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Preface

Experience has shown that two fundamental thermodynamic quantities are espe-

cially difficult to grasp: entropy and chemical potential—entropy S as quantity

associated with temperature T and chemical potential μ as quantity associated with

the amount of substance n. The pair S and T is responsible for all kinds of heat

effects, whereas the pair μ and n controls all the processes involving substances

such as chemical reactions, phase transitions, or spreading in space. It turns out that

S and μ are compatible with a layperson’s conception.
In this book, a simpler approach to these central quantities—in addition to

energy—is proposed for the first-year students. The quantities are characterized

by their typical and easily observable properties, i.e., by creating a kind of “wanted

poster” for them. This phenomenological description is supported by a direct

measuring procedure, a method which has been common practice for the quantifi-

cation of basic concepts such as length, time, or mass for a long time.

The proposed approach leads directly to practical results such as the predic-

tion—based upon the chemical potential—of whether or not a reaction runs spon-

taneously. Moreover, the chemical potential is key in dealing with physicochemical

problems. Based upon this central concept, it is possible to explore many other

fields. The dependence of the chemical potential upon temperature, pressure, and

concentration is the “gateway” to the deduction of the mass action law, the

calculation of equilibrium constants, solubilities, and many other data, the con-

struction of phase diagrams, and so on. It is simple to expand the concept to

colligative phenomena, diffusion processes, surface effects, electrochemical pro-

cesses, etc. Furthermore, the same tools allow us to solve problems even at the

atomic and molecular level, which are usually treated by quantum statistical

methods. This approach allows us to eliminate many thermodynamic quantities

that are traditionally used such as enthalpy H, Gibbs energy G, activity a, etc. The
usage of these quantities is not excluded but superfluous in most cases. An opti-

mized calculus results in short calculations, which are intuitively predictable and

can be easily verified.
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Because we choose in this book an approach to matter dynamics directly by

using the chemical potential, application of the concept of entropy is limited to the

description of heat effects. Still, entropy retains its fundamental importance for this

subject and is correspondingly discussed in detail.

The book discusses the principles of matter dynamics in three parts,

• Basic concepts and chemical equilibria (statics),

• Progression of transformations of substances in time (kinetics),

• Interaction of chemical phenomena and electric fields (electrochemistry)

and gives at the same time an overview of important areas of physical chemistry.

Because students often regard physical chemistry as very abstract and not useful for

everyday life, theoretical considerations are linked to everyday experience and

numerous demonstration experiments.

We address this book to undergraduate students in courses where physical chem-

istry is required in support but also to beginners inmainstreamcourses.Wehave aimed

to keep the needs of this audience always inmindwith regard to both the selection and

the representation of the materials. Only elementary mathematical knowledge is

necessary for understanding the basic ideas. If more sophisticated mathematical

tools are needed, detailed explanations are incorporated as background information

(characterized by a smaller font size and indentation). The book also presents all the

material required for introductory laboratory courses in physical chemistry.

Exercises are made available on the publisher’s web site. A student manual with

commented solutions is in preparation. Detailed descriptions of a selection of dem-

onstration experiments (partly with corresponding videos clips) can be found on our

web site (www.job-foundation.org; see teaching materials); the collection will be

continuously extended. Further information to the topics of quantum statistics and the

statistical approach to entropy, which would go beyond the scope of this book, can

also be called up on the foundation’s home page.
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List of Used Symbols

In the following, the more important of the used symbols are listed. The number

added in parentheses refers to the page where the quantity or term if necessary is

described in detail. Special characters as prefix (j, Δ, ΔR, Δs!l, . . .) were omitted

when ordering the symbols alphabetically.

Greek letters in alphabetical order:

Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθϑ Iι Kκ Λλ Mμ Νv Ξξ Οo Ππ Ρρ Σσς Ττ Υυ Φφ Χχ
Ψψ Ωω.

Roman

A, B, C, . . . Substance A, B, C, . . .
jA, jB, . . . Dissolved in A, in B, . . . (240)
Ad Acid (188)

a, ja Amorphous (19) (also subscripted or superscripted)

Bs Base (188)

C Catalyst (462)

c, jc Crystalline (19) (also subscripted or superscripted)

d, jd Dissolved (19) (also subscripted or superscripted)

E Enzyme (466)

e, e� Electron(s) (7, 553) (also subscripted)

e Eutectic (367) (also subscripted or superscripted)

F Foreign substance (320)

g, jg Gaseous (19) (also subscripted or superscripted)

J Ion, unspecific (533)

l, jl Liquid (19) (also subscripted or superscripted)

M Mixture (homogeneous) (346)

M Mixture (heterogeneous) (348)

Me Metal, unspecific (533)

m, jm Metallic (conducting electrons) (553) (also subscripted or

superscripted)

Ox Oxidizing agent (537)
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P Products, unspecific (462)

p Proton(s) (187) (also subscripted)

Rd Reducing agent (537)

S Solvent (97), solution phase (535)

S Substrate (466)

s, js Solid (19) (also subscripted or superscripted)

w, jw Dissolved in water (20) (also subscripted or superscripted)

jα, jβ, jγ, . . . Different modifications of a substance (20)

□, B Adsorption site (“chemical”) empty, occupied (394)

Adsorption site (“physical”) empty, occupied (394)

‡ Transition complex (450) (also subscripted or superscripted)

Italic

A Area, cross section

A Helmholtz (free) energy (only used exceptionally) (595)

A (Chemical) drive, affinity (108)

A� Standard value of the chemical drive (109)

A
○

Basic value of the chemical drive (159)

A
�

Mass action term of the chemical drive (159)
a Acceleration (32)

a Length of box (281)

a (First) van der Waals constant (299)

a Temperature conductivity (491)

a, aB Activity (of a substance B) (only used exceptionally) (604)

B Matter capacity (182)

Bp Buffer capacity (201)

B, Bi Substance in general (with subscript i) (25)
b, bB Molality (of a substance B) (18)

b (Second) van der Waals constant (321)

b Matter capacity density (182)

b p Buffer capacity density (212)

C, Cp Heat capacity (global, isobaric) (254, 591)

Cm Heat capacity, molar (isobaric) (254)

CV Heat capacity (global, isochoric) (254, 587)

C;C p Entropy capacity (global, isobaric) (75)

Cm Entropy capacity, molar (isobaric) (75)

CV Entropy capacity (global, isochoriv) (77)

c Speed of light (13)

c, cB Molar concentration (of a substance B) (17)

c, cs Heat capacity, specific (isobaric) (254, 491)

cr Relative concentration c=c� (156)

cξ Density of conversion (163)
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c� Standard concentration (1 kmol m–3) (103, 156)

c{ Arbitrary reference concentration (416)

c Entropy capacity, specific (isobaric) (76, 491)

D Spring stiffness (39)

D, DB Diffusion coefficient (of a substance B) (480)

d Thickness, diameter

E, E
!

Electric field (strength) (500)

E Electrode potential, redox potential (558)

ΔE Reversible cell voltage (“zero-current cell voltage”) (568)

e0 Elementary charge, charge quantum (16)

F Force, momentum current (31, 45, 486)

F Faraday constant (504)

f, fB Fugacity (of a substance B) (only used exceptionally) (606)

G Weight (according to everyday language) (9)

G, GQ (Electric) conductance (494, 508)

G Gibbs (free) energy (only used exceptionally) (596)

G Arbitrary quantized quantity (15)

g Gravitational acceleration (46)

gi Content number of the ith basic substance (6)

g Quantum number (15)

H Enthalpy (only used exceptionally) (589)

h Height

h Planck’s constant (451)
I (Electric) current (494)

J Current (of a substance-like quantity) (493)

JB Matter flux, current of amount of a substance B (479)

JS Entropy flux, entropy current (490)

j Current density (of a substance-like quantity) (493)

jB Flux density, current density (of matter) (478)

jS Entropy flux (or entropy current) density (490)

K
○

Conventional equilibrium constant (167, 176)

K
○

Numerical equilibrium constant, equilibrium number (166, 176)
KM Michaelis constant (466)

k Rate coefficient (417)

k+1, k�1, . . . Rate coefficient for forward or backward reaction

(No. 1, etc.) (430)

kB Boltzmann constant (280)

k1 Frequency factor (444)

l Length

M Molar mass (16)

m Mass

N Number of particles (15)

NA Avogadro constant (15)

n Amount of substance (15)
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np Amount of protons (in a reservoir for protons) (203)

P Power

p Pressure (41)

p Probability (291, 307)

p Steric factor (449)

pint Internal pressure (298)

pr Relative pressure p=p� (171)

pσ Capillary pressure (387)

p� Standard pressure (100 kPa) (72, 103)

þ Momentum (44)

Q (Electric) charge (16)

Q Heat (only used exceptionally) (80)

q Fraction of collisions of particles having minimum energy

wmin (448)

R General gas constant (148, 277)

R, RQ (Electric) resistance (494)

R,R0,R00 Arbitrary reaction (28)

r, rAB, . . . Radius, distance from center, distance between two particles A and B

r Rate density (419)

r+1, r–1, . . . Rate density for forward or backward reaction (No. 1, etc.) (430)

rads, rdes Rate (density) of adsorption or desorption (395)

S Entropy (49)

ΔfusS Molar entropy of fusion (75, 312)

ΔRS Molar reaction entropy (232)

ΔvapS Molar entropy of vaporization (75, 309)

Δ!S (Molar) transformation entropy (234)

Sc Convectively (together with matter) exchanged entropy (65)

Se Exchanged entropy (convectively and/or conductively) (65)

Sg Generated entropy (65)

ΔS‘ Latent entropy (84)

Sm Entropy demand, molar entropy (71, 229)

St Transferred entropy (85)

Sλ Conductively (by conduction) exchanged entropy (65)

s Length of distance traveled

T (Thermodynamic, absolute) temperature (68)

T� Standard temperature (298.15 K) (71, 103)

T , T O Duration of conversion, observation period (404)

t, Δt Time, duration

t1/2 Half-life (420)

t, ti, t+, t– Transport number (of particles of type i, of cations, of anions) (517)
U, U1!2 (Electric) voltage (from position 1 to position 2) (502)

U Internal energy (only used exceptionally) (582)

UDiff Diffusion (Galvani) voltage (548)

u, ui Electric mobility (of particles of type i) (503)
V Volume
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ΔRV Molar reaction volume (228)

Δ!V (Molar) transformation volume (228)

Vm Volume demand, molar volume (220)

VW Co-volume (van der Waals volume) (298)

υ, υ
!

Velocity (magnitude, vector)

υx, υy, υz Velocity, components in x, y, z direction (281)

W Energy (36)

W Work (only used exceptionally) (581)

WA Molar (Arrhenius) activation energy (581)

WA,W!A Energy expended for a change of surface or interface (385)

WB, Wi, . . . Abbreviation for W!nB
, W!ni

, . . . (346)
Wb Burnt energy (78)

We Energy transferred together with exchanged entropy (79)

Wf Free energy (only used exceptionally) (592)

Wkin Kinetic energy (43)

Wn, W!n Energy expended for a change of amount of substance (124)

Wpot Potential energy (46)

Wt Energy expended for transfer (of an amount of entropy,

of matter . . .) (85, 235)
WS, W!S Energy expended for a change of entropy (“added + generated

heat”) (81)

WV, W!V Energy expended for a change of volume (“pressure–volume

work”) (81)

Wξ, W!ξ Energy expended for a change of conversion (236)

w, wB Mass fraction (of a substance B) (17)

w Energy of a particle (278, 287)

x, xB Mole fraction (of a substance B) (17)

x, y, z Spatial coordinates

ZAB Collision frequency between particles A and B (446)

z, zi, z+, z– Charge number (of a type i of particles, cations, anions) (16, 535)
α, αB Temperature coefficient of the chemical potential (of a

substance B) (131)

α, αξ Degree of dissociation, degree of conversion (513, 163)

a Temperature coefficient of the drive (of a transformation of

substance) (131)

β, βB Pressure coefficient of the chemical potential

(of a substance B) (140)

β, βB Mass concentration (of a substance B) (17)

βr Relative pressure coefficient (271)

ß Pressure coefficient of the drive (of a transformation of substance)

(140)

γ Concentration coefficient of the chemical potential (154)

γ Cubic expansion coefficient (256)

γ Activity coefficient (only used exceptionally) (604)

η Efficiency (85)

η (Dynamic) viscosity (486)
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Θ Degree of filling (degree of protonation, etc.), fractional coverage

(201, 396)

θ Contact angle (387)

ϑ Celsius temperature (70)

κ Dimension factor (167, 173)

ϑF Faraday temperature

Λ, Λi Molar conductivity, (molar) ionic conductivity of ions

of type i (519)
λ Thermal conductivity (490)

λ, λ1, λ2, . . . Wave length, wave lengths of fundamental and harmonics (483)

λ, λB Chemical activity (of a substance B) (only used

exceptionally) (605)

μ, μB Chemical potential (of a substance B) (98)

μd Decapotential (abbreviation for RT ln10) (157)

μe, μe(Rd/Ox) Electron potential, of a redox pair Rd/Ox (529, 537)

μp, μp(Ad/Bs) Proton potential, of an acid–base pair Ad/Bs (191)

μ� Standard value of the chemical potential (103, 157)

μ
○ Basic value of the chemical potential of a dissolved substance (156)

Δ‡ μ
○ Activation threshold (451)

μ
○
c, μ

○
p, μ

○
x, . . . Basic value of the chemical potential in the c, p, x, . . . scale (340)

μ
� Chemical potential of a substance in its pure state (345)

μ
� Mass action term of the chemical potential (157)

μ
þ Extra potential (extra term of the chemical potential) (345)eμ, eμi Electrochemical potential (of a substance i) (528)
v, vB, vi, . . . Conversion number, stoichiometric coefficient (of a substance B or

i . . .) (26)
v Kinematic viscosity (486)

ξ Extent of reaction (26)

ρ, ρB, ρi (Mass) density (of a substance B or i) (9)
ρ, ρQ (Electric) resistivity (494, 509)

σ, σg,l, . . . Surface tension, interfacial tension (383, 387)

σ, σQ (Electric) conductivity (493, 509)

σB “Matter conductivity” (for a substance B) (527)

σS Entropy conductivity (490)

τ Elementary amount (of substance), quantum of amount

(of substance) (15, 16)

t1, t2, . . . Decay time of fundamental and harmonic waves, respectively (483)

τ‡ Lifetime of the transition complex (450)

ϕ Fugacity coefficient (only exceptionally used) (612)

φ Electric potential (90, 500)

φ Fluidity (494)

χ Compressibility (268)

ψ “Gravitational potential” (90)

ω, ωB Mechanical mobility (of a substance B) (476)

ω Conversion rate (407)
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Subscript

ads Concerning adsorption (396)

c Critical (304)

d!d, dd Transition of a dissolved substance from one phase to another (181)

des Concerning desorption (395)

eq. In equilibrium (166)

g!d, gd Transition from gaseous to dissolved state (180)

l!g, lg Transition from liquid to gaseous state (boiling) (75, 228)

‘ Latent (84, 243)

m Molar

mix Mixing process (351)

osm Osmotic (325)

R Concerning a reaction (228)

r Relative (156)

s!d, sd Transition from solid to dissolved state (176, 228)

s!g, sg Transition from solid to gaseous state (sublimation) (137)

s!l, sl Transition from solid to liquid state (melting) (75, 228)

s!s, ss Transition in the solid state from one structural modification to another

(change of modification) (228)

use Useful (87, 240)

! Concerning a transformation (228)

□ Concerning an adsorption process (396)
=0 Value interpolated to vanishingly lowconcentration (477) (also superscript)

+, � Concerning cations, anions (also superscript) (517)

Superscript

� Standard value (71, 103)

• Value for a substance in its pure state (329, 333)
~ Characterizes a homogeneous or heterogeneous mixture of

intermediate composition, the “support point” by the application of the

“lever rule” (348)

*, **, . . . Characterizes different substances, phases, areas [e.g., the

surroundings (239)]

* Characterizes “transfer quantities” (492)
0, 00, 000, . . . Characterizes different substances, phases, areas
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Character Above a Symbol

! Vector
� Mean value� Derivative with respect to time
○ Basic term, basic value (156)
• Basic value of a quantity for a substance in its pure state (320)

� Quantity caused by mass action (154,157)
+ Extra term, extra value (345)
* Residual term, residual value (residual without basic term)

General Standard Values (Selection)

b� ¼ 1molkg�1 Standard value of molality

c� ¼ 1, 000molm�3 Standard value of concentration

p� ¼ 100, 000Pa Standard value of pressure

T� ¼ 298:15K Standard value of temperature

w� ¼ 1 Standard value of mass fraction

x� ¼ 1 Standard value of mole fraction

Physical Constants (Selection)

c¼ 2.998� 108 m s�1 Speed of light in vacuum

e0¼ 1.6022� 10–19 C Elementary charge, charge quantum

F ¼ 96, 485Cmol�1 Faraday constant

gn¼ 9.806 m s�2 Conventional standard value of gravitational

acceleration

h¼ 6.626� 10�34 J s Planck constant

kB¼ 1.3807� 10�23 J K�1 Boltzmann constant

NA¼ 6.022� 1023 mol–1 Avogadro constant

R¼ 8.314 G K–1 General gas constant

T0¼ 273.15 K Zero point of the Celsius scale

τ¼ 1.6605� 10�24 mol Elementary amount (of substance), quantum of

amount
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Chapter 1

Introduction and First Basic Concepts

In this first chapter, we will be introduced briefly to the field of matter dynamics.
This field is concerned in the most general sense with the transformations of

substances and the physical principles underlying the changes of matter. As a

consequence, we have to review some important basic concepts necessary for

describing such processes like substance, content formula and amount of substance,

as well as homogeneous and heterogeneous mixture and the corresponding mea-

sures of composition. But in this context, the physical state of a sample is also of

great importance. Therefore, we will learn how we can characterize it qualitatively

by the different states of aggregation as well as quantitatively by state variables. In

the last section, a classification of transformations of substances into chemical

reactions, phase transitions, and redistribution processes as well as their description

with the help of conversion formulas is given. The temporal course of such a

transformation can be expressed by the extent of conversion ξ. Additionally, we
will take a short look at the basic problem of measuring quantities and metricizing

concepts in this chapter.

1.1 Matter Dynamics

The term dynamics is derived from the word “dynamis,” the Greek word for

“force.” In physics, dynamics is the study of forces and the changes caused by

them. The field of mechanics uses this word in particular when dealing with the

motion of bodies and the reasons why they move. This term is then expanded to

other areas and is reflected in such expressions as hydrodynamics, thermodynamics,
or electrodynamics. When we discuss the field ofmatter dynamicswe will generally
be talking about transformations of substances and the “forces” driving them.

States of equilibrium (treated in the field of statics, also called “chemical thermo-

dynamics”) will be covered in addition to the temporal course of transformations

(kinetics) or the effects of electrical fields (electrochemistry).

© Springer International Publishing Switzerland 2016
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What makes this field so valuable to chemistry and physics as well as biology,

geology, engineering, medicine, etc., are the numerous ways it can be applied.

Matter dynamics allows us to predict in principle

• Whether or not it is possible for a given chemical reaction to take place

spontaneously,

• Which yields can be expected from this,

• How temperature, pressure, and amounts of substances involved influence the

course of a reaction,

• How strongly the reaction mixture heats up or cools down, as well as how much

it expands or contracts,

• How much energy a chemical process needs to run or how much it releases, and

much more.

This kind of knowledge is very important for developing and optimizing chem-

ical processes, as well as preparing new materials and active ingredients by using

energy carriers efficiently and avoiding pollution, etc. It plays an important role in

many areas of chemistry, especially in chemical engineering, biotechnology, mate-

rials science, and environmental protection. Moreover, this knowledge can equally

help us to understand how substances behave in our everyday lives at home, when

we cook, wash, clean, etc.

Although we will mainly deal with chemical reactions, it does not mean that

matter dynamics is limited to this. The concepts, quantities, and rules can, in

principle, be applied to every process in which substances or different types of

particles (ions, electrons, supramolecular assemblies, and lattice defects, to name a

few) are exchanged, transported, or transformed. As long as the necessary data are

also available, they help in dealing with and calculating various types of problems

such as

• The amount of energy supplied by a water mill,

• Melting and boiling temperatures of a substance,

• Solubility of a substance in a solvent,

• The construction of phase diagrams,

• How often lattice defects occur in a crystal,

• The potential difference caused by the contact between different electric

conductors

and much more. Matter dynamics can also be very useful in discussing diffusion

and adsorption processes or questions about metabolism or transport of substances

in living cells, as well as transformation of matter inside stars or in nuclear reactors.

It is a very general and versatile theory whose conceptual structure reaches far

beyond the field of chemistry.

Now we can ask for the causes and conditions that are necessary for the

formation of certain substances and their transformations into one another. This

can be done in different ways and on different levels:
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1. Phenomenologically, by considering what happens macroscopically. This means

directly observing processes taking place in a beaker, reaction flask, carius tube,

or spectrometer when the substance in it is shaken, heated, other substances are

added to it dropwise, poured off, filtered, or otherwise altered.

2. According to molecular kinetics, by considering the reacting substances to be

more or less orderly assemblies of atoms where the atoms are small, mutually

attracting particles moving randomly but always trying to regroup to attain a

statistically more probable state.

3. According to chemical bonding theory, by emphasizing the rules and laws

according to which different types of atoms come together to form assemblies

of molecules, liquids, or crystals in more or less defined relationships of num-

bers, distances, and angles. The forces and energies that hold the atoms together

in these associations can also be investigated.

All of these points of view are equally important in chemistry. They complement

one another. In fact, each is inextricably interwoven with the others. To give an

example, we operate at the third level when the structural formula of the substance

to be produced is written down. On the second level, one might make use of

plausible reaction mechanisms for planning a synthesis pathway. The first level is

applied when, for instance, the substances to be transformed are put together in a

laboratory. To work economically, it is important to be able to switch between these

different points of view unhindered. Our goal is not so much a concise explication

of the individual aspects mentioned above, as it is a unified representation in which

the knowledge gained from these differing points of view merges into a harmonic

overall picture. Conversely, the individual aspects can also be easily derived from

this overall picture.

One might say that the phenomenological level forms the “outer shell” of the

theory. It relates the mathematical structure to phenomena observed in nature. The

first step toward expressing such relationships is to prepare the appropriate con-

cepts, which helps the facts gained by experience to be formulated, put into order,

and summarized. It follows that these expressions will appear in farther-reaching

theories as well. The phenomenological level constitutes the natural first step into a

chosen area of investigation.

In the next sections as well as in the next chapter, important fundamental terms

and concepts will be discussed. Among these will be substance, amount of sub-

stance, measures of composition, and energy, all of which students are probably

familiar with from high school. For this reason, it should be easy to start right in

with Chap. 3 (Entropy) or even Chap. 4 (Chemical Potential). Chemical potential

puts us right at the heart of matter dynamics. Using this as a starting point opens up

a multitude of areas of application. Chapters 1 and 2 can then be considered

reference work for fundamental terms and concepts.

1.1 Matter Dynamics 3
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1.2 Substances and Basic Substances

When we think about substances, we think about kinds of matter and their actual or

imagined constituents. Simply stated, we think of substances being what the

tangible things of our environment are made up of. They are that formless some-

thing that fills up space when we disregard the shape of things. There are a

multitude of substances around us that we give names to such as iron, brass, clay,

rubber, soap, milk, etc. We characterize these substances individually or as mem-

bers of a category. We use the term matter when it is unimportant what kind of

substance we are discussing.

Some things appear totally uniform materially, such as a glass or the water in

it. If the macroscopic characteristics of a substance such as its density, index of

refraction, etc., are the same overall, it is considered homogeneous. Wine, air,

stainless steel, etc., are other examples of homogeneous substances. Aside from

these, there are heterogeneous substances that are composed of dissimilar parts, i.e.,

they are made up of clearly different components. Examples are a wooden board or

a concrete block. On the one hand, we tend to think of even these materials as

substances on their own. On the other hand, we imagine them to be made up of

several substances. We do this even when we consider the sweetened tea or diluted

wine that look to be homogeneous. This ambivalence is a striking characteristic of

our concept of substance that reflects a noteworthy aspect of the world of

substances.

Imagine breaking down some matter into certain components. We find that these

components can be broken down into their own components, as well. These sub-

components can also be called substances. The process can be repeated at different

levels and in varying ways.

At the heart of the matter lies the following characteristic, one we will need later

on: on every level, we can choose certain basic substances A, B, C, . . . from which

all the other substances on this level can be produced. Moreover, none of the basic

substances can be made up of any other basic substance. In a way, the basic

substances form the coordinate axes of a “material” reference system comparable

to the more familiar spatial coordinate systems. In the same way a point in space

can be described by three coordinate values in a spatial reference system, a

substance can be characterized by its coordinates in a material reference system.

The coordinate values of a substance are given by the amounts or the fractions of its

individual components.

Therefore, on a given level, every substance can be assigned a content formula

AαBβCγ . . .

which gives its composition in terms of the basic substances. The content numbers

gi¼ α, β, γ . . . express the ratios of amounts,

4 1 Introduction and First Basic Concepts



α : β : γ : . . . ¼ nA : nB : nC : . . . ;

with which every basic substance participates in the chemical structure. They

correspond to the coordinate values in the chosen material reference system. At

the moment we will leave open the question of how to determine the amount n of a
substance. In principle, the content numbers can also be negative although we

attempt to choose the basic substances so that this does not occur.

Let us consider a concrete example. If a geologist were asked what a paving

stone is made up of, he might say granite, basalt, or some other rock. The substances

of his world are rocks, and his basic substances are minerals. From these minerals a

multitude of rocks can be formed, depending upon the types, proportions, and grain

formation of the individual minerals involved. Let’s take a look at a polished cross

section of some typical granite (Experiment 1.1).

The granite pictured above may serve as an example for a “petrographical

content formula”:

Q0:3AlkF0:15Plag0:4Bi0:15½ �:

Here, the numbers indicate the fraction by volume of the “basic geological sub-

stances”: Q¼Quartz, AlkF¼Alkali Feldspar, Plag¼Plagioklas (soda–lime feld-

spar), Bi¼Biotite (magnesium mica).

Mineralogists, on the other hand, see these individual rock components (the

basic substances for geologists) as themselves being made up of other components.

A mineralogist will see that the soda–lime feldspar, one of the main components of

basalts and granites, is a mixed crystal with changing fractions of both soda feldspar

and lime feldspar. On the next lower level, these crystals can be considered to be

unions of various oxides (“earths”), silicium oxide (siliceous earth), aluminum

oxide, calcium oxide, and sodium oxide (chemically SiO2, Al2O3, CaO, Na2O).

What we have found out about minerals can be used in discussions about a

myriad of substances, such as resins, oils, wine, schnaps, etc. These substances are

also made up of simpler components that they can decompose into and they can be

formed from again by the process of mixing. Chemists call the basic substances of

Experiment 1.1 Polished
cross section of granite:
Magnification shows clearly

different minerals: the dark

mica, the brownish-red

alkali feldspar, the sallow

beige soda–lime feldspar,

and the translucent quartz

(the colors of the minerals

can vary strongly depending

upon tiny amounts of

impurities).
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such homogeneous mixtures “pure” substances or chemical substances. An exam-

ple for a “content formula” of a mixture is that of schnaps: [Ethanol0.2Water0.8]. In

this case, the relative amounts are not given as volume ratios, as is done in the liquor

business, but as it is done in chemistry by stating the ratios of the physical quantity

called amount of substance, which we will go into more deeply in Sect. 1.4.

On a higher level of complexity, we can produce heterogeneous mixtures—in

analogy to rocks—from homogeneous mixtures (more about this in Sect. 1.5) by

using these mixtures as basic substances, such as whitewash from chalk dust and

sizing solution, or egg white foam from air and egg whites. In a similar fashion, we

can, given the right means, decompose the chemical substances into lower level

basic substances or we can form them from these basic substances. For chemists,

the basic “building blocks” are made up of the roughly 100 chemical elements.

Some of these are hydrogen H, helium He, . . ., carbon C, nitrogen N, oxygen O, etc.
A special characteristic here is that the ratios of the amounts of elements in the

content formulas of individual substances cannot vary continuously; rather, they are

quantized in integer multiples. This is known as the “law of multiple proportions.”

If the measure of amount of substance is suitably chosen, the content numbers

introduced above will themselves become integers. Examples are the formulas for

water or lime,

H2O ¼ H2O1 or CaCO3 ¼ Ca1C1O3:

At the time it was made, this discovery was one of the most important reasons why

matter was not considered continuous, but quantized. Indeed, matter was thought of

in a simplified mechanistic way to be made of small, mobile geometric entities

called atoms. These atoms can assemble into small groups called molecules, which

then can merge into extensive networks and lattices creating the matter we know.

On this level, the content formula corresponds in the most simple and frequent

case to the so-called empirical or stoichiometric formula. However, for a more

unambiguous identification of the substance in question, it can be suitable to

consider the actual number of atoms of each type in a molecule meaning the content

formula can be a (integer) multiple of the empirical formula. For example, the

content formulas for formaldehyde, acetic acid, and glucose can be given as CH2O,

C2H4O2 ¼ CH2Oð Þ2
� �

, and C6H12O6 ¼ CH2Oð Þ6
� �

.

Just giving the type and proportion of the constituents is often not sufficient to

describe a substance completely. More characteristics are necessary. In addition,

the spatial arrangement of the atoms of the basic substances is important. In

chemical formulas this “structure” is often indicated by dashes, brackets, etc., or

by a particular grouping of element symbols. The pair made of ammonium cyanate

and urea (carbamide) (Fig. 1.1) is an example. Both of these substances have the

same content formula, CH4ON2, but their structural formulas differ. This is called

structural isomerism.
In general, we expect a substance to be something that can be produced in “pure

form” and, maybe, filled into a bottle. However, there are substances that cannot be
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understood this way even though they resemble what we normally call a substance

in all other chemical and physical characteristics. This category contains the actual

carbonic acid H2CO3 which forms in trace amounts in aqueous carbon dioxide

solutions. The carbonic acid is stable enough to be detected within the thousandfold

excess of CO2, but it is too short-lived to be produced in its pure form.

We consider many substances to be produced from a type of lower level sub-

stances, the so-called ions. The symbols for table salt NaCl or limestone CaCO3 can

be formulated to emphasize their ionic structures

Na½ �þ Cl½ �� and Ca½ �2þ CO3½ �2�:

The brackets are usually left off when dealing with simple ions. For clarity we leave

them in because substances of differing rank appear next to each other. We can also

include metals such as silver and zinc in this scheme,

Ag½ �þ e½ �� and Zn½ �2þ e½ ��2 ;

where the electrons e form the negative partner. In homogeneous mixtures such as

crystalline phases, solutions, or plasmas, the individual types of ions, including the

electrons, basically behave like independent substances. It is therefore advisable to

treat them as such even though they can concentrate into pure form only tempo-

rarily and in imponderably small amounts. Their electric charge inevitably drives

them apart. The electromagnetic interaction forces electrical neutrality of all parts

of matter and allows only a trace of excess of positive relative to negative ions or

vice versa. Apart from that, they have all the freedom that uncharged

substances have.

There is a substance appearing in the formulas for metals whose composition

cannot be expressed by the chemical elements: the electrons e. One must therefore

introduce a new basic substance. The most obvious candidate would be the elec-

trons themselves. Consequently, negative ions like chloride ions or phosphate ions

would obtain the content formulas

Fig. 1.1 Structural

formulas of ammonium

cyanate (left) and urea

(right) as examples of two

different substances with

the same composition

(above: detailed “valence

dash formula,” below:
condensed formula).
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Cl½ �� ¼ Cl1e1 and PO4½ �3� ¼ PO4e3:

Positive ions such as sodium ions and uranyl ions, which lack electrons, corre-

spondingly obtain the formulas

Na½ �þ ¼ Na1e�1 and UO2½ �2þ ¼ UO2e�2:

Here we have negative content numbers.

The concept of basic substances and material coordinate systems is used for

making order of the great multitude of substances. It is only possible to make

quantitative descriptions of transformation processes by use of content formulas.

1.3 Measurement and Metricization

Before we turn to the first important quantity, amount of substance, we will take a

short look at the basic problem of measuring quantities and metricizing concepts.

Measurement To measure a quantity means to determine its value. Very different

methods are used when measuring the length of a table, the height of a mountain,

the diameter of the Earth’s orbit, or the distance between atoms in a crystal lattice.

Length, width, thickness, and circumference are different names for quantities that

we consider to be the same kind of quantity that we call length. Already in everyday
language, length is used in the sense of a metric concept, meaning it quantifies an

observable characteristic. Values are given as wholes or fractions of a suitably

chosen unit.

In 1908, Wilhelm Ostwald already stated that “[It is] extremely easy to measure

extensity factors (lengths, volumes, surface areas, amounts of electricity, amounts

of substance, weights . . .). One arbitrarily chooses a piece of it to be the unit and

connects so many units together until they equal the value to be measured. If the

chosen unit is too rough a measure, correspondingly smaller ones can be created.

The simplest way to do this would be 1/10, 1/100, 1/1000, etc. of the original unit.”

Ostwald’s method is valid for direct measurement processes. But what does this

mean? Let us return to the example of length. In the past, it was customary to

directlymeasure the length of a path by counting how many steps were necessary to

walk its distance (Fig. 1.2). The arbitrarily chosen unit in Ostwald’s sense was one
step. If one step corresponds with one meter, we get our results in SI units [SI stands

for the international metric unit system (from the French Système Internationale

d’ Unités)].

But quantities are often determined indirectly as well, meaning they are found by

calculation from other measured quantities. In the field of geodesy, the science of

measuring and mapping the Earth’s surface, lengths and altitudes have mostly been

determined through calculations based on measured angles (Fig. 1.3). When he
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used this method to measure the acreage of his sovereign, the German mathe-

matician Carl Friedrich Gauss developed error analysis and non-Euclidean geometry.

It is generally necessary when working in industrial arts, engineering, and the

natural sciences to have agreement about how quantities will be applied, what units

will be used, and how the numbers involved will be assigned. The process of

associating a quantity with a concept (that usually carries the same name)—

which is the basis of constructing this quantity—is called metricization. Determi-

nation of values of this quantity is calledmeasurement. Measurement can take place

only after a corresponding metricization has been established.

Most physical quantities are established through indirect metricization, which
means they are explained as derived concepts. We specify how they are gained from

known, previously defined quantities. This is how the density (more exactly, mass

density) ρ of a homogeneous body can be defined as the quotient of mass m and

volume V, ρ¼m/V, and the velocity υ of a body moving uniformly in a straight line

as the quotient of the distance traversed s and the time needed for it t, υ ¼ s=t.
A totally different method for defining quantities is the direct metricization of a

concept or characteristic. A concept, initially only understood qualitatively, is then

quantified by specifying an appropriate instruction for measurement. This is the

usual procedure for quantities considered basic concepts (length, duration, mass,

Fig. 1.2 Length of a path

measured directly by

number of steps.

Fig. 1.3 Indirectly

determining distance and

altitude in impassable

terrain by measuring angles.
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etc.), from which other quantities such as area, volume, velocity, etc., are derived.

However, this procedure is not limited to just these quantities.

Direct Metricization of the Concept of Weight A simple example for the direct

metricization of a concept would be the introduction of a measure for that what is

called weight in everyday language. When we talk about a low or high (positive)

weight G of an object, we are expressing how strongly the object tends to sink

downward. (We use the letter G instead of the usual W in order to avoid confusion

with other quantities such as energyW.) There are essentially three stipulations that

must be met in order to determine a measure for weight:

(a) Algebraic sign. The weight of an object that, if let go, sinks downward is

considered to be positive, G> 0. Consequently, a balloon flying upward will

have a negative weight, G< 0. The same applies to a piece of wood floating

upward toward the surface after being submerged in water. Something just

floating has zero weight, G¼ 0.

(b) Sum. If we combine two objects with the weights G1 and G2 so that they can

only rise or fall as a unit (for example, by putting them together onto the plate

of a scale), then we assume that the weights add up: Gtotal ¼ G1 þ G2:
(c) Unit. In order to represent the unit of weight γ, we need something whose

weight never changes (when appropriate precautionary measures are taken).

For example, we might choose the International Prototype Kilogram in Paris.

This is a block of a platinum–iridium alloy representing the unit of mass of

1 kilogram.

The weight G in the sense we are using it here is not an invariable characteristic

of an object, but depends upon the milieu it is in. A striking example of this would

be a block of wood (Wd), floating to the surface of water (W), G(WdjW)< 0, while

in air (A), it sinks downward, G(WdjA)> 0. As a first step, we will consider the

environment to be constant so that G is also constant. In the second step, we can

investigate what changes when different influences are taken into account.

These few and roughly sketched specifications for

(a) Algebraic sign

(b) Sum

(c) Unit

are sufficient to directly metricize the concept of weight as we speak of it in

everyday language. This means that we do not need to refer to other quantities in

order to associate a measure with the concept.Measuring the weight G of an object

means determining how many times heavier it is than the object representing the

weight unit γ. Direct measurement means that the value is determined by direct

comparison with that unit and not by calculations from other measured quantities.

Figure 1.4 shows how this can be done even without using a scale. First, an object

has to be chosen that represents the weight unit γ (Fig. 1.4a). Then, along with the

object of unknown weight G, one looks for things that have a weight of�G, helium
balloons for instance, that will hold the object just enough for it to float in the air
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(Fig. 1.4b). One of these balloons can be used to easily find further objects with a

weight +G, meaning ones that the balloon can just lift (Fig. 1.4c). The weight units

+γ and �γ can be multiplied correspondingly. Now in order to measure the weight

of an object, for example, a sack, we need only as many things (balloons)

representing the negative weight unit �γ, to bind to the sack until it floats. If

n specimens are needed, then G¼ n � γ. The number of objects with negative unit

weight is expressed in terms of a negative n. If we now want to determine a weight

Gmore accurately, say to themth part of the unit, we only need to connectm objects

having the same weight G with a corresponding number of (positive or negative)

unit weights (Fig. 1.4d). If the entire “bundle” floats, it has a total weight equal to

0 according to the specification above:

Gtotal ¼ m � Gþ n � γ ¼ 0 or G ¼ �m=nð Þ � γ:

Because any real number can be approximated arbitrarily closely by the quotients

of two integers, this method can be used for measuring weights to any desired

degree of precision without the use of any special equipment. The measurement

process can be simplified if a suitably graded set of weights is available. Negative

weights are unnecessary if an equal arm balance can be used because an object can

be placed on one side of the balance so that the other side automatically becomes a

negative weight. These are, however, all technicalities that are important for

practical applications, but are unimportant to basic understanding.

Indirect Metricization of the Concept of Weight Metricization can also be

accomplished indirectly. For example, the weight of an object can be determined

Fig. 1.4 Direct measurement of weights: (a) Object representing the weight unit γ, (b) “Bundle”
consisting of an object with the unknown weight (+G) and a balloon (�G) which just floats in the

air, (c) Searching further objects with weight +G by means of the balloon, (d) Combination of

m objects having the same weight +G with n balloons representing the negative weight unit�γ to a
“bundle” just floating in the air.
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via the energy W needed to lift the object a height h counter to its own weight

(Fig. 1.5). (We will go more deeply into the concept of energy and its metricization

in Chap. 2.) Both the amount of energy W expended at a winch to lift a block from

the ground up to a height h and the height h itself are measurable quantities. The

greater the weight, the more energy W is necessary to lift it, so it is possible to find

the weight of the block by using W. Because W is proportional to h (as long as

h remains small), it is notW itself that is suitable as a measure for the weight, but the

quotient G¼W/h. Using the unit Joule (J) for the energy and the unit meter (m) for

the height, we obtain the unit of weight J m�1. The object embodying the weight

unit γ mentioned above can also be measured this way so that the old scale can be

related to the new one.

When the lifting height h measured above ground level is too high, W and h are

no longer proportional. At great heights, the tendency of the weight to fall decreases

due to the lessening of the Earth’s gravitational pull and the increase of centrifugal

force caused by its spinning. If G¼ΔW/Δh is used where ΔWmeans the additional

energy needed to increase the lifting height by a small amount Δh, the definition of
the quantity G can be expanded to include this case. Thereby, the symbol Δ
indicates the difference of final value minus initial value of a quantity, for example,

ΔW¼W2�W1. In order to indicate that the differences ΔW and Δh are intended to
be small, the symbol for difference, i.e., Δ, is replaced by the differential symbol

d. One writes

G ¼ dW

dh
or more detailed, G hð Þ ¼ dW hð Þ

dh
:

For the sake of simplicity, although it is not completely mathematically sound, we

will consider the differentials to be very small differences. This will suffice for all

Fig. 1.5 Determining

indirectly the weight

G through the energyW and

lifting height h.
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or nearly all of the applications we will present in this book. Above and beyond this,

it gives us an effective (heuristic) method of finding a mathematical approach to a

physical problem. Dealing with differentials is described in more detail in Sect.

A.1.2 in the Appendix.

Note that in the expression on the left in the equation above, W and G take the

roles of the variables y and y0. In the expression on the right, they appear in the roles
of the function symbols f and f0. It is actually a common but not fully correct

terminology to use the same letters for both cases, but if one is careful, it should not

cause serious mistakes.

In order to lift something, we must set it in motion and this takes energy too. The

greater the velocity υ attained, the more energy is needed. Therefore, W does not

only depend upon h, but upon υ as well. This is expressed by W h; υð Þ. In order to

introduce a measure for weight also in this case, we must expand the definition

above:

G ¼ ∂W h; υð Þ
∂h

:

Replacing the straight differential sign d by the curved ∂ means that when calcu-

lating a derivative, only the quantity in the denominator (in this case h) is to be

treated as variable, while the others appearing as argument (in this case only υ) are
kept constant (so-called partial derivative, more about this in Sect. A.1.2 in the

Appendix). A constant υ, and therefore, dυ ¼ 0, means that the increase of energy

dW has only to do with the shift in height dh and not with change of velocity.

There is another notation which is preferred in (physical) chemistry where the

dependent variable (here it is W ) is in the numerator while the independent vari-

ables (in this case h and υ) appear in the denominator and the index, respectively.

The variable to be kept constant is added to the expression of the derivative (placed

inside parentheses) as index:

G ¼ ∂W
∂h

� �
υ

:

We can go a step further and imagine the object in question to be like a cylindrical

rubber plug with changeable length l and cross section A. These changes also

consume energy and the total amount of energy needed now depends upon four

variables h, υ, l, A. In order to eliminate possible additional contributions due to

changes to l and A, they (along with υ) must be kept constant. This can be expressed

as follows:

G ¼ ∂W
∂h

� �
υ, l,A

:

We find that defining the weight G in terms of energy becomes increasingly more

complicated, the more generally one attempts to comprehend the concept. This is
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why we will introduce important quantities such as energy (Chap. 2), entropy

(Chap. 3), and chemical potential (Chap. 4) through direct metricization.

1.4 Amount of Substance

There are various measures used for amount of substance, so we need to consider

what properties we expect to see in the quantity we are looking for.

It seems reasonable to claim that a certain amount of a substance within a

specified volume can only change if parts of it are emitted, are added from outside,

or are consumed or produced by chemical reaction. Just displacing, heating,

compressing, segmenting, removing accompanying substances, etc., should not

change the amount of substance in question. If we wish to adhere to these proper-

ties, we automatically eliminate certain measures of amount such as volume which

is the one most often used in everyday life. Examples of this are a solid cubic meter

of wood, a liter of water, a cubic meter of gas, etc. According to Einstein’s relation
(W¼m � c2;W: energy, c: speed of light), the mass m of a substance that grows also

when only energy is added to it, must be—strictly speaking—excluded as well.

Because such changes are much smaller than what can be measured with any

precision, mass is nevertheless widely used in science and commerce. It is, how-

ever, not fully satisfactory if one considers that when 1 cm3 of water is heated by 1�,
its mass grows only by 5� 10�14 g, but this change corresponds to about one billion
water molecules.

It is plausible to assume that two amounts of the same substance are identical if

they occupy the same space or have the same weight if conditions such as the form

of the area, temperature, pressure, field strength, etc., are all identical. In order to

measure a certain amount of substance, it is enough to fill the substance into equal

sized containers or segment it into equal parts and then to count them (Fig. 1.6)—

again under uniform conditions. This direct measurement of amounts of substance

by dividing it into equal unit portions and then counting them has been used since

ancient times and is still used today in the household, in trade, and in business. Unit

portions have mostly been established by filling and emptying a defined “cavity”

such as a bushel basket. Other types of measurements have also been created.

Examples would be 1 pinch of salt, 2 teaspoons of sugar, 3 bunches of radishes,

Fig. 1.6 Direct

measurement of amounts of

substance by dividing it into

unit portions and counting

them (for example, in the

past determination of the

amount of harvested grain

by use of bushel baskets).
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or 10 scoopfuls of sand. Alternatively, the unit portions can be established and

counted automatically (such as in the water or gas meters in every household).

Due to the atomic structure of matter, there is a natural division into atoms, or

rather, the constantly repeating groups of atoms described in the chemical formula.

It is therefore obvious to have the unit be such an elementary entity, such a

“particle.” The amount of substance corresponds to a number of units (like 24 apples

or 120 cars). However, in macroscopic systems, the numbers of particles are very

high and this can be problematic. For instance, 10 g of water contains about 1023

particles. Therefore, a more suitable unit must be found that is comparable to the

everyday dozen (12 units) or score (20 units). In chemistry, the measure of amount

called mole (derived from the Latin word “moles” meaning “huge mass”) has been

determined as follows:

One mol is a portion of substance made up of 6.022� 1023 particles (units).

or more exactly stated:

One mol is a portion of substance made up of as many elementary

entities (particles) as there are atoms in exactly 12 g of the pure isotope carbon-

12 (12C).

NA¼ 6.022� 1023 mol�1 is also called the Avogadro constant. Because it is

possible to directly or indirectly count the atoms or groups of atoms in a given

sample, the so-defined amount of substance n is in principle a measurable quantity.

The fact above can be stated differently. Instead of saying that a substance is

made up of countable particles, one might say that there is a smallest possible

portion of substance, an elementary amount (of substance) τ. The following is valid
for this elementary amount:

τ ¼ 1

NA

¼ 1

6:022� 1023 mol�1
¼ 1:6605� 10�24 mol: ð1:1Þ

The amount of substance therefore is given by

n ¼ N � τ; ð1:2Þ

where N represents the number of particles in the given portion of substance.

QuantitiesGwith real but discrete and therefore countable definite values are called

quantized. We introduce a quantum number g to number the values. If the values are

not only discrete, but equidistant as well, the quantity is said to be integer quantized.

In the simplest case, the values are integer multiples g of a universal quantum γ:

G ¼ g � γ: ð1:3Þ

In the case of the variable G, which represents various physical quantities, we use

another font in order to avoid confusion (for example, with weightG). We do this as

well for g (instead of g) and γ (instead of γ).
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The amount of substance n is therefore integer quantized with N as the quantum

number and τ as the corresponding quantum of amount of substance. This is

comparable to the more familiar integer quantization of the charge Q of an ion,

Q ¼ z � e0 ð1:4Þ

with the charge number z in the role of the quantum number and the elementary

charge e0 in that of the charge quantum (e0¼ 1.6022� 10�19 C).
The relation between the amount of substance n and the mass m is determined by

themolar mass M. This quantity corresponds to the quotient of the mass of a sample

of the substance and the amount of substance in the sample:

M ¼ m

n
SI unit: kg mol�1
� �

: ð1:5Þ

With the help of the molar mass we can convert the more easily measured mass to

amount of substance:

n ¼ m

M
: ð1:6Þ

1.5 Homogeneous and Heterogeneous Mixtures,

and Measures of Composition

We will now look more closely at the term homogeneous mixture, mentioned in

Sect. 1.2. We will also contrast it with the concept of heterogeneous mixture. There

is, unfortunately, no unified way of wording this, so we will give a short explanation

of how we will use the terminology. Mixture is used as superordinate term. A

homogeneous mixture is homogeneous in the sense that it has a molecular disper-

sion with granularity of <1 nm, and all its constituents A, B, C, . . . are considered
equal. If there is an excess of one of the components in a homogeneous mixture, we

will speak of a solution. The main component A is then called the solvent and the

minor constituents B, C, . . . the dissolved substances or solutes. Unlike a homo-

geneous mixture, a heterogeneous mixture is coarsely dispersed with granularity

> 100 nm. Microheterogeneous colloids are a special case (granularity 1 . . .
100 nm). However, not every kind of material system made up by two and more

different substances fits into this scheme.

A homogeneous region, meaning a region that is uniform in all of its parts, is

called a phase. One can differentiate between pure phases made up of one substance

and mixed phases made up of more than one. Homogeneous mixtures are always

single phases. Examples of single-phase systems are air, wine, glass, or stainless

steel. Heterogeneous mixtures are, by contrast, multi-phase, wherein the equal

homogeneous parts form together a phase. Fog, construction steel, soldering tin

(Pb-Sn), slush, etc., are all examples of two-phase heterogeneous mixtures. A very

esthetic example of a two-phase system is a so-called lava lamp with its wax-water
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filling (Experiment 1.2). The granite shown in Experiment 1.1, however, is essen-

tially composed of four phases.

As a rule, one does not specify the amounts of substance of all the components in

order to characterize homogeneous mixtures, but the content of selected compo-

nents. The superordinate concept “content” meaning the material fraction of a

substance in the mixture can be quantified by various measures of composition.

Several of these measures will be introduced in the following.

The mole (or amount) fraction x of a component B corresponds to the quotient of

the amount of substance nB and the total amount ntotal of all the substances present
in the mixture:

xB ¼ nB
ntotal

SI unit: 1 or molmol�1
� �

: ð1:7Þ

The mole fraction is a relative quantity where 0	 x	 1. The sum of all the mole

fractions must always result in 1, so for a complete characterization of a binary

mixture (a mixture of two components A and B), only one mole fraction is

necessary. The second one will result according to xA¼ 1� xB.
If the amount of substance is replaced by the mass, another measure of compo-

sition results, the mass fraction w:

wB ¼ mB

mtotal

SI unit: 1 or kgkg�1
� �

: ð1:8Þ

The composition of solutions is often expressed by concentration. The molar
(or amount) concentration c (formerly called molarity) of a dissolved substance B

results from the quotient of the amount of solute nB and the volume of solution V:

Experiment 1.2 Lava lamp: When the lamp

is turned on, blobs of heated wax ascend slowly

from the bottom to the top where they cool and

then descend to the bottom again, causing a

constant movement of both phases.
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cB ¼ nB
V

SI unit: mol m�3
� �

: ð1:9Þ

The unit mol L�1 (¼ kmol m�3) (abbreviation M) is often used in place of the SI unit.

When referring to the concentration in chemistry one usually means the quantity c.
Sometimes the mass concentration β is used that can be calculated from the

quotient of substance mass mB and volume V of solution:

βB ¼
mB

V
SI unit: kgm�3
� �

: ð1:10Þ

The disadvantage of these two easily accessible concentrations is that they are both

temperature and pressure dependent. This is due to corresponding changes of total

volume and can be avoided if the mass of the solvent is used instead. The molality b
corresponds to the quotient of amount of substance nB of the solute B and the mass

mA of the solvent A:

bB ¼ nB
mA

SI unit: molkg�1
� �

: ð1:11Þ

In Table 1.1, the relations for converting the individual measures of composition

have been compiled using molar mass M and density ρ.

1.6 Physical State

System and Surroundings We tend to consider (material) systems as strongly

simplified, often idealized, parts of the natural world around us in which we have a

special interest. For example, we can be interested in a rubber ball, a block of wood, a

raindrop, the air in a room, a solution in a test tube, a soap bubble, a ray of light, or a

protein molecule. We assume that systems can appear in various (physical) states,

where the word state means a momentary specific condition of a sample of matter

determined by macroscopic characteristics. States can differ qualitatively due to char-

acteristics such as state of aggregation or crystal structure or quantitatively in the values

of suitably chosen quantities such as pressure, temperature, and amount of substance.

Everything outside of the system in question we call the surroundings. If the
system is completely isolated from its surroundings, we can ignore anything

Table 1.1 Conversion of the most common measures of composition for binary mixtures.

xB ¼ xB MAcB
ρ� cB MB �MAð Þ

MAbB
1þMAbB

cB ¼ ρxB
MA þ xB MB �MAð Þ

cB ρbB
1þ bBMB

bB ¼ xB
MA 1� xBð Þ

cB
ρ�MBcB

bB
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happening there (in the surroundings). However, this requirement is hardly ever

fulfilled, so we must deal to a certain extent with the conditions in the surroundings.

When considering the pressure or temperature of a system as prescribed, one

usually thinks of some equipment in the surroundings that establishes these values.

In a lab, this is generally a cylinder with a moveable piston that will allow us to set

up the pressure and a “heat reservoir” with a defined temperature that is connected

to the system through heat conducting walls.

Types of States The classical states of aggregation, solid, liquid, and gaseous,
serve as a first rough characteristic for distinction. Seen macroscopically, the

following is valid for a substance enclosed in a container:

• A solid has a fixed volume and withstands shear. This means that it retains its

volume and shape regardless of the shape of the container it occupies.

• A liquid has a fixed volume and is able to flow. It retains its volume, but its shape

is unstable and adapts to the walls of the container.

• A gas is able to flow and fills the whole space it is in. It assumes the volume and

shape of the container.

Information about the state of aggregation of a substance can be added to its

formula by using a vertical stroke and the abbreviation s for solid, l for liquid, and g

for gaseous. Ice is then characterized by H2Ojs, liquid water by H2Ojl, and water

vapor by H2Ojg. We prefer this way of writing to the usual form with parentheses

because it prevents the confusing overabundance of parentheses occurring when

formulas of substances appear in the argument of a quantity [for example, the mass

density ρ(H2Ojl) instead of ρ(H2O(l))].

A deeper look into the nature of states of aggregation can be gained if one leaves

the phenomenological level and moves to the molecular-kinetic level (Fig. 1.7). A

particle model lets us create a relation between the macroscopic properties of matter

and the behavior of the particles—atoms, ions, or molecules of which it is

composed.

• From the atomistic point of view, the particles in solids are packed closely and

well-ordered due to their strong reciprocal attraction. They have only very

limited space to move in, meaning that they essentially stay on one site, but

oscillate somewhat around that position.

• The particles of liquids are still rather closely packed, but not in an orderly way.
Motion of the particles is so strong that the reciprocal attraction is not intense

enough to hold them in one position. Although they stay in contact, they are able

to slide by each other freely.

• The particles in gases are packed very loosely and disorderly. Their constant

movement is quick and chaotic and they tend to be far apart from each other

except for occasional collisions. The typical distance between the particles of the

air in a room is about ten times the diameter of the particles themselves.

There is a somewhat different but comparable point of view which uses crys-
talline, amorphous, and gaseous for classification.
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• A substance can be categorized as crystalline if it is inherently stable and if its

components are packed in a regularly ordered, repeating pattern that continues in

all three directions over long distances (long-range order). This crystalline state

is generally characterized by jc. Different crystal structures appearing at the

level of chemical bonding theory and which are created by different ways of

packing their components are indicated by Greek letters or the appropriate

mineral names. For example, iron can have a body-centered cubic structure

(Fejα) or a face-centered cubic structure (Fejγ) (Fig. 1.8), and carbon can exist

in the form of hexagonal graphite (CjGraphite) or in the cubic diamond structure

(CjDiamond). These different forms of a substance are called modifications.
• The components in an amorphous substance only show some short-range order.

Macroscopically, the substance can be either solid or liquid. The symbol used for

Fig. 1.7 Molecular-kinetic

illustration of the three

states of aggregation, solid

(s), liquid (l), and gaseous

(g). The strict order of a

solid can be disturbed by

defects or by a grain

boundary (a fault zone

where differently oriented

regions that have otherwise

identical crystal structure

(grains) adjoin each other).

Fig. 1.8 (a) Body-centered

cubic crystal lattice, (b)

Face-centered cubic crystal

lattice.
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amorphous is ja. A typical amorphous solid would be glass, but also spun sugar

(candyfloss, cotton candy) can be counted in this category.

• The gaseous state is defined in the usual sense.

If a substance appears in dissolved form in a homogeneous mixture, it is

characterized by jd. Water is by far the most common solvent. We therefore give

substances dissolved in water their own symbol jw.
State Quantities Besides the qualitative description of a system discussed above

its quantitative properties can be characterized by physical quantities. A quantity

that describes the state of a system or is defined by the instantaneous state of a

system is a state variable. Depending upon the conditions involved, the same type

of quantity might or might not be a state variable. The time-dependent amount of air

n(t) in a ventilated room is a state variable, but the amount of incoming air nin
supplied by ventilation, or the amount of outgoing air nout, escaping around

windows or doors, is not:

Δn ¼ nin � nout or in more detail Δn tð Þ ¼ nin tð Þ � nout tð Þ:

Analogously, the volume of water V in a bathtub is a state variable, but the volume

of water flowing in through the water tap (VA) or shower head (VB) and spilling over

(VO) is not (Fig. 1.9):

V ¼ VA þ VB � VO: ð1:12Þ

The water level h in the bathtub is a more complex example of a state variable. h not
only depends upon the water volume V but upon the volume Vd displaced by the

person standing, sitting, or lying in it, h¼ h(V, Vd). If the tub had straight walls, i.e.,

if the cross section A were constant, we could easily write:

Fig. 1.9 Volume of water

V and water level h in a

bathtub as examples of state

variables.
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h ¼ V þ Vdð Þ=A “Equation of state:” ð1:13Þ

In contrast to Eq. (1.12), Eq. (1.13) relates only state variables (the quantities whose

values are determined only by the momentary state of the system, independent of

the path by which that state was reached). The advantage of applying such relations

is that one can reach conclusions without having to know the details that led to this

state. This type of equation is called an “equation of state” and functions such as

h¼ h(V, Vd) are called state functions (or state variables). Even though each of

these quantities can have a value that changes with time, the equations of state

relating these quantities are timeless. However, the division of V into the three

values VA, VB, and VO, as shown in Eq. (1.12), depends upon the process by which

the bathtub was filled. Such quantities can be called “process quantities” to

distinguish them from the state variables.

The considerations that hold for the volume of water in a tub also hold for the

energy of a system if several possibilities exist for inflow and outflow. The excess

energy in hot cooking water or in a charged car battery is a state variable, but the

energy we are charged for every year by the electricity company or that our kitchen

stove consumes when we are preparing food, is not. We will deal with this in more

detail in later chapters.

Different Forms of Notation State variables are easier to handle mathematically.

Therefore, if possible, all calculations are carried out with these quantities and

unknowns, results, and parameters are expressed by them. This is especially valid

when dealing with an abstract quantity that we cannot imagine or only imagine

insufficiently. The characteristic of being a state variable is an important and

helpful orientation device. We will now use an example to illustrate the approach

that is also graphic and understandable.

A small increase of water volume dVA flowing out of a water tap and into the tub

can be expressed as the increase dV of the water volume in the tub if inflow through

the showerhead and outflow over the edge of the bathtub are not allowed (either in

reality or just in our model). We will express this increase by the symbol (dV)B,O.
When we correspondingly deal with VB and VO, an equation results where the V in

all the terms is the same quantity, the water volume in the bathtub:

dV ¼ dVð ÞB,O þ dVð ÞA,O � dVð ÞA,B:

Sometimes instead of d, the symbol δ or đ is used in the case of “process quantities.”
One then writes δVA or đVA, respectively. However, in the following we will avoid

doing this.

The changes of volume per time on the right describe the strengths of the water

currents J into and out of the bathtub. These are the water flowing out of the water

tap JA and the shower head JB, and the water spilling over the edge of the tub JO:
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dV

dt
¼ dV

dt

� �
B,O

þ dV

dt

� �
A,O

� dV

dt

� �
A,B

:

When dV/dt is abbreviated to _V , the resulting equation is the same but has a more

compact form. It can also be more easily understood:

_V ¼ JA þ JB � JO “Continuity equation:”

Expressed in words: “The rate of increase of the amount of water in the tub equals

the sum of the water currents flowing into it (and out of it).” This is a very simple

example of applying an equation that appears in a myriad of ways in various areas

of physics.

However, another aspect is more important for us here. In Sect. 1.3, we were

introduced to similar expressions where instead of the straight d, the somewhat

differently written curved ∂ appeared. Although we could actually do without the

curved ∂ and always use d, without making a formula wrong, this does not work

both ways. In an expression like ∂y=∂uð Þυ,w, it is always assumed that the quantity

in the numerator can be written as a function of the quantities in the denominator

and the index, i.e., y ¼ f u; υ;wð Þ. Thereby, the index υ,wmeans that only u occurs as
an independent variable, while υ and w are treated as constant parameters. We

will illustrate this by crossing out these quantities in the argument of the function:

y ¼ f u;�υ;�wð Þ; but just this one time, and not in general. The derivative can now be

calculated as usual by applying the rules of school math (compare to Sect. A.1.2 in

the Appendix). If we indicate the derivative with the usual 0, i.e., y0 ¼ f 0 u;�υ;�wð Þ;
we obtain:

dy

du

� �
υ,w

¼ ∂y
∂u

� �
υ,w

¼ f 0 u;�υ;�wð Þ:

The derivative with respect to the other variables is calculated accordingly:

dy

dυ

� �
u,w

¼ ∂y
∂υ

� �
u,w

¼ f 0 �u; υ;�wð Þ and so on:

Unlike u, υ,w, the indices A, B, and O in the expressions above do not denote

quantities. However, that is not important at this point. What is important is that

both cases express that the increase of the numerator is caused by changes of the

quantity in the denominator, while all other influences are eliminated.

Coupled Changes The bathtub can help us once again to understand another

aspect that we will need to deal with later on. In the above, we discussed the special

features resulting when the same entity (measured by the same quantity: water

volume) of a system can be exchanged with its surroundings simultaneously via

various paths. Let us now replace the person in the tub with an expandable rubber
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sack (Fig. 1.10). The water volume V in the tub is separated from that in the sack V*,
so that the water levels in the bathtub and the sack, h and h*, can be different. In this
case, all four quantities V, h, V*, h* are state variables. They are all “geometric” and

therefore it appears to us that they are comparably simple.

Despite their separation, the two parts of the system influence each other so that

an increase of water level in one causes an increase of the water level in the other

and vice versa. This reciprocal coupling between different types of quantities,

mechanical, thermal, chemical, electrical, etc., is central to thermodynamics and

matter dynamics. We will go into this more deeply in Chap. 9 when we have

acquired the necessary background.

Extensive, Intensive, Substance-Like The concept of substance is primary to the

discussion of systems of matter dynamics. The simplest case would be a homo-
geneous domain, meaning one where all the parts are uniform and where the form

and size are unimportant. Such a formless domain represents what we call sub-

stance, whether it is pure or a mixture of various components. Some quantities

describing the state of a domain, such as mass, volume, concentration, energy,

entropy, etc., add up when two uniform domains are merged into one. Other

quantities such as mass density, pressure, temperature, concentration, refractive

index, etc., do not change. The first group is made up of the so-called extensive
parameters and the second, of intensive parameters. One group describes global
characteristics for the entire domain in question. The second group describes local
characteristics, attributed to one place. These concepts can be applied analogously

and with good accuracy to material systems that are not homogeneous in their

entirety but are approximately uniform in small sections—at close range.

Classification is not always clear. Let us consider the surface A of a liquid droplet

in fog. When we put two sections of the fog together, the surfaces add up so that

A appears to be an extensive quantity. However, if we unite two round droplets into

one, A is clearly not additive.

The extensive quantitiesGwhich we can imagine as a “something” distributed in

space are called substance-like. Mass m, amount nB of a substance B, and electric

charge Q are some of these, and so are energy, momentum, and entropy, which are

Fig. 1.10 Example for

reciprocal coupling between

different types of quantities.
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often considered quite abstract concepts. We will get back to them later in more

detail (Chaps. 2 and 3). Their distribution need not to be uniform and the density ρG
of the “something” can change in space and time by being used up, produced, or

redistributed. A quantity that distinctly exhibits this behavior is the amount nB of a

substance B that diffuses and reacts. If G is a so-called conserved quantity, like

energy, for example, the “something” can be neither created nor can it decay. It can

only migrate inside the system or be exchanged with its surroundings. When the

“something” disappears in one location, it must reappear somewhere nearby.

From there it can be transfered further and further. This process can be considered

a kind of flow.

1.7 Transformation of Substances

In Sect. 1.2, we saw that the multitude of substances can be understood as combi-

nations of relatively few basic substances, where the ratio is quantitatively

expressed by the content formula. In chemistry, we have seen that chemical

elements play the role of basic substances and when indicated, electrons e, if the

totality of ions is considered a “charged” substance.

We use transformation here and in the following as the superordinate term for

processes that are otherwise more differentiated, such as reaction, transition
(change of state of aggregation, etc.), and the (spatial) redistribution of substances.
This is done simply because these processes can all be described using the same

paradigm. Whether a transformation of substances is chemical or physical, it can be

expressed by a conversion formula, also called a reaction equation or reaction
formula. Usually, the content formulas of the starting substances (also called

reactants) are to the left of the reaction arrow, and the end products are to the

right. The term “reaction equation” is not exactly apt because we do not have an

equation in the usual sense here. The name comes from the fact that the amounts of

the chemical elements—either free or bound—remain unchanged during the trans-

formation from initial to final substances. The number of symbols for each element

must, therefore, be the same on both the left and the right.

A simple example of a reaction is synthesizing ammonia from nitrogen and

hydrogen. One usually finds different substances B
i
(i¼ 1, 2, 3 . . .) participating in

such processes, each of which can be assigned a number. For example, nitrogen N2

can be given the number 1, hydrogen H2 the number 2, and ammonia NH3 the

number 3. This can be accomplished by simply setting the numbers above the

substances in the conversion formula:

N2

1 þ3H2

2 ! 2NH3

3

;

but also by the order they are put into in the formula, a table, or some other type of

list, for instance:
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B1 ¼ N2,B2 ¼ H2,B3 ¼ NH3,B4 ¼ CO2 . . . :

Note that the index for B is arbitrary, while the content numbers in the content

formulas are well defined. In the case of the variableB, we use another font in order
to avoid confusion but also because we use B as well as B for other purposes.

It is a good idea to write all of the initial and final substances on one side in order

to avoid having to distinguish between different cases, for example as follows:

0! �1 N2 � 3 H2 þ 2 NH3

or, in general, for various substances A, B, C, . . . of the set  of all possible

substances

0! vAAþ vBBþ vCCþ . . . A,B, C . . .f g 
 :

A symbolic “0” appears on the left that does not actually represent the number

0, but a substance represented by a content formula in which all content numbers

disappear. If we consider the substances to be numbered as discussed above, the

expression can be written more compactly using the summation operator ∑:

0!
Xn
i¼1

viBi:

The chemical elements participating in a transformation are always conserved. This

means that their total amount does not change, whether they are free or bound.

Therefore, the conversion numbers (stoichiometric coefficients) vi in front of the

content formulas should be chosen so that the number of element symbols is the

same on both sides. This also holds for electrons when they appear, so to speak, as

an additional basic substance in the conversion formula where ions participate.

They appear openly with the symbol e or more hidden with the superscript charge

numbers. The more unusual way of writing that uses “0” on the left side has the

advantage that the conversion numbers appear with the correct algebraic signs as

factors in front of the content formulas. v is negative for starting substances and

positive for final products, for example, vN2
¼ �1, vH2

¼ �3, vNH3
¼ þ2, vCO2

¼ 0,

. . . . If the index itself contains subscripts it is better to refer back to the num-

bering scheme v1¼�1, v2¼�3, etc., or to use the form with arguments v(N2)¼�1,
v(H2)¼�3, etc. As the lower formulas above imply, we have to sum over all the

basic substances, meaning the chemical elements, the electrons, as well as their

combinations. However, for the overwhelming number of substances vi¼ 0 and the

corresponding substances can be ignored so that, in the example above, vCO2
¼ 0,

and the same would hold for vFe, vNaCl, etc.
The amounts of the substances change in the course of a reaction and these

changes can be used to measure the progression of the process. Substances are not

all formed or consumed in the same ratio. A look at the conversion formula for
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ammonia synthesis shows hydrogen converting at three times the rate of nitrogen.

Changes of amounts are proportional to the conversion numbers v. In order to attain
a quantity that is independent upon the type of substance B, the observed changes

ΔnB are divided by the corresponding conversion numbers vB:

ξ ¼ ΔnB
vB
¼ nB � nB,0

vB
“basic stoichiometric equation:” ð1:14Þ

nB is the instantaneous amount of substance and nB,0 stands for the initial amount.

Note that both ΔnB and vB are negative for reactants, so the quotient is positive

which is also true for the products. Of course, the reacting material system must be

isolated from its surroundings, meaning that no exchange of substances or second-

ary reactions may be allowed to occur so that the amounts of substance converted

during the process can be clearly identified.

The following is valid for different substances A, B, C, . . .:

ξ ¼ ΔnA
vA
¼ ΔnB

vB
¼ ΔnC

vC
or ξj j ¼ ΔnAj j

vAj j ¼
ΔnBj j
vBj j ¼

ΔnCj j
vCj j ¼ . . . : ð1:15Þ

Just one quantity, the time-dependent quantity ξ, is enough to describe the temporal

course of the reaction. We will call it the extent of reaction or extent of conversion.
In the case of ammonia synthesis, the value of ξ indicates what the momentary

extent of the production of ammonia is after a given period. The same unit used for

amount of substance, the mol, is normally used for this quantity. Take ξ¼ 1 mol.

This means that since the process started, 1 mol of nitrogen and 3 mol of hydrogen

have been consumed and 2 mol of ammonia have been produced. For the same

value ξ (the same extent of reaction), the changes of amounts Δn can be very

different (with regard to both the absolute value and the sign involved). It is

important to remember that the ξ values only make sense in relation to a certain

conversion formula. If the same reaction is described by another formula, such as

1=2 N2 þ 3=2H2 ! NH3;

the meaning of the ξ values changes. At any given moment, the extent of reaction ξ
is only half as great for the same amounts of converted substances. The conversion

formula must therefore always be specified.

The usual stoichiometric calculations can be carried out directly or indirectly

using Eq. (1.15). Therefore, we call it and its source, Eq. (1.14), the basic stoichio-
metric equations. These equations allow us to calculate the change of amount of a

substance C from the change of amount of a substance A. For example, knowing the

consumption of an acid in titration ΔnA, we can calculate the original amount of a

base ΔnB, or knowing the amount of a precipitate ΔnP, we can find the amount of

the substance ΔnS which was precipitated out from the initial solution. Here, the

conversion numbers are to be taken from the neutralizing or the precipitation

reaction, respectively. Since in most cases only the absolute values of Δn matter,
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and not their algebraic signs, the simpler variant where no algebraic sign need be

dealt with [Eq. (1.15) right] is the one most often used.

Often, it is not directly the amount of substance n that is interesting or known to

us but rather a volume ΔV of a reagent solution that is either given or consumed, the

concentration c of a sample or standard solution, or the increase of mass Δm of a

filtering crucible where a precipitate was collected, etc. The Δn values are then

expressed by the given, measured, or the sought quantities. For example,

ΔnA¼ cA �ΔV for the consumed acid or ΔnP¼Δm/MP for the weighted precipitate,

where MP stands for the molar mass of P.

Here is a short example showing this. For the titration of 25 mL of sulfuric acid,

20.35 mL of sodium hydroxide solution (0.1 mol L�1) is consumed. We are looking

for the concentration of the acid. The conversion formula for this is

H2SO4 þ 2NaOH! Na2SO4 þ 2H2O

and the basic equation (1.15), where A stands for the sulfuric acid and B for the

sodium hydroxide solution, is

cA � ΔVAj j
vAj j ¼ cB � ΔVBj j

vBj j or cA ¼ cB � ΔVB � vA
ΔVA � vB

���� ����:
Using numerical values, we obtain

cA ¼ 0:1molL�1
20:35mL � 1
25mL � 2 ¼ 0:041molL�1:

The basic stoichiometric equation can be transformed somewhat so that for any

arbitrary substance i:

ni ¼ ni, 0 þ viξ: ð1:16Þ

This equation can basically be used for any substance, even when it does not

participate in the reaction taking place, because vi¼ 0. In this respect, this equation

is more general than our initial equation (1.14), for which vi 6¼ 0 needs to be the case

for the denominator.

We call a change in the extent of a reactionR, Δξ, the conversion of reactionR
or the conversion according to reactionR. Every conversion leads to changes in the

amounts of the participating substances, which are proportional to their conversion

numbers:

Δni ¼ vi � Δξ: ð1:17Þ

Conceptually, the extent and conversion of a reaction are related to each other in the
same way that location and displacement of a mass point are.
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Equation (1.17) can be expanded easily so that it remains useful when several

reactionsR,R0,R00, . . . run simultaneously where each one is described by its own

quantity ξ, ξ0, ξ00, etc.:

Δni ¼ vi � Δξþ vi
0 � Δξ0 þ vi

00 � Δξ00 þ . . . for all substances i: ð1:18Þ

Not only can chemical reactions be described in this way, but also a simple

exchange of a substance B with the surroundings can as well,

Bjoutside! Bjinside or 0! �1 Bjoutsideþ 1 Bjinside;

so that we can apply equations of the type (1.18) very generally for calculating

changes in amounts of substance.
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Chapter 2

Energy

Energy is a quantity that not only plays a dominant role in the most diverse areas of

the sciences, technology, and economy, but is omnipresent in the everyday world

around us. For example, we pay for it with every bill for electricity, gas, and heating

oil that arrives at our homes. But we are also confronted more and more with

questions about how we can save energy in order to cover our current and future

demands. At the beginning of the chapter, the conventional indirect way of defining

energy is briefly presented. A much simpler way to introduce this quantity is

characterizing it by its typical and easily observable properties using everyday

experiences. This phenomenological description may be supported by a direct

measuring procedure, a method normally used for the quantification of basic

concepts such as length, time, or mass. Subsequently, the law of conservation of
energy and different manifestations of energy like that in a stretched spring, a body

in motion, etc., are discussed. In this context, important quantities such as pressure
and momentum are introduced via the concept of energy.

2.1 Introducing Energy Indirectly

Energy is a quantity that not only plays a dominant role in the most diverse areas of

the sciences, technology, and economy, but is omnipresent in the everyday world

around us. We buy it in large amounts and pay for it with every bill for electricity,

gas, and heating oil that arrives at our homes. There is also information on every

food package about the energy content of the food inside. We are confronted more

and more with questions about how we can save energy in order to cover our current

and future demands.

Ironically, this everyday quantity is defined and explained in a very complicated

way. To start with, it is dealt with as a special concept within the subject of

mechanics and then gradually expanded and generalized. The quantity called energy

is almost always introduced indirectly through mechanical work. The relation
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“work¼ force times distance” is our access route. It tells us that a lot of workmust be

done if, for instance, one wishes to cover a distance using great force against a strong
resistance. Examples of this might be riding a bicycle against a strong wind or

towing a car (Fig. 2.1) across a sandy surface. The figure shows the interaction of

force and distance from the perspective of the person performing the work. The force

being applied by him in the x-direction is positive for the example on the left: Fx¼F;
on the right, it is negative: Fx¼�F. Correspondingly, the workW¼Fx �Δx done by
the person in the figure is positive on the left and negative on the right. Seen from the

car being pulled, all the forces and work have the opposite algebraic signs.

The unit for work is the Joule (J), named for the British beer brewer and private

scholar James Prescott Joule, who lived in Manchester, England, in the nineteenth

century. One Joule corresponds to the product of the units of force (Newton, N) and

length, N m¼ kg m2 s�2.
The path to the concept of work leads through many steps (Fig. 2.2). The

quantity called force is also defined indirectly (force¼mass times acceleration).

The same holds for acceleration (¼ change of velocity divided by time interval) as

well as velocity (¼ distance covered divided by time needed to cover it). Mechan-

ical work is only one form of energy input. There are other forms as well, the most

Fig. 2.1 Interaction of force and distance when doing work (here, as seen by the person involved).

Fig. 2.2 The usual indirect way over many steps to energy (a simplified image here). The

formulas above on the right clarify the framed equation at step 4. a acceleration, E energy,

F force, m mass, Q heat, t time, υ velocity, W work, x position.
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important of which is heat. The name energy is an umbrella term for these various

forms. This new quantity has its own symbol, mostly E, with the unit Joule.

Furthermore, each of the numerous variants has its own name and symbol. Along

with work W and heat Q, there are internal energy U, enthalpy H, Gibbs (free)

energy G, exergy B, etc.
In order to avoid this convoluted derivation, we will introduce energy directly by

metricization. As a first step, we will characterize the concept using typical and

easily observable properties. We will see that we can do without the large number

of energy terms because a single one is basically enough to do what is necessary to

describe all processes we deal with in physical chemistry.

2.2 Direct Metricization of Energy

Basic Idea Almost everything that we do requires effort and strenuousness. We

notice this especially when doing something that is so strenuous, it makes us sweat

and gasp. So let us imagine all devices and things we use to be so large and heavy

that we feel the consequences of dealing with them. We will take a look at a few

strenuous activities that we accomplish without tools or with the help of levers,

ropes, pulleys, winches, etc. (Fig. 2.3). All the activities in the figure belong to the

subject of mechanics.

We can also include thermal processes (such as a “heat pump”), electric pro-

cesses (an “electrostatic machine,” for instance), or chemical processes (such as a

water electrolysis apparatus) in this (Fig. 2.4). However, because these kinds of

processes are less familiar, we will come back to them later on in more detail. For

now, we will limit ourselves to mechanical processes.

It is noteworthy that the effort we have expended for these activities does not just

disappear, but can be used to accomplish other strenuous activities. For example,

Fig. 2.3 Strenuous activities: (a) stretching, (b) bending, (c) lifting, (d) throwing, (e) starting a

wheel turning.
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we can directly or indirectly use a stretched spring that is trying to contract, in order

to bend a tree, to lift a sack, or to hurl a stone, etc. (Fig. 2.5).

Conversely, we can stretch a spring by using a bent tree, a lifted sack, or even a

hurling stone (if it can be caught correctly). Any combination can be accomplished,

if the right tools are put to use. What is important here is that the effort put into

something can be used to perform other activities.

It appears that the effort expended to change something is stored within the

changed objects. We can imagine it to be contained in the stretched spring, the bent

tree, the lifted sack, the flying stone, etc. It can be taken out again by reversing the

change and then reused to change other things.

Lost Effort All of us experience activities where all effort apparently seems to

disappear (Fig. 2.6). We rub our hands together and they get warm, but we cannot lift

a sack with this heat. It is hard work to pull a heavy cart across a sandy surface. Not

only do we start to sweat, but the sand also becomes warm even if we do not notice

it. Even when we do not accomplish anything, for example, when we try to hold back

an attacking dog or try to pull a firmly rooted bush out of the ground, we get hot.

Fig. 2.4 (a) A primitive “electrostatic machine”: progressive charging of a capacitor by separat-

ing charge in the already existing field and transporting the charge to the corresponding opposite

plate, (b) A “water electrolysis apparatus”: forcing a spontaneous reaction in the opposite direction

is strenuous, here using the example of decomposing water into its elements.

Fig. 2.5 Utilizing the effort needed for stretching the spring in order to (a) bend a tree, (b) lift a

sack, (c) hurl a stone.
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In such cases, it seems there is nothing left of the effort that was expended that can

then be put to use. At least under the given circumstances, this appears to be the case.

Although the effort needed for this does not get reused, it does not simply

disappear without a trace.We sweat, and not only do we get hot, but also the things
around us: the rubbed hands, the sand under the wheels, the squeaking wheel

bearings. The more effort wasted, the more pronounced the warming. This is a

significant trace left by the lost effort. However, even this trace gradually fades so

that eventually it seems that all the effort disappears into nothing.

We must take into account that with everything we do, a part of our effort does

not accomplish anything but will get lost in some unintended secondary activity.

Friction almost always hinders our activities. It takes a lot of effort to overcome

friction and it is something we seek to avoid, if possible. To give another example,

we ourselves are affected by the activity of our muscles where—just like with

rubbing—heat is produced. This is an unwanted but unavoidable secondary

activity.

Measuring Effort The question now arises of whether it is possible (unencum-

bered by what we feel) to determine how much effort a certain activity entails—

stretching a spring, lifting a sack, or charging a capacitor? We expect that an

objective measure of the effort expended for the same activity will always have

the same value, no matter who does the work, where it is done, and when. If

something is done twenty times in exactly the same way, it should mean, all in

all, twenty times the amount of effort.

