2

...

35.7

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
y

=

⎛

⎜
⎜
⎜
⎝

1 58.4 1
1 26.4 0
...

...
...

1 42.7 0

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
X

⎛

⎝
β0
β1
β2

⎞

⎠

︸ ︷︷ ︸
β

+

⎛

⎜
⎜
⎜
⎝

e1
e2
...

e1266

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
e

To understand the associations in the data, we need to estimate β which we obtain by
the least squares estimator β̂ = (X′X)−1X′y. Rather than doing this tiresome task
manually, we use R:

lm(time∼bill+operator)

If we have more than one covariate in a linear regression model, we simply add
all of them separated by the + sign when specifying the model formula in the lm()
function. We obtain β̂0 = 23.1, β̂1 = 0.26, β̂2 = 0.16. The interpretation of these
parameters is as follows:

• For each extrae that is spent, the delivery time increases by 0.26 min. Or, for each
extra e10 spent, the delivery time increases on average by 2.6 min.

• The delivery time is on average 0.16 min longer for operator 1 compared with
operator 0.

• For operator 0 and a bill of e0, the expected delivery time is β0 = 23.1 min.
However, there is no bill ofe0, and therefore, the interceptβ0 cannot be interpreted
meaningfully here and is included only for improvement of the model fit.

11.6.2 Categorical Covariates

We now consider the case when covariates are categorical rather than continuous.

Examples

• Region: East, West, South, North,
• Marital status: single, married, divorced, widowed,
• Day: Monday, Tuesday, . . ., Sunday.

We have already described how to treat a categorical variable which consists of
two categories, i.e. a binary variable: one category is replaced by 1’s and the other
category is replaced by 0’s subjectswho belong to the category x = 1 have on average
y-values which are β̂ units higher than those subjects with x = 0.
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Consider a variable x which hasmore than two categories, say k > 2 categories. To
include such a variable in a regression model, we create k − 1 new variables xi , i =
1, 2, . . . , k − 1. Similar to how we treat binary variables, each of these variables is
a dummy variable and consists of 1’s for units which belong to the category of
interest and 0’s for the other category

xi =
{
1 for category i ,
0 otherwise.

(11.21)

The category for which we do not create a dummy variable is called the reference
category, and the interpretation of the parameters of the dummy variables is with
respect to this category. For example, for category i , the y-values are on average βi
higher than for the reference category. The concept of creating dummy variables and
interpreting them is explained in the following example.

Example 11.6.3 Consider again the pizza data set described in Appendix A.4. The
manager may hypothesize that the delivery times vary with respect to the branch.
There are k = 3 branches: East, West, Centre. Instead of using the variable x =
branch, we create (k − 1), i.e. (3 − 1) = 2 new variables denoting x1 = East and
x2 = West. We set x1 = 1 for those deliveries which come from the branch in the
East and set x1 = 0 for other deliveries. Similarly, we set x2 = 1 for those deliveries
which come from theWest and x2 = 0 for other deliveries. The data then is as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Delivery y (Delivery Time) x (Branch) x1 (East) x2 (West)

1 35.1 East 1 0
2 25.2 East 1 0
3 45.6 West 0 1
4 29.4 East 1 0
5 30.0 West 0 1
6 40.3 Centre 0 0
...

...
...

...

1266 35.7 West 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Deliveries which come from the East have x1 = 1 and x2 = 0, deliveries which
come from the West have x1 = 0 and x2 = 1, and deliveries from the Centre have
x1 = 0 and x2 = 0. The regression model of interest is thus

y = β0 + β1East + β2West + e.

We can calculate the least squares estimate β̂ = (β̂0, β̂1, β̂2)
′ = (X′X)−1X′y via R:

either (i) we create the dummy variables ourselves or (ii) we ask R to create it for
us. This requires that “branch” is a factor variable (which it is in our data, but if it
was not, then we would have to define it in the model formula via as.factor()).

East <- as.numeric(branch=='East')
West <- as.numeric(branch=='West')
lm(time∼ East+West) # option 1
lm(time∼ branch) # option 2a
lm(time∼ as.factor(branch)) # option 2b
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We obtain the following results:

Y = 36.3 − 5.2East − 1.1West.

The interpretations are as follows:

• The average delivery time for the branch in the Centre is 36.3 min, the delivery
time for the branch in the East is 36.3 − 5.2 = 31.1min, and the predicted delivery
time for the West is 36.3 − 1.1 = 35.2 min.

• Therefore, deliveries arrive on average 5.2 min earlier in the East compared with
the centre (β̂1 = −5.2), and deliveries in theWest arrive on average 1.1min earlier
than in the centre (β̂2 = −1.1). In other words, it takes 5.2 min less to deliver a
pizza in the East than in the Centre. The deliveries in the West take on average
1.1 min less than in the Centre.

Consider now a covariate with k = 3 categories for which we create two new
dummy variables, x1 and x2. The linear model is y = β0 + β1x1 + β2x2 + e.

• For x1 = 1, we obtain E(y) = β0 + β1 · 1 + β2 · 0 = β0 + β1 ≡ E(y|x1 = 1,
x2 = 0);

• For x2 = 1, we obtain E(y) = β0 + β1 · 0 + β2 · 1 = β0 + β2 ≡ E(y|x1 = 0,
x2 = 1); and

• For the reference category (x1 = x2 = 0), we obtain y = β0 + β1 · 0 + β2 · 0 =
β0 ≡ E(y|x1 = x2 = 0).

We can thus conclude that the intercept β0 = E(y|x1 = 0, x2 = 0) describes the
average y for the reference category, that β1 = E(y|x1 = 1, x2 = 0) − E(y|x1 =
0, x2 = 0) describes the difference between the first and the reference category,
and that β2 = E(y|x1 = 0, x2 = 1) − E(y|x1 = 0, x2 = 0) describes the difference
between the second and the reference category.

Remark 11.6.1 There are other ways of recoding categorical variables, such as effect
coding. However, we do not describe them in this book.

11.6.3 Transformations

As we have already outlined in Sect. 11.5, if x is transformed by a function T (x) =
(T (x1), T (x2), . . . , T (xn)) then

y = f (x) = β0 + β1T (x) + e (11.22)

is still a linear model because the model is linear in its parameters β. Popular trans-
formations T (x) are log(x),

√
x, exp(x), xp, among others. The choice of such a

function is typically motivated by the application and data at hand. Alternatively, a
relationship between y and x can be modelled via a polynomial as follows:

y = f (x) = β0 + β1x + β2x2 + · · · + βpxp + e. (11.23)
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Fig. 11.6 Scatter plot and
regression lines for Example
11.6.4

20 30 40 50 60 70

20
40

60
80

10
0

Exercise Time

R
ec

ov
er

y 
Ti

m
e

linear
polynomial, quadratic
polynomial, cubic

Example 11.6.4 Consider again Examples 11.2.1, 11.3.2, 11.3.3, 11.4.1, and 11.5.1
where we analysed the association of intensity of exercising and recovery time after
knee surgery. The linear regression line was estimated as

Recovery Time = 100.28 − 1.22 Exercising Time.

One could question whether the association is indeed linear and fit the second- and
third-order polynomials:

Recovery Time = β0 − β1Exercise + β2Exercise
2,

Recovery Time = β0 − β1Exercise + β2Exercise
2 + β3Exercise

3.

To obtain the estimates we can use R:

lm(Y∼X+I(X2))
lm(Y∼X+I(X2)+I(X3))

The results are β0 = 121.8, β1 = −2.4, β2 = 0.014 and β0 = 12.9, β1 = 6.90,
β2 = −0.23, β3 = 0.002 for the two models respectively. While it is difficult to
interpret these coefficients directly, we can simply plot the regression lines on a
scatter plot (see Fig. 11.6).

We see that the regression based on the quadratic polynomial visually fits the
data slightly better than the linear polynomial. It seems as if the relation between
recovery time and exercise time is not exactly linear and the association is better
modelled through a second-order polynomial. The regression line based on the cubic
polynomial seems to be even closer to the measured points; however, the functional
form of the association looks questionable. Driven by a single data point, we obtain a
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regression line which suggests a heavily increased recovery time for exercising times
greater than 65 min. While it is possible that too much exercising causes damage to
the knee and delays recovery, the data does not seem to be clear enough to support
the shape suggested by the model. This example illustrates the trade-off between
fit (i.e. how good the regression line fits the data) and parsimony (i.e. how well a
model can be understood if it becomes more complex). Section 11.8 explores this
non-trivial issue in more detail.

Transformations of the Outcome Variable. It is also possible to apply transforma-
tions to the outcome variable. While in many situations, this makes interpretations
quite difficult, a log transformation is quite common and easy to interpret. Consider
the log-linear model

log y = β01 + β1x1 + · · · + βpxp + e

where y is required to be greater than 0. Exponentiating on both sides leads to

y = eβ01 · eβ1x1 · · · · · eβpxp · ee.
It can be easily seen that a one unit increase in xj multiplies y by eβ j . Therefore, if
y is log-transformed, one simply interprets exp(β) instead of β. For example, if y
is the yearly income, x denotes gender (1 = male, 0 = female), and β1 = 0.2 then
one can say that a man’s income is exp(0.2) = 1.22 times higher (i.e. 22 %) than a
woman’s.

11.7 The InductiveView of Linear Regression

So far we have introduced linear regression as a method which describes the rela-
tionship between dependent and independent variables through the best fit to the
data. However, as we have highlighted in earlier chapters, often we are interested
not only in describing the data but also in drawing conclusions from a sample about
the population of interest. For instance, in an earlier example, we have estimated the
association of branch and delivery time for the pizza delivery data. The linear model
was estimated as delivery time = 36.3 − 5.2 East − 1.1West; this indicates that the
delivery time is on average 5.2min shorter for the branch in the East of the town
compared with the central branch and 1.1min shorter for the branch in theWest com-
paredwith the central branch.When considering all pizza deliveries (the population),
not only those collected by us over the period of a month (the sample), we might ask
ourselves whether 1.1min is a real difference valid for the entire population or just
caused by random error involved in the sample we chose. In particular, we would
also like to know what the 95% confidence interval for our parameter estimate is.
Does the interval cover “zero”? If yes, we might conclude that we cannot be very
sure that there is an association and do not reject the null hypothesis that βWest = 0.
In reference to Chaps. 9 and 10, we now apply the concepts of statistical inference
and testing in the context of regression analysis.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Point and interval estimation in the linear model. We now rewrite the model for
the purpose of introducing statistical inference to linear regression as

y = β01 + β1x1 + · · · + βpxp + e

= Xβ + e with e ∼ N (0, σ 2I) . (11.24)

where y is the n × 1 vector of outcomes and X is the n × (p + 1) design matrix
(including a column of 1’s for the intercept). The identity matrix I consists of 1’s on
the diagonal and 0’s elsewhere, and the parameter vector is β = (β0, β1, . . . , βp)

′.
We would like to estimate β to make conclusions about a relationship in the pop-
ulation. Similarly, e reflects the random errors in the population. Most importantly,
the linear model now contains assumptions about the errors. They are assumed to
be normally distributed, N (0, σ 2 I ), which means that the expectation of the errors
is 0,E(ei ) = 0, the variance is Var(ei ) = σ 2 (and therefore the same for all ei ), and
it follows fromVar(e) = σ 2I that Cov(ei , ei ′) = 0 for all i 
= i ′. The assumption of a
normal distribution is required to construct confidence intervals and test of hypothe-
ses statistics. More details about these assumptions and the procedures to test their
validity on the basis of a given sample of data are explained in Sect. 11.9.

The least squares estimate of β is obtained by

β̂ = (X′X)−1X′y. (11.25)

It can be shown that β̂ follow a normal distribution with mean E(β̂) = β and covari-
ance matrix Var(β̂) = σ 2I as

β̂ ∼ N (β, σ 2(X′X)−1). (11.26)

Note that β̂ is unbiased (since E(β̂) = β); more details about (11.26) can be found
in Appendix C.6. An unbiased estimator of σ 2 is

σ̂ 2 = (y − Xβ̂)′(y − Xβ̂)

n − (p + 1)
= ê′ê

n − (p + 1)
= 1

n − (p + 1)

n∑

i=1

ê2i . (11.27)

The errors are estimated from the data as ê = y − Xβ̂ and are called residuals.
Before giving a detailed data example, we would like to outline how to draw

conclusions about the population of interest from the linear model. As we have seen,
bothβ andσ 2 are unknown in themodel and are estimated from the data using (11.25)
and (11.27). These are our point estimates. We note that if β j = 0, then β jxj = 0,
and then, the model will not contain the term β jxj. This means that the covariate xj
does not contribute to explaining the variation in y. Testing the hypothesis β j = 0
is therefore equivalent to testing whether x j is associated with y or not in the sense
that it helps to explain the variations in y or not. To test whether the point estimate is
different from zero, orwhether the deviations of estimates from zero can be explained
by random variation, we have the following options:
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1. The 100(1 − α)% confidence interval for each β̂ j is

β̂ j ± tn−p−1;1−α/2 · σ̂
β̂ j

(11.28)

with σ̂
β̂

=
√
s j j σ̂ 2 where s j j is the j th diagonal element of the matrix (X′X)−1.

If the confidence interval does not overlap 0, then we can conclude that β is
different from0 and therefore xi is associatedwith y and it is a relevant variable. If
the confidence interval includes 0,we cannot conclude that there is an association
between xi and y.

2. We can formulate a formal test which tests if β̂ j is different from 0. The hypothe-
ses are:

H0 : β j = 0 versus H1 : β j 
= 0.

The test statistic

T = β̂ j
√

σ̂
β̂2
j

follows a tn−p−1 distribution under H0. If |T | > tn−p−1;1−α/2, we can reject the
null hypothesis (at α level of significance); otherwise, we accept it.

3. The decisions we get from the confidence interval and the T -statistic from points
1 and 2 are identical to those obtained by checking whether the p-value (see also
Sect. 10.2.6) is smaller than α, in which case we also reject the null hypothesis.

Example 11.7.1 Recall Examples 11.2.1, 11.3.2, 11.3.3, 11.4.1, 11.5.1, and 11.6.4
where we analysed the association of exercising time and time of recovery from knee
surgery. We can use R to obtain a full inductive summary of the linear model:

summary(lm(Y∼X))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.1244 10.3571 9.667 2.17e-06 ***
X -1.2153 0.2768 -4.391 0.00135 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.58 on 10 degrees of freedom

Now, we explain the meaning and interpretation of different terms involved in the
output.

• Under “Estimate”, the parameter estimates are listed and we read that the linear
model is fitted as y (recovery time) = 100.1244 − 1.2153 · x (exercise time). The
subtle differences to Example 11.2.1 are due to rounding of numerical values.

• The variance is estimated as σ̂ 2 = 11.582 (“Residual standard error”). This is
easily calculatedmanually using the residual sumof squares:

∑
ê2i /(n − p − 1) =

1/10 · {(90 − 70.84)2 + · · · + (45 − 62.30)2} = 11.582.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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• The standard errors σ̂
β̂
are listed under “Std. Error”. Given that n − p − 1 =

12 − 1 − 1 = 10, and therefore t10;0.975 = 2.28, we can construct a confidence
interval for age:

−1.22 ± 2.28 · 0.28 = [−1.86;−0.58]
The interval does not include 0, and we therefore conclude that there is an asso-
ciation between exercising time and recovery time. The random error involved
in the data is not sufficient to explain the deviation of β̂i = −1.22 from 0 (given
α = 0.05).

• We therefore reject the null hypothesis that β j = 0. This can also be seen by com-

paring the test statistic (listed under “t value” and obtained by (β̂ j − 0)/
√

σ̂ 2
β̂

=
−1.22/0.277) with t10,0.975, | − 4.39| > 2.28. Moreover, p = 0.001355 < α =
0.05. We can say that there is a significant association between exercising and
recovery time.

Sometimes, one is interested in whether a regression model is useful in the sense
that all βi ’s are different from zero, and we therefore can conclude that there is an
association between any xi and y. The null hypothesis is

H0 : β1 = β2 = · · · = βp = 0

and can be tested by the overall F-test

F = (ŷ − ȳ)′(ŷ − ȳ)/(p)
(y − ŷ)′(y − ŷ)/(n − p − 1)

= n − p − 1

p

∑
i (ŷi − ȳ)2
∑

i e
2
i

.

The null hypothesis is rejected if F > F1−α;p,n−p−1. Note that the null hypothesis in
this case tests only the equality of slope parameters and does not include the intercept
term.

Example 11.7.2 In this chapter, we have already explored the associations between
branch, operator, and bill with delivery time for the pizza data (Appendix A.4). If we
fit amultiple linear model including all of the three variables, we obtain the following
results:

summary(lm(time∼branch+bill+operator))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.19138 0.78752 33.258 < 2e-16 ***
branchEast -3.03606 0.42330 -7.172 1.25e-12 ***
branchWest -0.50339 0.38907 -1.294 0.196
bill 0.21319 0.01535 13.885 < 2e-16 ***
operatorMelissa 0.15973 0.31784 0.503 0.615
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.653 on 1261 degrees of freedom
Multiple R-squared: 0.2369, Adjusted R-squared: 0.2345
F-statistic: 97.87 on 4 and 1261 DF, p-value: < 2.2e-16
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By looking at the p-values in the last column, one can easily see (without calculat-
ing the confidence intervals or evaluating the t-statistic) that there is a significant asso-
ciation between the bill and delivery time; also, it is evident that the average delivery
time in the branch in the East is significantly different (≈ 3min less) from the central
branch (which is the reference category here). However, the estimated difference in
delivery times for both the branches in theWest and the operator was not found to be
significantly different from zero. We conclude that some variables in the model are
associated with delivery time, while for others, we could not show the existence of
such an association. The last line of the output confirms this: the overall F-test has a
test statistic of 97.87which is larger than F1−α;p,n−p−1 = F0.95;4,1261 = 2.37; there-
fore, the p-value is smaller 0.05 (2.2 × 10−16) and the null hypothesis is rejected. The
test suggests that there is at least one variable which is associated with delivery time.

11.7.1 Properties of Least Squares andMaximum Likelihood
Estimators

The least squares estimator of β has several properties:

1. The least squares estimator of β is unbiased, E(β̂) = β (see Appendix C.6 for
the proof).

2. The estimator σ̂ 2 as introduced in equation (11.27) is also unbiased, i.e. E(σ̂ 2) =
σ 2.

3. The least squares estimator ofβ is consistent, i.e. β̂ converges toβ as n approaches
infinity.

4. The least squares estimator of β is asymptotically normally distributed.
5. The least squares estimator of β has the smallest variance among all linear and

unbiased estimators (best linear unbiased estimator) of β.

We do not discuss the technical details of these properties in detail. It is more
important to know that the least squares estimator has good features and that is
why we choose it for fitting the model. Since we use a “good” estimator, we expect
that the model will also be “good”. One may ask whether it is possible to use a
different estimator. We have already made distributional assumptions in the model:
we require the errors to be normally distributed, given that it is indeed possible to
apply the maximum likelihood principle to obtain estimates for β and σ 2 in our
set-up.

Theorem 11.7.1 For the linear model (11.24), the least squares estimator and the
maximum likelihood estimator for β are identical. However, the maximum likelihood
estimator of σ 2 is σ̂ 2

ML = 1/n(ê′ê) of σ 2 which is a biased estimator of σ 2, but it is
asymptotically unbiased.

How to obtain the maximum likelihood estimator for the linear model is presented in
Appendix C.6. The important message of Theorem 11.7.1 is that no matter whether
we apply the least squares principle or the maximum likelihood principle, we always
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obtain β̂ = (X′X)−1X′y; this does not apply when estimating the variance, but it is
an obvious choice to go for the unbiased estimator (11.27) in any given analysis.

11.7.2 The ANOVATable

A table that is frequently shown by software packages when performing regression
analysis is the analysis of variance (ANOVA) table. This table can have severalmean-
ings and interpretations and may look slightly different depending on the context in
which it is used. We focus here on its interpretation i) as a way to summarize the
effect of categorical variables and ii) as a hypothesis test to compare k means. This
is illustrated in the following example.

Example 11.7.3 Recall Example 11.6.3 where we established the relationship
between branch and delivery time as

Delivery Time = 36.3 − 5.2East − 1.1West.

The R output for the respective linear model is as follows:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.3127 0.2957 122.819 < 2e-16 ***
branchEast -5.2461 0.4209 -12.463 < 2e-16 ***
branchWest -1.1182 0.4148 -2.696 0.00711 **

We see that the average delivery time of the branches in the East and the Centre
(reference category) is different and that the average delivery time of the branches in
the West and the Centre is different (because p < 0.05). This is useful information,
but it does not answer the question if branch as a whole influences the delivery time.
It seems that this is the case, but the hypothesis we may have in mind may be

H0 : μEast = μWest = μCentre

which corresponds to
H0 : βEast = βWest = βCentre

in the context of the regression model. These are two identical hypotheses because
in the regression set-up, we are essentially comparing three conditional means
E(Y |X = x1) = E(Y |X = x2) = E(Y |X = x3). The ANOVA table summarizes the
corresponding F-Test which tests this hypothesis:

m1 <- lm(time∼branch)
anova(m1)

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

branch 2 6334 3166.8 86.05 < 2.2e-16 ***
Residuals 1263 46481 36.8
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We see that the null hypothesis of 3 equal means is rejected because p is close to
zero.

What does this table mean more generally? If we deal with linear regression with
one (possibly categorical) covariate, the table will be as follows:

df Sum of squares Mean squares F-statistic
Var p SQReg. MSR=SQReg./p MSR/MSE
Res n − p − 1 SQError MSE= SQError/(n − p − 1)

The table summarizes the sum of squares regression and residuals (see Sect. 11.3 for
the definition), standardizes them by using the appropriate degrees of freedom (df),
and uses the corresponding ratio as the F-statistic. Note that in the above example,
this corresponds to the overall F-test introduced earlier. The overall F-test tests the
hypothesis that any β j is different from zero which is identical to the hypothesis
above. Thus, if we fit a linear regression model with one variable, the ANOVA table
will yield the same conclusions as the overall F-test which we obtain through the
main summary. However, if we consider a multiple linear regression model, the
ANOVA table may give us more information.

Example 11.7.4 Suppose we are not only interested in the branch, but also in how
the pizza delivery times are affected by operator and driver. We may for example
hypothesize that the delivery time is identical for all drivers given they deliver for
the same branch and speak to the same operator. In a standard regression output, we
would get 4 coefficients for 5 drivers which would help us to compare the average
delivery time of each driver to the reference driver; it would however not tell us if
on an average, they all have the same delivery time. The overall F-test would not
help us either because it would test if any β j is different from zero which includes
coefficients from branch and operator, not only driver. Using the anova command
yields the results of the F-test of interest:

m2 <- lm(time∼branch+operator+driver)
anova(m2)

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

branch 2 6334 3166.8 88.6374 < 2.2e-16 ***
operator 1 16 16.3 0.4566 0.4994
driver 4 1519 379.7 10.6282 1.798e-08 ***
Residuals 1258 44946 35.7

We see that the null hypothesis of equal delivery times of the drivers is rejected.
We can also test other hypotheses with this output: for instance, the null hypothesis
of equal delivery times for each operator is not rejected because p ≈ 0.5.
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11.7.3 Interactions

It may be possible that the joint effect of some covariates affects the response.
For example, drug concentrations may have a different effect on men, woman, and
children; a fertilizer could work differently in different geographical areas; or a new
education programmemay show benefit only with certain teachers. It is fairly simple
to target such questions in linear regression analysis by using interactions. Interac-
tions are measured as the product of two (or more) variables. If either one or both
variables are categorical, then one simply builds products for each dummy variable,
thus creating (k − 1) × (l − 1) new variables when dealing with two categorical
variables (with k and l categories respectively). These product terms are called inter-
actions and estimate how an association of one variable differs with respect to the
values of the other variable. Now, we give examples for continuous–categorical,
categorical–categorical, and continuous–continuous interactions for two variables
x1 and x2.

Categorical–Continuous Interaction. Suppose one variable x1 is categorical with
k categories, and the other variable x2 is continuous. Then, k − 1 new variables
have to be created, each consisting of the product of the continuous variable and a
dummy variable, x2 × x1i , i ∈ 1, . . . , k − 1. These variables are added to the regres-
sion model in addition to the main effects relating to x1 and x2 as follows:

y = β0 + β1x11 + · · · + βk−1x1k−1 + βkx2
+βk+1x11x2 + · · · + βpx1k−1x2 + e.

It follows that for the reference category of x1, the effect of x2 is just βk (because
each x2x1i is zero since each x1 j is zero). However, the effect for all other categories
is β2 + β j where β j refers to x1jx2. Therefore, the association between x2 and the
outcome y differs by β j between category j and the reference category. Testing
H0 : β j = 0 thus helps to identify whether there is an interaction effect with respect
to category j or not.

Example 11.7.5 Consider again the pizza data described in Appendix A.4. We may
be interested in whether the association of delivery time and temperature varies
with respect to branch. In addition to time and branch, we therefore need additional
interaction variables. Since there are 3 branches, we need 3 − 1 = 2 interaction
variables which are essentially the product of (i) time and branch “East” and (ii)
time and branch “West”. This can be achieved in R by using either the “�” operator
(which will create both the main and interaction effects) or the “:” operator (which
only creates the interaction term).

int.model.1 <- lm(temperature∼time∗branch)
int.model.2 <- lm(temperature∼time+branch+time:branch)
summary(int.model.1)
summary(int.model.2)
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.718327 1.850918 38.207 < 2e-16 ***
time -0.288011 0.050342 -5.721 1.32e-08 ***
branchEast 10.941411 2.320682 4.715 2.69e-06 ***
branchWest 1.102597 2.566087 0.430 0.66750
time:branchEast -0.195885 0.066897 -2.928 0.00347 **
time:branchWest 0.004352 0.070844 0.061 0.95103

The main effects of the model tell us that the temperature is almost 11 degrees
higher for the eastern branch compared to the central branch (reference) and about
1 degree higher for the western branch. However, only the former difference is
significantly different from 0 (since the p-value is smaller than α = 0.05).Moreover,
the longer the delivery time, the lower the temperature (0.29 degrees for eachminute).
The parameter estimates related to the interaction imply that this association differs
by branch: the estimate is indeed βtime = −0.29 for the reference branch in the
Centre, but the estimate for the branch in theEast is−0.29 − 0.196 = −0.486 and the
estimate for the branch in the West is −0.29 + 0.004 = −0.294. However, the latter
difference in the association of time and temperature is not significantly different
from zero. We therefore conclude that the delivery time and pizza temperature are
negatively associated and this is more strongly pronounced in the eastern branch
compared to the other two branches. It is also possible to visualize this by means of
a separate regression line for each branch, see Fig. 11.7.

Fig. 11.7 Interaction of
delivery time and branch in
Example 11.7.5
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• Centre: Temperature = 70.7 − 0.29 × time,
• East: Temperature = 70.7 + 10.9 − (0.29 + 0.195) × time,
• West: Temperature = 70.7 + 1.1 − (0.29 − 0.004) × time.

One can see that the pizzas delivered by the branch in the East are overall hotter
but longer delivery times level that benefit off. One might speculate that the delivery
boxes from the eastern branch are not properly closed and therefore—despite the
overall good performance—the temperature falls more rapidly over time for this
branch.

Categorical–Categorical Interaction. For two categorical variables x1 and x2, with
k and l categories, respectively, (k − 1) × (l − 1) new dummy variables x1i × x2 j
need to be created as follows:

y = β0 + β1x11 + · · · + βk−1x1k−1 + βkx21 + · · · + βk+l−2x2l−1

+βk+l−1x11x21 + · · · + βpx1k−1x2l−1 + e.

The interpretation of the regression parameters of interest is less complicated than
it looks at first. If the interest is in x1, then the estimate referring to the category of
interest (i.e. x1i ) is interpreted as usual—with the difference that it relates only to
the reference category of x2. The effect of x1i may vary with respect to x2, and the
sum of the respective main and interaction effects for each category of x2 yields
the respective estimates. These considerations are explained in more detail in the
following example.

Example 11.7.6 Consider again the pizza data. If we have the hypothesis that the
delivery time depends on the operator (who receives the phone calls), but the effect is
different for different branches, then a regression model with branch (3 categories, 2
dummy variables), operator (2 categories, one dummy variable), and their interaction
(2 new variables) can be used.

lm(time∼operator*branch)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.4203 0.4159 87.567 <2e-16 ***
operatorMelissa -0.2178 0.5917 -0.368 0.7129
branchEast -5.6685 0.5910 -9.591 <2e-16 ***
branchWest -1.3599 0.5861 -2.320 0.0205 *
operatorMelissa:branchEast 0.8599 0.8425 1.021 0.3076
operatorMelissa:branchWest 0.4842 0.8300 0.583 0.5598
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The interaction terms can be interpreted as follows:

• If we are interested in the operator, we see that the delivery time is on aver-
age 0.21min shorter for operator “Melissa”. When this operator deals with a
branch other than the reference (Centre), the estimate changes to −0.21 + 0.86 =
0.64 min longer delivery in the case of branch “East” and −0.21 + 0.48 =
0.26 min for branch “West”.

• If we are interested in the branches, we observe that the delivery time is shortest
for the eastern branch which has on average a 5.66min shorter delivery time
than the central branch. However, this is the estimate for the reference operator
only; if operator “Melissa” is in charge, then the difference in delivery times
for the two branches is only −5.66 + 0.86 = −4.8 min. The same applies when
comparing the western branch with the central branch: depending on the operator,
the difference between these two branches is estimated as either−1.36 or−1.36 +
0.48 = 0.88 min, respectively.

• The interaction terms are not significantly different from zero. We therefore con-
clude that the hypothesis of different delivery times for the two operators, possibly
varying by branch, could not be confirmed.

Continuous–Continuous Interaction. It is also possible to add an interaction of
two continuous variables. This is done by adding the product of these two variables
to the model. If x1 and x2 are two continuous variables, then x1x2 is the new variable
added in the model as an interaction effect as

y = β1x1 + β2x2 + β3x1x2 + e.

Example 11.7.7 If we again consider the pizza data, with pizza temperature as an
outcome, we may wish to test for an interaction of bill and time.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.555943 2.747414 33.688 < 2e-16 ***
bill -0.454381 0.068322 -6.651 4.34e-11 ***
time -0.679537 0.086081 -7.894 6.31e-15 ***
bill:time 0.008687 0.002023 4.294 1.89e-05 ***

The R output above reveals that there is a significant interaction effect. The inter-
pretation is more difficult here. It is clear that a longer delivery time and a larger bill
decrease the pizza’s temperature. However, for a large product of bill and time (i.e.,
when both are large), these associations are less pronounced because the negative
coefficients become more and more outweighed by the positive interaction term. On
the contrary, for a small bill and short delivery time, the temperature can be expected
to be quite high.

Combining Estimates. As we have seen in the examples in this section, it can
make sense to combine regression estimates when interpreting interaction effects.
While it is simple to obtain the point estimates, it is certainly also important to report
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their 95% confidence intervals. As we know from Theorem 7.7.1, the variance of
the combination of two random variables can be obtained by Var(X ± Y ) = σ 2

XY =
Var(X) + Var(Y ) ± 2Cov(X, Y ). We can therefore estimate a confidence interval
for the combined estimate β̂i + β̂ j as

(β̂i + β̂ j ) ± tn−p−1;1−α/2 · σ̂
(β̂i+β̂ j )

(11.29)

where σ̂
(β̂i+β̂ j )

is obtained from the estimated covariance matrix̂Cov(β̂) via

σ̂
(β̂i+β̂ j )

=
√

V̂ar(βi ) + V̂ar(β j ) + 2̂Cov(βi , β j ).

Example 11.7.8 Recall Example 11.7.5 where we estimated the association between
pizza temperature, delivery time, and branch. There was a significant interaction
effect for time and branch. Using R, we obtain the covariance matrix as follows:

mymodel <- lm(temperature∼time*branch)
vcov(mymodel)

(Int.) time East West time:East time:West
(Int.) 3.4258 -0.09202 -3.4258 -3.4258 0.09202 0.09202
time -0.0920 0.00253 0.0920 0.0920 -0.00253 -0.00253
branchEast -3.4258 0.09202 5.3855 3.4258 -0.15232 -0.09202
branchWest -3.4258 0.09202 3.4258 6.5848 -0.09202 -0.17946
time:East 0.0920 -0.00253 -0.1523 -0.0920 0.00447 0.00253
time:West 0.0920 -0.00253 -0.0920 -0.1794 0.00253 0.00501

The point estimate for the association between time and temperature in the eastern
branch is −0.29 − 0.19 (see Example 11.7.5). The standard error is calculated as√
0.00253 + 0.00447 − 2 · 0.00253 = 0.044. The confidence interval is therefore

−0.48 ± 1.96 · 0.044 = [−0.56;−0.39].

Remark 11.7.1 If there ismore than one interaction term, then it is generally possible
to test whether there is an overall interaction effect, such as β1 = β2 = β3 = β4 = 0
in the case of four interaction variables. These tests belong to the general class of
“linear hypotheses”, and they are not explained in this book. It is also possible to
create interactions between more than two variables. However, the interpretation
then becomes difficult.

11.8 Comparing Different Models

There are many situations where different multiple linear models can be fitted to a
given data set, but it is unclear which is the best one. This relates to the question of
which variables should be included in a model and which ones can be removed.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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For example, when we modelled the association of recovery time and exercising
time by using different transformations, it remained unclear which of the proposed
transformations was the best. In the pizza delivery example, we have about ten
covariates: Does itmake sense to include all of them in themodel or dowe understand
the associations in the data better by restricting ourselves to the few most important
variables? Is it necessary to include interactions or not?

There are various model selection criteria to compare the quality of different
fitted models. They can be useful in many situations, but there are also a couple of
limitations which make model selection a difficult and challenging task.

Coefficient of Determination (R2). A possible criterion to check the goodness of
fit of a model is the coefficient of determination (R2). We discussed its development,
interpretation, and philosophy in Sect. 11.3 (see p. 256 for more details).

Adjusted R2. Although R2 is a reasonable measure for the goodness of fit of a
model, it also has some limitations. One limitation is that if the number of covariates
increases, R2 increases too (we omit the theorem and the proof for this statement).
The added variablesmay not be relevant, but R2 will still increase,wrongly indicating
an improvement in the fitted model. This criterion is therefore not a good measure
for model selection. An adjusted version of R2 is defined as

R2
ad j = 1 − SQError/(n − p − 1)

SQTotal/(n − 1)
. (11.30)

It can be used to compare the goodness of fit of models with a different number
of covariates. Please note that both R2 and R2

ad j are only defined when there is an
intercept term in the model (which we assume throughout the chapter).

Example 11.8.1 In Fig. 11.6, the association of exercising time and recovery time
after knee surgery is modelled linearly, quadratically, and cubically; in Fig. 11.5,
this association is modelled by means of a square-root transformation. The model
summary in R returns both R2 (under “Multiple R-squared”) and the adjusted R2

(under “adjusted R-squared”). The results are as follows:

R2 R2
ad j

Linear 0.6584 0.6243
Quadratic 0.6787 0.6074
Cubic 0.7151 0.6083
Square root 0.6694 0.6363

It can be seen that R2 is larger for the models with more variables; i.e. the cubic
model (which includes three variables) has the largest R2. The adjusted R2, which
takes the different model sizes into account, favours the model with the square-root
transformation. This model provides therefore the best fit to the data among the four
models considered using R2.
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Akaike’s InformationCriterion (AIC) is another criterion formodel selection. The
AIC is based on likelihood methodology and has its origins in information theory.
We do not give a detailed motivation of this criterion here. It can be written for the
linear model as

AIC = n log

(
SQError

n

)

+ 2(p + 1). (11.31)

The smaller the AIC, the better the model. The AIC takes not only the fit to the data
via SQError into account but also the parsimony of the model via the term 2(p + 1).
It is in this sense a more mature criterion than R2

ad j which considers only the fit
to the data via SQError. Akaike’s Information Criterion can be calculated in R via
the extractAIC() command. There are also other commands, but the results differ
slightly because the different formulae use different constant terms. However, no
matter what formula is used, the results regarding the model choice are always the
same.

Example 11.8.2 Consider again Example 11.8.1. R2
ad j preferred the model which

includes exercising time via a square-root transformation over the other options. The
AIC value for the model where exercise time is modelled linearly is 60.59, when
modelled quadratically 61.84, whenmodelled cubically 62.4, and 60.19 for a square-
root transformation. Thus, in line with R2

ad j , the AIC also prefers the square-root
transformation.

Backward selection. Two models, which differ only by one variable x j , can be
compared by simply looking at the test result for β j = 0: if the null hypothesis is
rejected, the variable is kept in the model; otherwise, the other model is chosen. If
there are more than two models, then it is better to consider a systematic approach to
comparing them. For example, suppose we have 10 potentially relevant variables and
we are not sure which of them to include in the final model. There are 210 = 1024
possible different combinations of variables and in turn so many choices of models!
The inclusion or deletion of variables can be done systematically with various proce-
dures, for examplewith backward selection (also known asbackward elimination)
as follows:

1. Start with the full model which contains all variables of interest, Υ = {x1, x2,
. . . , xp}.

2. Remove the variable xi ∈ Υ which optimizes a criterion, i.e. leads to the smallest
AIC (the highest R2

ad j , the highest test statistic, or the smallest significance)
among all possible choices.

3. Repeat step 2. until a stop criterion is fulfilled, i.e. until no improvement regarding
AIC, R2, or the p-value can be achieved.
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There are several other approaches. Instead of moving in the backward direction,
we can also move in the forward direction. Forward selection starts with a model
with no covariates and adds variables as long as the model continues to improve with
respect to a particular criterion. The stepwise selection approach combines forward
selection and backward selection: either one does backward selection and checks in
betweenwhether adding variables yields improvement, or one does forward selection
and continuously checks whether removing the already added variables improves the
model.

Example 11.8.3 Consider the pizza data: if delivery time is the outcome, and branch,
bill, operator, driver, temperature, and number of ordered pizzas are potential covari-
ates, we may decide to include only the relevant variables in a final model. Using
the stepAIC function of the library(MASS) allows us implementing backward
selection with R.

library(MASS)
ms <- lm(time∼branch+bill+operator+driver
+temperature+pizzas)
stepAIC(ms, direction='back')

At the first step, the R output states that the AIC of the full model is 4277.56.
Then, the AIC values are displayed when variables are removed: 4275.9 if operator
is removed, 4279.2 if driver is removed, and so on. One can see that the AIC is
minimized if operator is excluded.

Start: AIC=4277.56
time ~ branch+bill+operator+driver+temperature+pizzas

Df Sum of Sq RSS AIC
- operator 1 9.16 36508 4275.9
<none> 36499 4277.6
- driver 4 279.71 36779 4279.2
- branch 2 532.42 37032 4291.9
- pizzas 1 701.57 37201 4299.7
- temperature 1 1931.50 38431 4340.8
- bill 1 2244.28 38743 4351.1

Now R fits the model without operator. The AIC is 4275.88. Excluding further
variables does not improve the model with respect to the AIC.
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Step: AIC=4275.88
time ~ branch + bill + driver + temperature + pizzas

Df Sum of Sq RSS AIC
9.572480563>enon<

- driver 4 288.45 36797 4277.8
- branch 2 534.67 37043 4290.3
- pizzas 1 705.53 37214 4298.1
- temperature 1 1923.92 38432 4338.9
- bill 1 2249.60 38758 4349.6

Wetherefore conclude that thefinal “best”model includes all variables considered,
except operator. Using stepwise selection (with option both instead of back) yields
the same results. We could now interpret the summary of the chosen model.

Limitations and further practical considerations. The above discussions of vari-
able selection approaches makes it clear that there are a variety of options to compare
fitted models, but there is no unique best way to do so. Different criteria are based
on different philosophies and may lead to different outcomes. There are a few con-
siderations that should however always be taken into account:

• If categorical variables are included in the model, then all respective dummy vari-
ables need to be considered as a whole: all dummy variables of this variable should
either be removed or kept in the model. For example, a variable with 3 categories
is represented by two dummy variables in a regression model. In the process of
model selection, both of these variables should either be kept in the model or
removed, but not just one of them.

• A similar consideration refers to interactions. If an interaction is added to the
model, then the main effects should be kept in the model as well. This enables
straightforward interpretations as outlined in Sect. 11.7.3.

• The sameapplies to polynomials. If adding a cubic transformation ofxi, the squared
transformation as well as the linear effect should be kept in the model.

• When applying backward, forward, or stepwise regression techniques, the results
may vary considerably depending on the method chosen! This may give different
models for the same data set. Depending on the strategy used to add and remove
variables, the choice of the criterion (e.g. AIC versus p-values), and the detailed
set-up (e.g. if the strategy is to add/remove a variable if the p-value is smaller than
α, then the choice of α is important), one may obtain different results.

• All the above considerations show that model selection is a non-trivial task which
should always be complemented by substantial knowledge of the subject matter.
If there are not too many variables to choose from, simply reporting the full model
can be meaningful too.
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11.9 CheckingModel Assumptions

The assumptions made for the linear model mostly relate to the error terms: e ∼
N (0, σ 2I). This implies a couple of things: i) the difference between y and Xβ

(which is e) needs to follow a normal distribution, ii) the variance for each error ei
is constant as σ 2 and therefore does not depend on i , and iii) there is no correlation
between the error terms, Cov(ei , ei ′) = 0 for all i, i ′. We also assume that Xβ is
adequate in the sense that we included all relevant variables and interactions in the
model and that the estimator β̂ is stable and adequate due to influential observations
or highly correlated variables. Now, we demonstrate how to check assumptions i)
and ii).

Normality assumption. The errors e are assumed to follow a normal distribution.
We never know the errors themselves. The only possibility is to estimate the errors
by means of the residuals ê = y − Xβ̂. To ensure that the estimated residuals are
comparable to the scale of a standard normal distribution, they can be standardized
via

ê∗
i = êi

σ̂ 2
√
1 − Pii

where Pii is the i th diagonal element of the hat matrix P = X(X′X)−1X′. Generally,
the estimated standardized residuals are used to check the normality assumption. To
obtain a first impression about the error distribution, one can simply plot a histogram
of the standardized residuals. The normality assumption is checked with a QQ-plot
where the theoretical quantiles of a standard normal distribution are plotted against
the quantiles from the standardized residuals. If the data approximately matches the
bisecting line, then we have evidence for fulfilment of the normality assumption
(Fig. 11.8a), otherwise we do not (Fig. 11.8b).
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(b) Normality with some problems

Fig. 11.8 Checking the normality assumption with a QQ-plot
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Small deviations from the normality assumption are not a major problem as the
least squares estimator of β remains unbiased. However, confidence intervals and
tests of hypothesis rely on this assumption, and particularly for small sample sizes
and/or stronger violations of the normality assumptions, these intervals and conclu-
sions from tests of hypothesis no longer remain valid. In some cases, these problems
can be fixed by transforming y.

Heteroscedasticity. If errors have a constant variance, we say that the errors are
homoscedastic and we call this phenomenon homoscedasticity. When the variance
of errors is not constant, we say that the errors are heteroscedastic. This phenom-
enon is also known as heteroscedasticity. If the variance σ 2 depends on i , then
the variability of the ei will be different for different groups of observations. For
example, the daily expenditure on food (y) may vary more among persons with a
high income (x1), so fitting a linear model yields stronger variability of the ei among
higher income groups. Plotting the fitted values ŷi (or alternatively xi ) against the
standardized residuals (or a transformation thereof) can help to detect whether or not
problems exist. If there is no pattern in the plot (random plot), then there is likely no
violation of the assumption (see Fig. 11.10a). However, if there is a systematic trend,
i.e. higher/lower variability for higher/lower ŷi , then this indicates heteroscedasticity
(Fig. 11.10b, trumpet plot). The consequences are again that confidence intervals and
tests may no longer be correct; again, in some situations, a transformation of y can
help.

Example 11.9.1 Recall Example 11.8.3wherewe identified a goodmodel to describe
the delivery time for the pizza data. Branch, bill, temperature, number of pizzas
ordered, and driver were found to be associated with delivery time. To explore
whether the normality assumption is fulfilled for this model, we can create a his-
togram for the standardized residuals (using the R function rstandard()). A QQ-
plot is contained in the various model diagnostic plots of the plot() function.

fm <- lm(time∼branch+bill+driver+temperature
+pizzas)
hist(rstandard(fm))
plot(fm, which=2)

Figure 11.9 shows a reasonably symmetric distribution of the residuals, maybe
with a slightly longer tail to the right. As expected for a standard normal distribution,
not many observations are larger than 2 or smaller than−2 (which are close to the 2.5
and 97.5% quantiles). The QQ-plot also points towards a normal error distribution
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(b) Via a QQ-plot of the standardized
residuals

Fig. 11.9 Checking the normality assumption in Example 11.9.1

because the observed quantiles lie approximately on the bisecting line. It seems that
the lowest residuals deviate a bit from the expected normal distribution, but not
extremely. The normality assumption does not seem to be violated.

Plotting the fitted values ŷi against the square root of the absolute values of the
standardized residuals (= √|ê∗

i |, used by R for stability reasons) yields a plot with
no visible structure (see Fig. 11.10a). There is no indication of heteroscedasticity.
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(a) Example 11.9.1: chaos plot
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(b) Violation: σ2 depends on i

Fig. 11.10 Checking the heteroscedasticity assumption
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plot(fm, which=3)

Figure 11.10b shows an artificial example where heteroscedasticity occurs: the
higher the fitted values, the higher is the variation of residuals. This is also called a
trumpet plot.

11.10 AssociationVersus Causation

There is a difference between association and causation: association says that higher
values of X relate to higher values of Y (or vice versa), whereas causation says that
because values of X are higher, values of Y are higher too. Regression analysis, as
introduced in this chapter, establishes associations between Xi ’s andY , not causation,
unless strong assumptions are made.

For example, recall the pizza delivery example from Appendix A.4. We have seen
in several examples and exercises that the delivery time varies by driver. In fact, in a
multiple linear regression model where Y is the delivery time, and the covariates are
branch, bill, operator, driver, and temperature, we get significant differences of the
mean delivery times of some drivers (e.g. Domenico and Bruno). Does this mean that
because Domenico is the driver, the pizzas are delivered faster? Not necessarily. If
Domenico drives the fastest scooter, then this may be the cause of his speedy deliv-
eries. However, we have not measured the variable “type of scooter” and thus cannot
take it into account. The result we obtain from the regression model is still useful
because it provides the manager with useful hypotheses and predictions about his
delivery times, but the interpretation that the driver’s abilities cause shorter delivery
times may not necessarily be appropriate.

This example highlights that one of the most important assumptions to interpret
regression parameters in a causal way is to have measured (and used) all variables
Xi which affect both the outcome Y and the variable of interest A (e.g. the variable
“driver” above). Another assumption is that the relationship between all Xi ’s and
Y is modelled correctly, for example non-linear if appropriate. Moreover, we need
some a priori assumptions about how the variables relate to each other, and some
technical assumptions need to be met as well. The interested reader is referred to
Hernan and Robins (2017) for more details.
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11.11 Key Points and Further Issues

Note:

� If X is a continuous variable, the parameter β in the linear regression
model Y = α + βX + e can be interpreted as follows:

“For each unit of increase in X , there is an increase of β units in E(Y ).”

� If X can take a value of zero, then it can be said that

“For X = 0,E(Y ) equals α.”

If X = 0 is out of the data range or implausible, it does not make sense
to interpret α.

� A model is said to be linear when it is linear in its parameters.

� It is possible to include many different covariates in the regression
model: they can be binary, log-transformed, or take any other form,
and it is still a linear model. The interpretation of these variables is
always conditional on the other variables; i.e. the reported association
assumes that all other variables in the model are held fixed.

� To evaluate whether xj is associated with y, it is useful to test whether
β j = 0. If the null hypothesis H0 : β j = 0 is rejected (i.e. the p-value is
smaller than α), one says that there is a significant association of xj and
y. However, note that a non-significant result does not necessarily mean
there is no association, it just means we could not show an association.

� An important assumption in the multivariate linear model y = Xβ + e
relates to the errors:

e ∼ N (0, σ 2I).

To check whether the errors are (approximately) normally distributed,
one can plot the standardized residuals in a histogram or a QQ-plot. The
heteroscedasticity assumption (i.e. σ 2 does not depend on i) is tested
by plotting the fitted values (ŷi ) against the standardized residuals (êi ).
The plot should show no pattern (random plot).

� Different models can be compared by systematic hypothesis testing,
R2
ad j , AIC, and other methods. Different methods may yield different

results, and there is no unique best option.
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11.12 Exercises

Exercise 11.1 The body mass index (BMI) and the systolic blood pressure of 6
people were measured to study a cardiovascular disease. The data are as follows:

Body mass index 26 23 27 28 24 25
Systolic blood pressure 170 150 160 175 155 150

(a) The research hypothesis is that a high BMI relates to a high blood pressure.
Estimate the linear model where blood pressure is the outcome and BMI is the
covariate. Interpret the coefficients.

(b) Calculate R2 to judge the goodness of fit of the model.

Exercise 11.2 A psychologist speculates that spending a lot of time on the internet
has a negative effect on children’s sleep. Consider the following data on hours of deep
sleep (Y ) and hours spent on the internet (X ) where xi and yi are the observations
on internet time and deep sleep time of the i th (i = 1, 2, . . . , 9) child respectively:

Child i 1 2 3 4 5 6 7 8 9
Internet time xi (in h) 0.3 2.2 0.5 0.7 1.0 1.8 3.0 0.2 2.3
Sleep time yi (in h) 5.8 4.4 6.5 5.8 5.6 5.0 4.8 6.0 6.1

(a) Estimate the linear regression model for the given data and interpret the coeffi-
cients.

(b) Calculate R2 to judge the goodness of fit of the model.
(c) Reproduce the results of a) and b) in R and plot the regression line.
(d) Now assume that we only distinguish between spending more than 1 hour on the

internet (X = 1) and spending less than (or equal to) one hour on the internet
(X = 0). Estimate the linear model again and compare the results. How can β̂

now be interpreted? Describe how β̂ changes if those who spend more than one
hour on the internet are coded as 0 and the others as 1.

Exercise 11.3 Consider the following data on weight and height of 17 female stu-
dents:

Student i 1 2 3 4 5 6 7 8 9
Weight yi 68 58 53 60 59 60 55 62 58
Height xi 174 164 164 165 170 168 167 166 160
Student i 10 11 12 13 14 15 16 17
Weight y 53 53 50 64 77 60 63 69
Height x 160 163 157 168 179 170 168 170

(a) Calculate the correlation coefficient of Bravais–Pearson (use
∑n

i=1 xi yi =
170, 821, x̄ = 166.65, ȳ = 60.12,

∑n
i=1 y

2
i = 62, 184,

∑n
i=1 x

2
i = 472, 569).

What does this imply with respect to a linear regression of height on weight?
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(b) Now estimate and interpret the linear regression model where “weight” is the
outcome.

(c) Predict the weight of a student with a height 175cm.
(d) Now produce a scatter plot of the data (manually or by using R) and interpret it.
(e) Add the following two points to the scatter plot (x18, y18) = (175, 55) and

(x19, y19) = (150, 75). Speculate how the linear regression estimatewill change
after adding these points.

(f) Re-estimate the model using all 19 observations and
∑

xi yi = 191, 696 and∑
x2i = 525, 694.

(g) Given the results of the two regressionmodels:What are the general implications
with respect to the least squares estimator of β?

Exercise 11.4 To study the association of the monthly average temperature (in ◦C,
X ) and hotel occupation (in %, Y ), we consider data from three cities: Polenca
(Mallorca, Spain) as a summer holiday destination, Davos (Switzerland) as a winter
skiing destination, and Basel (Switzerland) as a business destination.

Month Davos Polenca Basel
X Y X Y X Y

Jan −6 91 10 13 1 23
Feb −5 89 10 21 0 82
Mar 2 76 14 42 5 40
Apr 4 52 17 64 9 45
May 7 42 22 79 14 39
Jun 15 36 24 81 20 43
Jul 17 37 26 86 23 50
Aug 19 39 27 92 24 95
Sep 13 26 22 36 21 64
Oct 9 27 19 23 14 78
Nov 4 68 14 13 9 9
Dec 0 92 12 41 4 12

(a) Interpret the following regression model output where the outcome is “hotel
occupation” and “temperature” is the covariate.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.33459 7.81792 6.438 2.34e-07 ***
X 0.07717 0.51966 0.149 0.883

(b) Interpret the following output where “city” is treated as a covariate and “hotel
occupation” is the outcome.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.3333 7.9457 6.083 7.56e-07 ***
cityDavos 7.9167 11.2369 0.705 0.486
cityPolenca 0.9167 11.2369 0.082 0.935
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(c) Interpret the following output and compare it with the output from b):

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value Pr(>F)
city 2 450.1 225.03 0.297 0.745
Residuals 33 25001.2 757.61

(d) In the following multiple linear regression model, both “city” and “tempera-
ture” are treated as covariates. How can the coefficients be interpreted?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.1731 10.9949 4.018 0.000333 ***
X 0.3467 0.6258 0.554 0.583453
cityDavos 9.7946 11.8520 0.826 0.414692
cityPolenca -1.1924 11.9780 -0.100 0.921326

(e) Now consider the regression model for hotel occupation and temperature fitted
separately for each city: How can the results be interpreted and what are the
implicationswith respect to themodels estimated in (a)–(d)?Howcan themodels
be improved?

Davos:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 73.9397 4.9462 14.949 3.61e-08 ***
X -2.6870 0.4806 -5.591 0.000231 ***

Polenca:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -22.6469 16.7849 -1.349 0.20701
X 3.9759 0.8831 4.502 0.00114 **

Basel:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.574 13.245 2.459 0.0337 *
X 1.313 0.910 1.443 0.1796

(f) Describe what the design matrix will look like if city, temperature, and the
interaction between them are included in a regression model.

(g) If the model described in (f) is fitted the output is as follows:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.5741 10.0657 3.236 0.002950 **
X 1.3133 0.6916 1.899 0.067230 .
cityDavos 41.3656 12.4993 3.309 0.002439 **
cityPolenca -55.2210 21.0616 -2.622 0.013603 *
X:cityDavos -4.0003 0.9984 -4.007 0.000375 ***
X:cityPolenca 2.6626 1.1941 2.230 0.033388 *

Interpret the results.
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(h) Summarize the association of temperature and hotel occupation by city—
including 95% confidence intervals—using the interaction model. The covari-
ance matrix is as follows:

(Int.) X Davos Polenca X:Davos X:Polenca
(Int.) 101.31 -5.73 -101.31 -101.31 5.73 5.73
X -5.73 0.47 5.73 5.73 -0.47 -0.47
Davos -101.31 5.73 156.23 101.31 -9.15 -5.73
Polenca -101.31 5.73 101.31 443.59 -5.73 -22.87
X:Davos 5.73 -0.47 -9.15 -5.73 0.99 0.47
X:Polenca 5.73 -0.47 -5.73 -22.87 0.47 1.42

Exercise 11.5 The theatre data (see Appendix A.4) describes the monthly expen-
diture on theatre visits of 699 residents of a Swiss city. It captures not only the
expenditure on theatre visits (in SFR) but also age, gender, yearly income (in 1000
SFR), and expenditure on cultural activities in general as well as expenditure on
theatre visits in the preceding year.

(a) The summary of the multiple linear model where expenditure on theatre visits
is the outcome is as follows:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -127.22271 19.15459 -6.642 6.26e-11 ***
Age 0.39757 0.19689 [1] [2]
Sex 22.22059 5.22693 4.251 2.42e-05 ***
Income 1.34817 0.20947 6.436 2.29e-10 ***
Culture 0.53664 0.05053 10.620 <2e-16 ***
Theatre_ly 0.17191 0.11711 1.468 0.1426

How can the missing values [1] and [2] be calculated?
(b) Interpret the model diagnostics in Fig. 11.11.
(c) Given the diagnostics in (b), how can the model be improved? Plot a histogram

of theatre expenditure in R if you need further insight.
(d) Consider the model where theatre expenditure is log-transformed:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9541546 0.1266802 23.320 < 2e-16 ***
Age 0.0038690 0.0013022 2.971 0.00307 **
Sex 0.1794468 0.0345687 5.191 2.75e-07 ***
Income 0.0087906 0.0013853 6.346 4.00e-10 ***
Culture 0.0035360 0.0003342 10.581 < 2e-16 ***
Theatre_ly 0.0013492 0.0007745 1.742 0.08197 .

How can the coefficients be interpreted?
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Fig. 11.11 Checking the model assumptions
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(b) Fitted values vs. residuals

Fig. 11.12 Checking the model assumptions

(e) Judge the quality of the model from d) by means of Figs. 11.12a and 11.12b.
What do they look like compared with those from b)?

Exercise 11.6 Consider the pizza delivery data described in Appendix A.4.

(a) Read the data into R. Fit a multiple linear regression model with delivery time
as the outcome and temperature, branch, day, operator, driver, bill, number of
ordered pizzas, and discount customer as covariates. Give a summary of the
coefficients.
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(b) Use R to calculate the 95% confidence intervals of all coefficients. Hint: the
standard errors of the coefficients can be accessed either via the covariance
matrix or the model summary.

(c) Reproduce the least squares estimate of σ 2. Hint: use residuals() to obtain
the residuals.

(d) Now use R to estimate both R2 and R2
ad j . Compare the results with the model

output from a).
(e) Use backward selection bymeans of the stepAIC function from the library MASS

to find the best model according to AIC.
(f) Obtain R2

ad j from the model identified in e) and compare it to the full model
from a).

(g) Identify whether the model assumptions are satisfied or not.
(h) Are all variables from the model in (e) causing the delivery time to be either

delayed or improved?
(i) Test whether it is useful to add a quadratic polynomial of temperature to the

model.
(j) Use the model identified in (e) to predict the delivery time of the last captured

delivery (i.e. number 1266).Use thepredict() command to ease the calculation
of the prediction.

→ Solutions of all exercises in this chapter can be found on p. 409

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,
Springer, Heidelberg



AAppendix: Introduction to R

Background

The open-source software R was developed as a free implementation of the language
S which was designed as a language for statistical computation, statistical program-
ming, and graphics. The main intention was to allow users to explore data in an
easy and interactive way, supported by meaningful graphical representations. The
statistical software R was originally created by Ross Ihaka and Robert Gentleman
(University of Auckland, New Zealand).

Installation and Basic Functionalities

• The “base” R version, i.e. the software with its most relevant commands, can
be downloaded from https://www.r-project.org/. After installing R, it is recom-
mended to install an editor too. An editor allows the user to conveniently save and
display R-code, submit this code to the R console (i.e. the R software itself), and
control the settings and the output. A popular choice of editor is RStudio (free of
charge) which can be downloaded from https://www.rstudio.com/ (see Fig. A.1
for a screenshot of the software). There are alternative good editors, for example
“Tinn-R” (http://sourceforge.net/projects/tinn-r/).

• A lot of additional user-written packages are available online and can be
installed within the R console or using the R menu. Within the console, the
install.packages("package to install") function can be used. Please
note that an internet connection is required.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5
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Statistics has a close relationship to algebra: data sets can be seen as matrices, and
variables as vectors. R makes use of these structures and this is why we first intro-
duce data structure functionalities before explaining some of the most relevant basic
statistical commands.

R as a Calculator, Basic Data Structures and Arithmetic
Operations

• The character # marks the beginning of a comment. All characters until the end of
the line are ignored by R. We use # to comment on our R-code.

• If we know the name of a command we would like to use, and we want to learn
about its functionality, typing ?command in the R command line prompt displays
a help page, e.g.

?mean

displays a help page for the arithmetic mean function.
• Using

example(mean)

shows application examples of the respective function.
• The command c(1,2,3,4,5) combines the numbers 1, 2, 3, 4 and 5 into a vector
(e.g. a variable).

• Vectors can be assigned to an “object”. For example,

X <- c(2,12,22,32)

assigns a numeric vector of length 4 to the object X. In general, the arrow sign
(<−) is a very important concept to store data, summaries, and outputs in objects
(i.e. the name in the front of the <− sign). Note that R is case sensitive; i.e. X and
x are two different variable names. Instead of “<−”, one can also use “=”.

• Sequences of numbers can be created using the seq and rep commands. For
example,

seq(1,10)

and

rep(1,10)

yield

[1] 1 2 3 4 5 6 7 8 9 10

and

[1] 1 1 1 1 1 1 1 1 1 1

respectively.
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• Basic data structures are vectors, matrices, arrays, lists, and data frames. They
can contain numeric values, logical values or even characters (strings). In the latter
case, arithmetic operations are not allowed.

– A numeric vector of length 5 can be constructed by the command

x <- vector(mode="numeric", length=5)

The elements can be accessed by squared brackets: [ ]. For example,

x[3] <- 4

assigns the value 4 to the third element of the object x. Logical vectors containing
the values TRUE and FALSE are also possible. In arithmetic operations, TRUE
corresponds to 1 and FALSE corresponds to 0 (which is the default). Consider
the following example:

x.log <- vector(mode="logical", length=4)

x.log[1] = x.log[3] = x.log[4] = TRUE

mean(x.log)

returns as output 0.75 because themean of (1, 0, 1, 1)=(TRUE, FALSE, TRUE,
TRUE) is 0.75.

– A matrix can be constructed by the matrix() command:

x <- matrix(nrow=4, ncol=2, data=1:8, byrow=T)

creates a 4 × 2matrix, where the data values are the natural numbers 1, 2, 3, . . . ,
8 which are stored row-wise in the matrix,

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

because of the parameter byrow=T (which is equivalent to byrow=TRUE). The
default is byrow=F which would store the data column-wise.

– Arrays are more general data structures than vectors and matrices in the sense
that they can have more than two dimensions. For instance,

x <- array(data=1:12, dim=c(3,2,2))

creates a three-dimensional array with 3 · 2 · 2 = 12 elements.
– A list can contain objects of different types. For example, a list element can be
a vector or matrix. Lists can be initialized by the command list and can grow
dynamically. It is important to understand that list elements should be accessed
by the name of the entry via the dollar sign or using double brackets:
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x <- list(one=c(1,2,3,4,5),two=c("Hello", "world", "!"))

x

$one

[1] 1 2 3 4 5

$two

[1] "Hello" "world" "!"

x[[2]]

[1] "Hello" "world" "!"

x$one

[1] 1 2 3 4 5

– A data frame is the standard data structure for storing a data set with rows as
observations and columns as variables. Many statistical procedures in R (such
as the lm function for linear models) expect a data frame. A data frame is
conceptually not much different from a matrix and can either be initialized by
reading a data set from an external file or by binding several column vectors.
As an example, we consider three variables (age, favourite hobby, and favourite
animal) each with five observations:

age <- c(25,33,30,40,28)

hobby <- c("Reading","Sports","Games","Reading","Games")

animal <- c("Elephant", "Giraffe", NA, "Monkey", "Cat")

dat <- data.frame(age,hobby,animal)

names(dat) <- c("Age","Favourite.hobby","Favourite.animal")

dat

The resulting output is

> dat

Age Favourite.hobby Favourite.animal

1 25 Reading Elephant

2 33 Sports Giraffe

3 30 Games <NA>

4 40 Reading Monkey

5 28 Games Cat

where NA denotes a missing value. With write.table or a specialized version
thereof such as write.csv (for writing the data in a file using comma-separated
fields), a data frame can be saved in a file. The command sequence

write.csv(x=dat,file="toy.csv",row.names=FALSE)

read.dat <- read.csv(file="toy.csv")

read.dat
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saves the data frame as an external (comma-separated) file and then loads the
data again using read.csv.

Individual elements of the data frame can be accessed using squared brackets, as
for matrices. For example, dat[1,2] returns the first observation of the second
variable column for the data set dat. Individual columns (variables) can also be
selected using the $ sign:

dat$Age

returns the age column:

[1] 25 33 30 40 28

• The factor command is very useful to store nominal variables, and the command
ordered is ideal for ordinal variables. Both commands are extremely important
since factor variables with more than two categories are automatically expanded
into several columns of dummy variables if necessary, e.g. if they are included as
covariates in a linear model. In the previous paragraph, two factor variables have
already been created. This can be confirmed by typing

is.factor(dat$Favourite.hobby)

is.factor(dat$Favourite.animal)

which return the value TRUE. Have a look at the following two factor variables:

sex <- factor("female","male","male","female","female")

grade <- ordered(c("low", "medium", "low", "high", "high"),

levels=c("low", "medium","high"))

Please note that by default alphabetical order is used to order the categories (e.g.
female is coded as 1 and male as 2). However, the mapping of integers to strings
can be controlled by the user as seen for the variable “grade”:

grade

returns

[1] low medium low high high

Levels: low < medium < high
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• Basic arithmetic operations can be applied directly to a numeric vector. Basic
operations are addition +, subtraction −, multiplication ∗ and division /, inte-
ger division %/%, modulo operation %%, and exponentiation with two possible
notations: ∗∗ or ˆ. Examples are given as:

2^3 # command

[1] 8 # output

2**3 # command

[1] 8 # output

2^0.5 # command

[1] 1.414214 # output

c(2,3,5,7)^2 # command: application to a vector

[1] 4 9 25 49 # output

c(2,3,5,7)^c(2,3) # command: !!! ATTENTION!

[1] 4 27 25 343 # output

c(1,2,3,4,5,6)^c(2,3,4) # command

[1] 1 8 81 16 125 1296 #output

c(2,3,5,7)^c(2,3,4) # command: !!! WARNING MESSAGE!

[1] 4 27 625 49

Warning message:

longer object length

is not a multiple of shorter object length

in: c(2, 3, 5, 7)^c(2, 3, 4)

The last four commands show the “recycling property” of R. It tries to match the
vectors with respect to the length if possible. In fact,

c(2,3,5,7)^c(2,3)

is expanded to

c(2,3,5,7)^c(2,3,2,3)

The last example shows that R gives a warning if the length of the shorter vector
cannot be expanded to the length of the longer vector by a simple multiplication
with a natural number (2, 3, 4, . . .). Here

c(2,3,5,7)^c(2,3,4)

is expanded to

c(2,3,5,7)^c(2,3,4,2)



304 Appendix A: Introduction to R

such that not all elements of

c(2,3,4)

are “recycled”.

More on indexing

The standard ways of accessing/indexing elements in a vector, matrix, list, or data
frame have already been introduced above, but R allows a lot more flexible accessing
of elements.

1. Selecting elements using vectors of positive numbers (letters and LETTERS
show the 26 letters of the alphabet)

letters[1:3]

letters[ c(2,4,6) ]

[1] "a" "b" "c"

[1] "b" "d" "f"

2. Selecting elements using logical vectors

x <- 1:10 # numbers 1 to 10

x[ (x>5) ] # selecting any number >5

x[ (x%%2==0) ] # numbers that are divisible by 2

x[(x%%2==1)] # numbers that are not divisible by 2

x[5] <- NA # 5th element of x is defined

# to be missing (NA)

x

y <- x[!is.na(x)] # all x which are not missing

y

returns the output

[1] 6 7 8 9 10

[1] 2 4 6 8 10

[1] 1 3 5 7 9

[1] 1 2 3 4 NA 6 7 8 9 10

[1] 1 2 3 4 6 7 8 9 10
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3. Selecting (deleting) elements using negative numbers

x <- 1:10

x[-(1:5)] # x, but delete first five entries of x

returns the output

[1] 6 7 8 9 10

because the first five elements have been removed.

4. Selecting elements using characters

x <- c(Water=1, Juice=2, Lemonade=3 )

names(x)

x["Juice"]

returns the output

[1] "Water" "Juice" "Lemonade"

Juice

2

Standard Functions

Some standard functions and their roles in R are

abs() Absolute value
sqrt() Square root
round(), floor(), ceiling() Rounding, up and down
sum(), prod() Sum and product
log(), log10(), log2() Logarithms
exp() Exponential function
sin(), cos(), tan(), Trigonometric functions
asin(), acos(), atan()
sinh(), cosh(), tanh(), Hyperbolic functions
asinh(x), acosh(), atanh(x)

All functions can again be applied directly to numeric vectors.
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Statistical Functions

Some statistical functions and their roles in R are

mean(), var() Mean and variance
cov(), cor() Covariance and correlation
min(), max() Minimum and maximum

Note: the arguments of the functions vary depending on the chosen method. For
example, the mean() function can be applied to general R objects where averaging
makes sense (numeric or logical vectors, but also, e.g. matrices). The functions
var(), cov(), cor() expect oneor twonumeric vectors,matrices, or data frames.
Minimum and maximum functions work also with a comma-separated list of values,
i.e.

min(2, 6.7, 1.2, 8.0)

provides the same result (1.2) as

min(c(2, 6.7, 1.2, 8.0))

Examples:

mean( c(1,2,5,6) )

[1] 3.5

var( c(1,2,5,6) )

[1] 5.666667

Note that var(), cov() use the factor 1/(n − 1) for the unbiased estimate of the
variance instead of 1/n for the empirical variance, i.e. 1/3 in the example above.
Both functions can also be applied to several vectors or a matrix. Then the covariance
matrix (and correlation matrix in case of cor()) is computed. For example, consider
two variables

age.v <- c(25,30,35,40)

income.v <- c(2000, 2500, 2800, 3200)

Then both commands return the symmetric covariance matrix (with variances as the
diagonal entries and covariances as the non-diagonal entries).
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var(cbind(age.v, income.v))

age.v income.v

age.v 41.66667 3250.0

income.v 3250.00000 255833.3

cov(cbind(age.v, income.v))

age.v income.v

age.v 41.66667 3250.0

income.v 3250.00000 255833.3

The (Pearson) correlation between the two variables is calculated as 0.9954293.

cor(cbind(age.v, income.v))

age.v income.v

age.v 1.0000000 0.9954293

income.v 0.9954293 1.0000000

The Spearman rank correlation is perfectly 1, since both vectors are in increasing
order:

cor(cbind(age.v, income.v), method="spearman")

age.v income.v

age.v 1 1

income.v 1 1

More Useful Functions

Some more commonly used standard functions and their roles in R are as follows:

• Cumulative sum and product:

x <- c( 1,3, 2, 5)

cumsum(x) # 1, 1+3, 1+3+2, 1+3+2+5

cumprod(x) # 1, 1*3, 1*3*2, 1*3*2*5

give the output

[1] 1 4 6 11

[1] 1 3 6 30
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• Factorial:

factorial(5)

returns 5! as

[1] 120

• Binomial coefficient
(n
k

)
:

choose(4,2)

returns
(4
2

)
as

[1] 6

Mathematical Constants

The number π is a mathematical constant, the ratio of a circle’s circumference to its
diameter, and is commonly approximated as 3.14159. It is directly available in R as
pi.

pi

[1] 3.141593

Other “constants” are

Inf, -Inf ∞, −∞
NaN Not a Number: e.g. 0/0[1] NaN
NA Not Available: missing values
NULL empty set

Assignment Operator for Creating Functions

The assignment operator <− (“less than” sign followed by hyphen) has already been
introduced above in the context of variables. Alternatively, = (equality sign) can be
used. One can create one’s own functions: the function is an object with a namewhich
takes values specified in the round brackets and returns what has been specified in the
curly braces. For example, the following function myfunction returns a polynomial
of degree 3 for a given argument x . Note that by default all four coefficients are equal
to 1.
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my.function <- function(x,a=1,b=1,c=1,d=1){

h <- a+b*x+c*x^2+d*x^3

return(h)

}

my.function(2)

[1] 15

my.function(x=2, a=4, b=3)

[1] 22

Loops and Conditions

The concept of loops is convenient when some operation has to be repeated. Loops
can be utilized in various ways, for example, via for or while. Conditions are
specified with the if statement. For example,

x <- 1:10

for(i in 1:10){ if(x[i]>5){x[i] <- x[i]+i}

}

x

returns

[1] 1 2 3 4 5 12 14 16 18 20

In this example, x is a vector with 10 elements: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. For
each element x[i], we replace x[i] with x[i]+i if the condition x[i]>5 is true;
otherwise we do not.

Statistical Functions

Now we consider some basic statistical functions in R. For illustration, we use
the painters data in the following example. This data is available after loading the
library MASS (only a subset is shown below). The data lists the subjective assessment,
on a 0 to 20 integer scale, of 54 classical painters. The painters were assessed on
four characteristics: composition, drawing, colour, and expression. The data is due
to the eighteenth-century art critic, de Piles. Use ?painters for more information
on the data set.

library(MASS)

painters
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shows

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

The Summary Function

The summary function allows a quick overview of a data frame. For numeric vari-
ables, the five-point summary (which is also used in a simple box plot, see Sect. 3.3)
is calculated together with the arithmetic mean. For factor variables, the absolute
frequencies of the most frequent categories are printed. If the factor has more than
six categories, the other categories are summarized in a separate category—Other.

summary(painters)

yields

Composition Drawing ... School

Min. : 0.00 Min. : 6.00 ... A :10

1st Qu.: 8.25 1st Qu.:10.00 ... D :10

Median :12.50 Median :13.50 ... E : 7

Mean :11.56 Mean :12.46 ... G : 7

3rd Qu.:15.00 3rd Qu.:15.00 ... B : 6

Max. :18.00 Max. :18.00 ... C : 6

... (Other) : 8

The summary function can also be applied to a single variable:

summary(painters$School)

returns

A B C D E F G H

10 6 6 10 7 4 7 4

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Accessing Subgroups in Data Frames

Subgroups, i.e. groups of observations which share the same feature(s) of one or
several variables, can be accessed using the subset command.

subset(painters, School=="F")

accesses all painters for which School==‘‘F’’ holds.