The unit used (as for example, the unit of length) can in principle be chosen

arbitrarily. One could for instance select a coil spring. The position of the end of the

spring in its relaxed state receives a value of 0, and at an arbitrary but defined

stretched state, a value of 1 (Fig. 2.7). In this manner, an “amount” of effort is

defined that can serve as our private unit. Naturally, we can also choose the unit to

be equivalent to the SI unit. Such springs can be made so that the initial and final

states are easily recognizable, comparable to a spring balance whose scale is limited

to values of 0 and 1 (compare Fig. 2.7a, lower spring).

We can set the flywheel in motion using the stretched “unit-spring.” The spring

then returns to its rest position and the flywheel rotates. The effort stored in the

Fig. 2.6 Activities where all effort seems lost: (a) rubbing, (b) pulling, (c) restraining.
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spring is now in the turning wheel and can be given back to the spring by using the

spin of the wheel to stretch the spring (Fig. 2.7b). This interplay can in principle be

repeated indefinitely and in various ways. Unfortunately, air and bearing friction

gradually consume the stored effort, or in other words, friction continuously takes

some of it for other purposes.

If we were able to prevent such unwanted losses, it would be easy to measure the

effort necessary for our activity. We will therefore assume that by using appropriate

measures, losses can be avoided. Ball bearings help against axle friction, a vacuum

helps against air friction, thicker wires help against line resistance, and the friction

of wheels on a surface can be compensated for by a harder surface, or better yet, air

cushions. Later on we will see how we can deal with things when such compen-

sating measures are unavailable or insufficient.

Another type of error arises when a part of the effort gets “caught” in the storage.

This is the case where the tree is being bent and the sack is being lifted by springs

(Fig. 2.5a, b). The process comes to a halt when the pull of the spring upon the rope

reduces to the point where it can no longer overcome the counter-pull of the tree or

the sack. The rope and deflection pulleys alone are not enough to make the best use

of the effort stored in a spring during stretching. To do so, it would be necessary to

make use of a somewhat more complicated construction which we will not do at this

time. We will just assume that it is, in principle, possible to utilize the stored effort

entirely.

Measuring effort simply means counting how many unit portions it can be

divided into. One counts the number of unit-springs that can be stretched or one

counts the number of already stretched springs needed to obtain a desired change

(compare Fig. 2.8).

Energy We call the quantity introduced by the process described above, energy.
Of course there are more accurate and more easily reproducible means to represent

the energy unit (or an arbitrary multiple of it) than our spring. As an example,

consider the energy of a photon emitted by a hydrogen atom when its electron drops

from the 2p state to the 1s state. This sounds a little bit strange at the beginning, too.

But, also the meter, the fundamental unit of length in the SI system, is meanwhile

no longer defined by the international prototype meter bar composed of an alloy of

platinum and iridium. In 1960, the meter was fixed as equal to 1,650,763.73 times

the wavelength in a vacuum of the radiation corresponding to the transition between

the levels 2p10 and 5d5 of the krypton-86 atom. In order to enable traceability

Fig. 2.7 (a) Showing the

“unit of effort” by a spring

stretched between the marks

0 and 1, (b) Transferring the

effort to a flywheel (front,

black) and back to the

spring again (back, gray).

36 2 Energy



between this new definition and the old prototype, the numeric value (1,650,763.73)

was chosen (according to the measurement accuracy of that time). To further reduce

uncertainty, the length of the meter was currently fixed indirectly in terms of the

second and the speed of light. However, precision of measurement is not what is

actually important when first learning about a quantity, here the quantity called

energy.

Depending upon the purpose, different symbols such as E,W, U, Q, H, G, . . . are
in use for the quantity called energy. We will use only the symbolW because E will

be used for electric field strength. Moreover, there is no good reason to give

different symbols and names to stored and transported energy.

The quantity W has been introduced by direct metricization of the everyday

concept of effort. Although we have relied on our senses, the quantity W is

ultimately independent of subjective feelings. This fact is essential for dealing

with it objectively because the same activity can, for example, seem more strenuous

to one person than to another or more exhausting to a tired person than to a well-

rested one. The quantity called energy defines and quantifies what we call effort in
everyday life, a term relating to an activity. On the other hand, it also denotes what

is stored in an object that is deformed, moved, lifted, charged . . . and that can be

retrieved when needed. That means energy also quantifies the ability to do some-

thing, what in everyday language could be circumscribed vaguely by “power to do

something.”

We should, though, be wary of taking this comparison of energy (in physics) and

“power to do something” (in everyday life) too literally. In the economy, the more

money you have, the more you can accomplish, but coins and notes do not have any

intrinsic power. Almost everything we do involves some kind of turnover of energy.

Energy might be considered the price paid for an activity or, conversely, what can

be gained. If we know the price of an activity, we also know whether or not it is

possible to pay for it.

It is a matter of preference whether one wishes to describe processes as dynamic,
meaning as a result of forces working with and against each other or simply as a

form of accounting by considering credits and debits on a balance sheet. The former

takes into account everyday images and what we sense and feel. The latter makes

use of our experiences dealing with cash and non-cash money values.

Fig. 2.8 Creating a multiple of the “unit of effort” by connecting unit-springs in series.
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2.3 Energy Conservation

One of the most important insights of nineteenth century physics was that energy—

or “force” or “power,” as it was called then—never gets lost, i.e., cannot disappear

into nothingness. A hundred years before that people knew that no matter how

ingenious you are, energy cannot be created from nothing. In Sect. 2.2, we saw

several examples of effort seeming to get lost. This loss was always accompanied

by the evolution of heat. In the so-called “Joule’s apparatus” (Fig. 2.9), a falling

weight was used to spin a paddle wheel. The cold water in the insulated vessel

(a kind of calorimeter) was warmed up by the rotating paddles and the

corresponding temperature was measured.

An ice calorimeter (Fig. 3.23b and Experiment 3.5) can also be used to deter-

mine how much heat has evolved in a process by showing us how much ice it melts.

The amount of melt water is proportional to the amount of energy expended,

independent of where the energy comes from or how it gets into the ice. Naturally,

this is assuming that nothing comes into it from other sources or drains off to some

sink—through a leak in the heat insulation, for example.

It was therefore concluded already at that time that a certain amount of energy is

needed to heat a body, whether or not this happens intentionally. If the amount of

energy used for this is included, one finds that the entire “stock” of energy remains

unchanged. Energy can be moved from one storage to another, but the amount

remains the same. This finding is called the “law of conservation of energy” or short
energy principle. One result of the law of conservation of energy is that any energy

expended must be independent of the path or the tools used. Otherwise, in contra-

diction to this law, it would be possible to create energy from nothing (or let energy

disappear into nothing) by delivering it by one path and releasing it via another.

Fig. 2.9 Joule’s apparatus
for demonstrating the

equivalency of energy and

heat (from: Abbott (1869)

The new theory of heat.

Harper’s New Monthly

Magazine 39:322–329).
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Until now, we have assumed that the energy consumed producing a change can

be retrieved if the process involved is reversed. However, we run into a problem

with processes associated with the evolution of heat: they cannot be reversed, or at

least not entirely so. The energy has not actually disappeared, but is somehow not

quite accessible any longer. This situation caused a lot of headaches in the nine-

teenth century and still does today. We will look more closely at this subject in

Chap. 3.

Before we do that, though, we will discuss some simple cases showing how to

find values for energy. Many quantities derived from energy are easier to measure

than the energy itself, so we usually calculate energy indirectly through these

quantities.

2.4 Energy of a Stretched Spring

A stretched spring has the tendency to contract, and the more strongly stretched it is,

meaning the more the length l exceeds the value l0 in its relaxed state, the more

strongly it tends to contract. Depending upon how much the spring is already

stretched, it becomes increasingly strenuous to continue stretching the spring by

the small amount Δl (Fig. 2.10). In other words, the energy ΔW needed for this

increases by l proportionally to l� l0 (at least within certain limits) as long as the

changesΔW and Δl are small enough. This condition can be expressed by replacing

the differences with differentials:

ΔW
Δl
¼ D � l� l0ð Þ or rather

dW

dl
¼ D � l� l0ð Þ: ð2:1Þ

The graphic shows that, when greatly magnified, the curve around the point l seems

to have become straight. We then calculate the slope of this extremely small section

of the curve (see the magnified section in Fig. 2.10). There is a more detailed

description of this in Sect. A.1.2 in the Appendix. When we now plot the values

gained in this manner as a function of the corresponding l values, we obtain a linear
function as we would expect from Eq. (2.1).

The proportionality factor D quantifies the characteristic called spring stiffness.
When the factor D is great, a spring is hard or stiff; when it is small, the spring is

soft. dW/dl is a measure of the “force” with which the spring resists stretching. We

take W and l as measurable quantities so we can express this force—as usual

symbolized by F—as follows:

F ¼ dW

dl
or in more detail F lð Þ ¼ dW lð Þ

dl
: ð2:2Þ

The corresponding SI unit is J m�1¼N (Joule/Meter¼Newton). If we insert F into

Eq. (2.1), we obtain the usual form of a familiar law,

2.4 Energy of a Stretched Spring 39

http://dx.doi.org/10.1007/978-3-319-15666-8_3


F lð Þ ¼ D � l� l0ð Þ Hooke’s law: ð2:3Þ

F(l ) then describes the slope of the graphical representation of the function W(l ) at
point l. In order to find W(l ), we need only to find the antiderivative of F(l ). In this

case, it is the function whose derivative with respect to l results in D � (l� l0).
Antiderivatives are gone into in more detail in Sect. A.1.3 in the Appendix. Now we

see that:

W lð Þ ¼ 1=2D � l� l0ð Þ2 þW0: ð2:4Þ

To start with we have assumed that D is constant and that F(l ) is a linear function,
meaning that the graph (the characteristic curve) of the spring is a straight line.

However, this does not need to be the case. In Eq. (2.1) a different derivative dW/dl
would appear on the right, which can be measured like the one before. Now the

spring stiffness D that still corresponds to the slope of graph F(l ) is itself dependent
upon l. Although it can be mathematically more challenging to find the antideriv-

ative of F(l ), the method remains the same.

Let us now imagine two different springs stretched and connected in series

(Fig. 2.11). The one on the right can only contract as it causes the one on the left

to stretch. The process can take place as long as the spring supplies more energy

�ΔW0 when shortened by the small length �Δl0 than the other spring consumes

(ΔW ) when expanding by the same length Δl¼�Δl0. If the spring supplies less

than this, the process reverses. The process will come to a standstill or to an

equilibrium of forces when the energy supplied by a small shift of one spring is

compensated by the energy consumption of the other:

Fig. 2.10 The energy W(l )
of a spring as a function of

its length l. The graph is

close to a parabola for the

range around the rest

position l0. The force by
which the spring resists

stretching at position l
corresponds to the slope

dW/dl of the graph at this

point. This is illustrated by

the inset “magnifying

glass”.
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ΔW
Δl
¼ ΔW0

Δl0
or better

dW

dl
¼ dW0

dl0
this means F ¼ F0:

Springs can therefore be easily used as force meters. In order to find the force acting

upon a spring by a rope or a rod, for example, it would be sufficient to use a scale

that shows the stretching l� l0. If the characteristic curve of the spring is linear, the
scale will be equidistant and can, for the sake of simplicity, be labeled with the unit

Newton (N). We are only mentioning this well-known method because other

quantities can be measured in a very similar way, among them pressure, tempera-

ture, and even the chemical potential.

2.5 Pressure

The same paradigm used for force F can be used to introduce pressure p. Pressing
water into a pressure vessel costs energy (Fig. 2.12). The container resists a change

ΔV of the volume V of the water in it which manifests itself in some kind of counter

pressure. The expenditure of energy ΔW related to the same increase of volume ΔV
can be considered the measure for pressure p:

ΔW
ΔV
¼ p or more exactly

dW

dV
¼ p: ð2:5Þ

As we know, when two such vessels with pressures p and p0 and water volumes

V and V0 are connected by a hose, the pressures will equalize when the water flows

from the vessel with higher pressure into the one at lower pressure. Energy

considerations can be used to explain this. Energy is transported along with the

water flowing in and out. This will take place in the mentioned direction as long as

more energy is released on the side with water flowing out at higher pressure than is

consumed on the other side; otherwise it will reverse. It will only come to a

standstill when supply and consumption reach equilibrium, dW þ dW0 ¼ 0. If we

divide dW ¼ �dW0 by dV ¼ �dV0, this leads to

Fig. 2.11 Equilibrium

between two stretched

springs connected in series.
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dW

dV
¼ dW0

dV0
, i:e: p ¼ p0;

which means that we have pressure equilibrium. The rather simple case discussed

here belongs to the subject of hydraulics where water is considered incompressible.
Volume takes the role of a substance-like quantity, as a substitute for the amount of

water being discussed.

We encounter the quantity called pressure also in another more complex rela-

tionship where compressibility is concerned. It costs energy to compress an elastic

body. The more an object is pressed from all sides, the more strongly volume

V decreases. The effort dW needed to cause a small change of volume �dV
increases according to how compressed the body is to begin with. More precisely:

the quotient dW/(�dV ) increases with a decrease of V, at first linearly (proportion-

ally to V�V0) and then more and more steeply. We might say that the body

increasingly resists compression, which is expressed by the growing counter pres-

sure p felt when compressing the body. Similar to the case of hydraulics, the

quotient p¼ dW/(�dV ) lends itself well as a measure of this kind of pressure:

p ¼ � dW

dV
: ð2:6Þ

The expended energy dW can be retrieved in the course of expansion. One might

consider the energy to be contained in the body and that it can be recalled from there

when needed. However, the change of energy is not necessarily a measure of the

part needed for changing the volume—the only part we are interested in at this

point. In order to get this part, it would be necessary to block all the other pathways

the energy might use to flow in or out. If an energy exchange similar to

that resulting from changes of V is possible for other quantities q, r, . . ., then
W(V, q, r, . . .), and the latter must be kept constant:

Fig. 2.12 Pumping water

into a vessel, in this case a

rubber bladder, against the

pressurewithin it. Containers

of this kind, mostly of steel

with a rubber membrane

inside, serve as equalizing

vessels in heating systems.
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p ¼ � ∂W
∂V

� �
q, r...

: ð2:7Þ

Wewere introduced to this method with the indirect metricization of weight in Sect.

1.3. However, we are still missing a crucial quantity. This missing quantity, which

we call entropy, will be the subject of the next chapter.

Although we have chosen a totally different way to find the pressure p, it
is nevertheless identical to the quantity usually introduced as the force per

area, p¼F/A. The SI unit of the pressure is Jm�3¼Nm�2¼ Pa (Joule/

Meter3¼Newton/Meter2¼ Pascal). A non-SI unit still widely used is the bar, where

1 bar¼ 105 Pa. The isotropic pressure p is a quantity that only describes one of the

possible stress states of bodies. It describes a very simple but especially important one,

which is just about the only one we will be dealing with.

2.6 Energy of a Body in Motion

Energy is needed to accelerate a body, for instance a car or a projectile, and the

faster the body is already moving, the more energy (relative toΔυ) will be necessary
to accelerate it. The effort ΔW is proportional to the velocity υ (¼ distance covered

Δx/time needed Δt):

ΔW
Δυ
¼ m � υ or better

dW

dυ
¼ m � υ: ð2:8Þ

The proportionality factor m quantifies a characteristic called inertia, inertial mass,
or simply the mass of the body. We can consider m to be invariable in all the cases

that will interest us. It is easy to see howW depends uponυ. We only have to find the

antiderivative for the derivative dW=dυ in Eq. (2.8):

W υð Þ ¼ 1=2mυ
2 þW0: ð2:9Þ

W0 is the energy contained by a body at rest, i.e., at υ ¼ 0. The energy in a moving

body W υð Þ �W0 is called kinetic energy. If the body moves uniformly (when υ is

constant),W υð Þalso remains constant. When this is not the case, thenυand therefore
indirectly also W is dependent upon position x : W υ xð Þð Þ. By applying the chain

rule (compare Sect. A.1.2 in the Appendix) we easily find the force F with which a

body resists change of position:

F ¼ dW υ xð Þð Þ
dx

¼ dW υð Þ
dυ

� dυ xð Þ
dx
¼ mυ � a

υ
or F ¼ m � a; ð2:10Þ
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where a ¼ dυ=dt represents acceleration. One can prove that dυ xð Þ=dx ¼ a=υ
by taking the derivative of υ x tð Þð Þ with respect to t and then solving the equation

obtained for dυ xð Þ=dx:

a ¼ dυ x tð Þð Þ
dt

¼ dυ xð Þ
dx
� dx tð Þ

dt
¼ dυ xð Þ

dx
� υ:

There is a shorter way to the same result by using the rules for differentials

[expanding and inverting a derivative, Sect. 9.4 (transformation of differential

quotients)]:

F ¼ dW

dx
¼ dW

dυ
� dυ
dt
� dt
dx
¼ dW

dυ
� dυ
dt

�
dx

dt
¼ mυ � a=υ ¼ m � a:

The equation F¼m � a is usually used to define the force F, which is then used to

introduce the concept of work and, as a generalization, energy (compare Sect. 2.1).

2.7 Momentum

Equation (2.8) can be read another way when momentum þ is introduced in place of
velocity. Instead of the usual symbol p that is already being used for pressure, we

will use the symbol þ (Thorn) which is similar to p and comes from the Icelandic

language. Momentum plays a decisive role in modern physics, in quantum mechan-

ics and in relativity, for example. Therefore, this would be a good moment to

familiarize ourselves with this quantity. This concept is essential to describing

interactions between moving bodies such as collisions in kinetic gas theory

(Chap. 10) or in the kinetics of elementary chemical reactions.

Momentum is a substance-like quantity. The total momentum of an assembly of

moving bodies or of parts of a body is the sum of the momenta of all the parts. It can

be transferred from one moving body to another. The total momentum is conserved

in such processes. If the momentum of a part has decreased, the momentum of

another part must have increased irrespective of how the transfer took place.

Knowing this can save us a lot of detailed work. In everyday life, one has to learn

to recognize conservation of momentum. If we push a car and it is gaining

momentum, or if it is losing momentum when coasting, it is not quite clear where

the momentum comes from or goes to (Fig. 2.13). It turns out that the momentum

comes from or goes into the Earth. Our planet is so big that we do not notice if it

loses or gains a little momentum—just as we do not notice a change in the ocean if

we take a bucket of water from it.

Momentum is a vector quantity, which makes it somewhat difficult to deal with.

However, it is not more complicated than other vector quantities such as velocity,

acceleration, force, etc. In fact, it is less difficult because of its substance-like

character. Firstly, it is enough to simply observe motion in one direction, for
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example, along the x-axis. The momentum of a body moving in the direction of

increasing x values is counted as positive. Motion in the opposite direction is

considered negative. This way of seeing things must be learned, though, because

we usually speak in absolute values of these quantities. Who would ever say that a

vehicle moving down a street is doing so at negative speed?

The momentum contained in a moving body increases with its mass m and its

velocity υ. In fact, it is proportional to both, þ � mυ. The proportionality factor is

set equal to 1:

þ ¼ mυ SI unit: kgms�1 ¼ Ns: ð2:11Þ

If υ ¼ þ=m is inserted in W υð Þ and the derivative of the function W υ þð Þð Þ is taken
with respect to þ, one obtains

dW υ þð Þð Þ
dþ

¼ dW υð Þ
dυ

� dυ þð Þ
dþ
¼ mυ � 1

m
or

dW

dþ
¼ υ: ð2:12Þ

This equation agrees with Eq. (2.8), except that the factor m in the denominator is

moved from the right side to the left and combined withdυ to make dþ. It can also be
explained using a similar pattern to the one we used for discussing the force of a

stretched spring or pressure in hydraulics: The faster a body is already moving, the

more it opposes increasing its momentum. The energy dW needed for this, relative

to the same amount dþ, grows proportionally to the velocity υ. In this case, υ appears
in a role similar to that of force or pressure.

For more than a hundred years, quantities that appear in this role have been

called intensive factors, intensive quantities, or simply intensive. Unfortunately,
this description does not agree completely with the definition in Sect. 1.6. In order

to avoid misunderstandings, we have no choice but to look for a new name. The

German physicist and physician Hermann von Helmholtz came up with one that

would be helpful to us. Using Joseph Louis De Lagrange’s concept of “forces” in
the field of mechanics, he generalized it. We refer to this and call the quantities

“force-like.”

Each one of these quantities has a counterpart. These are called extensive factors,
extensive quantities, or simply, extensive and appear in the form of differentials.

x belongs to F, V or�V belongs to p (as the case may be), and þ belongs to υ, just to
name the ones we have already discussed. Each pair describes a path over which

energy can be exchanged:

Fig. 2.13 Momentum þ when a car is pushed, and when coasting.
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dW ¼ Fdx, dW ¼ pdV, dW ¼ υdþ, etc:
Spring Hydraulics Motion

This term does not agree with the earlier definition either, so a new name must be

found here as well. Using the concept of position coordinates to give position and

orientation of one or more bodies in a space, Helmholtz expanded this concept

analogously to quantities outside of mechanics (electric, chemical, etc.). These are

the quantities called “extensive factors” above. For a rough characterization of the

role of these quantities, the term “position-like” would fit nicely to “force-like,” as a
counterpart.

Let us return for a moment to the equation F¼m � a. If we take the derivative of
the expression for momentum þ ¼ mυ with respect to time t, and because of

dυ=dt ¼ a, we obtain a relation that the famous English physician and mathemati-

cian Sir Isaac Newton already used to start his description of classical mechanics in

the seventeenth century:

dþ

dt
¼ ma ¼ F:

Because þ is a conserved quantity, its amount can only increase in the body when it

decreases somewhere else. In other words, this quantity must flow in from there.

Therefore, F describes the momentum flowing in from the surroundings. This idea

may be a bit unusual, but it can be very useful.

2.8 Energy of a Raised Body

We will take another look at the body being hoisted upward by a rope and pulley

(Fig. 1.5). In the following, we will ignore buoyancy by imagining the surroundings

to be void of air. When we release the body, it falls, as we know, at constant

acceleration a¼�g (g gravitational acceleration), independent of its size, weight,
or composition. After a time t, it will have reached a velocity of υ ¼ at ¼ �gt and
will have fallen the distance h0 � h ¼ 1=2gt

2, where h is the height above ground at

time t and h0 is the initial height. The energy necessary for the body with a mass

m to accelerate from 0! υ,

W ¼ 1=2 mυ
2 ¼ 1=2m �gtð Þ2 ¼ mg h0 � hð Þ; ð2:13Þ

comes from the gravitational field of the Earth. However, the energy W, which is

released by falling and is used here to accelerate the body, is usually attributed to

the raised body itself. The energy stored in a raised body (or in the gravitational

field, respectively) is called potential energy, Wpot; the one in the moving body is

called kinetic energy, Wkin, as mentioned. During free fall, energy is transferred

from one storage to the other. According to the law of conservation of energy, the
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sum of both of these contributions remains constant as long as no energy is diverted

(such as during impact or falling through air):

Wkin þWpot ¼ 1=2mυ
2 þ mgh ¼ const: ð2:14Þ

The term potential energy is often transferred to similar cases. For example, the

potential energy Wpot of a charged body increases by ΔW when it is moved in a

static electric field against the field forces by expending the energy ΔW. The stored

energy in a stretched spring at rest (Sect. 2.4) is called potential to distinguish it, if

necessary, from the contributions from movements of the spring or other parts.
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Chapter 3

Entropy and Temperature

In phenomenological description (comparable to a kind of “wanted poster”), the

entropy appears as a kind of “stuff” which is distributed in space, can be stored or

transferred, collected or distributed, soaked up or squeezed out, concentrated or

dispersed. It is involved in all thermal effects and can be considered their actual

cause. Without it, there would be no hot and no cold. It can be easily generated, if

the required energy is available, but it cannot be destroyed. Actually, entropy can be

easily recognized by these effects. This direct understanding of the quantity S is

deepened by a simplified molecular kinetic interpretation.

In addition to the first law of thermodynamics, a version of the law of conversion

of energy (Sect. 2.3), the second law will be formulated in the following without

recourse to energy and temperature. On the contrary, the absolute temperature can

be introduced via energy and entropy. The third law is also easily accessible, and

heat engines and heat pumps are analyzed after this introduction, without discussing

process cycles, gas laws, or energy conversion processes. In closing, the entropy

generation as a consequence of entropy conduction will be discussed.

3.1 Introduction

Misjudged and Avoided The central concepts of thermody-

namics are entropy S and temperature T. While everyone is

familiar with temperature, entropy is considered as especially

difficult, in a way the “black sheep” among physicochemical

quantities. School books avoided it totally in the past, intro-

ductory physics books often only “mention” it, and even spe-

cialists in the field like to avoid it.
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But why is the subject of entropy avoided when it is actually something rather

simple? It is just what is considered “heat” in everyday life (Fig. 3.1)!

Unfortunately, the name “heat” was given to another quantity (compare

Chap. 24) which robbed S of its natural meaning, making S an abstract concept

that is difficult to understand and deal with. Therefore, entropy could only be

introduced abstractly, i.e., indirectly by integrating a quotient formed from

energy and temperature, making it difficult to deal with. Furthermore, it is

customary to interpret entropy atomistically as a measure of the probability of a

certain state of a system composed of numerous particles. In chemistry, we must

be able to infer our actions in the laboratory from atomistic concepts. In other

words, we must be able to transfer the insight gained on one level to a different

one as directly as possible. In the following we will demonstrate how to

accomplish this.

Macroscopic and Microscopic View To illustrate this, we will characterize

entropy at first by use of some of its typical and easily observable properties—

similarly as already the energy. In the same way, a wanted person would be

described by a list of easily distinguishable (“phenomenological”) characteristics

like height, hair color, eye color, etc. This group of characteristics is basically what

makes up the person and his or her name is just an identification code for this group

of characteristics. A “wanted poster” is an example for such a group of character-

istics in strongly abbreviated form. Our intent is to design such a “wanted poster”

for entropy that allows it to be defined as a measurable physical quantity. After that

has been done, we will substantiate it by reverting to ideas actually foreign to

macroscopic thermodynamics: particle concepts (atomistic concepts) usually only

Fig. 3.1 Entropy in everyday life: Generally stated, it is that which hot coffee loses when it cools

down in a cup and what is added to a pot of soup to heat the food. It is what is generated in a hot

plate, a microwave oven, and an oil heater. Entropy is also what is transported in hot water and

distributed by a radiator. It is what is conserved by the insulating walls of a room and by the wool

clothing worn by the body.
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construed as thoughts. The idea of “entropy� everyday ‘heat’” is always kept in

mind as an additional aid to understanding. After the phenomenological character-

ization we will discuss how a measure for entropy can be introduced, and that

directly, meaning without recourse to other quantities (direct metricization)

(Sect. 3.7).

3.2 Macroscopic Properties of Entropy

Thermal Effect Let us begin with the characteristics that are important in our

everyday experience. Entropy can be understood as a weightless entity that can

flow and is contained in everything to one extent or another. In physical calcu-

lations it represents like mass, energy, momentum, electric charge, and amount of

substance a substance-like quantity, meaning that it is like the other quantities a

measure for the amount of something which can be sought as distributed in space.

Thereby, it is not important whether this “something” is material or immaterial,

stationary or flowing, unchangeable or changeable. It can be distributed in

matter, it can accumulate, and it can be enclosed. Entropy can also be pumped,

squeezed, or transferred out of one object and into another one. The entropy

density is high if a lot of entropy is accumulated in a small area and low if it is

widely distributed.

Entropy changes the state of an object noticeably. If matter, for example, a piece

of wax or a stone, contains little entropy, it is felt to be cold. If, however, the same

object contains more or a lot of entropy, it can feel warm or even hot. If the amount

of entropy in it is continuously increased, it will begin to glow, firstly dark red, then

bright white, subsequently melt, and finally vaporize like a block of iron would, or it

may transform and decompose in another way, as a block of wood might. Entropy

can also be removed from one object and put into another. When this is done, the

first object becomes cooler and the second, warmer. To put it succinctly: Entropy

plays a role in all thermal effects and can be considered their actual cause. Without

entropy, there is no warm and cold and no temperature. The obvious effects of

entropy allow us to observe its existence and behavior quite well even without

measurement devices.

Spreading Entropy tends to spread. In a uniform body, entropy will distribute

itself evenly throughout the entire volume of the body by flowing more or less

rapidly from locations of higher entropy density (where the body is especially

warm) to areas where the body is cooler and contains less entropy (Fig. 3.2).

If two differently warm bodies touch each other, entropy will flow from the

warmer one to the cooler one (Fig. 3.3).
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There are substances which conduct entropy very well, such as silver, copper,

aluminum, and diamond, and others, such as wood, foamed plastic, or air, which

only allow entropy to pass through them very slowly (Fig. 3.4).

Good entropy conductors are used to transfer entropy over a short distance. In

order to overcome distances of decimeters and more—for example, for regulating

the temperature of a room or an apartment or for cooling a motor—the conductivity

is too small, the conductive transport of entropy—meaning the transport by con-

duction alone—is too slow. If one would like to transfer entropy from the furnace in

the basement or the solar collector on the roof this has to be done convectively—

meaning the entropy is transported by circulating water to the radiator and from

there by circulating air into the room. To remove excess entropy out of a combus-

tion engine, water is pressed through its cooling channels or air is blown over its

cooling fins. If distances of meters and more are to be overcome like in industrial

plants or even distances of kilometers like in the atmosphere or the oceans,

convection is the dominant type of transport.

Bad conductors, however, are used to contain entropy. A vacuum acts like an

especially good insulation. Entropy is also able to penetrate layers without matter

by radiation, but this process takes place rather slowly at room temperature or

below. This property is used in thermoses to keep hot beverages hot and cold

Fig. 3.2 Spreading of

entropy within a

uniform body.

Fig. 3.3 Spreading of

entropy from one body to

another (entropy transfer).

Fig. 3.4 Good and bad

entropy conductors.

52 3 Entropy and Temperature



beverages cold. Entropy transfer by radiation can be minimized by silvering the

surfaces of the flask.

Generation and Conservation Entropy can be easily generated. For instance,

great amounts of it are generated in the heating coils of a stove plate, in the flame of

an oil burner, and on the surfaces rubbing together in a disc brake, but also by the

absorption of light on a sunlit roof, in the muscles of a runner, and in the brain of a

person thinking. In fact, entropy generation occurs almost every time something

changes in nature (Fig. 3.5).

The most remarkable characteristic of entropy, however, is this: While it is

generated to some extent in every process, there is no known means of destroying

it. The cumulative supply of entropy can increase, but can never decrease! If

entropy has been generated in a process, one cannot consequently reverse this

process as one would rewind a film. The process is irreversible as one says. This

does not mean, however, that the body in question cannot attain its initial state

again. This may be possible by way of detours, but only if the entropy which was

generated can flow out of it. If there is no such disposal available or accessible,

because the system is enclosed by entropy-insulating (¼ heat-insulating or adia-

batic) walls, the initial state is indeed inaccessible.

Laws of Thermodynamics Since it takes energy to generate entropy—which

cannot disappear again—it seems as if energy is lost. This was the commonly

held belief until the middle of the nineteenth century. Only in the second half of that

century did the concept take hold that even under these circumstances, energy is

conserved (compare to Sect. 2.3). Since then, this has been referred to as the first
law of thermodynamics and is the basis of all teachings in the field of

thermodynamics.

The statement that entropy can increase but can never decrease is the subject of

the second law of thermodynamics which will be discussed in more detail in

Sect. 3.4.

Let us conclude:

• Energy can neither be created nor destroyed (first law).

• Entropy can be generated but not destroyed (second law).

Fig. 3.5 Entropy

generation: Locations

where entropy was

generated are generally

noticeable by increased

temperature.
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3.3 Molecular Kinetic Interpretation of Entropy

Atomic Disorder So what is this entity that flows through matter and, depending

upon how much is contained in it, causes it to seem warm or hot to the hand? For

more than two hundred years, one has attempted to explain thermal phenomena by

the movements of atoms. The image is as follows: The warmer a body is, the more

intensely and randomly the atoms oscillate, spin, and swirl—so the idea, the greater

the agitation and the worse the atomic disorder.
In the particle view, the quantity called entropy is a measure of

• The amount of atomic disorder in a body

• With regard to type, orientation, and motion of the atoms, or more exactly, with

regard to any characteristic which differentiates one group of atoms from

another.

Two questions arise here:

• What does disorder mean regarding type, orientation, and motion of atoms?

• What is meant by amount of disorder?

To clarify the first question, one might consider a park on a sunny summer

Sunday. There are children playing, a soccer game taking place, and joggers, but

also people just resting or even sleeping—a mass of running, sitting, lying people

without order to their distribution or motion (Fig. 3.6). The opposite would be the

dancers in a revue—or soldiers marching in lockstep. In this case, position, motion,

and dress are strictly ordered. Disorder grows when the motion becomes random,

but it also grows if the orientation in rank and file is lost or the type of people

becomes nonuniform. All three: randomness of type, orientation, and motion of the

individuals cause the total disorder.

The same holds for the world of atoms (Fig. 3.7). Not only disorder in the type

and distribution of atoms, but also disorder in their motion, which can be expressed

in how agitated they are, makes an important contribution to entropy. In this sense,

the atoms in a hot gas are similar to children romping in the schoolyard. Motions are

completely free and without order, and therefore the agitation, meaning the disorder

concerning motion, is great. The atoms of a crystal, in contrast, can be compared to

tired pupils in a school bus. Motion is more or less limited to fixed locations, so the

disorder and agitation stay small.

Amount of Disorder In order to get an impression of what is meant by amount of
disorder, one might imagine a collection of, say, one hundred books at someone’s
home. A visitor comes, starts rummaging through the books, and makes a total

jumble of them. Although the disorder appears great, the old order can be reinstated

within a few hours. This means that even though the density of disorder is high, its

amount is small. Compare this to just every hundredth book being falsely placed in

a large university library. At first glance, there would appear to be almost no

disorder. However, the amount of disorder, measured by the effort needed to
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place all the books back in their rightful places, is much greater. The density of

disorder is small, but the total amount of it is very great.

3.4 Conservation and Generation of Entropy

The atomic disorder in a warm object and, therefore, the entropy in it have

remarkable and well-defined characteristics, some of which have already been

mentioned. They will be described in more detail in the following.

Fig. 3.6 Examples of groups of people becoming increasingly disordered in type, orientation, and

motion.

Fig. 3.7 An assembly of particles in states of increasing entropy: (a) Assembly is well ordered in

every way, (b, c) Positions become increasingly perturbed, (d, e) Motion is increasingly disor-

dered, (f, g) Particles become increasingly different (type, orientation, agitation, . . .). The arrows
show magnitude and direction of momentum (and not of velocity) (This differentiation is impor-

tant when the entropy of particles of different mass shall be compared.).
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Conservation The atomic disorder and agitation in a thermally insulated body

which is left to itself remain undiminished for an unlimited amount of time. An

object contains entropy—we can say—whose amount S cannot decrease if it is in a
thermally insulating (adiabatic) envelope, because entropy cannot penetrate ther-

mally insulating walls (Fig. 3.8).

The agitation manifests itself among others by the microscopically visible

Brownian motion (Experiment 3.1). Therefore, it can be regarded not only as

theoretically constructed but as directly observable.

The amount of entropy an object contains depends upon its state. Identical

objects in the same state contain identical amounts of entropy. The entropy

contained in an object that is composed of pieces is the sum of the entropies of

Fig. 3.8 Conserving entropy in a thermally insulated system. (Entropy is depicted by an irregular

hatching in reference to the standard interpretation of entropy as atomic disorder. The amount of

printing ink symbolizes the amount of entropy, the density of hachures, however, the entropy

density. In objects made of the same material and in the same state of aggregation, a higher entropy

density correlates with a higher temperature.)

Experiment 3.1 Brownian motion:
Brownian motion is a tremulous, random

movement of tiny particles distributed in a

liquid (e.g., drops of fat in milk) or particles

stirred up in a gas (e.g., smoke particles in

air). This kind of movement can be

observed under a microscope for indefinite

amounts of time without it letting up.
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its parts. This is a direct result of the substance-like character of this quantity. In

summary, it might be said: The entropy in an object is a substance-like
(or extensive) quantity which—together with other quantities—determines its

state (Fig. 3.9).

If a thermally insulated piece of matter, such as an iron block, is cautiously and

slowly compressed with the help of a hydraulic press, or a gas in a cylinder with a

piston (meaning the external pressure is only very slightly higher than the internal

pressure of the confined gas), the interior agitation increases, and the motion of the

particles becomes faster. This is easy to understand: An atom colliding with another

particle moving toward it is hit like a tennis ball by a racquet and speeds backward.

During compression, this process takes place simultaneously at innumerable inte-

rior locations so that agitation increases evenly overall. If the piece of matter is

gradually relieved of pressure, the atoms quiet down, and it reaches its original state

again. This is understandable as well, because the impact upon a receding particle

lessens the rebound. No matter how often the process of compressing and subse-

quent releasing of tension is repeated, the original state of agitation is attained at the

end—cautious action provided.

The atomic disorder in these types of reversible processes is conserved. Agita-
tion is stronger in the compressed state—as mentioned, and motion, therefore, less

ordered. At the same time, the range of motion for the atoms is decreased so that

their positions are perforce more orderly than before. Therefore, it is plausible to

assume that the extent of atomic disorder does not first increase and then decrease

upon cautious compression and expansion, but remains constant (Fig. 3.10). This is

an important fact that we should mention explicitly: Entropy is conserved in

reversible processes.

Generation However, disorder in a thermally insulated body increases if the

atomic structure is permanently disturbed. This can happen mechanically by simply

hitting an object with a hammer, or more gently by rubbing two objects against each

other. If an object can conduct electricity, an electric current can be sent through

it. This means that electrons that have been accelerated by applying a voltage

collide with the atoms. Another way would be the collision of fast particles

Fig. 3.9 Entropy as

substance-like state variable

(S1� S2� S3� S4, and
Stotal¼ S1 + S2 + S3 + S4).
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which have been formed by numerous chemical or nuclear transformations, irradi-

ation by light, treatment with ultrasound, and many others (Fig. 3.11).

Entropy distributes more or less quickly over the entire body from the point

where it is created. This process is also connected with the generation of entropy

even if it is not directly obvious (see Sect. 3.14). All of these entropy generating
processes are irreversible. If entropy was created in this way we will not get rid of it
again, unless we could transfer it in the surroundings. But this is inhibited by the

thermal insulation.

Entropy and Arrow of Time To sum up: In a thermally insulated system, entropy

can increase but never decrease; at best its amount remains constant. As mentioned

before, this is what the second law of thermodynamics states. We can also formu-

late: For a thermally insulated system entropy always increases for irreversible

processes. It remains, however, constant for reversible processes. We can write in

abbreviated form

Fig. 3.10 Conservation of

entropy during cautious

compression and expansion

(reversible process).

Fig. 3.11 Examples of entropy generation: (a) mechanically by hammering, (b) electrically by

electron impact, (c) chemically by collisions of atoms shooting off in a reaction.
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ΔS ¼ S t2ð Þ � S t1ð Þ 
irrev:

rev:
0 for t2 > t1 in a thermally insulated system; ð3:1Þ

where t represents time. At the more, this is valid for a so-called isolated system that

does not interact with the surroundings, meaning that it can exchange neither

entropy nor energy or matter.

The inequality (3.1) obviously interlinks an increase in entropy with the direc-

tion of time. If S(t2)> S(t1), then t2> t1 has to be valid, meaning that t2 indicates a
later point in time, t1, however, an earlier one. It seems that the second law of

thermodynamics determines what is future and what is past.

3.5 Effects of Increasing Entropy

If the entropy and thereby the atomic disorder inside a piece of matter is continu-

ously increased, certain external effects soon become noticeable.

Main Effect The main effect is that the matter becomes warmer (Fig. 3.12).

To demonstrate this, entropy can be increased for example mechanically by strong

hits with a hammer (Experiment 3.2).

Another way of formulating this effect: Of two otherwise identical objects, the

one with more entropy is the warmer one. An object with no entropy is absolutely

cold (Fig. 3.13).

As mentioned, entropy always moves spontaneously from warmer locations to

colder ones (Fig. 3.14). When fast moving atoms collide with ones moving more

slowly, they are themselves slowed while their collision partners speed up. As a

result, the agitation and, therewith, the total disorder at the warmer locations

gradually decrease while they continuously increase at the colder locations. In a

homogeneous body, the process continues until the level of agitation is the same

everywhere and the body is equally warm everywhere. This state is called thermal
equilibrium.

Fig. 3.12 Warming as the

main result of increase of

entropy.
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Side Effects An increase of entropy can cause numerous side effects: Changes of

volume, shape, state of aggregation, magnetism, etc., can result. Let us look at how

a continuous increase of entropy affects a substance in general.

(a) Matter continuously expands (Fig. 3.15). This seems logical because moving

atoms would need more space depending upon how strong and random their

motion is. This process is called thermal expansion.
Experimentally, entropy can for example be increased by sending an elec-

tric current through the matter (Experiment 3.3).

Experiment 3.2 Heating of metal by
forging: A block of copper having a

volume of a few cubic centimeters will

become so hot after about 15–20 strong

hits with a heavy hammer that it will hiss

when put into water. A strong blacksmith

can even forge a piece of iron of similar

size in a few minutes to red heat.

Fig. 3.13 Otherwise identical objects with different entropy content.

Fig. 3.14 Distribution of entropy in a homogeneous body.
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A substance that expands when entropy is added to it will, inversely,

become warmer when compressed. This was mentioned in the previous sec-

tion. Ice water is one of the few exceptions of volume decreasing with an

increase of entropy. Therefore, it becomes colder (< 0 �C) when compressed.

(b) The substance will finally melt, vaporize, or decompose (Fig. 3.16). This

begins when the disorder and the motion with it reach a level where the

atoms can no longer be held together by the bonding force in a lattice or

particle union, but try to break out of them. A melt that has been produced in

this way from atoms or groups of atoms that still hold together but are easily

shifted against each other is much less orderly than a crystal lattice in which

Fig. 3.15 Expansion due to the addition of entropy. The initial state is indicated by the dashed line.

Experiment 3.3 Expansion of a wire
caused by electric current: A wire with a

weight hanging from it lengthens

noticeably when an electric current flows

through it. The lowering of the weight can

easily be observed. If the electric current is

turned off, the entropy in the wire flows

off into the air and the wire shrinks again.

Fig. 3.16 Melting as an example of a change of state of aggregation with increasing entropy.
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the atoms generally remained fixed in their places. This melt contains more

entropy than the identically warm solid substance. As long as part of the solid

substance is available, the entropy flowing in will collect in the resulting liquid

so that the melting substance itself does not become warmer. When this

happens, the main effect of entropy remains unnoticeable. If a substance

changes completely at its melting point from solid to liquid state, the entropy

inside it increases by a given amount. As we will see, this characteristic can be

made use of to determine a unit for amounts of entropy.

Analogously, the vapor formed at the boiling point absorbs the additional

entropy, preventing the boiling liquid from becoming hotter.

3.6 Entropy Transfer

Entropy and with it atomic disorder can also be transferred from one object to

another. If two objects with variously strong particle motion touch each other, the

agitation in one of them will decrease because of a slowing down of the atoms,

while in the other, the opposite occurs. Figuratively speaking, the disorder flows

from one body into the other. This process, as well, only continues until the

agitation has reached the same level everywhere and thermal equilibrium has

been reached (Fig. 3.17).

The thinner the surrounding walls are, the greater their area is and the better the

substance of which such a wall is composed conducts entropy, the easier the

entropy runs through the walls (Fig. 3.18). The correlation is similar to that of the

current of electric charge through a wire (see Sect. 20.4).

Zero-Point Entropy All entropy capable of movement will escape an absolutely

cold environment, meaning that any atomic motion comes to a standstill. This is the

subject of the third law of thermodynamics. Entropy caught in a lattice defect is just
about unmovable at low temperatures. It can therefore neither escape nor contribute

Fig. 3.17 Conduction of

entropy from a warmer,

entropy richer body where

the atoms are moving fast to

another cooler, entropy

poorer one where the atomic

motion is slow.
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in any noticeable way to the warmth of an object. Whoever fails to leave a building

or a park before closing is in danger of being locked in for the night. In this sense,

the entropy stuck in the lattice defects can only escape as long as the particle motion

is strong enough for the atoms to relocate. If the atomic motion in cold surroundings

quiets down too quickly, the atoms do not have time to relocate into an ordered

lattice structure, or to crystallize, as we say. The object then just solidifies into a

more or less amorphous state. This unmovable entropy that does not flow off even

in an absolutely cold environment is called “zero-point entropy.” Therefore, we

have to formulate the third law of thermodynamics as follows: The entropy of every

pure (also isotope pure) ideal crystallized substance takes the value of zero at the

absolute zero point. Only if the substance crystallizes ideally there is no spatial

disorder and therefore also no residual “zero-point entropy.”

Directed Entropy Transfer Let us now return to entropy transfer. Even when the

atomic motion is equalized everywhere in the manner described above, it is still

possible for disorder to pass from one object to another. It is only necessary to

compress one of the objects to raise the agitation of the atoms, and the desired flow

process takes effect. The more the object is compressed, the more disorder “flows

out” (just like pressing the water out of a sponge). If the body is slowly relaxed, the

atoms gradually quiet down and the disorder begins to flow back in (the “entropy

sponge sucks up entropy”) (Fig. 3.19).

These elastic expansion and compression effects can be especially well observed

in substances that can be easily compressed such as gases (Experiment 3.4).

Fig. 3.18 Entropy current

through a wall. The

resistance which the wall

imposes to the flux depends

upon the thickness d, the
area A through which the

entropy flows, and the

conductivity of the material.

Fig. 3.19 Directed

exchange of entropy

between two bodies

touching each other.
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As we have seen, entropy always flows spontaneously from an object with a

higher level of agitation to one with a lower level. However, it is not difficult to

make this happen in the opposite direction (Fig. 3.20). An auxiliary body is needed,
a kind of “entropy sponge” which can easily be compressed and expanded. A gas

contained in an expandable envelope is suitable for this purpose. When such a body

touches an object and expands, it absorbs disorder from it. This absorbed disorder

can now be transferred to any other object. The “sponge” is brought in contact with

this second body and compressed. This process can be repeated at will, and as much

entropy can be transferred as desired.

Ideal and Real Transfer Every refrigerator uses this principle to pump entropy

from its interior into the warmer air outside, while the low-boiling coolant (oper-

ating as the auxiliary body) circulates in a closed circuit (Fig. 3.21). The entropy

Fig. 3.20 Transfer of entropy with an auxiliary body. On the left side, the auxiliary body expands
thereby absorbing entropy from the object. On the right side, it is compressed thereby adding

entropy to another object.

Experiment 3.4 Compression and expansion of
air: If air is compressed with a piston in a

plexiglass cylinder having a thermocouple built in,

the atoms become accelerated making the gas

warmer (phase 1). After a while, the gas cools

down to its original value because it is not insulated

from the cylinder walls (phase 2). The piston’s
expansion leads to further cooling (phase 3). Then,

entropy begins to flow back in and the gas begins to

warm up (phase 4). The more slowly this is done,

the more the difference between the compression

and expansion disappears.
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transfer takes place by the coiled pipe inside the refrigerator (heat exchanger) that is

made of well-conducting material such as copper or aluminum. In older models,

this coiled pipe is easy to see; in newer models, it is built into the back wall. The

liquid vaporizes, taking up entropy in the process. The compressor sucks the

gaseous coolant in and compresses it. The entropy is emitted into the air through

the second coiled pipe that takes up most of the back of the refrigerator. This can be

easily detected because the coil remains warm as long as the refrigerator is running.

The coolant condenses, becoming a liquid again. Finally, the pressure of the liquid

is brought back to the original value through an expansion valve, and the cycle is

complete.

With skill and enough cautiousness during the compression and expansion

processes, an (almost) reversible process can be attained where it is possible to

keep the disorder during transfers from increasing noticeably. In this way, disorder

is like a kind of substance that can be taken from one body and decanted into

another. For instance, the entropy in a piece of chalk could be taken out of it and

transferred to an ice cube. In the process, the chalk would cool down and the ice

cube would begin to melt.

In summary, we have determined that the entropy content S of a body can

basically increase in two ways: through the entropy generated inside it Sg(enerated)
(cp. Sect. 3.4) and, as described in this section, by the entropy exchanged with the

surroundings Se(xchanged) (and that conductively by “conduction” in matter at rest,

Sλ, or convectively, carried by a flow of matter, Sc):

ΔS ¼ Sg þ Se ¼ Sg þ Sλ þ Sc: ð3:2Þ

3.7 Direct Metricization of Entropy

Selection of a Unit for Entropy The transferability of entropy opens up a possi-

bility of measuring the amount of it in a body—at least theoretically. Measuring a

quantity means determining how much more of it there is than its unit. Any amount

Fig. 3.21 (a) Principle of operation of a refrigerator, (b) Technical realization (according to:

Leitner E, Finck U, Fritsche F, www.leifiphysik.de).
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of entropy can be used as the unit. For example, the amount needed to warm up a

certain quantity of water by 1 �C (possibly from 14.5 to 15.5 �C), to evaporate a

given volume of ether, or to melt an ice cube (Fig. 3.22). In order to accurately

determine this unit, the size and state of the body in question must be exactly

specified. For example, the ice cube would need to be 1 cm3 in size, bubble-free, not

undercooled, and the resulting water not be warmed up. However, instead of 1 cm3,

the somewhat smaller value of 0.893 cm3 lends itself well because it yields exactly

the amount of entropy that corresponds to the international unit. This unit has been

fixed by a special method which we will come back to later. A certain amount of

entropy contained in a body will be referred to as z units when z standard ice cubes

can be melted with it. This procedure is comparable to the determination of the

amount of harvested grain by using a bushel (Sect. 1.4) or that of an amount of

water by scooping it out with a measuring cup.

Ice Calorimeter Instead of counting ice cubes, it is easier to use the amount of

melt water produced as measure. A simple “entropy measurement device” can be

built for this purpose. Melt water has a smaller volume than ice because of the

anomalous behavior of the density of water and the decrease of volume can be

measured. A bottle with a capillary on it and filled with a mixture of ice and water

(ice-water bottle) (Fig. 3.23a) can then be used to show the change in volume. The

lowering of the water level is simple to observe. Unintended entropy exchange can

be avoided by using good insulation, and unintended entropy generation can be

avoided by paying attention to reversibility.

This principle is also used by “Bunsen’s ice calorimeter” (Fig. 3.23b). The glass

container is filled with pure water and the U-shaped capillary with mercury. The

central tube is cooled to below the freezing point of water, possibly by pouring in

ether and sucking off the vapor, so that an ice mantle is formed on it. Then the

sample to be measured is inserted into it. The amount of ice melted is noted by the

volume decrease indicated by the mercury in the capillary. If no entropy escapes, is

exchanged, or is generated during the measurement process, the height difference in

Fig. 3.22 Measuring entropy by counting ice cubes that melt when entropy is added to them.
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the capillary is proportional to the change of entropy in the sample or that of a

reaction mixture, and the scale can be directly calibrated using entropy units.

Another way of determining the volume of the produced amount of water is to

pour it into a graduated cylinder (Experiment 3.5).

Return to Macroscopic View The remarkable thing here is that this entire process

has been developed using atomistic considerations, but the execution of it makes no

use of them. Indeed, only macroscopic bodies are moved, brought into contact,

separated, compressed, and expanded. Finally, ice cubes are counted. These are all

manipulations that can be carried out when nothing is known about atoms. In order

to have a well-directed approach, it is enough to remember the concept mentioned

in Sect. 3.2 that all things contain a movable, producible, but indestructible

Fig. 3.23 (a) Principle of direct entropy measurement with the ice-water bottle, (b) Bunsen’s ice
calorimeter.

Experiment 3.5 Measuring the entropy
emitted during a reaction: For example, the

entropy emitted by the chemical reaction of iron

and sulfur into iron sulfide can be measured by a

simple ice calorimeter. A mixture of iron powder

and sulfur powder is put into a test tube, and the

test tube is subsequently placed in the calorimeter

vessel filled with crushed ice. The reaction is

initiated by a preheated glass rod or a sparkler.

The melt water is collected in a graduated

cylinder whereby 0.82 ml of melt water

corresponds to the unit of entropy.
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something that generally makes the things warmer depending upon how much there

is of it. What one actually imagines it is or what it would be called is unimportant

when measuring or manipulating it. The German physicist Rudolf Clausius

suggested calling it entropy in the middle of the nineteenth century, and the symbol

S has been used for it ever since.

3.8 Temperature

Role and Definition Temperature and entropy are closely connected. While

entropy is a measure of the amount of atomic disorder contained in a body,

temperature describes how strong the atomic agitation, which means the intensity

of random particlemotion, is. Temperature is something like a level of agitation that

is low when the atoms and molecules are gently oscillating and rotating. It is high

when atomic motion becomes hectic and turbulent. The temperature in a body is

therefore comparable to the strength of winds in the atmosphere with low values

when the leaves rustle, but higher ones when the branches start swinging. Just as

high winds can break branches or even whole trees, high temperatures can cause

atoms to tear away from their bonds.

So how can temperature be defined? We will use the following statement as a

basis: The more disorder is put into a body (meaning the more entropy there is), the

higher the temperature will be in general. To generate entropy (or to increase the

disorder in a body by the amount Sg), a certain amount of energy W must be

expended. This is understandable considering that for example gas particles are

accelerated, particle oscillations initiated, rotations increased, and bonds between

atoms broken. The energyW needed will be greater depending on how many atoms

are to be moved, and how many bonds torn. This means,

W � Sg:

Moreover, the warmer the body is, the more energy is needed. An example will

show this. We imagine a body made up of some loosely and some tightly bound

particles. Atomic disorder can be increased by breaking the particles and scattering

the fragments. When the body is cold and the level of agitation low, the particles

move slowly. Only the weakest connections break during collisions because very

little energy is necessary to split them. Under such circumstances, it does not take

much energy to increase the disorder by causing weak bonds to break by an increase

in agitation. If agitation is already strong, the weakest connections will already have

broken. If the disorder should be increased even more, the strong bonds left over

need to be separated and this takes a lot of energy.

So now we know that increasing the entropy in a body takes more energy the

higher the level of agitation is, meaning the warmer it appears to us. This fact can be

used to make a general definition of temperature, a definition that remains inde-
pendent of any thermometric substance (e.g., mercury or alcohol).
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This quantity is assumed to be proportional to the energy needed. It is called the

thermodynamic temperature or absolute temperature and symbolized by the letter

T:

W � T:

Because the more entropy that is generated the more effort is needed to generate it,

the amount of energy used depends upon the amount of entropy created. Therefore,

we define:

T ¼ W

Sg
: ð3:3Þ

The relation is clarified by Fig. 3.24.

The entropy generated generally changes the temperature in a body, so when

applying this definition, only very small amounts of entropy may be generated in

order to be able to ignore the perturbation. The exact temperature value is obtained

in the limit of infinitesimally small contributions of entropy:

T ¼ dW

dSg
: ð3:4Þ

By the way, energy conservation guarantees that the energy W needed does not

depend upon which method we employ to increase the entropy. In each case, T has a

well-defined value.

Because energy and entropy are both measurable quantities independent of any

atomistic considerations, the temperature T is also measurable. The zero point of

the temperature scale cannot be arbitrarily chosen, meaning temperature can be

determined in an absolute sense. From experience we know that entropy is only

generated when energy is expended. No entropy is generated when energy is

gained. From W> 0 and Sg> 0 (third law of thermodynamics) follows T> 0.

Therefore, negative temperatures do not exist. As a concrete example, let us discuss

the determination of the melting temperature of ice (Experiment 3.6).

Fig. 3.24 Relation between

the energy needed, the

entropy generated, and the

thermodynamic

temperature.
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SI Unit The basic unit used in the SI system is not the unit of entropy, but the

temperature unit called Kelvin, abbreviated to K. This was done by giving the

melting temperature of pure airless water in a sealed container with pure water

vapor (no air) above it a value, namely

T0 ¼ 273:16 K: ð3:5Þ

This is based upon the so-called triple point of water, where all three states of

aggregation (ice, water, water vapor) coexist and where pressure can be ignored.

[When water is at the triple point, the pressure is fixed (see Sect. 11.5).] This odd

numerical value is chosen so that the temperature difference between the normal

freezing and boiling points of water is close to 100 units, as it is in the Celsius scale.

For this reason, one Kelvin is one 273.16th of the thermodynamic temperature of

the triple point of water. The zero point of the Kelvin scale lies at the absolute zero

point which is indicated by an absence of entropy in the body. When one wishes to

establish the relation between thermodynamic temperature T and Celsius temper-

ature ϑ, it is important to be careful to set the zero point of the Celsius scale to the

freezing point of water at normal pressure. This lies nearly exactly 0.01 K under the

temperature of water’s triple point, so that:

T

K
¼ ϑ
�C
þ 273:15: ð3:6Þ

The Fahrenheit temperature scale used mostly in the USA can be converted into the

absolute temperature scale in the following way:

T

K
¼ ϑF

�F
þ 459:67

� �
� 5

9
:

The unit of entropy is indirectly determined by the stipulation above [Eq. (3.6)] and

our definition for T. The unit for energy is called Joule (J), and the temperature unit

Kelvin (K), resulting in the entropy unit Joule/Kelvin (J K�1). This is exactly the

Experiment 3.6 Determination of the absolute
melting temperature of ice: We start with a beaker

filled with pieces of ice into which an immersion

heater has been inserted. When the immersion heater

is switched on, entropy is generated in the heating

coil by the collisions of electrons and then emitted

through the metal casing to the ice. The ice melts and

the volume of the resulting melt water shows us how

much entropy has flowed into the ice. The amount of

energy needed for generating the entropy can be

determined from the power P of the immersion

heater and the measured period of time t according to
W¼P � t. The ratio of measured values of energy and

entropy yields the temperature.
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amount of entropy needed to melt 0.893 cm3 of ice at the temperature T0. The fact
that entropy plays such a fundamental role in thermodynamics justifies giving it its

own unit. Hugh Longbourne Callendar (Callendar HL (1911) The Caloric Theory

of Heat and Carnot’s Principle. Proc Phys Soc (London) 23:153–189) suggested

naming it in honor of S. Carnot and calling it a “Carnot,” abbreviated to Ct¼ J K�1.
Through his work with heat engines, the French engineer Nicolas Léonard Sadi

Carnot (1796–1832) made important contributions to the development of

thermodynamics.

3.9 Applying the Concept of Entropy

Molar Entropy We will look at some examples that give an impression of the

values of entropy: A piece of blackboard chalk contains about 8 Ct of entropy. If it

is broken in half, each half will contain about 4 Ct because entropy has a substance-

like character. (Entropy is also generated in the breaking process, but this is so little

that it can be ignored.)

A 1 cm3 cube of iron also contains about 4 Ct, although it is much smaller.

Therefore, the entropy density in iron has to be greater. If the amount of entropy in

such a cube is doubled (by hammering, friction, or radiation, for example), it will

begin to glow (Fig. 3.25). If the amount of entropy is tripled, the iron will begin

to melt.

There is about 8 Ct of entropy in 1 L of ambient air. This is the same amount as in

the piece of chalk. The reason that there is so little despite a volume more than

100 times as great lies in the fact that the air sample has far fewer atoms in it than

the piece of chalk with its densely packed atoms. If the air is compressed to 1/10 of

its original volume, it will become glowingly hot (Fig. 3.26).

This effect is utilized in pneumatic lighters to ignite a piece of tinder (flammable

material) (Experiment 3.7), but also in diesel engines to ignite the fuel–air mixture.

The compression must happen quickly because the entropy flows immediately from

the hot gas into the cold cylinder walls and the gas cools down quickly.

Fig. 3.25 The effects of

raising the entropy content

in a cube of iron with a

volume of 1 dm3.
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1 L of gas loses almost 1 unit of entropy if it is compressed to 1/10 of its original

volume. If the gas is compressed to 1/100 of its volume, one more entropy unit can

be squeezed out of it.

Chemists tend to relate entropies to the amount of a substance, i.e., how much

entropy is contained in 1 mole of the substance in question. This quantity is called

molar entropy:

Sm � S

n
molar entropy of pure substances: ð3:7Þ

S and n symbolize the entropy and amount of substance of the sample. The formula

or name of the substance is usually enclosed in parentheses, for example, Sm(Fe)¼
27.3 Ct mol�1.

Molar entropy depends upon both temperature and pressure. For this reason, an

additional stipulation is necessary if the values are to be tabulated. In chemistry, one

generally refers to standard conditions, i.e., 298 K (more precisely 298.15 K) and

100 kPa [this corresponds to room temperature of 25 �C and normal air pressure,

so-called standard ambient temperature and pressure (SATP)]. For characterizing

the standard values, we use the symbol �, so for example,

S�m Feð Þ ¼ 27:3 Ctmol�1 at 298 K and 100 kPa:

Fig. 3.26 Change of

entropy content in air

(1 dm3) with rising pressure

(The gas molecules are

represented by points.)

Experiment 3.7 Pneumatic
lighter: If the piston is

moved down quickly and

powerfully, the tinder (for

example, a piece of

nitrocellulose foil or a piece

of cotton wool impregnated

with a highly flammable

liquid) bursts into flame.
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The values of some substances are listed in Table 3.1.

However, molar entropy not only depends upon the kind of substance in ques-

tion, characterized by its content formula but also on the state of aggregation, as it is

proved by the example of water. In order that the values are unambiguously given

the aggregation state of the substance in question is added to the formula by a

vertical stroke and the abbreviations s for solid, l for liquid and g for gaseous

(cp. Sect. 1.6), for example, H2Oj1 for liquid water. Because we do not want to

overload the expressions, we stipulate that the most normal case is meant if there is

no further information. Therefore, H2O generally symbolizes the liquid and not

vapor or ice. Entropy also depends upon the crystal structure. Modifications can be

indicated for example by their names like graphite, diamond, etc.

A rule to bear in mind is that, at the same pressure, temperature and particle

number, the entropy of a body will be greater, the heavier the atoms and the weaker
the bonding forces. Diamond, which consists of atoms that are rather light and very

firmly linked in four directions, has an unusually low entropy per mole. Lead, on the

other hand with its heavy, loosely bound atoms, is rather rich in entropy. The

characteristics of iron lie somewhere in between; it has a medium value of molar

entropy. Using the example of water, the table shows how entropy increases by

transition from a solid to a liquid state and even more by transition from a liquid to a

gaseous state.

Determining of Absolute Entropy Values How are the values in Table 3.1

actually determined? It would be possible to find the entropy content of a sample

by “decanting” the entropy from it into the ice-water bottle with the help of an

auxiliary body. However, this would require that each step be configured reversibly,

as discussed in Sect. 3.7, so that the entropy cannot increase during transfer, and this

is very difficult to accomplish in practice. The goal is reached more easily by taking

a detour. First, all the entropy contained in the sample must be removed. Favorable

circumstances would allow simply immersing the sample in liquid helium (4.2 K).

With the entropy having flowed off, the sample would be just about empty of

entropy. For very accurate applications, the sample would have to be further cooled

to reduce the remaining entropy. However, the entropy from the disorderly distri-

bution of isotopic atoms cannot be gotten rid of in this way. This value can be easily

determined by other means. Afterward, the sample is thermally insulated, and

Table 3.1 Molar entropies of

some pure substances at

standard conditions (298 K,

100 kPa).

Substance Formula S�m (Ct mol�1)

Graphite Cjgraphite 5.7

Diamond Cjdiamond 2.4

Iron Fejs 27.3

Lead Pbjs 64.8

Ice H2Ojs 44.8

Water H2Ojl 70.0

Water vapor H2Ojg 188.8

The value of ice was extrapolated from lower temperatures to

298 K

3.9 Applying the Concept of Entropy 73

http://dx.doi.org/10.1007/978-3-319-15666-8_1#Sec6


entropy is generated inside it in a controlled way. This might be done by electric

heating (Fig. 3.27a). Energy consumption W and temperature T should be con-

stantly measured (Fig. 3.27b) until the sample has attained the desired end temper-

ature. The entropy generated during a small time span simply results from reversing

the definition equation of temperature as the quotient of energy consumption and

average temperature during this time period:

Sg ¼ W

T
: ð3:8Þ

The total amount of entropy contained in the sample at the end can be obtained by

adding up all the amounts of entropy that have been generated over all time spans.

To abbreviate, the symbol for summation ∑ will be used:

Sg ¼
Xn
i¼1

ΔSg, i ¼
Xn
i¼1

ΔWi

Ti
: ð3:9Þ

The smaller the chosen time span, the more exact the result. If the time interval is

allowed to approach zero, we have the definite integral (cp. Sect. A.1.3 in the

Appendix):

Sg ¼
ð final
initial

dSg ¼
ð final
initial

dW

T
¼
ð t0
0

P tð Þdt
T

: ð3:10Þ

Because of the convention S¼ 0 at T¼ 0 for ideally crystallized solids (third law of

thermodynamics), it is possible to determine not only differences but also absolute

values of entropies and therefore absolute molar entropies as well. This determi-

nation is not only possible for substances in the state stable at 0 K but also for

Fig. 3.27 Indirect measurement of entropy by heating up a sample previously cooled down to

almost 0 K. (a) Measuring setup, (b) Corresponding experimental curve.
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states which are formed during heating (other modifications, melt, vapor). The

experimental curves T¼ f(W ) have horizontal parts when such phase transitions

take place which means that energy is consumed, generating entropy without the

temperature changing. If the resulting entropy content of a substance is plotted as a

function of temperature (at constant pressure), we obtain the relationship shown in

Fig. 3.28.

The entropy of a solid increases with an increase of temperature. It takes a jump

at the melting point because the melting process causes the order of the solid to

break and a noticeably higher disorder is produced in the liquid (see Sect. 3.5).

Generally, we will symbolize the transition from the solid (s) to the liquid state

(l) by the abbreviation s!l, the melting point therefore by Ts!l (the freezing point

correspondingly by Tl!s). Because melting and freezing points are identical for

pure substances, we write in short Tsl. The change of entropy per mole of substance

at the melting point is indicated as (molar) entropy of fusion ΔfusS. Subsequently,
the entropy increases again up to the boiling point Tlg, at which point, another jump

takes place [(molar) entropy of vaporization ΔvapS]. The entropy increases much

more strongly during vaporization than during melting because disorder grows

more strongly as a result of the transition from liquid to gas than from solid to

liquid. We will deal in more detail with the entropy of fusion and of vaporization in

Chap. 11.

Entropy Capacity Let us return again to the entropy content of a solid. As we

have seen, it grows always with rising temperature. The curve is different for

various substances, though. The increase of entropy per temperature increase is

called the entropy capacity C in analogy to electric capacity C¼ charge Q/voltage
U (or if this is not constant, C¼ΔQ/ΔU ):

C ¼ ΔS
ΔT

or for infinitesimally small changes C ¼ dS

dT
: ð3:11Þ

The steeper a section of the curve, meaning the faster it rises at a given temperature,

the greater the entropy capacity. The entropy content of a body is not generally

proportional to temperature so its entropy capacity does not only depend upon the

Fig. 3.28 Entropy of a pure

substance as a function of

temperature (without

change of modification).
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substance but, in general, also upon temperature. The pressure should be constant.

This is important because a body can lose entropy during compression—like a

sponge the absorbed water. Instead of C ¼ dS=dT, it is more correct to write

C ¼ ∂S
∂T

� �
p

or even more detailed C ¼ ∂S
∂T

� �
p,n

: ð3:12Þ

Because C is directly proportional to the amount of substance n, one divides it by
n and obtains the molar entropy capacity Cm:

Cm ¼ C
n
¼ 1

n

∂S
∂T

� �
p,n

: ð3:13Þ

The values of some substances are listed in Table 3.2. Usually, the corresponding

molar heat capacities Cm ¼ Cm � T are given in tables instead of entropy capacities.

We will discuss the reasons for this in more detail in Chap. 24.

In the field of engineering, entropy capacities are mostly related to mass. The

result is the specific entropy capacity c. The specific entropy capacities of some

common construction materials are given in Table 3.3. (Because the composition of

the particular material can vary significantly, the given values are averages.)

The specific entropy capacity plays an important role for the “heat storage

capacity” of a material. Therefore, it has for example consequences for the behavior

of construction materials during heating such as wood in case of fire.

Table 3.2 Molar entropy

capacities of some pure

substances at 298 K and

100 kPa.

Substance Formula Cm (Ct mol�1 K�1)

Graphite Cjgraphite 0.029

Diamond Cjdiamond 0.020

Iron Fejs 0.084

Lead Pbjs 0.089

Ice H2Ojs 0.139

Water H2Ojl 0.253

Water vapor H2Ojg 0.113

The value of ice was extrapolated from lower temperatures to

298 K

Table 3.3 Specific entropy

capacities of some

construction materials at

298 K and 100 kPa.

Substance c (Ct kg�1 K�1)

Window glass 3.1

Concrete 3.7

Styrofoam 4.4

Wood (pine) 5.1

Particleboard 6.6

Wood (oak) 8.8
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The effect of different entropy capacities of various substances can be illustrated

by Experiment 3.8.

The entropy capacity depends not only—like the entropy—upon temperature and

pressure, but also upon the conditions under which the substance is heated. A

substance will absorb more entropy when it is allowed to expand freely than it

would if its expansion were hindered. Depending on whether in most cases the

pressure or more rarely the volume remains constant during the temperature increase,

a different change of entropy content and therefore also a different entropy capacity

can be observed. One characterizes the two different coefficients, if necessary, by

indices: C p and CV , respectively. If there is no index we always refer to C p.

3.10 Temperature as “Thermal Tension”

The atomistic image of entropy was given a short and qualitative description in this

chapter. This was sufficient for introducing it. A formal version of the concept of

entropy based upon this model would, however, be time-consuming. For the

moment, referring to the particle image should just serve as an orientation. Phe-

nomenologically or macroscopically, all the activities to be carried out in order to

calculate quantities are well defined. The question arises here of whether or not

these activities can be understood without recourse to the atomistic image. This has

been hinted at in Sect. 3.7, and is, in fact, possible.

An image developed already in the eighteenth century seems especially simple. It

imagines temperature as a kind of “pressure” or “tension” weighing upon entropy.

However, at that time the word entropy was not used. One imagined a fluid like entity

that warms a body, and considered it a kind of weightless substance comparable to

Experiment 3.8 Vaporization of liquid nitrogen by
graphite and lead: If samples of equal amounts of

different substances (possibly 0.1 mole of graphite

and 0.1 mole of lead) are put into small flasks filled

with liquid nitrogen (N2|l) which are cooled in a

Dewar vessel, an amount of nitrogen corresponding

to the entropy capacity will evaporate, and the

balloons will be inflated differently. Additionally,

a considerable amount of entropy is generated;

therefore the volume of the balloons is bigger than

expected from the entropy exchanged. But the result

remains qualitatively correct.
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electric charge. The temperature equalization of two bodies was described as a

pressure equalization of this “heat substance” (caloric) in which this substance

migrated from places of higher “pressure” to places of lower “pressure.” If we accept

this image, then it becomes obvious that energy is needed to generate entropy in a

body against this “pressure” or “tension,” or to force it into a body (comparable to

filling a tire with air against an interior pressure p, or charging a body against its

electric potential φ). The higher this “pressure” (the higher the temperature), the more

energy is needed. The amount of energy also grows the more entropy is generated

(Sg) or added (Se). The following types of relations could be expected:

W ¼ T � Sg ð3:14Þ

and

W ¼ T � Se: ð3:15Þ

We imagine the two entropies to be small, meaning

dW ¼ T � dSg ð3:16Þ

or

dW ¼ T � dSe; ð3:17Þ

so that the temperature will not change much as a consequence of the increase of

entropy. Because we will discuss the energy exchange connected with the addition

or removal of substances later on we suppose in this chapter that there is no

convective exchange of entropy, dSc¼ 0, meaning that the whole exchange takes

place by “conduction,” dSe¼ dSλ.
The first equation follows directly from the equation defining the absolute tem-

perature if it is solved for dW. With help from the law of conservation of energy, the

second equation follows easily from the first one. This law states that the same effect,

no matter how it comes about, always requires the same energy. Whether a certain

amount of entropy is generated in a body or added to it, the effect upon the body is

identical. It expands, melts, vaporizes, or decomposes in the same manner. It must

follow, then, that the energy needed for these processes must be the same.

3.11 Energy for Generation or Addition of Entropy

“Burnt” Energy Despite their similarity, the two equations above, dW¼ TdSg and
dW¼ TdSe, describe two rather different processes. Because entropy can increase

but cannot be destroyed the process that generates it can only run in one direction

and never in the other. As already mentioned, it is irreversible. The energy used
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cannot be retrieved (except indirectly). It is said that when entropy is generated and

something is heated by it—noticeable such as in the heating coils of a stove plate or

imperceptible when paddling in a lake—the energy needed is devalued, wasted, or
“burnt,” or that it gets lost. “Burnt” energy is found again in a state of random

molecular motion. Statistically, it is distributed in tiniest portions over the innu-

merable oscillating and rotating atoms or groups of atoms. In view of these

circumstances, one can speak of dissipation of energy instead of energy loss,

waste, devaluation, etc. There are, as we have seen, plenty of terms to choose

from depending upon which aspect is being emphasized. We will call the wasted

and, therefore, no longer retrievable amount of energy that appears in the first of the

two equations “burnt” energy Wb(urnt) (because of the close relation to the gener-

ation of entropy Sg):

dWb ¼ TdSg ð3:18Þ

or summed up

Wb ¼
ð final
initial

TdSg: ð3:19Þ

The fact that energy is needed to generate entropy does not mean that special efforts

or equipment are necessary. Quite the contrary:

• In every process, a certain amount of dissipation of energy is unavoidable.

• Entropy is readily generated all the time and everywhere.

Just consider friction. On the contrary, special caution and devices are necessary to

avoid this—such as ball bearings, lubricants, etc., in the case of cars.

The energy expended for generating entropy can come from inside a region

itself, i.e., as if from an inner source. A compressed gas is an energy source that can

be tapped. When a gas cools as it expands, the tapped energy W can be used to

generate entropy Sg, which is then conducted back into the gas (along with W ),

making it warm again. In the ideal case, it will become as warm as it was at the

beginning (Fig. 3.29). Entropy then appears to have been created without expending

any energy. The total amount of stored energy in the system is exactly the same as at

the beginning. Nevertheless, we can assume that whenever entropy is generated, it

occurs at the cost of energy which might have been used more intelligently in

Fig. 3.29 A piston pushed

out by gas enclosed in the

cylinder. Entropy is

generated by the friction

between the cylinder and

the wall. The entropy flows

into the cooling gas,

warming it up.
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countless other ways. Energy that we can freely use is called available energy or

useful energy. When referring to energy production, we actually mean available

energy. This is also the case with so-called lost or wasted energy. The total amount

of energy always remains the same, but it is of no use to us if we cannot draw it from

its sources or if it disappears into sinks from where it is inaccessible.

Energy and Entropy Exchange In contrast to this, the second equation above,

dW¼ TdSe, describes a process that is fundamentally reversible. When entropy Se
from one body is transported into another at constant temperature T, the energy

W¼ T � Se is transferred with it. We will refer to this energy as We, if a differenti-

ation from Wb seems necessary. The energy which was transferred returns to the

original body again along with the entropy flowing back to it. This process is,

therefore, reversible. The process described here corresponds to what is usually

called heat supply and heat removal. Energy and entropy are exchanged together:

dWe ¼ TdSe ð3:20Þ

or summed up

We ¼
ð final
initial

TdSe: ð3:21Þ

In order to understand the importance of this equation, we will take a short detour to

look at the development of the concept of heat. In the early days of the “science of

heat” (thermodynamics), there were very diverse ideas about its nature. In the

eighteenth century, heat was conceived of as a weightless “something” that heats

things and could be exchanged between bodies. It was considered a kind of “heat

substance” called caloric. The first successful qualitative and quantitative descrip-

tions of effects such as heating and cooling, melting and evaporation, condensation

and freezing were created based upon the concept of caloric at that time. Following

the spirit of the time, it was assumed that this something could be neither created

nor destroyed, just like chemical elements. In the nineteenth century, it became

increasingly evident that this “substance” could actually increase indefinitely.

When, however, energy appeared as a quantity that corresponded to the ideal of

an entity that could neither be created nor destroyed, the view of things changed.

From then on, “heat” was considered to be the energy transferred by random

collisions of molecules, which could even penetrate seemingly rigid walls. This is

exactly the energy described byWe above that, even today, is usually symbolized by

Q. When Rudolf Clausius introduced entropy S in the middle of the nineteenth

century (under another name), neither he nor his contemporaries appear to have

realized that he was only reconstructing the old quantity but with the new charac-

teristic of being producible while remaining indestructible. Only later on, in 1911,

did Hugh Longbourne Callendar allude to this fact.

Clausius derived a relation for determining the change of entropyΔS in a body—
an iron block, for instance—while it heats from a temperature T1 up to T2. We can
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find this relation much more easily. We can assume that T as well as Q¼We can be

measured. T can be determined using suitably calibrated thermometers and Q can

be measured calorimetrically. The entropy within a body can increase by generation

or addition: dS¼ dSg + dSe [compare with Eq. (3.2)]. If the addition of energy

Q should be reversible, indicated by the index rev, then dSg¼ 0 and therefore

dS ¼ dQrev

T
ð3:22Þ

or correspondingly added up

S ¼
ðT
0

dQrev

T
: ð3:23Þ

In this way, Clausius defined the quantity entropy for the first time a century and a

half ago.

Entropy plays an important role in all thermal effects. Along with temperature, it

is the quantity that characterizes this field of study. Energy also plays its role, not

only here but on (nearly) all stages of physical chemistry or physics. It is important

but nonspecific. Although the exchanges of entropy and energy are so closely linked

that it is not easy to clearly distinguish between their separate roles, it would be

disastrous to mix them up. For this reason, we will avoid the word heat for any kind
of energy, especially for the quantity Q, which we will no longer use. This word is

the cause of grave misunderstandings that have been difficult to dispel. It leads us to

believe that these energy-related quantities are the measure of what we imagine

heat to be based upon our everyday experience. This does not really work and at the

same time hinders the quantity S from being related to everyday life.

To improve understanding, we will contrast an entropy conserving process with

one that generates entropy in two simple experiments. In order for an undesired

exchange of entropy with the surroundings not to falsify the results, the samples must

be well insulated, or the experiments must be carried out very quickly. Let us begin

with the entropy conserving process, the expansion of rubber (Experiment 3.9).

The experiment can be adapted in a simplified manner to everyday life: We

touch a thick rubber band with the upper lip and after waiting a short while for

equalization of temperature, it is stretched quickly and powerfully and immediately

pressed again against the upper lip. The band feels noticeably warm. When the

stretched band is allowed to contract to its original length and then quickly pressed

against the upper lip, there is a noticeable cooling.

Bending an iron rod, however, is an example for an entropy generating process

(Experiment 3.10).

Energy Exchange Along Different Paths In the systems we will be investigating,

the exchange of energy will generally occur simultaneously along several paths

rather than a single path. The simplest and most important paths are changes of

volume V and entropy S. We were introduced to the relation between energy and
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volume in Sect. 2.5. If only infinitesimal changes dV and dS are considered, the

following is valid:

dW ¼ � pdV|fflfflffl{zfflfflffl}
dW!V

þ TdS|{z}
dW!S

: ð3:24Þ

These kinds of equations, which describe the energy paths of a system, will be gone

into in more detail in Chap. 9. At this point it will suffice to say that the increase of

energy dW in our example is composed of one part dW!V¼ (dW )S in the

V direction if all other parameters are kept constant (in this case it is only S) and
a second part dW!S¼ (dW )V in the S direction, meaning at a constant V. In a graph
of the function W(V, S), the negative pressure �p appears as the slope in the

V direction and the temperature T as the slope in the S direction (Fig. 3.30). To

visualize the foregoing: the slope of a mountainside m in the direction of north

Experiment 3.9 Temperature as a function of
time in expanding rubber: If a rubber band is

expanded and then relaxed, the temperature that

rises during expansion sinks again no matter how

often the experiment is repeated. The energy

expended at the beginning is retrievable. The

temperature change T(t) resembles a square

wave. The process is reversible. Entropy is

scarcely generated because the band is as cool

at the end as it was at the beginning.