Composition Drawing Colour Expression School

Durer 8 10 10 8 F

Holbein 9 10 16 13 F

Pourbus 4 15 6 6 F

Van Leyden 8 6 6 4 F

This is a more elegant method than selecting these observations by specifying a
condition in squared brackets via the [rows,columns] argument.

painters[ painters[["School"]] == "F", ]

Note that the explained structure is an important one: we access the rows and columns
of a matrix or data set by using the [rows,columns] argument. Here we access all
rows for which the variable “school” is “F”. If, in addition, we also want to restrict
the data set to the first two variables, we can write:

painters[ painters[["School"]] == "F", c(1,2)]

Similarly,

subset(painters, Composition <= 6)

gives the output

Composition Drawing Colour Expression School

Fr. Penni 0 15 8 0 A

Perugino 4 12 10 4 A

Bassano 6 8 17 0 D

Bellini 4 6 14 0 D

Murillo 6 8 15 4 D

Palma Vecchio 5 6 16 0 D

Caravaggio 6 6 16 0 E

Pourbus 4 15 6 6 F

Uninteresting columns can be eliminated using negative indexing. For instance,
in the following example,
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subset(painters, School=="F", select=c(-3,-5) )

Composition Drawing Expression

Durer 8 10 8

Holbein 9 10 13

Pourbus 4 15 6

Van Leyden 8 6 4

the third and the fifth columns (Colour and School) are not shown.
The operator %in% allows for more complex searches. For instance,

subset(painters, Drawing %in% c(6,7,8,9) & Composition==10)

returns the following output:

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

J. Jordaens 10 8 16 6 G

Bourdon 10 8 8 4 H

i.e. those painterswith a drawing score between 6 and 9 (= any numberwhichmatches
6, or 7, or 8, or 9).

Stratifying a Data Frame and Applying Commands to a List

Sometimes it is of interest to apply statistical commands (such as summary) to several
subgroups. If this is the case, the data is partitioned into different groups using split
and then lapply applies a function to each of these groups. The command split
partitions the data set by values of a specific variable. For example, we first stratify
the painters data with respect to the painter’s school:

splitted <- split(painters, painters$School)

splitted

$A

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Guilio Romano 15 16 4 14 A
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Michelangelo 8 17 4 8 A

Perino del Vaga 15 16 7 6 A

Perugino 4 12 10 4 A

Raphael 17 18 12 18 A

$B

Composition Drawing Colour Expression School

F. Zucarro 10 13 8 8 B

Fr. Salviata 13 15 8 8 B

Parmigiano 10 15 6 6 B

Primaticcio 15 14 7 10 B

T. Zucarro 13 14 10 9 B

Volterra 12 15 5 8 B

$C

...

Note, that splitted is now a list,

is.list(splitted)

returns

[1] TRUE

while the objects splitted$A to splitted$H are data frames.

is.data.frame(splitted$A)

returns

[1] TRUE

Secondly, as indicated above, the command lapply allows us to apply a function to
a list. For instance,

lapply(splitted, summary)

applies the summary function to all data frames in the list splitted (output not
shown). See also ?apply, ?sapply, ?tapply, and ?mapply for similar opera-
tions.
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Sorting,Ranking, Finding Duplicates, and UniqueValues

• Sorting a vector:

x <- c( 1,3, 2, 5)

sort(x)

sort(x, decreasing=TRUE)

returns the ordered values in decreasing order as

[1] 5 3 2 1

See also the command order for showing the order of vector elements.

• Calculating ranks;

x <- c( 10,30, 20, 50, 20)

rank(x)

returns the following output:

[1] 1.0 4.0 2.5 5.0 2.5

• Finding duplicate values:

x <- c( 1,3, 2, 5, 2)

duplicated(x)

indicates which values occur more than once:

[1] FALSE FALSE FALSE FALSE TRUE

• Removing duplicates:

x <- c( 1,3, 2, 5, 2)

unique(x)

shows the output as

[1] 1 3 2 5

This means unique finds out how many different values a vector has.
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Categorizing Numeric Variables

Continuous variables (vectors) can be categorized using the cut command.

x <- c(1.3, 1.5, 2.5, 3.8, 4.1, 5.9, 7.1, 8.4, 9.0)

xdiscrete <- cut(x, breaks=c(-Inf, 2, 5, 8, Inf) )

is.factor(xdiscrete)

xdiscrete

table(xdiscrete)

returns

[1] TRUE

[1] (-Inf,2] (-Inf,2] (2,5] (2,5] (2,5] (5,8] (5,8] (8,Inf]

[9] (8,Inf]

Levels: (-Inf,2] (2,5] (5,8] (8,Inf]

(-Inf,2] (2,5] (5,8] (8,Inf]

2 3 2 2

RandomVariables

• R has built-in functions for several probability density/mass functions (PMF/PDF),
(probability) distribution function (i.e. the CDF), quantile functions and for gen-
erating random numbers.

• The function names use the following scheme:

First letter Function Further letters
d density distribution name
p probability distribution name
q quantiles distribution name
r random number distribution name

• Examples:

dnorm(x=0)

[1] 0.3989423

returns the value of the density function (i.e. P(X = x)) of a N (0, 1)-distribution
at x = 0, which is 1/

√
2π.

pnorm(q=0)

pnorm(q=1.96)

[1] 0.5

[1] 0.9750021
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returns the value of the CDF of a N (0, 1)-distribution at q , i.e.Φ(q) = P(X ≤ q).

qnorm(p=0.95)

returns the value

[1] 1.644854

which is the 95% quantile of a N (0, 1)-distribution.

X <- rnorm(n=4)

X

returns a vector of four normal random numbers of a N (0, 1)-distribution:

[1] -0.90826678 -0.09089654 -0.47679821 1.22137230

Note that a repeated application of this function leads to different randomnumbers.
To get a reproducible sequence of random numbers, a seed value needs to be set:

set.seed(89234512)

X <- rnorm(n=4)

X

If all three commands are executed, then the sequence is (using the standard random
generator)

[1] -1.07628865 0.37797715 0.04925738 -0.22137107

• The following functions for distributions can be used:

Model distributions

Function Distribution
beta Beta
binom Binomial
cauchy Cauchy
exp Exponential
gamma Gamma
geom Geometric
hyper Hypergeometric
lnorm Log–normal
norm Normal
pois Poisson
unif Uniform
mvnorm Multivariate normal (in package mvtnorm)
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Test distributions

Function Distribution
chisq χ2

f F
signrank Wilcoxon signed rank (1 sample)
t t
wilcox Wilcoxon rank sum (2 samples)

• For convenience, we list a few important PDF and CDF values in Sect. C.

Key Points and Further Issues

Note:

� R uses the following data structures: vectors, matrices, arrays, lists, and
data frames.

� Entries ofmatrices and data frames can be accessed using squared brack-
ets. For example, data[1:5,2] refers to the first five observations of
the second column (variable) of the data. Variables of data frames can
also be accessed via the $ sign, e.g. via data$variable.

� If operations such as statistical analyses have to be repeated on several
subgroups, using split together with lapply is a viable option. Alter-
natively, loops (e.g. for) together with conditions (such as if) can be
used.

� R contains the most relevant statistical functions needed
for descriptive and inductive analyses (as shown through-
out the book). User-written packages can be installed using
install.packages(‘‘package_name’’).

� Readers who are interested in learning more about R are referred to
Albert and Rizzo (2012), Crawley (2013), Dalgaard (2008), Ligges
(2008), and Everitt and Hothorn (2011).
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Data Sets

From the data used in this book, we publish some relevant data sets, along with
solutions of the R-exercises, on https://chris.userweb.mwn.de/book/. The important
data sets are explained in the following paragraphs.

Pizza Delivery Data

The pizza delivery data (pizza_delivery.csv, see also Table A.1) is a simulated
data set. The data refers to an Italian restaurant which offers home delivery of pizza.
It contains the orders received during a period of one month: May 2014. There are
three branches of the restaurant. The pizza delivery is centrally managed: an operator
receives a phone call and forwards the order to the branch which is nearest to the
customer’s address. One of the five drivers (two of whom only work part time at the
weekend) delivers the order. The data set captures the number of pizzas ordered as
well as the final bill (in e) which may also include drinks, salads, and pasta dishes.
The owner of the business observed an increased number of complaints, mostly
because pizzas arrive too late and too cold. To improve the service quality of his
business, the owner wants to measure (i) the time from call to delivery and (ii) the
pizza temperature at arrival (which can be donewith a special device). Ideally, a pizza
arrives within 30 min of the call; if it takes longer than 40 min, then the customers
are promised a free bottle of wine (which is not always handed out though). The
temperature of the pizza should be above 65 ◦Cat the time of delivery. The analysis of
the data aims to determine the factors which influence delivery time and temperature
of the pizzas.

Table A.1 First few rows of the pizza delivery data

day date time operator branch driver temperature
1 Thursday 1 May 2014 35.1 Laura East Bruno 68.3
2 Thursday 1 May 2014 25.2 Melissa East Salvatore 71.0
3 Thursday 1 May 2014 45.6 Melissa West Salvatore 53.4
4 Thursday 1 May 2014 29.4 Melissa East Salvatore 70.3
5 Thursday 1 May 2014 30.0 Melissa West Salvatore 71.5
6 Thursday 1 May 2014 40.3 Melissa Centre Bruno 60.8
...

bill pizzas free_wine got_wine discount_customer
1 58.4 4 0 0 1
2 26.4 2 0 0 0
3 58.1 3 1 0 0
4 35.2 3 0 0 0
5 38.4 2 0 0 0
6 61.8 4 1 1 0
....

https://chris.userweb.mwn.de/book/
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Table A.2 First few rows of the decathlon data from the 2004 Olympic Games in Athens data

100m Long.jump Shot.put High.jump 400m
Roman Sebrle 10.85 7.84 16.36 2.12 48.36
Bryan Clay 10.44 7.96 15.23 2.06 49.19
Dmitriy Karpov 10.50 7.81 15.93 2.09 46.81
Dean Macey 10.89 7.47 15.73 2.15 48.97
Chiel Warners 10.62 7.74 14.48 1.97 47.97
Attila Zsivoczky 10.91 7.14 15.31 2.12 49.40
...

110m.hurdle Discus Pole.vault Javelin 1500m
Roman Sebrle 14.05 48.72 5.0 70.52 280.01
Bryan Clay 14.13 50.11 4.9 69.71 282.00
Dmitriy Karpov 13.97 51.65 4.6 55.54 278.11
Dean Macey 14.56 48.34 4.4 58.46 265.42
Chiel Warners 14.01 43.73 4.9 55.39 278.05
Attila Zsivoczky 14.95 45.62 4.7 63.45 269.54
...

Decathlon Data

This data (decathlon.csv, see also TableA.2) describes the results of the decathlon
competition during the 2004 Olympic Games in Athens. The performance of all 30
athletes in the 100 m race (in seconds), long jump (in metres), shot-put (in metres),
high jump (in metres), 400 m race (in seconds), 110 m hurdles race (in seconds),
discus competition (inmetres), pole vault (inmetres), javelin competition (inmetres),
and 1500 m race (in seconds) are recorded in the data set.

Theatre Data

This data (theatre.csv, see also Table A.3) summarizes a survey conducted on
699 participants in a big Swiss city. The survey participants are all frequent visitors
to a local theatre and were asked about their age, sex (gender, female = 1), annual
income (in 1000 SFR), general expenditure on cultural activities (“Culture”, in SFR
per month), expenditure on theatre visits (in SFR per month), and their estimated
expenditure on theatre visits in the year before the survey was done (in SFR per
month).

Table A.3 First few rows of the theatre data

Age Sex Income Culture Theatre Theatre_ly
1 31 1 90.5 181 104 150
2 54 0 73.0 234 116 140
3 56 1 74.3 289 276 125
4 36 1 73.6 185 75 130
5 24 1 109.0 191 172 140
6 25 0 93.1 273 168 130
...
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Solutions to Chapter 1

Solution to Exercise 1.1

(a) The population consists of all employees of the airline. This may include admin-
istration staff, pilots, stewards, cleaning personnel, and others. Each single
employee relates to an observation in the survey.

(b) The population comprises all students who take part in the examination. Each
student represents an observation.

(c) All people suffering high blood pressure in the study area (city, province, country,
. . .), are the population of interest. Each of these persons is an observation.

Solution to Exercise 1.2 The population in this study refers to all leopards in the
park. Only a few of the leopards are equipped with the GPS devices. This is the
sample on which the study is conducted in. Each leopard refers to an observation.
The measurements are taken for each leopard in the sample. The GPS coordinates
allow to determine the position during the entire day. Important variables to capture
would therefore be X1 = “latitude”, X2 = “longitude”, and X3 = “time”. Each
variable would take on certain values for each observation; for example, the first
leopard may have been observed at latitude 32◦ at a certain time point, and thus
x11 = 32◦.

© Springer International Publishing Switzerland 2016
C. Heumann et al., Introduction to Statistics and Data Analysis,
DOI 10.1007/978-3-319-46162-5
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Solution to Exercise 1.3

Qualitative: Preferred political party, eye colour, gender,
blood type, subject line of an email.

Quantitative and discrete: Shoe size, customer satisfaction on a scale from
1 to 10, number of goals in a hockey match.

Quantitative and continuous: Time to travel to work, price of a canteen meal,
wavelength of light, delivery time of a parcel,
height of a child.

Solution to Exercise 1.4

(a) The choice of a political party is measured on a nominal scale. The names of the
parties do not have a natural order.

(b) Typically the level of a computer game is measured on an ordinal scale: for
example, level 10 may be more difficult than level 5, but this does not imply that
level 10 is twice as difficult as level 5, or that the difference in difficulty between
levels 2 and 3 is the same as the difference between levels 10 and 11.

(c) The production time of a car is measured on a continuous scale (ratio scale). In
practice, it may be measured in days from the start of the production.

(d) This variable is measured on a continuous scale (ratio scale). Typically, the age
is captured in years starting from the day of birth.

(e) Calender year is a continuous variable which is measured on an interval scale.
Note that the year which we define as “zero” is arbitrary, and it varies from
culture to culture. Because the year zero is arbitrary, and we also have dates
before this year, the calender year is measured on an interval scale.

(f) The scale is continuous (ratio scale).
(g) The scale of ID numbers is nominal. The ID number may indeed consist of

numbers; however, “112233” does not refer to something half as much/good as
“224466”. The number is descriptive.

(h) The final rank is measured on an ordinal scale. The ranks can be clearly ordered,
and the participants can be ranked by using their final results. However the first
winner may not have “double” the beauty of the second winner, it is merely a
ranking.

(i) The intelligence quotient is a variable on a continuous scale. It is constructed
in such a way that differences are interpretative—i.e. being 10 points above or
10 points below the average score of 100 points means the same deviation from
the average. However, ratios cannot be interpreted, so the intelligence quotient
is measured on an interval scale.
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Solution to Exercise 1.5

(a) The data is provided in .csv format. We thus read it in with the read.csv()
command (after we have set a working directory with setwd()):

setwd('C:/directory')
pizza <- read.csv('pizza_delivery.csv')

(b) The data can be viewed by means of the fix() or View() command or simply
being printed:

fix(pizza)
pizza

(c) We can access the data, as for any matrix, by using squared brackets [, ], see also
Appendix A.1. The first entry in the brackets refers to the row and the second
entry to the columns. Each entry either is empty (referring to every row/column)
or consists of a vector or sequence describing the columns/rowswewant to select.
This means that we obtain the first 5 rows and variables via pizza[1:5,1:5].
If we give the new data the name “pizza2” we simply need to type:

pizza2 <- pizza[1:5,1:5]
pizza2

We can save this new data either as a .dat file (with write.table()), or as a
.csv file (with write.csv()), or directly as an R data file (with save()) which
gives us access to our entire R session.

write.csv(pizza2,file='pizza2.csv')
write.table(pizza2,file='pizza2.dat')
save(pizza2,file='pizza2.Rdata')

(d) We can access any variable by means of the $ sign. If we type pizza$new we
create a new variable in the pizza data set called “new”. Therefore, a simple way
to add a variable to the data set is as follows:

pizza$NewTemperature <- 32+1.8*pizza$temperature

(e)

attach(pizza)
NewTemperature
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Fig.B.1 Applying str() to the pizza data

(f) We can apply all these commands onto the object “pizza”. The command
str(pizza) gives us an overview of the data set, see also Fig. B.1. The output
shows that the data set contains 1266 observations (deliveries) and 13 variables.
We can also see which of these variables are factors (categorical with defined
categories) and which are numerical. We also see the first actual numbers for
the each variable and the coding scheme used for the categories of the factor
variables. The command dim summarizes the dimension of the data, i.e. the
number of rows and columns of the data matrix. Colnames gives us the names
of the variables from the data set, and so does names. The commands nrow and
ncol give us the number of rows and columns, respectively. Applying head and
tail to the data prints the first and last rows of the data, respectively.

Solution to Exercise 1.6

(a) The appropriate study design is a survey. The information would be obtained via
a questionnaire given to a sample of parents. It is not a controlled experiment
because we do not manipulate one particular variable, while controlling others;
we rather collect data on all variables of interest.

(b) There are different options to ask for parents’ attitudes: of course one could
simply ask “what do you think of immunization?”; however, capturing long
answers in a variable “attitude” may make it difficult to summarize and distil the
information obtained. A common way to deal with such variables is to translate
a concept into a score: for example, one could ask 5 “yes/no”-type questions
(instead of one general question) which relate to attitudes towards immunization,
such as “do you think immunization may be harmful for your child?” or “do you
agree that it is a priority to immunize infants in their first year of life?” The
number of answers that show a positive attitude towards immunization can be
summed up. If there are 5 questions, there are up to 5 points “to earn”. Thus,
each parent may be asked 5 questions and his/her attitude can be summarized
on a scale ranging from 0 to 5, depending on the answers given.
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(c) The following variables are needed:

• Attitude: possibly several variables are needed to capture parents’ information
in a score, see (b) for details. The scale is ordinal because a higher score relates
to a more positive attitude towards immunization, but the differences between
different score levels cannot be interpreted meaningfully.

• Immunized: a binary (“yes–no” type) variable capturing whether the parent
agrees to immunization against chickenpox for their youngest child or not.
This is a nominal variable.

• Gender: to compare “Immunized” for male and female parents. This is a
nominal variable.

• Age: to compare the age distribution in the group of parents whowould immu-
nize their child with the age distribution in the groupwhowould not immunize
their child. Age is measured on a continuous scale.

(d) A data set might look as follows:

⎛

⎜⎝

Parent A1 . . . A5 Attitude Immunization Gender Age

1 yes . . . yes 3 yes male 35
2 no . . . yes 2 no female 26
...

...
...

...
...

...
...

⎞

⎟⎠

where A1, . . . , A5 refer to variables capturing attitudes towards immunization
and “Attitude” is the score variable summarizing these questions. The questions
may be written down as follows:

• What is the average attitude score towards immunization among parents and
how much does it vary?

• What percentage of parents answer “yes” when asked whether they would
immunize their youngest child against chickenpox?

• What is the difference in the proportion calculated in (b) when stratified by
gender?

• What is the average age of those parents who would immunize their child
compared with the average age of those parents who would not immunize
their child?

Chapter 2

Solution to Exercise 2.1

(a) The table shows the relative frequencies of each party and not the absolute
frequencies. We can thus draw a bar chart where the relative frequencies of
votes are plotted on the y-axis and different parties are plotted on the x-axis. In
R, we can first type in the data by defining two vectors and then use the “barplot”
command to draw the bar chart (Fig. B.2a). Typing “?barplot” and “?par” shows
the graphical options to improve the presentation and look of the graph:

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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(b) Difference in results between the
2014 and 2009 elections

Fig.B.2 Bar charts for national elections in South Africa

results2014 <- c(0.6215,0.2223,0.0635,0.0240,0.0067,0.0620)
barplot(results2014)
barplot(results2014,names.arg=c('ANC','DA','EFF','IFP','COPE',
'Others'), col=gray.colors(6),ylim=c(0,0.7),xlab='Parties',ylab =
'Votes(%)')

(b) There are several options to compare the results. Of course, one can simply plot
the two bar charts with each bar chart representing one election. It would be
important for this solution to ensure that the y-axes are identical in both the
plots. However, if we want to compare the election results in one graph then we
can plot the difference between the two elections, i.e. the win/loss per party. The
bar chart for the new variable “difference in proportion of votes between the two
elections” is shown in Fig. B.2 and is obtained as follows:

results2009 <- c(0.6590,0.1666,0,0.0455,0.0742,0.0547)
difference <- results2014-results2009
barplot(difference)

Remark Another solution would be to create subcategories on the x-axis: for exam-
ple, there would be categories such as “ANC 2009 results” and “ANC 2014 results”,
followed by “DA 2009 results” and “DA 2014 results”, and so on.

Solution to Exercise 2.2

(a) The scale of X is continuous. However, please note that the number of values
X can practically take is limited (90 min plus extra time, recorded in 1 min
intervals).
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Table B.1 Frequency table and other information for the variable “time until first goal”

j [e j−1, e j ) n j f j d j h j F(x)

1 [0, 15) 19 19
55 15 19

825
19
55

2 [15, 30) 17 17
55 15 17

825
36
55

3 [30, 45) 6 6
55 15 6

825
42
55

4 [45, 60) 5 5
55 15 5

825
47
55

5 [60, 75) 4 4
55 15 4

825
51
55

6 [75, 90) 2 2
55 15 2

825
53
55

7 [90, 96) 2 2
55 6 2

825 1

Total 56 1

(b) It is straightforward to obtain the frequency table, aswell as the other information
needed to obtain the histogram and the ECDF, see Table B.1.

(c) We need to obtain the heights for each category to obtain the histogram using
h j = f j/d j , see Table B.1.

(d) We obtain the histogram and kernel density plot in R (Fig. B.3a) using the
commands

goals <- c(6,24,91,...,7)
hist(goals, breaks=c(0,15,30,45,60,75,90,96))
plot(density(goals, adjust=1,kernel='gaussian'))
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Fig.B.3 Distribution of time to goal
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(b) Grouped data

Fig.B.4 Empirical cumulative distribution function for the variable “time until first goal”

(e) The ECDF values for F(x) are calculated using the relative frequencies f (x),
see Table B.1.

(f) (i) We can easily plot the ECDF (Fig. B.4a) for the original data using the R
command

plot.ecdf(goals)

(ii) Generating the ECDF for the grouped data requires more effort and is not
necessarily intuitive: first we categorize the continuous variable using the
function cut. We use the label option to indicate that the name of each
category corresponds to the upper limit of the respective interval. This new
variable is a “factor” variable and the plot.ecdf function does not work
with this type of variable.We need to first change the “factor” variable into a
“character” variable with strings corresponding to the labels and coerce this
into numeric values. Then we use plot.ecdf, see also Fig. B.4b. Alterna-
tively, we can directly replace the raw values with numbers corresponding
to the upper interval limits.

goals_cat <- cut(goals, breaks=c(0,15,30,45,60,75,90,96),

labels=c(15,30,45,60,75,90,96))

plot.ecdf(as.numeric(as.character(goals_cat))

(g) To solve the exercises, we simply use Formula (2.11) and Rules (2.3ff.)

(i) H(X ≤ 45) = F(45) = 42
55 ≈ 0.76.

(ii) H(X > 80) = 1 − F(80) = 1 −
(
51
55 + 2/55

15 (80 − 75)
)

≈ 0.085.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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(iii) H(20 ≤ X ≤ 65) = F(65) − F(20) = 47
55 + 4/55

15 · (65 − 60) − ( 19
55+

17/55
15 · (20 − 15)

)
≈ 0.43.

(h) We know from (2.11) that

F(xp) = p = F(e j−1) + h j (xp − e j−1)

with h j = f j/d j which relates to

xp = e j−1 + p − F(e j−1)

h j
.

We are interested in x0.8 because 80 % of the matches have seen a goal at this
time point:

x0.8 = 45 + 0.8 − 43
56

1
168

= 50.4.

We conclude that 80 % of the “first goals” happened up to 50.4 min.

Solution to Exercise 2.3

(a) We obtain the relative frequencies for the first and fourth intervals as 0.125 (h j ·
d j = 0.125 · 1). Accordingly, for the other two intervals, we obtain frequencies
of f j = 3 · 0.125 = 0.375.

(b) We obtain the absolute frequencies for the first and fourth intervals as 250 (2000 ·
0.125). For the other intervals, we obtain 750 (2000 · 0.375).

Solution to Exercise 2.4

(a) The absolute frequencies n j are evident from the following table:

j e j−1 e j F(e j ) f j n j (= f j n) d j a j

1 8 14 0.25 0.25 0.25 · 500 = 125 6 11
2 14 22 0.40 0.15 75 8 18
3 22 34 0.75 0.35 175 12 28
4 34 50 0.97 0.22 110 16 42
5 50 82 1.00 0.03 15 32 66

(b) We obtain F(X > 34) = 1 − F(34) = 1 − 0.75 = 0.25.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Table B.2 Information needed to calculate the ECDF

Score 1 2 3 4 5 6 7 8 9 10

Results 1 3 8 8 27 30 11 6 4 2

f j
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8
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Fig.B.5 Empirical
cumulative distribution
function for the variable
“score”
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Solution to Exercise 2.5

(a) The data needed to calculate and draw the ECDF is summarized in Table B.2;
the ECDF is plotted in Fig. B.5.

(b) It follows from Table B.2 that F(3) = 12% and F(9) = 98%.

(c) The grey solid line in Fig. B.5 summarizes the ECDF for the grouped data.
It goes from (0, 0) to (1, 1) with a breakpoint at (5, 0.47) since F(5) = 0.47
summarizes the information for the group “disagree”. Using (2.11) we calculate:

F(3) = F(e j−1) + f j
d j

(x − e j−1)

= F(0) + 0.47

5
· (3 − 0) = 28.2%

F(9) = F(5) + 0.53

5
· (9 − 5) = 89.4%.

(d) The results of (b) and (c) are very different. The formula applied in (c) assumes
that the values in each category are uniformly distributed, i.e. that within each
category, each value occurs as often as each other value. However, we know from
(a) that this is not true: there are more values towards the central score numbers.
The assumption used in (c) is therefore inappropriate as also highlighted in
Fig. B.5.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Solution to Exercise 2.6 We read in and attach the data as follows:

setwd('C:/directory')
pizza <- read.csv('pizza_delivery.csv')
attach(pizza)

(a) We need the options ylim, xlim, ylab, xlab, col to adjust the
histogram produced with hist(). We then add a dashed (lty=2) line
(type=’l’), which is thick (lwd=3), from (65, 0) to (65, 400) using the lines()
command. See also Fig. B.6a.

hist(temperature,xlab='Temperature',xlim=c(40,90),
ylim=c(0,400),col='lightgrey',ylab='Number of deliveries')
lines(c(65,65),c(0,400),type='l',lty=2,lwd=3)

(b) We can create the histogram as follows, see also Fig. B.6b:

library(ggplot2)
p1 <- ggplot(data=pizza,aes(x=temperature))
p2 <- p1 + geom_histogram(fill='darkgrey',alpha=0.5,binwidth=2.5)
+ scale_y_continuous('Number of deliveries')
plot(p2)

(c) A possible solution is as follows, see also Fig. B.6c:

barplot(table(driver),ylim=c(0,200),col=gray.colors(7),
ylab='Number of deliveries', xlab='Driver',main='Title'))

(d) We can produce the graph (Fig. B.6d) as follows:

p3 <- qplot(driver,data=pizza,aes=('bar'),fill=day)
p4 <- p3 + scale_fill_grey() +theme_bw()
plot(p4)
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Chapter 3

Solution to Exercise 3.1

(a) The arithmetic means can be calculated as follows:

x̄D = 1

10

10∑

i=1

xi = 1

10
(12.5 + · · · + 17.5) = 17.32,

x̄ A = 1

10

10∑

i=1

xi = 1

10
(342 + · · · + 466) = 612.4.

The ordered values of the two variables are:

i: 1 2 3 4 5 6 7 8 9 10

------------------------------------------------------

D: 7.6 12.1 12.5 14.8 16.2 16.5 17.5 18.5 27.4 29.9

A: 238 342 398 466 502 555 670 796 912 1245

x̃0.5,D = 1

2
(x̃(5) + x̃(6)) = 1

2
(16.2 + 16.5) = 16.35,

x̃0.5,A = 1

2
(x̃(5) + x̃(6)) = 1

2
(502 + 555) = 528.5.

(b) Wehavenα = 10 · 0.25 = 2.5which is not an integer.Wecan therefore calculate
the 25 % quantiles, i.e. the first quartiles, as

x̃0.25,D = x̃(3) = 12.5; x̃0.25,A = x̃(3) = 398.

Similarly, nα = 10 · 0.75 = 7.5 is not an integer and thus

x̃0.75,D = x̃(8) = 18.5; x̃0.75,A = x̃(8) = 796.

One can see that the distributions for both variables are not symmetric. For
example, when looking at the distance hiked, the difference between the median
and the first quartile (16.35 − 12.5) is much larger than the difference between
the median and the third quartile (18.5 − 16.35); this indicates a distribution that
is skewed towards the left.

(c) We can calculate the interquartile ranges as follows:

dQ,A = 796 − 398 = 398; dQ,D = 18.5 − 12.5 = 6.

The mean absolute deviations are:

DD(x̃0.5) = = 1

10
(|7.6 − 16.35| + · · · + |29.9 − 16.35|) = 4.68,

DA(x̃0.5) = = 1

10
(|238 − 528.5| + · · · + |1245 − 528.5|) = 223.2.

http://dx.doi.org/10.1007/978-3-319-46162-5_3


334 Appendix B: Solutions to Exercises

The variances of both the variables are

s̃2D = 1

10
([7.6 − 16.35]2 + · · · + [29.9 − 16.35]2) ≈ 41.5,

s̃2A = 1

10
([238 − 528.5]2 + · · · + [1245 − 528.5]2) ≈ 82, 314.

The standard deviations are therefore s̃D = √
41.5 and s̃A = √

82, 314.

(d) To answer this question, we can use the rules of linear transformations.

ȳ
(3.4)= 0 + 3.28x̄ = 3.28 · 528.5 = 1722.48,

s̃2y
(3.29)= b2s̃2x = 3.282 · 272.2 ≈ 2928.

(e) To draw the box plots, we can use the results from (a), (b), and (c) in this
solution. The median, first quartile, third quartile, and the interquartile range
have already been calculated. It is also easy to determine the minimum and
maximum values from the table of ordered values in (a). What is missing is the
knowledge ofwhether to treat some of the values as extreme values or not. For the
distance hiked, an extreme value would be any value>18.5 + 1.5 × 6 = 27.5 or
<12.5 − 1.5 × 6 = 3.5. It follows that there is only one extreme value: 29.9 km.
For the maximum altitude, there is no extreme value because there is no value
>796 + 1.5 × 398 = 1292 or <398 − 1.5 × 398 = −199. The box plots are
shown in Fig. B.7a, b.
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Fig.B.7 Box plots for Exercise 3.1
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(f) The data can be summarized as follows:

Class intervals (5; 15] (15; 20] (20; 30]
n j 4 4 2
f j 4/10 4/10 2/10∑

f j 4/10 8/10 1

We can calculate the weighted arithmetic mean by using the relative frequencies
f j and the middle of the intervals m j :

x̄ =
∑

j

f jm j = 4

10
· 10 + 4

10
· 17.5 + 2

10
· 25 = 16.

To estimate the weighted median, we need to determine the class for which

m−1∑

j=1

f j < 0.5 and
m∑

j=1

f j ≥ 0.5

holds. This is clearly the case for the second class K2 = (15; 20]. Thus

x̃0.5 = em−1 + 0.5 −∑m−1
j=1 f j

fm
dm = 15 + 0.5 − 0.4

0.4
· 5 = 16.25.

(g) If the raw data is known, then the variance for the grouped data will be identical
to the variance calculated in (c). For educational purposes, we show the identity
here. The variance for grouped data can be calculated as:

s̃2 = 1

n

k∑

j=1

n j (x̄ j − x̄)2

︸ ︷︷ ︸
between

+ 1

n

k∑

j=1

n j s̃
2
j

︸ ︷︷ ︸
within

Using the arithmetic mean x̄ = 17.32 as well as the means in each class, x̄1 =
11.75, x̄2 = 17.225, and x̄3 = 28.65, we can calculate the variance between the
classes:

s̃2b = 1

10
([4 · (11.75 − 17.32)2] + [4 · (17.225 − 17.32)2]

+[2 · (28.65 − 17.32)2]) = 38.08735.

The variances within each class are:

s̃21 = 1

4
[(7.6 − 11.75)2 + · · · + (14.8 − 11.75)2] = 6.8025,

s̃22 = 1

4
[(16.2 − 17.225)2 + · · · + (18.5 − 17.225)2] = 0.956875,

s̃23 = 1

2
[(27.4 − 28.65)2 + (29.9 − 28.65)2] = 1.5625.



336 Appendix B: Solutions to Exercises

We thus get

s̃2w = 1

10
(4 · 6.8025 + 4 · 0.956875 + 2 · 1.5625) = 3.41625.

The total variance is therefore s̃2 = s̃2w + s̃2b = 3.41625 + 38.08735 ≈ 41.5.
The results will typically differ if we do not know the raw data: we have to
replace the arithmetic means within each class, x̄ j , with the middle of each class
a j , i.e. a1 = 10, a2 = 17.5, a3 = 25:

s̃2b = 1

10
([4 · (10 − 17.32)2] + [4 · (17.5 − 17.32)2]

+[2 · (25 − 17.32)2]) = 33.2424.

We further get

s̃21 = 1

4
[(7.6 − 10)2 + · · · + (14.8 − 10)2] = 9.865,

s̃22 = 1

4
[(16.2 − 17.5)2 + · · · + (18.5 − 17.5)2] = 0.9225,

s̃23 = 1

2
[(27.4 − 25)2 + (29.9 − 25)2] = 1.5625,

and

s̃2w = 1

10
(4 · 9.865 + 4 · 0.9225 + 2 · 14.885) = 7.292.

The variance is s̃2 = s̃2w + s̃2b = 7.292 + 33.2424 ≈ 40.5. The approximation
is therefore good. However, please note that the between-class variance was
estimated too low, but the within-class variance was estimated too high; only
the combination of the two variance components led to reasonable results in this
example. It is evident that the approximation in the third class was not ideal. The
middle of the interval, 25, was not a good proxy for the true mean in this class,
28.65.

(h) It is easy to calculate the mean and the median:

distance <- c(12.5,29.9,...,17.5)
altitude <- c(342,1245,...,466)
mean(distance)
mean(altitude)
median(distance)
median(altitude)

We can use the quantile function, together with the probs option, to get the
quantiles:
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quantile(distance,probs=0.75)
quantile(distance,probs=0.25)
quantile(altitude,probs=0.75)
quantile(altitude,probs=0.25)

However, the reader will see that the results differ slightly from our results
obtained in (b). As noted in Example 3.1.5, R offers nine different ways to obtain
quantiles, each of which can be chosen by the type argument. The difference
between these options cannot be understood easily without a background in
probability theory. It may, however, be worth highlighting that we get the same
results as in (b) if we choose the type=2 option in this example. The interquartile
ranges can be calculated by means of the difference of the quantiles obtained
above. To determine the mean absolute deviation, we have to program our own
function:

amd <- function(mv){1/length(mv)*sum(abs(mv-median(mv)))}
amd(distance)
amd(altitude)

We can calculate the variance using the var command. However, as noted in
Example 3.2.4, on p. 52, R uses 1/(n − 1) rather than 1/n when calculating the
variance. This important alternative formula for variance estimation is explained
in Chap. 9, Theorem 9.2.1. To obtain the results from (c), we hence need to
multiply the output from R by (n − 1)/n:

var(altitude)*9/10
var(distance)*9/10

The box plots can be drawn by using the boxplot command:

boxplot(altitude)
boxplot(distance)

The weighted mean is obtained as follows:

weighted.mean(c(10,17.5,25),c(4/10,4/10,2/10))

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Solution to Exercise 3.2

(a) We need to solve the equation that defines the arithmetic mean:

x̄ = 1

n

∑

i

xi

−90 = 1

10
(200 + 600 − 200 − 200 − 200 − 100 − 100 − 400 + 0 + R)

−90 = 1

10
(−400 + R)

⇒ R = −500.

(b) The mode is x̄M = −200. Using nα = 2.5 and nα = 7.5, respectively, we can
determine the quartiles as follows:

x̃0.25 = x(3) = −200,

x̃0.75 = x(8) = 0.

The interquartile range is dQ = 0 − (−200) = 200.

(c) It is not possible to use the coefficient of variation because some of the values
are negative.

Solution to Exercise 3.3 We calculate

nm = n − nw − nc = 100 − 45 − 20 = 35.

Using the formula for the arithmetic mean for grouped data,

x̄ = 1

n
(nw x̄w + nm x̄m + ncx̄c),

we further get

x̄m = 1

nm
(nx̄ − nw x̄w − ncx̄c)

= 1

35
(100 · 15 − 45 · 16 − 20 · 7.5) = 18.

Similarly, we can use the Theorem of Variance Decomposition, Eq. (3.27), to calcu-
late the variance for the grouped data:

s2 = s2w + s2b = 1

n
(nws

2
w + nms

2
m + ncs

2
c )

+1

n

(
nw(x̄w − x̄)2 + nm(x̄m − x̄)2 + nc(x̄c − x̄)2

)
.

This yields

s2m = 1

nm

[
ns2 − nws

2
w − ncs

2
c − nw(x̄w − x̄)2 − nm(x̄m − x̄)2 − nc(x̄c − x̄)2

]

= 1

35
(100 · 19.55 − 45 · 6 − 20 · 3 − 45 · 12 − 35 · 32 − 20 · 7.52) = 4.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Solution to Exercise 3.4

(a) We evaluate a period of 6 years which means that T = 0, 1, 2, 3, 4, 5. To deter-
mine the average growth rate, we need to first calculate the geometric mean.
There are two options to facilitate this:

(i) Solution:

Bt/Bt−1 = (−, 1.04, 1.125, 0.925, 1.2, 0.933)

x̄G = (1.04 · 1.125 · 0.925 · 1.2 · 0.933)1/5 = 1.04.

(ii) Easier solution:

x̄G = (28/23)1/5 = 1.04.

Since x̄G = 1.04, the average growth rate is r = 1.04 − 1 = 4 %.

(b) To predict the number of members in 2018, we could apply the average growth
rate to the number of members in 2016 for two consecutive years:

B2018 = x̄G B2017, B2017 = x̄G B2016, ⇒ B2018 = x̄2G B2016

B2018 = 1.042 · 28 = 30.28 ≈ 31.

(c) We could use the approach outlined in (b) to predict the number of members
in 2025. However, this assumes that the average growth rate between 2011 and
2016 remains valid until 2025. This is rather unrealistic. The number ofmembers
of the club increases in some years, but decreases in other years. There is no
guarantee that the pattern observed until 2016 can be generalized to the future.
This highlights that statistical methodology should in general be used with care
when making long-term future predictions.

(d) The invested money is
∑

i xi =e 250 million. We deal with partially grouped
data because the club’s members invest in groups, but the invested sum is clearly
defined and not part of a group or interval. We can thus summarize the data as
follows:

(i) 1 2 3 4
Number of members 10 8 8 4

Rel. number of members f j 10/30 8/30 8/30 4/30
ũi = ∑

j f j 10/30 18/30 26/30 1
Money invested xi 40 60 70 80

Rel. amount per group 40/250 60/250 70/250 80/250
vi 40/250 100/250 170/250 1

The Lorenz curve is plotted in Fig. B.8.
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Fig.B.8 Lorenz curve

(e) The Gini coefficient can be calculated using formula (3.37) as follows:

G = 1 − 1

30
(10(0 + 4/25) + 8(4/25 + 2/5) + 8(2/5 + 17/25)

+ 4(17/25 + 1)) = 1 − 268/375 = 107/375 = 0.2853.

G+ (3.39)= 30/29 · 107/375 = 214/725 = 0.2952.

The concentration of investment is thus rather weak.

Solution to Exercise 3.5 Let us look at Fig. 3.8b first. The quantiles coincide approx-
imately with the bisection line. This means that the distribution of “length of service”
is similar for men and women. They have worked for about the same amount of time
for the company. For example, the median service time should be approximately
the same for men and women, the first quartile should be very similar too, the third
quartile should be similar too, and so on. However, Fig. 3.8a shows a somewhat dif-
ferent pattern: the quantiles for men are consistently higher than those for women.
For example, the median salary will be higher for men. In conclusion, we see that
men and women have a similar length of service in the company, but earn less.

Solution to Exercise 3.6 There are many ways in which a “mode” function can be
programmed.We present a simple and understandable solution, not themost efficient
one. Recall that table constructs a frequency table. This table shows immediately
which value(s) occur(s) most often in the data. How can we extract it? Applying the

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
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names function on the table returns the names of the values represented in the table.
The only thing we need to do is to choose the name which corresponds to the value
which has been counted most. This yields the following function:

mymode <- function(vec){
mt <- table(vec)
names(mt)[mt == max(mt)]
}

This function will work in general, though it returns a character vector. Using
as.numeric is one option to make the character string numeric, if necessary.

Solution to Exercise 3.7

(a) In this exercise, we do not have individual data; i.e. we do not know how much
each inhabitant earns. The summarized data simply tells us about the wealth
of two groups. For simplicity and for illustrative purposes, we assume that the
wealth is equally distributed in each group. We determine (ũi , ṽi ) as (0.8, 0.1)
and (1, 1) because 80 % of the population earn 10 % of the wealth and 100 %
of the population earn everything. The respective Lorenz curve is illustrated in
Fig. B.9a.

(b) The upper class lost its wealth. This means that 20 % of the population do not
own anything at all. However, the remaining 80 % owns the rest. This yields
(ũi , ṽi ) of (0.2, 0) and (1, 1), see also Fig. B.9b.

(c) In this scenario, 20%of the population leave the country.However, the remaining
80 %—which are now 100 % of the population—earn the rest. The money is
equally distributed between the population. Figure B.9c shows this situation.
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Solution to Exercise 3.8

(a) It is necessary to use the harmonic mean to calculate the average speed. Using
w1 = n1/n = 180/418 ≈ 0.43, w2 = 117/418 ≈ 0.28, and w3 = 121/418 ≈
0.29 we get

x̄H = 1
∑k

i=1
wi
xi

= 1

0.43/48 + 0.28/37 + 0.29/52
≈ 45.2 km/h.

(b) Travelling at 45.2 km/h means travelling about 361 km in 8 h. The bus will not
be in time.

Solution to Exercise 3.9

(a) The sum of investment is
∑

i xi = e18, 020. To calculate and draw the Lorenz
curve, we need the following table:

(i) 1 2 3 4
investment xi 800 2220 4700 10300

f j 1/4 1/4 1/4 1/4
ui 1/4 2/4 3/4 1

relative investment 0.044 0.123 0.261 0.572
vi 0.044 0.168 0.428 1

The curve is presented in Fig. B.10.

(b) We can calculate the Gini coefficient as follows:

G
(3.37)= 1 − 1

4
[(0 + 0.044) + (0.044 + 0.168) + (0.168 + 0.428)

+ (0.428 + 1)] = 1 − 1

4
· 2.28 = 0.43.

G+ (3.39)= n

n − 1
G = 4

3
· 0.43 = 0.57.

(c) The Gini coefficient remains the same as the relative investment stays the same.

(d) Using the library ineq we can easily reproduce the results in R:

library(ineq)
investment <- c(800,10300,4700,2200)
plot(Lc(investment))
ineq(investment)
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However, please note that the ineq command calculates the unstandardized
Gini coefficient.

Solution to Exercise 3.10

(a) The easiest way to get all these measures is to use the summary function and
apply it to the data columns which relate to quantitative variables:

setwd('C:/yourpath')
pizza <- read.csv('pizza_delivery.csv')
attach(pizza)
summary(pizza[,c('time','temperature','bill','pizzas')])

We then get the following output:

time temperature bill pizzas
Min. :12.27 Min. :41.76 Min. : 9.10 Min. : 1.000
1st Qu.:30.06 1st Qu.:58.24 1st Qu.:35.50 1st Qu.: 2.000
Median :34.38 Median :62.93 Median :42.90 Median : 3.000
Mean :34.23 Mean :62.86 Mean :42.76 Mean : 3.013
3rd Qu.:38.58 3rd Qu.:67.23 3rd Qu.:50.50 3rd Qu.: 4.000
Max. :53.10 Max. :87.58 Max. :75.00 Max. :11.000



344 Appendix B: Solutions to Exercises

(b) We can use the quantile function:

quantile(time,probs=0.99)
quantile(temperature,probs=0.99)

The results are 48.62 min for delivery time and 79.87 ◦C for temperature. This
means 99 % of the delivery times are less than or equal to 48.62 min and 1 % of
deliveries are greater than or equal to 48.62 min. Similarly, only 1 % of pizzas
were delivered with a temperature greater than 79.87 ◦C.

(c) The following simple function calculates the absolute mean deviation:

amdev <- function(mv){1/length(mv)*sum(abs(mv-mean(mv)))}
amdev(temperature)

(d) We can use the scale, mean, and var commands, respectively.

sc.time <- scale(time)
mean(sc.time)
var(sc.time)

As one would expect, the mean is zero and the variance is 1 for the scaled
variable.

(e) The boxplot command draws a box plot; the range option specifies the range
for which extreme values are defined. As specified in the help files, range=0
produces a box plot with no extreme values.

boxplot(temperature,range=0)
boxplot(time,range=0)

The box plots are displayed in Fig. B.11.

(f) We use the cut command to create a variable which has the categories (10, 20],
(20, 30], (30, 40], (40, 50], (50, 60], respectively.Using the intervalmid-points,
as well as the relative frequencies in each class (obtained via the table com-
mand), we get:

tc <- cut(time,breaks=seq(10,60,10))
weighted.mean(c(15,25,35,45,55),table(tc)/sum(table(tc)))
[1] 34.18641
mean(time)
[1] 34.22955

The weighted mean is very similar to the mean from the raw data, see output
above.
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Fig.B.11 Box plots

(g) The plots can be reproduced by using the qqplot command:

qqplot(time[driver=='Luigi'],time[driver=='Domenico'])
qqplot(time[driver=='Mario'],time[driver=='Salvatore'])

Chapter 4

Solution to Exercise 4.1

(a) We need the following table to calculate the correlation coefficient R:

Café (i) xi R(xi ) yi R(yi ) di d2i
1 3 1 6 2 −1 1
2 8 4 7 3 1 1
3 7 3 10 5 −2 4
4 9 5 8 4 1 1
5 5 2 4 1 1 1

R = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
= 1 − 6(1 + 1 + 4 + 1 + 1)

5(25 − 1)
= 1 − 0.4 = 0.6.

There is a moderate-to-strong positive correlation between the ratings of the two
coffee enthusiasts. In general, a high rating from one staff member implies a
rather high rating from the other staff member.

(b) Above we have assigned ranks in an increasing order; i.e. the lowest xi/yi gets
the lowest rank (1) and the highest xi/yi gets the highest rank (5). If we use

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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decreasing order and assign the lowest rank to the highest values, we get the
following results:

Café (i) xi R(xi ) yi R(yi ) di d2i
1 3 5 6 4 1 1
2 8 2 7 3 −1 1
3 7 3 10 1 2 4
4 9 1 8 2 −1 1
5 5 4 4 5 −1 1

As in (a), we have
∑

i d
2
i = 8 and therefore, the results are identical: R = 0.6.

Depending on whether ranks are assigned in an increasing order or a decreasing
order, the sign of di differs, but the calculation of R is not affected since the
squared values of di are used for its calculation and the sign of di is thus not
important.

(c) We can summarize the ratings in a 2 × 2 table:

X Y
Coffee Bad 2 1
Quality Good 3 4

The odds ratio is OR = (2 × 4)/(3 × 1) = 2. The chance of rating a coffee as
good is twice as likely for person X compared to person Y .

Solution to Exercise 4.2

(a) The expected frequencies (under independence) are:

Satisfied Unsatisfied

Car 74·58
150 = 28.61 76·58·

150 = 29.39

Car (diesel engine) 74·60
150 = 29.6 76·60

150 = 30.4

Motorbike 74·32
150 = 15.79 76·32

150 = 16.21
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We therefore have

χ2 =
k∑

i=1

l∑

j=1

(
ni j − ni+n+ j

n

)2
ni+n+ j

n

= (33 − 28.61)2

28.61
+ (25 − 29.39)2

29.39
+ (29 − 29.6)2

29.6

+ (31 − 30.4)2

30.4
+ (12 − 15.79)2

15.79
+ (20 − 16.21)2

16.21
= 0.6736 + 0.6557 + 0.0122 + 0.0112 + 0.9097 + 0.8861 = 3.1485.

The maximum value χ2 can take is 150(2 − 1) = 150 which indicates that there
is almost no association between type of vehicle and satisfaction with the insur-
ance. The other measures can be calculated as follows:

V =
√

χ2

n(min(k, l) − 1)
=
√

3.1485

150(2 − 1)
= 0.14.

Ccorr:

Ccorr =
√

min(k, l)

min(k, l) − 1

√
χ2

χ2 + n
=

=
√
2

1

√
3.1485

3.1485 + 150
= √

2
√
0.02056 ≈ 0.20.

The small values of V and Ccorr confirm that the association is rather weak.

(b) The summarized table looks as follows:

Satisfied Unsatisfied
Car 62 56
Motorbike 12 20

Using (4.7), we obtain

χ2 = n(ad − bc)2

(a + d)(c + d)(a + c)(b + d)

= 150(1240 − 672)2

118 · 32 · 74 · 76 = 48, 393, 600

21, 236, 224
≈ 2.2788.

The maximum value χ2 can take is 150(2 − 1). The association is therefore
weak. The odds ratio is

OR = ad

bc
= 62 · 20

12 · 56 = 1240

672
≈ 1.845.

The chances of being satisfied with the insurance are 1.845 times higher among
those who drive a car.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Fig.B.12 Scatter diagram
for speed limit and number
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(c) All χ2-based statistics suggest that there is only a small association between the

two variables, for both the 2 × 3 and the 2 × 2 tables. However, the odds ratio
gives us a more nuanced interpretation, showing that customers driving a car
are somewhat more satisfied with their insurance. The question is whether the
additional information from the odds ratio is stable and trustworthy. Confidence
intervals for the odds ratio can provide guidance under such circumstances, see
Sect. 9.4.4 for more details.

Solution to Exercise 4.3

(a) The scatter plot is given inFig.B.12. The black circles show thefive observations.
A positive relationship can be discovered: the higher the speed limit, the higher
the number of deaths. However, “Italy” (the observation on the top right) is the
observation which gives the graph a visible pattern and drives our impression
about the potential relationship.

(b) Using x̄ = 61 and ȳ = 4.86 we obtain

Sxx = (55 − 61)2 + (55 − 61)2 + · · · + (75 − 61)2 = 270

Syy = (4.1 − 4.86)2 + (4.7 − 4.86)2 + · · · + (6.1 − 4.86)2 = 2.512

Sxy = (55 − 61)(4.1 − 4.86) + · · · + (75 − 61)(6.1 − 4.86) = 23.2

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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and therefore

r = Sxy√
Sxx Syy

23.2√
270 · 2.512 = 0.891.

The correlation coefficient of Spearman is calculated using the following table:

Country (i) xi R(xi ) yi R(yi ) di d2i
Denmark 55 4.5 4.1 5 −0.5 0.25
Japan 55 4.5 4.7 3 1.5 2.25
Canada 60 2.5 4.3 4 −1.5 2.25

Netherlands 60 2.5 5.1 2 0.5 0.25
Italy 75 1 6.1 1 0 0

This yields

R = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
= 1 − 6 · 5

5(25 − 1)
= 0.75.

Please note that above we averaged the ranks for ties. The R function cor uses a
more complicated approach; this is why the results differ slightly when using R.

(c) The results stay the same. Pearson’s correlation coefficient is invariant with
respect to linear transformations which means that it does not matter whether
we use miles/h or km/h.

(d) (i) The grey square in Fig. B.12 represents the additional observation. The
overall pattern of the scatter plot changes with this new observation pair:
the positive relationship between speed limit and number of traffic deaths
is not so clear anymore. This emphasizes how individual observations may
affect our impression of a scatter plot.

(ii) Based on the same approach as in (b), we can calculate x̄ = 62.5, ȳ =
4.6333, Sxx = 337.5, Syy = 4.0533, Sxy = 13, and r = 0.3515. A single
observation changes our conclusions from a strong positive relationship
to a moderate-to-weak relationship. It is evident that Pearson’s correlation
coefficient is volatile and may be affected heavily by outliers or extreme
observations.

Solution to Exercise 4.4

(a) The contingency table for the absolute frequencies is as follows:

1. Class 2. Class 3. Class Staff Total
Rescued 202 125 180 211 718

Not rescued 135 160 541 674 1510
Total 337 285 721 885 2228
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(b) To obtain the conditional relative frequency distributions, we calculate the pro-
portion of passengers rescued (X ) for each travel class (Y ). In the notation of
Definition 4.1.1, we determine f X |Y

i | j = fi j/ f+ j = ni j/n+ j for all i and j . For
example, frescued|1. class = 202/337 = 0.5994. This yields

1. Class 2. Class 3. Class Staff
Rescued 0.5994 0.4386 0.2497 0.2384

Not rescued 0.4006 0.5614 0.7503 0.7616

It is evident that the proportion of passengers being rescued differs by travel
class. It can be speculated that there is an association between the two variables
pointing towards better chances of being rescued among passengers from higher
travel classes.

(c) Using (4.3), we get

1. Class 2. Class 3. Class Staff Total
Rescued 108.6 91.8 232.4 285.2 718

Not rescued 228.4 193.2 488.6 599.8 1510
Total 337 285 721 885 2228

which can be used to calculate χ2 and V as follows:

χ2 =
k∑

i=1

l∑

j=1

(
ni j − ni+n+ j

n

)2
ni+n+ j

n

= (202 − 108.6)2

108.6
+ (125 − 91.8)2

91.8

+ (180 − 232.4)2

232.4
+ (211 − 285.2)2

285.2
+ (135 − 228.4)2

228.4

+ (160 − 193.2)2

193.2
+ (541 − 488.6)2

488.6
+ (674 − 599.8)2

599.8
= 80.33 + 12.01 + 11.82 + 19.30 + 38.19 + 5.71 + 5.62 + 9.18

= 182.16.

V =
√

χ2

n(min(k, l) − 1)
=
√

182.16

2228(2 − 1)
= 0.286.

The value of V indicates a moderate or weak relationship between the two
variables. This is in contradiction to the hypothesis derived from the conditional
distributions in (b).

(d) The table is as follows:

1. Class/2. Class 3. Class/Staff Total
Rescued 327 391 718

Not rescued 295 1215 1510
Total 622 1606 2228

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Using (4.7) we get

χ2 = 2228(327 · 1215 − 295 · 391)2
718 · 1510 · 622 · 1606 = 163.55.

and therefore V =
√

163.55
2228 = 0.271.

There are several relative risks that can be calculated, for example:

f1|1
f1|2

= n11/n+1

n12/n+2
= 327/622

391/1606
≈ 2.16,

f2|1
f2|2

= n21/n+1

n22/n+2
= 295/622

1215/1606
≈ 0.63.

The proportion of passengerswhowere rescuedwas 2.16 times higher in the 1./2.
class compared to the 3. class and staff. Similarly, the proportion of passengers
who were not rescued was 0.62 times lower in the 1./2. class compared to the 3.
class and staff. The odds ratio is OR = a·d

b·c = 397,305
115,345 = 3.444. This is nothing

but the ratio of the relative risks, i.e. 2.16/0.63. The chance of being rescued
(i.e. the ratio rescued/not rescued) was almost 3.5 times higher for the 1./2. class
compared to the 3. class and staff.

(e) While Cramer’s V led to rather conservative conclusions regarding a possible
relationship of travel class and rescue status, the conditional relative frequency
distribution, the relative risks, and the odds ratio support the hypothesis that, at
least to some degree, the chances of being rescued were higher in better travel
classes. This makes sense because better travel classes were located towards the
top of the ship with best access to the lifeboats while both third-class passengers
and large numbers of the staff were located and working in the bottom of the
ship, where the water came in first.

Solution to Exercise 4.5

(a) Using (4.17) and (4.18), we get

r = Sxy√
Sxx Syy

=
∑36

i=1 xi yi − 36x̄ ȳ
√
ns̃2x ns̃

2
y

= 22776 − 36 · 12.22 · 51.28
n
√
s̃2x s̃

2
y

= 216.9

36
√
76.95 · 706.98 ≈ 0.026.

This indicates that there is no linear relationship between temperature and hotel
occupancy.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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(b) The scatter plot shows no clear pattern. This explains why the correlation coeffi-
cient is close to 0. However, if we look only at the points for each city separately,
we see different structures for different cities: a possible negative relationship
for Davos (D), a rather positive relationship for Polenca (P) and no visible rela-
tionship for Basel (B). This makes sense because for winter holiday destinations
hotel occupancy should be higher when the temperature is low and for summer
holiday destinations occupancy should be high in the summer months.

(c) We type in the data by specifying three variables: temperature (X), occu-
pancy (Y ) and city (Z). We then simply use the cor command to calculate
the correlation—and condition on the values of Z which we are interested in:

X <- c(-6,-5,2,...,9,4)
Y <- c(91,89,76,...,9,12)
Z <- c(rep('Davos',12),rep('Polenca',12),rep('Basel',12))
cor(X[Z=='Davos'],Y[Z=='Davos'])
cor(X[Z=='Basel'],Y[Z=='Basel'])
cor(X[Z=='Polenca'],Y[Z=='Polenca'])

This yields correlation coefficients of −0.87 for Davos, 0.42 for Basel and 0.82
for Polenca. It is obvious that looking at X and Y only indicates no correlation,
but the information from Z shows strong linear relationships in subgroups. This
example shows the limitations of using correlation coefficients and the necessity
to think in a multivariate way. Regression models offer solutions. We refer the
reader to Chap. 11, in particular Sect. 11.7.3 for more details.

Solution to Exercise 4.6

(a) We use the visual rule of thumb and work from the top left to the bottom right for
the concordant pairs and from the top right to the bottom left for the discordant
pairs:

K = 82 · 43 + 82 · 9 + 82 · 2 + 82 · 10 + 8 · 2 + 8 · 10 + 4 · 10 + 4 · 9
+43 · 10 = 5850

D = 4 · 8 + 9 · 2 = 50

γ = K − D

K + D
= 5800

5900
= 0.98.

(b)

χ2 =
k∑

i=1

l∑

j=1

(
ni j − ni+n+ j

n

)2

ni+n+ j
n

= (82 − 86·90
158 )2

86·90
158

+ (4 − 49·86
158 )2

49·86
158

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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+ (0 − 19·86
158 )2

19·86
158

+ (8 − 90·60
158 )2

90·60
158

+ (43 − 49·60
158 )2

49·60
158

+ (9 − 60·19
158 )2

60·19
158

+ (0 − 12·90
158 )2

12·90
158

+ (2 − 12·49
158 )2

12·49
158

+ (10 − 12·19
158 )2

12·19
158

= 22.25.19.27 + 10.34 + 20.05 + 31.98 + 0.47 + 6.84 + 0.80 + 50.74

= 162.74.

V =
√

χ2

n(min(k, l) − 1)
=
√
162.74

158 · 2 ≈ 0.72.

(c) The table is as follows:

Use a leash
Agree or no. Disagree Total

Use for concerts Agree or no. 137 9 146
Disagree 2 10 12
Total 139 19 158

(d) The relative risk can either be summarized as:

2/139

10/19
≈ 0.03 or

10/19

2/139
≈ 36.6.

The proportion of those who disagree with using the park for summer concerts is
0.03 times lower in the group who agree or have no opinion about using leashes
for dogs compared to those who disagree. Similarly, the proportion of those who
disagree with using the park for summer concerts is 36.6 times higher in the
group who also disagree with using leashes for dogs compared to those who do
not disagree.

(e) The odds ratio is OR = (137 · 10)/(2 · 9) ≈ 36.1.

• The chance of not disagreeing with the concert proposal is 36.1 times higher
for those who also do not disagree with the leash proposal.

• The chance of not disagreeing with the leash proposal is 36.1 times higher for
those who also do not disagree with the concert proposal.

• In simpler words: The chance of agreeing or having no opinion for one of the
questions is 36.1 times higher if the person also has no opinion or agrees with
the other question.

(f)

γ = 137 · 10 − 9 · 2
137 · 10 + 9 · 2 = 1352

1388
= 0.974.
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(g) In general, it makes sense to use all the information available, i.e. to use the
ordinal structure of the data and all three categories. While it is clear that γ is
superior to V in our example, one may argue that the relative risks or the odds
ratio could be more useful because they provide an intuitive quantification on
how the two variables relate to each other rather than just giving a summary
of strength and direction of association. However, as we have seen earlier, the
interpretations of the relative risks and the odds ratio are quite clumsy in this
example. It can be difficult to follow the somewhat complicated interpretation.
A simple summary would be to say that agreement with both questions was
strongly associated (γ = 0.98).

Solution to Exercise 4.7 We use the definition of the correlation coefficient, replace
yi with a + bxi and replace ȳ with a + bx̄ to obtain

r =
∑n

i=1(xi − x̄)(a + bxi − (a + bx̄))
√∑n

i=1(xi − x̄)2
∑n

i=1(a + bxi − (a + bx̄))2
.

This equates to:

r =
∑n

i=1(xi − x̄)(b(xi − x̄))
√∑n

i=1(xi − x̄)2
∑n

i=1(b(xi − x̄))2
= b

∑n
i=1(xi − x̄)2

√
b2
∑n

i=1(xi − x̄)2
∑n

i=1(xi − x̄)2
= 1.

Solution to Exercise 4.8

(a) We read in the data, make sure the first column is recognized as containing the
row names, attach the data, and obtain the correlation using the cor command:

decathlon <- read.csv('decathlon.csv', row.names=1)
attach(decathlon)
cor(X.Discus,X.High.jump)

The correlation is 0.52984. This means there is a moderate-to-strong positive
correlation; i.e. the longer the distance the discus is thrown, the higher the height
in the high jump competition.

(b) There are 10 variables. For the first variable, we can calculate the correlationwith
9 other variables. For the second variable, we can also calculate the correlation
with 9 other variables. However, we have already calculated one out of the
9 correlations, i.e. when analysing variable number one. So it is sufficient to
calculate 8 correlations for the second variable. Similarly, we need another 7
correlations for the third variable, 6 correlations for the fourth variable, and so on.
In total, we therefore need to have 9 + 8 + 7 + · · · + 1 = 45 correlations. Since
the correlation coefficient describes the relationship between two variables, it
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Fig.B.13 Correlation matrix
for the decathlon data
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makes sense to summarize the results in a contingency table, similar to a matrix,
see Fig. B.13.

(c) Using cor(decathlon) yields the correlation coefficients between all variable
pairs. This ismuch simpler than calculating the correlation coefficient for each of
the 45 comparisons.Note that the correlationmatrix provides the 45 comparisons
both in the upper triangle and in the lower triangle of the table. We know that
r(X, Y ) = r(Y, X), but R still provides us with both, although they are identical.
Note that the diagonal elements are 1 because r(X, X) = 1.

(d) One way to omit rows with missing data automatically is to use the na.omit
command:

cor(na.omit(decathlon))

The results are displayed in Fig. B.13. We see moderate-to-strong correlations
between the 100 m race, 400 m race, 110 m hurdle race and long jump. This
may reflect the speed-and-athletic component of the decathlon contest. We also
see moderate-to-strong correlations between the shot-put, high jump, and discus
events. This may reflect the strength-and-technique component of the contest.
The other disciplines also show correlations which make sense, but they are
rather weak and may reflect the uniqueness of these disciplines.
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Solution to Exercise 4.9

(a) A possible code is listed below:

pizza <- read.csv('pizza_delivery.csv')

pizza$tempcat <- cut(pizza$temperature, breaks=c(0,65,100))

pizza$timecat <- cut(pizza$time, breaks=c(0,30,100))

attach(pizza)

addmargins(table(tempcat,timecat))

timecat

tempcat (0,30] (30,100] Sum

(0,65] 101 691 792

(65,100] 213 261 474

Sum 314 952 1266

We can see that there is a higher proportion of high temperature ((65, 100]) in
the category of short delivery times ((0, 30]) compared to long delivery times
((30, 100]).

(b) Using the data from (a), we can calculate the odds ratio:

(101∗261)/(213∗691)

Thus, the chances of receiving a cold pizza are 0.18 lower if the delivery time is
short.

(c) We use the vcd and ryouready packages to determine the desired measures of
association:

library(vcd)
library(ryouready)
library(lattice)
assocstats(xtabs(∼tempcat+timecat))
ord.gamma(table(tempcat,timecat))
ord.tau(table(tempcat,timecat))
barchart(table(tempcat,timecat),horizontal=F,stack=T)
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Fig.B.14 Plots for Exercise 4.9

Cramer’s V is 0.361, Stuart’s τc is −0.302, and γ is −0.696. The first two
measures indicate a moderate-to-weak relationship between temperature and
delivery time. It is clear from the last two measures that this relationship is
negative, i.e. that shorter delivery times imply higher temperatures. However,
interestingly, τc and γ provide us with a different strengths of association. In
any case, it is clear that for shorter delivery times the customers receive warmer
pizzas, as evident from the stacked bar chart (Fig. B.14a).

(d) The scatter plot (Fig. B.14b) shows a decreasing temperature for an increasing
delivery time. This is also highlighted in the correlation coefficients which are
−0.43 and −0.39 for Bravais–Pearson and Spearman, respectively.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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plot(time,temperature)
cor(time,temperature)
cor(time,temperature,method='spearman')

(e) It makes sense to compare continuous variables (temperature, number of pizzas,
bill) using the correlation coefficient from Bravais–Pearson. The relationships
between temperature and driver and operator could be visualized using stratified
box plots.

boxplot(temperature∼driver)
boxplot(temperature∼operator)
cor(temperature,pizzas)
cor(temperature,bill)

The correlation coefficients are −0.37 and −0.42 for number of pizzas and
bill, respectively. More pizzas and a higher bill are associated with a lower
temperature. The box plots (Fig. B.14c, d) show variation in the delivery times
of the different drivers, but almost identical delivery times for the two operators.
These results give us a first idea about the relationship in the data. However,
they do not tell us the full story. For example: is the pizza temperature for higher
bills low because a higher bill means more pizzas, and therefore, a less efficient
preparation of the food? Is one driver faster because he mainly delivers for a
particular branch? Could it be that the operators have a different performance
but because they deal with different branches and drivers, these differences are
not visible? To address these questions, a multivariate perspective is needed.
Regression models, as introduced in Chap. 11, provide some answers.

Chapter 5

Solution to Exercise 5.1 There are n = 10 guests and m = 2 guests shake hands
with each other. The order is not important: two guests shake hands no matter who
is “drawn first”. It is also not possible to shake hands with oneself which means that
in terms of the urn model, we have the “no replacement” case. Therefore, we obtain
the solution as (

n

m

)
=
(
10

2

)
= 10 · 9

2 · 1 = 45

handshakes in total.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Solution to Exercise 5.2 We assume that it is not relevant to know which student
gets tested at which time point. We are thus dealing with combinations without
considering the order. We have n = 25 and m = 5 and therefore obtain:

(a) a total number of
(25
5

)
= 53,130 possibilities.

(b) a total number of
(25+5−1

5

)
=
(29
5

)
= 118,755 possibilities.

In R, the commands choose(25,5) and choose(29,5), respectively provide the
required results.

Solution to Exercise 5.3 The board consists of n = 381 knots. Each knot is either
occupied or not. We may thus assume a “drawing” without replacement in the sense
that each knot can be drawn (occupied) only once. If we place m = 64 counters on
the board, then we can simultaneously think of “drawing” 64 occupied knots out of
a total of 381 knots. The order in which we draw is not relevant—either a knot is
occupied or not. The total number of combinations is

(n
m

)
=
(381
64

) ≈ 4.35 · 1073. We
obtain the final number in R using the command choose(381,64).

Solution to Exercise 5.4 We obtain the results (again using the command
choose(n,m) in R) as follows:

(a) The customer takes the beers “with replacement” because the customer can
choose among any type of beer for each position in the tray. One can also think
of an urn model with 6 balls relating to the six different beers, where beers are
drawn with replacement and placed on the tray. The order in which the beers are
placed on the tray is not relevant. We thus have

(
n + m − 1

m

)
=
(
6 + 20 − 1

20

)
=
(
25

20

)
= 53, 130

combinations.

(b) If the customer insists on having at least one beer per brewery on his tray, then
6 out of the 20 positions of the tray are already occupied. Based on the same
thoughts as in (a), we calculate the total number of combinations as

(
n + m − 1

m

)
=
(
6 + 14 − 1

14

)
=
(
19

14

)
= 11, 628.

Solution to Exercise 5.5 Since each team has exactly one final place, we have a
“without replacement” situation. Using n = 32 andm = 3 (and choose(n,m) in R)
yields
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(a) 32!
(32−3)! = (32

3

)
3! = 29, 760 and

(b)
(32
3

) = 4960.

Solution to Exercise 5.6 There are n = 12 different letters for m = 4 positions of
the membership code. Each letter can be used more than once if desired and we
thus obtain nm = 124 = 20,736 possible combinations. We therefore conclude that
sufficient membership codes are left. However, this may not last long and the book
store may still wish to create another solution for its membership codes.

Solution to Exercise 5.7 For each member of the jury, there are 61 scoring options:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
. . .
. . .
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
6

Different jury members are allowed to assign the same scores. We thus deal with
combinations “with replacement”. To verify this, just think of an urn with 61 balls
where each ball refers to one possible score. Now one ball is drawn, assigned to a
specific jury member and then put back into the urn. Since each score is “attached”
to a particular jury member, we have combinations with consideration of the order
and therefore obtain a total of nm = 619 ≈ 1.17 · 1016 possibilities. If you have
difficulties in understanding the role of “replacement” and “order” in this example,
recall that each member has 61 scoring options: thus, 61 × 61 × · · · × 61 (9 times)
combinations are possible.

Solution to Exercise 5.8

(a) We obtain:
(
2

0

)
= 1 ↔

(
n

2

)
=
(
2

2

)
= 1;

(
3

1

)
= 3 ↔

(
n

2

)
=
(
3

2

)
= 3;

(
4

2

)
= 6 ↔

(
n

2

)
=
(
4

2

)
= 6;

(
5

3

)
= 10 ↔

(
n

2

)
=
(
5

2

)
= 10.

(b) Based on the observations from (a) we conclude that each entry on the diagonal
line can be represented by

(n
2

)
. The sum of two consecutive entries is thus

(n
2

)+
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(n+1
2

)
. Using the fourth relation in (5.5), it follows that:

(
n

2

)
+
(
n + 1

2

)
(5.5)= n(n − 1)

2
+ (n + 1)n

2

= n(n − 1 + n + 1)

2
= n · 2n

2
= n2.

Chapter 6

Solution to Exercise 6.1

(a) We obtain

• A ∩ B = {8}.
• B ∩ C = {∅}.
• A ∩ C = {0, 4, 8, 9, 15}.
• C \ A = {4, 9, 15}.
• Ω \ (B ∪ A ∪ C) = {6, 7, 11, 13, 14}.

(b) The solutions are:

• P(F̄) = 1 − P(F) = 0.5.

• P(G) = 1 − P(E) − P(F) = 0.3.

• P(E ∩ G) = 0 because the events are pairwise disjoint.

• P(E \ E) = 0.

• P(E ∪ F) = P(E) + P(F) = 0.7.

Solution to Exercise 6.2 We know that the probability of failing the practical exam-
ination is P(PE) = 0.25, of failing the theoretical examination is P(T E) = 0.15,
and of failing both is P(PE ∩ T E) = 0.1.

(a) If we ask for the probability of failing in at least one examination, we imply
that either the theoretical examination, or the practical examination, or both
are not passed. We can therefore calculate the union of events P(PE ∪ T E) =
P(PE) + P(T E) − P(T E ∩ PE) = 0.25 + 0.15 − 0.1 = 0.3.