Experiment 3.10 Temperature as a function of
time in bending iron: Bending an iron rod back to
its original state (after previous bending) costs

again energy, and therefore, the temperature rises

in steps. This bending process is irreversible.

Although the iron rod returns to its original

position, it is now warmer. In this case, entropy

is obviously being generated and the energy

involved is used up. It is not retrievable.
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equals the increase of altitude Δh in this direction divided by the corresponding

horizontal distance Δs in the same northerly direction, m¼Δh/Δs or more pre-

cisely, m¼ dh/ds (compare Sect. A.1.2 in the Appendix). The following is corre-

spondingly valid:

� p ¼ dW!V

dV
¼ ∂W

∂V

� �
S

and T ¼ dW!S

dS
¼ ∂W

∂S

� �
V

: ð3:25Þ

The increase of energy ΔW over longer paths, from location P1¼ (V1, S1) in the

(V, S) plane to a second location, P2¼ (V2, S2), for example, can be found by adding

up all the tiny segments along pathW . Curved paths can be approximated by zigzag

curves made up of paraxial segments (dotted lines in the (V, S) plane in Fig. 3.30).

In the case of infinitesimally small curve segments, the sum becomes an integral.

For the increase ΔW¼W(V2, S2) � W(V1, S1), we obtain:

ΔW ¼ �
ð
W
pdV|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W!V

þ
ð
W
TdS|fflfflffl{zfflfflffl}

W!S

: ð3:26Þ

W!V is the resulting sum from all the segments running from right to left on the

zigzag course, and correspondingly, W!S results when all the parts along the

segments running from front to back are added up. The path could be expressed

in parametric form by assigning the coordinates of all the points being traversed

(V(t), S(t)) as functions of a parameter such as time t.
In the cases we will generally be dealing with,ΔW is independent of the path, but

the individual parts such as the mechanicalW!V and the thermalW!S are not. This

can most easily be seen when the paths from P1 to P2 along the outer edge of the

Fig. 3.30 Energy W as a

function of volume V and

entropy S.
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gray surface are compared, first along the path on the left of the diagonal and then

along the one on the right. The increase corresponding toW!V on the left-hand path

is small and theW!S is correspondingly large, whereas it is just the opposite on the

right-hand side.

If one knows that ΔW is independent of any path it takes, a lot of mathematical

work can be saved by carefully choosing the path for determining ΔW. The arrows
inserted for clarity’s sake into the index above will generally be left out later on.

3.12 Determining Energy Calorimetrically

In Sect. 2.2 we discussed a method for measuring amounts of energy that resembles

the one used since ancient times for quantifying lengths, time spans, and amounts of

substance. This method involved dividing them into unit portions and then counting

them. The unit portion we chose for energy was the amount necessary for stretching

a so-called unit-spring. This method is easy to understand, but it is unfeasible

because loss is unavoidable. The most common cause for energy loss is obstruction

due to friction and the unwanted generation of entropy associated with it.

We can try to make the best of this and measure an amount of energy W by

completely dissipating it and then determining how much entropy Sg¼W/T is

generated at a given temperature T. The devices used for this are called “calorim-

eters,” and we have already seen examples of them (Sect. 3.7). However, at this

point we must be careful to neither lose any of the generated entropy nor to allow

any addition from other sources. This is often the one viable method for measuring

energy in chemical changes because it is nearly the only way of overcoming the

ever-present inhibitions. We will come back to this later on. For now, we will begin

with a mechanical example.

Let us suppose that we want to determine how much energy W is necessary to

raise an object a distance h from the floor (Fig. 1.5). Instead of measuring W while

the object is being lifted, we can findW while the object is being lowered, which we

might do by drawing the rope over a braked hoisting drum connected to a calorim-

eter. An ice calorimeter could be used for this where the entropy generated (Sg) and
the energy released (W¼ T � Sg) in the brake shoe can be determined from the

amount of melted ice. Theoretically, the energy released by expanding a spring,

the impact of a thrown stone, the outflow of a compressed gas, or burning of a

candle can be measured in this way.

Unfortunately, there is a hitch: latent heat, or rather, latent entropy. When an

object is affected by compressing, stretching, electrifying, magnetizing, or by

chemical alteration, it can become warm or cold even when no entropy is generated.

Because of temperature differences, entropy begins to flow out into the environ-

ment or into the object from its environment making the amount of entropy in the

object change. This process continues until temperatures are equalized again
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between the object and its environment. Such isothermal changes of entropy are

called “latent entropies” ΔS‘. The term “latent” was coined for caloric effects of

this type in the eighteenth century. We will take a closer look at this concept in

Sect. 8.7.

Every additional entropic effect interferes with measuring Sg. In mechanics, we

have learned to overlook these effects because they appear to be totally meaning-

less. An example will make us realize that this impression is wrong. If we stretch a

steel wire, it becomes colder, and when it is released, it warms up again. The change

of temperature ΔT is small, only �0.5 K, even when the wire is extended to its

limits. The wire needs to absorb entropy from its environment in order to retain its

temperature. When the wire is allowed to shorten, the entropy flows back into the

environment. In this case, the latent entropy is negative, ΔS‘ < 0. EnergyWmust be

expended in order to expand the wire. We might determine W by allowing the

expanded wire to snap back to its relaxed state in a calorimeter and measuring the

generated entropy Sg¼W/T. However, latent entropy greatly interferes with this

because ΔS‘ is of approximately the same magnitude as Sg. If the stretching is

small, it is even the dominant effect. In the calorimeter we measure the effects

combined: Sg � ΔS‘ ¼ Sg þ ΔS‘j j. Therefore, the procedure is only useful if it is

possible to determine the latent entropy alongside the sum of the terms. In this

example, it is easy to do because we can expand and relax the wire without

noticeably generating entropy, so that Sg� 0 and therefore ΔS‘ can be determined

using the same calorimeter.

In mechanics, energies are hardly ever measured directly, and certainly never

calorimetrically. They are almost always calculated indirectly from measured or

imagined forces and displacements. This is the preferred method because it is

simpler to use and gives more exact results. In chemistry, though, things are

different because to a large extent, one generally depends upon calorimetry. This

gives the reverse impression that caloric effects are characteristics of transforma-

tions of substances and these types of processes cannot be properly described or

understood without them. Fortunately, this impression is also false. We will return

to caloric effects in Chap. 8.

3.13 Heat Pumps and Heat Engines

A heat pump like the one represented for example by the refrigerator described in

Sect. 3.6 is a device that conveys entropy from a body of lower temperature T1 to a
body with a higher temperature T2. The energy needed to transfer an amount of

entropy St(ransfer) can be easily found. It equals the energyW2¼ T2 � St that is needed
to press the entropy into the warmer body, minus the energy W1¼ T1 � St that is
gained when the entropy is removed from the colder body (Fig. 3.31):

Wt ¼ T2 � T1ð Þ � St: ð3:27Þ
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Friction and other processes always generate some extra entropy in either smaller or

larger amounts and this takes extra energy. The total amount of energy Wtotal

becomes greater. The efficiency η of the device is expressed as follows:

η ¼ Wt

Wtotal

: ð3:28Þ

A heat engine or “thermal motor” (as an engine of this kind could be called

following the language use in electricity) is the reverse of a heat pump. Energy is

gained during the transfer of entropy out of a warmer body at temperature T1 into a
colder one with the temperature T2 (Fig. 3.32). This energy can be calculated with

the same equation that is used for finding the amount of energy needed for a heat

pump. The only difference is that Wt is now negative because of T2< T1. This
means that Wt does not represent expended energy but energy gained, so-called

useful energy.

Fig. 3.31 Flow diagram of

energy and entropy in an

ideal heat pump (gray
circle).

Fig. 3.32 Flow diagram of

energy and entropy in an

“ideal” thermal motor (heat

engine) (gray circle).
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Figure 3.33 presents the possible inner setup of an “ideal” heat engine in more

detail (Fig. 3.33a) as well as the strongly simplified schematic diagram of a thermal

power plant (Fig. 3.33b). In the case of such a plant, the energyWt (¼Wuse) is used

which is gained during the transfer of entropy from the steam boiler to the cooling

tower. The entropy itself is generated in the boiler by consumption of energy W1.

When we use up energy W1 to generate entropy Sg, we know that this is a one-

way street with no return. Even so, we do not need to consider W1 as completely

lost. As we have seen in our example, if Sg is generated at the higher temperature T1,
it is actually possible to regain at least a part ofW1. A heat engine might transfer the

entropy from a temperature of T1 down to T2, and ideally return energy

Wt¼ Sg � (T2� T1)< 0 to us. In this case the quantity is counted as negative since

energy is released. Entropy Sg cannot be destroyed so it must end up in some

repository. If T2 is the temperature of such a repository, then W2¼ Sg � T2 describes
the amount of energy needed for this transfer, quasi the “fee” for use of the

repository. Only W2 can be considered to be lost but not W1.

If it were possible to find a repository with a temperature of T2� 0, then W2� 0

and we would be able to recoverW1 almost completely. This energy would then be

available for any type of use. It remains “undamaged” and retains its value while it

is distributed over many atoms. It is neither really lost nor is it really devaluated.
For this reason we will avoid using these expressions for their undesirable associ-

ations. The term “burnt energy” is actually much more exact because it simulta-

neously refers to two important aspects: the waste of useful energy and the heating

associated with it.

A water mill works in exactly the same way as a thermal motor when water flows

from a higher level to a lower one (Fig. 3.34). In this case, the entropy corresponds

to the mass m of the water and the temperature corresponds to the term g � h.

Fig. 3.33 (a) Possible inner setup of an “ideal” heat engine, (b) Simplified schematic diagram of a

thermal power plant.
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Another example would be a turbine operating between two water containers with

different hydrostatic pressures. In electrodynamics the electric motor fulfills

this role.

We try to direct the processes in nature in such a way that energy is left over

which is freely available. By directing for example a rivulet over a mill wheel we

cannot only grind corn but also pump water or drive a generator. Free means that

the use is not predetermined. We will only say that energy is set free or released if

we have the freedom to use it, even if it is just the freedom to “burn” it.

Some entropy is also generated in a thermal motor, a water mill etc., as a result of

friction and other processes. This costs some of the energy Wt, so that the actual

usable energy is smaller.

Finally, we will look at two examples of heat engines. Let us begin with the

magnetic heat engine (Experiment 3.11).

The rubber band heat engine (Experiment 3.12) represents an alternative.

Fig. 3.34 Energy

production by a water mill.

Experiment 3.11 Magnetic heat engine: When

it heats up in the flame, the wheel flange (made of

a CuNi alloy) loses in this part its ferromagnetism

due to the low Curie temperature. (The Curie

temperature is the temperature at which a

ferromagnetic material loses its magnetism and

becomes paramagnetic.) A force results which

keeps the wheel in motion after a push-start.

Because the left hot part of the heated wheel

flange is less “magnetic” than the right cold part,

the wheel flange is pulled from right to left in the

area of the pole shoes.
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3.14 Entropy Generation in Entropy Conduction

We consider the flow of entropy through a conducting connection that we will call a

“conducting segment,” from a body with the higher temperature T1 to another with
the lower temperature T2 (Fig. 3.35). We might imagine a rod made up of a material

that conducts entropy well. It is insulated along its long side. One end is heated by a

Bunsen burner, while the other is cooled by water. For the transfer of the amount

S of entropy the energy W¼ (T2� T1) � S is necessary. Its value is negative because

of T2< T1, meaning that the energy is released and has not to be expended. But

where is the released energy? It cannot be stored anywhere, so it must have been

used to generate entropy, it is “burnt,” Wb¼�W. The entropy Sg generated in the

conducting connection must also flow—permanently increasing—down the tem-

perature gradient to arrive finally at the cooler body with the temperature T2. The
amount Sg can be calculated from the released energy Wb:

Sg ¼ Wb

T2

ð3:29Þ

with

Wb ¼ �W ¼ � T2 � T1ð Þ � S ¼ T1 � T2ð Þ � S: ð3:30Þ

In the process of being conducted through a temperature gradient, entropy will

increase according to set laws. This is a surprising but inevitable result of our

considerations. The energy flowing to the cooler body is calculated according to

T2 Sþ Sg
� � ¼ T2 � Sþ T2 � T1 � T2ð ÞS

T2

	 

¼ S � T1: ð3:31Þ

Thus, it is exactly as much as the value S � T1 that is released by the hotter body.

While the amount of entropy increases during conduction, the energy current

remains constant. Wb represents the energy used up (“burnt”) along the conducting

Experiment 3.12 Rubber
band heat engine: While the

wheel is centrally borne, the

rubber bands pull at an

eccentrically positioned

wheel boss. Because the

spokes are tauter after they

are heated, the wheel begins

to rotate and that from the

right to the left in the lower
region.
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segment. If an ideal heat engine were interposed here instead of the conducting

segment, this energy would be useful energy. Here, this energy is not used and it

becomes devalued while entropy increases.

Entropy conduction (Fig. 3.36d) can be compared to electric conduction

(Fig. 3.36a). If an electric charge Q is forced through an electric resistor—from a

higher to a lower potential φ—the resistor will become warm. This is a simple way

of generating entropy which we encountered with the immersion heater in Exper-

iment 3.6. The energyWb released and completely “burnt” in this case results from

a substance-like quantity that is pushed through the “conducting segment”—here

the electric charge—and the drop of a potential—here the electric potential φ:

Wb ¼ � φ2 � φ1ð Þ � Q ¼ φ1 � φ2ð Þ � Q: ð3:32Þ

The entropy generated is calculated as Wb/T2, where T2 is the temperature of the

segment. Using analogical reasoning, we can interpret the generation of entropy in

Fig. 3.35 Entropy

generation related to the

flow of entropy through a

temperature gradient.

Fig. 3.36 Energy release and entropy generation for (a) a potential drop of charge, (b) a mass

falling from a height, (c) a pressure drop of a volume, (d) a temperature drop of entropy.
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entropy conduction as the result of the forcing of entropy through a “thermal”

resistor. The temperature plays the role of a “thermal potential” and the entropy that

of a “thermal charge” [Eq. (3.30)]:

Wb ¼ T1 � T2ð Þ � S:

A vivid comparison is also that of a waterfall (Fig. 3.36b) where the released and

“burnt” energy is found from the water mass m involved and the height of the drop,

or more exactly, the drop of the “gravitational potential” ψ ¼ψ0 + g � h where

h represents the height above sea level:

Wb ¼ ψ1 � ψ2ð Þ � m ¼ m � g � h1 � h2ð Þ: ð3:33Þ

The amount of entropy generated can be calculated from the quotient Wb/T2 where
T2 is the temperature of the effluent water. At last, let us mention an example from

hydraulics, an opened water tap (Fig. 3.36c). Here, the pressure p acts as potential:

Wb ¼ p1 � p2ð Þ � V: ð3:34Þ

There are two distinguishable steps that these processes all have in common:

1. Release of energy by a drop of a flowing “something” (characterized by a

substance-like quantity) from a higher to a lower potential.

2. “Burning” of energy thereby generating entropy.

When entropy is conducted (Fig. 3.36d), this relation becomes a bit blurred

because flowing and generated quantities have the same nature.

This type of entropy generation by forcing entropy through a resistor can be

demonstrated experimentally (here as a thought experiment) (Fig. 3.37).

Fig. 3.37 Entropy

generation by entropy

exchange through a resistor.
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• Entropy flow without resistance: If the auxiliary body is compressed, it remains

cold because the entropy escapes into the bottle. The ice melts there, and the

level in the capillary falls.

• Entropy flow through a resistor: If the same auxiliary body is compressed

exactly as before, it will become warm because the entropy can only escape

slowly through the resistor. It gradually seeps into the bottle and the capillary

level falls even lower than before! Although the auxiliary body releases the same

amount of entropy in both cases, the bottle shows more this time.

In closing, let us have a look at a concrete example, a 700W immersion heater in

water (Fig. 3.38). The heating wire should have a temperature T1 of 1,000 K. Hence,
in 1 s an amount of entropy S 0g of

Sg0 ¼ W

T
¼ P � Δt

T
¼ 700Js�1 � 1s

1, 000K
¼ 0:7JK�1 ¼ 0:7Ct

is generated by the wire [see Eq. (3.8)]. At the surface, however, the immersion

heater has the same temperature as the surrounding water. We suppose that the

water temperature is T2¼ 350 K. Along the short path taken by the entropy S

¼ Sg0
� �

from the heating wire to the surface of the heater, an amount of entropy

Sg of

Sg ¼ Wb

T2

¼ T1 � T2ð Þ � S
T2

¼ 1, 000K� 350Kð Þ � 0:7Ct

350K
¼ 1:3Ct

is generated [see Eqs. (3.29) and (3.30)]. Therefore, an amount of entropy equal to

Stotal¼ 2.0 Ct flows into the water per second.

Fig. 3.38 Immersion

heater in water. Magnified

cross section (simplified) on

the right.

92 3 Entropy and Temperature



Chapter 4

Chemical Potential

The chemical potential μ is used as a measure of the general tendency of a substance

to transform. Only a few properties are necessary for a complete phenomenological

description of this new quantity. They are easy to grasp and can be illustrated by

everyday examples. It is possible to derive quantitative scales of μ values (initially

at standard conditions) by using these properties, and after choosing a convenient

reference level. A first application in chemistry is predicting whether or not

reactions are possible by comparing the sum of potentials of the initial and the

final states. This is illustrated by numerous experimental examples. The quanti-

tative description can be simplified by defining a “chemical drive” A as the differ-

ence of these sums. In this context, a positive value of A means that the reaction

proceeds spontaneously in the forward direction. As a last point, a direct and an

indirect measuring procedure for the chemical potential are proposed.

4.1 Introduction

The Greek philosopher Heraclitus concluded from observations of his environment

already in the fifth century before Christ that “Everything flows—Nothing stands

still (πάντα ρεΐ).” Creation and decay are well known in the living world but also in
inanimate nature the things around us change more or less rapidly. A lot of such

processes are familiar to us from everyday life (Experiment 4.1):

• Objects made of iron rust when they come into contact with air and water.

• Bread dries out if one leaves it at air for a longer time.

• Rubber bands or hoses become brittle.

• Paper turns yellow.

• Butter or fat becomes rancid.

• Copper roofs turn green (so-called patina).

• Even the seemingly stable rocks (“solid as a rock”) weather.

• Conversely, mud or also wood petrifies.
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This list could be continued as long as one likes.

It would be possible to consider extraneous effects as the cause. For example,

iron would not rust if oxygen were kept from it. However, this is not the point,

because substances that are separated from the environment also change. For

example, these objects “age” by themselves:

• Bread in a plastic bag,

• Tinned food in an unopened can,

• Chemicals in a sealed bottle such as acrylic acid (propenoic acid) (Experiment

4.2).

The hardening is caused by polymerization, meaning the small acrylic acid

molecules combine to form long chains:

The transformation of pure substances such as the weathering of natron

(Na2CO3 � 10 H2O) and Glauber’s salt (Na2SO4 � 10 H2O) in ambient air where

the large colorless crystals become covered with a white powdery crust as they lose

water,

Experiment 4.1 Changes
in the world of substances:
(a) Rusted tin can,

(b) Dried-out bread,

(c) Embrittled rubber hose,

(d) Yellowed and brittle

pages of a book, (e) Quartz

sand from eroded granite,

(f) Petrified mud.

Experiment 4.2 Aging of
acrylic acid: Acrylic acid as
pure substance is a water-

clear liquid strongly

smelling of vinegar. If left to

stand alone in a completely

sealed container, it will

change by itself after some

time into a colorless and

odorless rigid glass.
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Na2CO3 � 10 H2O! Na2CO3 � 7 H2Oþ 3 H2O;

Na2SO4 � 10 H2O! Na2SO4 þ 10 H2O;

the slow transition of the almost colorless monoclinic β-sulfur into the yellow

rhombic α-sulfur, or that of the low-molecular white phosphorus into the high-

molecular red phosphorus,

Sjβ! Sjα;
Pjwhite! Pjred;

all show that it is not an interaction between reaction partners that is the motor for

the change of substances, but that the substances tend to transform by themselves.

This means that each and every individual substance has a “tendency to transform.”
This inherent tendency to transform is certainly not the same for all substances, and

it has no particular “goal.” One might say that all substances are “driven to

transform” to one extent or another. They use every opportunity that comes up to

follow this “drive,” or tendency. A somewhat casual but catchy way to express this

would be that they somehow want to “sneak off.” Most substances known to us only

survive over a longer period of time because many of the transformation processes

are inhibited, and not because the drive for them does not exist.

From the transition of the white into the red phosphorus mentioned above, it can

be concluded that the white type has the stronger tendency to transform and forces

the formation of the red type against its own tendency to transform. Similarly, we

can imagine that iron sulfide is formed because the starting substances iron and

sulfur together have a stronger tendency to transform than the product FeS. When

various metal powders (such as magnesium, zinc, iron, copper, and gold) react with

sulfur, the differences are very pronounced. For example, magnesium, when mixed

with sulfur and ignited, explodes violently. In contrast, the last metal powder, gold,

does not react with sulfur at all:

Here, it becomes immediately obvious that the suggested tendency to transform of

the various metal sulfides (compared to the elements from which they are formed) is

totally differently strong. On the basis of the violence of reaction, we arrive at the

following sequence:

MgS < ZnS < FeS < CuS < “AuS:”

Obviously, magnesium sulfide is the easiest to produce, meaning it has the weakest

tendency to transform. Gold sulfide, on the other hand, seems to have a relatively

strong tendency to transform. It is possible, however, to obtain various compounds

of gold and sulfur by indirect means, but they all tend to decompose into the
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elements involved. We can, therefore, confidently assume that AuS is not produced

because its tendency to transform exceeds that of Au + S combined.

We will now go more deeply into the meaning of tendency to transform and its

quantitative description with the help of the so-called chemical potential.

4.2 Basic Characteristics of the Chemical Potential

Before we attempt to quantify this new concept we will create an overview of what

it means, what it is good for, and how it can be dealt with. In order to do this, we

compile the most important characteristics of the chemical potential into a short

outline, a kind of “wanted poster,” which we will subsequently go into more deeply.

• The tendency of a substance

– To decompose or to react with other substances,

– To undergo a transition from one type of state to another,

– To redistribute in space

can be expressed by one and the same quantity—its chemical potential μ.
• The strength of this tendency, meaning the numerical value of μ, is not

unchangeable but

– Is determined by the nature of the substance,
– By its milieu,

but neither by the nature of reaction partners nor the resulting products.

• A reaction, transition, redistribution, etc., can only proceed spontaneously if the
tendency for the process is more pronounced in the initial state than in the final

state.

We can assume that any substance, let us call it B, has a more or less pronounced

tendency to transform. This means a tendency to decompose into its elementary

(or other) components, to rearrange itself into some isomer, B!B*, or to react
with other substances B0, B00, . . .,

Bþ B0 þ . . .! . . . :

Even less drastic transformations of substance B, such as changing the state of

aggregation, the crystalline structure, the degree of association, etc., which can be

symbolized for example as follows:

Bjα! Bjβ
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are driven by the same tendency to transform. This also holds for the tendency of a

substance to redistribute in space. This means its tendency to migrate to another

location or to move into a neighboring region:

Bjlocation 1! Bjlocation 2:

The chemical potential μ is a measure of the strength of this tendency. We write μB
or μ(B) to signify the potential of substance B. The greater the μ, the more active or

“bustling” the substance. The smaller the μ, the more passive or “phlegmatic” it is.

As was mentioned earlier, the strength of the inherent tendency to transform, and

with it the numerical value of μB, fundamentally depends upon the nature of the

substance. In this context, we see the nature of a substance being determined by its

chemical composition, characterized by its content formula, but also by its state of

aggregation, its crystalline structure, etc. Hence, liquid water and water vapor as

well as diamond and graphite will exhibit different chemical potentials under

otherwise identical conditions and therefore need to be treated as different sub-

stances. In addition, the strength of the tendency to transform also depends upon the

milieu in which the substance is located. By milieu we mean the totality of

parameters such as temperature T, pressure p, concentration c, the type of

solvent S, type and proportions of constituents of a mixture, etc., which are

necessary to clearly characterize the environment of B. In order to express these

relations, we may write

μB T; p; c; . . . ; S; . . .ð Þ or μ B; T; p; c; . . . ; S; . . .ð Þ:

Experiment 4.3 illustrates how a substance reacts to a changed milieu. In this case,

it is the change of solvent S. Obviously, iodine prefers ether as milieu compared to

water. The tendency to transform and thereby the chemical potential of iodine is

higher in the water than in the ether—under otherwise identical conditions. We will

discuss the influence of the milieu in more detail in the following chapters.

An important characteristic of a substance’s tendency to transform is that it is not
dependent upon the partner it reacts with or what products result. μ is a character-

istic of a single substance and not of a combination of substances. This reduces

Experiment 4.3 Iodine in
different milieu: Iodine
dissolved in water (left side)
separates out when it is

shaken with ether (right
side). The ether floats on top
of the specifically heavier,

now colorless layer of

water. The brown color of

the dissolved iodine allows

us to easily see where it is.
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dramatically the amount of data necessary because the number of possible combi-

nations is much, much larger than the number of individual substances itself.

4.3 Competition Between Substances

When a substance disappears, one or even several substances are produced from it,

or the substance reappears in another location. The produced substances, however,

also show a tendency to transform just like the reactants, so the direction in which a

certain process will run depends upon which side has the stronger tendency.

Therefore, chemical processes resemble a competition between the substances on

either side of the conversion formula.

An image commonly used for this competition is the relationship between things

on the right and left pans of an equal-arm balance scale (or seesaw) (Fig. 4.1). The

direction in which the scale tips depends solely upon the sum of the weights G on

each side of it. Even negative weights are allowed if the objects floating upward

(maybe balloons) are attached to the scale.

This behavior can also be expressed mathematically: The left side wins, i.e., the

objects B, B0, . . . on the left side of the balance scale or seasaw are successful

against the objects D, D0, . . . on the right side in their attempt to sink downward if

G Bð Þ þ G B0ð Þ þ . . . > G Dð Þ þ G D0ð Þ þ . . . :

Equilibrium is established when the sums of the weights on the left and right side of

the scale are just equal,

G Bð Þ þ G B0ð Þ þ . . . ¼ G Dð Þ þ G D0ð Þ þ . . . :

The statements made here for weights correspond completely to the role of chem-

ical potentials in transformations of substances. It makes no difference whether it is

a reaction between several substances or a transition of a substance from one state to

Fig. 4.1 Seasaw as model

for the interaction between

starting substances on the

one side and final products

on the other side during a

transformation, whereby the

weights of the objects

correspond to the chemical

potentials of the substances.
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another, or just a change of location. The direction in which such a process

progresses, for example, the reaction

Bþ B0 þ . . .! Dþ D0 þ . . . ;

depends solely upon the sums of the chemical potentials μ of all the substances on

either side. The substances on the left side prevail in their attempt to react if

μ Bð Þ þ μ B0ð Þ þ . . . > μ Dð Þ þ μ D0ð Þ þ . . . ;

(see e.g. Fig. 4.2). Equilibrium is established when the sum of the chemical

potentials on both sides is the same and therefore no particular direction preferred:

μ Bð Þ þ μ B0ð Þ þ . . . ¼ μ Dð Þ þ μ D0ð Þ þ . . . :

For example, a candle burns because the starting substances combined [in this case,

atmospheric oxygen and paraffin wax, formula �(CH2)] have a higher chemical

potential than the final products (in this case, carbon dioxide and water vapor):

3 μ O2ð Þ þ 2 μ CH2ð Þð Þ > 2 μ CO2ð Þ þ 2 μ H2Oð Þ:

Therefore, every feasible reaction may be viewed as representing a kind of balance

scale that enables us to compare potential values or their sums, respectively.

However, the measurement often fails because of inhibitions in the reactions; in

other words, the scale is “stuck.” In the case of a drop in the chemical potential from

the left to the right side, this means that in principle the process can proceed in this

direction; however, it does not mean that the process will actually run. Therefore,

this drop is a necessary but not sufficient condition for the reaction considered. This

is not really surprising. An apple tends to fall downward, but it will not fall as long

as it hangs from its stem. The coffee in a cup does not flow out over the table

although the tendency to do so is there. The porcelain walls of the cup inhibit it from

Fig. 4.2 Burning candle as

example of a reaction that

proceeds spontaneously.
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doing so. We do not even have to bore a hole in the cup for the barrier to be

overcome. A bent straw that acts as siphon is already enough. When candle wax and

air are put together, no fire occurs. The candle wick and flame work as a kind of

“siphon” which helps to overcome the inhibitions. Inhibitions are an important part

of our world. Without them, we would end up as carbon dioxide, water, nitrogen,

and ashes in the sea of oxygen in which we live.

If a transformation tends to run in one direction, this does not mean that the

opposite direction is impossible, it just does not happen spontaneously. By itself,

sand always trickles downward. A mole can shovel it upward, though, just as a

harsh desert wind can pile it up into high dunes, but these processes do not occur

spontaneously. Hydrogen and oxygen exhibit a strong tendency to react to form

water. The reverse process never runs by itself at room conditions, but can be forced

to do so in an electrolytic cell. Predicting substance transformations based upon

chemical potentials always presupposes that there are no inhibitions to the process

and that no “outside forces” are in play. We will gradually go into what this exactly

means and what we need to look out for.

The adjoining cartoon concludes this

section. Despite its anthropomorphic view-

point, it is useful as an image of the general

behavior of substances:

More active, more “bustling” substances

are transformed into more passive, more

“phlegmatic” substances. They migrate

from “busier” places (with a lot of “activity”)

to “quieter” places (with weak “activity”). In

short, matter aspires to a state of maximum

“laziness.”

4.4 Reference State and Values of Chemical Potentials

Reference Level Up to now, what we have been missing in order to make concrete

predictions are the μ values of the substances we have been dealing with. The

chemical potential can be assigned an absolute zero value, just as temperature can.

In principle, the absolute values could be used, but they are enormous. It would

mean that in order to work with the tiny differences in potentials common in

chemical and biological reactions, at least 11 digits would be necessary (the ratio

between the potential differences and the absolute values is around one to one

billion!). This alone would lead to numbers that are much too unwieldy, not to

mention that the absolute values are not known accurately enough for this to be

feasible.
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But there is a simple way out of this dilemma. The heights of mountains are not

referred to the geocenter but to the sea level (Fig. 4.3). Everyday temperatures are

not referred to absolute zero, but are given as Celsius temperatures based upon the

freezing point of water. (The zero point of Daniel Gabriel Fahrenheit’s original

scale was determined by placing the thermometer in brine, here a mixture of ice,

water, and ammonium chloride.)

It is similarly practical to choose a convenient level of reference for the values of

the chemical potential because differences of μ can be determined much more

precisely than absolute values. Moreover, because we only need to compare

potential values or their sums, it does not matter what the unit is at first. The μ
values could be expressed in various scales similarly to how temperature can be

expressed (Celsius, Fahrenheit, Kelvin, Reaumur, etc.). We will use the SI coherent

unit “Gibbs,” abbreviated to G. This name has been proposed by the German

chemist Egon Wiberg (Wiberg E (1972) Die chemische Affinität. De Gruyter,

Berlin, p 164) to honor Josiah Willard Gibbs (1839–1903) who first introduced

the concept of chemical potential. For use in chemistry, the unit kilo-Gibbs (kG),

which corresponds to 1,000 Gibbs, is even handier.

Elements Used for “Zero Levels” Next, we will turn to the question of what

reference states are suitable for measuring potential differences. It is useful to refer

to the conventional basic substances in chemistry, the elements, as long as we limit

the transformations of substances to chemical reactions in the broadest sense and

exclude nuclear reactions. The values of the chemical potentials of substances are

related to the chemical potentials of the elements they are composed of and can be

determined experimentally by means of chemical reactions. Because it is not

possible to transform one element into another by chemical means, the values of

the various elements themselves are not related to each other. This means that in

principle one could arbitrarily determine the reference level for each basic sub-

stance, i.e., for every element. Because in the case of chemical reactions the

elements are preserved, i.e., an equal number of chemical symbols appears on

Fig. 4.3 Determining

geographical elevations as

an example for the selection

of an appropriate reference

level.
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both sides of a conversion formula, this has no effect upon the potential differences

that are being observed and measured. Let us take a closer look at the synthesis of

ammonia from nitrogen and hydrogen as an example:

´
´´

´

N appears two times on the left as well as on the right side of the conversion

formula; H, however, appears six times. Therefore, if the chemical potential of a

substance is increased by a fixed, although arbitrary summand (say 1,000 kG, as

shown above in the third line) for every H appearing in its content formula, this

added value cancels when we compute the potential difference and we end up with

the same result as in the second line above. The same holds for nitrogen. This means

that the reference level for any element could in principle be chosen arbitrarily as

mentioned earlier. For the sake of simplicity, the value 0 is assigned to the chemical

potential of all elements.

Additionally, one has to consider the following for the specification of a refer-

ence state: The state of an element depends upon its temperature and pressure. It

also depends upon whether, for instance, hydrogen appears in atomic or molecular

form, carbon in the form of graphite or diamond, or oxygen as O, O2, or O3, etc. As

an easily reproducible reference state, we will choose the state of the most stable

modification of a particular element in its “pure form” and in its natural isotope

composition at standard conditions (meaning 298 K and 100 kPa, as discussed in

Chap. 3). For example, in the case of carbon graphite is used as reference state. An

exception to this is phosphorus where the more accessible white (in some tables it is

also the red) modification is preferred to the more stable, but very difficult to

produce, black modification. In general, we will use the symbol μ� to designate μ
values at standard conditions. Thus, it follows that (if E represents any arbitrary

element in its most stable modification):

μ� Eð Þ ¼ 0: ð4:1Þ

For elements E such as H, N, O, Cl, etc., which, at standard conditions, usually

appear as diatomic gases, 1 mol E simply means 1=2 mol E2 and μ(E) correspond-
ingly 1=2 � μ� E2ð Þ.

Just as the average sea level serves as the zero level for geographical altitude

readings, the state of matter where the substances are decomposed into their

elements at standard conditions represents the “zero level” of the potential scale.

Analogously, Celsius temperature readings usually used in everyday life can

replace those of absolute temperature if melting ice is chosen as reference state.

Substances of All Kinds The chemical potential μ of an arbitrary pure substance

itself depends upon temperature and pressure (and possibly other parameters),

μ(T, p, . . .). Therefore, it is usual in chemistry to tabulate the potentials of
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substances (referred to the elements that form them) in the form of standard values
μ�, i.e., for 298 K and 100 kPa. In Table 4.1 we find such standard values for some

common substances.

Note that the potential value 0 for iron does not mean that iron has no “tendency

to transform,” but only that we have used its potential as the zero level to base the

values of the potential of other iron-containing substances upon.

The selection of substances in the table shows that not only well-defined

chemicals are referred to when speaking about chemical potential, but everyday

substances as well. In the case of marble, certain impurities are responsible for its

colors, but these substances have almost no effect upon the chemical potential of its

main component, CaCO3. However, in order to specify the potential μ of a sub-

stance, an appropriate content formula has to be assigned to it which shows how it is

composed of the elements, and which would then be binding for all calculations.

This is why this formula must be present in such a table. But the chemical potential

of a pure substance also depends on its state of aggregation, its crystal structure, etc.

For example, liquid water and water vapor exhibit different chemical potentials at

the same temperature and pressure; the same is valid for example for diamond and

graphite. In order to arrive at unambiguous specifications, we once again call

attention to the relevant additions js (for solid), jl (for liquid), and jg (for gaseous)

to the symbol of a substance (cp. Sect. 1.6); modifications can be characterized by

Greek letters jα, jβ, . . . or the full name such as jgraphite, jdiamond, . . . etc.

Table 4.1 Chemical

potentials of several selected

substances at standard

conditions (298 K, 100 kPa,

dissolved substances at

1 kmol m�3).

Substance Formula μ� kGð Þ
Pure substances

Iron Fe|s 0

Graphite C|graphite 0

Diamond C|diamond +3

Water H2O|l �237
Water vapor H2O|g �229
Table salt NaCl|s �384
Quartz SiO2|s �856
Marble CaCO3|s �1,129
Cane sugar C12H22O11|s �1,558
Paraffin wax �(CH2)|s +4

Benzene C6H6|l +125

Acetylene (Ethyne) C2H2|g +210

In water

Cane sugar C12H22O11|w �1,565
Ammonia NH3|w �27
Hydrogen(I) H+|w 0

Calcium(II) Ca2+|w �554
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Because our immediate goal here is a first basic knowledge of the chemical

potential, we will for the time being consider the μ values of substances as given,

just as we would consult a table when we are interested in mass density or electric

conductivity of a substance. Some measuring methods will be discussed in the

concluding Sects. 4.7 and 4.8.

Dissolved Substances The potential of a substance B changes if it is brought into

another milieu for example by dissolving it. Depending on the type of solvent S in

question we obtain different values for the chemical potential. This type of state can

be characterized in general by the addition jd (for dissolved) or more precisely by

jS—if one would like to specify also the type of solvent. In the by far most common

case, substances dissolved in water, we use the symbol jw. But, what matters in this

context is not only the type of the solvent but also the concentration of B. Therefore,

the concentration c of a dissolved substance, for which the tabulated value will be

valid, must be specified in addition to p and T. The usual reference value is

1 kmol m�3 (¼ 1 mol L�1). There exist some peculiarities concerning the determi-

nation of these standard values (such as in the case of gases), but we will discuss

them in Sect. 6.2.

We can summarize:

μ� ¼ μ T�; p�ð Þ for pure substances T� ¼ 298K

μ� � μ T�; p�; c�ð Þ for dissolved substances p� ¼ 100kPa
c� ¼ 1kmolm�3

T�, p�, c� indicate standard temperature, standard pressure, and standard
concentration.

Zero-Order Approximation As long as the temperature does not vary by more

than �10 K, and pressure and concentration do not vary more than a power of ten,

the changes of potential of substances of low-molecular mass remain about �6 kG

in general. Therefore, we can consider the μ values to be constant, at least very

roughly. This precision is often sufficient for us so that we can use the μ� values

found in tables. It is unnecessary to worry about temperature, pressure, and con-

centration dependencies of the potentials at the moment. We will only start dealing

in more detail with these influences in the following chapters. The approximation

used here is a kind of zero-order approximation.

Charged Substances Just like a substance, an assembly of ions can be assigned a

chemical potential. When ions of a certain type are decomposed into their elements,

there is a positive or negative amount ne of electrons left over along with the neutral
elements, for example,

CO2�
3 ! Cþ 3=2 O2 þ 2 e�:

The electrons appear here as a kind of additional element (cf. Sect. 1.6) that, like all

elements, can be assigned the value μ� ¼ 0 in a certain reference state. However,
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electrons in a free state play no role in chemistry. Therefore, a value for μ� e�ð Þ has
been arbitrarily chosen so that the most commonly appearing type of ion H+ (in an

aqueous solution and at standard conditions) receives the μ� value of zero:

μ� Hþjwð Þ ¼ 0: ð4:2Þ

At first, this seems surprising because we know that the chemical potential of an

element at standard conditions is zero, i.e., μ� ¼ 0. This is of course also valid for

hydrogen, μ� H2jgð Þ ¼ 0. That is why we expect that other states of hydrogen

would show divergent μ� values. But let us have a look at the system hydrogen

gas/hydrogen ion, which is capable of providing electrons without major inhibitions

under suitable conditions (the symbol :¼ should be read as “equal by definition”):

H2jg ! 2 Hþjwþ 2 e�

with

μ� H2jgð Þ|fflfflfflfflffl{zfflfflfflfflffl}
:¼ 0

¼ 2 μ� Hþjwð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

þ2 μ� e�ð Þ|fflfflffl{zfflfflffl}
:¼ 0

:

When H2 and H+ are present at standard conditions and equilibrium has been

established, the chemical potential of the electrons, μ� e�ð Þ, is supposed to be

zero. (The electron potential μ(e�), abbreviated μe, will be discussed in more detail

in Chap. 22.) Because μ� H2jgð Þ disappears by definition, it follows necessarily that
in a state of equilibrium, μ� Hþjwð Þ has to be zero as well.

4.5 Sign of the Chemical Potential

If we use values of chemical potentials in the following, they are valid for room

conditions and for dissolved substances of concentrations of 1 kmol m�3

(¼ 1 mol L�1) where water is the usual solvent. Elements in their usual, stable

state receive, as agreed, the value μ� ¼ 0 (see also Table 4.3 at the end of this

chapter or Sect. A.2.1 in the Appendix). This is for example valid for molecular

hydrogen μ� H2jgð Þ ¼ 0, while atomic hydrogen has a rather high positive potential

μ� Hjgð Þ ¼ þ203kG. This means that its tendency to transform into H2 is very

strong.

A look at Table 4.3 and Sect. A.2.1 in the Appendix shows something remark-

able. Most of the potential values are negative. A substance with negative chemical

potential can be produced spontaneously from the elements because it has a weaker

tendency to transform than the elements it is produced from. However, this also

means that most substances do not tend to decompose into their elements but, in
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contrast, tend to be produced from them. Therefore, most of the substances we deal

with are stable; they do not decompose.

If, on the other hand, the potential is positive, the substance will tend to

decompose into its elements. Such a substance is unstable, thus eluding preparation
or is metastable at best, i.e., in principle a spontaneous decomposition is possible,

but there exists an inhibition. If the inhibition can be overcome, e.g., by supplying

energy or by making use of a catalyst, it is very common for the substance to react

violently, especially when the value of μ is very large.

This behavior can be demonstrated quite impressively by means of the attractive

orange crystals of tetrasulfur tetranitride S4N4 (μ� � þ500 kG) (Experiment 4.4).

Further examples would be heavy metal azides such as lead azide Pb(N3)2 (used

in detonators to initiate secondary explosives) or silver azide AgN3. Furthermore,

the easily produced black nitrogen triiodide NI3 (μ� � þ300 kG) tends to decom-

pose into its elements as well (Experiment 4.5).

However, a positive μ does not always mean that the substance must be explo-

sive. For example, benzene remains rather stable in spite of itsμ� value of +125 kG.
As discussed in Sect. 4.3, a positive μ value is a necessary but not sufficient

condition for a spontaneous decomposition of a substance into its elements to

take place. Therefore, we cannot simply assume that just because there is a

possibility of transformation, it will take place within a certain span of time, be it

years, millennia, or millions of years.

Experiment 4.4 Decomposition
of S4N4: A small amount of

tetrasulfur tetranitride explodes

(like a cap for use in toy guns)

when hit lightly with a hammer.

Experiment 4.5 Decomposition
of NI3: Nitrogen triiodide

decomposes in a dry state if

touched by a feather or irradiated

by a flash of light thereby

producing a sharp explosive sound.

The produced iodine can be easily

identified by the cloud of violet

smoke.
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Comparing analogous substances shows best how the level of the chemical

potential affects their properties. Here are three examples:

CO2|g NO2|g ClO2|g

μ� kGð Þ �394 +52 +123

The gas CO2 with its strongly negative μ� value is stable and spontaneously

produced from carbon and oxygen, i.e., carbon is “combustible.” NO2 with positive

μ� is not formed spontaneously from N2 and O2, but is so stable that it is not

dangerous to handle. Finally, ClO2 has an even higher chemical potential and is

extremely explosive.

A similar consideration can be used for solid oxides:

Al2O3|s Fe2O3|s Au2O3|s

μ� kGð Þ �1,582 �741 +78

Aluminum and iron combine with oxygen to form their stable oxides, while solid

Au2O3 must be handled carefully so that no oxygen separates from it.

The category of metal sulfides also contains similarly composed substances that

are appropriate for comparison:

MgSjs ZnSjs FeSjs CuSjs “AuS”js
μ� kGð Þ �344 �199 �102 �53 > 0

The sequence deduced in Sect. 4.1 from the violence of the reactions of forma-

tion actually runs parallel with the values of the chemical potentials. However, be

careful: A vague characteristic such as the violence of reaction that is dependent

upon different factors can only be considered evidence under comparable

conditions.

4.6 Applications in Chemistry and Concept of Chemical

Drive

Concept of Chemical Drive The most important application for the chemical

potential μ is that it enables us to predict whether a transformation of substances

can happen spontaneously or not. As we have seen, a chemical reaction

Bþ B0 þ . . .! Dþ D0 þ . . .

is possible when the following is valid:

μ Bð Þ þ μ B0ð Þ þ . . . > μ Dð Þ þ μ D0ð Þ þ . . . :
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If we wish to find out if a previously unknown process can run spontaneously, it is

enough to find the corresponding μ values in appropriate tables and then to compare

the potentials on the right and left side of the conversion formula. Spontaneously,

processes only run “downhill,” meaning from left to right, when the sum of the μ
values on the left is greater than on the right.

The condition for a spontaneous process results in

μ Bð Þ þ μ B0ð Þ þ . . .� μ Dð Þ � μ D0ð Þ � . . . > 0

after rearrangement of the formula above. The summation of the variables can be

presented in a shorter form by using the sigma sign, ∑. We summarize:

reactants! products is spontaneously possible if
X
initial

μi �
X
final

μ j > 0

That means that how a reaction runs has less to do with the levels of the potentials

themselves than with the potential difference between the substances in their initial

and final state. Therefore, it is convenient to introduce this difference as an

independent quantity. We will call the quantity

A ¼
X
initial

μi �
X
final

μ j ð4:3Þ

the chemical drive A of the process (reaction, phase transition, redistribution, etc.),

in short, the drive, when it is clear that no nonchemical influences are participating.

The unit for drive is “Gibbs,” as can be easily seen in the above definition.

Internationally, the quantity A is usually called affinity. The origin of this name

reaches back into antiquity. However, it is, unfortunately, a bad indicator of the

characteristic it describes (see below). The symbol recommended by IUPAC

(International Union of Pure and Applied Chemistry) is A. So as to avoid confusion
with other quantities labeled by the letter A, such as area, we shall use another font

(like A).
The name chemical tension for A would be appropriate as well when taking into

consideration that the quantities electric potential φ and electric tension

U (voltage),

U ¼ φinitial � φfinal;

are similarly related both conceptually and formally as chemical potential and

drive. U describes the (electric) drive for a charge transfer between two points.

The simplest case of this would be between the input and output of a two-terminal

electronic component (lightbulb, resistor, diode, etc.).

The quantity A has a centuries-old history under the name affinity. The first table
with values of this quantity was compiled by Louis-Bernard Guyton de Morveau in

1786. This was hundred years before the concept of chemical potential was created.
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At that time, people had very different ideas about the causes of substance trans-

formations. The closer the “relationship (affinity)” of two substances, the stronger the

driving force for them to bond. This was the main reason for using this name.

Substance A might displace substance B from a compound BD, if it had a closer

relationship or affinity to D than B. It might also occur that if A was already loosely

bound to a partner C, it would then be free for a new partnership: AC+BD!AD

+BC. The German writer and polymath Johann Wolfgang von Goethe was inspired

by this idea in his novel “The Elective Affinities” of 1809 in which he transferred this

concept to human relationships.

A positive drive, A > 0, “drives” a transformation as long as there are reactants

available. A negative, A < 0, leads to a reaction in the opposite direction of the

reaction arrow. A ¼ 0 means no drive, therefore, a standstill where equilibrium is

established. Here are some examples:

Decomposition of a Substance into Its Elements We have already encountered

one type of reaction, namely the decomposition of a compound AαBβCγ. . . into the

elements that make it up, A, B, C, . . .:

AαBβCγ . . .! vAAþ vBBþ vCCþ . . . ;

in which case the conversion number vA is numerically equal to α, vB to β, etc. For
the strength of the tendency to decompose—the “drive to decompose”—we then

obtain:

A ¼ μAαBβCγ ... � vAμA þ vBμB þ vCμC þ . . .½ �:

Having arbitrarily set the potentials of the elements (in their most stable modifica-

tion) under standard conditions equal to zero the expression in brackets disappears

and the drive to decompose corresponds to the chemical potential of the substance:

A ¼ μAαBβCγ ... � vA � μ�A þ vB � μ�B þ vC � μ�C þ . . .
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

¼ μAαBβCγ ...:

These circumstances were already anticipated and taken into consideration by our

discussion in Sect. 4.5. As a concrete example, we will consider the decomposition

of ozone O3. This tends to transform into oxygen gas O2, which we can see easily by

comparing the potentials:

In this case A� refers to the drive to decompose under standard conditions. The

decomposition process is so slow, however, that ozone can be technically used

despite its limited stability. We just have to produce it fast enough to compensate

for its decomposition.
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Here is an anomaly that one can easily stumble over: We obtain different values

for the drive to decompose of ozone depending upon which formula is being used to

describe the process:

A� 2 O3 ! 3 O2ð Þ ¼ þ326 kG;

A� O3 ! 3=2 O2ð Þ ¼ þ163 kG:

Basically, only the sign of A matters, and it is the same in both cases. Still it seems

strange that there appear to be different values of the drive for the same process.

The first process, however, differs from the second one in the same way that a

harnessed team of two horses differs from just one harnessed animal. We expect

that the team will be twice as strong as the single one. This is also true for reactions.

Just as with the ξ values (Sect. 1.7), it is always important to indicate the conversion

formulas that one is referring to.

Transitions Another simple case is the transition of one substance into another

one:

B!D is spontaneously possible if μB> μD, i.e., A > 0.

A suitable substance for an example is mercury iodide HgI2, which appears in

beautiful red and yellow modifications with somewhat different chemical

potentials:

Because of the yellow modification’s higher (not as strongly negative) tendency to

transform, it must change into the red form. That this is actually the case is shown

by Experiment 4.6.

Phase transitions such as melting and vaporization of substances can be treated

in the same way. Such processes can also be formulated like reactions. An example

of this is melting of ice:

We have used the tabulated values valid for a temperature of 298 K or 25 �C.
Therefore, a positive drive can be expected that allows ice to melt under these

conditions. For given conditions, the phase with the lowest chemical potential is

stable.

Therefore, diamond should undergo a transition into graphite because it has a

higher chemical potential:
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However, this does not happen at room temperature because the process is much too

inhibited. The reason is that for the carbon atoms to form a graphite lattice, the very

strong bonds of the carbon atoms in the diamond must be broken and this is just

about impossible at room temperature. In this context let us once again recall that a

potential drop from the left to the right side and therewith a positive value of the

chemical drive A merely tells us that the process can proceed spontaneously in this

direction in principle, but it does not signify that the process will actually run.

Changes in the states of aggregation, gas ! liquid ! solid, take place largely

without inhibition and therefore almost immediately due to a high mobility of the

individual particles in participating gases or liquids, as soon as the potential

gradient has the necessary sign for a spontaneous process. On the other hand, an

unstable state in a solid body can be “frozen” and stay like that for thousands or

even millions of years.

Reactions of Substances in General When several substances participate in a

reaction, the decision about whether or not a process can take place is not more

difficult to make.

We can take the reaction of marble with hydrochloric acid, an aqueous solution

of hydrogen chloride, HC1, as first example (Experiment 4.7).

Therefore, we conclude that the reaction drive has to be positive. Indeed, we

arrive at this result if we calculate the value of the drive by using the tabulated

potential values (assuming an acid concentration of 1 kmol m�3). In doing so we

have to consider that HC1 is a strong acid and is entirely dissociated into hydrogen

and chloride ions, H+ and Cl�. The H+ ions are responsible for the reaction, while

the Cl� ions remain more or less inactive.

Another example is the development of hydrogen chloride gas when concentrated

sulfuric acid reacts with table salt:

Experiment 4.6 Change of modification of
HgI2: Within an hour, a spoonful of yellow HgI2
powder (produced by heating the red form in an

oil bath or drying oven to over 125 �C) becomes

spotted with red. These spots get larger and grow

together to become uniformly red (right, in the

figure). The process takes place within seconds

when the poorly soluble HgI2, precipitated out

of a Hg2+ solution by addition of I�, is used.
At first, the precipitate is sallow yellow, which

immediately turns to orange and finally to deep

red (left, in the figure).
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For lack of better criteria, it is common to explain the fact that hydrogen chloride

can be obtained from table salt and concentrated sulfuric acid by use of a rule

that states that a less volatile acid displaces a higher volatile acid from its salts.

In the case of dissolving marble in hydrochloric acid, also a stronger acid displaces

a weaker one. These rules are often satisfied, but they are less than reliable.

Experiment 4.8 shows an example that contradicts both rules:

In this case, the weak, volatile acid hydrogen sulfide displaces the strong, low

volatile sulfuric acid from its salt.

It is also easy to predict the production of a low soluble precipitate from its ionic

components when two solutions are combined:

Experiment 4.7

Dissolution of marble in
hydrochloric acid: If a few
pieces of marble are put in

hydrochloric acid, a strong

effervescence of carbon

dioxide can be observed.

Experiment 4.8

Blackening of CuSO4 by
H2S: If gaseous hydrogen
sulfide is made to flow over

anhydrous, white copper

sulfate, black copper sulfide

is produced. This let us

observe the reaction easily.
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Lead iodide must precipitate out of an aqueous solution containing Pb2+ and I�

ions. Many other precipitation reactions can be predicted according to the same

pattern. When solutions containing Pb2+, Zn2+, or Ba2+ are mixed with those that

contain CO2�
3 , S2�, or I� ions, precipitation can be expected (based on calculations

similar to that for lead iodide) only in those instances that are marked with a plus

sign in Table 4.2.

To save some calculation, the chemical potential of the possible precipitates and

the combined potential of the ions forming them are included in Table 4.3 at the end

of the chapter. The predicted result can be easily proven in a demonstration

experiment, for example, by using S2– (Experiment 4.9). Reactions with CO2�
3 or

I� can be carried out correspondingly. Because ionic reactions in particular are

hardly inhibited in solutions and therefore usually proceed quickly if the potential

gradient has the correct sign, they are especially well suited for comparing pre-

dictions with experimental results.

As discussed, a reaction always runs in the direction of a potential drop. This

might give the impression that substances with a positive potential cannot ever be

produced by normal reactions of stable substances (with negative μ). The produc-

tion of ethyne (acetylene) with a high positive chemical potential from calcium

Table 4.2 Prediction of

precipitation reactions.
CO2�

3 S2� 2I�

Pb2+ + + +

Zn2+ + + �
Ba2+ + � �

Experiment 4.9 Precipitation of
sulfides: When a solution

containing S2� ions is mixed with

solutions that contain Pb2+, Zn2+,

or Ba2+ ions, precipitation only

takes place in the first two cases.
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carbide and water, both substances with a negative potential, shows that this is not

the case (Experiment 4.10).

The very low chemical potential of calcium hydroxide on the product side makes

sure that the chemical driveA is generally positive, even though μ(ethyne) is> 0. In

earlier times, the gas extracted from this reaction was used to power miners’ lamps

and bicycle lights because of its bright flame. It is still used today for welding

because of its high combustion temperature.

Dissolution Processes Dissolving substances in a solvent can also be described

with the help of the concept of potentials. Whether a substance dissolves easily or

not in water, alcohol, benzene, etc., is a result of the difference of its chemical

potential in the pure and dissolved state. A first impression of the dissolution

behavior of substances is all that will be given in this section. Chapter 6 will discuss

how solubility can actually be calculated or estimated.

For dissolving for example cane sugar in water (more exactly: in a solution

which already contains 1 kmol m�3 of sugar, which is about 340 g per liter!) we

obtain:

A� > 0 means that the sugar dissolves by itself even in such a concentrated solution.

Sugar dissolves easily, as we know from using it every day (Experiment 4.11).

Table salt also dissolves easily in water, as we know. The reason for this is that in

an aqueous medium (even at a concentration of 1 kmol m�3), the chemical potential

Experiment 4.10 Carbide
lamp: When water is

dripped onto some lumps of

calcium carbide a vigorous

generation of gas can be

observed. The produced

gaseous ethyne burns with a

bright and sooty flame.
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of the Na+ and Cl� ions together is noticeably lower than when it is a salt in

solid form.

For contrast, let us consider the dissolution behavior of iodine.

The chemical drive is strongly negative so the process can only run backward

spontaneously. Solid iodine would precipitate from a solution with a concentration

of 1 kmol m�3. However, this does not mean that iodine is not at all soluble in

water. Increasing the dilution decreases the potential of iodine in water so that the

drive can become positive when the dilution is high enough. More about this in

Chap. 6.

Even the dissolution behavior of gases can be easily described in this way. For

our first example, we choose ammonia as the gas and water as the solvent:

Consequently, ammonia is very easily dissolved in water. An impressive way of

showing this excellent solubility is with a so-called fountain experiment (Experi-

ment 4.12).

The situation is different with carbon dioxide, which is much less soluble in

water.

Experiment 4.11 Dissolution of a
sugar cube: The process becomes

noticeable by the shrinking of the

sugar cube in a glass of tea even when

it is not touched. An even more

impressive version of this process is

stacking sugar cubes into a tower on a

shallow plate and then pouring some

water colored with a few drops of food

dye onto the plate. The water

immediately begins to move up the

tower and make it collapse after a short

while.
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Therefore, it tends to bubble out of an aqueous solution (Experiment 4.13).

Ammonia and carbon dioxide are both very voluminous in their gaseous states,

so their appearance or disappearance in dissolving or escaping is very noticeable.

Potential Diagrams Rather than merely comparing numerical values we gain an

even clearer picture of the process of substance transformations if we enter the μ�

values into a diagram that charts the potentials, a so-called potential diagram. Such
a diagram lets us see the drop in the potential that “drives” the process particularly

well if in each case we add up the values of the chemical potentials μ� of the

reactants and products. Let us take a closer look at the reaction of copper sulfate

with hydrogen sulfide as an example (Fig. 4.4).

Up until now, we have considered the chemical potential in the roughest (zero-

order) approximation as a constant. In doing so, we have neglected the dependen-

cies of temperature, pressure, concentration, etc. We will deal with these influences

in the next chapters and discuss the consequences for the behavior of substances.

But for now we will discuss how the tendency of substances to transform can be

quantified.

Experiment 4.12 Ammonia fountain: NH3

gas dissolves so readily in water that just a

few drops are enough to decrease the pressure

in the flask filled with gas so drastically that

more water is drawn upward into it in a strong

jet. If a few drops of the acid–base indicator

phenolphthalein are added to the water, the

solution turns pink just as soon as it enters the

flask (more in Chap. 7).

Experiment 4.13 Effervescence
of carbon dioxide: Carbonated
liquids such as champagne or

mineral water are filled into bottles

under excess pressure. When the

pressure is reduced such a liquid

releases carbon dioxide bubbles.
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4.7 Direct Measurement of Chemical Drive

The usual methods do not measure the chemical potentials of substances them-

selves, but only the difference between the sums of the potentials of the initial

substances and the final products, i.e., the drives A ¼P μinitial �
P

μfinal of

chemical transformations. In other words, A is the basic quantity from which we

derive the chemical potential μ. This is also true for electric circuits where only

the difference of electric potentials φ between two points, i.e., the voltage

U¼φinitial�φfinal, can be measured, and not the potentials themselves. If an

arbitrary zero point is selected, the potentials can be derived.

The chemical drive A can be measured both directly and indirectly just as other

quantities can. However, the direct method has the advantage of not being depen-

dent upon other physical quantities. This means that the meaning of the quantity A
can be comprehended directly. A disadvantage is that some reference standard, a

well-reproducible process that represents the unit AI of the drive, must be chosen.

Reference standards (etalons) for the units of length and mass are, for example, the

original meter and original kilogram made of platinum or a platinum alloy which

are kept in Paris. Values of chemical drives initially measured as multiples of AI

must then be converted to standard units.

Data in a SI coherent unit are desirable. G (Gibbs) is an example which has

already been presented here. There is a trick that can be used so that preliminary

values do not have to be remembered. We do not assign a value of 1 to the drive AI

of the process which has been chosen as the unit of the chemical drive. Rather, we

take a value which comes as close as possible to the value in Gibbs. For instance,

Fig. 4.4 Potential diagram for the reaction CuSO4 þ H2S! H2SO4 þ CuS under standard

conditions: (a) Levels of the potential for the substances involved, (b) Adding of the values of

the potential in the initial and the final state of reaction.
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the temperature unit K (Kelvin) has been defined in this way and the temperature

span of 1 K as closely approximated to the older unit 1 �C as possible. In this case,

the temperature of a “triple point cell” (a cell where liquid water, water vapor, and

solid ice are coexisting) is given the exact value T¼ 273.16K.

The cell in Fig. 4.5 represents a fixed value of chemical drive just as the original

meter and the original kilogram in Paris represent fixed length and mass values.

This example shows the solidification of supercooled heavy water (freezing point

276.97 K),

D2Ojl! D2Ojs;
which is embedded in airless light water and whose temperature is brought to

273.16 K. The transformation happens spontaneously if the D2O vapor is allowed

to move from the container on the left to the one on the right. Expressed in SI

coherent units, the drive is

AI ¼ 84 G:

As we have already seen in the example of weight (Sect. 1.3), there are basically

three agreements necessary for metricization. These are agreements about

(a) Sign,

(b) Sum,

(c) Unit

of the quantity A which serves as the measure of the drive of a chemical transfor-

mation. We have just discussed how to introduce a unit (point c) in detail. Quite a

bit was also said about the sign (point a) in Sect. 4.5: A process that runs forward

spontaneously receives a positive value of drive A > 0, one that tends to run

Fig. 4.5 Cell representing a

fixed value of chemical

drive A.
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backward against the direction of the reaction arrow, receives a negative value

A < 0, and a process that does neither is in equilibrium and has the value A ¼ 0.

Now we need only think about creating sums (point b). Two or more trans-

formations with the drivesA,A0,A00 . . . are coupled to each other—it does not matter

how—so that they have to take place together. We make the agreement that the

driveAtotal of the entire process, i.e., of the sequence of the coupled processes, is the

sum of the drives of these processes:

Atotal ¼ A þ A0 þ A00 þ . . . :

There exist a number of methods for achieving a coupling of two or more chemical

processes. Here are some of them:

(a) Chemically through shared intermediate substances,

special case: enzymatically through enzyme substrate complexes,

(b) Electrically through electrons as the intermediate substance,

(c) Mechanically through cylinders, pistons, gears, etc.

Chemical coupling is the most common kind of coupling. Almost all reactions

are made up of such coupled sub-steps. A strict synchronization and a close

coupling are forced when, under the chosen experimental conditions, the interme-
diate substance Z no longer freely appears in noticeable quantities, i.e., just as Z is

formed it is consumed by the next reaction:

Both processes can only take place simultaneously or they have to rest simulta-

neously, i.e., the substance Z couples them rigidly like wheels in a clock or a gear.

The short-lived intermediate substances are usually not noticed, so we can only

guess what they might be. They can be quite exotic and we should not necessarily

give them the status of proper substances. A simple example of a sequence of

chemically coupled reactions for which the intermediate substances are well known

is the precipitation of limestone from lime water that occurs when we blow exhaled

air in it that contains carbon dioxide. In the process, the first two reactions are

coupled by dissolved CO2, the next by HCO�3 , and the last by CO2�
3 .
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Enzymatic coupling is an important special case of chemical coupling. This

process has been developed to a high degree of perfection in biochemical reactions.

For example, the innumerable reactions taking place in living cells are connected in

this way which leads to the metabolism driving all other processes. Thereby

reactions are interlocked like the wheels of a clock so that one transformation can

drive many others.

Unfortunately, it is difficult to imitate the procedure with chemical equipment,

and laboratory chemistry does not offer much room for systematic interlocking of

various reactions. The coupling of a reaction with the chosen unit reaction required

for measuring a drive is fundamentally possible but very difficult to realize with

chemical methods.

Electrical coupling which makes use of reversible galvanic cells presents a much

more flexible example. Theoretically, any chemical transformation can be used to

transport electric charge from one terminal to another in a galvanic cell. After all,

practically all substances contain electrons and therefore allow for dividing each

transformation into a partial process which supplies electrons and another which

consumes electrons. This can be accomplished in many different ways.

Let us select a general reaction

Bþ C! Dþ E:

Theoretically, we can divide the reaction into two spatially separated partial

processes where a sufficiently mobile ion B+ is to act as the shared reaction partner.

So as to keep the electrons from migrating along with the B+ ions, we place a wall

between them that is permeable only for ions. Gauze electrodes on both sides of the

wall which will not hinder the migration of B+ are used for the conduction of the

electrons. In the simplest case, the wall is solid and the dissolved substances are

located in a suitable trough (Fig. 4.6).

In order for substance B to go from left to right, it must be stripped of its surplus

electrons,

B! Bþ þ e�;

which accumulate on the electrode on the left, while they are in short supply on the

one on the right because they are being consumed there,
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e� þ Bþ þ C! Dþ E:

As a result, an electric “tension,” a voltage, is developed between the electrodes.

The experimental arrangement thus represents nothing but a galvanic cell in which

the entire reaction can only proceed when the electrons are allowed to flow from the

cell’s terminal on the left to the one on the right. Chapter 23 will go more deeply

into how such cells are constructed.

Ideally, transport of charge and chemical transformation are closely coupled. By

connecting two or more such cells in series, the reactions in the cells are coupled so

that they only run forward or backward as a unit. Their drives add up. For

simplicity’s sake, it is assumed that the reactions are formulated so that the

conversion number of electrons is ve¼ 1. When the terminals of a cell in such a

series connection are switched, the drive of this cell is given a negative sign—like a

weight on the opposite side of a scale.

It is also possible to couple reactions mechanically. However, this method

succeeds only when conducted as a thought experiment and therefore we will not

discuss it any further here.

Drive A of a transformation can be measured by the same procedure that we

explained when discussing weights. All we need to do is couple m specimens of the

reaction to be measured inversely to as many specimens n of the unit reaction (or a

reaction with a known drive) required to achieve equilibrium. In other words, the

drive of the entire process is made to disappear:

Atotal ¼ m � A þ n � AI ¼ 0 or A ¼ � n=mð Þ � AI: ð4:4Þ

By applying this method it is in principle possible to measure the quantityAwith as

much precision as we desire. We can illustrate the procedure with the example of

oppositely coupled vehicles (Fig. 4.7a). Like those vehicles, it is possible to

inversely couple m galvanic cells which represent a particular reaction with

Fig. 4.6 Coupling of two

reactions that are spatially

separated by electrons that

serve as shared reaction

partner.
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unknownA to n cells based on a reaction with known drive such as the unit reaction
(AI) so that equilibrium is established and the electric current in the circuit is zero

(Fig. 4.7b). As mentioned earlier, we achieve the inverse coupling through reverse

poling, i.e., by interchanging the positive and the negative terminals.

The procedure can be simplified considerably. For example, it is possible to

calibrate a sufficiently sensitive highly resistive voltmeter directly in the unitAI. For

this purpose one merely needs to connect the instrument to the two open terminals

of various cell chains which consist of an increasing number of “unit cells.” The

pointer deflections are marked and in this way we construct a scale suitable for the

measurement of unknown A values. The procedure is similar to the calibration of a

spring balance by utilizing a number of different weights or even to the calibration

of the ice calorimeter directly in entropy units (Sect. 3.7).

On the chosen scale, the chemical potential μ is nothing else than the drive of a

substance to decompose into its elements. Therefore, μ can be measured using

analogous methods if the reaction is chosen suitably.

In addition to the directmethods for determining chemical drives and potentials,

respectively, there are numerous indirect methods that are more sophisticated and

therefore more difficult to grasp, yet more universally applicable. These include

chemical (using the mass action law) (Sect. 6.4), calorimetric (Sect. 8.8), electro-

chemical (Sect. 23.2), spectroscopic, quantum statistical, and other methods to

which we owe almost all of the values that are available to us today. Just as every

relatively easily measured property of a physical entity that depends upon temper-

ature (such as its length, volume, electrical resistance, etc.) can be used to measure

T, every property (every physical quantity) which depends upon μ can be used to

deduce μ values.

4.8 Indirect Metricization of Chemical Potential

In order to increase our understanding, we will consider a method which allows—in

principle—the μ values of substances to be determined rather directly and in a way

that approaches the way most commonly used. Figure 4.8 shows a theoretically

Fig. 4.7 Comparison of (a) the tractive forces of vehicles with (b) the measurement of chemical

drive A by means of electric coupling of reactions.
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possible setup for measuring μ which gives the values directly in the scale used by

us. This method is indirect because the energy W!n, which is used for forming a

small amount n of the substance B, is measured. Almost everything we are doing is

associated with some kind of energy “turnover,” so it is not easy to separate the

energy contribution W!n, which serves exactly this purpose, from the other energy

contributions which only accompany the process.

The containers on the left in the figure contain the elements in their normal stable

states at 298 K and 100 kPa. In order to produce substance B, the correct pro-

portions of these elements are supplied to a continuously working reactor. They are

transformed there (the details of this process are not necessary for a first under-

standing) and then sent to the container on the right in the desired form of B (solid

or liquid, warm or cold, pure or dissolved, etc.). One might say that the reactor

transports substance B from a state on the left, where it is broken down into its

elementary components with the potential 0, to a state on the right with a potential

of μB. Whereas the matter on the left exists in a state which is identical for all

substances to be formed, the matter on the right appears in a specific form and in a

specific milieu. The form is determined by the selection of B with its fixed

constituents and their arrangement; the milieu on the other hand is defined by

temperature, pressure, concentration, type of solvent, etc. Energy is required to

transform matter; as a rule the more complex and complicated the rearrangement

the more energy is needed. We might say that matter will “resist” such change. This

results in a more or less strong tendency to return to the old or even another state

while releasing the consumed energy.

Let us recapitulate: The stronger the “drive” of a substance B to transform, here

in particular the drive of the substance to decompose into the elements (in their

standard state),

• The more difficult it is for the substance to be formed against its “drive,”

• The greater the amount of W!n necessary to achieve this.

W!n grows in proportion to the amount of substance n formed (as long as

n remains small), so W!n itself is not to be used as a measure of the tendency to

transform and therefore of the chemical potential μ, but rather W!n divided by n:

Fig. 4.8 Hypothetical

arrangement for measuring

chemical potentials μ.
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μ ¼ W!n=n: ð4:5Þ

The accumulation of substance B in a container gradually changes the milieu of this

substance and therefore its potential. For this reason, it is required that amount n and
energy W!n are kept small in order to keep the disturbance small. This can be

symbolized by dn and dW!n. μ itself results as a quotient of both quantities:

μ ¼ dW!n=dn: ð4:6Þ

It is of course necessary to avoid or subtract all energy contributions due to side

effects (e.g., as a result of friction, lifting, entropy transfer, acceleration, production

of other substances, solvents, or mixing partners, etc.). If, on the other hand, the

process (the transport of substance B) runs spontaneously from left to right, it

releases energy. In this case, W!n and therefore μ are negative but apart from that

our considerations remain essentially the same.

The unit for chemical potential which results from the equation μ¼ dW!n/dn is

J mol�1. Since we constantly deal with values of the chemical potential, we are

justified in giving this unit its own name, “Gibbs,” abbreviated G, in a manner

analogous to “Volt” for the electric potential difference as we have done in

Sect. 4.5:

1 Gibbs Gð Þ ¼ 1 Jmol�1:

Naturally, the energy of the portions of the elements taken from the left is to be

found in the substance B formed from them. We do not have to worry about these

contributions since they drop out when calculating the drive of a transformation of

substances. This is so because, as is always the case in chemistry, the elements are

conserved (see Sect. 4.4). Only the additional quantity dW!n which we can identify

with μdn, matters. Together with substance B, it is added to the system on the right

and so increases its energy. We could use the increase dW ofW to infer the value of

dW!n¼ μdn, even if we did not know anything of the existence of the reactor or

even if it did not exist at all.

Like the volume of water in a bathtub (Sect. 1.6), the energyW may change as a

result of different processes, such as transfer or generation of entropy (see Sect.

3.11), increase or decrease of volume (Sect. 2.5), or by taking in other substances

B0, B00, . . . etc.:

dW ¼ � pdV|fflfflfflffl{zfflfflfflffl}
dW!V

þ TdS|{z}
dW!S

þ μdn|{z}
dW!n

þ μ0dn0|ffl{zffl}
dW!n0

þ μ00dn00|fflffl{zfflffl}
dW!n00

þ . . . :

To avoid interferences caused by the different paths for energy transfer, we require

S, V, n0, n00, . . . to be held constant, i.e., dS, dV, dn0, dn00, . . .¼ 0, so that the related

energy contributions vanish:
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dW ¼ � pdV|fflfflffl{zfflfflffl}
0

þ TdS|{z}
0

þ μdn|{z}
dW!n

þ μ0dn0|ffl{zffl}
0

þ μ00dn00|fflffl{zfflffl}
0

þ . . . ¼ dWð ÞS,V,n0,n00...:

If we introduce μ¼ dW!n/dn into this equation, this yields

μ ¼ dWð ÞS,V,n0,n00
dn

¼ dW

dn

� �
S,V,n0,n00...

¼ ∂W
∂n

� �
S,V,n0,n00...

: ð4:7Þ

This equation already shows some similarity to Gibbs’s approach. When Josiah

Willard Gibbs introduced the quantity μ in 1876 which we now call chemical

potential, he addressed experts in his field. Students who are not used to work

with such expressions may feel repelled by equations of this type. The expression in

the middle means that we should consider W a function of n, W¼ f(n). We can

consider this function to be given by a computational formula with W as the

dependent variable and n the independent variable. V, S, n0 n00 . . . are constant

parameters.

Here is an example from school mathematics. In the equation of a parabola

y¼ ax2 + bx+ c, W corresponds to y, n to x. V, S, n0, n00, . . . correspond to the

parameters a, b, c. To find μ, we must take the derivative ofW¼ f(n) with respect to
n, just as we take the derivative of y¼ ax2 + bx+ c with respect to x in order to find

the slope of the function, i.e., y0 ¼ 2ax+ b.
On the other hand, the expression on the right using the symbol ∂ assumes that

W is to be considered a function of all the variables in the denominator and the

index,W¼ g(V, S, n, n0, n00, . . .). Since all these quantities, except for the one in the
denominator, are kept constant when we take the derivative, there is no difference

to the result.

Remember the formula which we used in Sect. 1.3 to indirectly determine the

weight G of a body via the energy:

G ¼ dW

dh

� �
υ

¼ dWð Þυ
dh

:

Here, dW is the energy used to lift the object a small distance dh. The index υ means

that the velocity is to be kept constant. When we considered this example, we

neglected the fact that the energy W of the body could also vary with its entropy

S (such as through friction) or with the amount n of one of the substances it is made

out of. To exclude these possibilities, we write

G ¼ dW

dh

� �
þ,S,n

;

where, for consistency’s sake, we have changed the variable υ to the momentum

þ ¼ mυ. Written in this form, we must gain the impression that the weight G is a

quantity that cannot be grasped and dealt with without the benefit of advanced
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mathematics and thermodynamics. The same happens when we try to understand

the chemical potential as the partial derivative of special energy forms. That is why

we prefer to introduce the chemical potential by characterizing it phenomenolog-

ically and by direct metricization. Once we have understood what the quantity μ
means and which properties it has, it should be possible to follow the definition

given by Gibbs. In concluding, we should once more bring to mind that μ like G is

not an energy but rather corresponds to a “force,” more precisely a “force-like”

quantity in the sense of Helmholtz (see Sect. 2.7).
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Chapter 5

Influence of Temperature and Pressure

on Transformations

The chemical potential can be regarded as constant only in a first approximation.

Frequently, temperature and pressure have a decisive influence on the chemical

potential and therefore on the course of chemical processes. Water freezes in the

cold and evaporates in the heat. Ice melts under the blades of ice skates and butane

gas (the fuel of a cigarette lighter) becomes liquid when compressed. Therefore, a

more detailed approach has to consider the temperature and pressure dependence of

μ. Often linear approaches to these dependencies suffice. If the corresponding

temperature and pressure coefficients are given, it is easily possible to predict the

behavior of the substances when they are heated, compressed, etc. The melting,

sublimation points, etc., can be calculated, but also the minimum temperature

needed for a particular reaction. Only the pressure coefficient of gases shows a

strong pressure dependence itself; therefore, the linear approach is only valid in a

small pressure range. For wider application, a logarithmic approach has to be used.

5.1 Introduction

Until now, the tabular values we have used were the so-called standard values based

upon room temperature and standard pressure (298 K and 100 kPa). For dissolved

substances, the standard concentration is 1 kmol m�3. Up to this point, our

statements about the possibility of a transformation have been valid for these

conditions only.

However, temperature and pressure often have a decisive influence on the

chemical potential and therefore on the course of chemical processes. Water freezes

in the cold and evaporates in the heat. Cooking fat melts in a frying pan and pudding

gels while cooling, ice melts under the blades of ice skates, and butane gas becomes

liquid when compressed. The chemical potential μ is not a material constant, but

depends upon temperature, pressure, and a number of other parameters.
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5.2 Temperature Dependence of Chemical Potential

and Drive

Introduction To begin, let us consider as a typical example the change with

temperature in the chemical potential of table salt μ(NaCl) (Fig. 5.1). For compar-

ison, the graphic also shows the temperature dependence of the chemical drive of

table salt to decompose into the elements A NaCl! Naþ 1=2Cl2ð Þ:
It is striking that the chemical potential falls more and more steeply with

increasing temperature. Except for a very few exceptions of dissolved substances

(e.g., Ca2+jw), all substances exhibit this behavior. The tendency of a substance to

transform generally decreases when it is put into a warmer environment.

The chemical drive A Tð Þ, which is calculated from the temperature-dependent

potentials, exhibits a noticeably more linear gradient than the μ(T ) curves. Both
curves intersect at the standard temperature T� because the chemical potential of a

substance at standard conditions corresponds to the drive to decompose into the

elements (here sodium and chlorine).

The drop of potential appears, at first glance, to contradict the observation that

reactions progress more readily and more quickly at higher temperatures than at

lower ones. But it should be noted that a higher rate of reaction does not necessarily

mean a stronger chemical drive. This can also be caused by a smaller or

even vanishing inhibition as is actually often the case in chemical reactions. The

strong decrease of inhibition resulting from an increase of warming masks the

mostly weak change to the drive A. Moreover, it should be remembered that A is

determined by the difference of the chemical potentials of the starting substances

and the final products, and not by the absolute levels of potentials. Since the

potentials of the starting substances as well as of the final products decrease as a

result of an increase in temperature, the potential difference which is alone

Fig. 5.1 Chemical potential of table salt and chemical drive to decompose according to

NaCl! Naþ 1=2 Cl2 depending upon temperature (at constant pressure p�).
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responsible for the reaction drive does not necessarily decrease. It can remain

constant or even increase, as in our example.

Temperature Coefficient In order to describe the drop of potential with increas-

ing temperature, we will be content with a simple approach at first. For example, if

one wishes to show how the length l of a rod changes with temperature, this can be

done with the help of a temperature coefficient which tells us by how much the

length increases when its temperature is changed by 1 K. The increase in length for

a temperature increase from an initial value of T0 to a value of T can be described by

a linear equation as long as ΔT¼ T� T0 is not too large:

l ¼ l0 þ ε � T � T0ð Þ: ð5:1Þ

The initial value of the length is represented by l0 and ε represents the temperature

coefficient.

To indicate the change of chemical potential as a result of warming, we proceed

exactly in the same manner:

μ ¼ μ0 þ α � T � T0ð Þ: ð5:2Þ

Here, μ0 characterizes the initial value of the chemical potential. This represents a

value at arbitrarily chosen values of temperature T0, pressure p0, and concentration

c0 (in contrast to the standard valueμ�). However, standard values often serve as the
initial values of a calculation, so that in special cases, μ0 ¼ μ�, but this is not

necessarily the case. The temperature coefficient α represents the slope of the

function μ(T ) at the point (T0; μ0) (it is therefore strictly valid only for the reference
temperature T0), and is therefore almost always negative, as we have seen.

For the temperature dependence of the chemical drive A of a transformation

Bþ B0 þ . . .! Dþ D0 þ . . .

we obtain analogously:

A ¼ A0 þ α � T � T0ð Þ: ð5:3Þ

The temperature coefficient α of the drive can be calculated by the same easy to

remember procedure as the drive itself:

α ¼ α Bð Þ þ α B0ð Þ þ . . .� α Dð Þ � α D0ð Þ � . . . ð5:4Þ
Remember : A ¼ μ Bð Þ þ μ B0ð Þ þ . . .� μ Dð Þ � μ D0ð Þ � . . .ð Þ:

If we take room conditions as the starting point, the error is about 1 kG for low-

molecular substances for ΔT values of about �100 K. This approximation remains

useful for rough estimates up to ΔT� 1,000 K and above, although μ(T ) falls
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sharply with rising temperature. This remarkable and (for applications) important

circumstance is based upon the fact that it is not the potentials that are decisive in

chemical processes, but the drives. When taking the difference

A ¼P μreactants �
P

μproducts, the progressive contributions of the functions μ(T)

largely cancel.

If higher precision is desired, the approach can be easily improved by adding

more terms to the equation:

μ ¼ μ0 þ α � ΔT þ α0 � ΔTð Þ2 þ α00 � ΔTð Þ3 þ . . . : ð5:5Þ

Of course, there are other possible approaches; reciprocals for instance, or loga-

rithmic terms. However, we do not wish to go into mathematical refinements of this

type here because it is astounding how far one can actually go with the linear

approximation. It is our goal here to show this.

Table 5.1 shows the chemical potentialμ� as well as its temperature coefficient α
for some substances. Along with the already mentioned basic rule which states that

the temperature coefficient α is (almost) always negative, another rule (which

almost all substances follow) becomes apparent when the α values are compared

for changes of state of aggregation. The temperature coefficient α of the chemical

potential of a substance B becomes increasingly negative when the phase changes

from the solid to the liquid and finally to the gaseous state. The jump corresponding

to the second transition (represented by the sign�) is considerably greater than the

one corresponding to the first one. For a substance in an aqueous solution, α is

mostly similar to that of the liquid state. The values scatter more strongly, though,

so that we cannot easily fit α(Bjw) into the other α values:

Table 5.1 Chemical

potential μ and its temperature

coefficient α for some

selected substances at

standard conditions (298 K,

100 kPa, dissolved substances

at 1 kmol m�3).

Substance Formula μ� (kG) α (G K�1)

Iron Fejs 0 �27.3
Fejl 5.3 �35.6
Fejg 368.3 �180.5

Graphite Cjgraphite 0 �5.7
Diamond Cjdiamond 2.9 �2.4
Iodine I2js 0 �116.1

I2jl 3.3 �150.4
I2jg 19.3 �260.7
I2jw 16.4 �137.2

Water H2Ojs �236.6 �44.8
H2Ojl �237.1 �70.0
H2Ojg �228.6 �188.8

Ammonia NH3jl �10.2 �103.9
NH3jg �16.5 �192.5
NH3jw �26.6 �111.3

Calcium(II) Ca2+jw �553.6 +53.1
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For clarification, we will single out the values for iodine at standard conditions

given in G K�1 from Table 5.1:

(As we will see in Sect. 9.3, the temperature coefficient α corresponds to the

negative molar entropy Sm, i.e., α ¼ �Sm. Anticipating this can help us to remem-

ber the two rules above more easily: First, in Chap. 3, we demonstrated that the

molar entropy is always positive; the negative sign of the temperature coefficient

easily results from this (the rare exceptions mentioned above will be discussed in

detail in Sect. 8.4). Second, the fact that the molar entropy of a liquid is greater than

that of a solid, and the molar entropy of a gas is much greater than that of a liquid

(see Sect. 3.9), leads to the sequence above.)

Phase Transition The chemical potential of gases therefore decreases especially

fast with increase in temperature. Their tendency to transform decreases most

strongly so that, by comparison to other states, the gaseous state becomes more

and more stable. This simply means that, as a result of temperature increase, all

other states must eventually transform into the gaseous state. At high temperatures,

gases possess the weakest tendency to transform and therefore represent the most

stable form of matter.

We will use water to take a closer look at this behavior. Under standard

conditions, the chemical potential of ice, water, and water vapor has the following

values:

H2Ojs H2Ojl H2Ojg
μ� kGð Þ �236.6 �237.1 �228.6

One sees here that under these conditions, ice melts, and water vapor condenses

because water in its liquid state has the lowest chemical potential and therefore the

weakest tendency to transform. However, this changes if the temperature is raised

or lowered sufficiently. For easy calculation, we will consider a temperature change

of �100 K. The following results are obtained using the linear approach:

H2Ojs H2Ojl H2Ojg
αðGK�1Þ �45 �70 �189
μ(398K)(kG) �241 �244 �248
μ(198K)(kG) �232 �230 �210
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We see that at 398 K (125 �C), the chemical potential of water vapor has the

smallest value and that water vapor must result from the other forms, while at 198 K

(�75 �C), ice must develop. This result is represented graphically in Fig. 5.2.

Phase Transition Temperatures How to calculate the phase transition tempera-
tures now appears obvious: If a substance like lead is solid at room temperature, this

is because its chemical potential has its lowest value in the solid state. The potential

of liquid lead has to exceed that of solid lead; otherwise, at room temperature, it

would be liquid like mercury. We will now visualize this in a diagram (Fig. 5.3).

μ(Pbjs) as potential of an element at room temperature (and standard pressure) is

equal to zero since this value has been arbitrarily chosen as the zero point of the μ
scale. Under these conditions, μ(Pbjl) must lie above this. The chemical potentials

decrease with warming. This happens more quickly in the liquid state than in the

solid (according to the sequence presented above: α(Bjl)< α(Bjs)< 0). For this

reason, the curves must intersect at some point, say at the temperature Tsl. This Tsl is
the melting temperature (melting point) of lead because below Tsl, the most stable

state of lead is the solid state; above Tsl, however, the most stable state is the liquid

state. In order to indicate the phase transition in question, the symbols for the

corresponding states of aggregation are inserted as indices (see also the comment in

Sect. 3.9).

We can calculate the temperature Tsl. In order to do this we have to consider the
melting process

Fig. 5.2 Chemical

potential of water in various

states at 198, 298, and

398 K.
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Pbjs! Pbjl:

Tsl is the temperature at which the chemical potentials of solid and liquid phase are

just equal,

μs ¼ μl: ð5:6Þ

At this temperature, the two phases are in equilibrium. The temperature dependence

of μ is expressed by the linear approximation:

μs,0 þ αs � Tsl � T0ð Þ ¼ μl, 0 þ αl � Tsl � T0ð Þ:

By transforming this, we obtain

μs,0 � μl, 0 ¼ � αs � αlð Þ � Tsl � T0ð Þ

and finally

Tsl ¼ T0 �
μs, 0 � μl, 0
αs � αl

¼ T0 � A0

α
: ð5:7Þ

The derivation is somewhat shortened when the equivalent of Eq. (5.6),

A ¼ μs � μl ¼ 0, is used as a starting point for the existence of a state of equilib-

rium. If the temperature dependence of the chemical drive is taken into account

[Eq. (5.3)], we have

A0 þ α � Tsl � T0ð Þ ¼ 0

and therefore in the end as above

Fig. 5.3 Temperature

dependence of the chemical

potential of the solid and

liquid phase of a substance

(The lowest chemical

potential for each is

highlighted.).
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Tsl ¼ T0 � A0

α
:

Of course, strictly speaking, this mathematical relationship is not completely

accurate because our formula for temperature dependence is only an approxima-

tion. The smaller ΔT (:¼Tsl� T0) is, the more exact the calculated value will

be. The melting point of lead is actually 601 K. Based on the tabulated standard

values (Sect. A.2.1 in the Appendix), our calculation yields

Tsl ¼ 298 K� 0� 2220

�64:8ð Þ � �71:7ð Þ
G

GK�1
¼ 620 K:

The result is surprisingly good for the rather rough approximation.

We will now complete the μ(T ) diagram above by adding the chemical potential

of lead vapor (Fig. 5.4). At room temperature, the chemical potential of vapor lies

much higher than that of the liquid phase. However, with rising temperature,

μ(Pbjg) falls rather steeply, as is usual in all gases. At some temperature Tlg the

potential of lead vapor intersects with that of liquid lead. When this temperature is

exceeded, the melted lead undergoes a transition to vapor because now vapor is the

most stable state. Tlg is nothing other than the boiling temperature (boiling point) of
lead melt. The boiling temperature can be calculated in the same manner as the

melting temperature, only now the potentials and their temperature coefficients for

liquid and gaseous states will be used.

There are substances for which the chemical potential of the vapor is relatively

low compared to that of the melt. The potential of the vapor can then intersect that

of the solid below the melting point. This means that there is no temperature (for a

given pressure) at which the liquid phase exhibits the lowest chemical potential and

Fig. 5.4 Temperature

dependence of the chemical

potentials of a substance as

solid, melt, or vapor.
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is therefore stable. Such substances do not melt when warmed but transform

immediately into the vapor state (Fig. 5.5). This phenomenon is called sublimation.
An excellent example of such a substance is frozen carbon dioxide which has the

characteristic of vaporizing without melting. Because of this it is also called “dry

ice.” Sublimation temperatures (sublimation points) Tsg can be calculated based on

the same procedure as used for melting and boiling temperatures, respectively.

Other transitions can be dealt with in the same way. A good object for demon-

stration is the already mentioned mercury iodide (cf. Sect. 4.6):

HgI2jyellow HgI2jred
μ� kGð Þ �101.1 �101.7
αðGK�1Þ �186 �180

When heated, the temperature coefficient of the yellow form decreases more

quickly than that of the red one because α(HgI2jyellow)< α(HgI2jred)< 0, so that

above a certain temperature, μ(HgI2jyellow) falls below μ(HgI2jred), making the

yellow form the more stable modification. The transition temperature (about 398 K

or 125 �C) can be calculated just like the melting temperature of lead and can be

easily verified by experiment (Experiment 5.1). The property of some substances to

change color due to a change in temperature is called thermochromism.

Reaction Temperatures Chemists are mostly interested in “real” chemical reac-

tions. Because the temperature changes in gases have the strongest effect on their

potentials, they are what shapes the behavior of reactions. Processes which produce

more gas than is used up (so-called gas forming reactions) benefit from the strongly

negative temperature coefficients α of gases when the temperature rises. In contrast,

the chemical drive of a gas binding reaction is weakened by a rise in temperature.

Consider the example of thermal decomposition of silver oxide:

Fig. 5.5 Chemical

potentials of all phases as a

function of temperature in

the case of sublimation.
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The decomposition does not take place at room temperature due to the negative

drive. However, since a gas should be formed, we expect that this process begins at

a high enough temperature (Experiment 5.2). The minimum temperature TD for the

decomposition of Ag2O is obtained from the condition that the combined chemical

potentials of the initial and final substances must be equal or alternatively the

chemical drive A ¼ 0:

A ¼ A0 þ α � TD � T0ð Þ ¼ 0:

In analogy to Eq. (5.7), we obtain for the decomposition temperature

TD ¼ T0 � A0

α
:

Based on the initial values T0 ¼ T� ¼ 298Kð Þ and A0 ¼ A�, we obtain by inserting
theA� and α values calculated above a decomposition temperature TD� 465 K (i.e.,

192 �C).

Experiment 5.1 Thermo-
chromism of HgI2: A test

tube containing red-orange

mercury(II) iodide is slowly

heated in a glycerine bath.

At 398 K the iodide

undergoes phase transition

from the red-orange to the

pale yellow modification.

Experiment 5.2 Heating
of silver oxide: When the

blackish brown silver oxide

is heated by a burner, the

generation of a gas is

detectable by the slow

blowing up of the balloon.

Subsequently, the gas can

be identified as oxygen with

a glowing splint. White

shiny silver metal remains

in the test tube.
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The same procedure can be used, for example, to calculate how strongly a

compound containing crystal water must be heated in a drying oven in order to

dehydrate it. Industrially important processes such as smelting of iron ore in a blast

furnace (Fig. 5.6) can also be captured descriptively.

If the technical details are left out, a blast furnace can be considered a chemical

reactor where iron ore, coal, and oxygen are introduced and furnace gas and pig iron

exit. If this process uses the minimum amount of coal (in the conversion formula

simplistically represented by carbon Cjs (� graphite) it cannot take place at room

temperature due to its negative chemical drive.

However, a gas is formed, so we expect that the reaction should be possible at

higher temperatures. If one wishes to find out if the 700 K in the upper part of the

shaft of the furnace is hot enough, the drive must be approximated for this

temperature according to A ¼ A0 þ α � T � T0ð Þ [Eq. (5.3)]. With a value of

�111 kG, the drive is noticeably less negative, i.e., the potential difference between
the reactants and products has become smaller, but the reaction still cannot take

place. Again, the minimum temperature TR needed for the reaction can be

Fig. 5.6 Schematic of a

blast furnace.
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approximated by an equation which appears very familiar to us [entirely equivalent

to Eq. (5.7)]:

TR ¼ T0 � A0

α
:

We therefore obtain a value for TR of � 900 K. Extra coal is needed for the furnace

to reach this temperature. The chemical drive of the whole blast furnace process,

beginning and ending with all substances at room temperature, is strongly positive

because of the additional consumption of carbon:

Of course, all of these calculations depend upon access to the necessary data.

5.3 Pressure Dependence of Chemical Potential and Drive

Pressure Coefficient As previously stated, the value of the chemical potential of a

substance depends not only upon temperature but upon pressure as well. Moreover,

the potential generally increases when the pressure increases (Fig. 5.7).
In a small range of pressures, all the curves can be approximated as linear,

comparable to the way in which we described the influence of temperature:

μ ¼ μ0 þ β � p� p0ð Þ: ð5:8Þ

μ0 is the starting value of the chemical potential for the initial pressure p0. The
pressure coefficient β is almost always positive.

Analogously, the pressure dependence of the chemical drive A of a

transformation

Fig. 5.7 Pressure

dependence of the chemical

potentials of a substance in

solid, liquid, or gaseous

state.

140 5 Influence of Temperature and Pressure on Transformations



Bþ B0 þ . . .! Dþ D0 þ . . .

results in

A ¼ A0 þ β � p� p0ð Þ; ð5:9Þ

where the pressure coefficient β is:

β ¼ β Bð Þ þ β B0ð Þ þ . . .� β Dð Þ � β D0ð Þ � . . . : ð5:10Þ

The linear approximation is useful for solid, liquid, as well as dissolved substances

and for the drives of the corresponding transformations up to Δp� 105 kPa

(¼ 1,000 bar). For obtaining general approximations, it is useful even up to

106 kPa (¼ 10,000 bar). In the case of gases and the drives of transformations in

which gases participate,Δ p= p < 10% is considered acceptable because the slope β
of the corresponding curve changes relatively strongly with pressure. For greater

ranges of pressure Δp, another approach must be applied to which we will be

introduced later on (Sects. 5.5 and 6.5).

Table 5.2 shows the β values for the substances of Table 5.1. A rule similar to the

one for temperature coefficients α is valid for pressure coefficients β. It is very

useful for qualitative considerations:

Table 5.2 Chemical

potential μ and its pressure

coefficient β for some

selected substances at

standard conditions (298 K,

100 kPa, dissolved substances

at 1 kmol m�3).

Substance Formula μ� (kG) β (μG Pa�1)

Iron Fejs 0 7.1

Fejg 368.3 24.8� 103

Graphite Cjgraphite 0 5.5

Diamond Cjdiamond 2.9 3.4

Nitrogen N2jg 0 24.8� 103

Iodine I2js 0 51.5

I2jl 3.3 60.3

I2jg 19.3 24.8� 103

I2jw 16.4 �50
Water H2Ojs �236.6 19.8

H2Ojl �237.1 18.1

H2Ojg �228.6 24.8� 103

Ammonia NH3jl �10.2 28.3

NH3jg �16.5 24.8� 103

NH3jw �26.6 24.1

Calcium(II) Ca2+jw �553.6 �17.7
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To make this clear, we will again single out the values for iodine at standard

conditions, this time given in μG Pa�1:

Like any rule, this one has exceptions. For instance, β for some ions in an

aqueous solution is negative and sometimes—as in the case of water—β in the

solid state is greater than in the liquid state. This is exactly the opposite from what

the rule would lead us to expect.

(In this case, as well, there is a relation to a molar quantity, namely the molar

volume Vm: We have β¼Vm (compare Sect. 9.3). Because all molar volumes are

basically positive, the pressure coefficient always has a positive sign. (The very few

exceptions and their cause will be discussed in detail in Sect. 8.2.) The molar

volume of a gas is far greater (by a factor of 1,000) than that of the condensed

phases (liquid and solid). On the other hand, the molar volume of a liquid phase is

usually greater than that of the solid phase so that the sequence above results.)

Phase Transition Raising the pressure generally causes the chemical potential to

increase although, as already stated, the increase varies for the different states of

aggregation. In the solid state, it is smallest and in the gaseous state, greatest. As a

rule, the higher the pressure is, the more stable the solid state is compared to the others

and the greater the tendency of the substance to undergo a transition to the crystalline

state. Conversely, a pressure reduction results in a preference for the gaseous state.

Let us once more consider the behavior of water from this new viewpoint. The

following table summarizes the necessary chemical potentials and pressure

coefficients:

H2Ojs H2Ojl H2Ojg
μ�ðkGÞ �236.6 �237.1 �228.6
βð10�6 GPa�1Þ 19.8 18.1 24.8� 103

One sees that lukewarm water can boil at low pressure (Experiment 5.3),

although, at room conditions, μ(H2Ojl)< μ(H2Ojg), meaning liquid water is the

Experiment 5.3 Boiling of
lukewarm water at low
pressure: A suction flask is

filled to one-third with

lukewarm water, closed,

and subsequently evacuated

with a water aspirator. The

water begins to boil.

142 5 Influence of Temperature and Pressure on Transformations

http://dx.doi.org/10.1007/978-3-319-15666-8_8#Sec2
http://dx.doi.org/10.1007/978-3-319-15666-8_9#Sec3


stable phase. But if the pressure is lowered enough by pumping the air above the

water out of a closed container, μ(H2Ojg) will at some point fall below μ(H2Ojl),
because β is especially great for the gaseous state. The reduction of pressure

becomes noticeable by a strong decrease of chemical potential and the water begins

to transform into water vapor by boiling.

But low pressure can also be created by cooling down water vapor which is in

equilibrium with liquid water in a closed flask (Experiment 5.4). In the process, a

part of the vapor condenses, leading to a decrease in pressure.

Phase Transition Pressure We shall take a closer look at a further example of the

transition of a substance under pressure. Diamond is a high-pressure modification

of carbon which should never appear at normal pressure. The most stable modifi-

cation of carbon, the one with the lowest chemical potential, is graphite which we

know from pencils. A characteristic of graphite is that its chemical potential

increases more strongly with pressure than the potential of diamond so that, at

one point, μ(Cjgraphite) should exceed μ(Cjdiamond) making it possible for dia-

mond to form (Fig. 5.8).

At normal pressure and room temperature, μ(Cjgraphite) equals zero because

this value has been arbitrarily set as the zero point of the μ scale. The μ( p) curve is

Experiment 5.4 Causing
warm water to boil by
cooling: Ice water is poured
over a round-bottomed flask

only filled with warm water

and water vapor. The water

begins to boil also in

this case.

Fig. 5.8 Pressure

dependence of the chemical

potentials of graphite and

diamond (the lowest

chemical potential for each

is again highlighted).
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steeper for graphite than for diamond. Therefore, the two curves must intersect at a

pressure pαβ, which we will call the transition pressure. The index αβ indicates that
the transition of one modification α (here graphite) into another modification β (here
diamond) is considered. Below pαβ, graphite is more stable; above it, diamond is

more stable.

The pressure pαβ can be calculated because pαβ is the pressure for which

μα ¼ μβ: ð5:11Þ

The pressure dependence of μ is expressed by a linear relation,

μα, 0 þ βα � pαβ � p0
� � ¼ μβ, 0 þ ββ � pαβ � p0

� �
;

resulting in

μα, 0 � μβ, 0 ¼ � βα � ββ
� � � pαβ � p0

� �
and finally

p
αβ
¼ p0 �

μα, 0 � μβ, 0
βα � ββ

¼ p0 �
A0

β
: ð5:12Þ

The expression shows a great formal similarity to the one for determining a

transformation temperature whether it applies to a phase transition, a decomposi-

tion, or something else.

Inserting the tabulated values results in pαβ� 14� 105 kPa (¼ 14,000 bar). Strictly

speaking, this result cannot be accurate because the linear relations only represent

approximations. However, as a general tool for orientation, it is quite useful.

5.4 Simultaneous Temperature and Pressure Dependence

There is nothing stopping us from expanding our ideas to transformations in which

temperature and pressure change simultaneously. In this case the chemical potential

can be expressed as follows:

μ ¼ μ0 þ α � T � T0ð Þ þ β � p� p0ð Þ: ð5:13Þ

Correspondingly, the chemical drive takes the form

A ¼ A0 þ α � T � T0ð Þ þ β � p� p0ð Þ: ð5:14Þ

The dependence of transition temperatures upon pressure can be described by these

equations as well. Here is a familiar example representative of many others. Ice
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melts under high pressure [if it is not too cold]. The chemical potential of ice is the

same as that of ice water (μ(H2Ojs)¼ μ(H2Ojl)) at 273 K (0 �C) and standard

pressure. However, because of β(H2Ojs)> β(H2Ojl), the value of μ(H2Ojs)
increases above that of μ(H2Ojl) as the pressure increases, and the ice begins to

melt (Experiment 5.5).

As mentioned, water is among the few exceptions where β in the solid state is

greater than in the liquid state. This special characteristic of ice is responsible for

the ability of a glacier to flow downward a few meters per day in a mountain valley

like slow moving dough. Where the ice is under especially high pressure, it melts

and becomes pliable so that it gradually moves around obstacles.

But a block of ice does not totally melt when compressed because it cools down

during melting. The reason for the drop in temperature is that the entropy required

for the phase transition solid! liquid is not supplied from outside (cf. Sect. 3.5). It

has to be provided by the system itself, leading to a lowering of temperature. The

chemical potentials increase because of the negative temperature coefficients α.
Because of α(H2Ojl)< α(H2Ojs)< 0, the effect is stronger in water than in ice. The

potential difference due to excess pressure is compensated and the process of

melting stops. Again, there is equilibrium between the solid and the liquid phase,

but this time at a lower freezing point. Only when the pressure is further increased

does the ice continue to melt until additional cooling balances the potentials again.

To illustrate this, let us take a look at Fig. 5.9. If the pressure is increased, the

chemical potentials of the solid and the liquid phase increase, but this increase

is much more pronounced for the solid than for the liquid phase [because of

0< β(Bjl)< β(Bjs)]. Thus the intersection point of the curves (Tsl
0 ) shifts to the

left, i.e., the freezing point is lowered by ΔTsl.
It is easy to calculate the lowering of temperature in compressed ice, i.e., the

freezing-point depression of water under pressure. The condition for equilibrium

μs¼ μl takes the following form:

Experiment 5.5 Ice melting under pressure: A
wire loop with a heavy weight hanging from it

slowly “melts” its way through a block of ice.

The process is supported by the high entropy

conductivity of the steel wire (see Sect. 20.4).

The water formed below the wire under high-

pressure flows around the wire and freezes again

above it because of the lower pressure there. The

ice block will remain intact even after the wire

passes completely through.

5.4 Simultaneous Temperature and Pressure Dependence 145

http://dx.doi.org/10.1007/978-3-319-15666-8_20#Sec4


μs, 0 þ αs � T � T0ð Þ þ βs � p� p0ð Þ ¼ μl, 0 þ αl � T � T0ð Þ þ βl � p� p0ð Þ

or shortened:

μs,0 þ αs � ΔT þ βs � Δ p ¼ μl, 0 þ αl � ΔT þ βl � Δ p:

If the freezing point of water at standard pressure (T0¼ 273 K) is chosen as the

initial value, then μs,0 and μl,0 are equal and drop out of the expression. The

following relation remains with the change in temperature ΔT as the only unknown:

ΔT ¼ � βs � βl
αs � αl

Δ p ¼ �β
α
Δ p: ð5:15Þ

For Δp¼ 104 kPa (100 bar), the lowering of the freezing point due to pressure

results in ΔT¼�0.67 K (calculated with the numerical values for ice and liquid

water from Tables 5.1 and 5.2).

However, for most substances, the melting temperature increases with increased

pressure [because of 0< β(Bjs)< β(Bjl)] (see Fig. 5.10). Correspondingly, the

shifts in potentials cause higher pressure to raise the boiling point and lower

pressure to lower the boiling point [because of 0< β(Bjl)<<<< β(Bjg)]. This is
also valid for water as we have seen in Experiments 5.3 and 5.4. Again, the change

ΔT can be approximated with the formula derived above. The value of β for boiling
is roughly 104 times greater than for melting, whereas the α values do not vary so

drastically. Therefore, even small changes of pressure are enough to noticeably

shift the boiling point. To achieve a comparable change of the freezing point, much

higher pressures are necessary. A pressure increase of about 10 kPa (0.1 bar)

already results in a shift of the boiling point of water of about +2.0 K, while for a

comparable change of the freezing point (ΔT¼�2.0 K), a pressure increase of

more than 3� 104 kPa (300 kbar) is necessary.

Fig. 5.9 Temperature

dependence of the chemical

potentials of a solid and a

liquid phase at different

pressures (in case of

0< βl< βs). The
intersection point of the

μ(T ) curves at the pressure
considered and hence the

freezing-point shifts with

increasing pressure to lower

temperatures (lowering of

freezing point).
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We will close this section with a look at our “home planet.” It represents a very

good example for the effect of increasing pressure and temperature upon the

chemical potential and therefore the melting and freezing of substances (Fig. 5.11).

Fig. 5.10 Temperature

dependence of the chemical

potentials of a substance in

solid, liquid, and gaseous

states at low pressure (lower
curves) and at high pressure

(upper curves) (in case of

0< βs< βl<<<< βg). The
intersection points of the

μ(T ) curves and hence the

freezing- and boiling-point

shift with increasing

pressure to higher

temperatures (raising of

freezing and boiling point).

Fig. 5.11 Opposing effects

of temperature and pressure

in the Earth’s interior: The
temperature increase toward

the middle of the Earth

(> 5,000 K) causes the

iron core to melt. The

pressure, which grows to

3.6� 108 kPa, turns it into a

solid again at the very

center (standard melting

and boiling points of iron

are about 1,809 and

3,340 K, respectively).
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5.5 Behavior of Gases Under Pressure

As already stated, the chemical potential of gases is especially sensitive to changes

of pressure. For this reason, the pressure coefficient β is greater by several powers

of ten than those of solid or liquid substances. At the same time, β itself is strongly

dependent upon pressure. For these reasons, the linear approximation is only

applicable to a very narrow range of pressures Δ p=p < 10%ð Þ. This is far too

limiting for most applications so a formula must be sought that spans a much wider

range of pressures. A look at the tabulated values shows that β has not only a large

value but the same value for all gases at standard conditions. Apparently, the

pressure coefficient β of gases is a universal quantity. For given T and p, it is the
same for all gases in all milieus. Moreover, it is directly proportional to the absolute

temperature T and indirectly proportional to the pressure p of the gas in question.

This remarkable fact can be expressed as follows:

β ¼ RT

p
where R ¼ 8:314 GK�1: ð5:16Þ

R is a fundamental constant and is the same for all substances. It is called the

“(general) gas constant” because it was first discovered in a law valid for gases

(Sect. 10.2). The relation above is based upon the phenomenon called mass action
in chemistry. We will go more deeply into this in the next chapter. (Note: β
corresponds here to the molar volume of a so-called ideal gas, as we will see in

Sect. 10.2).

Inserting β into the relation (5.8) yields the following equation:

μ ¼ μ0 þ
RT

p
� p� p0ð Þ: ð5:17Þ

Those proficient in mathematics immediately see that there is a logarithmic relation

between μ and p:

μ ¼ μ0 þ RTln
p

p0
: ð5:18Þ

The pressure coefficient β of gases is nothing other than the derivative of the

function μ( p) with respect to p. If we take the derivative with respect to p of the

function above, we retrieve indeed Eq. (5.16).

For those interested in mathematics: Equation (5.17) can be transformed to result in

μ� μ0 ¼
RT

p
� p� p0ð Þ or Δμ ¼ RT

p
� Δ p:
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For very small (infinitesimal) changes, the relation is

dμ ¼ RT

p
dp:

If we wish to calculate the change of the chemical potential from the initial value μ0 to
the final value μ for a change of pressure from p0 to p, we must integrate both sides. (The

concept of integration will be described in more detail in Sect. A.1.3 in the Appendix.) The

following elementary indefinite integral will serve well for this:ð
1

x
dx ¼ lnxþ constant:

Inserting the limits results in:

ðμ
μ0

dμ ¼ RT

ðp
p0

1

p
dp

and finally,

μ� μ0 ¼ RTln
p

p0
:

We tend to consider a logarithm as unfamiliar and therefore complicated. This is

unjustified. Basically, the relation is as simple as a linear one (cf. Sect. A.1.1 in the

Appendix). In contrast to the linear approximation, this still relatively simple

logarithmic formula spans the much wider range of pressures from between 0 and

104 kPa (100 bar). The range of validity will be discussed in more detail in Sect. 6.5.

Let us take a closer look at these relations using the example of butane (the fuel

in a gas lighter) (Fig. 5.12). The μ( p) curve of gaseous butane shows the expected
logarithmic relationship [cf. Eq. (5.18)]. Furthermore, we can see from the figure

that, when compressed at room temperature, butane turns into liquid relatively

easily. The so-called boiling pressure plg, i.e., the intersecting point of the potentials
for the liquid and the gaseous phase, lies only a little above 200 kPa. This

intersecting point characterizes the state of butane in a lighter at room temperature.

However, further important information can be derived from the figure: The μ( p)
curve for a liquid is an almost horizontal line. (Its slope is very small.) For this

reason, the chemical potential of condensed phases (liquids and solids) can be

considered nearly independent of pressure in most cases when they are present

together with a gas. Furthermore, the chemical potential of a gas continues to

decrease with falling pressure. The μ value approaches negative infinity if the

pressure approaches zero.

This leads to the following remarkable conclusions. We can infer, for example,

that calcium carbonate CaCO3 cannot be stable if the CO2 pressure in the surround-

ings falls to zero. In this case, the chemical potential of CO2 would have the value

�1. The reaction
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which cannot take place at standard conditions, would have a positive drive. The

sum of potentials on the left would be higher than on the right. However, decom-

position produces CO2, so that the CO2 pressure must rise in a closed system. The

process continues until the CO2 pressure has reached a value for which the chemical

potentials on the left and right sides balance. This CO2 pressure is called the

decomposition pressure of calcium carbonate.

The decomposition pressure can be easily calculated. If the chemical potentials

satisfy

μCaCO3
¼ μCaO þ μCO2

we have equilibrium. We ignore the pressure dependence of solid substances

because, in comparison to gases, it is smaller by three orders of magnitude. We

only take the dependence for CO2 into account, and that at first for T¼ T0:

μCaCO3,0 ¼ μCaO,0 þ μCO2,0 þ RTln
p

p0
:

Fig. 5.12 Pressure

dependence of the chemical

potential of butane in liquid

and gaseous states at room

temperature (298 K).
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This results in

μCaCO3,0 � μCaO,0 � μCO2,0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A0

¼ RTln
p

p0

as well as

exp
A0

RT
¼ exp ln

p

p0

� �
and finally in the following exponential relation:

p ¼ p0exp
A0

RT
: ð5:19Þ

In order to calculate the decomposition pressure for a temperature different from

the initial temperature T0, the μ values in the exponents only need to be converted to
the new temperature. The linear formula for temperature dependence used so far is

generally good enough for this:

p ¼ p0exp
A0 þ α T � T0ð Þ

RT
:

With the help of corresponding data, i.e., the standard values and the corresponding

temperature coefficients from Sect. A.2.1 in the Appendix, the p(T ) curve can be

determined (Fig. 5.13). This curve gives the decomposition pressure of calcium

carbonate as a function of temperature:

p ¼ 100 kPa � exp�1:311� 105 þ 159 � T=K� 298ð Þ
8:314 � T=K :

Fig. 5.13 Dependence of

CO2 pressure upon

temperature during

decomposition of calcium

carbonate (comparison of

the calculated curve with

measured values).
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Chapter 6

Mass Action and Concentration Dependence

of Chemical Potential

The concept of mass action, its relation to the concentration dependence of the

chemical potential (mass action equations), and subsequently, its relation to the

chemical drive are discussed. An important application in the case of chemical

equilibria is the derivation of the “mass action law.” But we also examine some

further consequences such as the solubility of ionic solids and gases in liquids,

preferably in water. The former leads us to the concept of solubility product, the

latter to Henry’s law. With the help of Henry’s law, we can, for example, estimate

the oxygen content in bodies of water, a parameter of prime importance for

biological processes. Another relevant application results in Nernst’s distribution
law which governs the distribution of a solute between two immiscible liquids.

Distribution equilibria play a significant role in separating the substances in a

mixture by the process of extraction or by partition chromatography. The last

section of this chapter illustrates how the concept of mass action can be visualized

with the help of potential diagrams.

6.1 The Concept of Mass Action

It has been known for a long time that the amounts of reacting substances can play

an important role in the drive of chemical reactions. In 1799, the French chemist

Claude-Louis Berthollet was the first to point out this influence and discuss it using

many examples. Contrary to the prevailing concept of that time, he stated that it is

not necessarily the case that a reaction must completely take place whenever a

substance B displaces another substance C in a compound,

Bþ CD! Cþ BD;

even if there is a great excess of B, but that an equilibrium is established which is

dependent upon the amounts of the substances involved. The stronger B is bonded
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to D, and the greater the amounts of unbound B in the reaction chamber compared

to substance C, the more BD should form at the cost of CD and vice versa.

Based upon this finding, we can conclude that the tendency μ of substances to

transform is not only dependent upon the types of those substances but also upon their

amounts n: The greater the amount of a substance (or the mass proportional to it) in

the reaction chamber, the higher its expected potential μ should be. Closer scrutiny of
this effect which is known asmass action shows that, in this case, the quantity n itself
is unimportant. It is n in relation to the volume V in which a substance is distributed,

meaning its concentration c¼ n/V, that is important. If B or C or both participate as

pure substances in a reaction, meaning at fixed concentrations, their amounts nB and

nC have no influence upon the state of equilibrium and, therefore, upon the amounts

of BD and CD formed. How much or how little of a substance is present, in this case,

is apparently not decisive but rather how densely or loosely it is distributed in the

space. This means that the more cumulative and concentrated the application, the

more intense the effect (illustrated by the cartoon). In other words, the mass of a
substance is not decisive for mass action, but its “massing,” its “density” in space: not
the amount, but the concentration. Cato Maximilian Guldberg and Peter Waage of

Norway called attention to this in the year 1864.

Thus, the tendency to transform

and therefore the chemical potential

of substances increase according to

how strongly concentrated they are.

Conversely, the chemical potential

goes down when the concentration

of a substance decreases. We will

use an example from everyday life

to illustrate this. According to the

values of the chemical potentials,

pure water vapor must condense at

room conditions:

However, if the vapor is diluted by air, the value of its potential decreases below

that of liquid water. It can then undergo a phase transition to the gaseous state. It

evaporates. μ(H2Ojg)< μ(H2Ojl) is required for wet laundry (Fig. 6.1), wet dishes,

and wet streets to dry (if no other causes such as direct sunlight play a role).

6.2 Concentration Dependence of Chemical Potential

Concentration Coefficient The influence of concentration c upon the tendency μ
of a substance to transform can basically be described by a linear relation like it was
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done in the last chapter to describe the influence of temperature T and pressure p. As
long as Δc¼ c� c0 is small enough we have:

μ ¼ μ0 þ γ � c� c0ð Þ for Δc� c: ð6:1Þ

Mass action is an effect which superposes with other less important influences

which we will address later and all of which contribute to the concentration

coefficient γ: γ ¼ γ
� þγ0 þ γ00 þ � � �. The symbol � above a term will be used here

and in the following to denote the quantities dependent upon mass action when it is

desirable to distinguish them from similar quantities of different origins. Mass

action appears most noticeably at small concentrations where the other influences

recede more and more until they can be totally neglected, γ
� � γ0, γ00, . . . . If one

wishes to investigate this effect as directly as possible, experiments should be

carried out with strongly diluted solutions c� c� (¼ 1 kmol m�3).
The temperature coefficient α and the pressure coefficient β (except for the latter

in the case of gases) are not only different from substance to substance but also vary

according to type of solvent, temperature, pressure, concentration, etc. In short,

they depend upon the overall consistency of the milieu the substance is in. In

contrast, the concentration coefficient γ
�
related to mass action is a universal

quantity. At the same T and c, it is the same for all substances in every milieu. It
is directly proportional to the absolute temperature T and inversely proportional to

concentration c of the substance in question and has the same basic structure as the

pressure coefficient β of gases:

Fig. 6.1 Influence of

concentration upon the

chemical potential, shown

by the example of drying

wet laundry from

everyday life.
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γ ¼ γ
� � RT

c
for c� c� where R ¼ 8:314 GK�1: ð6:2Þ

Because the quantity T is in the numerator, we can conclude that the mass action

gradually loses importance with a decrease of temperature and eventually disap-

pears at 0 K.

Mass Action Equations If we insert Eq. (6.2) into Eq. (6.1), we obtain the

following relation:

μ ¼ μ0 þ
RT

c
� c� c0ð Þ for Δc� c� c�: ð6:3Þ

Analogous to the considerations about the pressure coefficient β of gases (Sect.

5.5), a logarithmic relation between μ and c is the result:

μ ¼ μ0 þ RTln
c

c0
for c, c0 � c� mass action equation 1ð Þ: ð6:4Þ

We will return to the term “mass action equation” below.

As already mentioned, precise measurements show that the relation (6.4) is not

strictly adhered to. At higher concentrations, values depart quite noticeably from

this relation. If we gradually move to lower concentrations, the differences become

smaller. The equation here expresses a so-called limiting law which strictly applies

only when c! 0. For this reason, we have added the requirement for a small

concentration c, c0 � c�ð Þ to the equation.

In practice, the relation (6.4) serves as a useful approximation up to rather high

concentrations. In the case of electrically neutral substances, deviations are only

noticeable above 100 mol m�3. For ions, deviations become observable above

1 mol m�3, but they are so small that they are easily neglected if accuracy is not

of prime concern. For practical applications, let us remember that:

μ � μ0 þ RTln
c

c0
for c <

100 mol m�3 for neutral substances,

1 mol m�3 for ions:


However, it is precisely for standard concentration c� ¼ 1, 000 mol m�3

¼ 1 mol L�1
� �

(the usual reference value) that the logarithmic relation is not

satisfied for any substance. Still, this concentration is used as the usual starting

value for calculating potentials, and we write:

μ ¼ μ
○ þRTln c

c�
¼ μ

○ þRTlncr for c� c� mass action equation 10ð Þ: ð6:5Þ

Basic Value Here, cr ¼ c=c�ð Þ is the relative concentration. μ
○
, intended as the

basic value (at fixed concentration c�), has been chosen so that the equation gives

the right results at low values of concentration. In contrast to the mass action
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equation 1, the initial value of μ is no longer real, but fictitious. Note that the basic

value μ of a dissolved substance B depends upon pressure p and temperature T,

μ
○
B p; Tð Þ. This distinguishes it from the standard value μ�B � μ

○
B p�; T�ð Þ already

known to us. μ�B represents the value usually tabulated. Even this standard value as

particular basic value is, therefore, not a real value measured at standard

concentration but a fictitious one. This fictitious value which mostly deviates only

slightly from the real value is easier to handle for calculations. The residual term

RTlncr ¼ μ
�
is also called the mass action term.

In its first or second version, this law describes mass action formally as a

characteristic of the chemical potential. We assign to these equations a name in

order to refer to them more easily. In fact, we will assign the same name to all

relations of this type (there are several more of them), “mass action equations.” As
expected, the tendency of a substance to transform increases with its concentration.

This does not happen linearly, though, but logarithmically. We obtain the following

graph for the dependence of the chemical potential of a dissolved substance upon its

concentration (Fig. 6.2).

For small concentrations, the measured curve approximates the dotted logarith-

mic function very well, while, at higher concentrations, the two diverge noticeably.

Depending upon the type of substance, the actual curves can run above or below the

logarithmic ones. Keep in mind that the basic value μ
○
of the chemical potential of

the dissolved substance coincides with the logarithmic approximation and not with

the measured function!

Decapotential The logarithmic initial part of the μ(c) curve, which theoretically

extends to �1, is the same for all substances in every type of milieu. If the

concentration increases one decade (a factor of ten), the chemical potential always

increases by the same amount μd, the so-called decapotential (which is still

dependent upon temperature T):

Fig. 6.2 Dependence of the

chemical potential upon

concentration.

6.2 Concentration Dependence of Chemical Potential 157



μ! μþ μd for c! 10c, as long as c� c�:

In order to calculate the μd value at room temperature, we only need to go back to

the first of our mass action equations [Eq. (6.4)] and to insert c¼ 10c0:

It is helpful to remember the value μd� 5.7 kG (approximately �6 kG) in order

to quickly estimate the influence of a change of concentration of a substance upon

the level of its potential or vice versa.

In summary, when the concentration c of a substance increases to 10 times its

initial value at room temperature, its chemical potential μ increases by 6 kG. It does
not matter,

• What substance it is,

• What it is dissolved in,

• How often this step is repeated (as long as the concentration remains small

enough).

Practical Examples To obtain a better impression of the order of magnitude of the

potentials, we will look at a concrete example. We have chosen μ(c) for ethanol in
water (Fig. 6.3). The basic value of the potential of dissolved ethanol has been

added to the graph. This value lies only about 0.1 kG above the actual μ value at

standard concentration. The basic value of pure ethanol has also been included.

(The peculiarities in the case of basic values of (nearly) pure substances will be

discussed later.)

Using the newly derived relations, we will again take a closer look at evapora-

tion. When the vapor is diluted by air, say, by a factor of 100 (by two orders of

magnitude), its potential goes down by around 2� 5.7 kG ¼ 11.4 kG to about

�240.0 kG. At that point, μ(H2Ojg) actually lies below the value for liquid water

Fig. 6.3 Dependence upon

concentration of the

chemical potential of

ethanol in water at 298 K.
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(�237.1 kG) and evaporation takes place. At a concentration of 1=30, the air is

already so moist that it cannot absorb any more water. It is said to be saturated. A

concentration of 1=30 means about 1.5 orders of magnitude below the concentration

of pure vapor. Therefore, the water vapor potential lies about 1.5� 5.7 kG¼ 8.6 kG

below the value for pure vapor. At �237.2 kG, it is at about the same level as that

of liquid water and the drive to evaporate disappears. Even a little higher concen-

tration leads to condensation, and the excess water precipitates as dew.

6.3 Concentration Dependence of Chemical Drive

We can now use what we have learned to easily show how shifts in concentration

affect the chemical drive to react. Observe the following reaction

Bþ B0 þ . . .! Dþ D0 þ . . .

between dissolved substances, meaning in a homogeneous solution. The drive

results in

A ¼ μB þ μB0 þ . . .½ � � μD þ μD0 þ . . .½ �:

If all the substances are present in small concentrations, we can apply the mass

action equation for all of them:

A ¼ μ
○
B þ RTlncr Bð Þ þ μ

○
B0 þ RTlncr B0

� �þ . . .
h i
� μ

○
D þ RTlncr Dð Þ þ μ

○
D0 þ RTlncr D0

� �þ . . .
h i

:

The terms of the equation can be sorted a bit

A¼ μ
○
Bþ μ

○
B0 þ . . .� μ

○
D� μ

○
D0 � . . .

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A
○

þRT lncr Bð Þþ lncr B0
� �þ . . .

�

�lncr Dð Þ� lncr D0
� �� . . .�:

The logarithmic terms can be summarized by using the logarithm rules ln x + ln y ¼
ln(x � y) and ln x�ln y ¼ ln(x/y) [Eqs. (A1.1) and (A1.2)]:

A ¼ A
○ þRTln

cr Bð Þ � cr B0ð Þ . . .
cr Dð Þ � cr D0ð Þ . . . : ð6:6Þ

The result is A
○ ¼ μ

○
B þ μ

○
B0 þ . . .� μ

○
D � μ

○
D0 � . . . for the basic value A

○
of the

chemical drive. It expresses the (hypothetical) drive when all reaction partners have
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the standard concentration of 1 kmol m�3, and all other influences (except of mass

action) are negligible.

RTln
cr Bð Þ � cr B0ð Þ � . . .
cr Dð Þ � cr D0ð Þ � . . . ¼ A

�
; in turn, represents the mass action term.

The mass action term A
�
summarizes the deviations from the basic value of the

individual substances which are caused by mass action.

We will explain the influence of concentration shifts upon the chemical drive

using the example of cleavage of cane sugar,

Suc
��wþ H2O

��l! Glc
��wþ Fru

��w:
Suc is the abbreviation for cane sugar (sucrose, C12H22O11), and Glc and Fru

represent the isomeric monosaccharides grape sugar (glucose, C6H12O6) and fruit

sugar (fructose, C6H12O6). From the chemical potentials, we obtain the following

for the drive A:

A¼μ Sucð Þþμ H2Oð Þ�μ Glcð Þ�μ Fruð Þ,

¼ μ
○
Sucð ÞþRTln

c Sucð Þ
c�
þ μ

○
H2Oð Þ� μ

○
Glcð Þ�RTln

c Glcð Þ
c�
� μ

○
Fruð Þ�RTln

c Fruð Þ
c�

,

¼ μ
○
Sucð Þþ μ

○
H2Oð Þ� μ

○
Glcð Þ� μ

○
Fruð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A
○

þRTln c Sucð Þ �c�
c Glcð Þ �c Fruð Þ :

We cannot apply the mass action equation to water because its concentration lies far

outside the equation’s range of validity, c(H2O) � 50 kmol m�3. The potential

curves for high c values are very flat, and the c(H2O) value in dilute solutions does

not differ significantly from the concentration for pure water, so it is not only

possible to replace the actual c(H2O) value with that of pure water but that is what

we must do. We will indicate the potential for the pure solvent (in this case water)

similarly to the basic potentials of dissolved substances with the index ○ placed

above the symbol: μ
○

H2Oð Þ. In general, solvents in dilute solutions can be approx-

imated well by pure substances. Therefore, we obtain for the drive of the cleavage

of cane sugar at standard conditions:

A brief comment about how to write arguments and indexes: μ(H2O), c(H2O) . . .
and μH2O

, cH2O . . . are treated as equivalent forms. In the case of long names of

substances or substance formulas with indexes (such as H2O) or an accumulation of

indexes, the preferred way of writing is the first one, otherwise, for the sake of

brevity, the second.
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The generalization on reactions where not all conversion numbers are just +1

(for products) or �1 (for reactants) is not difficult. Because we would like to retain

the usual representation of the conversion formula with the starting substances on

the left side of the reaction arrow, we choose the following notation:

vBj jBþ vB0j jB0 þ . . .! vDDþ vD0D
0 þ . . . :

Because the conversion numbers of reactants are negative, their absolute values

characterized by two vertical lines have to be applied. The drive of the process can

be calculated by using the same procedure as above:

A ¼ vBj jμB þ vB0j jμB0 þ . . .½ � � vDμD þ vD0μD0 þ . . .½ �:

If the concentration dependence of the chemical potential for dissolved substances

is applicable to all of them, the calculation results in

A ¼ vBj j μ○B þ vBj jRTlncr Bð Þ þ vB0j j μ○B0 þ vB0j jRTlncr B0
� �þ . . .

h i
� vD μ

○
D þ vDRTlncr Dð Þ þ vD0 μ

○
D0 þ vD0RTlncr D0

� �þ . . .
h i

:

We can rearrange

A ¼ vBj j μ○B þ vB0j j μ○B0 þ . . .� vD μ
○
D � vD0 μ

○
D0 � . . .

h i
þ RT vBj jlncr Bð Þ þ vB0j jlncr B0

� �þ . . .� vDlncr Dð Þ � vD0 lncr D0
� �� . . .

� �
and obtain finally

A ¼ A
○ þRTln cr Bð Þ

vBj j � cr B0ð Þ vB0j j � . . .
cr Dð ÞvD � cr D0ð ÞvD0 � . . . : ð6:7Þ

Here, additionally the logarithm rule (A1.3) has been applied: log(xa)¼ a � log x.
Let us now take another look at a concrete example. For this, we choose the

reaction of Fe3+ ions with I� ions:

2 Fe3þ
��wþ 2 I�

��w! 2 Fe2þ
��wþ I2

��w:
Therefore, the conversion numbers are v(Fe3+)¼�2, v(I�)¼�2, v(Fe2+)¼ +2, and

v(I2)¼ +1, the absolute values of the reactants in either case being 2. Insertion into

Eq. (6.7) results in
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A ¼ A
○ þRTln cr Fe

3þð Þ2 � cr I�ð Þ2
cr Fe2þð Þ2 � cr I2ð Þ

: ð6:8Þ

However, the concentrations do not remain constant during a reaction. They change

in the course of the reaction. If there is only one substance at the beginning, its

concentration decreases continuously to the benefit of the product. Using the

simplest reaction possible, we will discuss the transformation of a substance B

into a substance D:

B! D:

An example would be the transition of α-D-glucose into the isomeric β-D-glucose in
aqueous solution. These are two stereoisomers of glucose C6H12O6, i.e., the isomers

do not differ in the structure (unlike the structural isomers described in Sect. 1.2)

but only in the spatial placement of substituents with the same bond structure. In our

case, the position of the OH group at the first C atom (characterized by *) is

different. This OH group was formed by the ring closure thereby making the first

C atom chiral as well, since its four bonds lead to four different groups. α-D-glucose
and β-D-glucose only differ at this newly formed stereocenter.

(The transition takes place via the open-chain aldehyde form, but its concentra-

tion is so small that it can be ignored.)

We obtain for the drive of the transition at standard conditions:

The two substances are optically active, i.e., the plane of linearly polarized light

is rotated when the light passes through their solutions. Pure α-D-glucose shows an
angle of rotation of +112�, pure β-D-glucose, however, one of +18.7�. Therefore, a
polarimeter (a scientific instrument used to measure the angle of rotation) can be
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used to observe the change in the solution’s angle of rotation. When crystals of pure

α-D-glucose are dissolved in water, the specific rotation of the solution decreases

gradually from an initial value of +112� to a value of +52.7�.
In Sect. 1.7, the extent of conversion (extent of reaction) ξ was introduced as a

measure of the progress of a reaction. The amounts ni and therefore the concentra-

tions ci¼ ni/V of the substances involved change with increasing ξ. Starting with the
initial values ni,0 and ci,0, respectively, we obtain:

ni ¼ ni, 0 þ viξ and ci ¼ ci, 0 þ vi � ξ=V: ð6:9Þ

The drive A of a reaction changes obligatorily along with the concentrations ci. If
one assumes a concentration of c0 of the starting substance B as well as an absence

of the final product D at the beginning of the reaction, the concentration of D after a

certain period of time will be ξ/V, that of B c0� ξ/V. Therefore, the following

relation for the dependence of the drive upon the extent of conversion is obtained:

A ¼ A
○ þRTln c0 � ξ=Vð Þ=c�

ξ=Vð Þ=c� ¼ A
○ þRTln c0 � ξ=V

ξ=V
: ð6:10Þ

For the sake of simplicity, we will now relate the extent of conversion ξ to the

maximum possible value ξmax. This value is reached when one of the starting

substances (here only one) is entirely consumed, i.e., its concentration disappears.

In this case, the numerator c0� ξ/V equals 0, a fact that results in c0¼ ξmax/V.
Dividing numerator and denominator by c0 yields:

A ¼ A
○ þRTln 1� ξ=ξmax

ξ=ξmax

: ð6:11Þ

Because we will use the quotients ξ/V and ξ/ξmax frequently, we assign to them their

own symbol and name:

cξ :¼ ξ

V
“density of conversion, ” αξ :¼ ξ

ξmax

“degree of conversion:” ð6:12Þ

The index ξ is added for clarification to avoid confusion with the molar concentra-

tion ci and the temperature coefficient αi of the chemical potential. For the drive, we

obtain correspondingly:

A ¼ A
○ þRTln c0 � cξ

cξ
or A ¼ A

○ þRTln 1� αξ
αξ

: ð6:13Þ

With a standard value ofA� ¼ 1:25 kG for the transition of α-D- into β-D-glucose at
room temperature, a characteristic S-shaped curve is obtained for the dependence of

chemical drive upon degree of conversion αξ (Fig. 6.4).
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At the beginning of the reaction, meaning for αξ¼ 0, A equals +1. A decreases

during the reaction and, at an A
○
dependent αξ value, finally reaches a value of zero

(equilibrium point). When all the starting substance has been used up, meaning at

αξ¼ 1, A takes a final value of �1.

The mathematical relation becomes rather complicated for reactions with a more

complex stoichiometry such as the reaction of Fe3+ ions with I� ions mentioned

above. For better overview, it would be advisable in this case to create a kind of

table (Table 6.1). For each substance involved, the table lists in the first row the

standard value of its chemical potential for calculating the drive of the reaction

under standard conditions. In the following, we assume that at the beginning of the

reaction, Fe3+ and I� both have a concentration of c0 and that Fe
2+ and I2 are absent.

The concrete values of the initial concentrations of the substances follow in the next

row. Finally, the formulas for the concentrations at an arbitrary time t are listed

which can be calculated by using the stoichiometry of the reaction. cξ is the density
of conversion mentioned above.

If we insert the expressions for the concentrations ci into Eq. (6.8), we obtain for
the drive of the reaction:

Fig. 6.4 Dependence of

chemical drive A upon the

degree of conversion αξ for
the transition of α-D-glucose
into β-D-glucose in an

aqueous solution at room

temperature.
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A ¼ A
○ þRTln c0 � 2cξ=c

�ð Þ½ �2 � c0 � 2cξð Þ=c�½ �2
2cξð Þ=c��2 � �cξ=c�� �

¼ A
○ þRTln c0 � 2cξð Þ4

4cξ3 � c� : ð6:14Þ

The density of conversion cξ reaches its maximum value if c0� 2cξ in the numerator

vanishes, meaning c0¼ 2cξ,max. If we also consider the relationship αξ¼ cξ/cξ,max

(¼ ξ/ξmax), the equation above can be written as follows:

A ¼ A
○ þRTln 2 1� αξð Þ4c0

αξ3 � c� : ð6:15Þ

Despite the more complex stoichiometry of the reaction and the correspondingly

more complicated calculations, we obtain again the typical S-shaped curve

(Fig. 6.5).

Let us remind ourselves of the criteria for a transformation which we were

introduced to in Chap. 4: A reaction takes place spontaneously as long as drive A
is positive. At A ¼ 0, there is equilibrium. A negative drive forces a reaction

backward against the direction the reaction arrow points in.

Here are some important consequences for the reaction process:

• Every homogeneous reaction begins spontaneously (if the concentrations of the

reaction products are equal to zero at the beginning, we start with A ¼ þ1).

• At a certain extent of conversion, the reaction ceases to change the ratio of

reactants to products. We can also say that equilibrium is established.

• Equilibrium can be reached from both sides, meaning from the side of the

starting substances as well as from the side of the reaction products.

In equilibrium, neither the forward reaction nor the backward reaction takes

place spontaneously. Macroscopically speaking, there is no more transformation

and the composition of the reaction mixture remains constant. However, forward

and backward reactions do continue to occur at the microscopic level between the

particles. These happen at identical rates though, so that the transformations in the

two directions compensate for each other. In this case, one speaks traditionally of a

dynamic equilibrium, an equality of forward and backward “forces” although one

means a kinetic equilibrium, an equality of forward and backward reaction rates.

We will go into this in more detail later on in Sect. 17.2.

Table 6.1 Collection of data relevant for a concrete reaction
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6.4 The Mass Action Law

What is commonly known as the mass action law as defined by Guldberg and

Waage is a consequence of a combination of the mass actions of individual sub-

stances participating in a reaction. Let us, once again, consider a reaction in a

homogeneous solution

Bþ B0 þ . . . ⇄ Dþ D0 þ . . . :

Equilibrium is established when there is no longer any potential gradient and the

drive A disappears. Therefore:

A ¼ A
○ þRTln cr Bð Þ � cr B

0ð Þ � . . .
cr Dð Þ � cr D0ð Þ � . . . ¼ 0: ð6:16Þ

By solving the equation for A
○
and applying �ln(x/y)¼ ln(y/x), we obtain

A
○ ¼ �RTln cr Bð Þ � cr B

0ð Þ � . . .
cr Dð Þ � cr D0ð Þ � . . . ¼ RTln

cr Dð Þ � cr D0ð Þ � . . .
cr Bð Þ � cr B0ð Þ � . . . :

When we divide by RT and take the antilogarithm, we finally obtain

Fig. 6.5 Dependence of

drive A upon the degree of

conversion αξ for the reaction
2Fe3++2I�! 2Fe2++ I2 in

an aqueous solution at room

temperature (at initial

concentrations of Fe3+ and I�

of 0.001 kmol m�3).
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K
○ ¼ cr Dð Þ � cr D0ð Þ � . . .

cr Bð Þ � cr B0ð Þ � . . .
� �

eq:

ð6:17Þ

with

K
○

:¼ exp
A
○

RT
: ð6:18Þ

Equation (6.17) characterizes the relationship between concentrations in equilibrium
which has been referred to by the index eq. and shows a possible form of the mass

action law for the reaction. The quantity K
○

which is called the equilibrium constant
of the reaction is so named because it does not depend upon the concentration of the

substances. A more precise name, however, would be equilibrium number because

K
○

is a number and it is not constant but dependent upon temperature, pressure,

solvent, etc. The index ○, which is actually superfluous, has been inserted in order to

emphasize that K
○

is to be formed from A
○
(and not from A!).

For the more general reaction between dissolved substances

vBj jBþ vB0j jB0 þ . . .⇄ vDDþ vD0D
0 þ . . .

we obtain entirely appropriately

K
○ ¼ cr Dð ÞvD � cr D0ð ÞvD0 � . . .

cr Bð Þ vBj j � cr B0ð Þ vB0j j � . . .

 !
eq:

: ð6:19Þ

Conventionally, the relative concentrations cr are replaced by c=c� and the fixed

standard concentration c� is combined with the equilibrium number K
○

to form the

new equilibrium constant K
○

(κ “dimension factor”):

K
○ ¼ κK

○
, where κ ¼ c�ð Þvc with

vc ¼ vB þ vB0 þ � � � þ vD þ vD0 þ � � �: ð6:20Þ

vc is the sum of the conversion numbers of dissolved substances, more precisely,

those substances which show a dependence of the chemical potential upon concen-

tration c; this is indicated by the index c. If the chemical potentials of all substances

involved are concentration dependent, this fact can be emphasized by writing K
○
c

and K
○

c. As stated above, K
○
is always a number while the conventional constant K

○

has the unit (mol m�3) vc . Only when vc happens to be 0, are K
○
and K

○
identical. K

○
is

the more convenient quantity for formulating the mass action law,
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K
○ ¼ K

○

c ¼ c Dð ÞvD � c D0ð ÞvD 0 � . . .
c Bð Þ vBj j � c B0ð Þ vB0j j � . . .

 !
eq:

; ð6:21Þ

while, for general considerations, K
○
is preferred since its dimension is the same for

all reactions.

Here is an example of what has been said. With the help of the Table in Sect. A2.1

of the Appendix we will determine the acidity constant of acetic acid (CH3COOH),

abbreviated to HAc, in an aqueous solution, i.e., the equilibrium constant for the

dissociation of acetic acid in water

or the equilibrium constant for the proton transfer from acetic acid to water in

Brønsted’s sense (this will be discussed in more detail in the next chapter)

In both cases, the chemical drive has the same value meaning that the equilib-

rium numbers calculated by using this value are identical:

K� ¼ exp A�=RTð Þ ¼ 1:74� 10�5. Because the dimension factors κ ¼ c�ð Þvc are
equal (vc,1¼�1 + 1 + 1¼ +1¼ vc,2, since the solvent water is treated as pure sub-

stance and therefore does not appear in the sum vc,2 of conversion numbers), this is

also valid for the equilibrium constants K� ¼ 1:74� 10�5 kmol m�3. In the first

case, the mass action law is written numerically as

K
○
1 ¼ cr H

þð Þ � cr Ac�ð Þ
cr HAcð Þ and K

○

1 ¼ c Hþð Þ � c Ac�ð Þ
c HAcð Þ ¼ κK

○
1:

In the second case, when we take into account that the solvent water has to be

treated as a pure substance, we obtain for the mass action law

K
○
2 ¼ cr H3O

þð Þ � cr Ac�ð Þ
cr HAcð Þ and K

○

2 ¼ c H3O
þð Þ � c Ac�ð Þ

c HAcð Þ ¼ κK
○
2:

We have to keep in mind that H+jw and H3O
+jw are merely two different notations

for the same kind of particle. From now on, we will avoid the rather cumbersome

index eq. as long as it is clear from the relation, as in this example, that we are

dealing with the equilibrium composition.

The mass action law’s range of validity is the same as that of the mass action

equations (from which it is derived). The smaller the concentrations, the more
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strictly the law applies. At higher concentrations, deviations occur as the result of

molecular or ionic interactions.

The magnitude of the equilibrium number determined unambiguously by A
○

according to Eq. (6.18) or the equivalent relation

A
○ ¼ RTln K

○ ð6:22Þ

is a good qualitative indication for how a reaction proceeds. The more strongly

positive A
○
is, the greater K

○
(K
○ � 1) is. In this case, the final products dominate in

the equilibrium composition. Because of the logarithmic relation, even small

changes to A
○
lead to noticeable shifts in the position of equilibrium. On the other

hand, if A
○

is strongly negative, K
○

approaches zero ( K
○ � 1) and the starting

substances dominate in the equilibrium composition. At the same time, this also

means that, even for negative A
○
, very small amounts of the starting substances are

still converted into the final products because K
○
has a small yet finite value. When

A
○ � 0 and therefore K

○ � 1, the starting substances and final products are present

in comparable amounts in equilibrium. (Keep in mind, however, that in all three

cases discussed, A ¼ 0! since we have equilibrium in any case.)

With the help of the equilibrium number or the conventional equilibrium

constant, the equilibrium composition of a mixture which has formed by sponta-

neous transformation of given amounts of starting substances can be quantitatively

determined. If, for example, pure α-D-glucose at the concentration

c0¼ 0.1 kmol m�3 is dissolved in water, one can use a polarimeter to observe the

continuous change to the angle of rotation until a constant value is finally achieved.

This can be ascribed to the partial transition of α-D-glucose into β-D-glucose
(remember the discussion further above). If we indicate the concentration of β-D-
glucose in equilibrium by the density of conversion cξ (which corresponds in this

case to the concentration of β-D-glucose) we obtain in equilibrium

K
○ ¼ κ � exp A

○

RT
¼ cξ

c0 � cξ
:

The dimension factor κ equals 1 because of vc¼ 0. The equilibrium constant at

room temperature can be calculated by use of the standard valueA� ¼ 1:25 kG(see

Sect. 6.3):

K� ¼ exp
1:25� 103 G

8:314 GK�1 � 298 K
¼ 1:66:

Solving for cξ results in:
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cξ ¼ K� � c0
K� þ 1

¼ 1:66� 0:1 kmol m�3

1:66þ 1
¼ 0:0623 kmol m�3:

According to this, the state of equilibrium shows that 37.7 % of all dissolved

molecules are α-D-glucose molecules and 62.3 % are β-D-glucose molecules.

The mathematical relations become rather complicated for reactions with a more

complex stoichiometry. If we like to determine for example the equilibrium com-

position in the case of the reaction

2 Fe3þ
��wþ 2 I�

��w! 2 Fe2þ
��wþ I2

��w
characterized by Table 6.1, we obtain

K
○ ¼ κ � exp A

○

RT
¼ 4cξ

3

c0 � 2cξð Þ4

with the dimension factor κ ¼ c�ð Þ�1 ¼ 1 kmol�1 m3 (because of vc¼�2� 2 + 2

+ 1¼�1). Because the value of A� is positive and relatively high (A� ¼ þ29 kG),

we have K� � 1, i.e., we can expect that the final products dominate in the

equilibrium composition. For more detailed data we have to solve the equation

above for cξ. Because a higher degree polynomial is involved, a numerical tech-

nique using appropriate mathematical software or a graphical approach is advis-

able. The equilibrium point can be determined from the figure in Sect. 6.3:

αξ¼ cξ/cξ,max� 0.79. The concentrations of the substances in the equilibrium mix-

ture are therefore c(Fe3+)� 0.21 mol m�3 and c(I�)� 0.21 mol m�3 for the starting
substances and c(Fe2+)� 0.79 mol m�3 and c(I2)� 0.39 mol m�3 for the final

products, respectively.

We can also use Eq. (6.22) the other way around to experimentally determine the

basic drive A
○

of a reaction. In order to do this, it suffices to first calculate the

equilibrium number K
○

and then to derive A
○

from it. At first glance, this looks

amazingly easy, but the reaction can be so strongly inhibited that the concentrations

being determined do not correspond to equilibrium values. This obstacle can be

overcome, though, by adding a catalyst (compare to Sect. 19.2). As long as the

added amount remains small, the position of equilibrium does not change and we

can directly use the equilibrium values obtained in this way in Eq. (6.19). Once the

basic drive is known, the drive for any other concentration can be calculated

provided that its values lie within the range of validity of the mass action equations.
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6.5 Special Versions of the Mass Action Equation

Until now, we have described mass action by using functions in which the concen-

trations c or, more exactly, the ratios c/c0 or c=c
� appear as arguments. Instead of c,

it would be possible to introduce any other measure of composition as long as it is

proportional to concentration. This is almost always the case at small c values. We

will highlight two of these measures here because they are of greater importance.

When the pressure of a gas is increased, the concentration of the gas particles

also increases because they are compressed into a smaller volume. If the temper-

ature remains unchanged, the concentration grows proportionally to the pressure:

c ~ p, or

c

c0
¼ p

p0
: ð6:23Þ

As a result, the concentration ratio in the mass action equation for gases can be

replaced by the pressure ratio:

μ ¼ μ0 þ RTln
p

p0
for p, p0 � 10p� mass action equation 2ð Þ: ð6:24Þ

This equation is precise enough to be applied to pressures up to about 102 kPa

(1 bar). It also lends itself to estimates up to 103 or even 104 kPa. In anticipation of

this, we have applied the equation above to treating the pressure dependence of the

chemical potential of gases [cf. Eq. (5.18)].

The mass action equation 2 can be generalized somewhat. In the case of gaseous

mixtures, one imagines that each component A, B, C, . . . produces a partial
pressure which is independent of its partners in the mixture. This corresponds to

the pressure that the gaseous components would have if they alone were to fill up

the available volume. The total pressure p of the gaseous mixture is simply equal to

the sum of the partial pressures of all the components present (Dalton’s law):

ptotal ¼ pA þ pB þ pC þ . . . as well as ctotal ¼ cA þ cB þ cC þ . . .ð Þ: ð6:25Þ

If a gas is compressed, the concentrations of all the components and the partial

pressures increase. This is exactly as if the gases were separate from each other. The

formula c ~ p is valid even when p represents only a partial pressure of a gas and not
the total pressure. Hence, the equation c/c0¼ p/p0, as well as the mass action

equation, remains correct if we take c to be the partial concentration and p the

partial pressure of a gas in a mixture.

Normally, the standard pressure p� ¼ 100 kPa is chosen as the initial value for

pressure although at this pressure, the chemical potential μ already deviates some-

what from the value the mass action equation yields. In order to have the results

remain correct at low pressures, the true μ value at standard pressure cannot be

inserted. Instead, a fictitious value which varies from it somewhat must be used.
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(This is analogous to the procedure used for concentrations.) This fictitious value

that is valid for standard pressure can be found in tables and then used to calculate

the potentials at any other, not too high pressure. This special value is also called the

basic value μ
○

which should be indicated again by the index ○ placed above the

symbol:

μ¼ μ
○þRTln p

p�
¼ μ

○þRTlnpr for p� p� mass action equation 20ð Þ; ð6:26Þ

where pr is the relative pressure. In contrast to this, all the μ values in the mass

action equation 2 are real.

Another much used measure of composition is mole fraction x. As long as the

content of a substance in a solution is small, concentrations and mole fractions are

proportional to each other: c ~ x for small c. In turn, this means

c

c0
¼ x

x0
: ð6:27Þ

Hence, x/x0 can replace the concentration ratio c/c0 in the mass action equation:

μ ¼ μ0 þ RTln
x

x0
for x, x0 � 1 mass action equation 3ð Þ: ð6:28Þ

6.6 Applications of the Mass Action Law

Disturbance of Equilibrium One way to disturb a preexisting equilibrium would

be to add a certain amount of one of the starting substances to the reaction mixture.

Gradually, a new equilibrium would be established where the new equilibrium

concentrations differ from the original ones. However, in all, the relations (6.19)

and (6.21), respectively, remain fulfilled.

As an example, we consider the equilibrium in aqueous solution between iron

hexaquo complex cations and thiocyanate anions on the one hand and the blood red

iron thiocyanate complex on the other which can be described in the following

simplified manner:

Fe H2Oð Þ6
� �3þ��wþ 3 SCN�

��w⇄ Fe H2Oð Þ3 SCNð Þ3
� ���wþ 3 H2O

��l:
If the blood red solution is diluted with water, the concentration and therefore also

the chemical potential of the dissolved substances decrease for all substances by the

same amount. This is indicated by an arrow placed above the formulas of the

substances:
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Fe H2Oð Þ6
� �3þ��w#

þ3 SCN�
��w###

⇄ Fe H2Oð Þ3 SCNð Þ3
� ���w#

þ3 H2O
��l:

The potential of water remains nearly unchanged because of its high excess. At the

beginning, the sum of potentials on both sides is equal. Afterward, the equilibrium

is disturbed because the decrease on the left side is four times stronger than that on

the right side. The complex decomposes and its potential decreases, whereas the

potential of the substances on the left side increases. The reaction takes place

(easily observable by the fading of the red color) until the equilibrium is again

established. The pale orange color of the resulting solution is caused by the

iron hexaquo complex. But also this new equilibrium can be displaced again

(Experiment 6.1).

By adding excess iron (III) ions (1st case), their concentration in the solution and

therefore also their potential increase; the reaction runs backwards and correspond-

ingly the color deepens again to blood red. Adding excess thiocyanate ions shows

the same result: the pale orange solution turns red again (2nd case). Both cases can

be illustrated again by arrows above the chemical formulas.

Fe H2Oð Þ6
� �3þ��w" 1st caseð Þ

þ3 SCN�
��w""" 2nd caseð Þ

⇄ Fe H2Oð Þ3 SCNð Þ3
� ���wþ 3 H2O

��l:
But one should keep in mind that together with the dissolved substances, water is

also added which results in dilution. For achieving the desired effect, the added

solutions of Fe3+ and SCN� should therefore not be too thin for achieving the

desired effect.

We can get the same results in a somewhat more cumbersome manner if we

write down the mass action law and take into consideration that numerator and

denominator must increase or decrease by the same factor in order to preserve

equilibrium (water as solvent is treated as pure substance; therefore, it does not

appear in the formula):

Experiment 6.1 Iron(III)
thiocyanate equilibrium: If
Fe3+ or SCN� solutions are

added to the pale orange

dilute iron thiocyanate

solution, it will turn red

again in both cases.
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K
○ ¼ cr Fe H2Oð Þ3 SCNð Þ3

� �� �
crð Fe H2Oð Þ6
� �3þÞ � cr SCN�ð Þ3

:

Diluting with water for example lowers the concentration of the complex but also

the concentrations of the free ions. Therefore, the denominator would decrease

much faster than the numerator. Because the quotient has to remain constant and

equal to K
○
, the numerator must decrease as well: the equilibrium is displaced

toward the reactant side.

Homogeneous Gas Equilibria To obtain homogeneous gas equilibria

vBj jBþ vB0j jB0 þ . . . ⇄ vD Dþ vD0D
0 þ . . .

we can derive the equilibrium number analogously to the homogeneous solution

equilibria, but instead of the mass action equation 10, we refer to the mass action

equation 20. To indicate that partial pressures p replace concentrations c usually the
symbol K

○
p is used instead of simply K

○
:

K
○
p ¼ pr Dð ÞvD � pr D0ð ÞvD0 � . . .

pr Bð Þ vBj j � pr B0ð Þ vB0j j � . . .
: ð6:29Þ

To convert into the conventional equilibrium constant K
○

p a dimension factor must

again be taken into account:

K
○

p ¼ κ K
○
p, where κ ¼ p�ð Þvp with

vp ¼ vB þ vB0 þ . . .þ vD þ vD
0 þ . . . : ð6:30Þ

As an example, let us consider the synthesis of ammonia:

With the standard value of the chemical drive of +33 kG, the corresponding

equilibrium number at room temperature is

K�p ¼
pr NH3ð Þ2

pr N2ð Þ � pr H2ð Þ3 ¼ exp
A�

RT
¼ exp

33� 103 G

8:314G K�1 � 298 K
¼ 6:1� 105:

Because of vp¼�1� 3 + 2¼�2 the conventional equilibrium constant is
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K�p ¼
p NH3ð Þ2

p N2ð Þ � p H2ð Þ3 ¼ p�ð Þvp|fflffl{zfflffl}
κ

�K�p ¼ 6:1� 105 � 100 kPað Þ�2 ¼ 61 kPa�2:

In general, we notice that, depending upon the quantity used to describe the

composition and its standard value c� ¼ 1 kmol m�3, p� ¼ 100 kPa . . .ð Þ, the
same substance yields different basic values μ

○
c, μ

○
p, . . . and therefore different

equilibrium numbers K
○
c, K

○
p, . . . for the same reaction. This is indicated by the

varying indexes. Normally, we use μ
○
c for dissolved substances and μ

○
p for gases. If

there is no index, we simply imagine what it is supposed to be.

Decomposition Equilibria As yet we have only considered homogeneous equi-

libria, i.e., chemical reactions in which all participating substances are in the same

phase. Next we will discuss heterogeneous equilibria in which the substances are in
different phases. Heterogeneous gas reactions in which solid phases are involved

will be our first topic.

We start with a process which is also industrially important, the calcination of

limestone. In the case of the decomposition reaction of calcium carbonate in a

closed container described by

two pure solid phases (CaCO3 and CaO) and a gas phase are in equilibrium. The

mass action equation 20 is applied for the gas carbon dioxide. But how can we take

pure solid substances (or pure liquids) B into account? In the case of these sub-

stances, the mass action term RTlncr(B) is omitted, i.e.,μ Bð Þ ¼ μ
○
Bð Þ; the pure solid

substance does not appear in the mass action law. In a dilute solution, this is also

valid for the solvent which can be treated as a pure substance (see Sect. 6.3). The

equilibrium number at standard temperature, K
○
p T�ð Þ ¼ K�p , for the decomposition

of carbonate is therefore equal to

K
○
p ¼ pr CO2ð Þ with K�p ¼ exp A�=RT�ð Þ ¼ 1:1� 10�23 at 298 K: ð6:31Þ

The conventional equilibrium constant K
○

p ¼ κK
○
p with κ ¼ p�ð Þvp results in

K
○

p ¼ p CO2ð Þ with K�p ¼ p� � K�p ¼ 100 kPa� 1:1� 10�23

¼ 1:1� 10�21 kPa ð6:32Þ

because of vp¼ 1. The equilibrium constant is identical to the decomposition

pressure, i.e., the pressure of carbon dioxide at equilibrium, and hence not
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dependent on the amounts of the solid substances. Even though the pure solid

substances do not appear in the mass action law, they have to be present for

establishing equilibrium. The decomposition pressure is very low at room temper-

ature, but it still depends (like the equilibrium constant) on temperature (see also

Sect. 5.5 and Fig. 5.13). Only at temperatures considerably above 800 K, a

noticeable pressure of carbon dioxide exists.

When the calcium carbonate is, however, heated in an open furnace like a lime

kiln, the gas escapes into the surroundings, equilibrium is not established, and all of

the carbonate decomposes.

The decomposition of crystalline hydrates, etc., can be described in the

same way.

Phase Transitions The approach can also be applied to transitions where the state

of aggregation changes. The evaporation of water represents an example for such

a phase transition where a gas participates. The equilibrium number K
○
p for the

equilibrium between liquid water and water vapor in a closed system,

results in

K
○

p ¼ pr H2O
��g� �

with K�p ¼ 3:24� 10�2 at 298 K: ð6:33Þ

Liquid water as pure liquid does not appear in Eq. (6.33). The corresponding

conventional equilibrium constant is

K
○

p ¼ p H2O
��g� � ¼ plg H2Oð Þ: ð6:34Þ

Hence, the equilibrium constant represents the (saturation) vapor pressure of water,

i.e., the pressure of water vapor in equilibrium with liquid water at the temperature

considered. We will discuss phase transitions in more detail in Chap. 11.

Solubility of Ionic Solids Our next topic is heterogeneous solution equilibria. A
substance submerged in a liquid will generally begin to dissolve. The extremely low

chemical potential μ of this substance in the pure solvent rises rapidly—remember

that μ!�1 for c! 0—with increasing dissolution and therefore concentration.

The process stops when the chemical potential of the substance in the solution is

equal to that of the solid, i.e., equilibrium is established. We then refer to the

solution as saturated, i.e., the solution contains as much dissolved material as

possible under given conditions (temperature, pressure, such as standard

conditions).
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If the substance dissociates when dissolved, such as a salt in water

AB
��s ⇄ Aþ

��wþ B�
��w;

the products of the dissociation compensate together for the “tendency to trans-

form” μ(AB) of the salt AB:

μ ABð Þ ¼ μ Aþð Þ þ μ B�ð Þ:

The mass action law for the dissolution process, here the transition from solid state

to dissolved, s!d, is

K
○

sd ¼ cr A
þð Þ � cr B�ð Þ; ð6:35Þ

with

K
○

sd ¼ exp
A
○

sd

RT
¼ exp

μ
○

ABð Þ � μ
○

Aþð Þ � μ
○

B�ð Þ
RT

;

as long as some undissolved AB is present. Here the mass action term for a pure

solid and therefore also the denominator in Eq. (6.35) have been omitted. Thus, the

product of the relative concentrations of the ions in a saturated solution is constant

under given conditions. In chemistry, the value K
○
sd usually receives its own name,

solubility product. (This is commonly indicated by the index sp ðK○ spÞ, but for the
sake of consistency, we will use sd.) If a substance dissociates into several ions,

then K
○
sd consists of the corresponding number of factors.

If the concentration of one of the ions, e.g., c(A+), increases, the concentration of

the second, c(B�), must decrease in order to maintain equilibrium. This means that

the substance AB precipitates from the solution. As an example, we consider a

saturated table salt solution in which solid NaCl is in equilibrium with its ions in the

solution (Experiment 6.2):

Consequently, the equilibrium number K�sd at room temperature is 37.8. The

heterogeneous equilibrium can be described by the solubility product:

K
○

sd ¼ cr Na
þð Þ � cr Cl�ð Þ:

For the concentration csd ¼ c Naþð Þ ¼ c Cl�ð Þ ¼ c�
ffiffiffiffiffiffiffiffi
K�sd

p
of the saturated

solution (saturation concentration) at 298 K, we obtain the value 6.1 kmol m–3

that corresponds—better than expected—to the measured value of 5.5 kmol m–3.
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Consequently, adding compounds which have an ionic species in common with

the salt under consideration, affects its solubility.

In the case of readily soluble salts we can only indicate general trends due to

the strong ion–ion interaction in concentrated electrolyte solutions especially

if polyvalent ions are involved. However, quantitative statements can be made

in the case of slightly soluble compounds. As an example, let us consider lead

(II) iodide:

with K�sd ¼ 8:6� 10�9 at room temperature. The mass action law for the solution

equilibrium is

K
○

sd ¼ cr Pb2þ
� � � cr I�ð Þ2:

We can calculate the saturation concentration csd of this salt from the numerical

value for the solubility product at 298 K. In our example, the stoichiometry of

equilibrium results in two I� ions being produced for one Pb2+ ion. In contrast to the
case of table salt, we now have

c Pb2þ
� � ¼ csd and c I�ð Þ ¼ 2csd:

Insertion results in

K
○

sd ¼ csd=c
�ð Þ � 2csd=c

�ð Þ2 ¼ 4csd
3= c�ð Þ3

and the saturation concentration at 298 K is

Experiment 6.2 Solubility
product of table salt: When

Na+ ions (in the form of

concentrated sodium

hydroxide solution) or Cl�

ions (in the form of

concentrated hydrochloric

acid) are added to the

saturated table salt solution,

NaCl precipitates.
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csd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K�sd=4

3
q

c�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:6� 10�9=43

q
kmol m�3 ¼ 1:3� 10�3 kmol m�3:

It is now possible to estimate the effect of adding one type of the ions. Let us add

enough of a concentrated NaI solution to the saturated lead iodide solution so that

the I� concentration will be equal to 0.1 kmol m�3. Now, with the extra iodide ions
present, the concentration of lead ions results in:

c Pb2þ
� � ¼ K�sd

c I�ð Þ=c�ð Þ2 c
� ¼ 8:6� 10�9

0:01
kmol m�3 ¼ 8:6� 10�7 kmol m�3:

As expected, adding I� drastically decreases the lead concentration. But “too much

of a good thing” can be bad because a too big excess of I� results in the formation of

soluble complexes, e.g., PbI2 þ I� ! PbI�3 . This effect too could be calculated with
the help of our approach.