(b) P(PE\T E) = P(PE) − P(PE ∩ T E) = 0.25 − 0.1 = 0.15.

(c) P(PE ∪ T E) = 1 − P(PE ∪ T E) = 1 − 0.3 = 0.7.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
http://dx.doi.org/10.1007/978-3-319-46162-5_6
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(d) We are interested in the probability of the person failing exactly in one exam.This
corresponds to P(M\C ∪ C\M) = P(M ∪ C) − P(C ∩ M) = 0.3 − 0.1 =
0.2.

Solution to Exercise 6.3 The total number of possible simple events is |�| = 12. The
number of favourable simple events is

(a) |A| = 6 (i.e. the numbers 2, 4, 6, 8, 10, 12). Hence, P(A) = 6
12 = 1

2 .

(b) |B| = 3 (i.e. the numbers 10, 11, 12). Hence, P(B) = 3
12 = 1

4 .

(c) |C | = 2 (i.e. the numbers 10, 12). Hence, P(A ∩ B) = 2
12 = 1

6 .

(d) |D| = 7 (i.e. the numbers 2, 4, 6, 8, 10, 11, 12). Hence, P(A ∪ B) = 7
12 .

Solution to Exercise 6.4 The total number of simple events is
(12
2

)
.

(a) The number of favourable simple events is one and therefore P(right two
presents) = |A|

|�| = 1
(122 )

≈ 0.015.

(b) The number of favourable simple events is
(10
2

)
because the person draws two

presents out of the ten “wrong” presents:
P(wrong two presents) = |A|

|�| = (10
2

)
/
(12
2

) ≈ 0.682. InSect. 8.1.8,we explain
the hypergeometric distribution which will shed further light on this exercise.

Solution to Exercise 6.5

(a) Let V denote the event that there is too much salt in the soup and let L denote
the event that the chef is in love. We know that

P(V ) = 0.2 ⇒ P(V̄ ) = 0.8.

Similarly, we have

P(L) = 0.3 ⇒ P(L̄) = 0.7.

We therefore get:

P(V ∩ L) = P(V |L) · P(L) = 0.6 · 0.3 = 0.18.

P(V̄ ∩ L) = P(L) − P(V ∩ L) = 0.3 − 0.18 = 0.12.

P(V ∩ L̄) = P(V ) − P(V ∩ L) = 0.2 − 0.18 = 0.02.

P(V̄ ∩ L̄) = P(V̄ ) − P(V̄ ∩ L) = 0.8 − 0.12 = 0.68.

This yields the following contingency table:

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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V V̄ Total
L 0.18 0.12 0.3
L̄ 0.02 0.68 0.7
Total 0.2 0.8 1

(b) The variables are not stochastically independent since, for example, P(V ) ·
P(L) = 0.3 · 0.2 = 0.06 �= 0.18 = P(V ∩ L).

Solution to Exercise 6.6

(a) We define the following events: G = Basil is treated well, Ḡ = Basil is not
treated well; E = Basil survives, Ē = Basil dies. We know that

P(Ḡ) = 1

3
⇒ P(G) = 2

3
; P(E |G) = 1

2
; P(E |Ḡ) = 3

4
.

Using the Law of Total Probability, we get

P(E) = P(E |G) · P(G) + P(E |Ḡ) · P(Ḡ)

= 1

2
· 2
3

+ 3

4
· 1
3

= 1

3
+ 1

4
= 7

12
≈ 0.58.

(b) We can use Bayes’ Theorem to answer the question:

P(Ḡ|E) = P(E |Ḡ) · P(Ḡ)

P(E |Ḡ) · P(Ḡ) + P(E |G) · P(G)
=

3
4 · 1

3
7
12

= 3

7
≈ 0.43.

Solution to Exercise 6.7 We define the following events and probabilities

• A: Bill never paid, P(A) = 0.05 ⇒ P( Ā) = 0.95.

• M: Bill paid too late, P(M) = ?

• P(M | Ā) = 0.2.

• P(M |A) = 1 because someone who never pays will always pay too late.

(a) We are interested in P(M), the probability that someone does not pay his bill in
a particular month, either because he is not able to or he pays too late. We can
use the Law of Total Probability to obtain the results:

P(M) = P(M |A)P(A) + P(M | Ā)P( Ā)

= 0.05 · 1 + 0.2 · 0.95 = 0.24.
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(b) We can use Bayes’ Theorem to obtain the results:

P(A | M) = P(A)P(M | A)

P(M)
= 0.05

0.24
= 0.208.

(c) If the bill was not paid in a particular month, the probability is 20.8 % that it will
never be paid, and 78.2 % that it will be paid. One could argue that a preventive
measure that affects almost 79 % of trustworthy customers are not ideal and the
bank should therefore not block a credit card if a bill is not paid on time.

Solution to Exercise 6.8

(a) The “and” operator refers to the joint distribution of two variables. In our exam-
ple, we want to know the probability of being infected and having been trans-
ported by the truck. This probability can be directly obtained from the respective
entry in the contingency table: 40 out of 200 cows fulfil both criteria and thus

P(B ∩ A) = 40

200
.

(b) We can use P(A) = 100
200 = P( Ā) to obtain:

P(B|A) = P(B ∩ A)

P(A)
= 40/200

100/200
= 40

100
.

(c) Using these results and P(B) = 60
200 , and P(B̄) = 140

200 = 1 − P(B), we obtain

P(B| Ā) = P(B ∩ Ā)

P( Ā)
= 20/200

100/200
= 20

100
by using the Law of Total Probability. We can thus calculate

P(B) = P(B|A)P(A) + P(B| Ā)P( Ā)

= 0.40 · 0.50 + 0.20 · 0.50 = 0.30.

This means that the probability of a cow being infected is 30 %. Alternatively,
we could have simply looked at the marginal distribution of the contingency
table to get P(B) = 60/200 = 0.3.

Solution to Exercise 6.9

(a) The two shots are independent of each other and thus

P(A ∩ B) = 0.4 · 0.5 = 0.2.

P(A ∪ B) = 0.4 + 0.5 − 0.2 = 0.7.

(b) We need to calculate

P(A\B ∪ B\A) = 0.4 − 0.2 + 0.5 − 0.2 = 0.5.

(c)

P(B\A) = 0.5 − 0.2 = 0.3.
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Chapter 7

Solution to Exercise 7.1

(a) The first derivative of the CDF yields the PDF, F ′(x) = f (x):

f (x) =
⎧
⎨

⎩

0 if x < 2
− 1

2 x + 2 if 2 ≤ x ≤ 4
0 if x > 4.

(b) We know from Theorem 7.2.3 that for any continuous variable P(X = x0) = 0
and therefore P(X = 4) = 0. We calculate P(X < 3) = P(X ≤ 3) − P(X =
3) = F(3) − 0 = − 9

4 + 6 − 3 = 0.75.

(c) Using (7.15), we obtain the expectation as

E(X) =
∫ ∞

−∞
x f (x) dx =

∫ 2

−∞
x0 dx +

∫ 4

2
x

(
−1

2
x + 2

)
dx +

∫ ∞

4
x0 dx

= 0 +
∫ 4

2

(
−1

2
x2 + 2x

)
dx + 0

=
[
−1

6
x3 + x2

]4

2
=
(

−64

6
+ 16

)
−
(

−8

6
+ 4

)
= 8

3
.

Given that we have already calculated E(X), we can use Theorem 7.3.1 to cal-
culate the variance as Var(X) = E(X2) − [E(X)]2. The expectation of X2 is

E(X2) =
∫ 4

2
x2
(

−1

2
x + 2

)
dx =

∫ 4

2

(
−1

2
x3 + 2x2

)
dx

=
[
−1

8
x4 + 2

3
x3
]4

2
=
(

−32 + 128

3

)
−
(

−2 + 16

3

)
= 22

3
.

We thus obtain Var(X) = 22
3 − ( 8

3

)2 = 66−64
9 = 2

9 .

Solution to Exercise 7.2

(a) The probability mass function of X is

xi 1 2 3 4 5 6

P(X = x) 1
9

1
9

1
9

2
9

1
9

3
9

Using (7.16), we calculate the expectation as

E(X) = 1 · 1
9

+ 2 · 1
9

+ 3 · 1
9

+ 4 · 2
9

+ 5 · 1
9

+ 6 · 3
9

= 1 + 2 + 3 + 8 + 5 + 18

9
= 37

9
≈ 4.1.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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To obtain the variance, we need

E(X2) = 1 · 1
9

+ 4 · 1
9

+ 9 · 1
9

+ 16 · 2
9

+ 25 · 1
9

+ 36 · 3
9

= 1 + 4 + 9 + 32 + 25 + 108

9
= 179

9
.

Therefore, using Var(X) = E(X2) − [E(X)]2, we get

Var(X) = 179

9
−
(
37

9

)2

= 1611 − 1369

81
= 242

81
≈ 2.98.

The manipulated die yields on average higher values than a fair die because its
expectation is 4.1 > 3.5. The variability of is, however, similar because 2.98 ≈
2.92.

(b) The probability mass function of Y = 1
X is:

yi = 1
xi

1 1
2

1
3

1
4

1
5

1
6

P( 1
X = y) 1

9
1
9

1
9

2
9

1
9

3
9

The expectation can hence be calculated as

E(Y ) = E

(
1

X

)
= 1 · 1

9
+ 1

2
· 1
9

+ 1

3
· 1
9

+ 1

4
· 2
9

+ 1

5
· 1
9

+ 1

6
· 3
9

= 1

9
+ 1

18
+ 1

27
+ 1

18
+ 1

45
+ 1

18
= 91

270
.

Comparing the results from (a) and (b) shows clearly that E( 1
X ) �= 1

E(X)
. Recall

that E(bX) = bE(X). It is interesting to see that for some transformations T (X)

it holds that E(T (X)) = T (E(X)), but for some it does not. This reminds us to
be careful when thinking of the implications of transformations.

Solution to Exercise 7.3

(a) There are several ways to plot the CDF. One possibility is to define the function
and plot it with the curve command. Since the function has different defini-
tions for the intervals [∞, 0), [0, 1], (1, ∞], we need to take this into account.
Remember that a logical statement in R corresponds to a number, i.e. TRUE = 1
and FALSE = 0; we can thus simply add the different pieces of the function and
multiply them with a condition which specifies if X is contained in the interval
or not (Fig. B.15):
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Fig.B.15 Cumulative distribution function for the proportion of wine sold

cdf < −function(x){
(3 ∗ x 2̂ − 2 ∗ xˆ3) ∗ (x <= 1& x >= 0) + 1 ∗ (x > 1) + 0 ∗ (x < 0)
}
curve(cdf,from=-0.5,to=1.5)

(b) The PDF is

d

dx
F(x) = F ′(x) = f (x) =

{
6(x − x2) if 0 ≤ x ≤ 1
0 elsewhere.

(c)

P

(
1

3
≤ X ≤ 2

3

)
=
∫ 2

3

1
3

f (x)dx = F

(
2

3

)
− F

(
1

3

)

=
[
3

(
2

3

)2

− 2

(
2

3

)3
]

−
[
3

(
1

3

)2

− 2

(
1

3

)3
]

= 0.48149.

(d) We have already defined the CDF in (a). We can now simply plug in the x-values
of interest:

cdf(2/3)-cdf(1/3)
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(e) The variance can be calculated as follows:

E(X) =
∫ 1

0
x6(x − x2)dx = 6 ·

∫ 1

0
(x2 − x3)dx

= 6

[
1

3
x3 − 1

4
x4
]1

0
= 6 ·

(
1

3
− 1

4

)
= 0.5

E(X2) =
∫ 1

0
x26(x − x2)dx = 6 ·

∫ 1

0
(x3 − x4)dx

= 6

[
1

4
x4 − 1

5
x5
]1

0
= 6 ·

(
1

4
− 1

5

)
= 0.3

Var(X) = E(X2) − [E(X)]2 = 0.3 − 0.52 = 0.05.

Solution to Exercise 7.4

(a) Two conditions need to be satisfied for f (x) to be a proper PDF:

(i)
∫ 2
0 f (x)dx = 1:

∫ 2

0
f (x)dx =

∫ 2

0
c · x(2 − x)dx = c

∫ 2

0
x(2 − x)dx

=c
∫ 2

0
(2x − x2)dx = c

[
x2 − 1

3
x3
]2

0

=c

[
4 − 8

3
− (0 − 0)

]
= c · 4

3
!= 1

=⇒c = 3

4
.

(ii) f (x) ≥ 0:

f (x) = 3

4
x(2 − x) ≥ 0 ∀ x ∈ [0, 2].

(b) We calculate

F(x) = P(X ≤ x) =
∫ x

0
f (t)dt =

∫ x

0

3

4
t (2 − t)dt

= 3

4

∫ x

0
(2t − t2)dt = 3

4

[
t2 − 1

3
t3
]x

0

= 3

4

[
x2 − 1

3
x3 − 0

]
= 3

4
x2
(
1 − 1

3
x

)
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and therefore

F(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x < 0

3
4 x

2(1 − 1
3 x) if 0 ≤ x ≤ 2

1 if 2 < x .

(c) The expectation is

E(X) =
∫ 2

0
x f (x)dx = 3

4

∫ 2

0
(2x2 − x3)dx

= 3

4

[
2

3
x3 − 1

4
x4
]2

0
= 3

4

[
2

3
· 8 − 1

4
· 16 − 0

]

= 3

4

[
16

3
− 12

3

]
= 3

4
· 4
3

= 1.

Using Var(X) = E(X2) − (E(X))2, we calculate the variance as

E(X2) =
∫ 2

0
x2 f (x)dx = 3

4

∫ 2

0
(2x3 − x4)dx

= 3

4

[
2

4
x4 − 1

5
x5
]2

0
= 3

4

[
2

4
· 16 − 1

5
· 32 − 0

]

= 6 − 3 · 32
4 · 5 = 6 − 3 · 8

5
= 6

5

Var(X) = 6

5
− 12 = 1

5
.

(d)

P(|X − μ| ≤ 0.5) ≥ 1 − σ2

c2
= 1 − ( 15 )

(0.5)2
= 1 − 0.8 = 0.2.

Solution to Exercise 7.5

(a) The marginal distributions are obtained by the row and column sums of the joint
PDF, respectively. For example, P(X = 1) = ∑J

j=1 p1 j = p1+ = 1/4.

X P(X = xi ) Y P(Y = yi )
0 3/4 1 1/6
1 1/4 2 7/12

3 1/4
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The marginal distribution of X tells us how many customers sought help via the
telephone hotline (75 %) and via email (25 %). The marginal distribution of Y
represents the distribution of the satisfaction level, highlighting that more than
half of the customers (7/12) were “satisfied”.

(b) To determine the 75 % quantile with respect to Y , we need to find the value
y0.75 for which F(y0.75) ≥ 0.75 and F(y) < 0.75 for y < y0.75. Y takes the
values 1, 2, 3. The quantile cannot be y0.75 = 1 because F(1) = 1/6 < 0.75.
The 75 % quantile is y0.75 = 2 because F(2) = 1/6 + 7/12 = 3/4 ≥ 0.75 and
for all values which are smaller than 2 we get F(x) < 0.75.

(c) We can calculate the conditional distribution using P(Y = y j |X = 1) = p1 j/
p1+ = p1 j/(1/6 + 1/12 + 0) = p1 j/(0.25). Therefore,

P(Y = 1|X = 1) = 1/6

1/4
= 2

3
,

P(Y = 2|X = 1) = 1/12

1/4
= 1

3
,

P(Y = 3|X = 1) = 0

1/4
= 0.

Among those who used the email customer service two-thirds were unsatisfied,
one-third were satisfied, and no one was very satisfied.

(d) As we know from (7.27), two discrete random variables are said to be indepen-
dent if P(X = xi , Y = y j ) = P(X = xi )P(Y = y j ). However, in our example,
P(X = 0, Y = 1) = P(X = 0)P(X = 1) = 3

4 · 1
6 �= 0. This means that X and

Y are not independent.

(e) The covariance of X and Y is defined as Cov(X, Y ) = E(XY ) − E(X)E(Y ). We
calculate

E(X) = 0 · 3
4

+ 1 · 1
4

= 1

4

E(Y ) = 1 · 1
6

+ 2 · 7

12
+ 3 · 1

4
= 25

12

E(XY ) = 0 · 1 · 0 + 1 · 1 · 1
6

+ 0 · 2 · 1
2

+ 1 · 2 · 1

12
+ 0 · 3 · 1

4
+ 1 · 3 · 0

= 2

6

Cov(X, Y ) = 2

6
− 1

4
· 25
12

= − 3

16
.

Since Cov(X, Y ) < 0, we conclude that there is a negative relationship between
X and Y : the higher the values of X , the lower the values of Y—and vice
versa. For example, those who use the email-based customer service (X = 1)
are less satisfied than those who use the telephone customer service (X = 0).
It is, however, evident that in this example the values of X have no order and
therefore, care must be exercised in interpreting the covariance.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Solution to Exercise 7.6 Using Tschebyschev’s inequality (7.24)

P(|X − μ| < c) ≥ 0.9 = 1 − Var(X)

c2
,

we can determine c as follows:

1 − Var(X)

c2
= 0.9

c2 = Var(X)

0.1
= 4

0.1
= 40

c = ±√
40 = ±6.325.

Thus, the interval is [15 − 6.325; 15 + 6.325] = [8.675; 21.325].

Solution to Exercise 7.7

(a) The joint PDF is:

Y
0 1 2

−1 0.3 0.2 0.2
X 2 0.1 0.1 0.1

(b) The marginal distributions are obtained from the row and column sums of the
joint PDF, respectively:

X −1 2 Y 0 1 2
P(X = x) 0.7 0.3 P(Y = y) 0.4 0.3 0.3

(c) The random variables X and Y are independent if

P(X = x, Y = y) = P(X = x)P(Y = y) ∀x, y.
However, in our example we have, for example,

P(X = −1, Y = 0) = 0.3 �= P(X = −1) · P(Y = 0) = 0.7 · 0.4 = 0.28.

Hence, the two variables are not independent.

(d) The joint distribution of X and Y can be used to obtain the desired distribution
ofU . For example, If X = −1 and Y = 0, thenU = X + Y = −1. The respec-
tive probability is P(U = −1) = 0.3 because P(U = −1) = P(X = −1, Y =
0) = 0.3 and there is no other combination of X - and Y -values which yields
X + Y = −1. The distribution of U is therefore as follows:

http://dx.doi.org/10.1007/978-3-319-46162-5_7


372 Appendix B: Solutions to Exercises

k −1 0 1 2 3 4
P(U = k) 0.3 0.2 0.2 0.1 0.1 0.1

(e) We calculate

E(U ) =
4∑

k=−1

k · P(U = k) = 0.8

E(X) = (−1)0.7 + 2 · 0.3 = −0.1

E(Y ) = 0 · 0.4 + 1 · 0.3 + 2 · 0.3 = 0.9

E(U 2) = 0.3 · (−1)2 + · · · + 0.1 · 42 = 3.4

E(X2) = 0.7 · (−1)2 + 0.3 · 22 = 1.9

E(Y 2) = 0.4 · 02 + 0.3 · 12 + 0.3 · 22 = 1.5

Var(U ) = E(U 2) − [E(U )]2 = 3.4 − (0.8)2 = 2.76

Var(X) = E(X2) − [E(X)]2 = 1.9 − (−0.1)2 = 1.89

Var(Y ) = E(Y 2) − [E(Y )]2 = 1.5 − (0.9)2 = 0.69.

It can be seen that E(X) + E(Y ) = −0.1 + 0.9 = 0.8 = E(U ). This makes
sense because we know from (7.31) that E(X + Y ) = E(X) + E(Y ). However,
Var(U ) = 2.76 �= Var(X) + Var(Y ) = 1.89 + 0.69. This follows from (7.7.1)
which says that Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X, Y ) and therefore,
Var(X ± Y ) = Var(X) + Var(Y ) only if the covariance is 0. We know from (c)
that X and Y are not independent and thus Cov(X, Y ) �= 0.

Solution to Exercise 7.8

(a) The random variables X and Y are independent if the balls are drawn with
replacement. This becomes clear by understanding that drawing with replace-
ment implies that for both the draws, the same balls are in the urn and the
conditions in each draw remain the same. The first draw has no implications for
the second draw.

If we were drawing the balls without replacement, then the first draw could possibly
have implications for the second draw: for instance, if the first ball drawn was red,
then the second one could not be red because there is only one red ball in the urn.
This means that drawing without replacement implies dependency of X and Y . This
can also be seen by evaluating the independence assumption (7.27):

P(X = 2, Y = 2) = 0 �= P(X = 2) · P(Y = 2) = 1

8
· 1
8
.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(b) The marginal probabilities P(X = xi ) can be obtained from the given informa-
tion. For example, 3 out of 8 balls are black and thus P(X = 1) = 3/8. The
conditional distributions P(Y |X = xi ) can be calculated easily by realizing that
under the assumed dependency of X and Y , the second draw is always based on
7 balls (8 balls minus the one drawn under the condition X = xi )—e.g. if the
first ball drawn is black, then 7 balls, 2 of which are black, remain in the urn and
P(Y = 1|X = 1) = 2/7. We thus calculate

P(Y = 1, X = 1) = P(Y = 1|X = 1)P(X = 1) = 2

7
· 3
8

= 6

56

P(Y = 1, X = 2) = P(Y = 1|X = 2)P(X = 2) = 3

7
· 1
8

= 3

56
. . .

P(Y = 3, X = 3) = P(Y = 3|X = 3)P(X = 3) = 3

7
· 4
8

= 12

56
and obtain

Y
1 2 3

1 6
56

3
56

12
56

X 2 3
56 0 4

56

3 12
56

4
56

12
56

(c) The expectations are

E(X) = 1 · 3
8

+ 2 · 1
8

+ 3 · 4
8

= 17

8

E(Y ) = E(X) = 17

8
.

To estimate ρ(X, Y ), we need Cov(X, Y ) as well as Var(X) and Var(Y ):

E(XY ) = 1
6

56
+ 2

3

56
+ 3

12

56
+ 2

3

56
+ 4 · 0 + 6

4

56
+ 3

12

56
+ 6

4

56
+ 9

12

56

= 246

56

E(X2) = E(Y 2) = 12
3

8
+ 22

1

8
+ 32

4

8
= 43

8

Var(X) = E(X2) − [E(X)]2 = 43

8
−
(
17

8

)2

= 55

64

Var(Y ) = Var(X) = 55

64
.
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Using (7.38) and Cov(X, Y ) = E(XY ) − E(X)E(Y ), we obtain

ρ = Cov(X, Y )√
Var(X) · Var(Y )

=
246
56 − 289

64√
55
64 · 55

64

= −0.143.

Solution to Exercise 7.9

(a) The constant c must satisfy

∫ 100

40

∫ 100

10
c

(
100 − x

x

)
dx dy =

∫ 100

40

∫ 100

10

100c

x
− c dx dy

!= 1

and therefore

∫ 100

40
[100c ln(x) − cx]10010 dy =

∫ 100

40
100c ln 100 − 100c − 100c ln(10) + 10c dy

which is

∫ 100

40
100c

(
ln

100

10
− 1 + 1

10

)
dy = [100cy (ln 10 − 9/10)]10040

= 600c(10 ln 10 − 9) → c ≈ 0.00012.

(b) The marginal distribution is

fX (x) =
∫ 100

40
c

(
100 − x

x

)
dy =

[
c

(
100 − x

x

)
y

]100

40

= 100c

(
100 − x

x

)
− 40c

(
100 − x

x

)
≈ 0.00713

(
100 − x

x

)

for 10 ≤ x ≤ 100.

(c) To determine P(X > 75), we need the cumulative marginal distribution of X :

FX (x) =
∫ x

−∞
fX (t)dt =

∫ x

10
0.00713

(
100 − t

t

)
dt

=
∫ x

10

0.00713

t
− 0.00713 dt = [0.713 ln(t) − 0.00713]x10

= 0.713 ln(x) − 0.00713x − 0.00713 ln(10) + 0.00713 · 10.
Now we can calculate

P(X > 75) = 1 − P(X ≤ 75) = 1 − FX (75) = 1 − 0.973 ≈ 2.7 %.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(d) The conditional distribution is

fY |X (x, y) = f (x, y)

f (x)
= c

( 100−x
x

)

60c
( 100−x

x

) = 1

60
.

Solution to Exercise 7.10 If we evaluate the expectation with respect to Y , then both
μ and σ can be considered to be constants. We can therefore write

E(Y ) = E

(
X − μ

σ

)
= 1

σ
(E(X) − μ).

Since E(X) = μ, it follows that E(Y ) = 0. The variance is

Var(Y ) = Var

(
X − μ

σ

)
.

Applying Var(a + bX) = b2Var(X) to this equation yields a = μ, b = 1
σ and there-

fore

Var(Y ) = 1

σ2 Var(X) = σ2

σ2 = 1.

Chapter 8

Solution to Exercise 8.1 The random variable X: “number of packages with a toy” is
binomially distributed. In each of n = 20 “trials”, a toy can be foundwith probability
p = 1

6 .

(a) We thus get

P(X = 4) =
(
n

k

)
pk(1 − p)n−k =

(
20

4

)(
1

6

)4(5
6

)16

≈ 0.20.

(b) Similarly, we calculate

P(X = 0) =
(
n

k

)
pk(1 − p)n−k =

(
20

0

)(
1

6

)0(5
6

)20

= 0.026.

(c) This question relates to a hypergeometric distribution: there are N = 20 pack-
ages with M = 3 packages with toys and N − M = 17 packages without a toy.
The daughter gets n = 5 packages and we are interested in P(X = 2). Hence,
we get

P(X = 2) =
(M
x

)(N−M
n−x

)
(N
n

) =
(3
2

)(17
3

)
(20
5

) ≈ 0.13.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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Solution to Exercise 8.2 Given X ∼ N (42.1, 20.82), we get:

(a)

P(X ≥ 50) = 1 − P(X ≤ 50) = 1 − φ

(
x − μ

σ

)
= 1 − φ

(
50 − 42.1

20.8

)

= 1 − φ(0.37) ≈ 0.35.

We obtain the same results in R as follows:

1-pnorm(50,42.1,20.8)

(b)

P(30 ≤ X ≤ 40) = P(X ≤ 40) − P(X ≤ 30)

= φ

(
40 − 42.1

20.8

)
− φ

(
30 − 42.1

20.8

)

= φ(−0.096) − φ(−0.577) = 1 − 0.538 − 1 + 0.718

≈ 18%.

We would have obtained the same results in R using:

pnorm(40,42.1,20.8)-pnorm(30,42.1,20.8)

Solution to Exercise 8.3 The random variable X follows a discrete uniform distrib-
ution because pi = 1

12 for each xi . The expectation and variance are therefore

E(X) = k + 1

2
= 12 + 1

2
= 6.5,

Var(X) = 1

12
(122 − 1) ≈ 11.92.

Solution to Exercise 8.4 Each guess is a Bernoulli experiment where the right
answer is given with a probability of 50 %. The number of correct guesses therefore
follows a binomial distribution, i.e. X ∼ B(10; 0.5). The probability of giving the
right answer at least 8 times is identical to the probability of not being wrong more
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than 2 times. We can thus calculate P(X ≥ 8) as P(X ≤ 2):

P(X = 0) =
(
10

0

)
0.50(1 − 0.5)10 ≈ 0.000977

P(X = 1) =
(
10

1

)
0.51(1 − 0.5)9 ≈ 0.009766

P(X = 2) =
(
10

2

)
0.52(1 − 0.5)8 ≈ 0.043945.

This relates to

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= 0.000977 + 0.009766 + 0.043945 ≈ 0.0547.

We would have obtained the same results in R using:

pbinom(2,10,0.5)
1-pbinom(7,10,0.5)

Solution to Exercise 8.5

(a) It seems appropriate to model the number of fused bulbs with a Poisson dis-
tribution. We assume, however, that the probabilities of fused bulbs on two
consecutive days are independent of each other; i.e. they only depend on λ but
not on the time t .

(b) The arithmetic mean is

x̄ = 1

30
(0 + 1 · 8 + 2 · 8 + · · · + 5 · 1) = 52

30
= 1.7333

which means that, on an average, 1.73 bulbs are fused per day. The variance is

s2 = 1

30
(0 + 12 · 8 + 22 · 8 + · · · + 52 · 1) − 1.73332

= 142

30
− 3.0044 = 1.72889.

We see that mean and variance are similar, which is an indication that the
choice of a Poisson distribution is appropriate since we assume E(X) = λ and
Var(X) = λ.

(c) The following table lists the proportions (i.e. relative frequencies f j ) together
with the probabilities P(X = x) from a Po(1.73)-distribution. As a reference,
we also list the probabilities from a Po(2)-distribution since it is not practically
possible that 1.73 bulbs stop working and it may hence be an option to round
the mean.
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fi Po(1.73) Po(2)
P(X = 0) 0.2 0.177 0.135
P(X = 1) 0.267 0.307 0.27
P(X = 2) 0.267 0.265 0.27
P(X = 3) 0.167 0.153 0.18
P(X = 4) 0.067 0.067 0.09
P(X = 5) 0.033 0.023 0.036

One can see that observed proportions and expected probabilities are close
together which indicates again that the choice of a Poisson distribution was
appropriate. Chapter 9 gives more details on how to estimate parameters, such
as λ, from data if it is unknown.

(d) Using λ = 1.73, we calculate

P(X > 5) = 1 − P(X ≤ 5) = 1 −
5∑

i=0

λi

i ! exp(−λ)

= 1 − exp(−1.73)

(
1.730

0! + 1.731

1! + · · · + 1.735

5!

)

= 1 − 0.99 = 0.01.

Thus, the bulbs are replaced on only 1 % of the days.

(e) If X follows a Poisson distribution then, given Theorem 8.2.1, Y follows an
exponential distribution with λ = 1.73.

(f) The expectation of an exponentially distributed variable is

E(Y ) = 1

λ
= 1

1.73
= 0.578.

This means that, on average, it takes more than half a day until one of the bulbs
gets fused.

Solution to Exercise 8.6

(a) Let X be a random variable describing “the number x of winning tickets
among n bought tickets”; then X follows the hypergeometric distribution
X ∼ H(n, 500, 4000). We need to determine n for the conditions specified.
We are interested in

P(X ≥ 3) = 1 − P(X = 2) − P(X = 1) − P(X = 0).

Using the PMF of the hypergeometric distribution

P(X = x) =
(M
x

)(N−M
n−x

)
(N
n

) ,

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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this equates to

P(X ≥ 3) = 1 −
(500

2

)(4000−500
n−2

)
(4000

n

) −
(500

1

)(4000−500
n−1

)
(4000

1

) −
(500

0

)(4000−500
n

)
(4000

n

) .

We have the following requirement:

1 −
(500

2

)(4000−500
n−2

)
(4000

n

) −
(500

1

)(4000−500
n−1

)
(4000

1

) −
(500

0

)(4000−500
n

)
(4000

n

)
!≥ 0.99.

To solve this equation, we can program this function for P(X > 3; n) in R and
evaluate it for different numbers of tickets sold, e.g. between 50 and 100 tickets:

raffle <- function(n){
p <- 1-((choose(500,2)*choose(3500,n-2))/(choose(4000,n)))
-((choose(500,1)*choose(3500,n-1))/(choose(4000,n)))
-((choose(500,0)*choose(3500,n))/(choose(4000,n)))
return(p)
}
raffle(50:100)
raffle(63:64)

The output shows that at least 64 tickets need to be bought to have a 99%
guarantee that at least three tickets win. This equates to spending e 96.

(b) We can plot the function as follows:

nb <- seq(1:75)
plot(nb,tombola(nb),type='l')

Figure B.16 shows the relationship between the number of tickets bought and
the probability of having at least three winning tickets.

(c) The solution of (a) shows that it is well worth taking part in the raffle: Marco
pays e96 and with a probability of 99 % and he wins at least three prizes which
are worth e142 · 3 = 426. More generally, the money generated by the raffle
is e1.50 × 4000 = 6000, but the prizes are worth e142 · 500 = 71, 000. One
may suspect that the company produces the appliances much more cheaply than
they are sold for and is thus so generous.
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Fig.B.16 Probability to have at least three winning tickets given the number of tickets bought

Solution to Exercise 8.7 The probability of getting a girl is p = 1 − 0.5122 =
0.4878.

(a) We are dealing with a geometric distribution here. Since we are interested in
P(X ≤ 3), we can calculate:

P(X = 1) = 0.4878

P(X = 2) = 0.4878(1 − 0.4878) = 0.2498512

P(X = 3) = 0.4878(1 − 0.4878)2 = 0.1279738

P(X ≤ 3) = P(X = 1) + P(X = 2) + P(X = 3) = 0.865625.

We would have obtained the same result in R using:

pgeom(2,0.4878)

Note that we have to specify “2” rather than “3” for x because R takes the number
of unsuccessful trials rather the number of trials until success.

(b) Herewedealwith a binomial distributionwith k = 2 and n = 4.We can calculate
P(X = 2) as follows:

P(X = k) =
(
n

k

)
pk(1 − p)n−k

=
(
4

2

)
0.48782 · (1 − 0.4878)2 = 0.3745536.

R would have given us the same result using the dbinom(2,4,0.4878) com-
mand.
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Solution to Exercise 8.8

(a) The random variable Y follows a Poisson distribution, see Theorem 8.2.1 for
more details.

(b) The fisherman catches, on average, 3 fish an hour. We can thus assume that the
rate λ is 3 and thus E(Y ) = λ = 3. Similarly, E(X) = 1

λ = 1
3 which means that

it takes, on average, 20 min to catch another fish.

(c) Using the PDF of the Poisson distribution, we get:

P(Y = 5) = 35

5! exp(−3) = 0.1 = 10%

P(Y < 1) = P(Y = 0) = 30

0! exp(−3) ≈ 0.0498 ≈ 5%.

We would have obtained the same results in R using the dpois(5,3) and
dpois(0,3) commands.

Solution to Exercise 8.9 The random variable X = “choice of dessert” follows a
multinomial distribution. More precisely, X1 describes whether chocolate brownies
were chosen, X2 describeswhether yoghurt was chosen, X3 describeswhether lemon
tart was chosen and X = {X1, X2, X3}.

(a) Using the PMF of the multinomial distribution, we get

P(X1 = n1, X2 = n2, . . . , Xk = nk) = n!
n1!n2! · · · nk ! · pn11 · · · pnkk

P(X1 = 2, X2 = 1, X3 = 2) = 5!
2!1!2! · 0.22 · 0.31 · 0.52

= 9%.

We would have obtained the same results in R as follows:

dmultinom(c(2,1,2),prob=c(0.2,0.3,0.5))

(b) The probability of choosing lemon tart for the first two guests is 1. We thus need
to determine the probability that 3 out of the remaining 3 guests order lemon
tart:

P(X1 = 0, X2 = 0, X3 = 3) = 3!
0!0!3! · 0.20 · 0.30 · 0.53

= 12.5%.

Using dmultinom(c(0,0,3),prob=c(0.2,0.3,0.5)) in R, we get the same
result.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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(c) The expectation vector is

E(X) = (np1, . . . , npk) = (20 · 0.2, 20 · 3, 20 · 0.5) = (4, 6, 10).

This means we expect 4 guests to order brownies, 6 to order yoghurt, and 10 to
order lemon tart. The covariance matrix can be determined as follows:

Cov(Xi , X j ) =
{
npi (1 − pi ) if i = j
−npi p j if i �= j.

Using n = 20, p1 = 0.2, p2 = 0.3 and p3 = 0.5, we obtain the covariance
matrix as:

⎛

⎝
3.2 −1.2 −2

−1.2 4.2 −3
−2 −3 5

⎞

⎠

Solution to Exercise 8.10

P(S ≥ 1,W ≥ 1)
indep.= P(S ≥ 1) · P(W ≥ 1)

= (1 − P(S = 0)) · (1 − P(W = 0))

= (1 − e−3 3
0

0! ) · (1 − e−4 4
0

0! )
≈ 0.93.