The solubility of certain slightly soluble compounds can be controlled by

different means as well, for example, by the pH value. We shall conclude this

section by discussing the following interplay between the precipitation and the

dissolution processes: When a potassium dichromate solution is added to a barium

chloride solution (Experiment 6.3), a yellow precipitate of slightly soluble barium

chromate is formed according to

2 Ba2þ
��wþ Cr2O

2�
7

��wþ H2O
��l⇄ 2 BaCrO4

��sþ 2 Hþ
��w:

To be more precise, the concentrations of the starting substances decrease, i.e.,

barium chromate precipitates until equilibrium is established.

The precipitate dissolves after addition of hydrochloric acid. The concentration

of H+ ions and therefore their chemical potential increase. For reestablishing the

equilibrium, BaCrO4 has to dissolve:

Experiment 6.3 Precipitation of
barium chromate: When a K2Cr2O7

solution is added to a BaCl2 solution, a

yellow precipitate of BaCrO4 is

formed which gradually settles down

at the bottom of the goblet. Addition of

hydrochloric acid dissolves the

precipitate again (on the left). If the
solution is filtrated instead and solid

sodium acetate is added to the clear

filtrate, more BaCrO4 precipitates

(on the right).
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2 Ba2þ
��wþ Cr2O

2�
7

��wþ H2O
��l ⇄ 2 BaCrO4

��sþ 2 Hþ
��w""

:

If, on the other hand, the H+ ions which are released during precipitation are

removed in the filtrate by adding sodium acetate (Ac�+H+!HAc), their chemical

potential decreases. Consequently, more BaCrO4 has to precipitate.

The same result can be obtained by considering the mass action law:

K
○ ¼ cr H

þð Þ2
cr Ba2þ
� �2 � cr Cr2O

2�
7

� � :
By adding H+ the numerator increases so that the denominator must also increase

in order for the quotient to remain constant and equal toK
○
. However, the concen-

trations crðBa2þÞ and crðCr2O2�
7 Þ can only increase when the precipitated BaCrO4

dissolves.

Solubility of Gases Next we will discuss the dissolution behavior of gases. If a gas

B is brought into contact with a liquid (or solid), it diffuses within it, B
��g ⇄ B

��d,
until the chemical potential of the gas inside is as high as outside, μ(Bjg)¼ μ(Bjd).
Consequently, the chemical drive Ag!d ¼ μ B

��g� � � μ B
��d� �

of the diffusion pro-

cess has disappeared. μ(Bjd) is described by the mass action equation 10, μ(Bjg),
however, by the mass action equation 20. The equilibrium number K

○
g!d or, more

briefly, K
○
gd turns out to be

K
○

gd ¼
cr B

��d� �
pr B

��g� � with K
○

gd ¼ exp
A
○
gd

RT
¼ exp

μ
○

B
��g� �� μ

○
B
��d� �

RT
: ð6:36Þ

Taking into account that in this case, K
○

corresponds to neither K
○
c nor K

○
p, but

represents a so-called mixed constant K
○

pc. Like the mass action equations them-

selves, this relation is only valid as long as the concentration c in the solution and

the pressure p outside it are small. Written in the conventional way, the equilibrium

constant is

K
○

gd ¼
c B

��d� �
p B

��g� � with K
○

gd ¼ K
○

gd � c
�

p�
: ð6:37Þ

The solubility of a gas at constant temperature is therefore proportional to its partial

pressure above the solution, c(B) ~ p(B). This relation was already discovered

empirically in 1803 by the English chemist William Henry (Henry’s law). There-

fore, K
○

gd is also known as the Henry constant K
○

H.
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Let us take a look at an example, the solubility of oxygen in water, a quantity of

prime importance for biological processes in bodies of water:

In this case, the standard value of the chemical drive is �16.4 kG. The equilib-

rium number at room temperature is equal to

K�gd ¼
cr O2

��w� �
pr O2

��g� � with K�gd ¼ exp
�16, 400 G

8:314 G K�1 � 298 K
¼ 1:3� 10�3;

while the conventional equilibrium constant results in

K�gd ¼
c O2

��w� �
p O2

��g� � with K�gd ¼ 1:3� 10�3 � 1 kmol m�3

100 kPa

¼ 1:3� 10�5 mol m�3 Pa�1:

The partial pressure of O2 in air, for example, is about 20 kPa; the concentration of

O2 in air-saturated water at 298 K therefore results in

c O2

��w� � ¼ K�gd � p O2

��g� � ¼ 1:3� 10�5 mol m�3 Pa�1 � 20� 103 Pa

¼ 0:26 mol m�3:

Distribution Equilibria Relations that can be dealt with in a theoretically similar

way would be, for example, systems where a third substance B (possibly iodine) is

added to two practically immiscible liquids such as water/ether. Substance B should

be soluble in both liquid phases (0) and (00). It disperses then between these phases

until its chemical potential is equal in both. The equilibrium number K
○
d!d or, more

briefly, K
○

dd is then:

K
○

dd ¼
cr B

��d00� �
cr B

��d0� � with K
○

dd ¼ exp
A
○
dd

RT
¼ exp

μ
○

B
��d0� �� μ

○
B
��d00� �

RT
: ð6:38Þ

Conventionally, we obtain

K
○

dd ¼
c B

��d00� �
c B

��d0� � with K
○

dd ¼ K
○

dd: ð6:39Þ

In the case of small concentrations, the ratio of equilibrium concentrations (or mole

fractions, etc.) of the dissolved substance in two liquid phases is a (temperature
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dependent) “constant” (Nernst’s distribution law). The constant K
○

dd is also called

Nernst’s distribution coefficient K
○

N.

Distribution equilibria play a significant role in separating the substances in a

mixture by the process of extraction. The laboratory procedure called “extraction

by shaking” (extracting a substance from its solution by using another solvent in

which the substance dissolves much better) is based on such equilibria. This method

can be used to completely remove iodine from water by repeatedly extracting it

with ether. Partition chromatography is based upon the same principle. A solvent

acts as the stationary phase in the pores of a solid carrier material (paper for

example) and a second solvent (with the substance mixture to be separated) flows

past it in the form of a mobile phase. This is known as a mobile solvent. The more

soluble a substance is in the stationary phase, the longer it will remain there and the

more strongly its movement along this phase will slow down. Eventually, a

separation occurs in the mixture originally applied at a point.

Influence of Temperature The equilibrium numbers (and constants) we have

considered so far are valid only under certain conditions (mostly standard condi-

tions at 298 K and 100 kPa). If the value of K
○

at an arbitrary temperature is of

interest, then the RT term as well as the temperature dependence of chemical drive

A need to be taken into account. We refer here to the linear approximation

introduced in Sect. 5.2:

A ¼ A0 þ α T � T0ð Þ:

Insertion into Eq. (6.18) yields the following result for the equilibrium number at a

temperature T:

K
○

Tð Þ ¼ exp
A
○

T0ð Þ þ α T � T0ð Þ
RT

: ð6:40Þ

When the temperature is increased (ΔT> 0), K
○

Tð Þ can increase or decrease rela-

tive to the initial value K
○

T0ð Þdepending upon the values of A
○

T0ð Þ andαwhich are
typical for a particular reaction. In the first case, the equilibrium composition shifts

to benefit the products, and in the second case, it shifts to benefit the starting

substances. The equilibrium constant can be influenced by the choice of tempera-

ture. This is of potentially great importance for large-scale technical reactions as

well as for environmentally relevant ones.
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6.7 Potential Diagrams of Dissolved Substances

Energy must be used in order to transfer matter from a state of low μ value to a state
of high μ value. Therefore, the potential μ can be regarded as a kind of energy level

the matter is on. This is why matter with a high chemical potential is often called

energy rich and matter with a low potential, energy poor. These terms are not to be

considered absolute in themselves but only in relation to other substances with

which the substance in question can reasonably be compared.

When the amount n of a dissolved substance in a given volume is continuously

increased, the potential μ of the substance also increases. While at first, small

changes Δn in the amount of substance are enough to cause a certain rise in

potential Δμ, later on increasingly large amounts are necessary for this. As long

as the concentration is not too high, the mass action equation remains valid. This

means that the concentrations (or when the volume remains constant, the amount)

must always increase by the same factor β if μ is to increase by the same amount.

n therefore increases exponentially along with the chemical potential μ.
Relative to the same increase of potential Δμ, the solution takes up the more of

the substance to be dissolved the more it already contains. Hence, the “capacity” for

this substance increases with the amount already present—perhaps somewhat

different from what one might expect. The capacity B of a substance, the

so-called matter capacity, is defined by the following equation:

B ¼ dn

dμ
: ð6:41Þ

A well-known example of the quantity B is the so-called buffering capacity,
meaning the capacity Bp of a given amount of a solution for hydrogen ions. We

will go into greater detail in Sect. 7.6. If the region being dealt with is homoge-

neous, B can logically be related to the volume:

b ¼ B

V
: ð6:42Þ

In contrast to B, we will call b the matter capacity density.
If the matter capacity B of a finite volume V of solution is plotted against the

chemical potential μ (Fig. 6.6a), the area under the B(μ) curve from �1 to the

actual potential μ represents the amount n of the substance in this volume. The

relation becomes clearer if the axes are exchanged and the curve then appears as a

two-dimensional outline of a “container” filled to the level μ with the amount of

substance n (Fig. 6.6b). Finally, if
ffiffiffiffiffiffiffiffi
B=π

p
is plotted instead of B, the resulting curve

can be thought of as the outline of a rotationally symmetrical goblet (Fig. 6.6c). In

this case as well, n is the volume of the container filled up to the level μ. In the

following we will make use of this image because it is not only vivid, but also has

the advantage of reducing the width of otherwise very wide curves, making them

easier to draw.
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The area under the curve of a continuous function f(x) in the interval [a;b] is calculated by

F ¼
ð b
a

f xð Þdx;

(cf. Sect. A1.2). The volume of a body created by rotating the area in the diagram about the

x axis can be calculated analogously:

V ¼ π

ð b
a

f xð Þ2dx:

Such bodies are also called solids of revolution.

As long as the mass action equations are valid, it is easy to express n as a

function of μ. To do so, we solve the equation μ ¼ μ
○þ RTln c=c�ð Þwith c¼ n/V for

n and obtain:

μ� μ
○

RT
¼ ln

n

Vc�
or n ¼ Vc� � exp μ� μ

○

RT
: ð6:43Þ

The matter capacity is the derivative with respect to μ, for constant Vc� and μ
○
:

B ¼ dn

dμ
¼ Vc�

RT
� exp μ� μ

○

RT
or short B ¼ n

RT
: ð6:44Þ

Here a few hints concerning the calculation: If one writes—such as in school mathemat-

ics—y instead of n and x instead of μ and abbreviates the constant terms with a, b, c, the
calculation is nothing else than taking the derivative of the function y¼ a � exp(bx+ c) with
respect to x with a ¼ Vc�, b¼ 1/RT, and c ¼ � μ

○
=RT. Obviously, the function z¼ g(x)¼

bx+ c is nested in the function y¼ f(z)¼ a � exp z: y¼ f(g(x)). One takes the derivative of
such functions by using the chain rule [rule (A1.13) in Sect. A1.2)]:

Fig. 6.6 (a) Plotting the matter capacity B as a function of chemical potential μ, (b) Exchanging
axes, (c) Solid of revolution having the same content.
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y0 ¼ f 0 zð Þ � g0 xð Þ ¼ a � expz � b ¼ a � b � exp bxþ cð Þ:

Additionally, we have used the following calculation rules: the exponential function is

equal to its own derivative [rule (A1.7)], a constant factor is preserved when taking the

derivative [rule (A1.9)], a constant summand, however, disappears. If we now replace the

variables and constants by the corresponding quantities and expressions, we finally obtain:

B ¼ Vc�

RT
� exp 1

RT
μ� μ

○

RT

 !
:

As a consequence, B, like n, depends exponentially upon μ. In this case, the

container whose curve we are interested in has the form of an “exponential horn”

which is open at the top.

The matter capacity density b can be easily calculated from B:

b ¼ B

V
¼ c�

RT
� exp μ� μ

○

RT
or short b ¼ c

RT
: ð6:45Þ

Like B and n, b depends exponentially on μ.
We will take a closer look at this approach using the example of glucose

(Fig. 6.7). In its solid and pure state, glucose has a chemical potential which is

not subject to mass action. For this reason, it is represented as a horizontal line in

the potential diagram. Because, as previously stated, glucose occurs in two forms, α
and β, two potential levels lying close together should actually be drawn

in. However, for the sake of simplicity, only one is represented here.

In the dissolved state and depending upon concentration or amount, we have an

entire band of potential values. Instead of the band, we will use the B(μ) curve as it

Fig. 6.7 Potential diagram of glucose.
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is described for the general case in Fig. 6.6 to express this dependence. Alterna-

tively, we can use the b μð Þ curve, which looks identical to it. The radius of the

rotationally symmetrical goblet equals
ffiffiffiffiffiffiffiffi
b=π

p
. Therefore, the content up to a chosen

level corresponds to the quantity of glucose present there relative to the volume of

solution. This means it is equal to the total concentration of glucose. At small

concentrations, the radius increases exponentially with rising μ; for high concen-

trations, this is only approximate. We do not need to distinguish between the α and

the β forms because an equilibrium rather quickly develops between the two iso-

mers. The basic value of the potential (at a concentration of 1,000 mol m�3) applies
to this equilibrium mixture. The content of the goblet has been drawn to this

arbitrarily chosen potential level. We will also generally choose this fill level for

other substances. The value in a living cell would be considerably lower, though.

If the amount of dissolved glucose were to be continuously increased, and the fill

level of the goblet raised to the level of the solid glucose, the glucose would begin to

crystallize. The glucose would begin to run over the rim of the goblet, so to speak.

If, on the other hand, glucose were present as excess solid, it would need to dissolve

for as long as it would take for all the crystals to disappear or until the potential in

the solution increased to the level of the goblet rim in the drawing. One might say

that in this state, the glucose solution is saturated relative to the solid.
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Chapter 7

Consequences of Mass Action: Acid–Base

Reactions

The concept of mass action can be applied to any transformation of substances. In

the case of matter dynamics, it does not matter how we imagine the process in

question working at the molecular level: Whether it is by formation or cleavage of

chemical bonds, rearranging crystal lattices, migration of particles, transfer of

electrons or whole groups of atoms from one type of particle onto the other, etc.

In this chapter we will concentrate upon one important example for chemical

transformations, namely acid–base reactions, in order to demonstrate that the

chemical potential is well suited to describing very specialized and differentiated

fields. Acid–base reactions are central to chemistry and its applications; for their

quantitative description we introduce the “proton potential” μp as a measure of the

strength of an acid–base pair. The level equation and the protonation equation are

used to describe the behavior of weak acid–base pairs. Subsequently, one important

application for acid–base equilibria, the analytic method called acid–base titration,

is presented. Finally, the mode of reaction of buffers and indicators is discussed.

Buffers play also a significant role in living organisms because even small shifts in

the proton potential can there result in disease and death.

7.1 Introduction

The approach used up to now can be applied in the same way for any transformation

of substances. In the case of matter dynamics, it does not matter how we imagine

the process in question working at the molecular level: Whether it is by formation

or cleavage of chemical bonds, rearranging crystal lattices, migration of particles,

transfer of electrons or whole groups of atoms from one type of particle onto the

other, etc. We will concentrate upon one important example here, namely acid–base

reactions, in order to demonstrate that the chemical potential is well suited to

describing very specialized and differentiated fields.
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Before introducing the topic in more detail we have to discuss shortly the

problems concerning the denomination of hydrogen ions. Hydrogen has three

naturally occurring isotopes, called protium 1H, deuterium 2H, and tritium
3H. The corresponding cations are called proton (denoted 1H+ or shortly p),

deuteron (2H+ or d), and triton (3H+ or t). Hydron is the name (recommended by

IUPAC in 1988) for positive hydrogen ions H+ without regard to nuclear mass,

especially for the mixture of isotopes formed by natural hydrogen. Traditionally in

acid–base chemistry, the term “proton” is used instead of “hydron.” But the

differences are minute and may be neglected, because more than 99.98 % of the

naturally occurring hydrons H+ are protons p anyway. In this chapter we follow the

traditional practice.

7.2 The Acid–Base Concept According to Brønsted

and Lowry

According to Johannes Nicolaus Brønsted and Thomas Lowry, an acid is a sub-

stance or more generally a type of particle (be it neutral or ionic) that tends to

release protons p (H+ ions). It represents a proton donor for which we will use the

abbreviations HA or BH+,

HA! A� þ Hþ, and BHþ ! BHþ Hþ, respectively:

The residual left over from separation is called the corresponding or conjugated
base. The base abbreviated with A� or BH acts as proton acceptor. For general
purposes, it is more convenient to use symbols without charge numbers. We will

use the abbreviation Ad for the acid (from the Latin acidum) and Bs for the base

[(from the Greek βάσις (basis)]:

Ad! Bsþ v p p:

Ad and Bs form an acid–base pair abbreviated by Ad/Bs. vp describes the proticity.
If vp¼ 1, one speaks of a monoprotic acid–base pair. However, if vp> 1, it is called

polyprotic. Simple examples for monoprotic pairs are HCl/Cl� and H3O
+/H2O:

HCl! Cl� þ Hþ, H3O
þ ! H2Oþ Hþ:

In the first case the neutral acid hydrogen chloride HCl tends to release a proton by

forming the anionic base Cl�; in the second the cationic acid H3O
+ does the same

under formation of the neutral base H2O.

More than one substance can appear in place of the simple one Ad and/or Bs. If

we allow the abbreviations Ad and Bs to signify a combination of substances, then

the generalized process reads as follows:
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Ad0 þ Ad00 þ Ad000 þ . . .
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ad

! Bs0 þ Bs00 þ Bs000 þ . . .
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Bs

þv p p:

In the following example, a combined acid appears:

CO2 þ H2O! HCO�3 þ Hþ:

An acid-base pair Ad/Bs can be considered as a kind of chemical reservoir for

protons that is

• Totally full (completely protonated) in the Ad state,

• Totally empty (completely deprotonated) in the Bs state.

Because even the smallest release of protons allows a base to be formed, we can

assume from the start that both base and acid are always present to a greater or

lesser degree. The separated protons usually do not appear as such. In a following

reaction, they are bonded immediately to other particles that function as bases (such

as H2O). In an aqueous solution, the protons appear in the form of oxonium ions

H3O
+. In the case of the dissociation of an acid HA (such as HCl) in water according

to HA!A�+H+ protons are directly transferred from the HA molecules to the

H2O molecules (example of a so-called acid–base reaction). The following equi-

librium is established immediately (within 10�8 s):

HAjwþ H2Ojl μ A�jwþ H3O
þjw:

Correspondingly, in a reaction of a base B (such as NH3) with water, protons are

transferred from the H2O molecules to the B molecules:

Bjwþ H2Ojl μ BHþ wþ OH�j jw:

In this case, the water functions as the acid.

We have already seen an impressive example for such an acid–base reaction,

namely the ammonia fountain (Experiment 4.12). The formation of an alkaline

(basic) milieu in the flask according to

NH3jwþ H2Ojl μ NHþ4 jwþ OH�jw

is demonstrated by the change of color of the added indicator (phenolphthalein)

from colorless to red violet. We will take a closer look at indicators and their mode

of functioning in Sect. 7.7.
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7.3 Proton Potential

Basic Idea Obviously, the protons in acid–base reactions are simply transferred

from one base B to another B*:

BHþ þ B* μ Bþ B*Hþ:

This is also referred to as a proton transfer reaction. The older but ambiguous name

protolytic reaction is not recommended. According to the general conversion

formula, the reaction between gaseous hydrochloric acid and ammonia vapor pro-

duces a “sal-ammoniac fog,” a mist of finely distributed ammonium chloride

crystals, NH4Cljs (Experiment 7.1):

HCljgþ NH3jg! NHþ4
� �

Cl�½ �js:

This means that the definitions given here also hold when no solvent is present.

Most acid–base reactions, however, take place in aqueous solutions. In this case,

the second acid–base pair is provided by the solvent water itself (H3O
+/H2O or

H2O/OH
�). Despite this, it is possible to assign a chemical potential to the bonded

yet exchangeable protons. This is the value established in the equilibrium of the

reactionAd μ Bsþ v p p;where p denotes protons from any external source. In this

particular case we have

μAd ¼ μBs þ v pμ p

or

Experiment 7.1 Formation
of “sal-ammoniac fog” from vapors of
hydrochloric acid and ammonia: Concentrated
hydrochloric acid is poured in one of the gas-

washing bottles; concentrated ammonia solution

is poured in the other. By pressing the rubber ball

both gases (HCl and NH3) are unified and the

resulting “sal-ammoniac” fog emerges from the

small tube.
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μp ¼
1

vp
μAd � μBs½ �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
μp insideð Þ

; ð7:1Þ

respectively. Protons move from outside into the “reservoir” Ad/Bs if

μp> μp(inside) and in the opposite direction if μp< μp(inside). The value of

μp(inside) is uniquely defined by the chemical potentials μAd and μBs, meaning it

is a characteristic quantity of the acid–base pair under consideration. We express

this by adding the name of the pair as argument or subscript:

μp insideð Þ :¼ μp Ad=Bsð Þ :¼ μp,Ad=Bs:

The proton potential μp(Ad/Bs) indicates the strength with which the acid–base pair
Ad/Bs tends to transfer protons to any other reservoir. Hence, it is a measure for

what is conventionally called the “strength of acid Ad,” or more accurately the

acidic strength of the pair Ad/Bs. (The tendency to release protons is determined

equally by the chemical potential of the acid and that of the corresponding base.)

For comparison of acidic strengths of various Ad/Bs pairs, the conditions must be

specified. Table 7.1 shows some numerical values μ�p Ad=Bsð Þ½¼ v�1p μ�Ad � μ�Bs
� ��

for standard conditions that means 298 K, 100 kPa, and a concentration of

Table 7.1 Standard values of

proton potentials of some

acid–base pairs (298 K,

100 kPa, 1 kmol m�3 in an

aqueous solution).

Ad μ Bsþ v p p μ�p kGð Þ
HClO4jw μ ClO�4 jwþ Hþ +57

HCljw μ Cl�jwþ Hþ +34

H2SO4jw μ HSO�4 jwþ Hþ +17

HNO3jw μ NO�3 jwþ Hþ +8

H3O
þjw μ H2Ojlþ Hþ 0

HSO�4 jw μ SO2�
4 jwþ Hþ �11

H2CO3jw μ HCO�3 jwþ Hþ �21
C2H4OHCOOHjw μ C2H4OHCOO

�jwþ Hþ �22a
CH3COOHjw μ CH3COO

�jwþ Hþ �27b
CO2jwþ H2Ojl μ HCO�3 jwþ Hþ �36
NHþ4 jw μ NH3jwþ Hþ �53
HCO�3 jw μ CO2�

3 jwþ Hþ �59
Ca H2Oð Þ6
� �2þjw μ Ca OHð Þ2jsþ 4H2Ojlþ 2Hþ �65
H2Ojl μ OH�jwþ Hþ �80
NH3jw μ NH�2 jwþ Hþ �130
OH�jw μ O2�jwþ Hþ �165
Hjg μ e�jgþ Hþ �231
HCljg μ Cl�jgþ Hþ �289
HFjg μ F�jgþ Hþ �441
aLactic acid/lactate
bAcetic acid/acetate
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1 kmol m�3 in aqueous solution for both acid and base. For determining such

values, for example, the value μ�p HAc=Ac�ð Þ of the pair acetic acid/acetate (the

abbreviation Ac is used for the acetate group CH3COO), one first selects the

chemical potentials of the acid and the corresponding base at standard conditions

from the Table in Sect. A.2.1 in the Appendix or a comparable one. Subsequently,

the difference is calculated (vp¼ 1):

μ�p HAc=Ac�ð Þ ¼ 1

1
μ� HAcð Þ � μ� Ac�ð Þ½ � ¼ �396:5 kGð Þ � �369:3 kGð Þ

¼ �27:2 kG:

Even if the (fictitious) values of acid and base in aqueous solution at a concentration

of 1 mol m�3 (cp. Sect. 6.2) are used, the proton exchange with the solvent water

should be completely inhibited. That means that the acetic acid HAc in the solution

in question should only exist as molecule (and not in the ionized form); the acetate

ion Ac�, however, should only exist as ion.

An exception concerning the standard conditions are the pairs H3O
+/H2O and

H2O/OH
� where the water that functions as the acid or base (as the case may be)

also represents the solvent and is therefore treated as a pure liquid (cf. Sect. 6.3).

We expect that any substance that has protons “impressed” upon it can again

release them. Therefore, it follows that in its protonated form, it should be called an

acid, and in its original form, its corresponding base. In this regard, protonated

water H3O
+ with its base H2O is shown in the table as well as the acid H2O with its

base OH�. This also holds for the hydrogensulfate anionHSO�4 (protonated H2SO4,

deprotonated SO2�
4 ) and for ammonia molecules NH3 (protonated NHþ4 ,

deprotonated NH�2 ). Substances that function not only as acids but also as bases

are called amphoteric.
Acid–base pairs with positive standard value μ�p (or more generally positive

basic value μ
○
p ) are considered strongly acidic and ones with μ�p < 0kG, weakly

acidic. This rough classification may be refined as shown in Table 7.2. Talking

about strong or weak acids or bases instead of acid–base pairs is common practice,

Table 7.2 Classification of

acid–base pairs in aqueous

solution according to their

acidic strength.

Ad/Bs may be called For μ
○
p kGð Þ in the range

Very strong acidic

Strong acidic

Moderate acidic

Weak acidic

>+20

0 . . . +20

�20 . . . 0

�40 . . . �20
Weak alkaline

Moderate alkaline

Strong alkaline

Very strong alkaline

�60 . . . �40
�80 . . . �60
�100 . . . �80
<�100
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but not very opportune. The acidic or alkaline (basic) strength is a property of the

pair as a whole and not only of a part of it. (To avoid any possibility of confusion

with the term “basic value” (“basic” in the sense of “fundamental”) we will use only

“alkaline” in the following.)

When two acid–base pairs are present in a solution, the “stronger acidic” pair

forces protons upon the “weaker acidic” one. Because acid–base equilibrium occurs

almost instantly, a uniform proton potential is established through the exchange of

protons even when different acids and bases are present:

μp ¼ μp Ad=Bsð Þ ¼ μp Ad*=Bs*ð Þ
¼ . . . “Proton potential equalization”ð Þ: ð7:2Þ

Equation (7.2) expresses an important fact: The proton potential μp represents a

property of a chemical system which has a universal meaning comparable to that of

pressure p and temperature T.

Strong Acid–Base Pairs In aqueous solutions, strong acidic pairs such as

perchloric acid or hydrochloric acid almost completely lose their protons to the

water (H3O
+/H2O pair). One might say they totally “dissociate,” for example

HClO4jwþ H2Ojl ! ClO�4 jwþ H3O
þjw

or

HCljwþ H2Ojl! Cl�jwþ H3O
þjw:

In both cases, the acid of the weaker acidic pair (H3O
+) replaces that of the

stronger acidic one (HClO4 or HCl, respectively). Since the deprotonation is almost

complete, the same acid H3O
+ is present in both cases and therefore the pair H3O

+/

H2O with the highest possible acidic strength in not too concentrated aqueous

solutions. In the process, the proton potential decreases from rather high and

different positive values (+57 and +35 kG, respectively) to the same value of

(just about) zero. Hence, strong acidic pairs cannot develop their full power in an

aqueous solution. In this case, one speaks of the leveling effect of the solvent water.
For this reason, the chemical potentials μ(Ad) of undissociated strong acids (which

are necessary for determining individual proton potentials) are measured in

nonaqueous solutions and the results transferred as approximations to the solvent

water.

If one wishes to find the proton potential of a strong acidic pair at arbitrary

dilution, it is enough to just consider the acid–base pair H3O
+/H2O:

μp ¼ μp H3O
þ=H2Oð Þ ¼ 1

1
μ H3O

þð Þ � μ H2Oð Þ½ �:

When the concentrations are small, the mass action equation can be applied.
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However, there is such an excess of water (the solvent) present that its concentra-

tion shows almost no change during the reaction. As stated, it can be treated as a

pure liquid (compare Sect. 6.3):

μp ¼ μ
○
H3O

þð Þ þ RTlncr H3O
þð Þ � μ

○
H2Oð Þ

¼ μ
○
H3O

þð Þ � μ
○
H2Oð Þ

h i
þ RTlncr H3O

þð Þ:

The difference in parentheses corresponds to the basic value of the proton potential

of the pair H3O
+/H2O, meaning

μp ¼ μ
○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ: ð7:3Þ

If, for example, we are interested in the proton potential of hydrochloric acid with a

concentration of 0.01 kmol m�3, the concentration of H3O
+ corresponds to the

stated HC1 concentration due to the total dissociation. If we continue to take into

account that μ
○
p H3O

þ=H2Oð Þ ¼ μ�p H3O
þ=H2Oð Þ ¼ 0 (compare Table 7.1), we

obtain for 298 K (and 100 kPa):

μp ¼ 0 Gþ 8:314 GK�1 � 298K� ln0:01 ¼ �11kG:

The proton potential is noticeably smaller than the basic value which is valid for a

H3O
+ concentration of 1 kmol m�3 in an aqueous solution.

The bases of strong alkaline pairs ðμ○p < �80kGÞ, such as amide ions NH�2 ,
suffer a similar fate where, due to the higher μ

○
p value, the water (H2O/OH

� pair)

forces the protons upon them:

NH�2 wþ H2Oj jl! NH3 wþ OH�j jw:

The amide ion is a strong proton acceptor that is almost totally protonated when

present in an excess of water. The concentration of the hereby produced base OH�

determines the proton potential μp, whereas the concentration and thus the chemical

potential of its corresponding acid H2O remains almost unaltered. In aqueous

solutions of alkaline acid–base pairs, therefore, μp cannot fall far below �80 kG.

Traditionally, this statement is expressed saying OH� is the strongest base to be

found in water.

Determining the proton potential of a dilute strong alkaline pair follows the same

pattern as for a dilute strong acidic pair, although in this case, the pair H2O/OH
�

(instead of H3O
+/H2O) must be considered:
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μp ¼ μp H2O=OH
�ð Þ ¼ 1

1
μ H2Oð Þ � μ OH�ð Þ½ �:

By taking into account the special situation of water as solvent as well as the mass

action equation for OH�, one obtains

μp ¼ μ
○
H2Oð Þ � μ

○
OH�ð Þ þ RTlncr OH

�ð Þ
h i

and finally

μp ¼ μ
○
p H2O=OH

�ð Þ � RTlncr OH
�ð Þ: ð7:4Þ

Thus, at 298 K (and 100 kPa), a strong alkaline pair with a concentration of

0.1 kmol m�3 in water has a proton potential of

μp ¼ �80� 103 G� 8:314GK�1 � 298K� ln0:1 ¼ �74kG;

which is noticeably higher than the standard value of �80 kG.

A proton potential considerably lower than �80 kG cannot be maintained in

normal aqueous solutions because the water would continuously decompose due to

loss of protons. The same is true for a potential considerably above 0 kG because

here the H2O molecules are destroyed by the production of H3O
+. In both cases, the

water would largely disappear so that the term “aqueous solution” would no longer

apply. Conditions of this type dominate in concentrated solutions of mineral acids

or alkali hydroxides.

Weak Acid–Base Pairs Acids of a weak acidic pair such as acetic acid HAc, on

the other hand, can be deprotonated to very different degrees in an aqueous

solution. (As mentioned, Ac is used as abbreviation for the acetate group

CH3COO.) If the acid–base pair is largely deprotonated, its proton reservoir is

just about empty. However, if it is hardly deprotonated, meaning almost fully

protonated, the proton reservoir is almost full. If one wishes to calculate the proton

potential of a weak acidic pair such as HAc/Ac� in a diluted aqueous solution, due

to the incomplete proton transfer to the pair H3O
+/H2O, both pairs must be taken

into account according to

HAcjwþ H2Ojl μ Ac�jwþ H3O
þjw:

We start with the following equation for “proton potential equalization,”

μp ¼ μp Ad=Bsð Þ ¼ μp H3O
þ=H2Oð Þ;

a special case of Eq. (7.2). When the mass action equation is applied and the special

situation of water as solvent is taken into account, the result is
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μ
○
p Ad=Bsð Þ þ RTlncr Adð Þ � RTlncr Bsð Þ
¼ μ

○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ: ð7:5Þ

It immediately follows from the conversion formula that the concentration of the

base formed by the proton transfer from the acid to the water is equal to that of the

resulting oxonium ions, cr(Bs)¼ cr(H3O
+). If we furthermore assume that the acid

of the weak acidic pair is only slightly dissociated, the undissociated portion

cr(Ad) can, in first approximation, be equated to the initial concentration c0,
cr(Ad) � c0,r. When both terms are inserted into Eq. (7.5) and this equation is

solved for RT ln cr(H3O
+), we obtain

μ
○
p Ad=Bsð Þ þ RTlnc0, r � RTlncr H3O

þð Þ ¼ μ
○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ

and finally

RTlncr H3O
þð Þ ¼ 1=2 � μ○p Ad=Bsð Þ � μ

○
p H3O

þ=H2Oð Þ þ RTlnc0, r

h i
:

Insertion of this term into Eq. (7.3) results in a relation for the proton potential:

μ p ¼ 1=2 � μ○p Ad=Bsð Þ þ μ
○
p H3O

þ=H2Oð Þ þ RTlnc0, r

h i
: ð7:6Þ

According to this, the proton potential at 298 K (and 100 kPa) of an acetic acid

solution with a concentration of 1 kmol m�3 is:

μ p ¼ 1=2 � �27� 103G
� �þ 0þ 8:314GK�1 � 298K� ln1
� � ¼ �13:5kG:

This is noticeably higher than the standard value of�27 kG (see Table 7.1) and can

be explained by the fact that the acetate concentration is negligibly small compared

to the concentration of undissociated acetic acid. (On the other hand, the standard

value is valid for a concentration ratio of c(HAc):c(Ac�) of 1:1; compare Sect. 7.4.)

The proton potential of a weak alkaline pair in aqueous solution can be derived

analogously. The result is comparable to Eq. (7.6):

μp ¼ 1=2 � μ
○
p Ad=Bsð Þ þ μ

○
p H2O=OH

�ð Þ � RTlnc0, r

h i
: ð7:7Þ

Accordingly, a solution of ammonia in water with the corresponding conversion

formula

196 7 Consequences of Mass Action: Acid–Base Reactions



NH3jwþ H2Ojl μ NHþ4 jwþ OH�jw

has a proton potential of

μp ¼ 1=2 � �53� 103 G
� �þ �80� 103 G

� �� 8:314GK�1 � 298K� ln0:1
� �

¼ �64kG;

when a concentration of 0.1 kmol m�3 at 298 K (and 100 kPa) is considered.

Acid–Base Disproportionation of Water Finally, we will take a look at the acid–
base disproportionation of water. It has already been demonstrated that amphoteric

water can function as an acid as well as a base. For this reason, proton transfer

between the water molecules can take place where oxonium and hydroxide ions are

formed even when there are no other acids or bases present:

H2Ojl|fflffl{zfflffl}
Bs

þH2Ojl|fflffl{zfflffl}
Ad*

μ H3O
þjw|fflfflfflfflffl{zfflfflfflfflffl}

Ad

þOH�jw|fflfflfflffl{zfflfflfflffl}
Bs*

:

The proton potential of the acid–base pair H3O
+/H2O results from Eq. (7.3) and that

of the pair H2O/OH
� from Eq.(7.4). Both potentials have to be equal in the same

solution:

μ p ¼ μ
○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ ¼ μ

○
p H2O=OH�ð Þ � RTlncr OH

�ð Þ:

Pure water is electrically neutral, so the H3O
+ concentration must be equal to the

OH� concentration. Replacing cr(OH
�) by cr(H3O

+) and solving the last equation

for c H3O
þð Þ ¼ c� � cr H3O

þð Þ yields

c H3O
þð Þ ¼ c� � expμ

○
p H2O=OH

�ð Þ � μ
○
p H3O

þ=H2Oð Þ
2RT

:

Taking the standard values in Table 7.1 at 298 K (and 100 kPa) results in

c H3O
þð Þ ¼ 1kmolm�3 � exp

�80� 103 G� 0G

2� 8:314GK�1 � 298K
¼ 10�7 kmolm�3:

If this concentration is inserted into Eq. (7.3), one obtains the corresponding proton

potential. This is �40 kG and is called the neutral value. An aqueous solution with

a proton potential above �40 kG is called acidic; one with a proton potential under

�40 kG is called alkaline (basic).
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Relationship to Other Measures of Acidity In closing, we will take a look at how

the proton potential relates to other common measures used for acidity. There is a

close relationship between the standard value of the proton potential μ�p (Ad/Bs) of

an acid–base pair [more generally stated, its basic value μ
○
p Ad=Bsð Þ], and the acidity

exponent or pK value. For this purpose, we will look again at proton transfer

equilibrium,

HAjwþ H2Ojl μ A�jwþ H3O
þjw;

where HA corresponds to an acid Ad and A� to a base Bs. Equation (7.5) can be

converted to

μ
○
p Ad=Bsð Þ � μ

○
p H3O

þ=H2Oð Þ ¼ RTln
cr Bsð Þ � cr H3O

þð Þ
cr Adð Þ : ð7:8Þ

As already stated, we have μ
○
p H3O

þ=H2Oð Þ ¼ 0(at standard pressure) for the proton

potential. It represents the “reference level,” so to speak.

The equilibrium “constants” of the reaction (see Sect. 6.4),

K
○
a Ad=Bsð Þ ¼ cr Bsð Þ � cr H3O

þð Þ
cr Adð Þ and K

○

a Ad=Bsð Þ ¼ c Bsð Þ � c H3O
þð Þ

c Adð Þ ;

are both called acidity constants. Adding Ad/Bs as argument behind K
○
a and K

○

a

would be more elucidative, but is quite uncommon. If it is clear from the context

which pair is meant or if the kind of pair does not matter we will in the future omit

the argument Ad/Bs. These constants can vary by many orders of magnitude

depending upon the chemical structure of the acids or bases. Therefore it is useful

to introduce a logarithmic scale. Generally, one uses the negative decadic logarithm

(logarithm to base 10) of the acidity constant, the acidity exponent or pKa value
(or simply the pK value):

pKa ¼ �lgK○a:

In this case, the numerical acidity constant K
○
a needs to be used instead of the

conventional K
○

a because the argument of the logarithm must be a number.

If we convert the natural logarithm to decadic logarithm in Eq. (7.8), by using

lnx ¼ ln10 � lgx [Eq. (A.1.5) in the Appendix], we obtain
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μ
○
p ¼ �RTln10 � pKa:

The term RTln10 corresponds to the decapotential μd (compare to Sect. 6.2),

meaning that

μ
○
p ¼ �μd � pKa: ð7:9Þ

In general, the basic value μ
○
p Ad=Bsð Þ of the proton potential and the pKa value are

proportional. If we place the acids in a sequence according to their strength, we get

the same result independent of which of the two measures is being used.

A very similar looking equation relates the proton potential μp in the solution

after proton potential equalization to the so-called hydrogen ion exponent or pH
value that represents a special measure of acidity expressed by the H3O

+/H2O pair.

We should call to mind that μp in a homogeneous solution has the same value for all

acid–base pairs present [Eq. (7.2)]. Which pair one uses for measuring μp is not

essential. The term pH value (derived from the Latin “pondus hydrogenii,” meaning

as much as “weight of hydrogen”) was introduced by the Danish scientist Søren

Peder Lauritz Sørensen in 1909. Originally, it was the “exponent of the power to the

base 10” of the “concentration of hydrogen ions in water, measured in mol/L,”

{c(H+jw)}mol/L. The negative sign in the exponent was dropped. The curly brackets

signify that it is a pure numerical value. This means if we omit the supplement “jw”
for the sake of simplicity:

c Hþð Þf gmol=L ¼ 10� pH or c Hþð Þ=c� ¼ 10� pH:

The pH value as negative decadic logarithm of the relative concentration of

(hydrated) hydrogen ions or, more exactly, (hydrated) oxonium ions—H+, H+jw,
H3O

+, H3O
+jw are here only different notations for the same kind of particles!—

pH :¼ �lg c Hþð Þ
c�

¼ �lgcr Hþð Þ or pH :¼ �lg c H3O
þð Þ

c�
¼ �lgcr H3O

þð Þ

represents (as does the pK value) a handier numerical value because the concen-

trations can vary by many orders of magnitude. For reasons of convenience, the

specification {}mol/L or c� is generally dropped. However, this can easily lead to

errors when other units of concentration are also being used and should, for this

reason, be avoided.

Sørensen’s equation can be contrasted with the proton potential μp of Eq. (7.3),

μ p ¼ μ
○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ:
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cr(H3O
+) is the (relative) concentration of oxonium ions that is reached after proton

potential equalization. We again observe that μ
○
p H3O

þ=H2Oð Þ ¼ 0 (at standard

pressure) and convert the natural into the decadic logarithm. We find

μ p ¼ �RTln10 � pH

or finally because of RT ln10 ¼ μd

μ p ¼ �μd � pH: ð7:10Þ

This is a simple but important result.

According to Sørensen’s definition, this relation is only valid for small concen-

trations c. These days, however, the pH value is defined so that this equation is

always valid. Figure 7.1 clarifies the relation between proton potential μp and pH

value in an aqueous solution at 298 K.

The pH value is just a variation of proton potential—in other words μp in a

specialized scale. Differences of pH values ultimately mean differences in chemical

potential and therefore, differences in the drive of the chemical reactions in which

the protons take part.

In matter dynamics, the description of the proton potential μp as a measure of the

strength of an acid–base pair that we have just been introduced to offers several

advantages not present in conventional measures of acidity (pK and pH values):

• At the conceptual level, acid–base reactions and other transfer reactions, espe-

cially redox reactions, can be treated uniformly (cf. Sect. 22.4).

• Strengths of acids and numerical values of the measure of acidity run parallel

(and do not, as with pK values, run opposite to each other).

• The proton potential also indicates the strength of an acid–base pair with respect

to the concentration dependence (the pK value as a logarithm of an equilibrium

constant cannot do this, so that in this case, another measure, the pH value is

used instead).

Fig. 7.1 Relation between proton potential μp and pH value in an aqueous solution at 298 K and

100 kPa.
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7.4 Level Equation and Protonation Equation

Monoprotic Acid–Base Pairs The extent of protonation of an acid–base pair,

briefly its “fill level,” can be described by the degree of protonationΘ. In the case of
a monoprotic pair, this is understood to be the portion of base molecules that are

protonated in relation to the total concentration of acid and base molecules:

Θ ¼ cAd
cBs þ cAd

: ð7:11Þ

The degree of protonation depends upon the proton potential μp in the solution.

Based upon the condition of equilibrium, μ p ¼ 1
1
μAd � μBs½ �, and the mass action

equation,

μ p ¼ ðμ○Ad þ RTln cAd=c
�ð ÞÞ � ðμ○Bs þ RTln cBs=c

�ð ÞÞ
one obtains a relation that corresponds to the Henderson–Hasselbalch equation

(pH¼ pKa + log(cBs/cAd)),

μ p ¼ μ
○
p þ RTln

cAd
cBs

“Level equation”ð Þ; ð7:12Þ

where μp represents the hydrogen ion exponent or pH value, and μ
○
p stands for the

acidity exponent or pKa value. This is the so-called level equation. The name comes

from the fact that μp describes how high the “acidity level” is in the Ad/Bs reservoir,

or in other words, how strongly acidic the Ad/Bs pair reacts.

The quotient cAd/cBs can be expressed using the degree of protonation Θ so that

we have

μ p ¼ μ
○
p þ RTln

Θ

1� Θ
: ð7:13Þ

According to Eq. (7.11) we have

Θ cBs þ cAdð Þ ¼ cAd or Θ � cBs ¼ 1� Θð Þ � cAd

and finally

cAd=cBs ¼ Θ= 1� Θð Þ:
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μ
○
p vividly represents the “half-potential,” meaning the proton potential present at

a degree of protonation equal toΘ ¼ 1=2. This is when the concentrations of acid and

base are equal. In the case of μ p > μ
○
p, the acid–base pair is present mostly in the

protonated form, and for μ p < μ
○
p it is primarily present in the deprotonated form.

When the relation (7.13) is solved for Θ, the following equation results:

Θ ¼ 1

1þ exp
μ
○
p � μ p

RT

“Protonation equation”ð Þ; ð7:14Þ

which we will encounter repeatedly in a similar form.

We transform Eq. (7.13) into

Θ

1� Θ
¼ exp

μ p � μ
○
p

RT
¼ a:

With the abbreviation a and two intermediate steps,

a�1 ¼ 1� Θ

Θ
¼ Θ�1 � 1 and Θ ¼ 1

1þ a�1
;

we obtain Eq. (7.14).

Figure 7.2 graphically presents the relation Θ ¼ f(μp) described by the proton-

ation equation (7.14). It shows that the curves of different monoprotic acid–base

pairs have the same form. They are simply shifted along the μp axis.
Taking this aspect into account, let us reconsider our examples from Sect. 7.2.

We had determined a proton potential of�13.5 kG for an aqueous solution of acetic

acid with a concentration of 1 kmol m�3. Inserting this into the protonation

Fig. 7.2 Degree of

protonation Θ of the acid–

base pairs HAc/Ac� and

NHþ4 =NH3 at 298 K (and

100 kPa), as a function of

the proton potential μp.
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equation, and using the standard value of μ�p HAc=Ac�ð Þ ¼ �27 kG at 298 K (and

100 kPa), yields a degree of protonation of

Θ ¼ 1

1þ exp
�27� 103G� �13:5� 103G

� �
8:314GK�1 � 298K

¼ 0:996:

This means that 99.6 % of the amount of acid used exists in protonated form

(in the form of acetic acid molecules). Only 0.4 % exists in deprotonated form as

acetate ions. Our original assumption that acids of weak acidic acid–base pairs are

present in dissociated form only to a very small proportion is therefore justified.

(This is the case as long as the dissociated fraction remains smaller than about

5 %; since the degree of protonation is also dependent upon the initial concen-

tration of c0, via μp, the validity of the simplification must be ascertained from

case to case.)

We can proceed analogously for an ammonia solution with a concentration of

0.1 kmol m�3 and obtain a degree of protonation of 0.012. This means only 1.2 % of

the ammonia molecules have been protonated.

Let us return once again to our image of acid–base pairs as reservoirs for protons.

We can consider the degree of protonation to be the relation of the amount of

protons np in the reservoir to the maximum amount of protons np,max that can be

stored:

Θ ¼ np
np,max

: ð7:15Þ

When this expression is inserted into Eq. (7.14) and solved for np, we obtain a

variation of the protonation equation:

np ¼ np,max

1þ exp
μ
○
p � μp

RT

: ð7:16Þ

The protonation equation quasi shows the “fill level” in the proton reservoir. The

graphic representation corresponds to Fig. 7.2, just that the curve approaches np,max

instead of a value of 1.

Water as a Special Case Let us now consider a special case of the acid–base pairs

where the solvent water is the reaction partner and where the pairs limit the range of

potentials of the weakly and moderately acidic and alkaline pairs from that of the
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strong ones. For the acid–base pair H3O
+/H2O with μ

○
p H3O

þ=H2Oð Þ ¼ 0 (at standard

pressure), we obtain a level equation corresponding to Eq. (7.3):

μ p ¼ μ
○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ:

If we replace the relative concentration in this equation by the following

expression:

cr H3O
þð Þ ¼ c H3O

þð Þ
c�

¼ n H3O
þð Þ

V � c� ¼ n p

V � c�;

and solve for np, the corresponding protonation equation results:

n p ¼ V � c� � exp �μ
○
p H3O

þ=H2Oð Þ � μ p

RT

 !
: ð7:17Þ

According to Eq. (7.4), the level equation for the pair H2O/OH
�, with

μ
○
p H2O=OH

�ð Þ ¼ �80kG, is:

μ p ¼ μ
○
p H2O=OH�ð Þ � RTlncr OH

�ð Þ:

It is now possible to describe the deprotonation of water as a deficit of protons,

meaning it can be described by negative np values:

cr OH
�ð Þ ¼ c OH�ð Þ

c�
¼ n OH�ð Þ

V � c� ¼
�n p

V � c� :

By inserting the result in the equation above and solving for np, we obtain for the

protonation equation

n p ¼ �V � c� � exp þ
μ
○
p H2O=OH�ð Þ � μ p

RT

 !
: ð7:18Þ

If there are several acid–base pairs Ad/Bs, Ad*/Bs*, . . . in a solution, the amounts

of protons in the individual reservoirs add up to a total “fill amount” np,total:

n p, total ¼ n p Ad=Bsð Þ þ n p Ad*=Bs*ð Þ þ . . . : ð7:19Þ
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In the case of water, the pairs H3O
+/H2O and H2O/OH

� must be taken into account

due to the amphoteric character of the water. The resulting total amount is

n p, total ¼ n p H3O
þ=H2Oð Þ þ n p H2O=OH

�ð Þ:

If pure water is considered, the slight amount of protons that appear due to

disproportionation is compensated for by the lack of protons so that the total “fill

amount” equals zero. Figure 7.3 shows the cumulative curve that combines the two

branches of the curve described by Eqs. (7.17) and (7.18).

How can the “fill level” in the proton reservoir—as a function of the proton

potential—be determined in the case of a weak acid–base pair dissolved in water?

For this, the contribution of the pair in question and that of the water add up to a

total curve (Fig. 7.4).

Fig. 7.3 Total amount

np,total in the storage

medium water as a function

of the proton potential μp
in a volume of 100 mL

at 298 K.
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7.5 Acid–Base Titrations

An important application for acid–base equilibria is the analytic method called

titration. With the help of titration, it is possible to investigate the composition of an

initial solution using the equivalence point. Moreover, it can also be used to

determine the basic value μ
○
p (Ad/Bs) for various acid–base pairs. In order to do

this, a solution of precisely known concentration, the so-called titrator (titrant), is
added successively from a burette to the analyte (titrand), the solution with

unknown concentration being titrated, while the pH value is continuously mea-

sured. The proton potential μp is then determined from this data (Experiment 7.2).

Data can be collected on a computer and directly processed. In a further develop-

ment of titration, the addition of the titration solution can be automatically

controlled.

If the proton potential is plotted as a function of the added volume of the titrator

(or any other quantity dependent upon the added amount, such as the amount of

protons), one obtains a so-called titration curve.

Fig. 7.4 “Fill level” of the protons as a function of proton potential for an aqueous solution of a

monoprotic acid–base pair using the example NHþ4 =NH3 (10 mmol in 100 mL solution) at 298 K.
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To begin with, let us consider the titration of the base of a strong alkaline pair

with the acid of a strong acidic pair, for example, the titration of 100 mL of sodium

hydroxide solution (c(NaOH)¼ 0.1 kmol m�3) with hydrochloric acid (c(HCl)¼
1 kmol m�3). Sodium hydroxide in an aqueous solution is almost totally dissoci-

ated, so the behavior of the solution being titrated is determined by the pair H2O/

OH�. At 298 K (and 100 kPa), the proton potential of the initial solution is�74 kG.
This was already calculated in Sect. 7.3 using Eq. (7.4) which generally holds for

strong bases of this concentration. In the hydrochloric acid solution, however, the

proton potential is determined by the pair H3O
+/H2O. The original proton deficit of

np¼�0.1 kmol m�3� 0.1� 10�3 m3¼�0.01 mol¼�10 mmol is depleted by

1 mmol per mL of added hydrochloric acid. If the titrator is present in a much higher

concentration than the substance in the solution to be titrated, the increase of water

due to the inflowing titration solution can be ignored. When titrating bases of strong

alkaline pairs with acids of strong acidic pairs, generally only the pairs H2O/OH
�

and H3O
+/H2O have to be considered independent of the kind of strong acid–base

pairs used (because of the leveling effect of the solvent water discussed in

Sect. 7.3). The progress of titration results from the curve showing the total amount

of protons in the storage medium water for a given volume of 100 mL (Fig. 7.3); or

rather, it results from a section of this representation specified by the test conditions

(Fig. 7.5a). At the beginning of titration, we have the pure sodium hydroxide

solution (black point). As more hydrochloric acid is added, one moves in the

direction of the arrow along the curve. If the proton potential is plotted as a function

of the amount of protons added, the result is the corresponding titration curve

(Fig. 7.5b).

At first, the proton potential changes only slightly as titrator is continuously

added. However, as the point is approached where a stoichiometrically equivalent

amount of hydrochloric acid (in this case 10 mmol) has been added to the sodium

hydroxide solution, a drastic increase of proton potential occurs. At the equivalence
point, there is no proton deficiency anymore, and the proton reservoir is completely

filled. There is only an aqueous solution of Na+ and Cl� ions that has almost no

influence upon the proton potential which is then equal to the neutral value of

�40 kG of pure water. If we continue to add hydrochloric acid to the neutralized

Experiment 7.2 Acid–
base titration: One
possibility would be for

example the titration of a

sodium hydroxide solution

with hydrochloric acid. A

suitable sensor for these and

other aqueous solutions

would be a glass electrode

that will be discussed in

more detail in Sect. 22.7.
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solution, the protons cannot be stored in the proton reservoir H2O/OH
� already

completely filled and the acid–base pair H3O
+/H2O of the titrator system deter-

mines the proton potential. Beyond the equivalence point, the increase of the proton

potential is initially steep but starts leveling off very quickly.

Let us now turn to the titration of the base of a weak alkaline pair with the acid of

a strong acidic pair using the example of titration of 100 mL of a 0.1 M ammonia

solution with the standard solution of hydrochloric acid already used above. At first,

the proton potential is �64 kG, which we have already calculated in Sect. 7.3

with the help of Eq. (7.7). The very low proton “fill level” of 1.2 % in the reservoir

NHþ4 =NH3 is just compensated for by the proton deficiency (which is caused by the

OH� ions produced by the proton transfer according to NH3 þ H2O ⇄ NHþ4 þ
OH�) so that the total “fill level” in the aqueous solution equals zero. The relation in
Fig. 7.4, or more exactly, a section of it (Fig. 7.6a), is now what determines the form

of the titration curve.

As hydrochloric acid continues to be added, we again move in the direction of

the arrows along the curve. In the beginning, the form of the curve is determined by

the acid–base pair NHþ4 =NH3 and the corresponding protonation equation, meaning

it is essentially this proton reservoir which is filled up. Halfway to the equivalence

point (when half of the maximum amount of protons the pair can store have been

added) the proton potential reaches the basic value of μ
○
p NHþ4 =NH3

� � ¼ �53kG.
The fractions of base (NH3) and corresponding acid NHþ4

� �
are now equal and the

reservoir is just half full. Before this point, the pair appears primarily in

deprotonated form and, afterward, in the protonated form. At the equivalence

point, exactly as many protons are added with the standard solution so that the

entire base is protonated. This means that it has completely transformed into its

corresponding acid (except from some traces). At this point, we have an aqueous

solution of an acid that has the same concentration as the original base. For this

Fig. 7.5 (a) Total amount of protons np,total in 100 mL water as a function of the proton potential

μp, at 298 K, assuming a proton deficit of �10 mmol (black point), (b) Corresponding titration

curve.
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reason we expect a proton potential that lies noticeably above the neutral point. It

can be calculated according to Eq. (7.6) (the C1� ions that are also present have

almost no influence upon the proton potential):

μ p ¼ 1=2 � �53� 103G
� �þ 1=2 � 0Gþ 1=2 � 8:314GK�1 � 298K� ln0:1

¼ �29kG:

With continued addition of acid, the form of the curve is now determined by the

acid–base pair H3O
+/H2O of the titrator system.

Figure 7.6b shows the corresponding titration curve. It is striking that after a

small initial rise, the proton potential changes only very slowly until shortly before

the equivalence point. We will go into the great importance of this fact in the next

section. It also becomes clear that the basic value μ○p of a weak acid–base pair can be

determined from the measured data by just reading the potential value halfway to

the equivalence point. Again, the equivalence point makes itself felt by a sudden

change of proton potential, just like it does in titration of exclusively strong acid–

base pairs (but now it is less pronounced).

The changes of potential value in the titration of the acid of a weak acidic pair

(e.g., acetic acid) with the base of a strong alkaline pair (such as sodium hydroxide

solution) proceed similarly in principle and can be derived analogously. Again, the

starting point for consideration is the “fill level” for an aqueous solution of an acid–

base pair. The example used here is the pair HAc/Ac� (10 mmol in 100 mL

solution). At first, the acetic acid is almost fully protonated. The slight amount

that is deprotonated is just compensated for by the H+ ions that are produced so that

the total “fill level” equals 10 mmol (Fig. 7.7a, black point). Adding sodium

hydroxide solution slowly empties the proton reservoir and one moves in the

direction of the arrow along the curve. At the equivalence point, a solution of the

base of the weak alkaline pair is present in the deprotonated form of Ac�. The
corresponding proton potential shows a value noticeably below the neutral value.

Fig. 7.6 (a) “Fill level” of the proton reservoir as a function of the proton potential for an aqueous

solution of the acid–base pair NHþ4 =NH3 (10 mmol in 100 mL solution) at 298 K, (b)

Corresponding titration curve of an ammonia solution of equivalent concentration with the acid

of a strong acidic pair.
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Subsequently, the pair H2O/OH
� determines the shape of the function. Figure 7.7b

shows the corresponding titration curve.

If, however, the titrated system and the titrator are present in comparable

concentrations, the initial approximation is no longer valid and the increase of the

amount of water in the process of titration can no longer be ignored. The titration

curve must then be calculated point for point by inserting the changing concentra-

tions, which result from each addition of titrator, into the above relations. This is a

lot of work. Since the basic form of the curves does not change much, however, we

will leave it at a general understanding accepting the limitations mentioned.

7.6 Buffers

When a weak pair composed of approximately equal but large amounts of acid and

its corresponding base is present in a solution, this pair determines the proton

potential. Acids of weaker acidic pairs which are added cannot have any effect

upon μp anyway (if we disregard effects of dilution, etc.), whereas acids of stronger
acidic pairs—as long as they are at a shortfall—are robbed of their protons and so

become ineffective. The same holds for adding a base. Our acid–base pair can

absorb or buffer small outside disturbances without considerably changing μp of the
solution. Hence, a solution in which μp reacts insensitively to the addition of slight

amounts of acids or bases is called a buffer. Only when the acid of a stronger acidic
pair is added to excess, for example, can the now almost totally protonated base no

longer hinder the buildup of a higher proton potential. As a result, μp climbs to the

value corresponding to the stronger acid–base pair.

The best way to show how a buffer works is in a potential diagram. Similar to

matter capacity (see Sect. 6.7), we can introduce the buffer capacity Bp,

Fig. 7.7 (a) “Fill level” of a proton reservoir as a function of the proton potential for an aqueous

solution of the acid–base pair HAc/Ac� (10 mmol in 100 mL solution) at 298 K, (b)

Corresponding titration curve of an acetic acid solution of equivalent concentration with the

base of a strong alkaline pair.
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Bp ¼ dnp
dμp

;

by taking the derivative of the protonation equation (7.16) with respect to the proton

potential μp. The corresponding result

Bp ¼ np,max

2RT � 1þ cosh
μ
○
p � μp

RT

 ! ð7:20Þ

is not complicated but unfamiliar. The function cosh x is the so-called hyperbolic
cosinewhose values are simply the mean values of ex and e�x: cosh x¼ (ex + e�x)/2.
Of course, we can directly insert the expression (ex + e�x)/2 into Eq. (7.20), but the

relation then appears less clearly.

We will make do with a qualitative discussion of the form of the function

(Fig. 7.8a). At the point of inflection on the curve described by the protonation

equation (7.16) (the point where the proton potential corresponds to the basic value

μ
○
p of the acid–base pair), the function Bp(np), being the derivative of the protonation

equation, has, as expected, an extremum or, more precisely, a maximum value. As

described in Sect. 6.7, the function of a buffer becomes even clearer when the axes

are exchanged,
ffiffiffiffiffiffiffiffi
B=π

p
is calculated, and the curve is interpreted as the outline of a

rotationally symmetric container (Fig. 7.8b). In contrast to the “exponential horn”

that we have already seen, this container is rounded in form with the widest part in

the area of the proton potential μ p ¼ μ
○
p Ad=Bsð Þ. If protons are added to the

“reservoir” formed by the acid–base system, the “level” along with the proton

potential changes very little in the range of the “wide-bellied container.”

Fig. 7.8 (a) Plot of the stored amount of protons np (gray dotted line) and the corresponding

buffer capacity Bp (black continuous line) as a function of proton potential μp at 298 K, using the

example of the acid–base pair HAc/Ac� (100 mmol), (b) Potential diagram of the buffer HAc/Ac�

for various total amounts of substance, n¼ n(HAc) + n(Ac�).
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The change of level is smaller the closer one gets to the most rounded out area of the

container. Correspondingly, large amounts of protons can be added when the

reservoir is only half full without the proton potential changing noticeably. The

“proton reservoir” has the greatest capacity at this point. The size of the “proton

reservoir” is determined by the total amount of substance μp,max; the greater the

total amount of substance, the greater the buffer capacity. The size and shape of the

“container” is the same for all acid–base pairs when the amount of substance

remains the same. Only the position of the “container” shifts relative to the μp axis.
In the case of water, things look very different (Fig. 7.9). Within the range of

μp¼�20. . .�60 kG, water has only a very small buffer capacity Bp or buffer

capacity density b p ¼ Bp=V, so that even tiny amounts of protons going into or

out of a water sample can strongly change its proton potential. Starting from the

neutral point, the amount of protons bound to the H3O
+ as well as the protons “lost”

according to H2O!OH�+H+ is extremely small at first but grows exponentially.

The upper “fill level” indicates the basic value of the proton potential in an acid–

base system H3O
+/H2O, and the lower one shows the corresponding basic value in

the H2O/OH
� system.

In biological systems, the proton potential μp is often adjusted to certain values:

in human blood it is fairly close to (�42.2� 0.3) kG, in stomach acid at around

�10 kG, in urine at about �30 kG, and in the small intestine at about �50 kG.

There must be buffer systems present that compensate for the water’s lack of buffer
capacity. Graphically speaking, the two “containers” in Figs. 7.8b and 7.9 are

Fig. 7.9 Potential diagram for protons in water (by way of illustration, the proton potentials are

shown in some bodily fluids).
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connected (Fig. 7.10). Expressed mathematically, this means that the buffer capac-

ities of several acid–base pairs in a solution are added up:

B p, total ¼ B p Ad=Bsð Þ þ B p Ad*=Bs*ð Þ þ . . . :

The lack of buffer capacity in water can be compensated for by adding a suitable

buffer system of an approximately equimolar mixture of the acid and its

corresponding base because Bp as well as bp will then be greatest. Figure 7.10

illustrates the relation using the example of the pair lactic acid (CH3–CHOH–

COOH, abbreviated HLac)/lactate (Lac). As already discussed, the “proton reser-

voir” produced by such pairs has the greatest capacity when it is half full. This

occurs in this case in the range of proton potential where the buffer capacity of the

water is extremely small.

When there is enough excess quantity of lactate Lac� present together with its

protonated form HLac (lactic acid) compared to the other dissolved pairs Ad/Bs,

Ad*/Bs*, . . ., this buffer system determines the value of the proton potential. The

bases are protonated or the acids deprotonated until the same proton potential is

present everywhere. This is essentially determined by the level equation (7.12) of

the buffer system lactic acid/lactate. When the lactate is half protonated, i.e., if

c(Lac�)¼ c(HLac), then we have:

μ p ¼ μ
○
p HLAc=Lac�ð Þ ¼ �22 kG:

This is why it is possible to buffer a solution at a given proton potential by choosing

an acid–base pair whose basic value lies somewhere around the desired proton

potential. In biology, the most important buffer is the carbon dioxide/hydrogen

Fig. 7.10 Potential diagram for protons in the buffer system lactic acid/lactate in an aqueous

solution (100 mL, 1 kmol m�3, 298 K).
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carbonate system with a basic value of �36.4 kG: CO2jgþ H2Ojl μ HCO�3 jw
þHþjw: It is by far the most important part of the buffer system in the blood which

maintains the proton potential of blood rather precisely between �42.5 and

�41.9 kG (at 37 �C) and balances deviations caused by metabolism. A constant

proton potential is indispensable to life because values greater than �38 kG or less

than �46 kG often result in death.

As a result of the assumed excess and the consequent large buffer capacity,

proton gain or loss leads to only slight μp shifts in the buffer system. For clarity, we

will look more closely at the example of the lactic acid/lactate system. A buffer

solution that contains lactate as well as lactic acid at a concentration of 0.1 kmol m�3

shows a proton potential μp of �22 kG. If 1 cm3 of hydrochloric acid at a

concentration of 1 kmol m�3 is added to one liter of this solution, it adjusts to a

new proton potential μp0. Adding 0.001 mol HCl to the original 0.1 mol lactate in

1 L reduces the lactate by about 0.001 mol according to Lac�+H+!HLac, while

the lactic acid increases by that much. Applying the level equation results in a new

proton potential μp0:

μp
0 ¼ μ

○
p HLac=Lac�ð Þ þ RTln

c HLacð Þ0
c Lac�ð Þ0 , meaning

μp
0 ¼ �22� 103 Gþ 8:314 GK�1 � 298 K� ln

0:1� 0:001

0:1þ 0:001
¼ �21:95 kG:

Adding the acid has only changed the proton potential by 0.05 kG.

If, however, the same amount of 1 cm3 of hydrochloric acid is added to pure

water, the proton potential μp00 will be

μ p
00 ¼ μ

○
p H3O

þ=H2Oð Þ þ RTlncr H3O
þð Þ

[according to Eq. (7.3)] and therefore

μ p
00 ¼ 0 Gþ 8:314 GK�1 � 298 K� ln0:001 ¼ �17 kG:

By adding the acid, the proton potential has shifted by 23 kG in relation to that of

pure water with �40 kG (compared to a change of only 0.05 kG ! in the case of the

buffer solution).

Having introduced the concept of buffers, and having made it graphically clear

in potential diagrams, we can now understand why the proton potential changes

only very slowly until shortly before the equivalence point when the base of a weak

alkaline pair (such as ammonia solution) is titrated with the acid of a strong acidic

pair (Fig. 7.11). If the “communicating containers” are slowly filled with protons

during titration, the level and the proton potential along with it will, at first, be

largely determined by the “wide-bellied” proton reservoir of the buffer system
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NHþ4 =NH3. Greater amounts of protons can be added especially in the range that is

most “rounded out” without the level changing noticeably. However, if the proton

reservoir is completely full (equivalence point), a drastic change of proton potential

occurs when more protons are added. However, this change slows down in the

“funnel area” of the “exponential horn.”

7.7 Acid–Base Indicators

Acid–base pairs with strongly contrasting colors are also interesting. Normally,

these are large, water-soluble organic molecules. In tiny amounts, they are used as

indicators. By themselves and in equal amounts in a solution, the members of these

pairs produce a certain color mixture and a certain proton potential μ
○
p HInd=Ind�ð Þ,

which is characteristic of the indicator system because indicator acids (HInd) and

bases (Ind�) obey the level equation (7.12) as well:

μ p ¼ μ
○
p HInd= Ind�ð Þ þ RTln

c HIndð Þ
c Ind�ð Þ : ð7:21Þ

When the proton potential in a solution is raised by adding an excess quantity of the

acid of a stronger acidic pair, for example, the indicator base disappears due to

Fig. 7.11 Illustration of titration, using a potential diagram, of the base of a weak alkaline pair

with the acid of a strong acidic pair.
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protonation, leaving only the color of the indicator acid visible. Just the opposite

occurs when the proton potential is lowered. In this case, the acid is eliminated and

the pure color of the base appears. Therefore, the color indicates whether μp is

greater, smaller, or equal to μ
○
p (HInd/Ind

�). Table 7.3 shows the standard values of
some acid–base indicators.

An interesting example for the change of an indicator in color due to a change of

proton potential is the experiment about the acidity effect of sparkling water

(Experiment 7.3). The reason for this acidity effect is the hydrogen carbonate that

is produced when carbon dioxide dissolves in water. When it is cold and under

pressure, it provides enough protons p which form oxonium ions with water:

CO2jgþ H2Ojl μ CO2jw;
CO2jwþ 2 H2Ojl μ H3O

þjwþ HCO�3 jw:

The indicator’s change of color can also be used to indicate the end point of acid–

base titrations. This is possible because the proton potential climbs strongly while

Table 7.3 Standard values of

some acid–base indicators

and the corresponding

changes of color (acid

color—base color).

Indicator μ�p (kG) Color change

Thymol blue �10 Red—yellow

Bromophenol blue �22 Yellow—blue

Bromocresol green �28 Yellow—blue

Methyl red �29 Red—yellow

Bromothymol blue �41 Yellow—blue

Phenol red �45 Yellow—red

Thymol blue �51 Yellow—blue

Phenolphthalein �54 Colorless—pink

Alizarin yellow �64 Yellow—red

Experiment 7.3 Acidity
effect of mineral water: If
the indicator bromocresol

green is put into a bottle of

very cold mineral water, the

solution turns yellow. When

the bottle is opened at room

temperature or the content

heated, a large portion of the

carbon dioxide escapes and

the indicator color changes

to green and finally to an

intense blue.
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an acid of a strong acidic pair is being added, as we have seen in a previous section.

This happens exactly when the base, whose concentration is not known, has been

used up. Therefore, the indicator must be chosen so that its characteristic proton

potential μ
○
p Hind=Ind�ð Þ lies between that of the acid–base pairs in the unknown

solution and in the standard solution. This should correspond as well as possible to

the proton potential at the equivalence point. For this reason, the indicator methyl

red is suitable for the titration of the base of a weak alkaline pair with the acid of a

strong acidic pair, but the indicator phenol red is not (Fig. 7.12). The latter can,

however, be used in the titration of the base of a strong alkaline pair with the acid of

a strong acidic pair. In this case, the changes of potential are so drastic that even

with indicators of more strongly deviating μ
○
p values such as phenolphthalein,

precise results can be obtained.

Indicators are, themselves, acids (HInd) or bases (Ind�) so they also use up the

standard solution when turning their color. They are employed in very small

concentrations in order to keep possible errors to a minimum.

Fig. 7.12 Titration curves of weak alkaline pair–strong acidic pair (black solid line) and strong

alkaline pair–strong acidic pair (gray dotted line) as well as the transition intervals of two

indicators.
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Chapter 8

Side Effects of Transformations

of Substances

Transformations of substances like chemical reactions, phase transitions, distri-

bution in space, etc., are often accompanied by very striking side effects, such as

glowing and flashing, fizzling and cracking, bubbling and rising of smoke. These

side effects which make chemistry so fascinating are primarily based upon changes

of volume that can cause violent explosions and implosions, exchange and gener-

ation of entropy, which is responsible for effects like glowing and heating up, and

energy exchange that we use in muscles, motors, and batteries. The goal of this

chapter is to understand and quantitatively describe these phenomena, and to

sensibly make use of them. For this purpose, the so-called partial molar properties

such as the (partial) molar volume or the (partial) molar entropy of a dissolved

substance are introduced. For describing the changes of volume and entropy

associated with transformations, we will use the quantities molar reaction volume

and molar reaction entropy. The special role of entropy makes a further different-

iation into latent, generated, and exchanged reaction entropy necessary. We will

also learn how the chemical drive of a reaction, the corresponding exchange of

energy, and eventually the generated entropy are interrelated. In closing, this

relationship will be used for determining the chemical drive with the help of a

calorimeter.

8.1 Introduction

In the following, we will be concerned with transformations of substances of the

most varied kind. Among these will be

• Absorption or release of substances,

• Spreading or aggregation,

• Mixing and dissolving processes,

• Phase transitions and chemical reactions.
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All of these processes are accompanied by numerous side effects. Sometimes

these are almost imperceptible, but more often they are very noticeable: something

is glowing or flashing, fizzling or cracking, it is bubbling or smoke rises. These sorts

of accompanying phenomena, which make chemistry so interesting, are based upon

• Changes of volume that can cause violent explosions and implosions,

• Exchange and generation of entropy, which is responsible for effects like

glowing and heating up,

• Energy exchange that we use in muscles, motors, and batteries.

The goal of this chapter is to understand and quantitatively describe these phenom-

ena, and to sensibly make use of them.

8.2 Volume Demand

Pure Substances We will begin with the simplest case, namely change of volume
in transformations of substances. Every substance needs a certain amount of space.

How much this is depends upon how much space is needed by its atoms and the

gaps in between them. The volume taken up is greater, the more of the substance

there is. In order to compare the volume needed by different substances (Experi-

ment 8.1), one relates the volume to amount of substance. This so-called molar
volume Vm then serves as the measure of the space needed by a pure substance:

Vm ¼ V

n
molar volume of a pure substance:

The names or formulas of a substance can take the place of the index m, for

example, VH2O ¼ 18:07 cm3mol�1 or V(H2O)¼ 18.07 cm3 mol�1 for the molar

volume of (liquid) water.

The volume demand of a substance is by no means constant, but also depends

upon its milieu. Substances are compressible to some extent and can expand when

Experiment 8.1 Volume
demand of various pure
substances: How different

the volume demand, i.e., the

space taken up by various

pure substances can be, is

easy to show. Cylindrical

blocks all representing an

amount of substance of

1 mol are placed side

by side.
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heated. Volume and molar volume depend upon pressure p as well as temperature

T as demonstrated for a solid in Fig. 8.1.

When pressure increases, V generally decreases steeply at first and then more

gradually. However, for solid substances, hundreds of MPa are necessary for

attaining a noticeable change of volume. Gases, on the other hand, need much

less pressure (some tens of kPa) for this. The V( p, T) surface often rises in nearly a
straight line in the T direction. For many metals, the increase of volume from 0 K up

to the melting point is about 7 % (Grüneisen’s rule). Toward lower temperatures,

the tangent to the surface becomes horizontal.

Also in the case of molar volume the standard value is the value at “room

conditions,” meaning 298 K and 100 kPa. As before, we add the symbol � as

upper index to the symbol of the quantity, for example,

V�m H2Oð Þ ¼ 18:07cm3mol�1 at 298K and 100kPa:

The standard values for some pure substances are summarized in Table 8.1. Molar

volume also depends upon the state of aggregation, as the example of water shows.

The lowest molar volume at standard conditions is found for diamond with

3.4 cm3 mol�1. The values for solids and liquids are usually of the order of

10 cm3 mol�1 (where 1 mol refers to 6� 1023 atoms of any type). In contrast,

gases display a considerably greater molar volume of just a little less than

25 L mol�1. Why this is will be discussed in Sect. 10.2.

If the volume is known at a point p, T (e.g., for standard conditions), it is possible

to approximately calculate the values in the vicinity of this point. For this we need

the gradients of the surface in the direction of the p and T axes, ∂V=∂ pð ÞT and

∂V=∂ pð Þ p (see Fig. 8.1). The first coefficient measures the compressibility of the

substance; the second measures its thermal expansion. The molar volume Vm for

other p and T values can be calculated analogously to the method used for the

Fig. 8.1 Dependence of the

volume of a solid substance

upon pressure and

temperature.
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chemical potential by applying the appropriate pressure coefficient ∂Vm=∂ pð ÞT or

temperature coefficient ∂Vm=∂ pð Þ p, respectively.
Dissolved Substances It is noteworthy that the volume demand for a substance

also depends upon what kind of a chemical environment it is in. Consider this

example. 1 mol of pure water with a volume of about 18 cm3 is stirred into 1 m3 of

concentrated sulfuric acid, and then the warmed mixture is cooled back down to the

initial temperature. One finds that the entire volume has increased by only 8.5 cm3

and not by 18 cm3 as might have been expected. Obviously, water dissolved in

sulfuric acid requires less space and the molar volume is smaller in this milieu:

V�m H2O in conc: H2SO4ð Þ ¼ 8:5 cm3 mol�1:

If sulfuric acid of half this concentration is used, one finds 17.5 cm3 mol�1. A
similar but much smaller reduction of volume of about 4 % can be observed by

mixing equal parts of water and ethanol (Experiment 8.2).

Table 8.1 Molar volumes of some pure substances under standard conditions (298 K, 100 kPa) as

well as temperature and pressure coefficients (for corresponding reference values).

Substance Formula

V�m
cm3mol�1
� � ∂Vm=∂Tð Þ�p

cm3mol�1 K�1
� � ∂Vm=∂ pð Þ�T

cm3mol�1 kbar�1
� �

Graphite Cjgraphite 5.5 0.00004 �0.017
Diamond Cjdiamond 3.4 0.00001 �0.001
Iron Fejs 7.1 0.00025 �0.004
Lead Pbjs 18.3 0.00161 �0.045
Water ice H2Ojs 19.7 [0.0010] [�0.6]
Water H2Ojl 18.1 0.0046 �0.836
Water vapor H2Ojg 24.8� 103 83.1 �25� 107

The value for water ice was extrapolated linearly from 273 to 298 K. The values in brackets are

valid for 273 K

Experiment 8.2 Reduction of
volume by mixing water and
ethanol: A test tube is half-filled

with water (colored with an

appropriate dye). Subsequently, it

is filled to the top with ethanol and

closed with a rubber stopper. After

inverting the tube repeatedly, the

formation of a gas bubble meaning

a decrease in volume of the mixture

can be observed.
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The volume demand for some substances in certain solvents can even be

negative. The volume shrinks when such a substance is dissolved. An example of

this is the solution of sodium hydroxide in water:

V�m NaOH in H2Oð Þ ¼ �6:8 cm3 mol�1:

When 1 mol of sodium hydroxide in form of pellets is dissolved in 1 m3 of water,

the volume of the solution shrinks by 6.8 cm3, as long as the temperature and

pressure are kept constant (Experiment 8.3). This contraction is caused by the H2O

molecules (which are rather loosely packed when in pure water) being concentrated

more densely in the hydration shells of the Na+ and OH� ions.

As we have seen, the molar volume for a pure substance can be easily defined

and calculated. How should we proceed, though, when we want to find the volume

demand of a substance distributed inside another material environment?

Consider a body that absorbs a small amount of a substance. It will generally

expand somewhat (Fig. 8.2). The volume grows because the substance now inside

the body needs space, and by taking this space, the particles loosen the body’s
atomic structure. An example would be the volume demand of water penetrating a

more or less moist block of wood causing the wood to expand more. The measure of

Experiment 8.3 Negative
volume demand of NaOH in
water: The flat-bottomed

flask is filled with colored

water up to the mark (with

the cooling water running).

Subsequently, as many

pellets of sodium hydroxide

as possible are put into the

flask. After dissolution of

the sodium hydroxide and

cooling down of the

resulting solution, the water

level is considerably lower

than before.

Fig. 8.2 Increase of volume ΔV of a

block of wood when a small amount Δn of
a substance (e.g., water) is added (strongly

simplified description; in reality, the

dimensional change with changing

moisture content is anisotropic because of

the inhomogeneity of wood).
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volume demand of the substance added is the small observed change of volume ΔV,
relative to the small amount of substance Δn added:

Vm � ΔV
Δn

for a small amount Δn: ð8:1Þ

In our example, this is of the order of 15 cm3 mol�1.
To be precise, the added amount Δn (added to an amount n0 possibly already

present) should be kept as small as possible to keep the body from changing too

much. The volume demand by water in a dry block of wood is different from that in

wood which is already moist. We can express the changeover to infinitesimally

small amounts of substance by replacing the difference quotient by the differential

quotient. Naturally, the pressure p, temperature T, and the amounts n0, n00, . . . of all
other substances inside the body must be kept constant during the entire process.

This is necessary so that no changes occur during volume measurements due to

mechanical compression, thermal expansion, and/or compositional changes while

the substance is being added. In short, the milieu has to remain fixed. This can be

expressed by adding the symbols of these quantities as indices to the differential

quotient (see Sect. A.1.2 in the Appendix):

Vm � ∂V
∂n

� �
p,T,n0,n00, ...

partialð Þ molar volume of a dissolved substance:

ð8:2Þ

More graphically: The molar volume of a substance corresponds to the change of

volume which occurs when 1 mol of a substance is put into a very large sample of a

given composition. The great excess ensures that the composition of the sample, as

requested, will remain practically unchanged when the substance is added. This

method is not only useful for mixtures, but for single substances as well. We can

therefore forego using the epithet “partial.”

We use the value of Vm at infinite dilution (c! 0) as the basic value V
○

m of the

molar volume of a dissolved substance, meaning the volume demand of the

substance in the practically pure solvent. The basic value at standard temperature

and pressure is, again, called standard value V�m ¼ V
○

m T�; p�ð Þ. For example, the

molar volume of water strongly diluted in ethanol is not 18.1 cm3 mol�1 but only
about 14 cm3 mol�1. As a result of the different packing densities of the molecules,

the basic value of a dissolved substance also depends upon what kind of solvent it is

in. Thus, the molar volume of water in concentrated sulfuric acid decreases to only

about 9 cm3 mol�1, as we have seen.
Depending upon the overall composition of a mixture, the molar volume of a

substance can take very different values. The values can vary between the extremes

of the pure state and the state of infinite dilution. Figure 8.3 shows how the molar

volume of water depends upon the mole fraction of ethanol in an ethanol–water

mixture at 298 K. The molar volume of ethanol is also dependent upon the
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composition. The minimum of the ethanol curve and the maximum of the water

curve are found at the same mole fraction.

If the molar volumes VA and VB in a mixture of A and B are known for a certain

composition, the volume of a portion of this mixture results from the amounts and

volume demands of the components:

V ¼ nA � VA þ nB � VB: ð8:3Þ

(Here we have abbreviated Vm,A or Vm,B to VA and VB.) In order to derive this

relation, we consider the increase of volume dV when we add small amounts dnA
and dnB to a mixture of substances A and B while keeping pressure p and temper-

ature T constant:

dV ¼ ∂V
∂nA

� �
p,T,nB

dnA|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dV!nA

þ ∂V
∂nB

� �
p,T,nA

dnB|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
dV!nB

¼ VAdnA þ VBdnB:

We have chosen to use the arrow in the index to make clear that we have increases

in the directions of different variables. However, as mentioned in Sect. 3.11, this

way of writing is optional. The equation itself looks more complicated than it

actually is. The quantities p and T do not change here, so they can be left out,

making the expressions seem somewhat simpler. We can imagine the graph of the

function V(nA, nB) as a mountainside with different slopes in the nA und nB
directions (see Sect. A.1.2 in the Appendix). The first differential quotient shows

the gradient m!nA in the nA direction (imagine it as going east) and the second the

gradient m!nB in the nB direction (going northward). The product m!nAdnA is then

simply the increase dV!nA of “altitude” V, when one proceeds a small distance dnA

Fig. 8.3 Molar volume of

water and ethanol in water–

ethanol mixtures as a

function of the ethanol

content at 298 K. [Note the

differing scales for water

(left) and ethanol (right).]
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in the nA direction. The same holds true for movement in the nB direction. The total

increase dV for a change in both directions is simply the sum of both of these.

Hopefully, the above equation is now clear.

Let us now imagine adding substances A and B at constant proportions, and right

from the beginning when nA and nB are still both zero. The composition of the

growing regions will then remain unchanged over the entire process, as will the

volume demands VA and VB of both substances. The contribution of each individual

substance to the total volume V is then simply the product of VA � nA or VB � nB and

V itself is the sum of these.

In closing, a reminder that molar volume is not a measure of the volume which

the molecules themselves fill, but only a measure of the space they lay claim

to. This space can be much greater. For instance, in its gaseous state at room

conditions, a substance requires about a thousand times the volume that it would

in its condensed state. However, it can be much smaller (even negative), for

instance when it causes the molecules of the substance it is mixed with to move

more closely together, as we have seen happen with NaOH in a dilute aqueous

solution. Naturally, the salt in the solution must have a positive volume, but if the

volume contraction due to hydration is greater than the proper volume of the added

ions, the total volume decreases.

8.3 Changes of Volume Associated with Transformations

The changes of volume observed during a chemical reaction are essentially the

result of the volume demands of reactants and products. We will consider the

reaction of pure or dissolved substances in order to calculate the effect at an

arbitrary extent ξ of the reaction,

Bþ B0 þ . . .! Dþ D0 þ . . . :

The starting as well as the final substances may be present concurrently in large or

small amounts and in pure or dissolved states. We assume the pressure and

temperature to remain constant during the whole process in order to avoid unwanted

effects caused by compressibility and thermal expansion. We also require that no

other reaction runs in parallel, i.e., ξ0, ξ00, . . . are constant. A small extra conversion
Δξ then results in the following change of volume (instead of Vm,B for a

substance B, we use, as mentioned, the abbreviated VB, etc.):

ΔV ¼ VD � Δξþ VD0 � Δξþ . . .� VB � Δξ� VB0 � Δξ� . . . : ð8:4Þ

This follows from ΔnB ¼ ΔnB0 ¼ . . . ¼ �Δξ and ΔnD ¼ ΔnD0 ¼ . . . ¼ þΔξ,
respectively.

Every product requires an additional volume Vm � Δξ, while every reactant

releases a volume Vm � Δξ. Vm denotes the required space of a given substance at
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extent ξ of the reaction. In order for the volume demands to have definite values,

concentrations may not change noticeably. This can be achieved by allowing only

small conversions. However, when all participating substances are in pure states,

this limitation is unnecessary.

Because the change of volume ΔV is proportional to the conversion Δξ (at least
as long as Δξ remains small), it is more useful to relate information of this kind to

the conversion. Instead of ΔV, we use the quantity

ΔRV �ΔV
Δξ
¼ VDþVD0 þ . . .�VB�VB0 � . . . for small Δξ; p,T,ξ0,ξ00, . . .const:

ð8:5Þ

ΔRV(ξ) is the molar reaction volume which is the measure of how strongly the

transformation of the substances taking place changes the volume at a particular

extent ξ of reaction. The index R refers to “reaction” and serves to differentiate the

molar reaction volume (unit m3 mol�1) from a change of volume ΔV (unit m3).

The expression on the right can be made somewhat easier to understand with the

help of the conversion numbers vi. So far, for the sake of simplicity, we have chosen

vB ¼ vB0 ¼ . . . ¼ �1 and vD ¼ vD0 ¼ . . . ¼ þ1 in the conversion formula. Thus,

only plus and minus signs have appeared in Eq. (8.5). In the more general case

vBj jBþ vB0j jB0 þ . . .! vDDþ vD0D
0 þ . . .

we obtain

ΔRV ¼ ΔV
Δξ
¼ vBVB þ vB0VB0 þ . . .þ vDVD þ vD0VD0 þ . . . ¼

X
i

viVi: ð8:6Þ

The conversion numbers for the reactants are negative and they are positive for the

products. Therefore, the expression in the middle can be read as a difference, which

explains the Δ in the symbol used for the quantity ΔRV.
In the limit, we require the Δξ to be infinitesimally small in Eq. (8.5). This is

again expressed formally by using the symbol ∂ instead of the difference Δ. If we
now introduce all the quantities that are to be kept constant as indices of the

differential quotient, the equation takes the following form:

ΔRV � ∂V
∂ξ

� �
p,T,ξ0,ξ00, ...

¼
X

viVi: ð8:7Þ

It should not be difficult to transfer this to other types of transformations such as

phase transitions, dissolving processes, etc., that can be considered special cases of

reactions. Depending upon the process (change of modification, melting, sublima-

tion, dissolving, . . .), one may write ΔαβV,ΔslV,ΔsgV,ΔsdV, . . . or in more detail
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Δα!βV,Δs!lV,Δs!gV,Δs!dV, . . . : Conversely, Δ!V can be used when the type

of transformation is unimportant.

A few numerical values are useful for orientation. Volume increases generally

around 3 % during melting. Water ice, whose volume actually decreases during

melting is a well-known but rare exception. Evaporation volume is determined

almost solely by the volume demand of the vapor with 25 L mol�1 at room

conditions. (Compared to that, the volume required by the same substance in its

condensed state is so small that it can be ignored.)

8.4 Entropy Demand

Pure Substances A substance that contains no entropy is absolutely cold. In order

to bring it up to room temperature at standard pressure, a certain amount of entropy

is necessary. This can be generated internally or added from outside. The amount of

entropy necessary varies from substance to substance. It is proportional to the

amount of substance, so we relate the entropy required by a substance to the amount

needed for 1 mol of substance. This quantity, which we were introduced to in Sect. 3.9,

is called molar entropy:

Sm ¼ S

n
molar entropy f or pure substances:

Both entropy and molar entropy depend upon pressure and temperature. Therefore,

if the temperature is kept constant, a solid body exposed to a pressure of 1,000 MPa

loses about 1 % . . . 10 % of its entropy. In an ideal cooling process to 0 K,

S decreases to S0¼ 0 Ct. Figure 8.4 illustrates the dependence of the entropy of a

solid substance upon p and T. In the case of an ideal solid substance, the S surface

originates at the p axis with a horizontal tangent and transforms into a rather

Fig. 8.4 Dependence of the

entropy of a solid substance

upon pressure and

temperature.
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logarithmically increasing slope. In this range, S increases a few Ct for 1 cm3 of

matter, if the temperature increases by one order of magnitude. The decrease of

entropy in the direction parallel to the p axis is similar to the decrease of volume

with rising pressure. Gases do not behave much differently within their range of

existence. However, the entropy density is about a thousand times smaller at room

conditions than it is in liquid or solid substances. So as the pressure rises, the

decrease of entropy is very slight. It is only about 1 Ct for an increase of pressure of

one order of magnitude, if one assumes 1 dm3 of gas at standard conditions. The rise

in the T direction is logarithmic such as that for solids, but steeper, some Ct per

order of magnitude.

The standard value is indicated, as usual,

S�m H2Oð Þ ¼ 69:9 Ct mol�1 at 298 K and 100 kPa:

The values of the entropy at a point p, T (such as at standard conditions) can be

converted to other p and T values if the gradients of the surfaces in the p and

T directions are known at the former point, i.e., if ∂S=∂ pð ÞT and ∂S=∂ pð Þ p are

known. The first coefficient describes the substance’s loss of entropy by increase of
pressure. The second one corresponds to its entropy capacity C, which we were

introduced to in Sect. 3.9.

Dissolved Substances The entropy required by a substance distributed within a

body differs from what it requires in its pure state. It is mostly considerably greater

because the atomic disorder increases when atoms or molecules are scattered over a

larger volume. NaNO3 in a 1 kmol m�3 aqueous solution at room conditions

requires just about twice as much entropy as it does in its solid state. Therefore,

when NaNO3 is dissolved in water, the solution cools down so strongly due to the

salt extracting entropy from the water so that the glass it is in fogs up (Experiment

8.4). In order to keep the temperature constant, entropy must be absorbed from the

surroundings. As is the case in almost every process, entropy is generated here too,

but it is not enough to cover the high additional entropy demand of the salt.

Experiment 8.4 Cooling during dissolving of NaNO3 in water: Solid sodium nitrate is poured all

at once into the water and subsequently, one stirs vigorously with a glass rod. A strong decrease in

temperature can be observed.
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Distributing a tiny amount Δn of a substance inside a body results in a small

change of entropyΔS. The entropy change relative to the small amount of substance

is used for defining a measure of the entropy demand of the substance:

Sm � ΔS
Δn

for small Δn: ð8:8Þ

To be exact, one must again deal with the limit of infinitesimally small additional

amounts Δn of the substance, keeping pressure, temperature, and the amounts of all

other substances constant in the process:

Sm � ∂S
∂n

� �
p,T,n0,n00, ...

partialð Þ molar entropy of a dissolved substance:

ð8:9Þ

The molar entropy corresponds to the change of entropy required by the addition of

a small amount of the component in order to keep the temperature constant at a

given pressure, extrapolated linearly to 1 mol. Statements of this type can make

things difficult at first, but actually come up a lot in everyday life. An example:

when a car traveling at 50 km/h crosses some zebra stripes, it might take 1 s to do

so. If we linearly extrapolate the width of the stripes by a factor of 3,600, we obtain

a distance of 50 km. That’s the meaning of “traveling at 50 km/h.”

Like molar volume, molar entropy of dissolved substances can be negative. This

occurs mostly with polyvalent ions in aqueous solution, for example, with Ca2+.

When such ions are put into water, they organize water molecules, previously

distributed in an unorganized way in the liquid, into their hydration shells. The

effect can be so great that a state emerges that is more strongly organized overall,

although the arbitrary distribution of the ions in the solvent actually increases

disorder. The entropy can then decrease. The decrease of entropy just described

does not contradict the second law! The process does not destroy entropy, the

entropy is pressed out of the water going into the hydration shells into the sur-

rounding liquid, warming it. If the temperature is to be kept constant, this surplus

entropy must be removed. The entropy of the solution decreases only as a result of

this removal. The entropy demand is now smaller.

The molar entropy grows along with increasing dilution. It always grows by the

same magnitude ΔSm, if the concentration is multiplied by a fixed factor (<1) no
matter what the substance is and what milieu it is in. Conversely, the molar entropy

decreases when the concentration increases. If, for example, the concentration

increases by a factor of 10, the molar entropy (at 298 K) decreases by

Sd � �19Ctmol�1 for c! 10c, as long as c� c�:

We have seen a similar kind of behavior with the chemical potentials (remember the

decapotential μd¼ 5.7 kG in Sect. 6.3). Indeed, the two patterns of behavior are
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closely related to each other. We will show this later on in Sect. 9.3 (S–n coupling).
We conclude that Sm must depend logarithmically upon c:

Sm ¼ Sm,0 � Rln
c

c0
for c, c0 � c�: ð8:10Þ

This resembles the mass action equation. If we use c¼ 10c0, we recover the result
for Sd mentioned above. We can use the value of 19 Ct mol�1 for rough estimates.

This equation, which we accept for now on empirical grounds [and which we are

going to derive later (Sect. 13.4)], holds strictly for low concentrations. Deviations

occur at higher concentrations.

Unlike with molar volume, we cannot use the values for infinite dilution as the

basic values S
○

m for molar entropy Sm because they would be infinite. A value at

finite concentration, the standard concentration c� ¼ 1kmolm�3, is used instead.

The true values Sm c�ð Þ are not used but one extrapolates from the measured or

calculated values for small concentrations to c�, according to the relation given

above. Just like the basic values of the chemical potentials, those of molar entropies

are fictive values. Written in terms of the basic value, the equation above is

Sm ¼ S
○

m � Rln
c

c�
for c� c�: ð8:11Þ

In general, the standard values (the basic values at standard temperature and

standard pressure) are tabulated, S�m ¼ S
○

m T�; p�ð Þ.
The amount of entropy contained in a portion of a mixture is obtained analo-

gously to its volume from the amounts and entropy demands of its components, for

example, components A and B:

S ¼ nA � SA þ nB � SB: ð8:12Þ

The derivation which we forgo here can be accomplished according to the same

pattern used for volume [Eq. (8.3)].

8.5 Changes of Entropy Associated with Transformations

In a chemical reaction, the substances involved produce new ones with changed

entropy demands. Here, we are interested in the amount of entropy ΔS which is

added or removed for compensation when a reaction takes place at constant

pressure and constant temperature. Let us consider the reaction of 0.1 mol of iron

and 0.1 mol of sulfur forming 0.1 mol of iron sulfide, at room conditions:
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We see that exactly ΔS¼ 0.1 Ct is lacking. This is what is needed to cover the

entropy demands of the FeS produced by a conversion of Δξ¼ 0.1 mol. This

amount of entropy ΔS must be introduced from outside if the iron sulfide is to be

as warm at the end of the reaction as the iron and sulfur were before the process

began. Without this added entropy, it would be colder. If the conversion is multi-

plied, the required entropy multiplies correspondingly.

Our example results in the following for an arbitrary conversion Δξ:

ΔS ¼ SFeS � Δξ� SFe � Δξ� SS � Δξ;

where SFeS, SFe, and SS each represent the molar entropies of the corresponding

substances. The additional demand ΔS is proportional to the conversion if temper-

ature and pressure are kept constant during the reaction and no side reactions take

place. Because of this proportionality, it makes sense to relate the additional

requirement to the conversion:

ΔRS ¼ ΔS
Δξ
¼ SFeS � SFe � SS for small Δξ; p, T, ξ0, ξ00, . . . const:

This conversion-related quantity is called the molar reaction entropy ΔRS. In our

example, the caveat “for small Δξ” is unnecessary because only pure substances are
participating in the reaction. However, if dissolved substances appear in the con-

version formula, we can then only allow small additional conversions Δξ for any

arbitrary extent ξ of the reaction. This is to ensure that the composition of the

solution and, therefore, the entropy demands of the substances in it do not change

noticeably.

For an arbitrary reaction between pure and dissolved substances,

vBj jBþ vB0j jB0 þ . . .! vDDþ vD0D
0 þ . . . ;

we can calculate the molar reaction entropy according to the pattern used for many

other conversion-based “extensive” (often substance-like) quantities, which we

were introduced to through the example of molar reaction volume:

ΔRS ¼ vBSB þ vB0SB0 þ . . .þ vDSD þ vD0SD0 þ . . . ¼
X

viSi: ð8:13Þ

The molar reaction entropy is the change of entropy—based upon the conversion—

at constant p and T. It equals the sum of the molar entropies of the reaction partners
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weighted by the conversion numbers. Using our iron-and-sulfur example, we have

ΔRS ¼ SFeS � SFe � SS ¼ 1Ctmol�1 because of vFe ¼ vS ¼ �1 and vFeS ¼ þ1.
The conditions added to the equation above can be expressed as for the case of

molar reaction volume by replacing the Δ by ∂ in the difference quotient and

adding the quantities which will be kept constant to the index:

ΔRS ¼ ∂S
∂ξ

� �
p,T,ξ0,ξ00, ...

¼
X

viSi: ð8:14Þ

If the standard values for the molar entropies of all the reaction participants are

applied, one obtains ΔRS
� as the standard value.

The following considerations can be helpful for estimating reaction entropy: In

the case of liquids and especially in the case of gases, the values of molar entropies

are generally far above those of solid substances. The algebraic sign and the

absolute value of ΔRS are therefore primarily determined by how much the number

of liquid or gaseous molecules changes during a reaction. The more the number of

liquid or gas molecules increases in a reaction, the more positive the molar reaction

entropy will be. In a net consumption of gas or liquid molecules, the reaction

entropy decreases so that in the reaction

2 H2jgþ O2jg! 2 H2Ojl

we have a strong decrease of entropy ofΔRS
� ¼ �327Ctmol�1 which results from

the formation of a liquid from two gases.

As in the case of volume (see end of Sect. 8.3), it should be easy to relate this to

other kinds of transformations of substances such as phase transitions, dissolving

processes, etc. We can write Δ!S instead of ΔRS if we wish to emphasize that we

mean any type of transformation and not only reactions. Egon Wiberg (Wiberg E

(1972) Chemical Affinity, 2nd edn. de Gruyter, Berlin, New York, p. 103)

suggested calling processes with positive transformation entropy, Δ!S> 0,

endotropic, and those with negative Δ!S< 0, exotropic.
However, in contrast to the case of volume, the effects caused by the differing

entropy demands of substances can be masked by others because energy is released

in many processes which then generates entropy. In order to better understand the

consequences of this circumstance, we will now deal with energy released or used

by these processes.

Again, it would be good to note some reference values. For monoatomic sub-

stances, the increase of entropy in a melting process is about 10 Ct mol�1

(Richards’s rule), while for all substances boiling at normal pressure, it is around

100 Ct mol�1 (Pictet–Trouton’s rule).
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8.6 Energy Conversion in Transformations of Substances

As we have seen in the introduction to the chemical potential (Sect. 4.8), in order to

increase the amount n of a substance B, against its own “tendency to transform” μ,
we need an amount of energy equal to

W!n ¼ μ � Δn for small Δn or dW!n ¼ μdn ð8:15Þ

(Fig. 8.5). Whether the growth is caused from production inside or by addition from

outside makes no difference. If the substance is produced inside it only means that

at the same time a certain amount of one or more substances participating in the

creation of B either disappear or are produced. This can be included separately by

the corresponding expressions dW!n0 ¼ μ0dn0, dW!n00 ¼ μ00dn00, . . . and can there-

fore be ignored here.

If we want to obtain the contribution W!n from the change ΔW of the energy

contentW of the system, we have to make sure that no other substances, entropy, or

similar quantities are added as well. Furthermore, the volume must be kept con-

stant. This can be achieved by fixing the amounts of all other substances, the

entropy, the volume, etc., of the body

W!n ¼ ΔWð ÞS,V,n0,n00, ... or dW!n ¼ dWð ÞS,V,n0,n00, ...:

This is not different from what we learned in the example of the bathtub (compare

Sect. 1.6). The way water flows in and out of the bathtub over various paths is also

valid here for energy. The energy content W of the area is a state variable, but the

amounts of energy W!V, W!S, W!n, W!n0, . . . that are exchanged with the

surroundings over different paths are not. They are so-called process quantities

whose combined effect can best be imagined by considering a process taking place

in time t. PV tð Þ ¼ dW!V=dt,PS tð Þ ¼ dW!S=dt, etc., represent the energy currents

flowing over various paths, while _W ¼ dW=dt tells us how quickly the amount of

energy increases as a result:

_W ¼ PV þ PS þ Pn þ Pn0 þ . . . “Continuity equation:”

Fig. 8.5 The energy

needed to increase the

amount n of a substance

inside a material system

(where the potential equals

μ) by adding or producing a

small amount of Δn.
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The energy current Pn flowing over path n can be formally described by _W if we

imagine all other pathways to be blocked, Pn ¼ _W
� �

S,V,n0,n00, .... When we use this

method to calculate the energy dW!n flowing in during a short time span dt, we
obtain the equation we started with:

dW!n ¼ Pn � dt ¼ _W � dt� �
S,V,n0,n00, ... ¼ dWð ÞS,V,n0,n00, ...:

The following fact is remarkable and important. If entropy Sg is generated (possibly
by friction) in an area at temperature T, this costs an additional amount of energy

Wb¼ T � Sg. The condition that S must be kept constant just means that Sg and

thereforeWb cannot remain in the area but must be removed. Whether or not energy

is “burnt” and entropy is generated in the procedure does not affect the result and

can, therefore, be ignored.

We arrive at the chemical potential μ if we divide dW!n in the equation above by

dn, which leads us back to the following equation we know from Sect. 4.8:

μ ¼ ∂W
∂n

� �
S,V,n0,n00, ...

: ð8:16Þ

The energy Wt necessary for transferring a small amount nt of a substance from a

body 1 with the chemical potential μ1 to another body 2 with the potential μ2
(Fig. 8.6) results from the effort μ2 � nt for supplying the amount nt to body 2, less

the profit μ1 � nt resulting from the removal from body 1:

Wt ¼ μ2 � μ1ð Þ � nt ¼ Δμ � nt for small nt: ð8:17Þ

If μ2> μ1, and therefore the substance is pumped “up the potential hill,” Wt is

positive, and increasingly so, the greater the potential lift is.

Conversely, energy can be gained when a substance goes from higher μ to lower

μ, and Wt becomes negative. Similar to thermal engines where the temperature fall

Fig. 8.6 Flow diagram for

energy and amount of

substance of an “ideal

substance pump” (gray
circle). In reality, entropy is

constantly generated—

possibly by friction—which

costs extra energy.
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of entropy is used, corresponding “chemical engines” can be constructed. Such

chemical engines are to be found all over in nature in the form of muscles and the

flagella of single-celled organisms. A simple apparatus of this type that makes use

of the potential difference of liquid water in a glass and water vapor in the air of the

room is the toy known as the “drinking duck” (Experiment 8.5).

Chemical reactions can be described using the same paradigm. It makes no

difference whether or not the substances all appear in the same homogeneous area,

or if they are distributed over various areas. For a reaction

Bþ B0 þ . . .! Dþ D0 þ . . .

the total effort W!ξ for an increase of the conversion by a small Δξ is simply

the sum of the positive or negative contributions due to changes of amount

ΔnB ¼ �Δξ, ΔnB0 ¼ �Δξ, . . . of the reactants and ΔnD ¼ Δξ, ΔnD0 ¼ Δξ, . . .
of the products:

W!ξ ¼ μBΔnB þ μB0ΔnB0 þ . . .þ μDΔnD þ μD0ΔnD0 þ . . . :

The sums of the chemical potentials can be combined to give the chemical drive of

the reaction:

W!ξ ¼ � μB þ μB0 þ . . .� μD � μD0 � . . .ð Þ � Δξ ¼ �A � Δξ:

Generalizing this for the case where the conversion numbers are not only +1 or �1
is just a formality. The energy W!ξ needed for the general reaction

0! vAAþ vBBþ vCCþ . . . or 0!
X
i

viBi

(compare Sect. 1.7) with ΔnA ¼ vAΔξ, ΔnB ¼ vBΔξ, . . . or, alternatively,

Δni ¼ viΔξ, equals

Experiment 8.5 Drinking duck:
First, the felt of the duck’s head is

wetted. After a short while, the

duck begins to “drink,” i.e., it

slowly swings back and forth,

finally dips its beak into the water,

and comes back up nodding. After

a number of oscillations, the

process starts anew.
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W!ξ ¼ μAΔnA þ μBΔnB þ μCΔnC þ . . .

and so

W!ξ ¼ vAμA þ vBμB þ vCμC þ . . .ð Þ � Δξ ¼
�X

i

viμi

�
� Δξ ¼ �A � Δξ:

The final formula is very simple and remains the same for both cases. The more

“negative” drive A (the greater�A) and the greater the conversion Δξ are, the more

the energy needed increases:

W!ξ ¼ �A � Δξ for small Δξ: ð8:18Þ

One might call �A a measure of “reverse force,” meaning how strongly a reaction

resists when it is forced to proceed against its own drive. This is not different from

what we know from mechanics when a spring is stretched or a weight is lifted.

As a reaction progresses, the composition of the mixture changes and along with

it, the chemical drive. In order for Eq. (8.18) to remain generally valid, the

conversion Δξ (and consequently, the energy W!ξ) must stay small enough. This

is usually expressed by using differentials:

dW!ξ ¼ �A � dξ: ð8:19Þ

In the case of spontaneous reactions, where the drive A is positive, we have

W!ξ< 0, and energy is therefore released. This released energy is usually

“burnt,” thereby generating entropy. This generally leads to a heating up of the

reaction mixture (Sect. 8.7). The energy may, however, be available for lots of other

uses. For instance, muscles use the energy released by glucose oxidation. This does

not happen perfectly, but with a higher efficiency as if the glucose were burnt in a

thermal power plant:

For a conversion of Δξ¼ 1 mol, the result is an energy requirement of

W!ξ ¼ �A � Δξ, meaning a gain of �W!ξ ¼ A � Δξ ¼ 2, 821kG in the ideal

case. Flashlight batteries, for example, use the energy released by zinc oxidation

through MnO2.

8.7 Heat Effects

Preliminary Remarks In the introduction to entropy in Chap. 3, we mentioned

that this quantity describes exactly what we consider “amount of heat” in everyday
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life. Phenomena are called caloric when the amount of heat is the primary charac-

teristic and called thermal when temperature is most significant. It is easiest to

understand the caloric effects that accompany all types of transformations of sub-

stances through entropy and not through energy. Entropy is the characteristic

substance-like quantity for effects of this type. Energy also plays its role, not only

here but in (almost) all other effects as well. It is important but nonspecific. If one is

paying too much attention (or is only paying attention) to energy, the wrong

parameter is being emphasized.

“Great things cast long shadows” is a saying

we all know. One can find out a lot from shadows

alone, such as the form, motion, and behavior of

whatever is producing the shadow. However,

some things get lost such as colors or the actual

shape and form of the body in question. Every-

thing that happens in nature leaves behind traces

at the level of energy. In many cases, these

shadow images suffice and are even very good

for describing an important aspect: conservation of energy—but this is not the

only important aspect. It is like the floor plan of a house that does not give a

sufficiently clear picture of its habitability.

An energy “shadow” belongs to every change of entropy dS in a system no

matter if it occurs as a result of exchange with the surroundings (dSe) or through
generation inside (dSg), or both:

dS ¼ dSe þ dSg level of entropy,

TdS ¼ TdSe þ TdSg level of energy:
ð8:20Þ

In order to understand the basics, it suffices if, for now, we limit ourselves to

systems that do not exchange substances with their surroundings. As long as

changes are small or the temperature T remains constant, the shadow is a good

image of what happens at the entropic level: TΔS ¼ TΔSe þ TΔSg. If this condi-
tion is breached in any way, a distorted image emerges. It may be distorted only

slightly, but just as easily it can be deformed to the point of being unrecognizable.

Only TdSe (or the sum of such contributions,

ð final

initial

T dSe), is usually called “heat”

(compare Sect. 3.11). We will return to this at the end of this section.

Many of the characteristic quantities that describe caloric effects hold for

isothermal conditions. In this case, T represents a fixed scale factor between the

original entropic image and the secondary image at the energy level. Luckily, we

are only dealing with isothermal effects in this section. Therefore, it hardly makes

any difference whether we discuss things at the entropic level or rewrite them in

terms of energy quantities. Although it is unusual, we will choose the first approach

because it better clarifies the essentials.
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Interaction of Two Effects Let us consider a simple system with uniform pressure

p and temperature T which conform to the values p* and T* in the surroundings.

Moreover, only one reaction may occur inside this system. Now there are three

pathways over which the energy content W of the system can be changed:

dW ¼ � pdV þ TdS� Adξ: ð8:21Þ

In order to direct the energy to take a particular path, the system as well as the

surroundings must be adjusted to this. We might need heat conducting walls and an

entropy reservoir outside to absorb or deliver energy thermally. Cylinders, pistons,

and transmission gears are used in order to make the energy mechanically useful.

Finally, electrodes, diaphragms, ion conductors, and the like are employed to use

the energy made available chemically. It is unimportant here how these devices are

constructed.

Let us now imagine a system and its surroundings equipped for energy to be

exchanged via all three paths. When the reaction progresses by a small dξ, the
amounts of substances change and their volume and entropy demands change along

with them:

dV ¼ ΔRV � dξ and dS ¼ ΔRS � dξ: ð8:22Þ

The increases dV and dS occur at the cost of the surroundings, i.e., dV ¼ �dV* and
dS ¼ �dS*. This is the case as long as no entropy is generated, which we will

assume for the present. There is an exchange of energy connected with this.

Because we have assumed pressure and temperature to be the same inside and

outside, p¼ p* and T¼ T*, no energy is released. The word released means that

it is then available for other purposes. In this case, what is released on one side is

used on the other side so that nothing is left over: pdV + p*dV*¼ 0 and TdSþ
T*dS* ¼ 0; therefore, nothing is released. This type of energy exchange in which

energy is passed on for an intended purpose cannot be tapped into and is therefore

uninteresting.

The situation is different for the third path. The energy �dW!ξ ¼ Adξ released
in a spontaneous reaction (with A > 0) cannot, as a rule, be used completely. To

express this, we introduce an efficiency η< 1. The useful energy which the sur-

roundings (Index *) receives, is then dW*
use ¼ ηAdξ. The rest dW*

b ¼ 1� ηð ÞAdξ is
“burnt,” thereby generating entropy. With dSg ¼ dW*

b =T, we have:

dSg ¼ dW*
b

T
¼ 1� ηð ÞAdξ

T
: ð8:23Þ

The “burnt” energy is transferred thermally together with the contribution �TdS
(e.g., through rigid but thermally conducting walls) into the surroundings (Fig. 8.7):
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One could say that the third path is “leaky,” meaning that a part of the useful energy

transported along this path may get lost and finally dissipates in the surroundings.

The other paths are not impervious to loss, either. It is just the lack of pressure and

temperature gradients that hinder them being tapped.

When dealing with only one system and its surroundings, there are stipulations

for the signs: Inflows to the system receive positive signs and outflows receive

negative ones. Whatever happens in the surroundings is described accordingly. The

entropy content S of a system can, as we know, change through exchange or

generation (compare Sect. 3.6):

dS ¼ dSe þ dSg

or rearranged:

dSe ¼ dS� dSg: ð8:24Þ

While dS describes the entropic effect inside, dSe¼ –dS* indicates the effect that

can be noticed outside. If dSe< 0, the process is called exothermic and if dSe> 0, it

is called endothermic. In contrast, the sign of dS is the deciding factor for the terms

exotropic and endotropic introduced in Sect. 8.5:

Fig. 8.7 Energy flow

diagram for a material

system when pressure and

temperature are the same

inside and outside. The

energy released inside

during a small conversion

dξ is used with an efficiency
of η.
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dS < 0 exotropic, dS > 0 endotropic,

dSe < 0 exothermic, dSe > 0 endothermic:

dSe is not a simple quantity. According to Eq. (8.24), it is made up of two dissimilar

contributions. Along with the process itself, we will call these contributions exo-

thermic or endothermic depending upon their signs. Both are proportional to the

conversion dξ but have different origins and depend upon very different

parameters:

dS ¼ ΔRS � dξ according to Eq: 8:22ð Þ½ �

• Can be either positive or negative, providing consequently an endothermic or

exothermic contribution.

• Has nothing directly to do with the chemical drive A of the process.

• Is independent of whether or not and how the released energy is used or wasted.

dSg ¼ 1� ηð ÞAdξ=T according to Eq: 8:23ð Þ½ �

• Is always positive and therefore always provides an exothermic contribution.

• Is directly proportional to the chemical drive A of the process.

• Varies between 0 and 100 % depending upon the type of energy usage.

Because of these differences it is a good idea to discuss the two contributions

always separately and not to try to combine them as is usual in chemistry. dS and

dSg are proportional to the conversion dξ so it makes sense relating them to the

conversion, especially when giving concrete values:

dS

dξ

� �
p,T

¼ ΔRS and
dSg
dξ
¼ 1� ηð ÞA

T
: ð8:25Þ

We have inserted into the first expression the condition that p and T are to be kept

constant, which is unnecessary in the second expression because it is independent of

this condition. Another difference emerges that makes it advisable to keep the two

effects separate. When the entropy S is given as a function of p, T, and ξ,
S ¼ f p; T; ξð Þ, then ΔRS can be calculated as the derivative of f with respect to ξ
at constant p and T (according to the usual mathematical rules). Formally, this is

expressed by replacing the straight d by the rounded ∂: ΔRS ¼ ∂S=∂ξð Þ p,T .
Latent Entropy The consideration above is correspondingly valid for other types

of transformations of substances. In phase transitions such as melting, boiling, etc.,

the drive disappears at the corresponding transition points, A ¼ 0. This is analo-

gously valid for dissolving processes at saturation and generally for transformations

at equilibrium. The second expression becomes zero in each case and the entropic

effects (and the caloric ones along with them) in the system and its surroundings

become equal, dS¼ dSe (or TdS¼ TdSe). In this special case, it has long been
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customary to use the term “latent heat,” namely for the infinitesimal quantity TdS
and, respectively, its integral TΔS.

The term “latent heat” originated in the eighteenth century when people had only

vague conceptions about the nature of heat and its characteristics. The most

common belief was that heat was an entity contained in objects to greater or lesser

degree that was movable and could be exchanged between them, comparable to a

substance. When something felt warm or hot, it was because there was more of this

entity contained within it, and when something felt cold, it meant there was less of

it. This describes almost exactly the characteristics we have attributed to entropy,

with the difference that it was assumed back then that the entity could be neither

generated nor destroyed.

Already in the eighteenth century it was clear that heat had to be added to

vaporize water, and heat had to be withdrawn if steam was to condense. Even

though the produced steam takes much more heat than is needed to heat the cold

water to the boiling point, the temperature of the steam is not higher than the boiling

temperature. It is as if the heat is “hiding”; it has become latent according to the

term used back then. When the steam condenses to its liquid, the latent (hidden)

heat is released and becomes sensible.
We have taken over this name for lack of a better one in order to distinguish

between the effects caused by differences of entropy demands and those caused by

entropy generation. In Eq. (8.25), the expression on the left represents the latent
molar reaction entropy and the one on the right, the generated molar reaction
entropy.

Balance of Entropy Only the difference of these two effects is noticeable outside

due to dSe ¼ dS� dSg:

dSe
dξ

� �
p,T

¼ dS� dSg
dξ

� �
p,T

¼ dS

dξ

� �
p,T

� dSg
dξ

or

ð8:26Þ

Naturally, formal symbols corresponding to the various reaction entropies can be

introduced, which are more or less self-explanatory. This allows us to abbreviate

the three molar entropies introduced above, and their integral counterparts, to:

ΔRSe ¼ ΔRS‘ � ΔRSg and ΔSe ¼ ΔS‘ � ΔSg balance of entropyð Þ ð8:27Þ

The index ‘ for “latent” is only inserted for the sake of clarity. We assume pressure

and temperature to be constant, as stated at the beginning. Remember that merely

ΔRS‘ (�ΔRS) is determined only by the state parameters p, T, ξ used here.ΔRSg and
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ΔRSe along with it depend upon the efficiency η and therefore upon other para-

meters such as “resistances” of various types inside or upon the devices that make

exchange of energy between system and surroundings possible.

ΔRSe is mostly negative because the absolute value of latent entropy in chemical

reactions is in general much smaller than the generated entropy, jΔRSj�ΔRSg.
This results in most chemical reactions being exothermic, so that

• The entropy must flow off for the temperature and pressure to be retained or

• The temperature will rise if the outflow of entropy is hindered.

Let us return to the reaction of iron with sulfur with a conversion ofΔξ¼ 0.1 mol

(compare Sect. 8.5). In order for the resulting iron sulfide not to emerge sub-cooled

from the reaction, we noticed that 0.1 Ct of entropy was lacking, which needed to be

absorbed from the surroundings. However, we know that iron sulfide actually forms

as a brightly glowing product which must emit quite a lot of entropy in order to

attain the original temperature of the starting substances (see Experiment 3.5).

Where does all this excess entropy come from?

The energyA � Δξ is released during the reaction. It is easy to calculateAwith the

help of the chemical potentials. This energy can be used for anything we want, for

example, if we manage to couple the reaction process in a galvanic cell with an

electric current, which itself drives a motor, light bulb, electrolysis cell, etc. If,

however, a mixture of iron and sulfur powder is ignited in the open, the released

energy is used to generate entropy. This entropy is deposited in the end at temper-

ature T which lies around 300 K. Therefore, according to A � Δξ ¼ T � ΔSg, the
amount of entropy finally generated, i.e., Sg, equals

ΔSg ¼ A � Δξ
T
¼ μ Feð Þ þ μ Sð Þ � μ FeSð Þð ÞΔξ

T

¼ 0þ 0� �102� 103 G
� �� 0:1mol

� �
300K

¼ 34Ct:

The large value of the excess entropy mentioned above comes from the generated
entropy Sg. What the temperatures in the interim are, or how the entropy actually

comes to be generated, makes no difference to the final result.

The general rule is that all released energy remains unused, meaning it is used up

to generate entropy. However, if the energy involved is not simply “burnt,” but is

used with an efficiency of η, say of 70 % (possibly by a galvanic cell driving a

motor), then only 1� ηð ÞAΔξ is available for generating entropy:

Sg ¼ 1� ηð ÞAΔξ
T

¼ 1� 0:7ð Þ � 102� 103 G� 0:1mol

300K
¼ 10Ct:

In the ideal case of a complete use of energy (η¼ 1), the term Sg would disappear

and the previous exothermic reaction would become endothermic. Galvanic cells,

which allow such usage, were not actually developed for the reaction between iron
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and sulfur, but for the reaction of sulfur with sodium. We will discuss the design of

such cells in electrochemistry, later on.

Accompanying Exchange of Energy We mentioned above that until the middle

of the nineteenth century, certain characteristics were attributed to heat that corre-

spond well to the properties attributed to entropy discussed in Chap. 3, with the

exception that heat was considered a quantity that cannot be generated. Discoveries

during the nineteenth century increasingly contradicted this assumption and finally led

to a restructuring of the whole intellectual edifice. Since then, heat has been considered

a special form of energy transfer. Formally, this rededication leads to the differential

TdSe or, more precisely, the integral

ð
TdSebeing called heat Q (rather than S):

dQ ¼ TdSe or Q ¼
ðfinal

initial

TdSe:

While the step from the quantity S to Q is comparatively easy, reversing this is very

difficult. One reason is that we cannot see anymore on which path the energy

arrived once it is in the system, similar to how we cannot tell the way a person

arrived at work, whether on foot, by bicycle, in a car, etc., once he or she is in the

office. Formally, this means that Q (differently from S) is not a state variable; it is
not determined by the state of the system.

Another reason is that the (thermodynamic) temperature T can be defined easily

based on entropy, but only in a temporary form and awkwardly without this

concept. Without entropy, this definition is commonly achieved via the thermal

expansion of gases. However, one usually forgoes demonstrating that the temper-

ature θ defined this way actually corresponds to the thermodynamic T. Let us
overlook this difficulty! When the equation dQ¼ TdSe above is solved for dSe
and then integrated, the result is:

dSe ¼ dQ

T
and ΔSe ¼

ðfinal
initial

dQ

T
:

We have not reached our goal yet. What we are looking for isΔS ¼ ΔSe þ ΔSg and
not ΔSe. Therefore, we must also make sure that ΔSg¼ 0. In order to assure this, the

whole process must be reversible and this is indicated by the index rev for Q:

dS ¼ dQrev

T
and ΔS ¼

ðfinal
initial

dQrev

T
:

The effects we are dealing with at the moment occur at constant temperature so that

the relation between exchanged entropy ΔSe and the accompanying transfer of

energy or heat Q¼ TΔSe is very simple. If one wishes to discuss the accompanying
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energy exchange, it is enough in this case to multiply the corresponding entropies

by T. Taking it a step further, and multiplying the balance of entropy (8.27) by T, we
obtain the following expression:

If we were to abide by the usual rules of terminology, we would only call the first

element heat and use the symbolQ for it (without the index e), even though the other

contributions cause the same effects. We will overlook this limitation, though,

because it means nothing to us and only creates an unnecessary obstacle.

Gibbs–Helmholtz Equations One of these equations (of which there are different

versions) will serve here as an example for applying the balance of entropy

discussed above. The most common version of this equation describes the relation

between drive A and the heating effect that is observed when a reaction runs freely
at constant p and T, meaning that the released energy A � Δξ is “burnt” without any
use (η¼ 0), so that A � Δξ ¼ T � ΔSg ¼ Qg. Again, we assume Δξ to be small. The

fame of these equations can be traced to an error, the idea common at that time, that

the emitted heat �Qe or the “heat tone” as it was called was a measure of the drive

A of a reaction (Berthelot’s principle, 1869). Qg ¼ �Qe þ Q‘ would have been

correct, instead of �Qe alone. The error was not immediately seen because the

latent heat Q‘ is generally considerably smaller than the observable heat effects.

The attractiveness of this approach was that there existed simple calorimetric

methods to measure Qe. This gave people at that time a much simpler procedure

for determining or at least estimating the drive A than had been possible until then.

Before that, one had to be content with simply ranking the drives for certain

reactions.

Therefore, there was good reason to measure these heats and to collect the data.

The error was only gradually dealt with by the work of Josiah Willard Gibbs,

Hermann von Helmholtz, and Jacobus Henricus van’t Hoff who all showed that the
“heat tone” �Qe itself did not represent the correct measure for the drive, but that a

positive or negative contribution corresponding to the latent heats Q‘ (such as was

known from phase transitions) had to be added:

A � Δξ ¼ �Qe þ Q‘|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Qg

a version of the Gibbs�Helmholtz equationð Þ:

8.8 Calorimetric Measurement of Chemical Drives

The concept is simple: In a reaction, the released energy A � Δξ is “burnt” during a

certain conversion Δξ at given values of p and T and the generated entropy ΔSg is
then determined calorimetrically. Because A � Δξ ¼ T � ΔSg, A is then easy to

calculate from the measured data.
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Unfortunately, the latent entropy becomes a problem because depending upon

the type of substances, the entropy demands Sm and therefore the entropy

content ΔS of the sample change in the reactor. A positive ΔS becomes

noticeable as a negative contribution �ΔS in the calorimeter (Index *) so that

not ΔSg but ΔS* ¼ ΔSg � ΔS ¼ �ΔSe is measured there.

This value is only useful if it is possible to also determine ΔS in some way. This

step is easy to imagine. One measures the entropy content S1 of the sample before

the reaction and then the value S2 afterwards. The value being sought is the

difference ΔS¼ S2 – S1. In Sect. 3.9, we indicated how such a measurement might

look. The fact that the sample must be cooled down to a temperature of just about

absolute zero causes such entropy measurements to be technically complicated,

comprising the greatest obstacle to this method. In fact, when possible, such

entropy values are measured separately for the individual substances and then

tabulated as molar entropies. The missing value for ΔS is then calculated from

these tabular values.

How, then, is the first part of the measurement carried out, meaning how is

ΔS*¼�ΔSe determined? We might make use of one of the “ice calorimeters”

described in Sect. 3.7 and deduce the entropy from the amount of melted water.

More often, though, a calorimeter is used that determines the exchanged entropy

through the small temperature changes in a water bath (or in a metal block). It is

essentially made up of a container in which the reaction takes place and the water

bath (or metal block) mentioned above as well as a sensitive thermometer (Fig. 8.8).

The entire device is completely thermally insulated from the surroundings. The

calorimeter must be calibrated before (or perhaps after) the actual measurement.

For this, the measuring assembly receives a well-determined amount of entropy and

the changes of temperature associated with this are measured. The easiest way to

put entropy at a certain place is to generate it in an electric heating coil directly

Fig. 8.8 Calorimeter.
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where it is wanted. The expended electric energy Wb can be easily calculated from

the current I, voltage U, and the power-on time Δt, according to

Wb ¼ I � U � Δt: ð8:28Þ

The “burnt” energy, divided by the measured temperature T, results in the increase

of entropy ΔS0g that leads to the small temperature rise ofΔT0 (Fig. 8.9). If we start a
reaction in the container, it is possible to calculate the entropy ΔS*¼�ΔSe
released by the sample, from the observed changes of temperature ΔT.

To make this procedure somewhat clearer, let us return one last time to our

example of the reaction of iron and sulfur into iron sulfide at room conditions.

Again, 0.1 mol each of iron and sulfur are used:

Fejsþ Sjs! FeSjs at T ¼ T� influence of pressure is negligibleð Þ:

• Determining the latent entropy ΔS by measuring the entropy in the sample in its

initial state (Fe + S) and final state (FeS):

Method: Cooling the sample down to approximately 0 K and measuring the

entropy S needed for heating up to T, both before and after the reaction

(or instead, calculating from the tabulated data obtained via the same procedure).

Result: ΔS ¼ 6:0 Ct� 2:7 Ct� 3:2 Ct ¼ 0:1 Ct:
• Measuring the entropy �ΔSe emitted by the sample during the reaction:

Calibration: Warming by ΔT0 ¼ 1.0 K by electrically generated entropy

ΔS0g ¼ 28:0 Ct. A heater with a power of P¼ 60 W needs to be operated for

a time span of Δt¼ 139 s for this: ΔS0g ¼ P � Δt=T� ¼ 60� 139=298

Ct ¼ 28:0 Ct.

Fig. 8.9 Increases of

temperature ΔT0 and ΔT in

the calorimeter as a result of

the electrically generated

entropy for calibrating ΔS0g
and the entropy ΔSe ¼ ΔSg
�ΔS emitted subsequently

during the reaction.
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Measurement: Warming by ΔT¼ 1.2 K due to the entropy �ΔSe emitted by

the sample during the reaction.

Analysis: ΔT=ΔT0 ¼ ΔS*=ΔS*0 ¼ �ΔSe=ΔS0g is valid for small changes;

therefore,

ΔSe ¼ � ΔT
ΔT 0

ΔS0g ¼ � 1:20K

1:00K
28:0 Ct ¼ �33:6 Ct:

• Summing up of the calorimetric partial results:
The entropy generated during the reaction, calculated from the balance of

entropy ΔS ¼ ΔSe þ ΔSg:

ΔSg ¼ ΔS� ΔSe ¼ 0:1Ct� �33:6 Ctð Þ ¼ 33:7 Ct:

Chemical drive, calculated from the relation A � Δξ ¼ T � ΔSg:

A ¼ T � ΔSg
Δξ

¼ 298 K� 33:7 Ct

0:1mol
¼ 100 kG:

Historically, this purely calorimetric method represents the first accessible way

to determine chemical drives. At the same time, our example shows just how small

the contribution of latent entropy (ΔS‘�)ΔS¼ 0.1 Ct is, compared to the generated

entropy ΔSg¼ 33.7 Ct, so it is no surprise that this small amount was overlooked at

the beginning.

However, the situation changes as soon as gases are consumed or produced. We

will look a little closer at an example, the reaction of oxyhydrogen (a mixture of

hydrogen and oxygen gases):

The following values for generated, latent, and exchanged entropies are the result of

a conversion of Δξ¼ 0.1 mol at standard conditions:

ΔSg ¼ A � Δξ
T
¼ 237� 103 G� 0:1mol

298K
¼ þ80 Ct;

In this case the latent entropy plays a significant role.
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Chapter 9

Coupling

As we have seen in previous chapters, it is possible to act on a material system

mechanically (by expansion and compression . . .), thermally (by heating and

cooling . . .), and chemically (by addition or reaction of substances). All these

actions are accompanied by changes of energy. These energy changes can be

combined into a single equation, the so-called main equation.
The quantities appearing in this equation (such as p, V, S, T, A, ξ), the main

quantities, depend on each other in many ways. These dependencies can be

described quantitatively by different coefficients such as (∂S/∂T)p,ξ. Between the

coefficients, there exist plenty of cross relations (couplings) which can be found in

two ways: First, by using energy balances for appropriate cyclic processes and

second as a direct result of a mathematical operation we call “flipping.” Important

couplings like the equivalence of the temperature coefficient of μ and the negative

molar entropy are easily deduced by special “flip rules.” We also discuss the

relationship between coupling of main quantities and Le Chatelier–Braun’s
principle.

9.1 Main Equation

Introduction Homogeneous regions, in which pressure, temperature, and compo-

sition are the same throughout, form the basic building blocks of the systems that

matter dynamics deals with. A region of this type is called a phase (Sect. 1.5). When

two parts of such a phase are combined, the quantities such as volume V, entropy S,
amount of substance ni, etc., add up while pressure p, temperature T, the chemical

potential μi, etc., remain the same. The first type of quantities are called extensive

quantities and the second intensive quantities (Sect. 1.6). Not every quantity fits

into one of these categories. For instance, V2 and
ffiffiffi
S
p

are neither one nor the other

and there are others like them.
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Let us imagine a gas in a cylinder with a piston. The material system we observe

is the gas and the concrete system we operate with is the gas-filled cylinder.

Keeping the gas in the enclosure allows us to control the mechanical quantities

p and V. We specify the force F upon the piston being pushed inside the cylinder,

and a length l to quantify its position such as the distance between the piston and the
bottom of the cylinder. We now imagine two identical gas-filled cylinders. How do

the two quantities F and l behave when we merge the two systems into one? This is

not initially clear and depends upon how this step is carried out (Fig. 9.1).

Similar problems appear in many other systems as well, such as in the galvanic

cells which we will discuss in Chap. 23. In parallel and series connections, voltage

U and transported charge Q behave like F and l in our example. The possibility of

classifying quantities as either extensive or intensive is a distinctive feature of

homogeneous systems and should not be thoughtlessly generalized.

Main Equation As we have seen in previous chapters, a material system can be

affected mechanically (by expanding, compressing, . . .), thermally (by heating,

cooling, . . .), chemically (by addition or reaction of substances. . .), etc. Each of

these effects is related to changes of energy ΔW of the system involved. For

example, energy is absorbed when a body is compressed and the more that it is

absorbed, the greater the loss of volume �ΔV and the higher the pressure p (Sect.

2.5),

ΔW ¼ � p � ΔV:

Inflow of entropy also leads to an increase in the content of energy (Sect. 3.11) of

ΔW ¼ T � ΔS:

The same holds for the addition of a substance that results in absorption of energy

according to

ΔW ¼ μ � Δn

(Sects. 4.8 and 8.6). As mentioned in Sect. 4.8, all of these changes of energy can be

Fig. 9.1 Merging of two identical gas-filled regions (in gray), enclosed in cylinders with pistons:

(a) Parallel connection: the force F is doubled, the length l remains constant, (b) Series connection:

the force remains constant, the length is doubled.
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combined into a single equation, the so-called main equation. In a homogeneous

region, where pressure p, temperature T, and the chemical potentials μ1, μ2, μ3, . . .
are the same throughout, the following is valid for small changes of volume V,
entropy S, and amounts of substance n1, n2, n3, . . .:

ΔW ¼ � p � ΔV þ T � ΔSþ μ1 � Δn1 þ μ2 � Δn2 þ μ3 � Δn3
þ . . . Gibbs 1876ð Þ: ð9:1Þ

The summation of the terms associated with the amounts of substance can be

abbreviated with the help of the symbol for a sum, ∑:

ΔW ¼ � p � ΔV þ T � ΔSþ
Xn
i¼1

μi � Δni: ð9:2Þ

This “main or fundamental equation” is the key to many important statements for

systematically constructing the field of matter dynamics.

We are considering only loss-free systems that are able to fully release the

energy put into them when the process is reversed. This means that no entropy

may be generated inside the system, i.e., Sg¼ 0, so that the amount of entropy

contained there can only vary by exchange from outside, ΔS¼ΔSe.
The quantities p, T, and ni are considered easily measurable, so they are mostly

chosen as independent variables. If a material system, possibly a body, is brought

into contact with an electrical or magnetic field, or if it was charged or accelerated,

etc., further terms would be added to the sum above; this we will ignore for the

moment.

When no substances are exchanged with the surroundings but are only

transformed inside the system, it is more advantageous to indicate its state by

using the momentary extent ξ of a reaction in progress. The main equation then

simplifies to

ΔW ¼ � p � ΔV þ T � ΔS� A � Δξ De Donder 1920ð Þ: ð9:3Þ

The condition of sufficiently small changes can be emphasized by using differen-

tials. We would then obtain the following in the case of Eq. (9.3):

dW ¼ � p � dV þ T � dS� A � dξ: ð9:4Þ

We already encountered another relation of this type, Eq. (8.21) in Sect. 8.7. There

was a short discussion about concrete experimental conditions necessary for

exchange of energy with the surroundings along all three paths. Unlike in

Chap. 8, we will assume that it is possible for an exchange to occur without loss

via the third path. This means that it always runs reversibly with no generation of

entropy, i.e., the efficiency is η¼ 1. This also means that we can set the drive A
and/or the extent ξ of the reaction in question by making use of appropriate aids.
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This is similar to setting the pressure p through the force upon the piston or

prescribing the volume V through its position in the cylinder. We consider A and

ξ as adjustable parameters, like p and V or T and S, with whose help we can bring

about certain states of a system and make changes over certain paths.

Main Quantities Certain mechanical (�p, V ), thermal (T, S), and chemical main
quantities (μ, n or �A, ξ) appear on the right side of the main equations and are

always pairs made up of an intensive quantity (without Δ- or d-symbol in front, and

with proper signs �p, T, μ, �A) and a corresponding extensive, mostly substance-

like quantity (with Δ- or d-symbols in front: V, S, n, ξ). One says that these two

quantities are conjugated with respect to each other, or more precisely, they are

energetically conjugated. The intensive quantity belonging to a substance-like

quantity can also be considered the potential having an effect upon it. So under-

stood, the chemical potential μ belongs to the amount of substance n, and the

“thermal potential” T belongs to entropy S. We will encounter more such examples

in the next chapters. We will see that calculations and descriptions are simple and

clear when it is possible to formulate a problem using these main quantities. This is

especially true in the case of heat effects. These are best calculated using entropies

because it is the entropy accompanying an exchange of energy that actually

qualifies it as “heat” (exchange of “disordered energy”).

In order to simplify our terminology, we will allow volume V to be considered

“substance-like.” V represents an improper quantity of this kind with degenerate but
simple characteristics: a conserved quantity with constant density equal to 1. What-

ever volume a system loses, the surroundings gain. The negative pressure�pwould
be the corresponding potential. The energy expended to increase a volume (volume

“inflow”) from the surroundings with a pressure of p1 into the system with higher

pressure p2 is negative and amounts to ΔW ¼ � p2 � ΔVð Þ � � p1 � ΔVð Þ. The
equation is completely analogous to those for transferring entropy or a substance:

ΔW ¼ � p2ð Þ � � p1ð Þ½ � � ΔV, ΔW ¼ T2 � T1½ � � ΔS, ΔW ¼ μ2 � μ1½ � � Δn:

We should not be too narrow in our choice of terminology if we want to discuss

systems of more general type, i.e., those made up of more than just one phase, such

as systems like the gas plus cylinder and piston, or a galvanic cell as a whole. If, for

example, the term �p � dV is replaced by �F � dl or the term �A � dξ by �U � dQ
(where U is the voltage and Q the charge), we obtain the following equation,

dW ¼ �F � dlþ T � dS� U � dQ; ð9:5Þ

which is of the same nature as the one formulated before. It is the main equation for

our new, expanded system. However, the terminology of extensive and intensive

does not necessarily work with all the quantities in it now, at least not in the sense it

is used today. We can refer to a term introduced by Hermann von Helmholtz for

help (compare Sect. 2.7). He called the quantities on the right side of our main

equation that represent differentials “(position) coordinates” and the factors in front
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“forces.” Both were meant in a general sense. Referring back to this, we call the

quantities l, S, Q in the main equation (9.5) “position-like,” and F, T, and U, “force-
like.”

Main Effects When a main quantity is changed, this affects the conjugated

quantities as well. The type of effect in which one observes the reciprocal depen-

dency of two associated quantities is called main effect. The main effect of an

increase

• Of volume V is a decrease of pressure, meaning an increase of �p (note that it is
not V and p that are conjugated, but V and �p or �V und p),

• Of entropy S is warming, meaning an increase of temperature T,
• Of an amount n of a (dissolved) substance is an increase of its chemical potential

μ,
• Of the extent ξ of a reaction (in solutions) is a decrease of its drive, meaning

there is an increase of �A (here, too, it is important to notice the sign).

Conversely, the effect of an increase of �p, T, μ, �A in the surroundings, is an

increase of V, S, n, ξ in the system.

Coefficients quantitatively describe main effects. In the strict sense, such coef-

ficients are differential quotients whose numerators and denominators contain

conjugated main quantities. In order to refer to them more easily, we will call

them and their offspring (which only differ by certain factors) main coefficients. If
we allow only small changes, we can use difference quotients instead of differential

quotients, which simplifies things. To give an example, the following coefficients,

which we were introduced to in Sect. 3.9 as entropy capacities, can characterize the
main effect of an increase of temperature on the De Donder system above:

∂S
∂T

� �
p,ξ

,
∂S
∂T

� �
V,ξ

,
∂S
∂T

� �
p,A

, . . . or
ΔS
ΔT

� �
p,ξ

,
ΔS
ΔT

� �
V,ξ

,
ΔS
ΔT

� �
p,A

, . . .

The first coefficient describes the most common case, namely how much entropy

ΔS flows in if the temperature outside and (also inside as a result of entropy flowing

in) is raised by ΔT and the pressure p and extent ξ of the reaction are kept constant.
In the case of the second coefficient, volume is maintained instead of pressure (this

only works well if there is a gas in the system). In the case of A ¼ 0, the third

coefficient characterizes the increase of entropy during equilibrium, for example

when heating nitrogen dioxide (NO2) (see also Experiment 9.3) or acetic acid vapor

(CH3COOH) (both are gases where a portion of the molecules are dimers). Multi-

plied by T, the coefficients represent heat capacities (the isobaric Cp at constant

pressure, the isochoric CV at constant volume, etc.). It is customary to relate the

coefficients to the “size” of the system, possibly the mass or the amount of

substance. The corresponding values are then presented in tables. In the case

above, they would be tabulated as specific (mass related) or molar (related to

amount of substance) heat capacities. The qualifier “isobaric” and the index p will
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only be used if necessary for clarity. As a rule, when these attributes are lacking, it

is the isobaric coefficients that are being described:

Side Effects When a pair of conjugated main quantities is changed, there are

always side effects to a greater or lesser degree affecting other main quantities.

Almost all bodies tend to expand when entropy S is added to them. Volume

V increases as long as the pressure is kept constant. If expansion is hindered, the

pressure p inside will rise. In this case, S and V are coupled in the same direction
which is expressed by S "" V. The relationship is reciprocal. When the volume is

increased, the body also seeks to increase S by absorbing entropy from the sur-

roundings. If this entropy absorption is obstructed, the temperature T will drop.

Here, the material behaves similarly to a sponge in water as mentioned previously

(Sect. 3.6). It “swells up” as it absorbs entropy and, when pressed, releases it again.

There are very few exceptions to this. Ice water—meaning water between 0 and

4 �C—is the best example of these exceptions. The coupling here is in the opposite
direction, S "# V. When ice water is pressed, it becomes even colder so that entropy

begins to flow into it from the surroundings. When the pressure is released, the

water becomes warmer and the entropy flows back out again.

This type of reciprocal relation between V and S is called a mechanical–thermal
or in short a V–S coupling. All pairs of main quantities influence each other

similarly. Change at one position almost always causes side effects somewhere

else. A coupling of two processes in which one facilitates the other is said to go in
the same direction. However, if one process impedes the other, we speak of a

coupling in the opposite direction. It is always the behavior of the “position-like”
partners in two main quantity pairs which is being compared and not the “force-

like” ones.

Coefficients also can quantitatively describe side effects. However, in this case,

the main quantities appearing in the numerator and denominator are not conjugated.

Therefore, there is a large number of possible coefficients. For example, the first

side effect mentioned above, the one having to do with S upon V, can be described

by the following differential quotients in the upper line and the inverse one, V upon

S, by the ones in the line below:

∂V
∂S

� �
p,n

or
∂ p

∂S

� �
V,n

, but also
∂V
∂T

� �
p,n

or
∂ p

∂T

� �
V,n

;

∂S
∂V

� �
T,n

or
∂T
∂V

� �
S,n

, but also
∂S
∂ p

� �
T,n

or
∂T
∂ p

� �
S,n

:

There are numerous cross relations between these types of coefficients, which we

will call side coefficients. We will deal with these relations in the following.
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The law of conservation of energy requires the reciprocal influence to be

symmetrical and certain coefficients describing these effects to be identical

(mechanical–thermal cross relation). The same holds for all the side effects.

9.2 Mechanical–Thermal Coupling

Introductory Example We will investigate the interactions between mechanical

and thermal changes in a body. For the time being, we will ignore chemical changes

(n or ξ, respectively, remain constant).

There are many cross relations. Here is one of the most important:

∂S
∂ � pð Þ
� �

T,ξ

¼ ∂V
∂T

� �
p,ξ

or
∂S
∂ p

� �
T,ξ

¼ � ∂V
∂T

� �
p,ξ

: ð9:7Þ

This is one of the so-called Maxwell relations. The expression on the left lets us

recognize its origin more easily. The one on the right shows the most common form.

The coefficient on the far left of the upper line of equations describes entropy

absorption during decompression (lowering of pressure); multiplied by T, this
corresponds to the heat absorption. The one next to it on the right, divided by V,
is the cubic expansion coefficient γ,

γ ¼ 1

V

∂V
∂T

� �
p,ξ

“expansion coefficient, ” ð9:8Þ

which has been tabulated in many cases for pure substances. γ not only describes

the relative volume increase of a body during heating, but also the amount of

entropy emitted per unit of volume during compression as well.

Maxwell’s Method There are various methods for derivation of cross relations.

We will look at the one that nineteenth-century Scottish mathematical physicist

James Clerk Maxwell used. Although it is rather complicated, it best allows us to

see the relation to the law of conservation of energy. To accomplish this, we will

determine the balance of energy for the following cyclic process, by keeping all the

changes small (the curves appearing as short straight lines) and inhibiting reaction

(ξ constant):

1. Expansion of the body as a consequence of change of pressure by Δ(�p)
at constant temperature, as required by the first coefficient, where the entropy

ΔS ¼ ΔS=Δ � pð Þð ÞT,ξ � Δ � pð Þ is absorbed.
2. Heating of the body by ΔT at constant pressure ( p�Δp), as required by the

second coefficient. The volume then increases by ΔV ¼ ΔV=ΔTð Þ p,ξ � ΔT:
3. “Reversal” of step 1: Compression of the body by Δp, while the temperature is

kept constant at T +ΔT and entropy ΔS is emitted.
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4. “Reversal” of step 2: Cooling of the body by ΔT at constant pressure, whereby

V takes the original value again and the initial state is attained once more; the

cycle is complete.

The process can now be schematically represented in a so-called (T, S) diagram
where the temperature T and the entropy S are shown (Fig. 9.2a), as well as in a

(�p, V) diagram where negative pressure (�p) and volume V appear (Fig. 9.2b).

The energy W0 thermally added to the body at each step (left), as well as the

energyW00 added mechanically (right), corresponds to the absolute value of the area

below each piece of the curve through which the process runs. The amounts of

energy are considered positive in motion in the direction of the x-axis, i.e., when
S or V increases, and negative for movement in the opposite direction. The sign

must be changed for areas below the x-axis. Let us use the diagram on the left to

look more closely at this. The total amount of energy expended is made up of four

contributions:

W0total ¼ W01 þW02 þW03 þW04:

W02 and W04 have the same absolute value, but different signs, so they cancel.

Because of W01 ¼ T � ΔS and W02 ¼ � T þ ΔTð Þ � ΔS; we have:

W0total ¼ T � ΔS� T þ ΔTð Þ � ΔS ¼ �ΔT � ΔS:

W0total then corresponds to the area enclosed by the cycle in the (T, S) diagram,

appearing as a parallelogram, which is to be considered negative here. Analogously,

we can calculate the energy added mechanically, except that now W01 and W003
cancel each other out. We are left with the contribution in the second step that

results in � pþ Δ � pð Þð Þ � ΔV, as well as the one in the fourth step which equals

� � pð Þ � ΔV:

Fig. 9.2 (a) Cyclic process in a (T, S) or (b) in a (�p, V ) diagram. The individual steps are

indicated by various shades of gray.
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W0total ¼ � pþ Δ � pð Þð Þ � ΔV � � pð Þ � ΔV ¼ Δ � pð Þ � ΔV:

The thermally expended energy corresponds to –ΔT �ΔS< 0, and the mechanically

expended energy corresponds to Δ � pð Þ � ΔV > 0. Because energy can neither be

created nor destroyed, the sum of both contributions disappears, meaning that

�ΔT � ΔSþ Δ � pð Þ � ΔV ¼ 0 or written differently ΔS=Δ � pð Þ ¼ ΔV=ΔT:

We can still add the indices—the pressure should be changed at constant temper-

ature and the temperature should be changed at constant pressure, while ξ is kept

constant—and replace the symbol Δ by either “d” or “∂,” because we are only

considering small changes. We finally obtain the sought-after Eq. (9.7):

ΔS
Δ � pð Þ
� �

T,ξ

¼ ΔV
ΔT

� �
p,ξ

and finally
∂S
∂ p

� �
T,ξ

¼ � ∂V
∂T

� �
p,ξ

:

Flip Rule Cross relations can be found in two ways. First, by using energy

balances for appropriate cyclic processes and second as a direct result of a math-

ematical operation we call “flipping.” Naturally, the flip rule can be derived

mathematically (see end of the Chapter), but we will give instructions here in the

form of a kind of “recipe”: Take the differential quotient in question (or difference

quotient) you wish to transform and

1. Exchange numerator and denominator,

simultaneously replacing the main quanti-

ties there with the corresponding partner in

each case,

2. If the quantities in the numerator and

denominator are of the same type, change

the sign,

3. And insert as indices all the main quanti-

ties that appeared unpaired in the original

expression (and the pairs of main quanti-

ties that were totally missing there).

The most important pairs of main quantities that change their partners in the first

step are� p$ V, T $ S, μi $ ni, � A $ ξ, . . . ;, where the algebraic sign should
not be forgotten. It makes no difference here which partner it is assigned to. When

we are talking about “main quantities of the same type” we mean that both are

either “position-like” or that both are “force-like.” “Unpaired” means that the

corresponding partner is missing. The addition in parentheses in step 3 usually

affects only rather exotic coefficients, so it can generally be ignored.
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When applied to a side coefficient, the end result of this operation is a new

differential quotient and therefore one of the cross relations of interest to us. Let us

look at the approach using our concrete example. Again, we will start with the

differential quotient ∂S=∂ � pð Þð ÞT,ξ.
1. T is assigned to S and V is assigned to (�p). Therefore, in the flipped differential

quotient, T is in the denominator and V in the numerator.

2. The algebraic sign remains positive because T is a “force-like” quantity and V is

a “position-like” quantity.

3. In the original expression, p and ξ were unpaired (because the corresponding

partners V and (�A) were missing) and therefore have to be inserted into the new

index. Additional pairs should not be added because each pair of main quantities

is represented by at least one quantity in the given coefficient.

The cross relation in question, which is one of Maxwell’s relations, is here

obtained directly through flipping. If a main coefficient is flipped, it is generally

reproduced; there is no new information as we can easily see:

9.3 Coupling of Chemical Quantities

The fact that pressure and temperature influence the chemical potential of sub-

stances and therefore the drive for transformations can be considered a result of

coupling of mechanical, thermal, and chemical quantities. With rare exceptions,

volume V or entropy S and the amounts of substance ni are coupled in the same

direction: V "" ni and S "" ni. However, the couplings between V and ξ as well as
between S and ξ exhibit no directional preference because starting and final sub-

stances can exchange their roles according to which conversion formula is chosen.

The most commonly used state variables in chemistry are T, p, n, or ξ. Therefore,
the coefficients in which these quantities are used to characterize changes of state

are the most important ones. We will discuss only these in the following. Cross

relations will be written in two ways: In the first, they will be expressed with main

quantities; in the second we will apply the previously used symbols.
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S–n Coupling Let us first turn to the temperature coefficient α of the chemical

potential. We want to formulate it as a differential quotient: (∂μ/∂T)p,n. For

practice, we will again show the process of “flipping” in detail:

1. n is assigned to μ and S is assigned to T. This means that in the flipped

differential quotient, n is in the denominator and S is in the numerator.

2. The sign must change because both n and S are “position-like” quantities.

3. In the original expression, T and p are unpaired and therefore to be put into the

new index:

This finally leads to:

∂μ
∂T

� �
p,n

¼ � ∂S
∂n

� �
T, p

: ð9:9Þ

The same procedure applied to a component (1) of a mixture of two substances

(1 and 2, main equation dW ¼ � pdV þ TdSþ μ1dn1 þ μ2dn2) results in:

thus

∂μ
∂T

� �
p,n1,n2

¼ � ∂S
∂n1

� �
T, p,n2

: ð9:10Þ

These are further important cross relations analogous to those derived by James Clerk

Maxwell. The expressions on the right are the molar entropies of the substance in a

pure state Sm or in a mixture Sm,1. Positive Sm means that entropy tries to flow into a

body along with any substance penetrating it, or that the temperature falls when the

inflow of entropy is prevented. Since there are no walls that let a substance pass but not

entropy, the effect cannot be observed directly. It becomes noticeable, though, when a

substance is formed inside the body. This can only occur when another substance

disappears, so there are always two or more effects which are superimposed additively

or subtractively. Raising temperature not only increases S, but promotes absorption of

substances, i.e., lowers the potential, as long as we do not allow matter to flow in. The

conclusions of cross relations are simple, but possibly surprising. Along with the

entropy demand of a substance, the molar entropy also describes the negative tem-

perature coefficient α of its chemical potential:

α ¼ �Sm or more generally αi ¼ �Sm, i: ð9:11Þ
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This relation easily results in the fact that α is always negative for pure substances

and almost always negative for dissolved substances. This is because the molar

entropy is just about always positive. Moreover, the molar entropy of a liquid is

greater than for a solid and the molar entropy of a gas is much greater than that of a

liquid, which leads to the ordering

α Bjgð Þ � α Bjlð Þ < α Bjsð Þ < 0

presented in Sect. 5.2. The form of the μ(T) curve in Fig. 5.1 can now be better

justified by theoretical means. It begins with a horizontal tangent as long as the

entropy content for T¼ 0 disappears like it should according to the third law of

thermodynamics, and then falls more and more steeply. This drop is steeper for

gases and substances in a dilute solution than for pure condensed substances (solids

and liquids) because of the greater amount of entropy contained in them.

By means of the relation (9.10) we can also derive Eq. (8.10). The chemical

potential of a dissolved substance is described by the mass action equation 1

[Eq. (6.4)] (or one of its variants):

μ ¼ μ0 þ RT ln
c

c0
:

Its derivative with respect to T,

dμ

dT

� �
p,n

¼ dμ0
dT

� �
p,n

þ R ln
c

c0
;

represents the negative molar entropy of the substance in question as long as the

pressure and the amount of substance are held constant. Consequently, we obtain

�Sm ¼ �Sm,0 þ R ln
c

c0
or Sm ¼ Sm,0 � R ln

c

c0
:

which corresponds to Eq. (8.10).

S–ξ Coupling Starting from the main equation (9.4), dW ¼ � pdV þ TdS� Adξ;
we can use the flip rule to convert the temperature coefficient α of the drive of a

reaction or any other type of transformation of substances:

∂ �Að Þ
∂T

� �
p,ξ

¼ � ∂S
∂ξ

� �
T, p

or
∂A
∂T

� �
p,ξ

¼ ∂S
∂ξ

� �
T, p

: ð9:12Þ

The temperature coefficient α corresponds to the molar reaction entropy ΔRS
introduced in Sect. 8.5, or more generally, to the corresponding entropy Δ!S of a

transformation:
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α ¼ ΔRS or α ¼ Δ!S: ð9:13Þ

This shows us that the drive of an endotropic reaction (ΔRS> 0) increases with rise

of temperature, α > 0. If the reaction is in equilibrium, A¼ 0, then a rise in

temperature leads to the drive A becoming positive and pushing the process further

forward in favor of the products. This is especially true for common phase transi-

tions such as melting, boiling and sublimation, all of which are endotropic. The

opposite holds for exotropic reactions. If the initial drive is zero (equilibrium), it

will become negative as T increases and the equilibrium moves in the direction of

the starting substances.

The drive disappears when equilibrium is reached, so the terms endotropic and

endothermic as well as exotropic and exothermic all overlap (compare Sect. 8.7)

and become interchangeable. However, this only holds for the equilibrium state and

can lead to mistakes when applied elsewhere. Equilibrium constants for example

are calculated from data valid for (often idealized) states that are mostly nowhere

near equilibrium. It is rather amazing to find that the heat effects observed or

theoretically calculated under these circumstances actually result in useful, if

limited, conclusions about change of equilibrium conditions.

An explanatory example might be useful here (Experiment 9.1).

We could have used the concept of coupling without performing any calcula-

tions to correctly predict the qualitative behavior, i.e., to say whether heating causes
the drive to increase or decrease or the equilibrium to shift forward or backward.

Let us imagine an endotropic reaction. S and ξ would then be coupled in the same

direction (S "" ξ). If ξ increases, S does as well and when S increases, so does ξ. If
an equilibrium exists it will shift forward when heating takes place (increase of S).

The coupling is not rigid, though, and a change to the second quantity as a result

of change to the first can be overridden by other effects. A reaction can be blocked,

forcing ξ to remain constant. In this case, the addition of entropy (heating) will lead

to an increase of A so that, although ξ itself does not increase, the drive for this

change becomes stronger. We conclude that heating intensifies the drive of an

endotropic reaction.

Experiment 9.1 Changing the position of equilibrium:
If we mix equal weights of solid NaOH and water, the

resulting solution reaches about 100 �C. The process is
strongly exothermic. On the other hand, in a saturated

solution at 100 �C, the proportion of n(NaOH) to n(H2O)

is about three times that at 25 �C. The solubility of

NaOH strongly increases with rising temperature. While

the formation of a diluted or concentrated solution of

water and solid NaOH runs exothermically, dissolving

NaOH in an (almost) saturated sodium hydroxide

solution is an endothermic (endotropic) process. Only

this effect is responsible for changing the position of

equilibrium.
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Something similar holds for the reverse effect. Inflow of entropy can be blocked

so that S cannot change. An increase of ξ would then become noticeable in a

lowering of temperature because the missing entropy cannot be replaced.

V–n Coupling The pressure coefficient β of the chemical potential can be derived

analogously to the temperature coefficient α. Using the main equation for a pure

phase dW¼�pdV+ TdS+ μdn, and by flipping, we obtain

∂μ
∂ � pð Þ
� �

T,n

¼ � ∂V
∂n

� �
T, p

ð9:14Þ

or, based on the main equation for a mixture of two substances (1 and 2),

dW¼�pdV+ TdS+ μ1dn1 + μ2dn2, we have

∂μ
∂ � pð Þ
� �

T,n1,n2

¼ � ∂V
∂n1

� �
T, p,n2

: ð9:15Þ

These are two forms of a further cross relation. If the volume of a body grows when a

substance is added to it, the molar volume Vm ¼ ∂V=∂nð Þ p,T is positive. Raising the
pressure will therefore impede the absorption of the substance, i.e., more energy will

be needed for this. Correspondingly, the potential rises. Vm does not only indicate the

volume demand of a substance but also the pressure coefficient of its potential:

β ¼ Vm or more generally βi ¼ Vm, i: ð9:16Þ

The molar volumes of pure substances are fundamentally positive, and those of

dissolved substances almost always are. Therefore, the pressure coefficient of the

chemical potential is almost always positive. The molar volume of gases is, as we

have discussed (Sect. 8.2), about a factor of 1,000 times greater than that of

condensed phases (liquids and solids). The molar volume for the liquid phases of

most substances is greater than that of the solid phase. This all results in the

ordering discussed in Sect. 5.3:

0 < β Bjsð Þ < β Bjlð Þ <<<< β Bjgð Þ:

In regions of solid and liquid matter, where molar volume depends very little upon

pressure (Vm� const.), μ increases almost linearly with p. This is different from gases

where the μ(p) curve runs almost logarithmically and much more steeply (Fig. 5.7).

V–ξ Coupling The pressure coefficient β of the drive A results from the same

pattern as the temperature coefficient α . We start with the same main equation for

both: dW ¼ � pdV þ TdS� Adξ. By flipping we obtain:

262 9 Coupling

http://dx.doi.org/10.1007/978-3-319-15666-8_5#Fig7
http://dx.doi.org/10.1007/978-3-319-15666-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-15666-8_8#Sec2


∂ �Að Þ
∂ � pð Þ
� �

T,ξ

¼ � ∂V
∂ξ

� �
T, p

or
∂A
∂ p

� �
T,ξ

¼ � ∂V
∂ξ

� �
T, p

; ð9:17Þ

this means that the pressure coefficient β equals the negative molar reaction volume

ΔRV,

β ¼ �ΔRV: ð9:18Þ

Assume that the volume increases during a reaction (ΔRV > 0). Then its drive A
weakens if we impede expansion by raising the pressure. If equilibrium has been

established in a reaction of this type and therefore A¼ 0, an increase of pressure

causes A to become negative. The process then begins to run backward.