Solution to Exercise 8.11

(a) Random numbers of a normal distribution can be generated using the rnorm
command. By default μ = 0 and σ = 1 (see ?rnorm), so we do not need to
specify these parameters. We simply need to set n = 1000. The mean of the
1000 realizations can thus be obtained using mean(rnorm(1000)). We can, for
example, write a for loop to repeat this process 1000 times. An empty (=NA)
vector of size 1000 can be used to store and evaluate the results:

set.seed(24121980)
R <- 1000
means <- c(rep(NA,R))
for(i in 1:R){means[i] <- mean(rnorm(1000))}
mean(means)
[1] -0.0007616465
var(means)
[1] 0.0009671311
plot(density(means))

Wesee that themean of the arithmeticmeans is close to zero, but not exactly zero.
The variance is approximately σ2/n = 1/1000 = 0.001, as one would expect
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Fig.B.17 Kernel density
plot of the distribution
simulated in Exercise 8.11a
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from the Central Limit Theorem. The distribution is symmetric, similar to a
normal distribution, see Fig. B.17. It follows that X̄n is approximately N (μ, σ2

n )

distributed, as one could expect from the Theorem of Large Numbers and the
Central Limit Theorem. It is important to understand that X̄ is not fixed but a
random variable which follows a distribution, i.e. the normal distribution.

(b) We can use the same code as above, except we use the exponential instead of
the normal distribution:

means2 <- c(rep(NA,R))
for(i in 1:R){means2[i] <- mean(rexp(1000))}
mean(means2)
[1] 1.001321
var(means2)
[1] 0.001056113
plot(density(means))

The realizations are i.i.d. observations. Once can see that, as in a), X̄n is approx-
imately N (μ, σ2

n ) = N (1, 1/1000) distributed. It is evident that the Xi do not
necessarily need to follow a normal distribution for X̄ to follow a normal distri-
bution, see also Fig. B.18a.

(c) Increasing the number of repetitions makes the distribution look closer to a
normal distribution, see Fig. B.18b. This visualizes that as n tends to infinity X̄n

gets closer to a N (μ, σ2

n )-distribution.
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(b) 10,000 repetitions

Fig.B.18 Kernel density plots for Exercises 8.11b and 8.11c

Chapter 9

Solution to Exercise 9.1

(a) The exercise tells us that Xi
iid∼ Po(λ), i = 1, 2, . . . , n. Let us look at the real-

izations x1, x2, . . . , xn : under the assumption of independence, which we know
is fulfilled because the Xi ’s are i.i.d., and we can write the likelihood function
as the product of the n PMF’s of the Poisson distribution:

L(θ; x) =
n∏

i=1

f (xi ; θ) =
n∏

i=1

λxi

xi ! e
−λ = λ

∑
xi

∏
xi !e

−nλ.

It is better to work on a log-scale because it is easy to differentiate. The results
are identical no matter whether we use the likelihood function or the log-
likelihood function because the log transformation is monotone in nature. The
log-likelihood function is:

ln L =
∑

xi ln λ − ln(x1! · · · xn !) − nλ.

Differentiating with respect to λ yields
∂ ln L

∂λ
= 1

λ

∑
xi − n

!= 0

which gives us the ML estimate:

λ̂ = 1

n

∑
xi = x̄ .

We need to confirm that the second derivative is < 0 at λ̂ = x̄ ; otherwise, the
solution would be a minimum rather than a maximum. We get

∂2 ln L

∂λ2 = − 1

λ̂2

∑
xi = −n

λ̂
< 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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It follows that the arithmetic mean x̄ = λ̂ is the maximum likelihood estimator
for the parameter λ of a Poisson distribution.

(b) Using the results from (a) we can write the log-likelihood function for x1 =
4, x2 = 3, x3 = 8, x4 = 6, x5 = 6 as:

ln L = 27 ln λ − ln(4! 3! 8! 6! 6!) − 5λ.

because
∑

xi = 27. We can write down this function in R as follows:

MLP <- function(lambda){
27∗log(lambda) - log(factorial(4)∗...∗factorial(6)) -
5∗lambda
}

The function can be plotted using the curve command:

curve(MLP, from=0, to=10)

Figure B.19 shows the log-likelihood function. It can be seen that the function
reaches its maximum at x̄ = 5.4.

(c) Using (a) we can write the likelihood function as

L(θ; x) =
n∏

i=1

f (xi ; θ) =
n∏

i=1

λxi

xi ! e
−λ = λ

∑
xi

∏
xi !e

−nλ = λ
∑

xi e−nλ
︸ ︷︷ ︸

g(t,λ)

1∏
xi !︸ ︷︷ ︸

h(x1,...,xn)

.

Fig.B.19 Illustration of the
log-likelihood function
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This means T = ∑n
i=1 xi is sufficient for λ. The arithmetic mean, which is

the maximum likelihood estimate, is a one-to-one function of T and therefore
sufficient too.

Solution to Exercise 9.2

(a) The probability density function of a normal distribution equates to

f (x) = 1

σ
√
2π

exp

(
− (x − μ)2

2σ2

)

with∞ < x < ∞, −∞ < μ < ∞, σ2 > 0. The likelihood function is therefore

L(x1, x2, . . . , xn|μ,σ2) =
(

1√
2πσ2

)n

exp

(
−

n∑

i=1

(xi − μ)2

2σ2

)
.

To find the maximum of L(x1, x2, . . . , xn|μ,σ2), it is again easier to work with
the log-likelihood function, which is

l = ln L(x1, x2, . . . , xn|μ,σ2) = −n

2
ln 2π − n

2
ln σ2 −

n∑

i=1

(
(xi − μ)2

2σ2

)
.

Assuming σ2 to be 1, differentiating the log-likelihood function with respect to
μ, and equating it to zero gives us

∂l

∂μ
= 2

n∑

i=1

(
xi − μ

12

)
= 0 ⇔ nμ =

n∑

i=1

xi .

The ML estimate is therefore μ̂ = x̄ .

(b) Looking at the differentiated log-likelihood function in (a) shows us that the ML
estimate of μ is always the arithmetic mean, no matter whether σ2 is 1 or any
other number.

(c) Differentiating the log-likelihood function from (a) with respect to σ2 yields

∂l

∂σ2 = −n

2

1

σ2 + 1

2σ4

n∑

i=1

(xi − μ)2 = 0.

Using μ̂ = x̄ we calculate ∂l
∂σ2 = 0 as

σ̂2 = 1

n

n∑

i=1

(xi − μ̂)2 = 1

n

n∑

i=1

(xi − x̄)2.

Since the parameter θ = (μ,σ2) is two-dimensional, it follows that one needs to
solve two ML equations, where μ̂ML is estimated first, and σ̂2

ML second (as we
did above). It follows further that one needs to look at the positive definiteness
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of a matrix (the so-called information matrix) when checking that the second-
order derivatives of the estimates are positive and therefore the estimates yield
a maximum rather then a minimum. However, we omit this lengthy and time-
consuming task here.

Solution to Exercise 9.3 The probability density function of U (0, θ) is

f (x) = 1

θ
if 0 < x < θ and 0 otherwise.

Note that this equates to the PDF from Definition 8.2.1 for a = 0 and b = θ. The
likelihood function is therefore

L(x1, x2, . . . , xn|θ) =
(
1

θ

)n

if 0 < xi < θ and 0 otherwise.

One can see that L(x1, x2, . . . , xn|θ) increases as θ decreases. The maximum of
the likelihood function is therefore achieved for the smallest valid θ. In particular, θ is
minimized when θ ≥ max (x1, x2, . . . , xn) = x(n). This follows from the definition
of the PDFwhich requires that 0 < xi < θ and therefore θ > xi . Thus, the maximum
likelihood estimate of θ is x(n), the greatest observed value in the sample.

Solution to Exercise 9.4

(a) Tn(X) is unbiased, and therefore also asymptotically unbiased, because

E(Tn(X)) = E(nXmin)
(7.29)= n

1

nλ
= 1

λ
= μ.

Similarly, Vn(X) is unbiased, and therefore also asymptotically unbiased,
because

E(Vn(X)) = E

(
1

n

n∑

i=1

Xi

)
(7.29)= 1

n

n∑

i=1

E(Xi ) = 1

n
n
1

λ
= μ.

(b) To calculate the MSE we need to determine the bias and the variance of the
estimators as we know from Eq. (9.5). It follows from (a) that both estimators
are unbiased and hence the bias is 0. For the variances we get:

Var(Tn(X)) = Var(nXmin)
(7.33)= n2Var(Xmin) = n2

1

n2λ2 = μ2.

Var(Vn(X)) = Var

(
1

n

n∑

i=1

Xi

)
(7.33)= 1

n2

n∑

i=1

Var(Xi ) = 1

n2
n
1

λ2 = 1

n
μ2.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Since the mean squared error consists of the sum of the variance and squared
bias, the MSE for Tn(X) and Vn(X) are μ2 and n−1μ2, respectively. One can
see that the larger n, the more superior Vn(X) over Tn(X) in terms of the mean
squared error. In other words, Vn(X) is more efficient than Tn(X) because its
variance is lower for any n > 1.

(c) Using the results from (b), we get

lim
n→∞MSE(Vn(X)) = lim

n→∞
1

n
μ2 = 0.

Thismeans theMSEapproaches 0 asn tends to infinity. Therefore,Vn(X) isMSE
consistent for μ. Since Vn(X) is MSE consistent, it is also weakly consistent.

Solution to Exercise 9.5

(a) The point estimate of μ is x̄ which is

μ̂ = x̄ = 1

n

n∑

i=1

xi = 1

24
(450 + · · · + 790) = 667.92.

The variance of σ2 can be estimated unbiasedly using s2:

σ̂2 = s2 = 1

n − 1

n∑

i=1

(xi − x̄)2

= 1

23
((450 − 667.92)2 + · · · + (790 − 667.92)2) ≈ 18, 035.

(b) The variance is unknown and needs to be estimated. We thus need the t-
distribution to construct the confidence interval. We can determine t23;0.975 ≈
2.07 usingqt(0.975,23) orTableC.2 (though the latter is not detailed enough),
α = 0.05, x̄ = 667.97 and σ̂2 = 18, 035. This yields

Il(X) = x̄ − tn−1;1−α/2 · s√
n

= 667.92 − t23;0.975 ·
√
18, 035√
24

≈ 611.17,

Iu(X) = x̄ + tn−1;1−α/2 · s√
n
667.92 − t23;0.975 ·

√
18, 035√
24

≈ 724.66.

The confidence interval for μ is thus [611.17; 724.66].

(c) We can reproduce these results in R as follows:

eland <- c(450,730,700,600,620,,790)
t.test(eland)$conf.int
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Solution to Exercise 9.6

• Let us start with the confidence interval for the “Brose Baskets Bamberg”. Using
t15;0.975 = 2.1314 (qt(0.975,15) or Table C.2) andα = 0.05, we can determine
the confidence interval as follows:

Il(Ba) = x̄ − tn−1;1−α/2 · s√
n

= 199.06 − t15;0.975 · 7.047√
16

= 195.305,

Iu(Ba) = x̄ + tn−1;1−α/2 · s√
n

= 199.06 + t15;0.975 · 7.047√
16

= 202.815.

Thus, we get [195.305; 202.815].
• For the “Bayer Giants Leverkusen”, we use t13;0.975 = 2.1604 to get

Il(L) = x̄ − tn−1;1−α/2 · s√
n

= 196 − t13;0.975 · 9.782√
14

= 190.352,

Iu(L) = x̄ + tn−1;1−α/2 · s√
n

= 196 + t13;0.975 · 9.782√
14

= 201.648.

This leads to a confidence interval of [190.352; 201.648].
• For “Werder Bremen”, we need to use the quantile t22,0.975 = 2.0739 which yields
a confidence interval of

Il(Br) = x̄ − tn−1;1−α/2 · s√
n

= 187.52 − t22;0.975 · 5.239√
23

= 185.255,

Iu(Br) = x̄ + tn−1;1−α/2 · s√
n

= 187.25 + t22;0.975 · 5.239√
23

= 189.786.

The interval is therefore [185.255; 189.786].
• The mean heights of the basketball teams are obviously larger than the mean
height of the football team. The two confidence intervals of the basketball teams
overlap, whereas the intervals of the football team with the two basketball teams
do not overlap. It is evident that this indicates that the height of football players is
substantially less than the height of basketball players. In Chap. 10, we will learn
that confidence intervals can be used to test hypotheses about mean differences.

Solution to Exercise 9.7

(a) Using n = 98, we calculate an unbiased point estimate for p using x̄ = p̂. Note
that xi = 1 if the wife has to wash the dishes.

p̂ = 1

n

n∑

i=1

xi = 1

98
· 59 = 59

98
≈ 0.602.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(b) Since n p̂(1 − p̂) = 98 · 0.602 · 0.398 = 23.48 > 9 and p is sufficiently large,
we can use the normal approximation to calculate a confidence interval for p.
Using z1−α/2 = z0.975 = 1.96, we obtain

Il(X) = 0.602 − 1.96

√
0.602 · 0.398

98
= 0.505,

Iu(X) = 0.602 + 1.96

√
0.602 · 0.398

98
= 0.699.

This yields a confidence interval of [0.505, 0.699]. Note that the confidence
interval does not contain p = 0.5which is the probability that would be expected
if the coin was fair. This is a clear sign that the coin might be unfair.

(c) If the coin is fair, we can use p̂ = 0.5 as our prior judgement. We would then
need

n ≥
[ z1−α/2

Δ

]2
p̂(1 − p̂)

≥
[
1.96

0.005

]2
0.52 = 38, 416

dinners to get the desired precision—which is not possible as this would con-
stitute a time period of more than 100 years. This shows that the expectation of
such a high precision is unrealistic and needs to be modified. However, as the
results of (b) show, the coin may not be fair. If the coin is indeed unfair, we may
have, for example, p = 0.6 and 1 − p = 0.4 which gives a smaller sample size.
We can thus interpret the sample size as a conservative estimate of the highest
number of dinners needed.

Solution to Exercise 9.8 If a student fails then xi = 1. We know that
∑

xi = 11 and
n = 104.

(a) Using x̄ = p as point estimate, we get p̂ = 11
104 ≈ 0.106 = 10.6 %. Using

z1−α/2 = z0.975 = 1.96, we can calculate the confidence interval as

0.106 ± 1.96 ·
√
0.106 · 0.894

104
= [0.047; 0.165] .

Using R we get:

binom.test(11,104)$conf.int
[1] 0.05399514 0.18137316

This result is different because the above command does not use the normal
approximation. In addition, p is rather small which means that care must be
exercised when using the results of the confidence interval with normal approx-
imation in this context.
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(b) The point estimate of 10.6% is substantially higher than 3.2%. The lower bound
confidence interval is still larger than the proportion of failures at county level.
This indicates that the school is doing worse than most other schools in the
county.

Solution to Exercise 9.9

(a) Whether the i th household has switched on the TV and watches “Germany’s
next top model” (GNTM) relates to a random variable Xi with

Xi = 1 : if TV switched on and household watching GNTM

Xi = 0 : if TV switched off or household watches another show.

It follows that X = ∑2500
i=1 Xi is the random variable describing the number of

TVs, out of 2500 TVs, which are switched on and show GNTM. Since the Xi ’s
can be assumed to be i.i.d., we can say that X follows a binomial distribution,
i.e. X ∼ B(2500; p) with p unknown. The length of the confidence interval for
p, [

p̂ − z1−α/2

√
p̂(1 − p̂)

n
, p̂ + z1−α/2

√
p̂(1 − p̂)

n

]
,

is

L = 2z1−α/2

√
p̂(1 − p̂)

n
.

Unfortunately, p̂(1 − p̂) is unknown but p̂(1 − p̂) ≤ 1
4 because the maximum

value for p̂(1 − p̂) is 0.25 if p̂ = 0.5. Hence

L ≤ 2z1−α/2

√
1
4

n
= 1.96√

2500
= 0.0392.

Thismeans the precision is half the length, i.e.±0.0196 = ±1.96%, in theworst
case.

(b) There is the danger of selection bias. A total of 500 households refused to
take part in the study. It may be that their preferences regarding TV shows are
different from the other 2500 households. For example, it may well be possible
that those watching almost no TV refuse to be included; or that those watching
TV shows which are considered embarrassing by society are refusing as well.
In general, missing data may cause point estimates to be biased, depending on
the underlying mechanism causing the absence.
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Solution to Exercise 9.10

(a) Using z1−α/2 = 1.96 and σ̂ = 0.233, we obtain an optimal sample size of at
least

nopt ≥
[
2
z1−α/2σ0

Δ

]2 =
[
2 · 1.96 · 0.233

0.2

]2
= 20.85.

To calculate a confidence interval with a width of not more than 0.2 s, the results
of at least 21 athletes are needed.

(b) The sample size is 30. Thus, the confidence interval width should be smaller
than 0.2 s. This is indeed true as the calculations show:

[10.93 ± t0.975;29︸ ︷︷ ︸
2.045

·0.233√
30

] = [10.84; 11.02].

The width is only 0.18 s.

(c) If we calculate a 80 % confidence interval, then the lower confidence limit
corresponds to the running time which is achieved by only 10 % of the athletes
(of the population). Using t0.9;29 ≈ 1.31 we get

[10.93 ± 1.31 · 0.233√
30

] = [10.87; 10.99].
The athlete’s best time is thus below the lower confidence limit. He is among
the top 10 % of all athletes, using the results of the confidence interval.

Solution to Exercise 9.11

(a) The odds ratio is

OR = 163 · 477
475 · 151 ≈ 1.08.

This means the chances that a pizza arrives in time are about 1.08 times higher
for Laura compared with Melissa. To calculate the 95 % confidence interval, we
need θ̂0 = ln(1.08) ≈ 0.077, z1−α/2 ≈ 1.96, and

σ̂θ̂0
=
(

1

163
+ 1

475
+ 1

151
+ 1

477

) 1
2 = 0.13.

The interval for the log odds ratio is

[ln(1.08) ± 1.96 · 0.13] ≈ [−0.18; 0.33] .
Exponentiating the interval gives us the 95 % confidence interval for the odds
ratio which is [0.84; 1.39]. This indicates that the odds of Laura’s pizzas arriving
earlier than Melissa’s are not much different from one. While the point estimate
tells us that Laura’s pizzas are delivered 1.08 times faster, the confidence interval
tells us that there is uncertainty around this estimate in the sense that it could
also be smaller than 1 and Melissa may not necessarily work more slowly than
Laura.
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(b) We can reproduce the results in R by attaching the pizza data, creating a cat-
egorical delivery time variable (using cut) and then applying the oddsratio
command from the library epitools onto the contingency table:

attach(pizza)
timecat <- cut(time, breaks=c(-1,30,150))
library(epitools)
oddsratio(table(timecat,operator), method='wald')

Chapter 10

Solution to Exercise 10.1 A type I error is defined as the probability of rejecting H0
if H0 is true. This error occurs if A thinks that B does confess, but B does not. In this
scenario, A confesses, goes free, and B serves a three-year sentence. A type II error
is defined as the probability of accepting H0, despite the fact that H0 is wrong. In
this case, B does confess, but A does not. In this scenario, B goes free and A serves
a three-year sentence. A type II error is therefore worse for A. With a statistical test,
we always control the type I error, but not the type II error.

Solution to Exercise 10.2

(a) The hypotheses are

H0 : μ = 100 versus H1 : μ �= 100.

(b) It is a one-sample problem for μ: thus, for known variance, the Gauss test can
be used; the t-test otherwise, see also Appendix D. Since, in this exercise, σ
is assumed to be known we can use the Gauss test; i.e. we can compare the
test statistic with the normal distribution (as opposed to the t-distribution when
using the t-test). The sample size is small: we must therefore assume a normal
distribution for the data.

(c) To calculate the realized test statistic, we need the arithmetic mean x̄ = 98.08.
Then we obtain

t (x) = x̄ − μ

σ
· √

n = 98.08 − 100

2
· √

15 = −1.92

2
· √

15 = −3.72.

We reject H0 if |t (x)| > z1− α
2

= 1.96. Since |t (x)| = 3.72 > 1.96, the null
hypothesis can be rejected. The test is significant. There is enough evidence
to suggest that the observed weights do not come from a normal distribution
with mean 100 g.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(d) To show thatμ < 100, we need to conduct a one-sided test.Most importantly, the
research hypothesis of interest needs to be stated as the alternative hypothesis:

H0 : μ ≥ 100 versus H1 : μ < 100.

(e) The test statistic is the same as in (b): t (x) = −3.72. However, the critical region
changes. H0 gets rejected if t (x) < −z1−α = −1.64. Again, the null hypothesis
is rejected. The producer was right in hypothesizing that the average weight of
his chocolate bars was lower than 100 g.

Solution to Exercise 10.3

(a) We calculate

No auction Auction
x̄ 16.949 10.995
s2 2.948 2.461
s 1.717 1.569
v 0.101 0.143

Note that we use the unbiased estimates for the variance and the standard devia-
tion as explained in Chap. 9; i.e. we use 1/(n − 1) rather than 1/n. It is evident
that the mean price of the auctions (μa) is lower than the mean non-auction
price (μna), and also lower than the price from the online book store. There is,
however, a higher variability in relation to the mean for the auction prices. One
may speculate that the best offers are found in the auctions, but that there are no
major differences between the online store and the internet book store, i.e.

• μna �= e16.95,

• μa < e16.95,

• μna > μa .

(b) We can use the t-test to test the hypotheses

H0 : μna = 16.95 versus H1 : μna �= 16.95.

The test statistic is

t (x) = x̄ − μ

σ
· √

n = 16.949 − 16.95

1.717
· √

14 = −0.002.

Using the decision rules from Table 10.2, we conclude that H0 gets rejected if
|t (x)| > t13,0.975 = 2.16. We can calculate t13,0.975 either by using Table C.2
or by using R (qt(0.975,13)). Since |t (x)| = 0.002 ≯ 2.16, we keep the null
hypothesis. There is not enough evidence to suggest that the prices of the online
store differ from e16.95 (which is the price from the internet book store).

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(c) Using (9.6) we can calculate the upper and lower limits of the confidence interval
as,

x̄ + tn−1;1−α/2 · sX√
n

= 16.949 + t13;0.975︸ ︷︷ ︸
=2.16

·1.717√
14

= 17.94

x̄ − tn−1;1−α/2 · sX√
n

= 16.949 − t13;0.975︸ ︷︷ ︸
=2.16

·1.717√
14

= 15.96

respectively. The confidence interval does contain μ0 = 16.95; hence, the null
hypothesis μ = μ0 = 16.95 cannot be rejected. This is the same conclusion as
obtained from the one-sample t-test from above.

(d) We test the following hypotheses:

H0 : μa ≥ 16.95 versus H1 : μa < 16.95.

The realized test statistic is

t (x) = x̄ − μ

σ
· √

n = 10.995 − 16.95

1.569
· √

14 = −14.201.

Table 10.2 tells us that H0 gets rejected if t (x) < −t13,0.95. Since −14.201 <

−2.16 we reject H0. The test confirms our hypothesis that the mean auction
prices are lower than e16.95, i.e. the price from the book store.

(e) We need to conduct two tests: the two-sample t-test for the assumption of equal
variances and the Welch test for the assumption of different variances.

(i) Two-sample t-test:

H0 : μna ≤ μa versus H1 : μna > μa .

To calculate the test statistic (10.4), we need to determine the pooled sample
variance:

s2 = (nna − 1)s2na + (na − 1)s2a
nna + na − 2

= (14 − 1)2.948 + (14 − 1)2.461

14 + 14 − 2
≈ 2.705

The test statistic is

t (x) = x̄na − x̄a
s

·
√

nna · na
nna + na

= 16.949 − 10.995√
2.705

·
√

14 · 14
14 + 14

= 5.954

1.645
·
√
196

28
= 3.621 · √

7 = 9.578.

We reject H0 if t (x) > tnna+na−2,0.95 = t26,0.95 = 1.71. Table C.2 does not
list the quantile; thus, one uses R (qt(0.95,26)) to determine the quantile.
Since 9.578 > 1.71, we reject the null hypothesis. The test is significant.
There is enough evidence to conclude that the mean auction prices are lower
than the mean non-auction prices.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(ii) Welch test: For the Welch test, we calculate the test statistic, using (10.6)
as:

t (x) = |x̄na − x̄a |√
s2na
nna

+ s2a
na

= |16.949 − 10.995|√
2.948
14 + 2.461

14

= 9.578.

To calculate the critical value, we need the degrees of freedom:

v =
(
s2na
nna

+ s2a
na

)2

/

((
s2na/nna

)2

nna − 1
+
(
s2a/na

)2

na − 1

)

=
(
2.948

14
+ 2.461

14

)2

/

(
(2.948/14)2

13
+ (2.461/14)2

13

)

≈ 25.79

We reject H0 if t (x) > tv,0.95. Using tv,0.95 = 1.706 (in R obtained as
qt(0.95,25.79)) and t (x) = 9.578, we reject the null hypothesis. The
conclusions are identical to using the two-sample t-test (in this example).
Interestingly, the two test statistics are similar which indicates that the
assumption of equal variances in case (i) was not unreasonable.

(f) The F-test relies on the assumption of the normal distribution and tests the
hypotheses:

H0 : σ2
na = σ2

a versus H1 : σ2
na �= σ2

a .

We can calculate the test statistic as described in Appendix C:

t (x) = s2na
s2a

= 2.949

2.461
= 1.198.

The F-distribution is not symmetric around 0; thus, we need to calculate two crit-
ical values: fn1−1;n2−1;1−α/2 and fn1−1;n2−1;α/2. Using R we get f13,13,0.975 =
3.115 (qf(0.975,13,13)) and f13,13,0.025 = 1

3.115 = 0.321 (qf(0.025,13,13)).
H0 is rejected if t (x) > fn1−1;n2−1;1−α/2 or t (x) < fn1−1;n2−1;α/2. Since0.321 <

1.198 < 3.115 we do not reject H0. This means there is strong evidence that the
two variances are equal. This is also reassuring with respect to using the two-
sample t-test above (which assumes equal variances). However, note that testing
the equality of variances with the F-test and then using the two-sample t-test or
Welch test based on the outcome of the F-test is not ideal and not necessarily
correct. In practice, it is best to simply use the Welch test (rather than the t-test),
which is also the default option in the R function t.test.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(g) We need the following table to calculate the rank sums:

Value 9.3 9.52 9.54 10.01 10.5 10.5 10.55 10.59 11.02 11.03
Sample a a a a a a a a a a
Rank 1 2 3 4 5 6 7 8 9 10

Value 11.89 11.99 12 13.79 15.49 15.9 15.9 15.9 15.9 15.9
Sample a a a na a na na na na na
Rank 11 12 13 14 15 16 17 18 19 20

Value 15.99 16.98 16.98 17.72 18.19 18.19 19.97 19.97
Sample na na na na na na na na
Rank 21 22 23 24 25 26 27 28

We can calculate the rank sums as Rna+ = 13 + 15 + · · · + 28 = 300 and
Ra+ = 1 + 2 + · · · + 13 + 15 = 106, respectively. Thus

U1 = 142 + 14 · 15
2

− 106 = 195; U2 = 142 + 14 · 15
2

− 300 = 1.

With U = min(195, 1) = 1 we can calculate the test statistic, which is approx-
imately normally distributed, as:

t (x, y) = U − n1·n2
2√

n1 · n2 · (n1 + n2 + 1)

12

= 1 − 142
2√

14 · 14 · 29
12

≈ −4.46

Since |t (x, y)| = 4.46 > z1−α/2 = 1.96, the null hypothesis can be rejected.We
conclude that the locations of the two distributions are shifted. Obviously the
prices of the auction are smaller in general, and so is the median.

(h) We can type in the data and evaluate the summary statistics using the mean,
var, and sd commands:

na <- c(18.19,16.98,19.97,...,17.72)
a <- c(10.5,12.0, 9.54,..., 11.02)
mean(na)
mean(a)
var(na)
...

The t.test command can be used to answer questions (b)–(e). For (b) and (c)
we use

t.test(na,mu=16.95)
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One-sample t-test

data: na

t = -0.0031129, df = 13, p-value = 0.9976

alternative hypothesis: true mean is not equal to 16.95

95 percent confidence interval:

15.95714 17.94001

sample estimates:

mean of x

16.94857

The test decision can bemade bymeans of either the p-value (= 0.9976 > 0.05)
or the confidence interval ([15.95; 17.94], which covers 16.95). To answer (d)
and (e) we need to make use of the option alternative which specifies the
alternative hypothesis:

t.test(a,mu=16.95,alternative='less')
t.test(na,a, alternative='greater')

Note that the two-sample test provides a confidence interval for the difference
of the means. Questions (f) and (g) can be easily solved by using the var.test
and wilcox.test commands:

var.test(na,a)
wilcox.test(na,a)

F-test to compare two variances

data: na and a
F = 1.198, num df = 13, denom df = 13, p-value = 0.7496
alternative hypothesis: true ratio of variances not equal to 1
95 percent confidence interval:
0.3845785 3.7317371

sample estimates:
ratio of variances

1.197976

Wilcoxon rank sum test with continuity correction

data: na and a
W = 195, p-value = 8.644e-06
alternative hypothesis: true location shift is not equal to 0
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The test decision is best made by using the p-value.

Solution to Exercise 10.4 Since the data before and after the diet is dependent
(weight measured on the same subjects), we need to use the paired t-test. To calculate
the test statistic, we need to first determine the weight differences:

Person i 1 2 3 4 5 6 7 8 9 10
Before diet 80 95 70 82 71 70 120 105 111 90
After diet 78 94 69 83 65 69 118 103 112 88
Differences d 2 1 1 −1 6 1 2 2 −1 2

Using d̄ = 1.5 and

s2d = 1

10 − 1
· (0.52 + 0.52 + 0.52 + 2.52 + 4.52 + · · · + 0.52) = 3.83,

we calculate the test statistic as

t (d) = d̄

sd

√
n = 1.5√

3.83

√
10 = 2.42.

The null hypothesis is rejected because |t (d)| = 2.42 > t9;0.975 = 2.26. This means
the mean weight before and after the diet is different. We would have obtained the
same results by calculating the confidence interval for the differences:

[
d̄ ± tn−1;1−α/2

sd√
n

]
⇔

[
1.5 ± 2.26 ·

√
3.83√
10

]
= [0.1; 2.9].

Since the confidence interval does not overlapwith zero,we reject the null hypothesis;
there is enough evidence that the mean difference is different (i.e. greater) from zero.
While the test is significant and suggests a weight difference, it is worth noting that
the mean benefit from the diet is only 1.5 kg. Whether this is a relevant reduction in
weight has to be decided by the ten people experimenting with the diet.

Solution to Exercise 10.5

(a) The production is no longer profitable if the probability of finding a deficient
shirt is greater than 10 %. This equates to the hypotheses:

H0 : p ≤ 0.1 versus H0 : p > 0.1.
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The sample proportion of deficient shirts is p̂ = 35
230 = 7

46 . Since np(1 − p) =
230 · 1

10 · 9
10 > 9 we can use the test statistic

t (x) = p̂ − p0√
p0(1 − p0)

√
n =

7
46 − 1

10√
1
10 · 9

10

· √
230

= 6

115
· 10
3

· √
230 = 4

23
· √

230 = 2.638.

The null hypothesis gets rejected because t (x) = 2.638 > z0.95 = 1.64. It seems
the production is no longer profitable.

(b) The test statistic is t (x) = ∑
xi = 30. The critical region can be determined by

calculating

PH0(Y ≤ cl) ≤ 0.025 and PH0(Y ≥ cr ) ≤ 0.975.

Using R we get

qbinom(p=0.975,prob=0.1,size=230)
[1] 32
qbinom(p=0.025,prob=0.1,size=230)
[1] 14

The test statistic (t (x) = 30) does not fall outside the critical region ([14; 32]);
therefore, the null hypothesis is not rejected. The same result is obtained by
using the binomial test in R: binom.test(c(30,200),p=0.1). This yields
a p-value of 0.11239 and a confidence interval covering 10 % ([0.09; 0.18]).
Interestingly, the approximate binomial test rejects the null hypothesis, whereas
the exact test keeps it. Since the latter test is more precise, it is recommended to
follow its outcome.

(c) The research hypothesis is that the newmachine produces fewer deficient shirts:

H0 : pnew ≥ pold versus H1 : pnew < pold.

To calculate the test statistic, we need the following:

d̂ = xnew
nnew

− xold
nold

= 7

115
− 7

46
= − 21

230

p̂ = xnew + xold
nnew + nold

= 7 + 35

230 + 115
= 42

345
= 14

115
.

This yields:

t (xnew, xold) = d̂√
p̂(1 − p̂)( 1

nnew
+ 1

nold
)

= − 21
230√

14
115 · 101

115 (
1
115 + 1

230 )

= − 21
230√

0.1069 · 0.013 = −0.0913

0.0373
= −2.448.



Appendix B: Solutions to Exercises 401

The null hypothesis is rejected because t (xnew, xold) = −2.448 < z0.05 =
−z0.95 = −1.64. This means we accept the alternative hypothesis that the new
machine is better than the old one.

(d) The data can be summarized in the following table:

Machine 1 Machine 2
Deficient 30 7
Fine 200 112

To test the hypotheses established in (c), we apply the fisher.test command
onto the contingency table:

fisher.test(matrix(c(30,200,7,112),ncol=2))

This yields a p-value of 0.0438 suggesting, as the test in (c), that the null hypoth-
esis should be rejected. Note that the confidence interval for the odds ratio, also
reported by R, does not necessarily yield the same conclusion as the test of
Fisher.

Solution to Exercise 10.6

(a) To compare the two means, we should use the Welch test (since the variances
cannot be assumed to be equal). The test statistic is

t (x, y) = |x̄ − ȳ|
√

s22
n2

+ s21
n1

= |103 − 101.8|√
12599.56

10 + 62.84
10

≈ 0.0337.

The alternative hypothesis is H1 : μ2 > μ1; i.e. we deal with a one-sided hypoth-
esis. The null hypothesis is rejected if t (x, y) > tv;1−α. Calculating

v =
(
s21
n1

+ s22
n2

)2

/

((
s21/n1

)2

n1 − 1
+
(
s22/n2

)2

n2 − 1

)

=
(
62.844

10
+ 12599

10

)2

/

(
(62.844/10)2

9
+ (12599/10)2

9

)
≈ 9.09

yields t9.09;0.95 = 1.831 (using qt(0.95,9.09) in R; or looking at Table C.2
for 9 degrees of freedom). Therefore, t (x, y) < t9.09;0.95 and the null hypothesis
is not rejected. This means player 2 could not prove that he scores higher on
average.
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(b) We have to first rank the merged data:

Value 6 29 40 47 47 64 87 88 91 98
Sample 2 2 2 2 2 2 2 1 1 2
Rank 1 2 3 4 5 6 7 8 9 10

Value 99 99 101 104 105 108 111 112 261 351
Sample 1 1 1 1 1 1 1 1 2 2
Rank 11 12 13 14 15 16 17 18 19 20

This gives us R1+ = 8 + 9 + · · · + 18 = 133, R2+ = 1 + 2 + · · · + 20 = 77,
U1 = 102 + (10 · 11)/2 − 133 = 22,U2 = 102 + (10 · 11)/2 − 77 = 78, and
therefore U = 22. The test statistic can thus be calculated as

t (x, y) = U − n1·n2
2√

n1 · n2 · (n1 + n2 + 1)

12

= 22 − 102
2√

10 · 10 · 21
12

≈= −2.12.

Since |t (x, y)| = 2.12 > z1−α = 1.64, the null hypothesis is rejected. The test
supports the alternative hypothesis of higher points for player 1. The U -test has
the advantage of not being focused on the expectation μ. The two samples are
clearly different: the second player scores with much more variability and his
distribution of scores is clearly not symmetric and normally distributed. Since
the sample is small, and the assumption of a normal distribution is likely not
met, it makes sense to not use the t-test. Moreover, because the distribution is
skewed the mean may not be a sensible measure of comparison. The two tests
yield different conclusions in this example which shows that one needs to be
careful in framing the right hypotheses. A drawback of the U -test is that it uses
only ranks and not the raw data: it thus uses less information than the t-test
which would be preferred when comparing means of a reasonably sized sample.

Solution to Exercise 10.7 Otto speculates that the probability of finding a bear
of colour i is 0.2, i.e. pwhite = 0.2, pred = 0.2, porange = 0.2, pyellow = 0.2, and
pgreen = 0.2. This hypothesis can be tested by using the χ2 goodness-of-fit test.
The test statistic is

t (x) = χ2 =
k∑

i=1

(Ni − npi )2

npi
= 1

250
(222 − 250)2 + (279 − 250)2

+ (251 − 250)2 + (232 − 250)2 + (266 − 250)2 = 8.824.