We can obtain the same result qualitatively and without calculations if we

consider V and ξ to be coupled. If the coupling is in the same direction, i.e.,

V""ξ, a rise in pressure will decrease the volume and ξ along with it, as long as

the process is not blocked.

n–n Coupling Basically, a coupling in the same or in opposite directions can exist

between any two “position-like” quantities. Experiment 9.2 shows an effect based

upon coupling of two amounts of substances n1 and n2, more precisely upon their

coupling in the opposite direction (n1 "# n2).
An example of coupling in the same direction (n1 "" n2) would be a small

amount of undissolved PbCl2 in a beaker with water that dissolves when KNO3 is

added (“salting-in effect”). The first substance’s rise in potential can be used to

measure the strength of reciprocal action caused by the second substance. This is

the so-called displacement coefficient ∂μ1=∂n2ð ÞT, p,n1 : The opposite effect, the

displacement of the second substance by the first, which we describe by

∂μ1=∂n2ð ÞT, p,n1 is just as great, as we can see by applying the flip rule:

Experiment 9.2

Precipitation of table salt
resulting from the addition
of acetone: When drops of

acetone are added to an

almost saturated aqueous

solution of table salt, the salt

begins to precipitate but as

the acetone evaporates it

begins dissolving again.
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∂μ1
∂n2

� �
T, p,n1

¼ ∂μ2
∂n1

� �
T, p,n2

: ð9:19Þ

The reverse effect can easily be shown using our first example: When table salt is

added to a 1:1 mixture of acetone and water, the acetone separates into a second

layer on top of the solution (“salting-out effect,” compare Experiment 13.5).

We conclude that we can directly obtain all kinds of cross relations by flipping.

The flip rule can be considered a memory aid for all such relations. Using it in this

way is advantageous:

• Coefficients that are difficult to measure can be calculated from more easily

accessible ones.

• Many coefficients do not need their own symbols; in the literature, we often find

α, β, α , β replaced by �Sm, Vm, ΔRS, �ΔRV in the final results.

Le Chatelier–Braun’s Principle or “Principle of Mobile Equilibrium” This

“principle” was presented already at the end of the nineteenth century and is often

mentioned in connection with our current discussion. Chemists use it to predict

whether the extent ξ of a reaction in equilibrium will be shifted forward or

backward when certain parameters are changed, especially pressure, temperature,

amounts of reactants and products, etc. We have found our answers in what we have

already discussed, so we can avoid using this “principle.” For completeness sake,

and because of the problems it causes even today, we will deal with it briefly. We

will choose one of the various ways it can be formulated which is close to its

original version, but we will avoid misunderstandings by using explanatory addi-

tions [in square parentheses]:

When a system at equilibrium is disturbed by changing one of the [“force-like”]

equilibrium parameters [possibly by compressing, i.e., by an increase in pressure

due to decreasing volume], the system responds with a change of state [Δξ], in
which the parameter changes in the opposite direction [this means that as long as

the volume is kept constant during this step, the pressure goes down] and a new

equilibrium is established.

This formulation of Le Chatelier–Braun’s principle discusses how the pair of

main quantities (�A, ξ) interacts with another such pair, here (�p, V ) in the special
case of A ¼ const: (or even A¼ 0, which is unnecessarily special).

Let us consider the reaction between nitrogen gas and hydrogen gas to synthe-

size ammonia:

N2jgþ 3H2jg⇄ 2NH3jg:

There are more gas molecules on the left-hand side of the conversion formula (4 in

total) than on the right-hand side (2). Thus, compressing the system causes the

equilibrium position to shift in the direction that leads to a reduction in the number

of particles in the gas phase, as this tends to reduce the pressure and therefore to

minimize the effect of compression. Consequently, a higher yield of ammonia is
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obtained. This effect was actually the solution to Fritz Haber’s dilemma: Only when

he carried out the synthesis at high pressure, he succeeded finally in 1909 in

producing ammonia with sufficiently high yields.

If we imagine replacing the pair (�p, V ) by (Τ, S) or (μ, n), we could reformulate

the corresponding parts of the text above:

When a system at equilibrium is disturbed by adding entropy to it so that the

temperature rises, the system responds with a change of state Δξ where the

temperature decreases (as long as no more entropy is allowed to be added).

When a system at equilibrium is disturbed by raising the chemical potential of

one of the substances participating in the reaction by adding it from outside, the

system responds with a change of state Δξ in which the potential decreases (as long
as we impede that more substance comes in).

For the first case above, this means that raising the temperature shifts the

equilibrium of an endotropic reaction in the direction of increased ξ. In the case

of an exotropic reaction, this happens in the opposite direction. We have seen this

before. But let us have again a look at an example, an equilibrium mixture between

brown nitrogen dioxide and colorless dinitrogen tetroxide (Experiment 9.3) (see

also Sect. 9.1):

2 NO2jg⇄N2O4jg

The reaction is exotropic ΔRS
� ¼ �176Ctmol�1 < 0

� �
. If the temperature is raised,

the equilibrium shifts in the direction of reduced ξ meaning in the direction of the

reactant; a decrease in temperature, however, favors the formation of the final

product.

The second case above [pair (μ, n)] does not show us anything we do not already

know, either. As long as a reactant in a system is in a dissolved state, adding to it

increases its chemical potential, driving the reaction forward. Adding more of a

product to the system drives the reaction backward.

Recapulating, we can formulate in short: When a constraint is applied to a

system in equilibrium, the equilibrium will shift so as to counteract the effect of

the constraint. Constraint means here the change of a “force-like” (not a “position-

like”) parameter.

Experiment 9.3 Equilibrium
between nitrogen dioxide and
dinitrogen tetroxide: A sealed tube

containing a slightly brown

mixture of NO2 and N2O4 is

submerged in a hot water bath. The

color of the gas mixture becomes

darker. However, if the tube is

placed in an ice bath, the gas

mixture becomes lighter in color.
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We are making only qualitative statements here, so it is naturally possible to

replace one quantity with another one proportional to it or one that changes in the

same direction. Pressure can be replaced by density, the chemical potential by

concentration, the added entropy by the added heat or by a corresponding increase

of internal energy or another appropriate state quantity. Trying to include all these

possibilities makes formulating this principle difficult and the formulations become

opaque. It has also led to phenomena being included that appear similar but do not

belong here and to examples where the “principle” appears to fail.

Coupling of Several Pairs of Quantities Predicting behavior becomes more

difficult when dealing with a coupling not just between two pairs of quantities,

but maybe between three such pairs. When a dissolved substance is added, the

solvent is also added at the same time so that the potentials of all other dissolved

substances change. We saw such behavior in Sect. 6.6 with the formation of the red

iron thiocyanate complex (Experiment 6.1):

Fe H2Oð Þ6
� �3þjw þ 3 SCN�jw⇄ Fe H2Oð Þ3 SCNð Þ3

� �jw þ 3H2Ojl:

Adding the starting substances Fe H2Oð Þ6
� �3þjw and SCN�jw drives the reaction

forward. Adding water drives it backward because the decrease of potential caused

by dilution with water is four times as strong on the left than on the right. If a too

strongly diluted solution of Fe3+ is added, the second effect can override the first so

that the solution becomes paler red instead of deeper red, as would be expected.

The effect is similar in gas reactions when they are carried out at constant

pressure. Addition of any kind of gas increases the volume, causing a diluting

effect upon all the other gases. This diluting effect can override the increase of

potential caused by addition of a reactant and the expected increase of the drive A
along with it, driving the process backward and not forward. For example, in the

case of ammonia synthesis,

N2jgþ 3H2jg⇄ 2NH3jg;

addition of N2 leads to a higher yield of NH3, if the molar fraction of nitrogen in the

reaction volume x(N2) is smaller than 1=2, and leads to a decrease if x(N2) is greater

than 1=2.

9.4 Further Mechanical–Thermal Applications

In closing, we will apply what we have learned in this chapter to mechanical–

thermal phenomena. We will consider only the simplest case, a body at rest at

isotropic pressure p having a uniform temperature T, consisting of just one sub-

stance, such as a drop of water. The main equation for this is:
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dW ¼ � p � dV þ S � dT: ð9:20Þ

Previously, we have discussed two coefficients from this field, two varieties of

entropy capacity C (Sect. 3.9),

C ¼ ∂S
∂T

� �
p

“global”ð Þ
, Cm ¼ 1

n

∂S
∂T

� �
p

molar entropy capacity

;

and the “cubic expansion coefficient” γ (Sect. 9.2),

γ ¼ 1

V

∂V
∂T

� �
p

: ð9:21Þ

We will not need the energetic version of entropy capacity, heat capacityC ¼ T � C,
which itself comes in different variants [Eq. (9.7)].

C is an extensive quantity that affects an entire body. Cm and γ are intensive

quantities, properties of the substance making up the body. Another important

property is compressibility χ,

χ ¼ �1
V

∂V
∂ p

� �
T

: ð9:22Þ

It describes how easy it is to compress a material. It is especially high for gases,

which are easily compressed. Although it is, of course, possible to form other

differential quotients, as well, the three coefficients Cm, γ, and χ suffice for

calculating all the first derivatives of the main quantities or coefficients made up

of them.

Conversion of Differential Quotients We will need some more computational

rules for differential quotients. There are essentially four of which some will remind

us of the usual rules of arithmetic with fractions and are therefore easy to remember.

We will present them here briefly and without deriving them and show some

examples of how they can be used.

(a) Inverting a differential quotient:

∂ p

∂q

� �
r...

¼ 1=
∂q
∂ p

� �
r...

:

Numerator and denominator are exchanged, like with fractions, and the index

remains unchanged.
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(b) Expanding a differential quotient with a new quantity (here it is s):

The differential quotient is expanded like a fraction with ∂s; the indices are the
same in all expressions.

(c) Insertion of a quantity (here it is r) from the index of a differential quotient:

The differential quotient is expanded with ∂r, and the sign is changed; in the

index the quantity missing from the complete set p, q, r, . . . is inserted.
(d) Replacement of a quantity in the index of a differential quotient with a new

one:

In order to replace r with s in the index, the differential quotient is written with
the changed index. The original expression that was expanded with ∂s is added
as a “correction.” The new quantities s, q, . . . appear as independent variables
in the first term and the old q, r, . . . in the second term.

For these computational rules to be valid, all the differential quotients appearing

on the left and right sides must make sense. This means that the quantities in the

numerator must really be differentiable functions of the variables appearing in the

denominator and index.

Of the four main quantities �p, V, T, S mentioned above, �p and T are most

easily controlled (�p or p because one often works in the laboratory with containers
which are open to the atmosphere) so they are the preferred independent variables.

These “preferred” quantities appear in the denominator or index of the differential

quotients that, possibly multiplied by certain factors, can be found in Tables. The

three coefficients Cm, γ, χ mentioned above, are of this type. Consequently, we will

attempt to convert a given coefficient so that only “preferred” quantities (in this

case, p and T ) appear in the denominator or index of the differential quotient, but

never in the numerator. If we abbreviate all the other quantities with a, a0, . . . and
the “preferred” ones with b, b0, . . . (here we have only two of these, but the method

remains the same even when there are more), the given differential quotients are to

be replaced by some of the type ∂a=∂bð Þb0, ...:
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First, attention should be paid to the quotient itself. This defines the first step:

∂a
∂b

� �
...

remains,

,

∂b
∂a

� �
...

inverting,

,

∂a
∂a0

� �
...

expanding,

,

∂b
∂b0

� �
...

inserting:
:

We “expand” with a quantity b which does not appear in the index, and “insert” a

quantity a from the index. Two new differential quotients are created by this. The

second of these is inverted, resulting in all the quotients now having the desired

form ∂a=∂bð Þ . . . . If an undesired quantity a is still in the index of one of the new

expressions, it can be replaced by one of the “preferred” b, b0, . . .. This process is
then repeated until all the expressions have the form ∂a=∂bð Þb0, ....

Let us look at this approach using a concrete example, the relative pressure

coefficient βr, which is a measure of how steeply pressure rises when a body is

heated at constant volume:

βr ¼
1

p

∂ p

∂T

� �
V

: ð9:23Þ

It can be expressed by the cubic expansion coefficient γ and the compressibility χ,

βr ¼
γ

pχ
; ð9:24Þ

where the following conversions led to this result:

βr ¼
1

p

∂ p

∂T

� �
V

¼ �1
p

∂ p

∂V

� �
T

∂V
∂T

� �
p

¼ �1
p

∂V
∂T

� �
p

∂V
∂ p

� ��1
T

¼ �1
p
� Vγ

�Vχ
¼ γ

pχ
:

A few words of explanation: The initial quotient has the form ∂b=∂b0ð Þa. The
undesired quantity a in the index is inserted into the quotient leading to a negative

sign. The first of the two new quotients of the type ∂b=∂að Þ . . . is inverted. All of the
differential quotients then have the desired form. What now remains to be done is to

replace the expressions with the usual coefficients [Eqs. (9.21) and (9.22)].

We will calculate the difference of the two entropy capacities C p � CV as our

second example. These are the usual isobaric C � C p (at constant pressure) and the

more rarely used isochoric capacity CV (at constant volume). The latter must be

smaller than C � C p (as implied in Sect. 3.9), because the absorption of entropy is

made more difficult if the change of volume (positive or negative) related to it is

impeded. It makes no difference whether V and S are coupled in the same or in the

opposite direction, i.e., V "" S or V "# S, C p  CV is always valid. To calculate the

difference
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C p � CV ¼ ∂S
∂T

� �
p

� ∂S
∂T

� �
V

;

we have to replace the index V by p in the second differential quotient and to delete

the terms that cancel:

C p � CV ¼ ∂S
∂T

� �
p

� ∂S
∂T

� �
p

þ ∂S
∂ p

� �
T

� ∂ p

∂T

� �
V

" #
¼ � ∂S

∂ p

� �
T

� ∂ p

∂T

� �
V

:

We could stop the calculations at this point because both differential quotients are

now known to us: According to Eqs. (9.7) and (9.8), (∂S/∂p)T corresponds to�V � γ;
on the other hand, according to Eqs. (9.23) and (9.24), (∂p/∂T)V corresponds to γ/χ.
We obtain for the difference of the entropy capacities:

C p � CV ¼ V
γ2

χ
: ð9:25Þ

We also could have just continued to obtain the following result in which all the

differential quotients take the desired form (∂a/∂b)b0,. . .:

C p � CV ¼ � ∂S
∂ p

� �
T

∂V
∂ p

� ��1
T

∂V
∂T

� �
p

:

We know that some differential quotients can be converted into more easily

measured forms by flipping them. We need only to check those that represent

side coefficients quantifying some effects of coupling. Here, this would mean the

first and the last quotients. Let us take a look at the results of this operation

∂S
∂ p

� �
T

¼ ∂ �Vð Þ
∂T

� �
V

and
∂V
∂T

� �
p

¼ ∂S
∂ � pð Þ
� �

T

:

It is only worth flipping the differential quotient on the left but not the one on the

right because this operation is just the inverse of the first one. The second-to-last

step of this systematic operation for calculating a given differential quotient is to

check whether or not the result can be improved by flipping. The very last step is

then to replace the remaining differential quotients with the pertinent coefficients.

By the way, the flip rule itself can be derived by the four computational rules

mentioned at the beginning. There are better ways of doing this, but it is not worth

going into that here. Readers interested in the mathematics of this can take a look at

Job G (1972) Neudarstellung der Wärmelehre. Akademische Verlagsgesellschaft,

Frankfurt am Main, pp. 52–56, as well as Job G (1970) Zur Vereinfachung

thermodynamischer Rechnungen. Das “Stürzen” einer partiellen Ableitung.

Z. Naturforsch. 25a:1502–1508.
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Chapter 10

Molecular-Kinetic View of Dilute Gases

In this chapter, we will deal with the special characteristics of dilute substances

especially those of dilute gases. In this context, the term “ideal gas” will be

introduced. Subsequently, the general gas law, one of the most cited equations in

physical chemistry, is deduced from experimental observations made in the seven-

teenth and eighteenth century (Boyle–Mariotte’s law, Charles’s law, Avogadro’s
principle). Our understanding for these relationships will be deepened by an

introduction to the kinetic theory of gases. We learn, for example, how this theory

can be used to account for the pressure of a gas. In order to derive the distribution of

particle velocities in a gas (Maxwell distribution), the concentration dependence

(mass action equation) and additionally the energy dependence (excitation equa-

tion) of the chemical potential have to be considered. The last section of the chapter

will show how we can glean the barometric formula and the Boltzmann

distribution.

10.1 Introduction

In their diluted state, all dissolved and gaseous substances exhibit interesting

commonalities of behavior. We will deal with some of these traits in this chapter.

The behavior of gases is a prime example of the special characteristics of dilute
substances. The more diluted gases are, the more clearly these properties emerge. In

the limit of strong dilution, they take the character of strict laws. The most

important of these is the so-called general gas law, or gas law for short, which

concisely concentrates a whole series of important characteristics into one simple

formula. For example, depending upon what kind it is, the volume of a certain

amount of a solid substance changes more or less when heated or compressed. In

contrast, all dilute gases behave the same way. At room conditions, the relative

deviations of volume calculated with the help of the general gas law from the actual

value are of the order of only 1 %. With decreasing pressure p, they tend toward
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zero in proportion to p. The deviations for ambient air are of the order of tenths of a

percent, making air a convenient model for dilute gases.

In the following, we will briefly summarize the uniformly valid experimental

findings for all dilute gases and derive the general law of gases from them.

Afterward, this will be interpreted from a molecular-kinetic viewpoint.

10.2 General Gas Law

In the seventeenth century, the experiments carried out by the Anglo-Irish scientist

Robert Boyle were among the first to lead to fundamental results in physical

chemistry. When rides in hot-air balloons became popular in the eighteenth century,

these experiments became interesting again. The French scientists Jacques Charles

and Joseph Louis Gay-Lussac studied the behavior of gases under various condi-

tions in order to apply this knowledge to the new technology.

Boyle–Mariotte’s Law Robert Boyle investigated the pressure dependent changes

in the volume of gases when temperature is kept constant. We want to model this

investigation using a demonstration experiment (Experiment 10.1).

In 1664 and 1676, Robert Boyle and Edme Mariotte, independently found (and

also we found in our experiment): The volume of a given amount of gas at constant

temperature is inversely proportional to its pressure (Boyle–Mariotte’s law):

Ve1p at constant T and nð Þ: ð10:1Þ

For example, when the pressure is doubled, the volume will decrease by half. It is

easy to compress gases because there is so much space between their particles.

If the volume is represented as a function of pressure (Fig. 10.1), one sees that

the decrease of volume caused by an increase of pressure follows a hyperbolic

curve. Such a curve is called an isotherm (from Greek ἴσoς or ı́sosmeaning “equal”

Experiment 10.1 Boyle–Mariotte’s law:
Starting with the lowest weight, different

weights are placed successively upon a

piston of a cylinder made of acrylic glass. If

the cross section of the piston equals

1.8 cm2, the pressure increases a factor of

2, 4, 10 due to the weights stacked upon

each other, and the volume decreases to

1=2; 1=4; 1=10 of the initial value.
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and θε�ρμη or thérmē meaning “heat”) because it describes the change of state

(in this case, change of volume) at constant temperature. If this experiment is

carried out at different temperatures, it yields differing isotherms but all follow

Boyle–Mariotte’s law and are therefore hyperbolas.

Law of Charles and Gay-Lussac If pressure as a parameter is kept constant, there

is also a simple relation between the volume of a gas and its temperature. First

investigations of this type were done by Jacques Alexandre César Charles (1787)

and Joseph Louis Gay-Lussac (1802). They found that the volume of a certain

amount of gas changes linearly with temperature. The mathematical expression for

this linear relation is:

V ¼ V0 þ α0ϑ at constant p and nð Þ: ð10:2Þ

V0 is the initial volume of a certain amount of gas at, for example, a temperature of

0 �C (ice point), and ϑ is its temperature on the Celsius scale. A graphic or analytic

extrapolation of the isobars V(ϑ) (Fig. 10.2) leads to an important conclusion: All

the linear functions V(ϑ) belonging to different constant pressures, will intersect

with the temperature axis at about ϑ¼�267 �C (actually at �273.15 �C, as later
measurements have shown), independent of the type of gas and amount of sub-

stance. The experiments carried out by Charles and Gay-Lussac were therefore a

further indication of the existence of an absolute zero point of temperature. This had

already been postulated in 1706 by Guillaume Amonton. It seemed, therefore,

reasonable to introduce a new temperature scale and to measure temperature from

this point because volume is never negative. This is how we arrive at the so-called

absolute temperature scale. We were already introduced to this scale in Sect. 3.8

(but there we did not use the ice point but the more convenient triple point of water

to fix the scale). Further, it also becomes clear that Eq. (10.2) is an example of a

Fig. 10.1 Isotherms of a

gas obeying Boyle–

Mariotte’s law, for two
different temperatures

(T1> T0).
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limiting law because it can only describe such gases across the entire span of

temperature whose volumes actually do decrease to zero at ϑ¼�273.15 �C. This
would only be possible if the gas particles themselves have no volume. Moreover,

interactions between gas particles leading to the effects of condensation that pro-

duces a liquid and finally solidification at low temperatures will not be taken into

account. A substance having such unreal characteristics is called an ideal gas.
When we replace the Celsius temperature ϑ by the absolute temperature

(ϑ¼ T� T0), the gradient α0¼V0/T0 (which we can easily determine by using the

boundary condition V¼ 0 for T¼ 0) helps us to obtain the following simple

relation:

V ¼ V0

T0

T: ð10:3Þ

Since the ratio V0T0 is constant for a given amount of gas at unvarying pressure, we

have

V � T at constant p and nð Þ; ð10:4Þ

which means that the volume of a given amount of gas at constant pressure is

proportional to the absolute temperature.

Doubling the temperature (given in Kelvin!) from, say, 298 K to 596 K (from

25 �C to 323 �C) leads to a doubling of the gas volume.

Fig. 10.2 Isobars of an

ideal gas at two different

pressures ( p1< p0).
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Avogadro’s Principle In closing, we will discuss Avogadro’s principle. Lorenzo
Romano Amedeo Carlo Avogadro’s contribution to gas theory is the idea that the

volume of a gas is a measure of the number of particles it is made up of,

independent of the type of the particles. At given temperature and pressure, the

volume of a gas is proportional to the amount of substance in question:

V � n at constant T und pð Þ: ð10:5Þ

In mixtures of different gases B, C, D, . . ., n¼ nB + nC + nD + . . ., i.e., n is equal to

the sum of the amounts of substance of all the gases involved.

From Avogadro’s principle it follows that the molar volume of a gas is inde-

pendent of what type of gas it is and depends only upon temperature and pressure.

At standard conditions T� ¼ 298 K, p� ¼ 100 kPað Þ, different gases yield experi-

mentally determined Vm values that are almost identical at close to 25 L mol�1.

General Gas Law Combined, the three relations (10.1), (10.4) and (10.5) result in

V � n � T= p; ð10:6Þ

a law that, after introducing a factor of proportionality R, can be written in the

following form:

pV ¼ nRT: ð10:7Þ

This is called the general gas law and is one of the most cited equations in physical

chemistry. R¼ 8.314 G K�1 is the general (or universal) gas constant or gas
constant in short, which we already know (Sect. 5.5). The general gas law describes

the behavior of a (hypothetical) ideal gas. No existing gas is actually ideal, but the

equation describes the behavior of most gases at pressures of 100 kPa and below

rather well.

With the help of the general gas law, the molar volume of an ideal gas at any

pressure and temperature values can be given. Transforming Eq. (10.7) yields:

Vm ¼ V

n
¼ RT

p
: ð10:8Þ

The molar volume of an ideal gas at standard conditions T� ¼ 298 K, p� ¼ 100 kPað Þ
is therefore 24.79 L mol�1, which can be shown easily by inserting the values.

Equation (10.8) has also another more far-reaching significance. In Sect. 9.3, we

demonstrated that the molar volume of a substance corresponds to the pressure

coefficient β of its chemical potential. For an ideal gas, we therefore have:
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β ¼ Vm ¼ RT

p
: ð10:9Þ

This pressure coefficient for gases was introduced empirically in Sect. 5.5.

Based upon the general gas law, for example, according to

V T; pð Þ ¼ nRT

p
ð10:10Þ

some of the coefficients introduced in the last chapter can be calculated. The cubic

expansion coefficient γ of an ideal gas turns out to be given by

γ ¼ 1

V

∂V
∂T

� �
p

¼ p

nRT
� nR
p
¼ 1

T
: ð10:11Þ

The compressibility χ, however, equals

χ ¼ �1
V

∂V
∂ p

� �
T

¼ � p

nRT
� � nRT

p2
¼ 1

p
ð10:12Þ

(cf. rule (A.1.6) for calculating derivatives in the Appendix). For an ideal gas, the

difference between the entropy capacities C p � CV ultimately results in

C p � CV ¼ V
γ2

χ
¼ nRT

p
� p
T2
¼ nR

T
: ð10:13Þ

10.3 Molecular-Kinetic Interpretation of the General

Gas Law

Fundamentals Much can be understood about gases if they are assumed to be

made up of a huge number of small particles in perpetual random motion at high

velocities colliding elastically with each other. These molecules can be made up of

just one atom, as they are in noble gases, or composed of several atoms, which is

more often the case. When they collide with each other or with a wall, they bounce

back like billiard balls. The particle density is so small that there is enough space for

unhindered motion. Experiment 10.2 shows a good example of a “model gas.”

These few assumptions are enough to make a series of useful conclusions.

Energy is exchanged but not lost during collisions if there is no interference from

outside so the molecular motion must go on indefinitely. The huge number of tiny

collisions happening at every moment upon all bounding surfaces would appear to

us as uniform and constant pressure. Some simple ideas can be used to make several

statements about this pressure that can then be compared to the general gas law.
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Assuming such a molecular structure of a gas, we immediately obtain the

following without calculations:

p ~N Because double the amount of particles in the same container causes

double the number of collisions and, therefore, twice the pressure,

under otherwise identical conditions;

p ~ 1/V Because halving the volume and keeping the number of particles constant

is like a doubling of the number of particles in the original volume;

p e υ � υ Because at twice the velocity of all particles and at otherwise identical

conditions

1. The number of collisions in the same time span is twice as high

2. And every collision is twice as strong (twice the momentum

transferred);

p ~m Because at the same velocity, the impact of a particle with twice the mass

equals the impacts of two particles of the original mass.

We combine the proportionalities into a single relation. An additional factor 1=2
can be inserted but does not change the proportionality:

p � N � 1=2mυ2
V

: ð10:14Þ

The simultaneous averaging (indicated by the horizontal line above the formula) is

required because neither the mass nor the velocity of the particles needs to be

uniform. The expression

wkin :¼ 1=2mυ2 ð10:15Þ

obviously describes the average kinetic energy of a particle.

According to Sect. A.1.4 in the Appendix, the (arithmetic) mean of the values miυ2i of all

N particles (i¼ 1, 2, . . ., N ) is

Experiment 10.2 Model
gas with steel beads: A good

example of a “model gas”

would be a large number of

small steel or glass beads

being caused to move

erratically by a rapidly

oscillating piston, reflecting

the behavior of gas

particles.
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mυ2 ¼ 1

N

XN
i¼1

miυ
2
i :

Before we compare the resulting relation

p � N � wkin

V
ð10:16Þ

with the general gas law, we will give this equation a somewhat different form with

the help of n ¼ N � t [Eq. (1.2)] and kB ¼ R � t:

pV ¼ Nt � kB
t
� T with t ¼ 1:6606� 10�24 mol and kB ¼ 1:3805� 10�23 JK�1:

ð10:17Þ

In this case, N is the particle number, t is the elementary amount of substance that

we already used in Sect. 1.4, and kB is the Boltzmann constant (a natural constant

just as R and t). Accordingly, we obtain for pressure according to the (modified) gas

law:

p ¼ NkBT

V
: ð10:18Þ

Relation Between Average Kinetic Energy and Temperature If we compare

the above with the gas law, the proportionality for p according to Eq. (10.16) yields

kBT e wkin: ð10:19Þ
We see that the role played by temperature, which at first does not appear in our

mechanical gas model, is taken over by a relatively simple mechanical quantity, the

average kinetic energy of the gas particles. We can imagine in terms of this model

that a gas appears hotter the faster its particles move. Doubling the velocity results

in a quadrupling of the energy and a quadrupling of the temperature, along with it.

Up until now, our considerations have yielded the proportionality of temperature

and kinetic energy but do not yield the proportionality factor itself. We will derive it

in the following. For the sake of simplicity, we will imagine a dilute gas enclosed in

a rectangular box. The N nearly point-like spherical particles elastically bounce off

the smooth walls when they collide with them (Fig. 10.3). We also assume that

when the particles graze the walls at an angle, they do not begin to spin. The gas is

so diluted that collisions between its particles are very seldom. The particle motion

can then be considered an overlapping of three independentmotions in the x, y, and
z directions.

When a particle collides with a side wall of the box (parallel to the x direction)
the component of the velocity in the x direction, υx, does not change (only υy or υz
changes their sign) (Fig. 10.4). The particle continues its motion in the x direction as
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if nothing had happened at all. The transverse motion in the y and z directions has no
effect upon the particle’s movement in the x direction between the two end walls,

which corresponds to a simple back and forth motion.

The momentum þ of a particle is a measure for what is also called an “impact

force” (compare Sect. 2.7). The heavier and faster the particle is, the greater its

momentum. It has the character of a quantity that can be transported.

On the way toward the wall having a surface area A, the particle transports

momentummυx, and after colliding with the wall, it transports momentum�mυx in
the opposite direction (Fig. 10.5). The wall has absorbed the difference 2mυx during
the collision. Between two collisions with wall A, the particle travels the distance

2a. In the time span Δt, it covers the distance υx � Δt. This means that in the time

span Δt, the number of collisions is given by

υx � Δt
2a

:

The product of momentum transferred per collision and the number of collisions,

summed over the contributions from all the particles, yield the momentum þtotal
transferred to the wall in time Δt by all the particles:

Fig. 10.3 Box model for

deriving gas pressure.

Fig. 10.4 Vectorial

representation of the x and
y components of particle

velocity before and after

colliding with a side wall.
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þtotal ¼
XN
i¼1

2miυx, i � υx, i � Δt
2a

¼ 2Δt
a
�
XN
i¼1

1=2miυ
2
x, i: ð10:20Þ

The momentum current Jþ¼ þtotal/Δt is the force F¼ Jþ acting upon the wall on the
right as a result of the collisions (compare Sect. 2.7). The momentum current

density jþ is simply the pressure p:

jþ ¼
Jþ
A
¼ F

A
¼ p:

With the help of Eq. (10.20), we obtain the following expression for the pressure:

p ¼ þtotal
Δt � A ¼

2 �
XN
i¼1

1=2miυ
2
x, i

a � A : ð10:21Þ

The following is valid for the mean value of the kinetic energy in the x direction

averaged over all the particles, the so-called ensemble average,

wkin,x ¼

XN
i¼1

wkin, x, i

N
¼

XN
i¼1

1=2miυ
2
x, i

N
: ð10:22Þ

If we apply V¼ a �A and the gas law in the form of p¼NkBT/V, we finally get:

2N � wkin,x

V
¼ p ¼ NkBT

V

or

wkin,x ¼ 1=2kBT: ð10:23Þ

Degrees of Freedom and Law of Equipartition If we consider the kinetic energy

of motion in only one direction, in this case the x direction, the missing proportion-

ality factor in the relation (10.19) is 1=2. We can find analogous equations for the

Fig. 10.5 Transfer of

momentum during collision

of a particle with the end

wall A.
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y and z directions using the same method. The average energy for every spatial

direction in which the particles freely move is 1=2kBT, so that

wkin,x ¼ wkin, y ¼ wkin, z ¼ 1=2kBT: ð10:24Þ

Because of the freedom of motion in all three spatial directions we also speak of

(quadratic) degrees of freedom.
Correspondingly, due to

wkin ¼ wkin,x þ wkin, y þ wkin, z ð10:25Þ

the factor 3=2 results for the free motion in all spatial directions:

wkin ¼ 3=2kBT: ð10:26Þ

The average kinetic energy of a gas particle at room temperature (T¼ 298 K) is

therefore

wkin ¼ 3=2 � 1:3805� 10�23 JK�1 � 298K ¼ 6:17� 10�21 J:

Relative to amount of substance (here n¼ 1 � t) and according to

Wkin,m ¼ wkin

t
¼ 3=2

kB
t
T ¼ 3=2RT ð10:27Þ

an ideal gas at room temperature has an average molar kinetic energy of

Wkin,m ¼ 3=2 � 8:314GK�1 � 298K ¼ 3, 716G ¼ 3:72kJmol�1:

Equation (10.26) has a relatively far-reaching significance. It not only applies if

we take the average for the entire ensemble of particles at a given moment, the

so-called ensemble average, but also to each individual particle if we form the time
average, which is the temporal average of the energy of motion of an individual gas

particle. Even when the gas is so dense that the motion of its particles is strongly

impeded or when it condenses into a liquid or crystal, this equation still applies to

some extent. It reaches its limits when the quantum mechanical characteristics of

molecules cannot be ignored any longer.

Equation (10.24) as well has a greater significance. Until now, we have only

considered the translational motion of particles. However, if there are polyatomic

molecules, rotations and oscillations appear as well, which add to the particles’
energy. These forms of motion also have degrees of freedom. The previous result

suggests that these degrees of freedom themselves have an average energy of
1=2kBT, so we can say that generally:

The same average energy 1=2kBT is allotted to every degree of freedom (law of
equipartition of energy).
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Root Mean Square Speed of Gas Molecules Let us return once again to transla-

tional motion: The average speed of gas molecules is somewhat easier to under-

stand than their average energies. (The term “speed” is used for the scalar

magnitude of the vector quantity “velocity.”) Since the average molar kinetic

energy of a certain gas is given by

wkin,m ¼ wkin

t
¼

1=2mυ2

t
ð10:28Þ

and the relation between the molar mass M and the molecular mass m is

M ¼ m=t; ð10:29Þ

we obtain with

wkin,m ¼ 1=2Mυ2 ð10:30Þ

in combination with Eq. (10.27) for the mean square speed

υ2 ¼ 3
RT

M
ð10:31Þ

and finally for the root mean square speed of gas molecules:

ffiffiffiffiffi
υ2

p
¼

ffiffiffiffiffiffiffiffiffiffi
3
RT

M

r
: ð10:32Þ

As expected, the speed of gas particles increases with a rise in temperature

(proportionally to its square root). It also decreases correspondingly with increasing

molar mass.

The root mean square speed of N2 molecules (M¼ 28.02 g mol�1) at 298 K can,

for instance, be calculated as

ffiffiffiffiffi
υ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8:314 GK�1 � 298K

0:02802kgmol�1

s
¼ 515ms�1 ¼ 1, 854kmh�1

� �
:

This value is of the order of the speed of sound in air (346 m s�1 at 298 K). This

makes sense because the sound waves, which are simultaneously density and

pressure waves, propagate via molecular motion.

Entropy Capacities of Ideal Gases The entropy capacity CV of an ideal gas at

constant volume can be calculated using the law of equipartition. For the sake of

simplicity, we will consider a monatomic gas because its particles cannot oscillate

and have no rotational energy. (Because the mass lies upon the rotational axis, the
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moment of inertia as well as the rotational energy equals zero.) The energy of an

ideal monatomic gas therefore corresponds to the average translational energy,

W ¼ 3=2nRT: ð10:33Þ

From the main equation

dW ¼ � p � dV þ T � dS

it follows for isochoric processes (dV¼ 0) that

dW ¼ T � dS

and therefore

∂W
∂T

� �
V

¼ T � ∂S
∂T

� �
V

: ð10:34Þ

If we take the derivative of the expression in Eq. (10.33) with respect to T, we
obtain

CV ¼ ∂S
∂T

� �
V

¼ 1

T

∂W
∂T

� �
V

¼ 3

2

nR

T
ð10:35Þ

for the entropy capacity at constant volume. Now, the entropy capacity at constant

pressure can be found with the help of Eq. (10.13):

C p ¼ CV þ nR

T
¼ 3

2

nR

T
þ nR

T
¼ 5

2

nR

T
: ð10:36Þ

10.4 Excitation Equation and Velocity Distribution

Introduction As mentioned earlier, the velocity of particles in a gas is not

uniform. Speed (magnitude of the velocity vector) and direction change with each

collision. Although basically every speed and every direction can be assumed to

occur, they do not all occur with the same frequency but actually form a charac-

teristic distribution. An impression of this distribution might be gained by imagin-

ing a small amount of gas, possibly about 1 μm3, whose particles are allowed to

escape into a vacuum by suddenly removing the walls enclosing it. The positions

the particles have reached after about 30 μs are then marked producing an image as

in Fig. 10.6a. The position reached by a particle simultaneously characterizes the

direction and absolute value of the particle’s velocity vector υ
!
.
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The density of points along any one of the diameters of the point cloud

(e.g., along the υx axis) is reflected in the bell curve in Fig. 10.6b.

In order to derive the particle velocity distribution of a gas we need a trick. We

imagine all the particles with the same velocity υ
!

to be molecules of a substance

B
�
υ
!�

and the entire gas as a mixture of a large number of such substances.

However, we run into a difficulty at this point. The number of particles having

exactly the velocity υ
!
is, in the strict sense, zero. We therefore imagine the velocity

space to be divided into a cubic grid with the mesh length Δυ (Fig. 10.6c). Δυ is

assumed to be small compared to the width of the velocity distribution. For

example, Δυ ¼ 1ms�1 would be a useful value for ambient air. All the particles

whose velocity vectors end inside such a cube are then considered molecules of the

same substance B
�
υ
!�

.

Fig. 10.6 (a) Density of

points in three-dimensional

velocity space as a spherical

point cloud, (b) along any

diameter of the cloud

(values given for nitrogen at

298 K), (c) cubic grid

having mesh length Δυ
(greatly magnified; center

cell is shown where the

molecular velocity is

represented by vectors).
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Assumptions To continue our derivation, we need the mass action equation valid

for dilute gases

μ ¼ μ0 þ RT ln
c

c0
mass action equation 1ð Þ;

that we were introduced to in Sect. 6.2. The value μ0 at the reference value of

concentration, c0, might be considered the basic value of the potential (in a gener-

alized sense). In practice it is a good idea to limit the expression “basic value” (in a

more limited sense) to the case most often encountered where the reference value c0
of the concentration corresponds to the standard value, for example,

c� ¼ 1kmolm�3, and to use a special symbol, possibly the one introduced in

Sect. 6.2, μ
○
, to characterize it.

We also need another important equation. When the molecules of a substance

are excited and lifted to an energy state higher by w without otherwise changing

them or their milieu (temperature, pressure, concentration, type of solvent, field

strength, etc.), the potential of the substance will increase by the molar energyw=t:

μ wð Þ ¼ μ 0ð Þ þ w=t excitation equationð Þ: ð10:37Þ

μ(0) represents the chemical potential of the non-excited molecules, i.e., the

chemical potential previously used. A simple example of a “purely energetic”

excitation that leaves the molecules themselves unchanged might be a shift in an

outer field such as a gravitational or electric field to a position with potential energy

that is higher by w. By choosing an appropriate initial position, we may set

w¼m � g � h in the case of the gravitational field. Because of the relation M ¼ m=t
between the molar mass M and the molecular mass m, we obtain for the molar

potential energy M � g � h and correspondingly for the “gravitochemical” potential,

μ(w)¼ μ(0) +M � g � h. The electrochemical potential can be defined analogously

(Sect. 22.1).

Maxwell’s Distribution of Speeds We will now return to our derivation of

velocity distribution. The particles moving in different directions do not vary

from each other chemically, so we can assign them the basic potential μ0. The

various energies at differing speeds υ ¼ jυ!j are taken into account by using the

corresponding term w=t ¼ 1=2 mυ
2=t ¼ 1=2Mυ2, the molar kinetic energy of the

substances:

μ
○ �

υ
!� ¼ μ

○ �
0
!�þ 1=2Mυ2: ð10:38Þ

Actually, this potential is not a purely chemical potential, but a mechanochemical
potential.

The particles’ changes of velocity caused by the multitude of collisions with

each other or the walls appear as “transformations” of the following type:
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B
�
υ
!�! B

�
υ
!0�:

If we do not continuously disturb the gas by stirring or other means, all these

processes will reach equilibrium after a short time. This means that the chemical

potential μ
�
υ
!�

will be equal for all the substances B
�
υ
!�

, i.e., equal to μ
�
υ
!� ¼ μ for

all υ
!
. If the excitation equation as well as the mass action equation with the

equilibrium values c
�
υ
!�

of the concentrations are taken into account, we obtain

μ ¼ μ
○�

0
!�þ 1=2Mυ2 þ RTln

c
�
υ
!�
c�

for all υ
!
: ð10:39Þ

Solving for c
�
υ
!�

gives us the distribution we are looking for:

c
�
υ
!� ¼ c��exp μ�μ

○�
0
!�

RT

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c
�
0
!�

�exp �
1=2Mυ2

RT

� �
: ð10:40Þ

c
�
0
!�

therefore corresponds to the concentration of those particles that have the

velocity 0
!
in equilibrium (stated more exactly, a velocity taken from the small cubic

volume around zero). Inserting υ
! ¼ 0

!
shows that we can really combine the terms

in Eq. (10.40) to c
�
0
!�

.

This result can be put into a more common form if we use the massm ¼ M � t of
a molecule instead of the molar mass M and the Boltzmann constant kB ¼ R � t
instead of R. In addition, we use the relation υ2 ¼ υ2x þ υ2y þ υ2z between the

velocity υ
!

of a molecule in arbitrary direction and its components υx, υy, and υz
in the three spatial directions (“three-dimensional Pythagorean theorem”). We now

arrive at

c
�
υ
!� ¼ c

�
0
!� � exp �

m � υ2x þ υ2y þ υ2z

� �
2kBT

0@ 1A: ð10:41Þ

If we represent c
�
υ
!�

as density of points in the three-dimensional velocity space

and apply m¼m(N2) and T¼ 298 K, we obtain the spherical point cloud in

Fig. 10.6.

We can make some statements about the pre-exponential factor cð0
!
Þ without

needing calculations:
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cð0
!
Þ e1= ffiffiffi

T
p 3 Because the root mean square speed [compare Eq. (10.32)] increases

with rising temperature T. The point cloud therefore increases byffiffiffi
T
p

in all three spatial directions and the concentration of particles

with velocity 0
!
decreases correspondingly.

cð0
!
Þ e ffiffiffiffi

m
p 3 Because the root mean square speed decreases with an increase of

mass m of the gas particles. The point cloud becomes compressed,

resulting in an increase of particle concentration with velocity 0
!
.

The density of points along the x-axis results from Eq. (10.41) for the special

case of υ2y ¼ υ2z ¼ 0:

c
�
υ
!

x

� ¼ c 0
!

xð Þ
� �

� exp � mυ2x
2kBT

� �
: ð10:42Þ

For the sake of simplicity, we will limit ourselves at first to such a one-dimensional

distribution in velocity space. The volumes of all the cubic elements are the same so

Eq. (10.42) can be also formulated using the number of particles:

N
�
υ
!
x

� ¼ N
�
0
!� � exp � mυ2x

2kBT

� �
: ð10:43Þ

If the fact is taken into account that the number of all the particles distributed across

the entire velocity space must equal N (normalization), it is then possible to

calculate Nð0
!
Þ yielding the following relation:

dN
�
υ
!
x

�
N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
exp � mυ2x

2kBT

� �
dυx: ð10:44Þ

For readers interested in mathematics: The numberNð0
!
Þof the particles with velocity 0

!
can

be expressed as a fixed fraction A of the total number N. However, in doing so, one must

take into consideration thatN
�
υ
!

x

�
andNð0!Þ depend upon the width of the intervalΔυx. The

greater Δυx is, the more particles can be found in the chosen interval. Therefore:

N
�
0
!� ¼ A � N � Δυx:

The mathematical expression for the normalization condition is then:
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Xυx¼þ1
υx¼�1

A � N � exp � mυ2x
2kBT

� �
Δυx ¼ N: ð10:45Þ

Principally, the velocity υx can assume values between �1 and +1 where the minus

sign indicates that the velocity vector is oriented in the negative x direction. If the width of

the interval is made infinitesimally small, summation changes to integration (see Sect.

A.1.3 in the Appendix):

ðυx¼þ1

υx¼�1
A � N � exp � mυ2x

2kBT

� �
dυx ¼ N: ð10:46Þ

Because A and N are independent of υx the following is valid:

A � N �
ðυx¼þ1

υx¼�1
exp � mυ2x

2kBT

� �
dυx ¼ N ð10:47Þ

or respectively

A ¼ 1ðυx¼þ1

υx¼�1
exp � mυ2x

2kBT

� �
dυx

: ð10:48Þ

Using integral tables, we find for the integral

ðþ1
�1

exp �ax2� �
dx ¼ 2

ð1
0

exp �ax2� �
dx

the value
ffiffiffiffiffiffiffiffi
π=a

p
. Applied to Eq. (10.48) the result for A is:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
: ð10:49Þ

The familiar Eq. (10.44) can now be obtained for the one-dimensional velocity distri-

bution of a gas made up of N particles.

The relationship to Fig. 10.6b can be directly seen in Eq. (10.44) because υx
appears only in the exponent of the exponential function and that quadratically. The

distribution must therefore be symmetrical about the axis υx ¼ 0ð Þ and possess a

maximum at this point. For large positive and negative υx values, the function

decreases exponentially with υ2x .
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Let us now look at the change of the distribution function of a certain gas as a

function of temperature. We will use the example of nitrogen (Fig. 10.7).

We see that at higher temperatures, the distribution function becomes wider (the

area under the curve remains the same since the total number N of particles does not

change).

The concentration c
�
υ
!
x

�
can be interpreted as a measure of the probability p

�
υ
!
x

�
of finding a particle with velocity υ

!
x. It is therefore unsurprising that the density of

points along an arbitrary diameter of the spherically symmetrical cloud (in this case,

the x-axis) corresponds to the so-called normal distribution (Gaussian distribution)
known from statistics (see Sect. A.1.4 in the Appendix). This becomes especially

clear if Eq. (10.44) is somewhat reformulated:

dN
�
υ
!
x

�
N

¼ 1ffiffiffiffiffi
2π
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p exp � υ2x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p 2

 !
dυx: ð10:50Þ

The “width” of the bell curve, in this case
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
(Fig. 10.6b), meaning the

distance of the inflection points from the center line (or standard deviation), is about

300 m s�1 for ambient air. This is just about the speed of sound.

We will now return to the three-dimensional overall distribution. The density of

points inside a volume element is equivalent to the probability that the components

of the velocity vector of the gas particles lie in the intervals of υx to υx þ dυx, υy to
υy þ dυy, and υz to υz þ dυz. The probability of finding them simultaneously in the

three intervals, i.e., in the volume element dυx � dυy � dυz of the velocity space, is

given by the product of the individual probabilities:

Fig. 10.7 One-dimensional

velocity distribution of N2

molecules at different

temperatures.

10.4 Excitation Equation and Velocity Distribution 289



dN
�
υ
!�

N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
exp � mυ2x

2kBT

� �
dυx

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
exp � mυ2y

2kBT

 !
dυy

 !
ð10:51Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r
exp � mυ2z

2kBT

� �
dυz

� �
�

The resulting distribution function is (according to the product rule of exponents

an � am ¼ anþm):

dN
�
υ
!�

N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r� �3

exp �m
�
υ2x þ υ2y þ υ2z

�
2kBT

 !
dυxdυydυz: ð10:52Þ

As we argued before, there actually is a direct proportionality between the pre-

exponential factor and the expression
ffiffiffiffi
m
p 3

; as well as an inverse proportionality toffiffiffi
T
p 3

:
It is customary to consider the distribution of the absolute values of the velocity,

υ ¼ jυ!j, rather than that of the velocity vectors υ
!
:

υ2 ¼ υ2x þ υ2y þ υ2z or υ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2x þ υ2y þ υ2z

q
: ð10:53Þ

Velocity vectors are organized according to their “length” υ (speed), independent of
their direction. Equation (10.53) is an analytic representation of the surface of a

sphere with a radius of υ (Fig. 10.8). All the vectors with values within the intervals
υ and υþ dυ end inside a thin spherical shell with a radius of υ and a thickness of dυ

Fig. 10.8 Relation between

the volume elements dvxdυy
dυz and 4πυ2dυ (spherical
shell).
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and, therefore, a volume ¼ surface � thickness ¼ 4πυ2 � dυ. The number dN υð Þ
of particles with those velocities results from the distribution (10.52) by summation

over all the volume elements dυx � dυy � dυz inside the spherical shell.
The distribution within the shell is the same overall, so that in this step of the

calculations, 4πυ2dυ takes the place of the volume element dυx � dυy � dυz:

dN υð Þ
N
¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2πkBT

r� �3

exp �mυ2

kBT

� �
υ2dυ: ð10:54Þ

This expression is the so-calledMaxwell’s speed distribution of gas particles. A first

impression can be gained in an experiment using glass beads as a “model gas”

(Experiment 10.3).

Equation (10.54) may appear somewhat complicated at first sight, but important

characteristics of the function are relatively easy to recognize:

• The curve increases parabolically close to the zero point (meaning for very small

speeds) because the behavior is determined by the factor υ2 with which the

exponential function is multiplied. For this reason, the fraction of gas particles

with very small speeds is very small (Fig. 10.9).

• The exponential function of type e�ax
2

leads to a rather steep drop in the curve

which, at high particle speeds, approaches the υ axis asymptotically. Corre-

spondingly, the proportion of gas particles with very high speeds must also be

very small.

• For a given gas with constant molar mass, the expression a¼m/2kBT¼M/2RT
decreases with increasing temperature. This leads to a slower decrease of the

exponential function with increasing υ. At higher temperatures, there is a greater

number of very fast gas particles. This fact has great importance for the kinetics

of chemical reactions.

• Assuming constant temperature, the term a takes a large value for gases having

high molar mass. As a result, the exponential function decreases more quickly

(Fig. 10.10). Correspondingly, the probability of finding heavy particles with

very high speed is very low.

Experiment 10.3 Maxwell’s speed distribution: The
flight paths of the beads that can only reach the outside

through a chamber acting as a filter approximate those of

horizontal projectile motion. The distance covered is a

measure of the initial speed of a bead. The beads are then

collected in the acrylic glass compartments of a

registration chamber in order to determine how far they

went. The “staircase curve” (histogram) resulting from

the fill heights in the compartments gives us an idea of the

speed distribution. The number of beads emerging from

the filter is proportional to their speed so the distribution

is distorted, but the qualitative impression is still correct.
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The distribution is rather narrow for heavy molecules and most particles have a

speed close to the mean speed. In contrast, when compared to heavier molecules

under the same conditions, the light molecules (such as H2) have both a noticeably

higher mean speed as well as a much wider distribution.

10.5 Barometric Formula and Boltzmann Distribution

We can glean another well-known relation, the density distribution of a gas in a

homogeneous gravitational field, by using the same procedure. The Earth’s atmo-

sphere whose density decreases just about exponentially with altitude is a good

example of this. Similar to what we did in the last section, we will consider

the particles at a given altitude h to be molecules of a substance B(h). The basic

potentials μ
○
hð Þ of the substances B(h) only differ from each other by the above-

mentioned molar potential energy w=t ¼ M � g � h because they are chemically

identical:

Fig. 10.9 Maxwell’s speed
distribution of N2 molecules

at different temperatures.

[Included is the

corresponding root mean

square speed (dashed line).]

Fig. 10.10 Maxwell’s
speed distribution for gases

with varying molar masses

at 298 K.
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μ
○

hð Þ ¼ μ
○

0ð Þ þMgh: ð10:55Þ

The exchange of particles between different altitudes can be described as a reaction

of the following type:

B hð Þ ! B h0ð Þ:

When temperatures are uniform, sooner or later equilibrium is established for all the

substances so that the potential becomes the same for all altitudes, μ(h)¼ μ for all h.
Applying the mass action equation, we obtain

μ ¼ μ
○

0ð Þ þMghþ RTln
c hð Þ
c�

for all h ð10:56Þ

for the condition of equilibrium. Solving for c(h) yields the equation

c hð Þ ¼ c� � exp μ� μ
○
0ð Þ

RT

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c 0ð Þ

� exp �Mgh

RT

� �
ð10:57Þ

or

c hð Þ ¼ c 0ð Þ � exp �Mgh

RT

� �
barometric formulað Þ: ð10:58Þ

RT/Mg represents the range of the exponential distribution. This is the altitude at

which the gas concentration has fallen to 1/e¼ 36.8 % compared to the value c(0) at
sea level. For nitrogen as the main component of the atmosphere at 300 K, the range

is

8:314kgm2 s�2 mol�1 K�1 � 300K

28� 10�3 kgmol�1 � 9:81ms�2
¼ 9, 080m:

The altitude at which the concentration has fallen to 1=2c 0ð Þ, the so-called half-

height hH, is a factor of ln2 lower, hH� 6,300 m. This is a little more than the

highest point of Mt. Kilimanjaro. The air around this peak has therefore about half

the density of the air on the coast.

As the examples above have shown, the mass action and excitation equa-

tions μ ¼ μ
○ þ RTln c=c�ð Þ and μ

○
wð Þ ¼ μ

○
0ð Þ þ w=t together accomplish what

Boltzmann’s distribution law does. When put together, they seem to represent a

special version of this law that is closer to chemistry. We obtain the usual form if

we interpret the concentration c(w) of the particle of type B(w) as a measure of

the probability p(w) of encountering the B particles in a state with energy w,
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i.e., p(w) ~ c(w). It is only necessary then to insert the second formula into the first

one and to solve for c¼ c(w), thereby obtaining:

c wð Þ ¼ c� � exp μ� μ
○

0ð Þ
RT

 !
� exp � w

RtT

� �
; ð10:59Þ

or in other words:

p wð Þ � e�w=kBT Boltzmann’s distribution lawð Þ: ð10:60Þ
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Chapter 11

Substances with Higher Density

If one changes from dilute (ideal) gases to real gases with higher density, the

interaction between the particles and the phenomenon of condensation cannot be

neglected any longer. The consideration of such effects results in the van der Waals
equation, a modification of the general gas law. A closer look at the process of

condensation leads us to the critical phenomena, meaning the unusual physical

properties displayed by substances near their critical points. If we are interested to

know how the phase transition liquid ! gaseous can be influenced by factors such

as temperature and pressure, we can use the T and p dependence of the chemical

potential for calculating the boiling pressure curve (vapor pressure curve) of a

given pure substance. This curve illustrates how the vapor pressure of the substance

varies with temperature and is an example of a so-called phase boundary. The other
phase transitions can also be represented in a p(T) diagram in the form of phase

boundaries, producing a complete phase diagram. Such a diagram is a kind of

“map” which shows the conditions of temperature and pressure at which a certain

phase is most stable and illustrates the ranges of existence of stable phases.

11.1 The van der Waals Equation

The general gas law is an approximation that becomes more exact the more diluted

a gas is. If a gas becomes denser, deviations from the general gas law become

increasingly noticeable. We will use an example to illustrate this: Oxygen can be

obtained in steel cylinders at pressures up to 20 MPa (200 bar). Under these

circumstances, the particles have almost no space to move in, their packing density

is similar to a liquid. The characteristics of such a compressed gas are naturally

different from those of a dilute gas.

The Dutchman Johannes Diderik van der Waals came up with an enlightening

idea for understanding the behavior of gases at higher densities. He based it upon

two very simple assumptions:
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1. Every particle possesses a certain spatial extension and therefore occupies a

certain volume. It excludes all other particles from this space.

2. The particles attract each other. The forces of attraction are weak but increase

quickly as the particles move closer together.

These forces of attraction between uncharged particles with complete electron

shells in gases or liquids are called van der Waals forces. Among them are the

interactions between permanent electric dipole moments (also called dipole–dipole

forces or Keesom interaction, named after the Dutch physicist Willem Hendrik

Keesom), as well as the interactions between permanent moments and moments

induced by polarization (dipole-induced dipole forces) and the interactions between

induced moments only (instantaneous dipole-induced dipole forces or London

dispersion forces, named after the German-American physicist Fritz London). Inter-

actions between electric dipoles are comparable to the more familiar ones between

magnetic dipoles. The dispersion forces mentioned last originate from the formation

of “temporary” dipole moments through fluctuations in the electron distribution

where for a short time, even nonpolar particles display an irregular distribution of

electron density that results in a positive or negative partial charge. This dipole,

which was created by “spontaneous polarization,” can, itself, induce a “temporary”

dipole moment in a neighboring particle. The fact that even noble gases at low

enough temperatures will become liquid suggested the existence of such dispersion

forces. A characteristic of all these attractive interaction energies between uncharged

particles with permanent or temporary dipole moments is that they decrease with the

6th power of the distance between the molecules: Wpot ~�1/r6.
Among the van der Waals forces are also the strongly increasing repulsive forces

when the particles “touch” each other. The particles move so closely together that

their electron shells overlap and, as a result of Pauli’s exclusion principle, they

begin to repel each other. For practical reasons, we often chose Wpot ~ 1/r
12 for the

repulsive interaction energy. Attracting and repulsing contributions to the interac-

tion energy can be summed up by the Lennard-Jones (12-6) potential (Fig. 11.1):

Wpot ¼ A

r12
� B

r6
:

The short-range repulsive interaction effect was taken into account by van der

Waals by the first of the assumptions above. This assumption implies that the gas

particles do not have the entire volume of a container available for motion. The

volume needed to be reduced by a contribution determined by the volume from

which the particles exclude each other. This volume unavailable for molecular

motion is called the co-volume (van der Waals volume) of a gas. The assumed

attraction in point 2 leads to the gas particles moving more closely together, just as

if there was additional pressure upon them. This “pressure” or “pull” (or “tensile

stress”) caused by the forces of attraction is called the internal pressure or cohesion
pressure of a gas. Van der Waals assumed that the general gas law should continue

to be valid, except for the following two changes, a lessening of volume by the
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“unavailable” co-volume VW and an increase of pressure by the internal pressure

pint:

pþ pintð Þ � V � VWð Þ ¼ nRT: ð11:1Þ

We obtain the formula above by replacing, or rather “correcting,” the pressure with

p+ pint, and the volume with V�VW in the general gas law. The van der Waals

volume VW, from which the particles exclude each other, naturally grows along

with the number of particles, meaning with the amount of gas n, so we can conclude
that:

VW e n: ð11:2Þ

However, internal pressure pint increases with the square of the gas concentration

c¼ n/V,

pint e c2 � n

V

� �2
: ð11:3Þ

To derive this, let us visualize more exactly how “internal pressure” comes to

be. We envision a plane section with the surface A at an arbitrary position in a gas

(Fig. 11.2). We assume that each particle attracts every other one within the “range”

l of the intermolecular forces. In particular, the particles on one side of the section

attract the ones on the other side. This assumption has a simple consequence: The

greater the number N1 of particles on one side of the surface in the volume

V1¼A � l, and the greater the particle number N2 on the other side of it in the

Fig. 11.1 Lennard-Jones

potential (black) as the sum
of the attracting and

repelling parts (gray).
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volume V2 ~ l
3 within the range l, the stronger the total force of attraction, i.e.,

F ~N1 �N2. Because N1 as well as N2 are proportional to the particle density N/V
and, therefore, to concentration c¼ n/V, the internal pressure (meaning the inter-

nally directed pull that is produced by the substance itself leading to a moving

together of the particles) results in:

pint ¼ F=A � N1 � N2=A � V1 � cð Þ � V2 � cð Þ=A � A � l � l3 � c2=A � n2=V2:

The dependencies for internal pressure and for co-volume will now be inserted into

Eq. (11.1). In this form, it is known as the van der Waals equation:

pþ an2

V2

� �
� V � bnð Þ ¼ nRT van der Waals equation: ð11:4Þ

It was derived by van der Waals in his dissertation of 1873.

The two substance-specific proportionality constants a and b are called van der
Waals constants. In the case of water they are:

a H2Oð Þ ¼ 0:55Pam6mol�2;

b H2Oð Þ ¼ 2:7� 10�5 m3mol�1 �� Vm H2Ojlð Þ �� read : approximatelyequalð Þ:

Further values of empirically determined constants for various gases can be found

in Table 11.1.

The a constants for the various gases are quite different from each other due to

strongly varying forces of interaction. In contrast, the b constants vary only slightly
from each other. This means that the space required by the different particles is

relatively similar.

If the van der Waals equation is transformed, the p(V ) isotherms can be

calculated:

p ¼ nRT

V � bn
� an2

V2
: ð11:5Þ

Fig. 11.2 Illustration of

“internal pressure.” A:
imagined intersectional

plane through the gas. The

gray circle with the radius l,
the “range” of the

intermolecular forces,

characterizes the “range of

attraction” for an individual

particle.
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Figure 11.3 shows some of these isotherms for different temperatures

T1< T2< . . .< T6. The graphic makes it clear that, at higher temperatures, the

isotherms obtained by the van der Waals equation resemble the hyperbolas of the

Boyle–Mariotte law. This is understandable because at high temperatures, the

product nRT becomes so great that the second term in Eq. (11.5) can be ignored.

In addition, at high volumes (and low pressures), V� bn, so that the van der Waals

equation gives way to the general gas law, p¼ nRT/V.
Below a certain temperature (T4), minima and maxima appear. These delineate a

physically unrealistic part of the curve (which is therefore shown by a dashed line).

Table 11.1 Van der Waals

constants for various gases

(from: Lide D R (ed) (2008)

CRC Handbook of Chemistry

and Physics, 89th edn. CRC

Press, Boca Raton).

Gas a (Pa m6 mol�2) b (m3 mol�1)

H2 0.0245 2.7� 10�5

He 0.0035 2.4� 10�5

N2 0.137 3.9� 10�5

O2 0.138 3.2� 10�5

Cl2 0.634 5.4� 10�5

Ar 0.136 3.2� 10�5

CO2 0.366 4.3� 10�5

CH4 0.230 4.3� 10�5

C2H2 0.452 5.2� 10�5

NH3 0.423 3.7� 10�5

H2O 0.554 3.1� 10�5

Fig. 11.3 p(V ) isotherms of a real gas according to van der Waals equation (with

T1< T2< . . .< T6).
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Volume would increase along with increase of pressure in this range, which

contradicts experience. In order to understand the behavior of real gases at low

temperatures, we must study condensation.

11.2 Condensation

When a gas is expanded, its internal pressure decreases quickly as a consequence of

the quadratic concentration dependency. The internal pressure eventually becomes

imperceptible and can be ignored when dealing with dilute gases. Conversely,

internal pressure increases sharply when the density of a gas is increased. This

happens so strongly that, at very high concentrations, a gas will become unstable

and collapse. This is called condensation. Experiment 11.1 illustrates this

phenomenon.

In the condensed state, particles adhere to each other. The short distances between

them lead to their attraction being very strong and they hold together tightly. This is

what causes the stability of a condensed state. The particles’ speed is the same as it

would be in a gas of the same temperature. At room temperature, this is a few

hundred m s�1, which is just about the speed of sound! This “frantic swarm of

particles” can only hold together under the enormous internal pressure of several

thousand bar. Although these particles adhere to each other, they will also quickly

slide by each other, when the temperature is not too low. Because of the high speed at

which they move, they change positions very fast. This makes it possible for such a

dense swarm of particles to adapt to any container form, to flow out through tiny

openings and to flow through pipes. During all these changes, the volume of the

substance (of the ensemble of particles) remains just about constant. As we discussed

in Sect. 1.6, substances with these kinds of characteristics are called liquids.
Let us take a closer look at the process of condensation, the transition from a gas

to a liquid (Fig. 11.4). We imagine a cylinder with a moveable piston in it enclosing

a certain amount of gas. The temperature should have a constant value during the

entire process. It should therefore be possible for the excess entropy that would

cause warming (or when missing, would cause supercooling) to escape through the

Experiment 11.1 Using
pressure to liquefy a gas: If
butane (the fuel in a gas

lighter) is filled into a glass

pressure cylinder with a

piston and the piston is

pressed down, it produces a

visible amount of liquid.
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walls into the surroundings (or to be absorbed from there). Numbers 1, 2, and 3 refer

to states indicated on the van der Waals isotherm at temperature T3 (Fig. 11.3).

1. A gradual decrease of volume leads to a slow rise in “thermal” pressure, caused

by molecular collisions, which drives the particles apart. Internal pressure

simultaneously increases tending to concentrate the particles in a small space.

2. Because internal pressure increases more quickly than thermal pressure there

exists a point at which the increase of thermal pressure cannot compensate for

the increase of the internal pressure anymore. At this so-called dew point, the gas
begins to “collapse,” i.e., to condense.

The gas does not condense all at once, but only a fraction of it does at first. In

the process, a small number of particles disappear from the space occupied by

the gas making the concentration and internal pressure decrease and causing the

gas phase to restabilize.

If the volume is further decreased, the processes repeat. More liquid forms

while the rest of the gas stabilizes. If this is carried out further and further, the

entire gas is eventually “squeezed” into a liquid state. Pressure will remain

constant as long as temperature is unchanged during the condensation process.

The gas above the liquid is usually called the liquid’s vapor. The pressure in the
gas compartment is called the vapor pressure of the liquid. Vapor pressure is

independent of the amount of liquid it is associated with, whether it is one drop

or a whole containerful.

3. Further compression leads to a strong increase of pressure because a liquid is

much harder to compress than a gas.

Fig. 11.4 Compressing a gas using a moveable piston (1), beginning condensation (2) and final

compression of the liquid produced by condensation (3).
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We return once more to the van der Waals isotherms (Fig. 11.3): The van der

Waals curves describe fairly exactly compression of gases up to the dew point. If

the volume is decreased beyond this point, pressure does not increase, but

condensation sets in. This occurs at constant pressure, meaning that the

corresponding piece of the curve must be horizontal until the gas phase

completely disappears at the boiling point. These lines have been constructed

so that the areas enclosed by the van der Waals curves above and below the

straight line are equal (Maxwell construction or equal area rule) (compare

Fig. 11.3 where the two areas in the case of the T2 isotherm are dark gray).

Both gas and liquid exist simultaneously along these lines. The subsequent steep

rise in pressure with further decrease of volume is characteristic of the low

compressibility of liquids.

11.3 Critical Temperature

As temperature rises, it becomes harder to bring about a condensation process. The

gas involved must be much more strongly compressed before it begins to condense

and the two-phase region becomes more and more constricted. As we know, higher

temperatures are related to faster particle motion. At higher velocities, higher

internal pressure, i.e., higher compression is necessary to force the particles to

collapse. If the temperature is continuously raised, making condensation more

difficult, we eventually reach a critical value above which condensation is no longer

possible. This limit is called the critical temperature Tc. Together with Tc, the
corresponding values of critical pressure pc and critical volume Vc make up the

critical point of the substance in question. At this critical point, the corresponding

van der Waals isotherm displays a saddle point, meaning a point of inflection with a

horizontal tangent that simultaneously determines the maximum of the two-phase

region (Fig. 11.3). Above this critical temperature, gases cannot be liquefied by

compression. The critical temperatures for gases with weak attractive forces, such

as helium, hydrogen, nitrogen, and oxygen, are far below room temperature so they

remain gaseous even under high pressures. Gases like carbon dioxide, ammonia and

water vapor, however, have higher critical temperatures and can be liquefied at

room temperature if enough pressure is applied (Table 11.2).

If a gas is compressed at a temperature above the critical temperature, the result

is a dense fluid whose characteristics are neither clearly liquid nor gaseous.

Although this fluid’s density is comparable to a liquid, making it possible to be

used as a solvent, there is no surface visible between liquid and gas. Such a medium

is called a supercritical fluid. It combines the positive characteristic of low viscosity

of gases with the good solvent power of liquids, making it an attractive solvent for

separating processes such as high-pressure extraction, polymer fractionation, and

cleaning of monomers.

A further advantage is that it can be entirely removed from a product by

expansion leaving no undesired, possibly poisonous, residue. Supercritical carbon
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dioxide is used to extract caffeine from tea or coffee. Supercritical water is used to

dissolve quartz (and many other minerals) leading to hydrothermal solutions. The

process of crystallizing on seed crystals produces high purity quartz monocrystals

that can be cut into disks to be piezoelectric crystals in watches, for example.

Hydrothermal solutions make also essential contributions to the formation of most

vein deposits and ore stocks.

11.4 Boiling Pressure Curve (Vapor Pressure Curve)

We will consider the process of condensation from another point of view by using a

p(T ) diagram (Fig. 11.5).

1. We begin with a state in which the gas is strongly expanded so its pressure is

very low. We will keep the temperature at a constant value by conducting the

entropy squeezed out by compression to the surroundings. A certain pressure

will eventually be reached, the so-called dew point mentioned above, at which

the gas begins to condense, or to “dew.” Pressure remains constant during the

condensation process. Only when the gas is completely condensed and the piston

lies upon the surface of the liquid, does the pressure further increase. We

conclude that the cylinder contains only gas up to the dew point and above the

dew point, only liquid.

2. If this experiment is carried out again at a higher temperature, the process runs

the same, but the dew point is shifted to a higher pressure (Fig. 11.6).

3. When all the dew points measured in this way are connected, a steep curve to the

right is the result, the so-called boiling pressure curve or vapor pressure curve
(Fig. 11.7). It gives the values of pressure and temperature at which gas and

Table 11.2 Critical temperatures and pressures for some substances (from: Lide D R (ed) (2008)

CRC Handbook of Chemistry and Physics, 89th edn. CRC Press, Boca Raton).

Substance Critical temp. Tc (K) Critical pressure pc (MPa)

H2 33.0 1.29

He 5.2 0.23

N2 126.2 3.39

O2 154.6 5.04

Cl2 416.9 7.99

Ar 150.9 4.90

CO2 304.1 7.38

CH4 190.6 4.60

C2H2 308.3 6.14

NH3 405.6 11.36

H2O 647.1 22.06
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Fig. 11.6 Temperature

dependency of dew points.

Fig. 11.7 Temperature

dependency of a liquid’s
vapor pressure (boiling

pressure curve or vapor

pressure curve).

Fig. 11.5 Representation

of the dew point in a p(T )
diagram.
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liquid are in equilibrium with each other. Only gas exists at the points below this

curve and only liquid exists above it.

4. When a liquid condensate is heated at constant pressure (e.g., ambient air

pressure p� of 100 kPa), it will transform into a gaseous state and boil as it
goes past the boiling pressure curve. The temperature at which this occurs is the

boiling temperature (boiling point) associated with the pressure in question (e.g.,

T�lg ). The boiling point of a substance is not a constant but depends upon

pressure. Tabulated values are based upon standard pressure of 100 kPa. In

order to distinguish this special boiling point from other boiling points, we call it

the standard boiling point and characterize it by T�lg.
5. No dew point exists above the critical temperature Tc. This is the highest

temperature at which a liquid can exist. For this reason, the boiling pressure

curve ends at the critical temperature—in the critical point mentioned above.

How can we now quantitatively approximate the boiling pressure curve? To do

this we will need to refer back to the chemical potential. As we have seen, every

phase of a substance has its own chemical potential, which is dependent upon

temperature and pressure. We can easily calculate these potentials for different

temperatures and pressures. At an arbitrary condition, the most stable phase is the

one with the lowest chemical potential. The stability range of the liquid phase is

characterized by the chemical potential μl( p, T) being lowest there. Where the

gaseous phase is stable, μg( p, T ) is minimal.

In order to calculate the curve that separates the two stability ranges (the curve

that reflects the equilibrium between two phases), we can refer back to the formula

derived earlier for calculating the reaction pressure of gases (compare Sect. 5.5)

because the boiling process can be considered a reaction:

B l! Bj jg:

If we proceed as we did in deriving Eq. (5.19), we obtain for the (saturation) vapor

pressure plg in equilibrium in a closed, initially evacuated container:

plg ¼ p0 exp
Alg,0

RT
: ð11:6Þ

The index lg (or in more detail, l!g) indicates the type of process. In this case, it is

vaporization (the transition from liquid to gaseous state). p0 is the arbitrarily chosen
initial pressure and Alg, 0 ¼ μl, 0 � μg,0 is the drive at the chosen initial state (T0, p0).

The pressure dependency of the chemical potential of the liquid phase is ignored

here. We are allowed to do this because it is generally smaller by several orders of

magnitude than that of gases as long as the pressure p does not exceed standard

pressure p� by much. For this reason, our approach becomes invalid near the

critical point where pressures are usually far above p�. In order to calculate the

equilibrium pressures corresponding to various temperatures T, we need to use the

chemical potentials and the corresponding drive at the chosen temperatures. We
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will again make use of our linear approach by replacingAlg,0 byAlg,0 þ α lg T � T0ð Þ
in Eq. (11.6). We obtain:

plg ¼ p0exp
Alg,0 þ α lg T � T0ð Þ

RT
ð11:7Þ

or, after transforming the equation and leaving out index lg for simplicity:

ln
p

p0
¼ A0 þ α T � T0ð Þ

RT
¼ A0 � αT0ð Þ=R

ϑþ 273K
þ α

R
: ð11:8Þ

Equation (11.8) formally corresponds to the August vapor pressure formula. In

1862, Ernst Ferdinand August developed a formula based upon water vapor pres-

sure, having the form lg pf g ¼ �A= ϑþ Cð Þ þ B ; the quantities A, B, C were

parameters to be determined empirically, ϑ indicated the Celsius temperature, and

{p} the numerical value of the pressure.

In Fig. 11.8, the temperature dependency of vapor pressure is shown using water

as the example, where the data for standard conditions (298 K, 100 kPa) were used,

i.e.:

and therefore,

plg ¼ 100kPa� exp
�8:5� 103 þ 119� T=K� 298ð Þ

8:314� T=K

� �
:

Fig. 11.8 Temperature

dependency of saturation

vapor pressure of water

(comparison of the

calculated curve with

measured values).
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If the critical point is far enough away and if we limit ourselves to a relatively small

temperature span, Eq. (11.7) will (despite the approximations used) yield a quite

useful result. This can be seen in the comparison with experimental values.

As we have shown in Chap. 9, the temperature coefficient α of the drive

corresponds to a molar reaction entropy. In this case, this is the change of entropy

ΔlgS ¼ Sm,g � Sm, l due to the vaporization process at the initial point, meaning at

temperature T0 and pressure p0. If we abbreviate to ΔlgS0, we obtain:

plg ¼ p0exp
Alg,0 þ ΔlgS0 � T � T0ð Þ

RT
: ð11:9Þ

If instead of choosing an arbitrary initial state when calculating the boiling pressure

curve (characterized by temperature T0 and pressure p0), we use the special case of
an equilibrium state, meaning a known boiling point, e.g., the standard boiling point

T�lg, the relation (11.9) can be simplified: In equilibrium, the drive of the vaporiza-

tion process equals zero, and we find

plg ¼ p�exp
ΔvapS

� � �T � T�lg
�

RT
: ð11:10Þ

If we set y ¼ ln plg=p
�� �

and x¼ T–1, the result is an equation of a straight line:

ln
plg
p�|ffl{zffl}
y

¼ �ΔvapS
� � T�lg
R|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m

� 1

T|{z}
x

þΔvapS
�

R|fflfflffl{zfflfflffl}
b

: ð11:11Þ

Here,ΔvapS
� is themolar entropy of vaporization at the standard boiling point. Now

when ln plg= p
�� �

is plotted as a function of 1/T for various substances, we notice

that the intersection points b with the ordinate of the (extrapolated) straight lines lie
rather close together for many nonpolar compounds. This means that the molar

vaporization entropies are also similar, with an average of about 88 Ct K�1 mol�1.
This was already recognized by Frederick Thomas Trouton in 1884 through his

work comparing measured values in Tables (Pictet–Trouton’s rule). The reason for
the approximate concordance of molar vaporization entropies is the comparably

great increase of “disorder” for a transition from a relatively highly condensed

phase to a gas with particles far away from each other. Great deviations from this

rule can be explained by strong interactions between the molecules and a higher

degree of order in the corresponding phase. For example, hydrogen bridge bonds

form in liquid water (and other polar substances) resulting in higher entropy of

vaporization ΔvapS
� H2Oð Þ ¼ 109:1 Ct K�1 mol�1

� �
.
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11.5 Complete Phase Diagram

The other phase transitions of a pure substance can also be represented in a p(T)
diagram in the form of phase boundaries, producing a complete phase diagram.
This diagram shows the conditions of temperature and pressure under which a

certain phase is most stable and illustrates the ranges of existence of stable phases.

1. Below a certain temperature, a condensate forms as a solid and not a liquid. The

direct transition from a gaseous to a solid state, or vice versa, is called sublimation
and the vapor pressure curve of a solid substance, the sublimation (pressure) curve
(Fig. 11.9). Gas and solid are in equilibrium with each other along this phase

boundary. As long as pressure remains below this curve at constant temperature

during the compression of the gas, only gas will be present in the cylinder.

However, if the pressure lies above this, only a solid condensate will appear.

2. The almost vertical curve in the illustration (Fig. 11.10), called the melting
(pressure) curve, separates the regions at which solid or liquid condensate is

stable. The slope of this curve has been greatly exaggerated for the sake of

clarity.

3. When a solid condensate is heated at constant pressure (e.g., at ambient air

pressure of 100 kPa) starting at the absolute zero point, it will go into a liquid

state as it exceeds the melting pressure curve: it melts. The temperature at which

this occurs, where both solid and liquid phase are in equilibrium, is the melting

temperature (melting point) corresponding to the pressure (e.g., T�sl ). When the

substance is further heated, it finally reaches the boiling pressure curve and will

begin to boil (compare Sect. 11.4).

Like the boiling point of a substance, its melting point is not a constant but, to

a much lesser extent, also depends upon pressure. The standard melting point

T�sl is based upon a pressure of 100 kPa.

Fig. 11.9 Sublimation and

boiling pressure curve of a

substance.
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4. The point at which the sublimation, boiling, and melting pressure curves all

converge is called the triple point because at the conditions of temperature and

pressure there, the substance is simultaneously in a solid, liquid, and gaseous

state. At the triple point both pressure and temperature are characteristic prop-

erties of a pure substance. The triple point of water, for example, is at 273.16 K

and 611 Pa. Only at this exact temperature and this exact pressure are ice, liquid

water, and water vapor in equilibrium with each other. This triple point is used to

define the unit called Kelvin (compare Sect. 3.8). If the pressure at the triple

point lies noticeably above 100 kPa, the liquid state cannot exist no matter what

the temperature, and only sublimation can be observed. An example of this is

carbon dioxide (217 K, 518 kPa), which, when exposed to air, changes directly

from solid to gas (so it is called “dry ice”).

The other phase boundaries can also be calculated using the chemical potential.

For example, the sublimation pressure curve can be described analogously to the

boiling pressure curve. We only need the drive Asg,0 ¼ μs, 0 � μg,0 responsible for

sublimation and the corresponding change of entropy, the molar sublimation

entropy ΔsgS0 (both at temperature T0 and pressure p0):

psg ¼ p0exp
Asg, 0 þ ΔsgS0 � T � T0ð Þ

RT
: ð11:12Þ

When temperature increases, the sublimation pressure increases just as boiling

pressure does, both reciprocally and exponentially (~ e�a/T).
A linear approach for both the temperature and pressure dependency of the

chemical potential is sufficient for calculating the melting pressure curve (compare

Sect. 5.4). For the process

B s! Bj jl

Fig. 11.10 Typical phase

diagram of a pure

substance.
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we obtain the following condition in the case of equilibrium (μs¼ μl):

μs,0 þ α s � ΔT þ βs � Δ p ¼ μl, 0 þ α l � ΔT þ βl � Δ p:

Because of Asl, 0 ¼ μs,0 � μl, 0 as well as α sl ¼ α s � α l and βsl ¼ βs � βl, converting
results in:

Asl, 0 þ α sl � ΔT ¼ �βsl � Δ p

and therefore with Δp¼ psl� p0 and ΔT¼ T� T0, if one solves for psl:

psl ¼ p0 �
Asl, 0 þ α sl � T � T0ð Þ

βsl
: ð11:13Þ

Asl, 0 represents the drive of the melting process at the chosen initial state (in this

case, a temperature of T0 and pressure of p0). The temperature coefficient α sl of the

drive corresponds to the molar reaction entropy ΔslS0 of the melting process and the

pressure coefficient βsl corresponds to the negative molar reaction volume �ΔslV0

(compare Chap. 9), both at the initial state (T0, p0). This yields:

psl ¼ p0 þ
Asl, 0 þ ΔslS0 � T � T0ð Þ

ΔslV0

: ð11:14Þ

The linear slope of the melting curve (gradient ΔslS0/ΔslV0) is positive for most

substances (just as the reciprocally exponential gradient of the vapor pressure

curves is) because ΔslS0 is always positive and ΔslV0 almost always is. There are

very few substances—water is the best-known example (Fig. 11.11)—that contract

during melting so that ΔslV0 becomes negative.