The null hypothesis cannot be rejected because t (x) = 8.824 ≯ c4−1−0;0.95 = 9.49.
While the small number of white bears might be disappointing, the test suggests that
there is not enough evidence to reject the hypothesis of equal probabilities.
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Solution to Exercise 10.8

(a) To answer this question, we need to conduct the χ2-independence test. The test
statistic t (x, y) is identical to Pearson’s χ2 statistic, introduced in Chap. 4. In
Exercise 4.4, we have calculated this statistic already, χ2 ≈ 182, see p. 350
for the details. The null hypothesis of independence is rejected if t (x, y) =
χ2 > c(I−1)(J−1);1−α. With I = 2 (number of rows), and J = 4 (number of
columns) we get c3;0.95 = 7.81 using Table C.3 (or qchisq(0.95,3) in R).
Since 182 > 7.81, we reject the null hypothesis of independence.

(b) The output refers to a χ2 test of homogeneity: the null hypothesis is that the
proportion of passengers rescued is identical for the different travel classes. This
hypothesis is rejected because p is smaller than α = 0.05. It is evident that the
proportions of rescued passengers in the first two classes (60%, 43.9%) aremuch
higher than in the other classes (25 %, 23.8 %). One can see that the test statistic
(182.06) is identical to (a). This is not surprising: the χ2-independence test and
the χ2 test of homogeneity are technically identical, but the null hypotheses
differ. In (a), we showed that “rescue status” and “travel class” are independent;
in (b), we have seen that the conditional distributions of rescue status given travel
class differ by travel class, i.e. that the proportions of those rescued differ by the
categories 1. class/2. class/3. class/staff.

(c) The summarized table is as follows:

1. Class/2. Class 3. Class/Staff Total
Rescued 327 391 718

Not rescued 295 1215 1510
Total 622 1606 2228

Using (4.7) we get

t (x, y) = χ2 = 2228(327 · 1215 − 295 · 391)2
718 · 1510 · 622 · 1606 = 163.55.

The χ2-independence test and the χ2 test of homogeneity are technically identi-
cal: H0 is rejected if t (x, y) > c(I−1)(J−1);1−α. Since 163.55 > c1;0.95 = 3.84
the null hypothesis is rejected. As highlighted in (b) this has two interpretations:
(i) “rescue status” and “travel class” are independent (independence test) and (ii)
the conditional distributions of rescue status given travel class differ by travel
class (homogeneity test). The second interpretation implies that the probability
of being rescued differs by travel class. The null hypothesis of the same prob-
abilities of being rescued is also rejected using the test of Fisher. Summarizing
the data in a matrix and applying the fisher.test command yields a p-value
smaller than α = 0.05.

fisher.test(matrix(c(327,295,391,1215),ncol=2,nrow=2))

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Solution to Exercise 10.9

(a) The hypotheses are:

H0 : μX = μY1 versus H1 : μX �= μY1.

The pooled variance,

s2 = 19 · 2.94 + 19 · 2.46
39

= 102.6

39
= 2.631,

is needed to calculate the test statistic:

t (x, y) = 4.97 − 4.55

1.622
·
√
400

40
= 0.42

1.622
· √

10 = 0.8188.

H0 is rejected if |t (x, y)| > t38,0.975 ≈ 2.02. Since |t (x, y)| = 0.8188 we do not
reject the null hypothesis.

(b) The hypotheses are:

H0 : μX = μY2 versus H1 : μX �= μY2.

The pooled variance,

s2 = 19 · 2.94 + 19 · 3.44
39

= 3.108,

is needed to calculate the test statistic:

t (x, y) = 4.97 − 3.27

1.763
· √

10 = 3.049.

H0 is rejected because |t (x, y)| = 3.049 > t38,0.975 ≈ 2.02.

(c) In both (a) and (b), there exists a true difference in themean. However, only in (b)
is the t-test able to detect the difference. This highlights that smaller differences
can only be detected if the sample size is sufficiently large. However, if the
sample size is very large, it may well be that the test detects a difference where
there is no difference.

Solution to Exercise 10.10

(a) After reading in and attaching the data, we can simply use the t.test command
to compare the expenditure of the two samples:

theatre <- read.csv('theatre.csv')
attach(theatre)
t.test(Culture[Sex==1],Culture[Sex==0])
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Welch Two-Sample t-test

data: Culture[Sex == 1] and Culture[Sex == 0]

t = -1.3018, df = 667.43, p-value = 0.1934

alternative hypothesis: true difference not equal to 0

95 percent confidence interval:

-12.841554 2.602222

sample estimates:

mean of x mean of y

217.5923 222.7120

We see that the null hypothesis is not rejected because p = 0.1934 > α (also,
the confidence interval overlaps with “0”).

(b) A two-sample t-test and a U -test yield the same conclusion. The p-values,
obtained with

wilcox.test(Culture[Sex==1],Culture[Sex==0])
t.test(Culture[Sex==1],Culture[Sex==0],var.equal=TRUE)

are 0.1946 and 0.145, respectively. Interestingly, the test statistic of the two-
sample t-test is almost identical to the one from theWelch test in (a) (−1.2983)—
this indicates that the assumption of equal variances may not be unreasonable.

(c) We can use the usual t.test command together with the option alternative
= ’greater’ to get the solution.

t.test(Theatre[Sex==1],Theatre[Sex==0],
alternative='greater')

Here, p is much smaller than 0.001; hence, the null hypothesis can be rejected.
Women spend more on theatre visits than men.

(d) We deal with dependent (paired) data because different variables (expenditure
this year versus expenditure last year) are measured on the same observations.
Thus, we need to use the paired t-test—which we can use in R by specifying
the paired option:

t.test(Theatre,Theatre_ly,paired=TRUE)
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Paired t-test

data: Theatre and Theatre_ly

t = 1.0925, df = 698, p-value = 0.275

alternative hypothesis: true difference in means is != 0

95 percent confidence interval:

-2.481496 8.707533

sample estimates:

mean of the differences

3.113019

Both the p-value (which is greater than 0.05) and the confidence interval (over-
lapping with “0”) state that the null hypothesis should be kept. The mean differ-
ence in expenditure (3.1 SFR) is not large enough to suggest that this difference
is not caused by chance. Visitors spend, on average, about the same in the two
years.

Solution to Exercise 10.11

(a) We can use the one-sample t-test to answer both questions:

t.test(temperature,mu=65,alternative='greater')
t.test(time,mu=30,alternative='less')

One-sample t-test

data: temperature

t = -11.006, df = 1265, p-value = 1

alternative hypothesis: true mean is greater than 65

...

data: time

t = 23.291, df = 1265, p-value = 1

alternative hypothesis: true mean is less than 30

We cannot confirm that the mean delivery time is less than 30 min and that
the mean temperature is greater than 65 ◦C. This is not surprising: we have
already seen in Exercise 3.10 that the manager should be unsatisfied with the
performance of his company.

(b) We can use the exact binomial test to investigate H0 : p ≥ 0.15 and H1 : p <

0.15. For the binom.test command, we need to know the numbers of successes
and failures, i.e. the number of deliveries where a free wine should have been
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given to the customer. Applying the table commands yields 229 and 1037
deliveries, respectively.

table(free_wine)
binom.test(c(229,1037),p=0.15,alternative='less')

Exact binomial test

data: c(229, 1037)

number of successes = 229, number of trials = 1266,

p-value = 0.9988 alternative hypothesis: true probability

is less than 0.15

95 percent confidence interval:

0.0000000 0.1996186

sample estimates, probability of success: 0.1808847

The null hypothesis cannot be rejected because p = 0.9988 > α = 0.05 and
because the confidence interval covers p = 0.15. We get the same results if we
use the variable “got_wine” instead of “free_wine”. While the test says that we
cannot exclude the possibility that the probability of receiving a free wine is
less than 15 %, the point estimate of 18 % suggests that the manager still has to
improve the timeliness of the deliveries or stop the offer of free wine.

(c) We first need to create a new categorical variable (using cut) which divides the
temperatures into two parts: below and above 65 ◦C. Then we can simply apply
the test commands (fisher.test, chisq.test, prop.test) to the table of
branch and temperature:

hot <- cut(temperature,breaks=c(-Inf,65,Inf))
fisher.test(table(hot,operator))
chisq.test(table(hot,operator))
prop.test(table(hot,operator))

We know that the two χ2 tests lead to identical results. For both of them the p-
value is 0.2283 which suggests that we should keep the null hypothesis. There
is not enough evidence which would support that the proportion of hot pizzas
differs by operator, i.e. that the two variables are independent! The test of Fisher
yields the same result (p = 0.2227).

(d) The null hypothesis is that the proportion of deliveries is the same for each
branch: H0 : pEast = pWest = pCentre. To test this hypothesis, we need a χ2

goodness-of-fit test:

chisq.test(table(branch))
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Chi-squared test for given probabilities

data: table(branch)

X-squared = 0.74408, df = 2, p-value = 0.6893

The null hypothesis of equal proportions is therefore not rejected (p > α =
0.05).

(e) To compare three proportions we need to use the χ2 homogeneity test:

prop.test(table(branch, operator))

X-squared = 0.15719, df = 2, p-value = 0.9244

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3

0.5059382 0.5097561 0.4965517

We can see that the proportions are almost identical and that the null hypothesis
is not rejected (p = 0.9244).

(f) To test this relationship, we use the χ2-independence test:

chisq.test(table(driver, branch))

X-squared = 56.856, df = 8, p-value = 1.921e-09

The null hypothesis of independence is rejected.

Solution to Exercise 10.12 To test the hypothesis pShalabh = pHeumann
= pSchomaker = 1/3 we use the χ2 goodness-of-fit test. The test statistic is

χ2 =
k∑

i=1

(Ni − npi )2

npi
= 1

111
[(110 − 111)2 + (118 − 111)2 + (105 − 111)2]

= (1 + 49 + 36)/111 ≈ 0.77

H0 gets rejected if χ2 = 0.77 > c3−1−0,1−0.01 = 9.21. Thus, the null hypothesis is
not rejected. We accept that all three authors took about one-third of the pictures.
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Chapter 11

Solution to Exercise 11.1

(a) Calculating x̄ = 1
6 (26 + 23 + 27 + 28 + 24 + 25) = 25.5 and ȳ = 1

6 (170 +
150 + 160 + 175 + 155 + 150) = 160, we obtain the following table needed
for the estimation of α̂ and β̂:

Body mass index Systolic blood pressure
xi xi − x̄ (xi − x̄)2 yi yi − ȳ (yi − ȳ)2 vi

26 0.5 0.25 170 10 100 5
23 −2.5 6.25 150 −10 100 25
27 1.5 2.25 160 0 0 0
28 2.5 6.25 175 15 225 37.5
24 −1.5 2.25 155 −5 25 7.5
25 −0.5 0.25 150 −10 100 5

Total 153 17.5 960 550 80

With
∑

i vi = ∑
i (xi − x̄) · (yi − ȳ) = 80, it follows that Sxy = 80. Moreover,

we get Sxx = ∑
i (xi − x̄)2 = 17.5 and Syy = ∑

i (yi − ȳ)2 = 550. The para-
meter estimates are therefore

β̂ = Sxy
Sxx

= 80

17.5
≈ 4.57,

α̂ = ȳ − β̂ x̄ = 160 − 4.57 · 25.5 = 43.465.

A one-unit increase in the BMI therefore relates to a 4.57 unit increase in the
blood pressure. The model suggests a positive association between BMI and
systolic blood pressure. It is impossible to have a BMI of 0; therefore, α̂ cannot
be interpreted meaningfully here.

(b) Using (11.14), we obtain R2 as

R2 = r2 =
(

Sxy√
Sxx Syy

)2

=
(

80√
17.5 · 550

)2

≈ 0.66.

Thus 66 % of the data’s variability can be explained by the model. The goodness
of fit is good, but not perfect.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Solution to Exercise 11.2

(a) To estimate β̂, we use the second equality from (11.6):

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x
2
i − nx̄2

.

Calculating x̄ = 1.333, ȳ = 5.556,
∑n

i=1 xi yi = 62.96,
∑n

i=1 x
2
i = 24.24,

and
∑n

i=1 y
2
i = 281.5 leads to

β̂ = 62.91 − 9 · 1.333 · 5.556
24.24 − 9 · 1.3332 ≈ −3.695

8.248
≈ −0.45,

α̂ = ȳ − β̂ x̄ = 5.556 + 0.45 · 1.333 ≈ 6.16,

ŷi = 6.16 − 0.45xi .

For children who spend no time on the internet at all, this model predicts 6.16 h
of deep sleep. Each hour spent on the internet decreases the time in deep sleep
by 0.45 h which is 27 min.

(b) Using the results from (a) and Syy = ∑n
i=1 y

2
i − n ȳ2 ≈ 3.678 yields:

R2 = r2 = S2xy
Sxx Syy

= (−3.695)2

8.248 · 3.678 ≈ 0.45.

About 45 % of the variation can be explained by the model. The fit of the model
to the data is neither very good nor very bad.

(c) After collecting the data in two vectors (c()), printing a summary of the linear
model (summary(lm())) reproduces the results. A scatter plot can be produced
by plotting the two vectors against each other (plot()). The regression line can
be added with abline():

it <- c(0.3,2.2,...,2.3)
sleep <- c(5.8,4.4,...,6.1)
summary(lm(sleep∼it))
plot(it,sleep)
abline(a=6.16,b=-0.45)

The plot is displayed in Fig. B.20.

(d) Treating X as a binaryvariable yields the followingvalues: 0, 1, 0, 0, 0, 1, 1, 0, 1.
We therefore have x̄ = 0.444,

∑
x2i = 4, and

∑
xi yi = 4.4 + 5.0 + 4.8 +

6.1 = 20.3. Since the Y -values stay the same we calculate

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x
2
i − nx̄2

= 20.3 − 9 · 5.556 · 0.444
4 − 9 · 0.4442 ≈ −0.85.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Fig.B.20 Scatter plot and
regression line for the
association of internet use
and deep sleep
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Thus, those children who are on the internet for a long time (i.e. >1 h) sleep on
average 0.85 h (=51 min) less. If we change the coding of 1’s and 0’s, β̂ will
just have a different sign: β̂ = 0.85. In this case, we can conclude that children
who spend less time on the internet sleep on average 0.85 h longer than children
who spend more time on the internet. This is the same conclusion and highlights
that the choice of coding does not affect the interpretation of the results.

Solution to Exercise 11.3

(a) The correlation coefficient is

r = Sxy√
Syy Sxx

= 170, 821 − 17 · 166.65 · 60.12√
(62, 184 − 17 · 60.122)(472, 569 − 17 · 166.652)

= 498.03√
738.955 · 441.22 = 0.87.

This indicates strong positive correlation: the higher the height, the higher
the weight. Since R2 = r2 = 0.872 ≈ 0.76, we already know that the fit of
a linear regression model will be good (no matter whether height or weight
is treated as outcome). From (11.11), we also know that β̂ will be positive.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Fig.B.21 Scatter plot and regression line for both 17 and 19 observations

(b) We know from (a) that Sxy = 498.03 and that Sxx = 441.22. The least
squares estimates are therefore

β̂ = 498.03

441.22
= 1.129,

α̂ = 60.12 − 166.65 · 1.129 = −128.03.

Each centimetre difference in height therefore means a 1.129 kg difference
in weight. It is not possible to interpret α̂ meaningfully in this example.

(c) The prediction is

−128.03 + 1.129 · 175 = 69.545 kg.

(d)–(g) The black dots in Fig. B.21 show the scatter plot of the data. There is clearly
a positive association in that greater height implies greater weight. This is
also emphasized by the regression line estimated in (b). The two additional
points appear in dark grey in the plot. It is obvious that they do not match the
pattern observed in the original 17 data points. One may therefore speculate
that with the inclusion of the two new points β̂ will be smaller. To estimate
the new regression line we need

x̄ = 1

19
(17 · 166.65 + 150 + 175) = 166.21,

ȳ = 1

19
(17 · 60.12 + 75 + 55) = 60.63.
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This yields

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x
2
i − nx̄2

= 191696 − 19 · 166.21 · 60.63
525694 − 19 · 166.212 = 227.0663

804.4821

≈ 0.28.

This shows that the two added points shrink the estimate from 1.129 to 0.28.
The association becomes less clear. This is an insightful example showing
that least squares estimates are generally sensitive to outliers which can
potentially affect the results.

Solution to Exercise 11.4

(a) The point estimate of β suggests a 0.077 % increase of hotel occupation for
each one degree increase in temperature. However, the null hypothesis of β = 0
cannot be rejected because p = 0.883 > 0.05. We therefore cannot show an
association between temperature and hotel occupation.

(b) The average hotel occupation is higher in Davos (7.9 %) and Polenca (0.9 %)
compared with Basel (reference category). However, these differences are not
significant. Both H0 : βDavos = 0 and H0 : βPolenca = 0 cannot be rejected.
The model cannot show a significant difference in hotel occupation between
Davos/Polenca and Basel.

(c) The analysis of variance table tells us that the null hypothesis of equal average
temperatures in the three cities (β1 = β2 = 0) cannot be rejected. Note that in
this example the overall F-test would have given us the same results.

(d) In the multivariate model, the main conclusions of (a) and (b) do not change:
testing H0 : β j = 0 never leads to the rejection of the null hypothesis.We cannot
show an association between temperature and hotel occupation (given the city);
and we cannot show an association between city and hotel occupation (given the
temperature).

(e) Stratifying the data yields considerably different results compared to (a)–(c): In
Davos, where tourists go for skiing, each increase of 1 ◦C relates to a drop in hotel
occupation of 2.7 %. The estimate β̂ ≈ −2.7 is also significantly different from
zero (p = 0.000231). In Polenca, a summer holiday destination, an increase of
1 ◦C implies an increase of hotel occupation of almost 4 %. This estimate is also
significantly different from zero (p = 0.00114 < 0.05). In Basel, a business
destination, there is a somewhat higher hotel occupation for higher temperatures
(β̂ = 1.3); however, the estimate is not significantly different from zero. While
there is no overall association between temperature and hotel occupation (see
(a) and (c)), there is an association between them if one looks at the different
cities separately. This suggests that an interaction between temperature and city
should be included in the model.
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(f) The design matrix contains a column of 1’s (to model the intercept), the temper-
ature and two dummies for the categorical variable “city” because it has three
categories. The matrix also contains the interaction terms which are both the
product of temperature and Davos and temperature and Polenca. The matrix has
36 rows because there are 36 observations: 12 for each city.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Int. Temp. Davos Polenca Temp.×Davos Temp.×Polenca

1 1 −6 1 0 −6 0
2 1 −5 1 0 −5 0
...

...
...

...
...

...
...

12 1 0 1 0 0 0
13 1 10 0 1 0 10
...

...
...

...
...

...
...

24 1 12 0 1 0 12
25 1 1 0 0 0 0
...

...
...

...
...

...
...

36 1 4 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(g) Both interaction terms are significantly different from zero (p = 0.000375 and
p = 0.033388). The estimate of temperature therefore differs by city, and the
estimate of city differs by temperature. For the reference city of Basel, the associ-
ation between temperature and hotel occupation is estimated as 1.31; for Davos
it is 1.31 − 4.00 = −2.69 and for Polenca 1.31 + 2.66 = 3.97. Note that these
results are identical to (d) where we fitted three different regressions—they are
just summarized in a different way.

(h) From (f) it follows that the point estimates for βtemperature are 1.31 for Basel,
−2.69 for Davos, and 3.97 for Polenca. Confidence intervals for these estimates
can be obtained via (11.29):

(β̂i + β̂ j ) ± tn−p−1;1−α/2 · σ̂
(β̂i+β̂ j )

.

We calculate tn−p−1;1−α/2 = t36−5−1,0.975 = t30,0.975 = 2.04. With
Var(βtemp.) = 0.478 (obtained via 0.69162 from the model output or from the
second row and second column of the covariance matrix), Var(βtemp:Davos) =
0.997,Var(βPolenca) = 1.43,Cov(βtemp.,βtemp:Davos) = −0.48, and also
Cov(βtemp., βtemp:Polenca) = −0.48 we obtain:

σ̂
(β̂temp.+β̂Davos)

= √
0.478 + 0.997 − 2 · 0.48 ≈ 0.72,

σ̂
(β̂temp.+β̂Polenca)

= √
0.478 + 1.43 − 2 · 0.48 ≈ 0.97,

σ̂
(β̂temp.+β̂Basel)

= √
0.478 + 0 + 0 ≈ 0.69.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The 95 % confidence intervals are therefore:

Davos: [−2.69 ± 2.04 · 0.72] ≈ [−4.2;−1.2],
Polenca: [3.97 ± 2.04 · 0.97] ≈ [2.0; 5.9],
Basel: [1.31 ± 2.04 · 0.69] ≈ [−0.1; 2.7].

Solution to Exercise 11.5

(a) The missing value [1] can be calculated as

T = β̂i − βi

σ̂β̂i

= 0.39757 − 0

0.19689
= 2.019.

Since t699−5−1,0.975 = 1.96 and 2.019 > 1.96, it is clear that the p-value
from [2] is smaller than 0.05. The exact p-value can be calculated in R via
(1-pt(2.019, 693))*2which yields 0.0439. The pt command gives the
probability value for the quantile of 2.019 (with 693 degrees of freedom):
0.978. Therefore, with probability (1 − 0.978)% a value is right of 2.019 in
the respective t-distribution which gives, multiplied by two to account for a
two-sided test, the p-value.

(b)–(c) The plot on the left shows that the residuals are certainly not normally distrib-
uted as required by the model assumptions. The dots do not approximately
match the bisecting line. There are too many high positive residuals which
means that we are likely dealing with a right-skewed distribution of residu-
als. The plot on the right looks alright: no systematic pattern can be seen; it
is a random plot. The histogram of both theatre expenditure and log(theatre
expenditure) suggests that a log-transformation may improve the model,
see Fig. B.22. Log-transformations are often helpful when the outcome’s
distribution is skewed to the right.

(d) Since the outcome is log-transformed, we can apply the interpretation of a
log-linear model:

• Each year’s increase in age yields an exp(0.0038) = 1.0038 times higher
(=0.38 %) expenditure on theatre visits. Therefore, a 10-year age dif-
ference relates to an exp(10 · 0.0038) = 1.038 times higher expenditure
(=3.8 %).

• Women (gender = 1) spend on average (given the other variables)
exp(0.179) ≈ 1.20 times more money on theatre visits.

• Each 1000 SFR more yearly income relates to an exp(0.0088) = 1.0088
times higher expenditure on theatre visits. A difference in 10,000 SFR per
year therefore amounts to an 8.8 % difference in expenditure.

• Each extra Swiss Franc spent on cultural activities is associated with an
exp(0.00353) = 1.0035 times higher expenditure on theatre visits.
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Fig.B.22 Histogram of the outcome

• Except for theatre expenditure from the preceding year, all β j are signifi-
cantly different from zero.

(e) While in (b) the residuals were clearly not normally distributed, this assump-
tion seems to be fulfilled now: the QQ-plot shows dots which lie approxi-
mately on the bisecting line. The fitted values versus residuals plot remains
a chaos plot. In conclusion, the log-transformation of the outcome helped
to improve the quality of the model.

Solution to Exercise 11.6

(a) The multivariate model is obtained by using the lm() command and separating
the covariates with the + sign. Applying summary() to the model returns the
comprehensive summary.

mp <- lm(time ∼ temperature + branch + day + operator + driver
+ bill + pizzas + discount_customer)
summary(mp)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.42270 2.00446 20.166 < 2e-16 ***

temperature -0.20823 0.02594 -8.027 2.28e-15 ***

branchEast -1.60263 0.42331 -3.786 0.000160 ***

branchWest -0.11912 0.37330 -0.319 0.749708

dayMonday -1.15858 0.63300 -1.830 0.067443 .

daySaturday 0.88163 0.50161 1.758 0.079061 .

daySunday 1.01655 0.56103 1.812 0.070238 .

dayThursday 0.78895 0.53006 1.488 0.136895

dayTuesday 0.79284 0.62538 1.268 0.205117

dayWednesday 0.25814 0.60651 0.426 0.670468

operatorMelissa -0.15791 0.34311 -0.460 0.645435

driverDomenico -2.59296 0.73434 -3.531 0.000429 ***

driverLuigi -0.80863 0.58724 -1.377 0.168760

driverMario -0.39501 0.43678 -0.904 0.365973

driverSalvatore -0.50410 0.43480 -1.159 0.246519

bill 0.14102 0.01600 8.811 < 2e-16 ***

pizzas 0.55618 0.11718 4.746 2.31e-06 ***

discount_customer -0.28321 0.36848 -0.769 0.442291

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.373 on 1248 degrees of freedom

Multiple R-squared: 0.3178, Adjusted R-squared: 0.3085

F-statistic: 34.2 on 17 and 1248 DF, p-value: < 2.2e-16

The output shows that lower temperature, higher bills, and more ordered pizzas
increase the delivery times. The branch in the East is the fastest, and so is
the driver Domenico. While there are differences with respect to day, discount
customers, and the operator, they are not significant at the 5 % level.

(b) The confidence intervals are calculated as: β̂i ± tn−p−1;1−α/2 · σ̂β̂ . We know
from the model output from (a) that there are 1248 degrees of freedom (1266
observations − 18 estimated coefficients). The respective quantile from the t-
distribution is obtained with the qt() function. The coefficients are accessed via
the coefficients command (alternatively: mp$coefficients); the variances
of the coefficients are either accessed via the diagonal elements of the covariance
matrix (diag(vcov(mp))) or the model summary
(summary(mp)[[4]][,2])—both of which are laborious. The summary of
coefficients, lower confidence limit (lcl), and upper confidence limit (ucl) may
be summarized in a matrix, e.g. via merging the individual columns with the
cbind command.
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lcl <- coefficients(mp) - qt(0.975,1248)*sqrt(diag(vcov(mp)))
ucl <- coefficients(mp) + qt(0.975,1248)*sqrt(diag(vcov(mp)))
cbind(coefficients(mp),lcl,ucl)

lcl ucl

(Intercept) 40.4227014 36.4902223 44.3551805

temperature -0.2082256 -0.2591146 -0.1573366

branchEast -1.6026299 -2.4331162 -0.7721436

branchWest -0.1191190 -0.8514880 0.6132501

dayMonday -1.1585828 -2.4004457 0.0832801

...

(c) The variance is estimated as the residual sum of squares divided by the degrees
of freedom, see also (11.27). Applying the residuals command to the model
and using other basic operations yields an estimated variance of 28.86936.

sum(residuals(mp)̂ 2)/(mp$df.residual)

Taking the square root of the result yields
√
28.86936 = 5.37 which is also

reported in the model output from (a) under “Residual standard error”.

(d) The sum of squares error is defined as
∑n

i=1(yi − ŷi )2. The total sum of squares
is
∑n

i=1(yi − ȳ)2. This can be easily calculated in R. The goodness of fit is then
obtained as R2 = 1 − SQError/SQTotal = 0.3178. Dividing SQError by n − p −
1 = 1266 − 17 − 1 = 1248 and SQTotal by n − 1 = 1265 yields R2

adj = 0.3085.
This corresponds to the model output from (a).

SQE <- sum(residuals(mp)̂ 2)
SQT <- sum((time-mean(time))̂ 2)
1-(SQE/SQT)
1-((SQE/1248)/(SQT/1265))

(e) Applying stepAIC to the fitted model (with option “back” for backward selec-
tion) executes the model selection by means of AIC.

library(MASS)
stepAIC(mp, direction='back')

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The output shows that the full model has an AIC of 4275.15. The smallest AIC
is achieved by removing the operator variable from the model.

Step: AIC=4275.15
time ~ temperature + branch + day + operator + driver + bill +

pizzas + discount_customer

Df Sum of Sq RSS AIC
- operator 1 6.11 36035 4273.4
- discount_customer 1 17.05 36046 4273.8
<none> 36029 4275.2
- day 6 448.79 36478 4278.8
- driver 4 363.91 36393 4279.9
- branch 2 511.10 36540 4289.0
- pizzas 1 650.39 36679 4295.8
- temperature 1 1860.36 37889 4336.9
- bill 1 2241.30 38270 4349.6

The reduced model has an AIC of 4273.37. Removing the discount customer
variable from the model yields an improved AIC (4272.0 < 4273.37).

Step: AIC=4273.37
time ~ temperature + branch + day + driver + bill + pizzas +

discount_customer

Df Sum of Sq RSS AIC
- discount_customer 1 17.57 36053 4272.0
<none> 36035 4273.4
- day 6 452.00 36487 4277.1
- driver 4 364.61 36400 4278.1
- branch 2 508.57 36544 4287.1
- pizzas 1 649.54 36685 4294.0
- temperature 1 1869.98 37905 4335.4
- bill 1 2236.19 38271 4347.6

The model selection procedure stops here as removing any variable would only
increase the AIC, not decrease it.

Step: AIC=4271.98
time ~ temperature + branch + day + driver + bill + pizzas

Df Sum of Sq RSS AIC
<none> 36053 4272.0
- day 6 455.62 36508 4275.9
- driver 4 368.18 36421 4276.8
- branch 2 513.17 36566 4285.9
- pizzas 1 657.07 36710 4292.8
- temperature 1 1878.24 37931 4334.3
- bill 1 2228.88 38282 4345.9
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The final model, based on backward selection with AIC, includes day, driver,
branch, number of pizzas ordered, temperature, and bill.

(f) Fitting the linear model with the variables obtained from (e) and obtaining the
summary of it yields an R2

adj of 0.3092.

mps <- lm(time ∼ temperature + branch + day + driver + bill +
pizzas)
summary(mps)

This is only marginally higher than the goodness of fit from the full model
(0.3092 > 0.3085). While the selected model is better than the model with all
variables, both, with respect to AIC and R2

adj, the results are very close and
remind us of the possible instability of applying automated model selection
procedures.

(g) Both the normality assumption and heteroscedasticity can be checked by apply-
ing plot() to the model. From the many graphs provided we concentrate on
the second and third of them:

plot(mps, which=2)
plot(mps, which=3)

Figure B.23a shows that the residuals are approximately normally distributed
because the dots lie approximately on the bisecting line. There are some smaller
deviations at the tails but they are not severe. The plot of the fitted values versus
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the square root of the absolute values of the residuals shows no pattern; it is a
random plot (Fig. B.23b). There seems to be no heteroscedasticity.

(h) Not all variables identified in (e) represent necessarily a “cause” for delayed or
improved delivery time. It makes sense to speculate that becausemany pizzas are
being delivered (and need to be made!) the delivery time increases. There might
also be reasonswhya certain driver is improving the delivery time:maybehedoes
not care about red lights. This could be investigated further given the results of
the model above. However, high temperature does not cause the delivery time to
be shorter; likely it is the other way around: the temperature is hotter because the
delivery time is shorter. However, all of these considerations remain speculation.
A regressionmodel only exhibits associations. If there is a significant association,
we know that given an accepted error (e.g. 5 %), values of x are higher when
values of y are higher. This is useful but it does not say whether x caused y or
vice versa.

(i) To check whether it is worth to add a polynomial, we simply add the squared
temperature to the model. To make R understand that we apply a transformation
we need to use I().

mps2 <- lm(time ∼ temperature + I(temperatureˆ2) +
I(temperatureˆ3) + branch + day + driver + bill + pizzas)
summary(mps2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -18.954965 8.795301 -2.155 0.03134 *
temperature 1.736692 0.282453 6.149 1.05e-09 ***
I(temperature^2) -0.015544 0.002247 -6.917 7.36e-12 ***
branchEast -1.429772 0.416107 -3.436 0.00061 ***
...

It can be seen that the null hypothesis H0 : βtemp2 = 0 is rejected. This indicates
that it is worthwhile to assume a quadratic relationship between temperature and
delivery time.

(j) The prediction can be obtained by the predict command as follows:

predict(mps,pizza[1266,])

The prediction is 36.5 min and therefore 0.8 min higher than the real delivery
time.
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More details on Chap.3

Proof of equation (3.27).

s̃2 = 1

n

k∑

j=1

∑

xi∈K j

(xi − x̄)2 = 1

n

k∑

j=1

∑

xi∈K j

(xi − x̄ j + x̄ j − x̄)2

= 1

n

k∑

j=1

∑

xi∈K j

(xi − x̄ j )
2

︸ ︷︷ ︸
[i]

+ 1

n

k∑

j=1

∑

xi∈K j

(x̄ j − x̄)2

︸ ︷︷ ︸
[i i]

+ 2

n

k∑

j=1

∑

xi∈K j

(xi − x̄ j )(x̄ j − x̄)

︸ ︷︷ ︸
[i i i]

We obtain the following expressions for [i]–[i i i]:

[i] = 1

n

k∑

j=1

n j
1

n j

∑

xi∈K j

(xi − x̄ j )
2 = 1

n

k∑

j=1

n j s̃
2
j ,

[i i] = 1

n

k∑

j=1

n j (x̄ j − x̄)2 ,

[i i i] = 2

n

k∑

j=1

(x̄ j − x̄)
∑

xi∈K j

(xi − x̄ j ) = 2

n

k∑

j=1

(x̄ j − x̄) 0 = 0.

Since [i] is thewithin-class variance and [i i] is the between-class variance, Eq. (3.27)
holds.
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More details on Chap.7

Proof of Theorem 7.2.3. Consider the interval (x0 − δ, x0] with δ ≥ 0. From (7.12)
it follows that P(x0 − δ < X ≤ x0) = F(x0) − F(x0 − δ) and therefore

P(X = x0) = lim
δ→0

P(x0 − δ < X ≤ x0)

= lim
δ→0

[F(x0) − F(x0 − δ)]
= F(x0) − F(x0) = 0.

Proof of Theorem 7.3.1.

Var(X)
(7.17)= E(X − μ)2

= E(X2 − 2μX + μ2)
(7.28−7.31)= E(X2) − 2μE(X) + E(μ2)

= E(X2) − 2μ2 + μ2

= E(X2) − [E(X)]2.
Proof of Theorem 7.4.1. We define a discrete random variable Y as

Y =
{
0 if |X − μ| < c
c2 if |X − μ| ≥ c.

(C.1)

The respective probabilities are P(|X − μ| < c) = p1 and P(|X − μ| ≥ c) = p2.
The definition of Y in (C.1) implies that

Y ≤ |X − μ|2
since for |X − μ|2 < c2 Y takes the value y1 = 0 and therefore Y ≤ |X − μ|2. If
|X − μ|2 ≥ c2Y takes the value y2 = c2, and therefore Y ≤ |X − μ|2. Using this
knowledge, we obtain

E(Y ) ≤ E(X − μ)2 = Var(X).

However, for Y we also have

E(Y ) = 0 · p1 + c2 · p2 = c2P(|X − μ| ≥ c)

which means that we can summarize the above findings in the following inequality:

c2P(|X − μ| ≥ c) ≤ Var(X).

This equates to Tschebyschev’s inequality. Using P( Ā) = 1 − P(A), i.e.

P(|X − μ| ≥ c) = 1 − P(|X − μ| < c),

we obtain the second formula of Tschebyschev’s inequality:

P(|X − μ| < c) ≥ 1 − Var(X)

c2
.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Proof of rule (7.30). For discrete variables, we have

E(a + bX)
(7.16)=

∑

i

(a + bxi )pi =
∑

api + bxi pi = a
∑

i

pi + b
∑

i

xi pi .

Since
∑

i pi = 1 and
∑

i xi pi = E(X), we obtain E(a + bX) = a + bE(X), which
is rule (7.30). In the continuous case, we have

E(a + bX) =
∫ ∞

−∞
(a + bx) f (x)dx =

∫ ∞

−∞
(a f (x)dx + bx f (x)dx)

= a
∫ ∞

−∞
f (x)dx + b

∫ ∞

−∞
x f (x)dx = a + bE(X).

Proof of rule (7.33). Using Var(X) = E(X2) − E(X)2, we can write the variance of
bX as

Var(bX) = E([bX ]2) + E(bX)2.

Using (7.29), we get E([bX ]2) = b2E(X2) and E(bX)2 = (bE(X))2. Therefore

Var(bX) = b2(E(X2) − E(X)2) = b2Var(X).

Proof of ρ = 1 for a perfect linear relationship. If Y = aX + b with a �= 0, we get

Cov(X, Y ) = E[(X − μX )(Y − μY )]
= aE[(X − μX )(X − μX )]

because Cov(aX + b, cY + d) = acCov(X, Y ), see p. 147. Then

Cov(X, Y ) = aVar(X),

Var(Y )
(7.33)= a2Var(X),

and therefore

ρ(X, Y ) = aVar(X)√
a2Var(X)Var(X)

= a

|a| = 1

if a > 0. Similarly, if Y = aX + b with a < 0 we get ρ(X, Y ) = −1.

More details on Chap.8

Theorem of Large Numbers. To explain the Theorem of Large Numbers, we first
need to first define stochastic convergence.

Definition C.1 A sequence of random variables, (Xn)n∈N, converges stochastically
to 0, if for any ε > 0

lim
n→∞ P(|Xn| > ε) = 0 (C.2)

holds.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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This is equivalent to limn→∞ P(|Xn| ≤ ε) = 1.

Theorem C.1 (Theorem of large numbers) Consider n i.i.d. random variables
X1, X2, . . . , Xn with E(Xi ) = μ,Var(Xi ) = σ2 and X̄n = 1

n

∑n
i=1 Xi . It holds that

lim
n→∞ P(|X̄n − μ| < c) = 1, ∀ c ≥ 0. (C.3)

This implies that X̄n converges stochastically to μ. As another motivation, recall
Definition 7.6.1 where we define random variables X1, X2, . . . , Xn to be i.i.d. (inde-
pendently identically distributed) if all Xi follow the same distribution and are inde-
pendent of each other. Under this assumption,we showed in (7.36) thatVar(X̄) = σ2

n .
It follows that the larger n, the smaller the variance. If we apply Tschebyschev’s
inequality (Theorem 7.4.1) to X̄ , we get the following equation for (X̄n − μ)n∈N:

P(|X̄n − μ| < c) ≥ 1 − Var(X̄n)

c2
= 1 − σ2

nc2
. (C.4)

This means that for each c ≥ 0, the right-hand side of the above equation tends to 1
as n → ∞ which gives a similar interpretation as the Theorem of Large Numbers.

Central Limit Theorem. Let Xi (i = 1, 2, . . . , n) be n i.i.d. random variables
with E(Xi ) = μ and Var(Xi ) = σ2. If we consider the sum

∑n
i=1 Xi , we obtain

E(
∑n

i=1 Xi ) = nμ and Var(
∑n

i=1 Xi ) = nσ2. If we want to standardize
∑n

i=1 Xi

we can use Theorem 7.3.2 to obtain

Yn =
∑n

i=1 Xi − nμ√
nσ2

, (C.5)

i.e. it holds that E(Yn) = 0 and Var(Yn) = 1.

Theorem C.2 (Central Limit Theorem) Let Xi (i = 1, 2, . . . , n) be n i.i.d. random
variables with E(Xi ) = μ and Var(Xi ) = σ2. Yn denotes the standardized sum of
Xi , i = 1, 2, . . . , n. The CDF of Yn is

lim
n→∞ P(Yn ≤ y) = Φ(y), ∀ y,

where Φ(y) denotes the CDF of the standard normal distribution.

This theorem tells us that Yn is approximately standard normal distributed if n is
large, i.e.

Yn ∼ N (0, 1) as n → ∞.

This is equivalent to saying that
∑n

i=1 Xi is approximately N (nμ, nσ2) distributed
if n is large, i.e.

n∑

i=1

Xi ∼ N (nμ, nσ2). (C.6)

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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As a consequence X̄n = 1
n

∑n
i=1 Xi is N (μ, σ2

n ) distributed for large n, i.e.

X̄n ∼ N

(
μ,

σ2

n

)
.

In summary, the Theorem of Large Numbers tells us that X̄n converges stochas-
tically to μ, whereas the Central Limit Theorem tells us that X̄n converges to a
N (μ, σ2

n )-distribution as n tends to infinity.

PDF of the χ2-Distribution. The PDF of the χ2-distribution, with n degrees of
freedom, is defined as

f (x) =
{

xn/2−1 exp(−x/2)
Γ (n/2)2n/2 if x > 0

0 otherwise.
(C.7)

Note that Γ (n) is the Gamma function, defined as Γ (n) = (n − 1)! for positive inte-
gers and Γ (x) = ∫∞

0 t x−1 exp(−t)dt otherwise.

PDFof the t-Distribution.The PDF of the t-distribution, with n degrees of freedom,
is defined as

f (x) = Γ ( n+1
2 )

Γ (n/2)
√
nπ

(
1 + x2

n

)−(n+1)/2

− ∞ < x < ∞. (C.8)

Note that Γ (n) is the Gamma function, defined as Γ (n) = (n − 1)! for positive inte-
gers and Γ (x) = ∫∞

0 t x−1 exp(−t)dt otherwise.

PDF of the F-Distribution. The PDF of the F-distribution, with n and m degrees
of freedom, respectively, is defined as

f (x) = Γ ( n+m
2 )( n

m )n/2xn/2−1

Γ ( n2 )Γ (m2 )(1 + nx
m )(n+m)/2

, x > 0. (C.9)

The PDF of the F-distribution with m and n degrees of freedom can be derived by
interchanging the roles of m and n.

More details on Chap.9

Another Example of Sufficiency. Let X1, X2, . . . , Xn be a random sample from
N (μ,σ2) where μ and σ2 are both unknown. We attempt to find a sufficient statistic
for μ and σ2.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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f (x1, x2 . . . , xn;μ,σ2) =
(

1√
2π

)n

exp

[
−1

2

n∑

i=1

(xi − μ)2

σ2

]

=
(

1√
2πσ

)n

exp

[
− 1

2σ2

(
n∑

i=1

x2i − 2μ
n∑

i=1

xi + nμ2

)]
.

Here the joint density depends on x1, x2, . . . , xn through two statistics
t1(x1, x2, . . . , xn) = ∑n

i=1 xi and t2(x1, x2, . . . , xn) = ∑n
i=1 x

2
i with h(x1, x2,

. . . , xn) = 1. Thus T1 = ∑n
i=1 Xi and T2 = ∑n

i=1 X
2
i are jointly sufficient for μ

and σ2. Therefore, X̄ and S2 = 1
n−1

∑n
i=1(Xi − X̄)2 are jointly sufficient for μ and

σ2 as they are a one-to-one function of T1 and T2. They are the maximum likelihood
estimates for μ and σ2.

More details on Chap.10

Exact Test of Fisher. Similar to the approximate two-sample binomial test in
Sect. 10.4.2, we assume two samples following a binomial distribution with para-
meters (n1, p1) and (n2, p2), respectively.

X = (X1, X2, . . . , Xn1), Xi ∼ B(1; p1)
Y = (Y1, Y2, . . . , Yn2), Yi ∼ B(1; p2).

For the sums of these random variables, we get:

X =
n1∑

i=1

Xi ∼ B(n1; p1), Y =
n2∑

i=1

Yi ∼ B(n2; p2).

Let Z = X + Y . The Exact Test of Fisher uses the fact that the row marginal fre-
quencies n1 and n2 in the following table

Success Failure Total
Population A X n1 − X n1
Population B Z − X = Y n2 − (Z − X) n2
Total Z (n1 + n2 − Z) n1 + n2

are fixed by the sample sizes n1 and n2. Conditional on the total number of successes
Z = z (i.e. the column margins are assumed to be fixed), the only remaining random
variable is X (since the other three entries of the table are then determined by the
realization x of X and the margins). Under H0 : p1 = p2 = p, it can be shown that

X ∼ H(n, n1, z),

http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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i.e.

P(X = x |Z = z) =
(n1
x

)(n−n1
z−x

)
(n
z

) .

The proof is straightforward using the idea of conditioning on Z = z and the assump-
tion of independence of the two samples:

P(X = x |Z = z) = P(X = x, Z = z)

P(Z = z)
= P(X = x, Y = z − x)

P(Z = z)

= P(X = x)P(Y = z − x)

P(Z = z)

=
(n1
x
)
px (1 − p)n1−x ( n2

z−x
)
pz−x (1 − p)n2−(z−x)

(n
z
)
pz(1 − p)n−z

=
(n1
x
)( n2
z−x

)
(n
z
) =

(n1
x
)(n−n1

z−x
)

(n
z
) .

Note that in the equation above we use the fact that under H0, Z = X + Y is B(n, p)
distributed; see the additivity theorem for the binomial distribution, i.e. Theorem
8.1.1.

Example C.1 Consider two competing lotteries A and B. Say we buy 10 tickets from
each lottery and test the hypothesis of equal winning probabilities. The data can be
summarized in a 2 × 2 table:

Winning Not winning Total
Lottery A 1 24 25
Lottery B 7 18 25
Total 8 42 50

In R, we can use the command fisher.test to perform the test. Using the exam-
ple data and H1 : p1 �= p2, we get

ft <- matrix(nrow=2,ncol=2,data=cbind(c(1,7), c(24,18)))
fisher.test(x=ft)

with output

Fisher’s Exact Test for Count Data

data: fisher.table

p-value = 0.0488

alternative hypothesis: true odds ratio is not equal to 1

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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95 percent confidence interval:

0.002289885 0.992114690

sample estimates:

odds ratio

0.1114886

For the example data and α = 0.05, the null hypothesis is rejected, since the p-value
is lower than α. For the calculation of the p-value, the one-sided and two-sided cases
have to be distinguished. The idea is that while fixing the margins at the observed
values (i.e. 25, 25, 8, 42), we have to calculate the sum of the probabilities of all
tables which have lower probability than the observed table. In R, one can use the
functions dhyper and phyper for calculating (cumulative) probabilities. For exam-
ple, P(X = 1|Z = 8) can be calculated as

dhyper(1,25,25,8)

[1] 0.02238402

A more extreme table than the observed one is

0 25 25
8 17 25
8 42 50

with probability P(X = 0) = dhyper(0,25,25,8) = 0.002, which is lower than
P(X = 1). The sum is 0.0224 + 0.002 = 0.0244 which is the (left) one-sided p-
value. In this case (not generally true!), the two-sided p-value is simply two times
the one-sided value, i.e. 2 · 0.0244 = 0.0488.

Remark C.1 The two-sided version of the Exact Test of Fisher can also be used as
a test of independence of two binary variables. It is equivalent to the test of equality
of two proportions, see Example 10.8.2.

One-Sample χ2-Test for Testing Hypothesis About the Variance. We assume a
normal population, i.e. X ∼ N (μ,σ2) and an i.i.d. sample (X1, X2, . . . , Xn) distrib-
uted as X . We only introduce the test for two-sided hypotheses

H0 : σ2 = σ2
0

versus
H1 : σ2 �= σ2

0 .

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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The test statistic

T (X) = (n − 1)S2X
σ2
0

follows a χ2
n−1-distribution under H0. The critical region is constructed by taking

the α/2- and (1 − α/2) quantile as critical values; i.e. H0 is rejected, if

t (x) < cn−1;α/2

or if
t (x) > cn−1;1−α/2,

where cn−1;α/2 and cn−1;1−α/2 are the desired quantiles of a χ2-distribution. In R,
the test can be called by the sigma.test function in the TeachingDemos library or
the varTest function in library EnvStats. Both functions also return a confidence
interval for the desired confidence level. Note that the test is biased. An unbiased
level α test would not take α/2 at the tails but two different tail probabilities α1 and
α2 with α1 + α2 = α.

F-Test for Comparing Two Variances. Comparing variances can be of interest
when comparing the variability, i.e. the “precision” of two industrial processes; or
when comparing two medical treatments with respect to their reliability. Consider
two populations characterized by two independent random variables X and Y which
follow normal distributions:

X ∼ N (μX ,σ2
X ), Y ∼ N (μY , σ2

Y ).

For now, we distinguish the following two hypotheses:

H0 : σ2
X = σ2

Y versus H1 : σ2
X �= σ2

Y , two-sided

H0 : σ2
X ≤ σ2

Y versus H1 : σ2
X > σ2

Y , one-sided.

The third hypothesis with H1 : σ2
X < σ2

Y is similar to the second hypothesis where
X and Y are replaced with each other.

Test Statistic

Let (X1, X2, . . . , Xn1) and (Y1, Y2, . . . , Yn2) be two independent random samples
of size n1 and n2. The test statistic is defined as the ratio of the two sample variances

T (X,Y) = S2X
S2Y

, (C.10)

which is, under the null hypothesis, F-distributed with n1 − 1 and n2 − 1 degrees
of freedom, see also Sect. 8.3.3.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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Critical Region

Two-Sided Case. The motivation behind the construction of the critical region
for the two-sided case, H0: σ2

X = σ2
Y vs. H1: σ2

X �= σ2
Y , is that if the null hypothesis

is true (i.e. the two variances are equal) then the test statistic (C.10) would be 1;
also, T (X,Y) > 0. Therefore, very small (but positive) and very large values of
T (X,Y) should lead to a rejection of H0. The critical region can then be written as
K = [0, k1) ∪ (k2, ∞), where k1 and k2 are critical values such that

P(T (X,Y) < k1|H0) = α/2

P(T (X,Y) > k2|H0) = α/2.

Here k1 and k2 can be calculated from the quantile function of the F-distribution as

k1 = fn1−1,n2−1,α/2, k2 = fn1−1,n2−1,1−α/2.

Example C.2 Let n1 = 50, n2 = 60 and α = 0.05. Using the qf command in R, we
can determine the critical values as:

qf(q=0.025, df1=50-1, df2=60-1)
qf(q=0.975, df1=50-1, df2=60-1)

The results are k1 = 0.5778867 and k2 = 1.706867.

Remark C.2 There is the following relationshipbetweenquantiles of the F-distribution:

fn1−1;n2−1;α/2 = 1

fn2−1;n1−1;1−α/2
.

One-Sided Case. In the one-sided case, the alternative hypothesis is always for-
mulated in such a way that the variance in the numerator is greater than the vari-
ance in the denominator. The hypotheses are H0: σ2

X ≤ σ2
Y versus H1: σ2

X > σ2
Y

or H0: σ2
X/σ2

Y ≤ 1 versus H1: σ2
X/σ2

Y > 1. This means it does not matter whether
H1 : σ2

X > σ2
Y or H1 : σ2

X < σ2
Y ; by constructing the test statistic in the correct way,

we implicitly specify the hypothesis. The critical region K consists of the largest
values of T (X,Y), i.e. K = (k, ∞), where k has to fulfil the condition

P(T (X,Y) > k|H0) = α.

The resulting critical value is denoted by k = fn1−1;n2−1;1−α.
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Observed Test Statistic

Using the sample variances, the realized test statistic t is calculated as:

t (x, y) = s2x
s2y

, s2x = 1

n1 − 1

n1∑

i=1

(xi − x̄)2, s2y = 1

n2 − 1

n2∑

i=1

(yi − ȳ)2.

Test Decisions

Case H0 H1 Reject H0, if
(a) σX = σY σX �= σY t (x, y) > fn1−1;n2−1;1−α/2 or

t (x, y) < fn1−1;n2−1;α/2

(b) σX ≤ σY σX > σY t (x, y) > fn1−1;n2−1;1−α

Remark C.3 We have tacitly assumed that the expected values μX and μy are
unknown and have to be estimated. However, this happens rarely, if ever, in practice.
When estimating the expected values by the arithmeticmeans, itwould be appropriate
to increase the degrees of freedom from n1 − 1 to n1 and n2 − 1 to n2. Interestingly,
standard software will not handle this case correctly.

Example C.3 Acompany is puttingbakedbeans into cans.Two independentmachines
at two sites are used. The filling weights are assumed to be normally distributed with
mean 1000 g. It is speculated that one machine is more precise than the other. Two
samples of the two machines give the following results:

Sample n x̄ s2

X 20 1000.49 72.38
Y 25 1000.26 45.42

With α = 0.1 and the hypotheses

H0 : σ2
X = σ2

Y versus H1 : σ2
X �= σ2

Y ,

we get the following quantiles
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qf(0.05, 20-1, 25-1)
[1] 0.4730049
qf(0.95, 20-1, 25-1)
[1] 2.039858

The observed test statistic is

t = 72.38

45.42
= 1.59.

Therefore, H0 is not rejected, since k1 ≤ t ≤ k2. We cannot reject the hypothesis
of equal variability of the two machines. In R, the F-test can be used using the
command var.test.

Remark C.4 For the t-test, we remarked that the assumption of normality is not cru-
cial because the test statistic is approximately normally distributed, even formoderate
sample sizes. However, the F-test relies heavily on the assumption of normality. This
is why alternative tests are often used, for example the Levene’s test.

More details on Chap.11

Obtaining theLeast Squares Estimates in theLinearModel.The function S(a, b)
describes our optimization problem of minimizing the residual sum of squares:

S(a, b) =
n∑

i=1

e2i =
n∑

i=1

(yi − a − bxi )
2.

Minimizing S(a, b) is achieved using the principle of maxima and minima which
involves taking the partial derivatives of S(a, b) with respect to both a and b and
setting them equal to 0. The partial derivatives are

∂

∂a
S(a, b) =

n∑

i=1

∂

∂a
(yi − a − bxi )

2 = −2
n∑

i=1

(yi − a − bxi ), (C.11)

∂

∂b
S(a, b) =

n∑

i=1

∂

∂b
(yi − a − bxi )

2 = −2
n∑

i=1

(yi − a − bxi )xi . (C.12)

Now we set (C.11) and (C.12) as equal to zero, respectively:

(I)
∑n

i=1(yi − â − b̂xi ) = 0,
(II)

∑n
i=1(yi − â − b̂xi )xi = 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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This equates to

(I′) nâ + b̂
∑n

i=1 xi = ∑n
i=1 yi ,

(II′) â
∑n

i=1 xi + b̂
∑n

i=1 x
2
i = ∑n

i=1 xi yi .

Multiplying (I′) by 1
n yields

â + b̂x̄ = ȳ

which gives us the solution for a:

â = ȳ − b̂x̄ .

Putting this solution into (II′) gives us

(ȳ − b̂x̄)
n∑

i=1

xi + b̂
n∑

i=1

x2i =
n∑

i=1

xi yi .

Using
∑n

i=1 xi = nx̄ leads to

b̂

(
n∑

i=1

x2i − nx̄2
)

=
n∑

i=1

xi yi − nx̄ ȳ.

If we use
n∑

i=1

x2i − nx̄2 =
n∑

i=1

(xi − x̄)2 = Sxx

and

n∑

i=1

xi yi − nx̄ ȳ =
n∑

i=1

(xi − x̄)(yi − ȳ) = Sxy,

we eventually obtain the least squares estimate of b:

b̂ Sxx = Sxy

b̂ = Sxy
Sxx

=
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

Remark C.5 To show that the above solutions really relate to a minimum, and not
to a maximum, we would need to look at all the second-order partial derivatives of
S(a, b) and prove that the bordered Hessian matrix containing these derivatives is
always positive definite. We omit this proof however.
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Variance Decomposition.

We start with the following equation:

yi − ŷi = (yi − ȳ) − (ŷi − ȳ).

If we square both sides we obtain

n∑

i=1

(yi − ŷi )
2 =

n∑

i=1

(yi − ȳ)2 +
n∑

i=1

(ŷi − ȳ)2 − 2
n∑

i=1

(yi − ȳ)(ŷi − ȳ).

The last term on the right-hand side is

n∑

i=1

(yi − ȳ)(ŷi − ȳ)
(11.8)=

n∑

i=1

(yi − ȳ)b̂(xi − x̄)

= b̂ Sxy
(11.6)= b̂2Sxx

(11.8)=
n∑

i=1

(ŷi − ȳ)2.

We therefore obtain

n∑

i=1

(yi − ŷi )
2 =

n∑

i=1

(yi − ȳ)2 −
n∑

i=1

(ŷi − ȳ)2,

which equates to

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2.

The Relation between R2 and r .

SQResidual =
n∑

i=1

(yi − (â + b̂xi ))
2 (11.8)=

n∑

i=1

[(yi − ȳ) − b̂(xi − x̄)]2

= Syy + b̂2Sxx − 2b̂Sxy

= Syy − b̂2Sxx = Syy − (Sxy)2

Sxx

SQRegression = Syy − SQResidual = (Sxy)2

Sxx
.
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We therefore obtain

R2 = SQRegression

Syy
= (Sxy)2

Sxx Syy
= r2.

The Least Squares Estimators are Unbiased.

E(β̂) = E((X′X)−1X′y)

Given thatX in themodel is assumed to be fixed (i.e. non-stochastic and not following
any distribution), we obtain

E(β̂) = (X′X)−1X′E(y).

Since E(ε) = 0 it follows that Ey = Xβ and therefore

E(β̂) = (X′X)−1X′Xβ = β.

How to Obtain the Variance of the Least Squares Estimator. With the same
arguments as above (i.e X is fixed and non-stochastic) and applying the rule
Var(bX) = b2Var(X) from the scalar case to matrices we obtain:

Var(β̂) = Var((X′X)−1X′y) = (X′X)−1X′Var(y)X(X′X)−1 = σ2(X′X)−1.

Maximum Likelihood Estimation in the Linear Model. The linear model follows
a normal distribution:

y = Xβ + ε ∼ N (Xβ, σ2I).

Therefore, the likelihood function of y also follows a normal distribution:

L(β,σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2 (y − Xβ)′(y − Xβ)

}
.

The log-likelihood function is given by

l(β, σ2) = −n

2
ln(2πσ2) − 1

2σ2 (y − Xβ)′(y − Xβ).
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To obtain the maximum likelihood estimates of β and σ2, one needs to obtain the
maximaof the above function using the principle ofmaxima andminima that involves
setting the partial derivatives equal to zero and finding the solution:

∂l

∂β
= 1

2σ2 2X
′(y − Xβ) = 0,

∂l

∂σ2 = − n

2σ2 + 1

2(σ2)2
(y − Xβ)′(y − Xβ) = 0.

We therefore have

X′Xβ̂ = X′y, or β̂ = (X′X)−1X′y

σ̂2 = 1

n
(y − Xβ̂)′(y − Xβ̂)

which give us the ML estimates of β and σ2 in the linear regression model. Here,
we also need to check the Hessian matrix of second-order partial derivatives to show
that we really found a minimum and not a maximum. We omit this proof however.

Distribution Tables

See Tables C.1, C.2 and C.3.
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Table C.2 (1 − α) quantiles for the t-distribution. These values can also be obtained in R using
the qt(p,df) command.

d f 1 − α

0.95 0.975 0.99 0.995

1 6.3138 12.706 31.821 63.657

2 2.9200 4.3027 6.9646 9.9248

3 2.3534 3.1824 4.5407 5.8409

4 2.1318 2.7764 3.7469 4.6041

5 2.0150 2.5706 3.3649 4.0321

6 1.9432 2.4469 3.1427 3.7074

7 1.8946 2.3646 2.9980 3.4995

8 1.8595 2.3060 2.8965 3.3554

9 1.8331 2.2622 2.8214 3.2498

10 1.8125 2.2281 2.7638 3.1693

11 1.7959 2.2010 2.7181 3.1058

12 1.7823 2.1788 2.6810 3.0545

13 1.7709 2.1604 2.6503 3.0123

14 1.7613 2.1448 2.6245 2.9768

15 1.7531 2.1314 2.6025 2.9467

16 1.7459 2.1199 2.5835 2.9208

17 1.7396 2.1098 2.5669 2.8982

18 1.7341 2.1009 2.5524 2.8784

19 1.7291 2.0930 2.5395 2.8609

20 1.7247 2.0860 2.5280 2.8453

30 1.6973 2.0423 2.4573 2.7500

40 1.6839 2.0211 2.4233 2.7045

50 1.6759 2.0086 2.4033 2.6778

60 1.6706 2.0003 2.3901 2.6603

70 1.6669 1.9944 2.3808 2.6479

80 1.6641 1.9901 2.3739 2.6387

90 1.6620 1.9867 2.3685 2.6316

100 1.6602 1.9840 2.3642 2.6259

200 1.6525 1.9719 2.3451 2.6006

300 1.6499 1.9679 2.3388 2.5923

400 1.6487 1.9659 2.3357 2.5882

500 1.6479 1.9647 2.3338 2.5857
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Table C.3 (1 − α) quantiles of the χ2-distribution. These values can also be obtained in R using
the qchisq(p,df) command

d f 1 − α

0.01 0.025 0.05 0.95 0.975 0.99

1 0.0001 0.001 0.004 3.84 5.02 6.62

2 0.020 0.051 0.103 5.99 7.38 9.21

3 0.115 0.216 0.352 7.81 9.35 11.3

4 0.297 0.484 0.711 9.49 11.1 13.3

5 0.554 0.831 1.15 11.1 12.8 15.1

6 0.872 1.24 1.64 12.6 14.4 16.8

7 1.24 1.69 2.17 14.1 16.0 18.5

8 1.65 2.18 2.73 15.5 17.5 20.1

9 2.09 2.70 3.33 16.9 19.0 21.7

10 2.56 3.25 3.94 18.3 20.5 23.2

11 3.05 3.82 4.57 19.7 21.9 24.7

12 3.57 4.40 5.23 21.0 23.3 26.2

13 4.11 5.01 5.89 22.4 24.7 27.7

14 4.66 5.63 6.57 23.7 26.1 29.1

15 5.23 6.26 7.26 25.0 27.5 30.6

16 5.81 6.91 7.96 26.3 28.8 32.0

17 6.41 7.56 8.67 27.6 30.2 33.4

18 7.01 8.23 9.39 28.9 31.5 34.8

19 7.63 8.91 10.1 30.1 32.9 36.2

20 8.26 9.59 10.9 31.4 34.2 37.6

25 11.5 13.1 14.6 37.7 40.6 44.3

30 15.0 16.8 18.5 43.8 47.0 50.9

40 22.2 24.4 26.5 55.8 59.3 63.7

50 29.7 32.4 34.8 67.5 71.4 76.2

60 37.5 40.5 43.2 79.1 83.3 88.4

70 45.4 48.8 51.7 90.5 95.0 100.4

80 53.5 57.2 60.4 101.9 106.6 112.3

90 61.8 65.6 69.1 113.1 118.1 124.1

100 70.1 74.2 77.9 124.3 129.6 135.8

Quantiles of the F-Distribution. These quantiles can be obtained in R using the
qf(p,df1,df2) command.
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Summary of Tests for Continuous and Ordinal Variables
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Summary of Tests for Nominal Variables
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Index

A
Absolute
deviation, 51
mean deviation, 51
median deviation, 51

Additivity theorem, 116, 147
Akaike’s information criterion (AIC), 282
Analysis of variance, 274
ANOVA, 274
Arithmetic mean, 38
properties, 40
weighted, 38

Association, 67, 249

B
Backward selection, 282
Bar chart, 24
Behrens-Fisher problem, 222
Bernoulli distribution, 156
Bias, 184
Binomial
coefficient, 102
distribution, 157

Bivariate random variables, 140
Box plot, 56

C
Calculation rules
CDF, 133
expectation, 144
normal random variables, 168
probabilities, 117
variance, 144

Causation, 288
CDF, 129
calculation rules, 133

joint, 141
quantile, 137
quartile, 137

Central limit theorem, 426
Central tendency, 38
Certain event, 110
χ2

distribution, 171, 427
goodness-of-fit test, 235
independence test, 238
test of homogeneity, 240, 241
variance test, 430

Coding
dummy, 266
effect, 267

Coefficient
binomial, 102
of variation, 55
regression, 251

Combinations, 102
with order, 103, 104
with replacement, 103, 104
without order, 102, 103
without replacement, 102, 103

Combinatorics, 97
Complementary event, 110
Composite event, 110
Conditional
distribution, 141, 143
frequency distribution, 70
probability, 117
relative frequency distribution, 70

Confidence
bound, 196
interval, 196, 197
interval for μ; σ2 known, 197
interval for μ; σ2 unknown, 198
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452 Index

interval for p, 199
interval for the odds ratio, 201
level, 196

Consistency, 189
Contingency
coefficient, 77
table, 68, 140

Continuous variable, 6
Convergence
stochastic, 425

Correlation coefficient, 148
of Bravais–Pearson, 82
of Spearman, 84
product moment, 82

Covariance, 146, 147
Covariate, 251
Cramer’s V, 77
Cross tabulation, see contingency table
Cumulative
distribution function, 129
frequency, see frequency, cumulative
marginal distribution, 143

D
Data
matrix, 3, 9
observation, 3
set, 3, 9
transformation, 11
unit, 3

Decomposition
complete, 113

Degenerate distribution, 156
Density, 129
Design matrix, 263, 270
Dispersion, 48
absolute deviation, 51
absolute mean deviation, 51
absolute median deviation, 51
mean squared error, 51
measure, 49
range, 49
standard deviation, 51

Distribution, 19
Bernoulli, 156
Binomial, 157
χ2, 171, 427
conditional, 141, 143
conditional frequency, 70
conditional relative frequency, 70
continuous, 165

cumulative marginal, 143
degenerate, 156
exponential, 170
F, 427
Gauss, 166
geometric, 163
hypergeometric, 163
independent and identical, 145, 426
joint relative frequency, 70
marginal, 140, 142
marginal frequency, 70
marginal relative frequency, 70
multinomial, 161
normal, 166
Poisson, 160
standard, 154
Student, 172
t, 172, 427
uniform discrete, 154

Duality, 216
Dummy variable, 266

E
Efficiency, 185
Elementary event, 110
Empirical cumulative distribution function

(ECDF), 19
Epitools, see R packages
Error
type I, 213
type II, 213

Estimation
interval, 195
least squares, 252, 253, 264
maximum likelihood, 192
method of moments, 195
nonparametric, 182
parametric, 182

Event, 110
additive theorem, 116
certain, 110
composite, 110
disjoint, 112
elementary, 110
impossible, 110
simple, 110
sure, 110
theorem of additivity, 115, 116

Expectation, 134
calculation rules, 144

Expected frequencies, 74
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Experiment
Laplace, 114
random, 109

Exponential distribution, 170

F
Factorial function, see function, factorial
F-distribution, 173, 427
Fisher
exact test, 230

Foreign, see R packages
Frequency
absolute, 18, 69, 113
cumulative, 19
expected, 74
relative, 18, 21, 113
table, 19, 69

F-Test, 272, 431
Function
cumulative distribution, see CDF
empirical cumulative distribution, see

ECDF
factorial, 100
joint cumulative distribution, 141
joint probability distribution, 140, 141
probability mass, see PMF
step, 133

G
Gamma
of Goodman and Kruskal, 87

Gauss test
one-sample, 216
two-sample, 221

Generalized method of moments, 195
Geometric distribution, 163
Ggplot2, see R packages
Gini coefficient, 60
standardized, 61

Goodman and Kruskal’s γ, 87
Goodness of fit
adjusted measure, 281
measure, 258
test, 235

Graph
bar chart, 24
box plot, 56
histogram, 27
kernel density plot, 29
Lorenz curve, 58
pie chart, 26

QQ-plot, 44
random plot, 286
scatter plot, 80

Growth
factor, 46
rate, 46

H
Heteroscedasticity, 286
Histogram, 27
Homoscedasticity, 286
Hypergeometric distribution, 163
Hypothesis, 210
alternative, 211
linear, 280
null, 211
one-sided, 211
two-sided, 211

I
i.i.d., 145, 153, 426
Impossible event, 110
Independence, 73, 121
pairwise, 122
random variables, 143
stochastic, 121, 144

Ineq, see R packages
Inequality
Tschebyschev, 139

Inference, 181, 182
least squares, 252, 264
maximum likelihood, 192
method of moments, 195

Interaction, 276
Intercept, 251
Interquartile range, 49
Interval estimation, 195

J
Joint
cumulative distribution function, 141
frequency distribution, 70
probability distribution function, 140,

141
relative frequency distribution, 70

K
Kernel density plot, 29
Kolmogorov–Smirnov test, 237
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L
Laplace
experiment, 114
probability, 114

Lattice, see R packages
Least squares, 252
Life time, 170
Likelihood, 192
Line of equality, 59
Linear
hypotheses, 280

Linear model, 251
residuals, 270

Linear regression, 249
interaction, 276

Location parameter, 38
Log-linear model, 269
Lorenz curve, 58

M
Mann-Whitney U-test, 232
Marginal
distribution, 140, 142
frequency distribution, 70
relative frequency distribution, 70

MASS, see R packages
Matrix
covariance, 147
design, 263

Maximum likelihood estimation (MLE),
192

Mean
arithmetic, 38
properties, 40
weighted arithmetic, 38

Mean squared error (MSE), 51, 184
Measure
dispersion, 49
symmetric, 76

Measure of association
χ2 coefficient, 76
contingency coefficient C , 77
correlation coefficient, 82
Cramer’s V , 77
odds ratio, 78
rank correlation coefficient, 84
relative risk, 78

Memorylessness, 170
Method of moments, 195
Model
fitted regression model, 253

fitted value, 253
linear, 251
log-linear, 269
nonlinear, 251

Multinomial distribution, 161
Multiple linear regression, 262
Multiplication theorem of probability, 119
Multivariate, 249
Mvtnorm, see R packages

N
Namibia, 206
Newton–Raphson, 193
Nominal variable, 6
Normal distribution, 166

O
Observation, 3
Odds ratio, 78
One-sample problem, 209, 210
Ordered
set, 99
values, 20

Ordinal variable, 6
Outcome, 251

P
Parameter
location, 38
regression, 251
space, 184

PDF, 129
joint, 140, 141

Percentile, 43
Permutation, 101
with replacement, 101
without replacement, 101

Pie chart, 26
Plot
kernel density, 29
QQ, 44
random, 286
scatter, 79
trumpet, 286, 288

Poisson distribution, 160
Polynomial regression, 267
Population, 4
Power, 213
Probability
calculation rules, 117
conditional, 117, 119
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density function, 129
Laplace, 114
mass function, 132
posterior, 120
prior, 120

Probability theory
axioms, 115

p-value, 215

Q
QQ-plot, 44
Quantile, 42, 137
Quartile, 43, 137
Quintile, 43

R
R2

adjusted, 281
Random variables, 127
bivariate, 140
continuous, 129
discrete, 131
i.i.d, 153
independence, 144
standardization, 138

Range, 49
Real stories, 63, 124, 176, 244, 245
Realization, 128
Reference category, 266
Regression
line, 251
linear, 249
multiple linear, 262
polynomial, 267

Regressor, 251
Relationship, 249
Relative risk, 78
Residuals, 253, 270
standardized, 285

Response, 251
R packages
compositions, 219
epitools, 202
foreign, 12
ggplot2, 35, 73, 199
ineq, 59, 62
lattice, 73
MASS, 28, 283
mvtnorm, 316
ryouready, 87, 88
TeachingDemos, 445

vcd, 77

S
Sample
estimate, 182
pooled variance, 222
space, 110
variance, 51

Sampling
without replacement, 163

Scale
absolute, 7
continuous, 6
interval, 7
nominal, 6
ordinal, 6
ratio, 7

Scatter plot, 80
Set
ordered, 100
unordered, 100

Significance level, 213
Simple event, 110
Slope, 251
Standard deviation, 51, 136
Standard error, 189, 205
Standardization, 54, 138
Standard normal distribution, 166
Statistic, 146, 183
Step function, 20, 133
Stochastic convergence, 425
Stuart’s τc, 87
Sufficiency, 190
Sure event, 110

T
Table
contingency, 68, 69, 140
frequency, 19, 69

τc
of Stuart, 87

T-distribution, 172, 427
Test
ANOVA, 274
Binomial, 227
χ2 for variance, 232, 430
χ2 goodness of fit, 235
χ2 independence, 238
χ2 of homogeneity, 240
duality, 216
equivalence, 213
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F, 272, 431
Fisher, 230, 428
Friedman, 446
Kolmogorov–Smirnov, 237
Kruskal–Wallis, 446
Mann–Whitney U, 232
McNemar, 447
Mood, 446
one-sample Gauss test, 216
one-sample t-test, 219
one-sided, 211
overall F, 272
paired t-test, 225
sign, 446
significance, 213
two-sample binomial, 230
two-sample Gauss test, 221
two-sample t-test, 222
two-sided, 211
U, 232
Welch, 222
Wilcoxon rank sum, 232
Wilcoxon–Mann–Whitney, 232

Test distributions, 317
Theorem
additivity, 116, 147
additivity of χ2 variables, 172
additivity of disjoint events, 115
Bayes, 120
central limit, 426
i.i.d., 185
large numbers, 425, 426
law of total probability, 119
multiplication for probabilities, 119
Neyman–Fisher Factorization, 191
PDF, 129
standardization, 138
Student, 172
Tschebyschev, 139
variance decomposition, 136

Tie, 85, 86
Transformation, 11
T-test

one-sample, 219
paired, 225
two-sample, 222

Two-sample problem, 210

U
Uniform distribution
continuous, 165
discrete, 154

Unit, 3
Unordered set, 100
U test, 232

V
Variable, 4
binary, 7
bivariate random, 140
categorical, 7
continuous, 6
dependent, 251
discrete, 6
dummy, 266
grouped, 7
independent, 251
nominal, 6
ordinal, 6
random, 127
response, 251
standardized, 54

Variance, 51, 135
additivity theorem, 147
between classes, 53
calculation rules, 144
decomposition, 257
dispersion, 48
pooled, 222
within classes, 53

Vcd, see R packages

W
Welch test, 222
Whiskers, 56
Wilcoxon–Mann–Whitney test, 232
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