Fig. 11.11 Phase diagram of water (schematic).
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If we use the special case of an equilibrium point as the initial state, meaning a

known melting point, perhaps the standard melting point T�sl , then because the drive
of the melting process equals zero, the relation (11.14) simplifies to

psl ¼ p� þ Δ fusS
�

Δ fusV
� � T � T�sl
� �

: ð11:15Þ

Here,Δ fusS
� is the molar entropy of fusion at the standard melting point andΔ fusV

�

is the change in molar volume that occurs on melting.

While all substances in gaseous state and most substances in liquid state [except

for certain compounds consisting of long-chain molecules which may flow like a

liquid, but whose molecules may be oriented in a crystal-like way (so-called liquid

crystals)] only form a single phase, almost all solid substances exist in various

phases or modifications (compare Sect. 1.6). Because of these phenomena, which

are known as allotropy for elements and as polymorphism for compounds, the phase

diagram includes additional transition pressure curves (in the strict sense;

Fig. 11.12). They separate the regions of existence of two different modifications

(e.g.. α and β) and lead to new triple points. The actual single substance phase

diagram for pressure values in the low-pressure range is an example of this.

At other pressures, especially in the high-pressure range, further solid phases γ,
δ, ε . . . can appear (Fig. 11.13), whose regions of existence can be approximated

using the same paradigm.

Fig. 11.12 Phase diagram of a substance with two modifications α and β at low pressures.
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An example of this is water that, when under high enough pressure, forms not

only the usual ice (I) but other solid phases as well (Fig. 11.14). These phases have

different arrangements of H2O molecules. In the figure, we see that phase IV is

missing. This is simply because people originally believed that a new phase had

been discovered which was later found to actually not exist at all. The numbering

was kept, though for the sake of simplicity.

Fig. 11.14 Section of the

phase diagram of water at

higher pressure.

Fig. 11.13 Single

substance phase diagram

with further modifications

at higher pressure.
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Chapter 12

Spreading of Substances

So far, the discussion of the chemical potential has concentrated primarily on

chemical reactions and phase transitions. But another property of substances is

also of great importance: their tendency to spread out or disperse in space. The

phenomenon of diffusion will be explained in this context. The subject area of this

chapter also includes the discussion of the effect of a small amount of solute on

certain properties of a solution. The properties we have in mind are the lowering of

vapor pressure of the solvent, the elevation of its boiling point, the lowering of its

freezing point, and last but not least the origin of osmotic pressure. These phenom-

ena are found everywhere, in households and in nature but also in engineering. In

everyday life, a prime example for freezing-point depression is the melting effect of

road salt. Or have you ever asked yourself why juice is drawn out of sugared

strawberries but cherries swell up and burst after a long rain? Then have a look at

Sect. 12.4 dealing with osmosis. For a quantitative discussion of all these phenom-

ena, we first have to learn about indirect mass action and the corresponding

colligative lowering of chemical potential.

12.1 Introduction

Until now, when we have considered the chemical potential we have primarily

concentrated upon chemical reactions and phase transitions. However, there is

another characteristic of substances that is almost as important. This is the tendency

to spread out or disperse in space whether it is “empty” or filled with matter. This

phenomenon can easily be illustrated by everyday processes. Mostly, substances

migrate extremely slowly and in infinitesimally small amounts so that this migra-

tion remains imperceptible. However, there are many examples of spreading that
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G. Job, R. Rüffler, Physical Chemistry from a Different Angle,
DOI 10.1007/978-3-319-15666-8_12

313



are quite noticeable. When the aroma of freshly ground, unpacked coffee escapes

over the course of a few days, when the water in a rain puddle evaporates in a few

hours, when glue from a tube congeals in one minute, or when the ink from a felt

pen dries within seconds are all examples of how mobile and volatile some sub-

stances can be. Experiment 12.1 is an example that shows clearly how substances

do not disappear but simply redistribute.

It is easy to follow the spreading of strong smelling or colored substances. The

scent of a bouquet of lilacs, a peeled orange, or the pungent odor of potent cheese

quickly fills a whole room. The spreading of colored low-molecular chemicals such

as potassium permanganate in a liquid, or better, in a gel (to hinder convection)

happens so fast that it can readily be observed (Experiment 12.2).

Gases spread out in the atmosphere even faster. This can be observed very easily

in the case of reddish-brown bromine vapor (Experiment 12.3).

Even crystallized, compact bodies are not impenetrable. This can be illustrated

by Experiment 12.4.

These examples may suffice to show that spreading of substances is a very

general characteristic of matter.

Experiment 12.1 Redistribution
of water between zwieback and
bread: A piece of zwieback stored

for 2 or 3 days in a bread box or

plastic bag together with fresh

bread absorbs moisture and

becomes soft and bendable, while

a slice of bread in a bag full of

zwieback becomes hard and

brittle from losing moisture to

the dry zwieback.

Experiment 12.2 Spreading
of KMnO4 in agar gel (view
from above on a thin layer of

gel in a Petri dish): A few

small KMnO4 crystals are

cautiously distributed on the

agar gel. Immediately, a kind

of red violet “halo” is formed

around each crystal. Because

of its color, the spreading of

the “halo” away from the

source can be observed easily.

314 12 Spreading of Substances



The migration of a substance from one place to another can be considered as a

transformation

BjOrigin! BjDestination;

so it is plausible that the chemical potential also controls this process. The transport

of substances always follows the direction of the potential gradient. This means that

the substance only moves spontaneously in one direction, the direction where the μ
value at the starting point is greater than at the destination (if no other forces play a

role like centrifugal forces in a centrifuge or electrical forces in an electrolytic cell).

In this case, a characteristic of μ plays a decisive role that we have already been

introduced to, namely its concentration dependency (compare Sect. 6.2): The more
diluted a substance is, the lower its chemical potential and the chemical potential
can be lowered to any degree if the dilution is strong enough.

In the following, we will apply this statement to the spreading of substances and

other phenomena related to it. Chapter 13 will deal with the special features that

result when the rule mentioned above no longer applies which is the case at higher

concentrations.

Experiment 12.3 Spreading
of Br2 in air: The reddish-
brown vapor from a drop of

bromine in a gas jar (filled with

air) spreads out quickly and fills

the whole space inside it.

Experiment 12.4 “Carbonizing” and
“decarbonizing” of iron (schematic

representation): Iron can be “carbonized”

by annealing in charcoal powder at

approx. 1,000 �C. This means that the

carbon atoms move into it. The changes of

the grain structure at the border of the

sample are visible to the naked eye as a

dark area, but they can be examined in

more detail with a microscope. The iron

can also be “decarbonized” by heating in

an oxidizing flame or in a furnace in air.
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12.2 Diffusion

If the substance is mobile enough, it must distribute in an otherwise homogeneous

material or space uniformly over the entire area. This is because at locations of

lower concentrations, its chemical potential is lower causing the substance to move

from locations of higher concentration into areas of lower concentration (Fig. 12.1).

When several substances migrate in an area at the same time, this holds for every

one of them. The substances strive intrinsically for homogeneous distribution. This

is called diffusion.
Although difference of concentration is by far the most important cause for

diffusion, it is not the only cause. Other factors influencing the chemical potential

can also play a role. It is entirely possible that at certain locations in inhomogeneous

areas, a substance is enriched at the cost of neighboring areas. This characteristic is

applied in microscopy in order to color areas that would tend to preferentially

absorb certain dyes (staining in histology). A dye more or less evenly applied

distributes unevenly even without outside influence.

We shall now take a closer look at transport of matter. As we have already seen,

the determining quantity is the chemical potential. The substance moves spontane-

ously only in the direction in which the potential falls. If the transfer of a substance

B from position x1 to position x2 (Fig. 12.2) is formulated as a reaction, then

Bjx1 ! Bjx2 occurs spontaneously if μB x1ð Þ > μB x2ð Þ:

Fig. 12.1 Flow of

substance caused by an

inhomogeneous distribution

of the substance in an

otherwise homogeneous

area.

Fig. 12.2 Determination of

force F upon a small sample

of amount n of a substance

B in a gradient of chemical

potential.
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The chemical drive A of this process is the corresponding potential difference,

A ¼ μB x1ð Þ � μB x2ð Þ ¼ �ΔμB;

and the conversion Δξ is the amount of substance nB transferred from position x1 to
position x2. The potential gradient causes a force F that pushes the substance in the

direction of the falling potential. F is easy to calculate if the energy W for

transporting a small amount nB from position x1 to position x2 (against the potential
gradient) is expressed first as expenditure for the reaction and then as that required

for the displacement against the force F. For this, let us consider that the potential
μB increases in the x direction and that the substance is transported “uphill” opposite
to the potential gradient. The energy W is then > 0, while the chemical drive A is

negative. F also counts as negative because it is oriented opposite to the positive x-
axis. In general, F depends upon the position x. If the segmentΔx ¼ x2 � x1 is made

small enough, F can be considered constant. As a consequence, we obtain:

W ¼ �A � Δξ ¼ ΔμB � nB and W ¼ �F � Δx for small Δx:

When both equations are combined, we find

FB ¼ �nB � ΔμBΔx
or more precisely FB ¼ �nB � dμB

dx
: ð12:1Þ

It is fitting to call F diffusion force because F is the driving force behind the kind of

transport called diffusion. In Chap. 20, which deals with transport phenomena, we

will discuss the velocity of substance transport and the laws pertaining to it (Sect.

20.2).

When we apply molecular kinetic considerations, diffusion tends to be concep-

tualized as a result of random motion of molecules and not as an effect of a directed

force. When the boundaries of two areas of different concentrations of a substance

B touch each other, a totally random movement of molecules occurs where, on

average, more particles move from the concentrated area into the diluted area than

vice versa. Random chance suffices to explain that B gradually moves from areas of

higher concentration into ones of lower concentration until it is evenly distributed.

No special driving force is necessary for this. Actually, there is no discrepancy

between the two models. The greater number of molecular collisions occurring at

higher concentrations of the diffusing substance B must lead to a directed force at

the transition to the area of lower concentration. This is the diffusion force

F calculated above.

Other phenomena already familiar to us also belong to the category of spreading.

Water (Sect. 6.1) but also alcohol, ether, etc., evaporate into the air. They convert to

a gaseous state although the chemical potential of liquid A is smaller below its

boiling point than that of pure vapor. What makes this possible is the fact that the

vapor is not pure but so diluted by air that μ Ajgð Þ < μ Ajlð Þ.
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Any substance B dissolves in finite amounts in any other substance A (even if

these amounts are immeasurably small) because when it is diluted enough, the

chemical potential of the dissolved substance B falls below the fixed μ value of the

non-dissolved solute of B, so that B begins to migrate away from it (Sect. 6.6).

Finally, the mass action law that is so important in chemistry can also be

mentioned in this context as long as it deals with an exchange of substances taking

place between spatially separate areas. Nernst’s law of distribution, Henry’s law of

gas solubility, and even the vapor pressure formula of pure substances are all

examples of this.

12.3 Indirect Mass Action

When a small amount nB of a foreign substance is dissolved in a liquid A, the

chemical potential μ of this liquid will decrease at constant p and T. In fact, it

decreases in proportion to the mole fraction xB ¼ nB= nA þ nBð Þ of the foreign

substance, independent of the kind of solute in question:

μA ¼ μ
�
A � RT � xB for xB � 1 “colligative lowering of potential:” ð12:2Þ

(The term “colligative” is explained at the end of this section). μ�A (pronounced

“mu-A-pure”) designates the potential of A in its pure state (xA¼ 1). Until now, we

have ignored the “moderating influence” that the addition of a small amount of

foreign substance can have upon another substance’s tendency to transform. An

example would be the application of the mass action law when the solvent takes

part in the reaction in question. The reason for this is that for dilute solutions, the

contribution �RTxB is small compared to the concentration-dependent contribu-

tions μ
� ¼ RTlncr of the dissolved substances. The latter tend to�1 for decreasing

concentration. In the mass action law which applies in the limit of strong dilution,

the contribution�RTxB disappears, but the mass action terms μ
�
do not; they actually

increase without limit.

In order to describe the dependency of the chemical potential μ of any substance

upon composition (concentration c, partial pressure p, mole fraction x, etc.), chem-

ists generally separate the potential μ into two parts: a basic component μ
○
indepen-

dent of the composition and a residual that is dependent upon it (compare Sect. 6.2).

In the sense explained here, μ� represents a particular basic value. Only when this

needs to be emphasized will we use the notation μ�; otherwise we will stay with μ
○
.

Equation (12.2) for the lowering of potential is valid as long as the foreign

substance B or foreign substances F (there can be several different ones, B, C, D,

. . ., since their kind does not matter) dissolve molecularly but do not associate or

dissociate, meaning they may not decompose into smaller components or form

aggregates of several molecules. This remarkable relation, which is valid for all
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substances, is the indirect result of the mass action of the dissolved substances.

Remember that mass action is independent of what kind of substances make up

solvent A and solute B (see the mass action equations in Chap. 6).

Note that this new equation holds only in the limit of a small amount of a foreign

substance being added to the solvent. Admittedly, this change of potential is small.

However, because substance A is highly concentrated, it can have significant

effects, which we will look into in the next sections.

For the mathematically interested: In order to derive Eq. (12.2), we will refer back to the

cross relation discussed in Sect. 9.3 known as n–n coupling. When one substance tries to

displace (or favor) another one, this happens reciprocally and with equal strength. The

corresponding displacement coefficients are equal as can easily be shown by applying the

flip rule (main equation dW ¼ �pdV þ TdSþ μAdnA þ μBdnB):

∂μA
∂nB

� �
p,T,nA

¼ ∂μB
∂nA

� �
p,T,nB

:

Taking into account that μB is dependent upon cB and cB is dependent upon nA,
μB(cB(nA)), which means that we have to apply the chain rule [see Eq. (A.1.13 in the

Appendix)] in order to calculate the derivative on the right, the result is:

∂μB
∂nA

� �
p,T,nB

¼ ∂μB
∂cB

� �
p,T

∂cB
∂nA

� �
p,T,nB

:

When we started examining the phenomenon called mass action, we chose the situation

where the concentration coefficient γ
�
of the chemical potential at low concentrations c is a

universal quantity (Sect. 6.2). When applied to substance B, this means:

∂μB
∂cB

� �
p,T

¼ γ
� ¼ RT

cB
:

Now, cB ¼ nB=V is indirectly dependent upon nA even at a constant nB, because
V ¼ nAVA þ nBVB � nAVA. Since nB� nA, the contribution nBVB to the volume V can be

ignored and VA can be considered equal to the volume demand of the pure substance A and

therefore independent of nA. When we take the derivative of cB ¼ nB= nAVAð Þ with respect
to nA [by using rule (A.1.6) for calculating derivatives in the Appendix],

∂cB
∂nA

� �
p,T,nB

¼ � nB
nA2VA

¼ � nB
nAV

¼ �cB
nA

;

and insert the result further above, we obtain:

∂μA
∂nB

� �
p,T,nA

¼ RT

cB
� �cB
nA
¼ �RT

nA
:

The derivative is not dependent upon nB, meaning that, with increasing amounts nB, μA
decreases linearly with constant slope from the initial value μ�A:

μA ¼ μ
�
A �

RT

nA
� nB � μ

�
A � RT � xB:
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Figure 12.3 shows the chemical potential μ as a function of x within the entire

range from x¼ 0 to 1. The solid curve illustrates the logarithmic relation considered

the ideal case. If the mole fraction is reduced by a power of ten each time, the

chemical potential always decreases by the same value, the decapotential μd of

5.7 kG at room temperature. As already stated (and derived above), all μ(x) curves
must show the same slope RT for x � 1 (that is x� 0 for the second component of

the mixture). We will go more deeply into this subject in Sect. 13.2.

“Colligative lowering of potential” leads to several effects: development of

osmotic pressure, lowering of vapor pressure of a solution (compared with the

pure solvent), raising of its boiling point, and lowering of its freezing point. These

effects are determined solely by the mole fraction of the foreign substances, i.e., the

number of dissolved particles (“assemblies of atoms”) and not their chemical

nature, size, and form. For this reason, the term colligative properties is used

(from the Latin colligare “to assemble”). An aqueous solution with a mole fraction

of glucose of 0.001 corresponds quite well to a urea solution with the same mole

fraction for all the properties just mentioned (osmotic pressure, vapor pressure,

freezing point, and boiling point). However, each type of particle in the solution

must be treated as an individual substance. For example, the cations and anions in

an electrolyte solution need to be counted separately. For a solution of table salt

with xNaCl ¼ 0:001, xF ¼ xNaþ þ xCl� ¼ 2 � xNaCl ¼ 0:002; this is so because NaCl is
fully dissociated into the Na+ and Cl� ions. In a calcium chloride solution, we even

have xF ¼ xCa2þ þ xCl� ¼ 3 � xCaCl2 ¼ 0:003.

Fig. 12.3 Dependency of

chemical potential upon

mole fraction x.
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12.4 Osmosis

When two solutions with different concentrations of a dissolved substance B are

separated by a thin wall that only allows solvent A to pass through (a so-called

semipermeable membrane, Fig. 12.4), solvent A will migrate through this mem-

brane from the more diluted solution (with respect to B) to the one of higher

concentration. In this case, one of the solutions can be composed of the pure solvent

for which cB¼ 0. In the solution having a higher concentration of B, substance A

appears more strongly diluted due to its solution partner B. This means that the

concentration of solvent is smaller, and because of this, its chemical potential μA is

also smaller. Thus, the chemical drive for this process called osmosis is the

difference of potential generated by different concentrations of foreign substances.

In the simple membrane model shown in Fig. 12.4, selective permeability results

from the maximum pore size: Only the smaller solvent molecules manage to move

through the membrane. But semipermeability can also occur through other mech-

anisms. The biological membranes surrounding living cells are also semiperme-

able. They allow water and molecules of comparable size through while holding

back enzymes and proteins inside cells. In biology, osmotic exchange of water

represents a ubiquitous phenomenon. It is responsible for the effect that juice is

“drawn out” from strawberries that are sugared (Experiment 12.5) or that cherries

swell up and burst after a long rain. In the first case, water migrates out through the

peel into the concentrated, therefore water-poor, sugar solution. In the second case,

water flows inward, because the water is more diluted there.

Another good example of the first effect would be salted slices of white radish

(Experiment 12.6).

Fig. 12.4 Migration of

solvent A in the direction

opposite to a pressure

gradient into a solution. The

molecules of the dissolved

substance B are shown as

dots; for clarity, solvent A
is shown as a continuum,

where the slightly different

gray tones indicate
the differences of

concentrations. The detail

shows spheres symbolizing

the molecules of the

dissolved substance (dark)
as well as the solvent (light).
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The second effect can also be demonstrated on a raw decalcified egg which is

cautiously placed in water (Experiment 12.7).

A gradual excess pressure results from the flow of solvent A into the concen-

trated solution. The chemical potential μA also gradually increases so that the

potential gradient decreases. The process stops when μA on the right and on the

left of the wall becomes equal (or when the substance A completely disappears

from one side). The resulting excess pressure is called osmotic pressure.

Experiment 12.5 Juice “extraction” from
sugared fruit: Two handfuls of strawberries

(or slices of mandarins) are carefully dabbed dry

with a paper towel. One half of the strawberries is

filled in a goblet so that there is some space left at

the bottom. A lot of dry sugar is sprinkled on the

other part of the strawberries, and subsequently,

they are cautiously filled in the same way in the

second goblet. After some hours, a watery syrup

begins to gather on the bottom of the glass

beneath the sugared fruit; after 2 days, a volume

of 30–40 mL can be obtained. However, there is

no formation of a liquid in the case of the

unsugared fruit.

Experiment 12.6 Juice “extraction”
from slices of salted white radish: The
radish is cut into thin slices and these

slices are piled in two stacks. The

slices of one of the stacks are picked

up in turn, salted very well, and piled

up again. Subsequently, both stacks

are speared on the wire. Immediately,

juice begins to drip out of the stack

with the salted slices. The measuring

cylinder contains approx. 30 mL juice

after 15 min.

Experiment 12.7 Swelling of a
decalcified egg in water: One of
two raw eggs (as equal as possible

in size) is placed in a beaker with

hydrochloric acid (or vinegar) to

dissolve the calcareous egg shell—

without breaking the membrane

surrounding the egg. Subsequently,

each of the eggs is put in a separate

beaker filled with water. After

2 days, the shell-less egg has grown

visibly in size.
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We will now take a closer look at osmosis. We consider a vessel containing an

amount nA of a liquid A. When a small amount nB of a foreign substance is

dissolved in it, the chemical potential μA of the solvent decreases [“colligative

lowering of potential,” Eq. (12.2)]:

μA ¼ μ
�
A � RT � xB for xB � 1: ð12:3Þ

Let us imagine the container connected to another one by a wall that is permeable

only for the solvent (Fig. 12.5). The liquid in the second container is in its pure state.

The potential gradient causes this liquid to flow through the wall into the solution.

This flow can be suppressed by compensating for the loss of potential by raising the

pressure on the solution. The chemical potential grows with increasing pressure

(compare Sect. 5.3):

μA ¼ μ
�
A � RT � xB þ βA � Δp; ð12:4Þ

where the pressure coefficient βA corresponds to the molar volume VA of the pure

solvent (compare Sect. 9.3). The following is then valid for the osmotic

equilibrium:

μ
�
A�RT � xBþVA �Δ p¼ μ

�
A and respectively, �RT � xBþVA �Δ p¼ 0: ð12:5Þ

Fig. 12.5 Experiment illustrating osmotic pressure. The riser pipe on the left serves as

manometer.
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This means that the chemical potential of the solution again corresponds to that of

the pure solvent. The excess pressure Δp necessary for establishing equilibrium

serves as measure for the osmotic pressure posm in the solution.

The simple arrangement in Fig. 12.5 shows the pressure working against the

flow of solvent into the solution as a result of the gravitational pressure of the

column of solution in the riser pipe on the left. This pressure is produced by the

osmosis itself as the pure solvent moves through the semipermeable wall into the

solution. In the process, the difference of level between the two riser pipes

gradually becomes greater until, eventually, the gravitational pressure compen-

sates for the effect of osmotic pressure. This means that osmotic equilibrium has

been established. The osmotic pressure posm¼ ρgh can be easily calculated from

the resulting rise h of the column of liquid, the density ρ of the solution, and the

gravitational acceleration g.
With the help of a carrot and a riser pipe with a funnel-shaped end, it is easy to

construct an experiment to prove the existence of osmotic pressure (Experiment

12.8).

We have xB ¼ nB= nA þ nBð Þ � nB=nA for a diluted solution because the amount

nB of solute is so small compared to the amount nA of the solvent that it can be

ignored. Multiplying Eq. (12.5) by nA yields:

�RT � nB þ nAVA � posm ¼ 0: ð12:6Þ

If V � nA �VA indicates the volume of liquid (ignoring the small amount nB �VB of

foreign substance), then the osmotic pressure posm results in:

posm ¼ nB
RT

V
Van’t Hoff’s equation: ð12:7Þ

At room temperature (T ¼ 298 K), a solution of an arbitrary non-electrolyte with a

concentration of 0.1 kmol m�3 results in an osmotic pressure of 250 kPa (2.5 bar).

This would be enough to raise the column of liquid more than 25 m. Even at very

small concentrations, osmotic pressure is of such a magnitude that it is easy to

measure with sufficient precision.

Experiment 12.8 Experimental
demonstration of osmotic pressure:
The inside of the carrot is hollowed

out in a cylindrical form and filled

with a colored saturated calcium

chloride solution. Then the riser

pipe is attached. After a short time,

one observes a continuous rise

of the solution in the riser pipe.

In this case, the cell membranes

in the carrot act as the

semipermeable wall.
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Van’t Hoff’s equation is very similar to the general gas law. In fact, both equations

can be interpreted in the same way. Here we need to keep in mind that the forces of

attraction between the A particles keep the liquid together (compare Sect. 11.1,

keyword “cohesion pressure”). The contribution of the external pressure p is com-

paratively small. The B particles that drift far away from each other and scarcely

influence each other cause a pressure like that of a dilute gas. However, in this case

the pressure is not compensated by the container walls but by the cohesion of the A

particles. When the osmotic pressure posm is higher than the external pressure—a

condition that is often attained—the liquid A behaves as if it were under negative

pressure. If we calculate the potential μA of the liquid for a pressure reduced by posm
and keep in mind that for dilute solutions V � nA � VA and nB=nA � xB, we again
end up with Eq. (12.3). This demonstrates that both descriptions are equivalent:

μ
�
A � βA � posm ¼ μ

�
A � VA

nBRT

V
¼ μ
�
A � xBRT:

If the dilute solution contains several types of particles which cannot penetrate the

membrane, we have

posm ¼ nF
RT

V
¼ cFRT; ð12:8Þ

where nF as well as cF are the sum of the amounts of substance and the sum of

concentrations of all types of particles, respectively. cF is called the osmotic
concentration (formerly known as osmolarity) of the solution. Since the total

number of dissolved particles must be taken into account when calculating the

osmotic concentration, the number of ions that form an ionic substance must also be

considered. For example, the osmotic concentration of an aqueous solution of the

salt CaCl2 with a concentration c is three times as great as this concentration.

Correspondingly, the osmotic pressure of the solution of this salt is three times that

of a solution of a non-electrolyte with concentration c.
As we have mentioned at the beginning, osmotic phenomena play an essential

role in biological processes. They have great importance for the balance of water in

living organisms and influence the shape of their cells. The osmotic concentration

cF of cell liquid in human red blood cells, for example, is approximately

300 mol m�3. In this case, we can apply Van’t Hoff’s law only with reservations

due to this relatively high concentration. However, for body temperature, an

osmotic pressure of posm¼ 300 mol m�3� 8.3 J mol�1 K�1� 310 K¼ 770 kPa

can be at least estimated. If red blood cells were to be suspended in pure water, they

would have to withstand about 8 times normal atmospheric pressure. In fact, they

swell up and burst long before this point (Fig. 12.6, left). On the other hand, if red

blood cells are put into contact with an aqueous saline solution that has a much

higher osmotic pressure than 770 kPa, the water in the cells will flow out and they

will shrink (the membranes of red blood cells are almost impenetrable for Na+,

Fig. 12.6, right). Only if the osmotic pressure is the same inside the red blood cells
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and the surrounding solution (which is the case for blood plasma) do the cells keep

their normal shape (Fig. 12.6, middle).

Solutions where the water content of the cells remains constant [μ(H2O) is the

same inside and outside the cells] are described as isotonic. When giving intrave-

nous infusions, it is important to be aware that in order not to damage the blood

cells, only an isotonic solution matching the blood may be used. A physiological

saline solution has a concentration of 150 mol m�3 and therefore an osmotic

concentration of 300 mol m�3. On the other hand, the cell damaging effects of

concentrated saline solutions can be put to good use in order to preserve foods. One

example is salting of meat (pickling) where the water is removed from possibly

unhealthy microorganisms through osmosis. This hinders their cell functions and

strongly reduces their reproduction.

In reverse osmosis, an external excess pressure is exerted upon the side of the

concentrated solution that is higher than the osmotic pressure posm of this solution.

This causes the solvent’s molecules to be “forced” in the direction opposite to the

osmotic effect. They are forced through the semipermeable membrane and into the

more diluted solution where they are enriched. This procedure is used in desalini-

zation of water as well as wine processing.

12.5 Lowering of Vapor Pressure

A pure liquid A is assumed to be in equilibrium with its vapor at a pressure of plg
(initial situation: μ�Ajl ¼ μ�Ajg). The vapor pressure of A is lowered if a low-volatile

foreign substance B is dissolved in it (Fig. 12.7).

Qualitatively, this can be understood immediately. Adding B dilutes liquid Ajl,
thereby lowering its chemical potential μAjl. The dissolved substance B should have

low volatility so it contributes nothing to the vapor Ajg and the potential μAjg
remains unchanged. Because μAjl is now lower than μAjg, the vapor has to condense
on the surface of the solution, thereby causing the pressure to fall.

Fig. 12.6 Osmotic behavior of red blood cells in aqueous NaCl solutions at concentration c.

326 12 Spreading of Substances



The quantitative discussion is also not difficult. The process continues until

equality of potentials is regained, μAjg ¼ μAjl. For this purpose, reducing the

pressure by a small amount Δp is sufficient. The chemical potential μAjg of the

vapor falls steeply with decreasing pressure because of its high pressure coefficient,

βAjg >>> βAjl, whereas the change of the potential μAjl is so small that it can be

neglected. If we consider the “colligative potential lowering” �RTxB caused by B

we obtain for the equilibrium condition:

μAjg ¼ μ
�
Ajg þ βAjg � Δ p ¼ μ

�
Ajl � RT � xB ¼ μAjl: ð12:9Þ

We act on the assumption that μ�Ajl ¼ μ�Ajg; therefore these contributions cancel each
other out. Because we also have βAjg ¼ VAjg ¼ RT=p (see Sect. 9.3), the equation

can be simplified according to:

RT
Δ p

p
¼ �RT � xB: ð12:10Þ

In this context, p corresponds to the vapor pressure plg of the pure solvent. If it is
important to emphasize this fact, we add the symbol � and write plg

� instead of plg.
For the “lowering of vapor pressure” Δplg, we obtain a relation that was discovered
empirically in 1890 by the French Chemist François Marie Raoult:

Δ plg ¼ �xB � p�lg Raoult’s law: ð12:11Þ

Let us have a look at Fig. 12.8 for illustration: At the intersection of the potentials

for pure solvent and pure vapor, there is equilibrium between the liquid and its

vapor phase at the vapor pressure plg. A dissolved substance of low volatility lowers

the chemical potential of the solvent by �RTxB (“colligative potential lowering”

corresponding to the distance between the almost horizontal straight lines), but

Fig. 12.7 Establishment of

equilibrium between a

solution of a foreign

substance B in a liquid A

and the pure vapor phase

of A.
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leaves that of the vapor unchanged. Thus, the intersection of the curves (axis of

abscissas p0lg) shifts to the left. This means that the vapor pressure is lowered by Δp
(Δp< 0!).

With the aid of the “slope triangle” drawn in the figure, the slope βAjg of the

potential curve for pure vapor results in

βAjg ¼
�RTxB
Δ p

:

Considering that βAjg ¼ VAjg ¼ RT=p and solving the equation for Δp results in

Raoult’s law. Whether one prefers the first pure mathematical or the second more

geometrical derivation is a question of personal preference.

The simple setup shown in Experiment 12.9 illustrates the discussed effect.

Fig. 12.8 Dependence of the chemical potential upon pressure, and lowering of vapor pressure.

Experiment 12.9 Comparison of the
vapor pressures of ether and an ether–
oleic acid mixture: Both gas-washing

bottles are filled about one-fifth of their

volumes with ether. After removal of

most of the air with the help of a pump,

the stop cock is closed. Subsequently,

the oleic acid is added drop by drop.

The vapor pressure of ether in the gas-

washing bottle with added oleic acid

decreases in comparison to that of pure

ether. This is shown by the level of

liquid in the manometer.
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12.6 Lowering of Freezing Point and Raising of Boiling

Point

A frozen liquid A melts more easily when a substance B that is soluble in the liquid

but not in the solid is added (Fig. 12.9). At the normal freezing point Tsl of the

liquid A, the chemical potentials for the solid and the liquid state are equal (μ�Ajs
¼ μ�Ajl ). If a foreign substance is dissolved in the liquid phase, the chemical

potential of this phase decreases so that it falls below that of the solid phase

which then begins to melt. The entropy required for the phase transition solid !
liquid is not added from outside but has to be brought up by the system itself.

Therefore, the entire mixture cools down and the chemical potentials rise due to

their negative temperature coefficients. However, because the temperature coeffi-

cient for a liquid is smaller than for a solid ðαAjl < αAjs < 0Þ, μAjl grows faster with
decreasing temperature than does μAjs. This causes the potential gradient to disap-

pear again at a certain lower temperature and the melting process stops.

An illustration (Fig. 12.10) explains this phenomenon: When the chemical

potentials for the pure solvent as well as for the pure solid are drawn as functions

of temperature, the intersection of the two curves yields the freezing point Tsl. The
dissolved substance lowers the chemical potential of the liquid but does not

influence the solid phase. The intersection of the curves (Tsl0) is therefore shifted

to the left. This means that the freezing point is lowered by ΔTsl (ΔTsl< 0).

In the corresponding calculation, we again assume a reestablished equilibrium.

This time it is between the liquid and solid phase, μAjl ¼ μAjs. Because the changes
in temperature T we are interested in are mostly small, we can assume a linear

dependency of the chemical potential upon T. At constant pressure, we obtain the

following result (keep in mind that in this case the freezing point Tsl is the reference
point for the temperature coefficient):

μAjl ¼ μ
�
Ajl � RTsl � xB þ αAjl � ΔT ¼ μ

�
Ajs þ αAjs � ΔT ¼ μAjs: ð12:12Þ

Fig. 12.9 Melting of a

frozen liquid in a solution.
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Again the basic values cancel each other out, μ�Ajl ¼ μ�Ajs. When the equation is

solved for ΔT (or rather ΔTsl), the freezing-point depression results in:

ΔTsl ¼ RTsl � xB
αAjl � αAjs

: ð12:13Þ

Here, the temperature coefficient corresponds to the negative molar entropy of

the substance (compare Sect. 9.3). Subsequently, the difference SAjl � SAjs can be

summarized as the molar entropy of fusion ΔfusSA of the pure solvent (at the

freezing point) (compare Sect. 11.5):

ΔTsl ¼ �RT
�
sl � xB

Δ fusSA
: ð12:14Þ

Like the vapor pressure lowering, the freezing-point depression is directly propor-

tional to the mole fraction xB of dissolved substance. The additional character �,
indicating that the labeled quantity applies to the pure substance, can be omitted if

misunderstandings are not possible.

For example, in an aqueous non-electrolyte solution with a mole fraction of

xB¼ 0.01, ΔTsl is about –1 K. An example from everyday life is shown in Exper-

iment 12.10. A prime example of an application of freezing-point depression is,

however, the melting effect of road salt.

Fig. 12.10 Temperature dependence of chemical potentials, lowering of freezing point, as well as

raising of boiling point. The lowering of potential of solvent A by �RTxB caused by the foreign

substance B is compensated at the freezing point Tsl by a lowering and at the boiling point Tlg by a
raising of temperature.
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In contrast to the freezing point, the boiling point of a solution is raised as

demonstrated in Experiment 12.11. Correspondingly, the position of the equilib-

rium between liquid and vapor is shifted to a higher temperature in Fig. 12.10.

However, this raising of boiling point is much smaller than the lowering of freezing

point which can be attributed to the different slopes of the curves representing the

potentials. These, in turn, are determined by the molar entropies, which naturally

leads to the steepest drop for the gaseous state of the solvent.

A consideration similar to that for lowering the freezing point leads to the

equation for raising the boiling point:

ΔTlg ¼ � RTlg � xB
αAjg � αAjl

and correspondingly, ΔTlg ¼
RT
�
lg � xB

Δva pSA
; ð12:15Þ

where ΔvapSA now represents the molar entropy of vaporization ðSAjg � SAjlÞ at the
boiling point Tlg. In an aqueous solution of a non-electrolyte with a mole fraction of

xB¼ 0.01, ΔTlg is only about 0.3 K.

In summary, when a low-volatile foreign substance is dissolved in a liquid, the

potential of the pure vapor, which is then higher than that of the solution, can be

lowered in two ways. First, by lowering the pressure (Sect. 12.5), and second, by

raising the temperature.

Experiment 12.10 Whisky
“on the rocks”: When rum,

schnaps, whisky, or,

alternatively, ethanol is

poured over ice, it will

become considerably colder

than 0 �C.

Experiment 12.11 Raising
of boiling point of a
saturated solution of table
salt: A saturated solution of

table salt begins to boil at a

noticeable higher

temperature than tap water.

12.6 Lowering of Freezing Point and Raising of Boiling Point 331



12.7 Colligative Properties and Determining Molar Mass

The four phenomena just described (osmosis, lowering of vapor pressure, lowering

of freezing point, and raising of boiling point) have a common feature: they are all

dependent upon the indirect mass action of dissolved substances, i.e., the lowering

of the chemical potential by mixing in small amounts of foreign substances. These

so-called colligative phenomena depend solely upon the mole fraction of these

foreign substances and therefore the number of dissolved particles. However, what

type of substances they are is unimportant.

Because of this peculiarity, the colligative properties can be used to determine

the amount of substance nB of a sample of an unknown substance B and, therefore,

if the mass mB of the sample is known, also the molar mass MB ¼ mB=nB. Let us
take a quick look at this by considering the example of lowering of freezing point.

xB � nB=nA is valid at high dilution, and because of nA ¼ mA=MA, we have

xB � nB �MA=mA. The quotient nB/mA corresponds to the molality bB (compare

Sect. 1.5). Inserting these expressions in Eq. (12.14) for the freezing-point depres-

sion results in

ΔTsl ¼ �k f � nB
mA

¼ �k f � bB with k f ¼ �RTslMA

ΔslSA
; ð12:16Þ

a coefficient called “cryoscopic constant” which is only dependent upon pressure

and type of solvent. kf corresponds to the lowering of freezing point which is

obtained from 1 mol of dissolved substance in 1 kg of solvent. At such high

concentrations, the equation above can only be an approximation. For measuring

the temperature changes at low concentrations with sufficient precision, it is

advisable to use solvents with kf values as high as possible. Table 12.1 shows the

“cryoscopic constants” of some solvents.

There are analogous relations and applications for the raising of boiling point:

ΔTlg ¼ þkb � nB
mA

¼ þkb � bB with kb ¼ RTlgMA

ΔlgSA
: ð12:17Þ

The “ebullioscopic constant” kb that corresponds to kf is positive, and because of its
higher denominator (ΔvapSA>ΔfusSA), it is (in absolute terms) smaller than kf

Table 12.1 Cryoscopic and ebullioscopic constants of some solvents (from: Lide D R (ed) (2008)

CRC Handbook of Chemistry and Physics, 89th edn. CRC Press, Boca Raton).

Solvent Tsl (K) kf (K kg mol�1) Tlg (K) kb (K kg mol�1)

Water 273.2 1.86 373.2 0.51

Benzene 278.6 5.07 353.2 2.64

Cyclohexane 279.7 20.8 353.9 2.92

Cyclohexanol 299.1 42.2 434.0 3.5

Campfor 452.0 37.8 – –
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(compare Table 12.1). For this reason, the change of temperature here is smaller

than for lowering of the freezing temperature and therefore more difficult to

measure. Finally, the desired molar mass MB results from the equations above by

solving for nB and calculating according to MB¼mB/nB.
Development of osmotic pressure can also be used in determining amounts of

substances and thereby molar masses. The principle of this method, which is also

known as osmometry, is to measure the osmotic pressure of a solution of known

molality. The advantage of this method compared to the other methods using

colligative properties is that it is much more sensitive. For instance, an aqueous

solution of cane sugar with a concentration of 0.01 mol kg�1 exhibits a raising of

boiling point of 0.005 K and a lowering of freezing point of 0.02 K. However, the

osmotic pressure is 25 kPa (0.25 bar), which can be measured both easily and

precisely. Because of its sensitivity, osmometry is useful particularly for the

investigation of macromolecular substances such as synthetic polymers, proteins,

or enzymes having molar mass between 104 and 106 g mol�1. The lowering of the

freezing point is commonly used in medicine for determining the total osmolality of

aqueous solutions such as blood plasma or urine.

The gas law also belongs to the colligative properties, but often it is not

mentioned in this context. It can be used for the same purposes. The vacuum

appears here in the role of the solvent, whereas the gas pressure corresponds to

the osmotic pressure.
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Chapter 13

Homogeneous and Heterogeneous Mixtures

In chemistry but also in everyday life, we are very often confronted with mixtures, be

they homogeneous or heterogeneous. Think for example of hard liquor, basically a

homogeneous mixture of ethanol and water, but also of fog, a heterogeneous mixture

of air and minuscule water droplets. First, we concentrate onmixtures made up of two

liquid components. We discuss the behavior of the chemical potential of one compo-

nent in such mixtures and the reason for spontaneous mixing or demixing. For an

adequate quantitative description, the concept of chemical potential has to be extended

on substances in real solutions by introducing an extra potential μ
þ
:

For the characterization of mixing processes, it is useful to assign an (average)

chemical potential to a mixture of two components A and B (with the mole fractions

xA and xB), as is done for pure substances. Depending on whether the resulting

mixture is homogeneous or heterogeneous the concentration dependence of this

average potential is different. On this basis, concepts such as miscibility gap and

lever rule are discussed.

13.1 Introduction

To begin with, let us take a look at mixtures made up of two liquid components. A

homogeneous mixture of ethanol and water (like it is found in hard liquor) can be

preserved over long periods of time; we always observe only one single phase.
(We were introduced to the concept of phase for a homogeneous region of matter in

Sect. 1.5.) However, if we let a hot mixture of phenol and water cool down, it will

split up into two separate parts (Experiment 13.1) meaning that demixing (phase

separation) occurs.

A similar situation occurs with ether and water (Experiment 13.2).

If only a small amount of ether—colored brown with iodine—is added to water,

a homogeneous brown-colored solution results as we have seen. This is because the
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small amount of ether completely dissolves in the water and the iodine distributes

through the water along with it. When the ratio of ether to water is 1:5, the ether

separates as a brown layer on top of the water because water can only absorb about

10 % of its own volume in ether. Iodine can dissolve much better in ether than in

water so it moves from the aqueous phase and collects in the layer of ether lying on

top of it. This has been already discussed in Sects. 4.2 and 6.6.

Solid mixtures behave very similarly. For example, α-brass (an alloy of

copper and up to 40 % zinc) can be preserved for just about any amount of time

(Experiment 13.3).

On the other hand, carbon steel made up of iron with a maximum of 2 % carbon

separates more or less quickly—when cooled from its melted state—into two

homogeneous but intricately entangled areas (Experiment 13.4).

Processes of this type can be discussed in the same way as chemical reactions.

The constituents of the mixture assume the role of elements as basic substances

whose amounts are conserved during transformation (see Sect. 1.2). The homoge-

neous and heterogeneous mixtures themselves, however, correspond to chemical

compounds. Therefore, the composition of these mixtures can be given by a content

formula but with the peculiarity that the content numbers are not necessarily integer

Experiment 13.1 Demixing of phenol/
water: We let a hot mixture of phenol and

water (at a ratio of 1:1) cool down in the

air. After a while, demixing takes place

thereby forming streaks. The phenol-rich

phase settles to the bottom because of its

higher density. The demixing becomes

nicely visible when a tiny amount of

methyl red is added to the original

mixture. Because the dye is not soluble in

water but is very soluble in phenol, it

remains in the phase rich in phenol.

Experiment 13.2 Mixing of ether with
water: We add a small amount of ether—

colored brown with a bit of iodine—to

water in a separating funnel (at a ratio of

10:1), and subsequently, we shake the

funnel gently. A homogeneous brown-

colored solution results. When the same

amount of ether is added once more (ratio

now 5:1) and we shake the funnel again, a

large portion of the ether separates as a

brown layer on top of the almost colorless

water.
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numbers but can also be real. Normally, one chooses the numbers in such a way that

their sum equals 1. The simplest case would be the mixing of two substances A and

B resulting in a mixture with defined composition, for example, with a mole

fraction xB of B and therefore xA ¼ 1� xB of A:

vAAþ vBB! AxABxB :

One glance is enough to recognize that the conversion numbers vi on the left side

have to be identical with the content numbers gi in the formula on the right side and

hence with the mole fractions xi in the mixture: vA ¼ gA ¼ xA and vB ¼ gB ¼ xB.
The content formula on the right describes only the fractions of the components, but

no information is provided if the resulting mixture is homogeneous (such as water

and alcohol) or heterogeneous (like sugar and flour when preparing a cake dough).

However, the meaning of the formula on the right is usually clear from the context.

We will first discuss homogeneous mixtures; in this case, the content formula on the

right is sufficient for characterization. The situation is more complex for heteroge-

neous mixtures because their constituents have not to be pure substances but can

also be homogeneous or even heterogeneous mixtures. But also in this case we

basically need no new means for capturing the essence.

Experiment 13.3 Polished
cross section of brass: A
polished cross section

studied under a light

microscope after etching

shows well-distinguishable

grain boundaries that

separate the variously

oriented but otherwise

identical regions of matter.

Experiment 13.4 Polished cross
section of carbon steel: The white
areas are ferrite (materials science

term for α-Fe, i.e., (nearly) pure
iron with a body-centered cubic

crystal structure). The dark gray
areas, however, are pearlite (a fine
lamellar structure of ferrite and

cementite, an iron–carbon

compound with the formula Fe3C).
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13.2 Chemical Potential in Homogeneous Mixtures

Why do certain mixtures split up when others do not? How are phases formed? To

answer these questions, we will again refer to the chemical potential μ. Until now
we have considered the situation as follows: If a region is inhomogeneous, the

substances move more or less quickly along the potential gradient until the chem-

ical potential for every substance is equal everywhere in that region. Although a

homogeneous region is what would be expected as the final result, this is obviously

not always the case. For clarity we will consider the μ(x) curve.
To provide an example, we will now look at how the chemical potential μ of

water depends upon its mole fraction x in various mixtures (Fig. 13.1).

On the right, all curves show the same slope RT in the vicinity of x¼ 1. On the

left, they all approach negative infinity. The similar initial part of the curves on the

right side is a consequence of indirect mass action which is the same for all

substances (see Sect. 12.3). The similarities and differences for varying mixtures

become even clearer when plotted logarithmically (Fig. 13.2).

In this representation, all curves end up on the left side in parallel straight lines

with the slope RT. In Sect. 6.5 we set up the following equation to describe mass

action [Eq. (6.28)]:

Fig. 13.1 Chemical potential of water in different mixtures as a function of its mole fraction (at a

temperature of 298 K and a pressure of 100 kPa).
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μ ¼ μ0 þ RTln
x

x0
for x, x0 � 1:

A logarithmic plot where μ is chosen to be the ordinate and ln x the abscissa, should
result in a straight line with a slope of RT:

(As a reminder, the well-known equation you learned at school for a straight line

with a slope of m through the point (x0; y0) is given.)
A mixture is called ideal if this relation is not only valid for low mole fractions

but in the whole range 0	 x	 1 and in particular for x0¼ 1. If we write again μ
�
for

the chemical potential of the pure substance, the equation above simplifies to

(cf. Sect. 12.3):

μ ¼ μ
� þRTlnx for 0 	 x 	 1 in the ideal case: ð13:1Þ

When we take the derivative of this function with respect to x at constant T, we obtain
the value of RT at x¼ 1 as we should expect because of the indirect mass action:

∂μ
∂x

� �
T

¼ RT

x
and therefore

∂μ
∂x

� �
T

¼ RT for x ¼ 1:

Fig. 13.2 Presentation of the chemical potential of water in different mixtures as a function of

concentration on a logarithmic scale.
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However, only very similar substances that are indifferent to each other such as a

homogeneous mixture of light water (H2O) and heavy water (D2O) show an ideal

behavior. (The molecular rearrangement H2Oþ D2O! 2HDO which occurs

easily is considered to be suppressed.).

A similar approach can be used to describe the behavior at low mole fractions.

The μ(x) curves appear in Fig. 13.2 as straight lines parallel to that for the ideal case;
they only differ from each other in the intercepts on the y-axis (vertical line at

the far right in the figure). μ
○
x represents a special basic value (such as already μ

�
)

meaning a “basic contribution” independent from the composition. The index x can

be omitted if it is clear from the context that the usual basic value specified in the

concentration scale (i.e., the value for 1 kmol m–3) is not meant. To avoid confu-

sion, we can write μ
○
c instead of simply μ

○
as before.

μ
○
x BjAð Þ or abbreviated μ

○
BjAð Þ represents the chemical potential for a hypo-

thetical state of the “pure” substance B in question (here water) in which the

interaction of the substance (B) and the solvent molecules (A) (here ether, ethanol,

etc.) determine the outcome, and not the interactions of the B molecules with each

other. Naturally, each solvent leads to a different value (Table 13.1). We will take a

short look at this again in the next section.

The substances’ individual characteristics recede near x¼ 1 as well as x¼ 0 and

general laws that are broadly independent of substance-specific quantities become

valid. However, the form of the functions varies noticeably between the limits

mentioned. But characteristic for all curves is the “swerve” from the straight line on

the left with slope RT to the parallel straight line on the right.

The potential difference between μ
○

BjAð Þ and μ
�
(B) can serve as measure for the

compatibility of B with A. The higher the value μ
○

BjAð Þ lies above that of μ� (B) the
stronger the tendency of B to separate from A, the worser the compatibility between

the substances. As long as one of the substances is added in small or very small

amounts, it will always be tolerated. The situation can become critical when both

components are present in comparable amounts. We call the substances “lowly

compatible” when they do not yet separate from each other and “incompatible”

Table 13.1 Basic values of

chemical potential of

substances in several mixtures

(at 298 K and 100 kPa).

Substance/solvent μ
○
x (kG)

H2O Pure �237.4
In ether (hydrophobic) �230
In D2O (indifferent) �237.4
In H2SO4 (hydrophilic) �260

Hg Pure 0

In H2O (lowly compatible) +40

In benzene (lowly compatible) +30

In liquid Na (highly compatible) �150
Fe Pure 0

In Cu (lowly compatible) +20
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when they do. Also the opposite can occur meaning the value of μ
○

BjAð Þ lies beneath
that of μ

�
(B). In this case, A and B are better compatible among each other than each of

the substances alone. We call substances showing this behavior “highly compatible.”

In the case of a mixture of two “highly compatible” substances such as H2O and

NH3 (in this special case also called a hydrophilic or “water-loving” substance), a
downward deviation from the continuous straight line for indifferent substances can

be observed. “Lowly compatible” substances like H2O and Ethanol, however, show

an upward deviation. The curve for a mixture of “incompatible” substances (such as

H2O and hydrophobic ether) shows a “swerve” raised to a maximum.

The varying behaviors of these mixtures are due to the different interactions of

the components A and B at their molecular levels. If the attraction between particles

of different types A and B is about equal to the average attraction between particles

of the same type (A and A or B and B), the substances will behave indifferently.
This holds for mixtures of substances that are chemically closely related such as

H2O/D2O, hexane/heptane, benzene/toluene, etc. Dilute gases also behave indiffer-

ently toward each other because the attraction is almost nonexistent due to the large

distances between the particles. For this reason,

• Non or weakly polar liquids: hexane, ether, carbon tetrachloride or

• Substances that form hydrogen bonds: water, ammonia, methanol, glycerol

are among each other more or less compatible.

If the attraction between particles A and B is stronger than that between the

different types of particles themselves, one speaks of highly compatible substances.
If, however, the attraction is considerably weaker, the substances are called incom-
patible. Incompatible ones are

• Polar and nonpolar liquids such as water in combination with organic solvents

like benzene, hexane, or carbon tetrachloride,

• Metallic and nonmetallic liquids such as Hg/H2O, Hg/benzene.

We can qualitatively interpret the demixing (separation) of a mixture like water

and ether having a ratio of 1:1 (xH2O ¼ 0:5) as follows (Fig. 13.3): A tiny arbitrary

accumulation of H2O molecules at some location in the mixture lowers the

Fig. 13.3 Demixing of a mixture of ether and water into an upper ether-rich layer with 1 % water

and a water-rich layer below with an ether fraction of 8 %.
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chemical potential μ of the water there because it decreases with an increase of the

mole fraction (compare Fig. 13.1). As a result, additional H2O particles migrate into

this spot from the area around it and it becomes gradually larger and richer in

H2O. This process continues until the surroundings are so depleted of water that the

chemical potential there drops. The final state is a water-poor, lighter layer on top

and a water-rich and heavier layer below.

The compatibility of two components A and B can be influenced by the addition

of a third substance and the corresponding change of the concentrations of the

components. For example, when table salt is added to a homogeneous mixture of

water and acetone, a demixing takes place (Experiment 13.5). The reason for this is

the low compatibility of the components which increases with the salt content of the

water.

13.3 Extra Potential

When we were introduced to the ideal case for the potential μ of a substance in a

homogeneous mixture, we learned about the following behavior:

μ xð Þ ¼ μ
� þ RTlnx for 0 	 x 	 1:

Deviations from this simple mass action equation can be explained by the fact that

the chemical interactions between the particles upon each other are not taken into

account. Corrections must therefore be made in order to describe the behavior

correctly. This is most easily done by the addition of a correction termμ
þ
, a so-called

extra potential. This extra potential is not constant but is dependent upon the mole

fraction x:

μ xð Þ ¼ μ
� þ RTlnxþ μ

þ
xð Þ: ð13:2Þ

Experiment 13.5 Demixing
of an acetone-salt water
solution: Acetone is colored
with a little bit of methyl violet

and the same amount of water

is added. When table salt is

added to the homogeneous

mixture, a demixing takes

place resulting in a deep

violet acetone and a pale

violet water layer.
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Substances such as light water and heavy water or dilute gases that are dissolved in

each other follow the ideal curve, so the extra potential μ
þ
disappears. This means

that μ
þ

xð Þ � 0. Otherwise, the extra potential would be either positive or negative.

For a strongly diluted substance, the change of μ
þ

with the mole fraction x is

negligible compared to the strongly changing term RT � ln x, which in the limit

tends toward �1 (compare Fig. 13.1). It is therefore possible to replace μ
þ
by the

constant limiting value μ
þ

=0 for “infinite” dilution meaning vanishingly low concen-

tration (for better distinction we use a “slashed zero” as index):

μ xð Þ ¼ μ
� þ μ

þ
=0|fflfflffl{zfflfflffl}

μ
○

þ RTlnx for small x: ð13:3Þ

As we have seen in the previous section, when substances are indifferent to each

other, both reference potentials are identical, μ
○ ¼ μ

�
. The extra potential vanishes in

the entire range, μ
þ

xð Þ � 0, and so do all properties related to it.

In Chap. 9, which dealt with cross relations, we learned that the volume and

entropy demands of a substance in a mixture can be derived from the pressure

coefficient β and the temperature coefficient α of chemical potential, meaning the

derivatives of μ with respect to p and T at constant composition:

β ¼ ∂μ
∂ p

� �
T,n

¼ Vm and α ¼ ∂μ
∂T

� �
p,n

¼ �Sm:

Here, Vm and Sm are the molar volume and molar entropy, respectively. If we use

the equation for the chemical potential above, μ xð Þ ¼ μ
� þRTlnxþ μ

þ
xð Þ, as our

starting point and abbreviate the derivatives of the terms μ
�
, and μ

þ
correspondingly,

we obtain

Vm ¼ V
�
m þ V

þ
m ð13:4Þ

and, respectively,

Sm ¼ S
�
m � Rlnxþ S

þ
m: ð13:5Þ

In the case of volume, the term RT � ln x drops out because it is not dependent upon
pressure. We call V

þ
m xð Þ “molar extra volume” and S

þ
m xð Þ “molar extra entropy.”

The extra quantities disappear in homogeneous mixtures of indifferent substances.

While the volume demand Vm is independent of composition in this special case,

this is not true for the entropy demand Sm which increases continually with falling

mole fraction x. It tends toward +1 for x! 0, but “extremely slowly.”
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13.4 Chemical Potential of Homogeneous and

Heterogeneous Mixtures

Potential of Homogeneous Mixtures A process of mixing can be described as a

“reaction” between two substances. When one-third ethanol and two-thirds water

are mixed, the result is the mixed phase schnaps. This phase can be further put to

use to produce a grog, for example (Experiment 13.6).

In order to describe these kinds of processes in the usual way, it is practical to

assign an amount of substance and a chemical potential to a portion of a homoge-

neous mixture, too. The sum of the amounts nA, nB, nC, . . . of the pure substances A,
B, C, . . . that make up the homogeneous mixture M equals the amount of substance

nM of the mixture:

nM ¼ nA þ nB þ nC þ . . . : ð13:6Þ

The weighted average of the chemical potentials of the components—weighted

with the mole fractions xA, xB, xC . . .—is the chemical potential of the mixture, μM:

μM ¼ xAμA þ xBμB þ xCμC þ . . . : ð13:7Þ

μM is often called the average chemical potential (to keep in mind the averaging). It

agrees nicely with the definition of chemical potential we learned earlier. We have

seen that μi is the energy dW!ni (abbreviated dWi) necessary for creating the

substance i (no matter if the substance is pure or mixed with others; however, it

is essential to avoid or subtract all energy contributions expended for any other

purpose), per amount of substance ni:

μi ¼
dW!ni

dni
¼ dWi

dni
:

The energy dW!nM (abbreviated dWM) necessary for producing a homogeneous

mixture M is simply the sum of the energies of formation of its components,

Experiment 13.6 Mixing
of a grog: Two or three

sugar cubes are put in a

glass. Subsequently, we fill

the glass halfway with

boiling water, add the rum,

and stir. A new mixed

phase, the grog, has been

produced from the two

original mixed phases, the

aqueous sugar solution and

the rum.
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dWM ¼ μAdnA þ μBdnB þ μCdnC þ . . . ,

¼ μAxAdnM þ μBxBdnM þ μCxCdnM þ . . . :

Dividing this expression by the amount of the mixture nM results in a quantity that

we appropriately call the chemical potential of M:

μM ¼
dWM

dnM
¼ xAμA þ xBμB þ xCμC þ . . . :

How does the (average) chemical potential change with the composition of the

mixed phase? Let us consider the simple case of a so-called binary mixture of two

pure components A and B that are indifferent to each other. The chemical potential

of component A in the mixed phase is

μA ¼ μ�A þ RTlnxA:

The relationship for component B can be formulated correspondingly. The chem-

ical potential for the mixed phase is then

μM ¼ xAμA þ xBμB ¼ xAμ
�
A þ xBμ

�
B þ RT xA � lnxA þ xB � lnxBð Þ ð13:8Þ

¼ μ�B � μ�A
� � � xB þ μ�A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

straight line

þRT 1� xBð Þ � ln 1� xBð Þ þ xB � lnxBð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
“drooping belly”

: ð13:9Þ

We replaced xA by 1� xB in the second step. Figure 13.4 illustrates the curve of μM
(shaped as a “drooping belly”) as a function of xB. At xB¼ 0 as well as xB¼ 1, the

curve has vertical tangents, a fact that is not easy to recognize in the figure but that

has important consequences which we will discuss later.

Fig. 13.4 The (average)

chemical potential as a

function of the composition

of a homogeneous mixture

of two indifferent

substances A and B.
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Potential of Heterogeneous Mixtures A portion of a heterogeneous mixtureM of

several immiscible components A, B, C, . . . can also be assigned an amount of

substance n and an (average) chemical potential μ according to the same pattern

used for homogeneous mixtures:

nM ¼ nA þ nB þ nC þ . . . ð13:10Þ

and

μM ¼ xAμA þ xBμB þ xCμC þ . . . : ð13:11Þ

There is, however, a fundamental difference: While in the case of homogeneous

mixtures, the chemical potentials of the components are different in their mixed

and unmixed state, μA, μB, μC . . . always have the same values in heterogeneous

mixtures whether A, B, C, . . . are present in their mixed or unmixed states.

In order to differentiate the chemical potential of a heterogeneous mixture

from the chemical potential of a homogeneous mixture, we will label it with the

index M.

The following is then valid for a heterogeneous mixture of two pure components

A and B:

μM ¼ xAμ
�
A þ xBμ

�
B: ð13:12Þ

Because xA þ xB ¼ 1, we obtain

μM ¼ 1� xBð Þμ�A þ xBμ
�
B ¼ μ�B � μ�A

� � � xB þ μ�A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
straight line

: ð13:13Þ

If the potential μM of a heterogeneous mixture is plotted as a function of the mole

fraction xB, a straight line with the slope μ�B � μ�A
� �

and the y-intercept μ�A, which
runs through points (0; μ�A) and (1; μ�B), appears in place of the “drooping” curve

(Fig. 13.5).

“Lever Rule” An important fact to remember here is that the components them-

selves do not need to be pure substances but can be homogeneous mixtures of two

(or more) components A and B. Let us assume that the entire system (homogeneous

or heterogeneous mixture) characterized by ~, with a mole fraction x~

B of B, is

composed of two homogeneous mixtures M0 and M00 of which one (x0B) is poorer in
B and the other (x00B) is richer. If the system as a whole is made up of an amount of

substance n
~
, the balance for component B according to the general formula

nB ¼ xB � n, applied to each mixed phase, yields:

x0Bn0 þ x00Bn
00 ¼ x

~

B n
~
:
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Because of n0 þ n00 ¼ n
~
, the following is valid:

x0Bn0 þ x00Bn
00 ¼ x

~

B � n0 þ n00ð Þ and rearranged x0B � x
~

B

� � � n0 ¼ x
~

B � x00B
� � � n00:

Thus, the ratio of amounts of substance of the initial mixtures is

n0

n00
¼ x00B � x

~

B

x~

B � x0B
: ð13:14Þ

This is the so-called “lever rule” (of the amounts of different phases). The name is

borrowed from mechanics. The form

n0 � x
~

B � x0B
� � ¼ n00 � x00B � x

~

B

� �
“load� load arm¼ force� force arm”

brings a lever to mind that is supported at x
~

B and upon whose ends the two phases

hang like two “weights” n0 and n00. In this case, too, we see that the shorter the lever
arm is that is oriented toward its corresponding phase, the greater the “weight”

needs to be. In this case, the weight is the amount of substance.

In closing, let us take a look at the graphic representation of the potential of

a heterogeneous mixture ~ of two homogeneous mixtures 0 and 00 (Fig. 13.6). The
total potential is again defined by linear variation of the starting values. In this case,

it lies upon the line connecting the two points (x0B, μ0) and (x00B, μ
00).

Volume Demand and Entropy Demand The temperature coefficient αM and the

pressure coefficient βM of chemical potential μM of a homogeneous mixture M are

obtained by taking the derivative μM with respect to T or p. Based on the approach

for a mixture of substances A, B, C, . . .

Fig. 13.5 The (average)

chemical potential as a

function of the composition

of a heterogeneous mixture

(solid line) (For
comparison, the dotted

curve for a homogeneous

mixture is also included in

the graphic.).
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μM ¼ xAμA þ xBμB þ . . . with μA ¼ μ�A þ RTlnxA þ μ
þ

A, . . . ;

this results in the desired equations for αM and βM. We forgo writing down these

equations and select instead a more well-known version by replacing α with molar

entropy Sm (but pay attention to the different algebraic sign), α¼�Sm, and β with

molar volume Vm, β¼Vm:

SM ¼ xASA þ xBSB þ . . . with SA ¼ S
�
A � Rlnxþ S

þ
A, . . . ;

VM ¼ xAVA þ xBVB þ . . . with VA ¼ V
�
A þ V

þ
A , . . . ;

where SA is the molar entropy of a substance A, SB that of a substance B, . . . . The
same applies to the molar volume.

The ellipses (three points) at the end of the last two lines signify the

corresponding expressions for the substances B, C, . . ., etc., which only differ by

the index from the previous one.

13.5 Mixing Processes

Indifferent Substances The chemical potential of homogeneous mixtures can be

applied so that reactions between mixed phases can be treated exactly like reactions

between pure substances. As an example the chemical drive Amix for the mixing

process of two substances that are indifferent to each other should be determined.

Because the conversion numbers vA and vB coincide with the mole fractions xA and

xB, the conversion formula simplifies to

Fig. 13.6 Applying the

“lever rule” to a

heterogeneous mixture.
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xAAþ xBB! AxABxB :

As usual, the chemical drive corresponds to the potential drop from reactants

to products. When we calculate the potential μM of the homogeneous mixture

M ¼ AxABxB in the manner discussed in the last section [see Eq. (13.7)],

Amix ¼ xAμ
�
A þ xBμ

�
B � μM

¼ xAμ
�
A þ xBμ

�
B � xAμ

�
A þ xBμ

�
B þ RT xA � lnxA þ xB � lnxBð Þ� �

we obtain:

Amix ¼ �RT xA � lnxA þ xB � lnxBð Þ:

Figure 13.7 shows the “chemical drive of mixing” Amix as a function of the

composition of the mixture. Notice that the drive for any arbitrary composition is

invariably positive because the mole fractions xA and xB are always smaller than 1 so

that the two logarithms are always negative (ln x< 0 for x< 1). This means that two

substances that are indifferent to each other mix spontaneously in any proportion.

Side Effects in the Ideal Case Changes of volume and entropy in mixing pro-

cesses work just like those of chemical processes discussed in Chap. 8. Let us again

consider a homogeneous mixture of two indifferent substances A and B. Because

the extra quantities, in this case V
þ

m xð Þ and S
þ

m xð Þ, disappear, the molar volume of

mixing ΔmixV and the molar entropy of mixing ΔmixS turn out to be

ΔmixV ¼ 0 ð13:15Þ

Fig. 13.7 Chemical drive

of mixing Amix as a function

of the composition of a

homogeneous mixture of

two indifferent substances.
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and

ΔmixS ¼ �R � xA � lnxA þ xB � lnxBð Þ: ð13:16Þ

When substances that are indifferent to each other (such as dilute gases and light

and heavy water) are mixed, the volume does not change. They neither try to absorb

entropy from the surroundings nor emit it and their temperatures remain constant.

This is just as if different parts of one and the same substance were mixed. For this

reason, such mixtures are called “ideal.” In fact, it is ΔmixV¼ 0, but not ΔmixS,
because the term �R xA � lnxA þ xB � lnxBð Þ, which is always positive because of

x< 1, remains in the expression. The total required entropy has become greater so

that the mixture would have to cool down if entropy cannot flow in from outside.

However, this is not the case because energy is released as a result of the substances

going through a potential difference during the mixing process. Exactly as much

entropy is generated as is needed. The energy released by a small conversion dξ and
subsequently dissipated results in dWb ¼ Amix � dξ and therefore the generated

entropy is dSg ¼ dWb=T which is exactly equal to ΔmixS � dξ:

dSg ¼ Amixdξ

T
¼ �RT xA � lnxA þ xB � lnxBð Þ

T
dξ ¼ �R xA � lnxA þ xB � lnxBð Þdξ:

Indifferent behavior occurs on the molecular level when the interactions between

particles (such as in dilute gas mixtures) are nonexistent or when they are of the

same size independently of the type of particles.

Real Mixtures Let us now turn to real mixtures where interactions cannot be

ignored any longer and the extra potential μ
þ

must be taken into account. The

(average) chemical potential of a homogeneous mixture of two components A and

B will be equal to:

μM ¼ xAμA þ xBμB ¼ xAμ
�
A þ xBμ

�
B|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

μ
○
M

þRT xA � lnxA þ xB � lnxBð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
μ
�
M

þ xAμ
þ
A þ xBμ

þ
B|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

μ
þ
M

:

When the chemical potential is plotted as a function of the composition of the

mixture (characterized by the mole fraction xB, Fig. 13.8), the three cases discussed
above can again be distinguished: highly compatible, lowly compatible, and incom-

patible. For clarity, the graphic also includes the relation for indifferent behavior.

The curve corresponding to highly compatible substances droops the most com-

pared to the ideal case, while the curve corresponding to lowly compatible sub-

stances is more compressed. The curve for incompatible substances exhibits a

noticeable “dent” upward.
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Just as in the case of a single substance, the chemical potential μM of a

homogeneous mixture is divided into three contributions: “basic term” μ
○
M xBð Þ,

“mass action term” μ
�

M xBð Þ, and “extra term” μ
þ

M xBð Þ. Figure 13.8 illustrates the

effect of the three contributions. The first term results in a straight connection

between the “pivot points” (0, μ�A) and (1,μ
�
B), and the second one is responsible for

the formation of the “drooping belly” in between (dotted) which begins and ends

with a vertical tangent. At last, the third term deforms the “belly,” but the vertical

tangents at the borders are always preserved no matter how strong this deformation

in upward direction is. The μ
þ

M xBð Þ curve begins and ends in the “pivot points.” The
simplest approach would be a parabolic arc described by an equation such as

μ
þ

M xBð Þ ¼ a � xB 1� xBð Þ:

We have to choose an appropriate coefficient a which itself can be dependent on

temperature. Negative a means high compatibility, positive a low compatibility, or

even incompatibility when a> 2 RT.

Demixing In closing, we will deal in more detail with the behavior of incompatible

substances. To do so, we will take a closer look at the process of demixing (the

reverse process of mixing):

M
~ ! v0M0 þ v00M00:

This means that the initial homogeneous mixture M
~

need not separate into the

starting components A and B, but can also separate into two homogeneous mixtures

M0 and M00, of which one is richer in B than the initial mixture and the other one

poorer. Because of n00 ¼ n
~ � n0, the balance for component B, for example,

results in

Fig. 13.8 (Average)

chemical potentials for

mixtures of two substances

A and B of varying

compatibility, as functions

of concentration.
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x
~

B n
~ ¼ x0Bn0 þ x00Bn00 ¼ x0Bn0 þ x00Bðn~ � n0Þ ¼ x00Bn

~ � x00B � x0B
� �

n0, meaning

n0 ¼ x00B � x
~

B

x00B � x0B
� n~

and finally v0 ¼ n0

n~ ¼
x00B � x

~

B

x00B � x0B
:

v00 can be deduced accordingly or follows more simply from the condition

v0 þ v00 ¼ 1:

v00 ¼ 1� v0 ¼ x
~

B � x0B
x00B � x0B

:

The demixing process occurs spontaneously when its chemical drive A is positive,

i.e., A ¼ μ~ � v0μ0 � v00μ00 > 0 or, put another way, when

μ
~
> v0μ0 þ v00μ00:

Let us now consider the μ(xB) curve for incompatible substances (Fig. 13.9).

Mixture M
~
separates into two homogeneous mixtures M0 and M00 if its chemical

potential μ~
has a higher value than the chemical potential μM of the heterogeneous

mixture, which is made up of M0 with the fraction v0 and M00 with the fraction

v00. The potential μM lies on the gray straight line connecting the points (x0B, μ0)
and (x00B, μ

00) and is therefore noticeably lower than μ~
.

The lever rule is again valid for the ratio of the two coexisting phases:

n0

n00
¼ v0

v00
¼ x00B � x

~

B

x00B � x0B
:
x
~

B � x0B
x00B � x0B

¼ x00B � x
~

B

x
~

B � x0B
:

Miscibility Gap Figure 13.9, however, does not yet represent the final situation.

Further connecting lines that lie beneath the gray one—and therefore meaning

lower potentials μM—are also conceivable. The lowest possible μM value can be

Fig. 13.9 Application of

the “lever rule” to a mixture

of two incompatible

components A and B.
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found by connecting the points of contact 0 and 00 of the common tangents on the

“dented” curve, creating a double tangent (Fig. 13.10). These two points limit the

so-called miscibility gap. For compositions x
~

B which lie in the range of the gap, no

homogeneous mixture is stable. Instead, it spontaneously separates more or less

rapidly into a heterogeneous mixture M of the two homogeneous mixtures M0 and
M00 with the compositions xB

0 and x00B at the left and right border of the

miscibility gap.

If the heterogeneous mixture is liquid, differences in density are responsible for a

further separation which often takes place in the gravitational field. The mixture

with higher density collects at the bottom, the one with lower density at the top.

Such systems of substances which are still connected by shared interfaces and in

which pressure and temperature are still uniform can be regarded as heterogeneous
mixtures in a wider sense because they can be described in the same manner as the

systems which are usually considered as heterogeneous mixtures. When a differ-

entiation should be necessary we will call such unusual heterogeneous mixtures

degenerate.

13.6 More Phase Reactions

In addition to mixing, there are a lot of other processes that can be considered

“reactions” between phases and described using the (average) chemical potential.

An example of this might be the solidification of magma into mica, feldspar, and

quartz.

For every state of an A–B mixture (vapor, melt, and every form of crystal), there

is a corresponding (average) chemical potential μM, just as there is a chemical

potential μB for each state of an individual substance B. The most stable state of a

phase is the one with the lowest chemical potential, be it a pure phase or a mixed

phase. Let us consider as a simple example the behavior of two substances A and B,

which are completely miscible in both their solid and liquid states (indifferent

behavior, Fig. 13.11). In this case, a gap appears as well, meaning there is a two-phase

area. However, this time there is a melt 1 with the composition xlB and a solid phase

Fig. 13.10 Illustration of

the double tangent rule as

well as the appearance of a

miscibility gap.
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s with the composition xsB coexisting with it. Between the points of contact, the

double tangent lies everywhere below the μl(xB) or μs(xB) curves and therefore

exhibits smaller values for the potential μM of the heterogeneous mixtureM which

consists partly of mixed crystals M0 with the composition xsB and partly of a mixed

melt M00 with the composition xlB. The separation of the phases is facilitated by the

positive chemical drive.

Even more complex circumstances can be treated in this manner. Figure 13.12

shows μ(xB) for two substances A and B, which

• As gases, are indifferent as usual,

• As liquids, are lowly compatible (“compressed drooping belly”),

• As solids, are incompatible (“dent upward”).

Fig. 13.11 The (average)

chemical potential μ(xB) as
a function of concentration

for mixtures of two

components that show

indifferent behavior in both

their solid and liquid states.

Fig. 13.12 The (average)

chemical potential μ(xB) as a
function of concentration for

mixtures of two components

that show varying compatibility

in their gaseous, liquid, and

solid states.
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In this case two gaps appear. Because each of the curves shows a vertical tangent

on the left side at xB¼ 0 and on the right side at xB¼ 1, the gap can never exactly

extend so far with the result that there is a narrow sometimes no longer recognizable

region in which A and B are miscible.

Based on this, we can now construct phase diagrams just as we did in the case of

single-component systems (Chap. 11). This will be discussed extensively in the

next chapter.
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Chapter 14

Binary Systems

The average chemical potential of a mixture depends not only upon the composition

but also upon the temperature (and pressure). These dependencies and the fact that

the phase with the lowest chemical potential at a given temperature (or pressure)

will be stable can be used to construct the phase diagrams of different mixtures.

First, we will discuss the temperature–composition diagrams of two liquid phases.

With the help of these diagrams, we can judge under which conditions the two

liquids are mutually miscible and under which they are not; the diagrams are

therefore also called miscibility diagrams. Liquid–solid phase diagrams are used

to identify the regions of temperature and composition at which solids and liquids

exist in a two-component system. Such diagrams are of great commercial and

industrial relevance; they play an important role in metallurgy but also in the

manufacture of ceramics and semiconductors. In the last section, the phase dia-

grams of binary mixtures of two volatile components are discussed. This kind of

diagram is important for understanding distillation, one of the most significant

processes used in chemical laboratories and industry for separating liquid mixtures.

It has been in use since ancient times to extract essential oils such as attar of roses.

An important industrial application is distilling of petroleum in oil refineries that

produce the heavy and light gasoline used to fuel engines.

14.1 Binary Phase Diagrams

In Chap. 11, we were introduced to the phase diagrams of pure substances. They can

be used to find which phase is the most stable under given conditions (such as

temperature or pressure). Analogous to these, phase diagrams for mixtures can be

constructed. In the following, we will confine ourselves to two-component systems,

meaning so-called binary mixtures of two components. In this case, the composi-

tion x of the mixture appears as third variable along with temperature T and pressure

p. Hence, a complete description of the system is only possible using
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three-dimensional phase diagrams. Figure 14.1 shows an example. The curved

surfaces divide the diagram into single-phase and two-phase (dark colored) spatial

regions. It is limited on the left (x¼ 0) and on the right (x¼ 1) by the already

familiar plane phase diagrams of pure components (compare the diagram on the

right with Fig. 11.10). The whole thing looks rather complicated at first, but don’t
worry, one variable is usually left out and either the temperature or pressure is kept

constant, resulting in a phase diagram that is just two-dimensional. It gives us, for

example, the most stable phase as a function of temperature and composition of the

mixture. To this end, the temperature is plotted on one of the axes and the mole

fraction of one of the components on the other. (Because it is a binary system, the

mole fraction of the second component is then known as well.) Such a T(x) diagram
is equivalent to an isobaric cut through the three-dimensional diagram. Examples

would be miscibility diagrams, and melting and boiling temperature diagrams

which we will go into in more detail in the next sections. A p(x) diagram is

analogous to an isothermal cut. Examples of this would be boiling pressure and

sublimation pressure diagrams.

14.2 Liquid–Liquid Phase Diagrams (Miscibility

Diagrams)

Using what we learned from the section on mixing processes in the last chapter, we

will now deal with mixtures of two liquid phases A and B. We saw that

(at particular values of temperature and pressure) the substances can be indifferent,

highly compatible, lowly compatible, or even incompatible with each other. How-

ever, this behavior can change with temperature (at constant pressure). For exam-

ple, there are substances such as phenol and water or hexane and nitrobenzene that

are quite compatible at high temperatures and incompatible at lower temperatures.

Fig. 14.1 Three-dimensional phase diagram.

358 14 Binary Systems

http://dx.doi.org/10.1007/978-3-319-15666-8_11#Fig10


We can now determine μ(x) for every temperature (at a constant pressure, such as

standard pressure of 100 kPa) as we learned to do in the last chapter (Fig. 14.2,

above).

We see that the miscibility gap is greatest at the lowest temperature (T1). Both
the chemical potential and the contribution from the extra potential decrease as the

temperature increases (T2, T3). The miscibility gap becomes increasingly smaller as

the temperature goes up. The difference of the composition xB in the two separate

mixed phases becomes increasingly smaller as well. Finally, at the temperature T4,
there is only one phase left. It is possible to construct a T(x) diagram (Fig. 14.2,

below, a so-called miscibility diagram) from the μ(x) isotherms by plotting the

double tangent’s points of contact for every temperature and connecting them to

form a curve. The horizontal line, which relates a pair of coexisting phases to each

other, is called a tie-line or conode and their end points are called nodes. During
heating, the tie-lines become continuously shorter until the end points finally

coincide at the upper critical solution point. The corresponding temperature is the

Fig. 14.2 Behavior of

(average) chemical

potential μ(xB) in a mixture

of two liquid components

depending upon

temperature (top) and the

corresponding phase

diagram at constant

pressure with an upper

critical solution point

(bottom).
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highest temperature at which a phase separation can take place. Above this upper
critical solution temperature, both substances are completely miscible. The system

phenol/water, for example, shows an upper critical solution temperature of 339 K.

Let us clarify these relations by using Fig. 14.3: For example, if we have a pure

substance A, and small amounts of B are successively added to it at a temperature

T1, the two liquids will completely mix at first. This will be the case until the

miscibility limit is reached at point 0. However, a homogeneous mixture with a

higher B content (e.g., xmB) is impossible to produce. Instead, two separate liquid

mixed phases occur. One of these is a B-poor phase with the composition xB
0 and the

other a B-rich phase with the composition xB
00 . The ratio of amounts of the two

coexisting mixed phases results from the lever rule [analogous to the procedure in

the case of μ(x) curves (Chap. 13)] from which the T(x) diagram was constructed. If

B continues to be added to the mixture, we still have two mixed phases 0 and 00.
However, the amount of B-rich phase increases at the expense of the B-poor one

because the corresponding lever arm shortens. When the phase boundary is crossed

at point 00, the two mixed phases finally merge into one.

On the other hand, if a sample with the mole fraction xmB at temperature T1 is

continuously heated (vertical dotted line), the compositions of the liquid mixed

phases that are in equilibrium with each other change. The B-poor phase becomes

gradually richer in B (while the composition remains below xmB), whereas the B-rich
phase loses some B. The ratio of the amounts of the two mixed phases changes

according to the lever rule. The phase richer in B gradually disappears because as

the temperature rises, the ratio of lever arms shifts in its favor and therefore the ratio

of amounts in its disfavor. When the phase boundary line is finally crossed at

temperature T3, only one mixed phase with the composition xmB is present.

Some systems exhibit a lower critical solution point (Fig. 14.4). At higher

temperatures (and depending upon the composition), two phases can be present.

At lower temperatures, the two substances are totally miscible. An example of this

Fig. 14.3 Applying the

“lever rule” using the

example of a phase diagram

with an upper critical

solution point.
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would be a system of triethylamine and water which has a lower critical solution

temperature of 292 K.

Let us illustrate these relationships by a demonstration experiment using on the

one hand a mixture of phenol (C6H5OH) (the phenol is colored with methyl red for

visibility) and water and on the other hand a mixture of triethylamine ((C2H5)3N)

and water colored with orange G (Experiment 14.1).

Some systems have both an upper and a lower critical solution point (Fig. 14.5).

These kinds of systems are mostly found at higher pressures. It is therefore

plausible to assume that all systems having a lower critical solution point will

also exhibit an upper critical solution point if the temperature and pressure are high

Fig. 14.4 Phase diagram of

a system with a lower

critical solution point.

Experiment 14.1 Demonstration of the
presence of a miscibility gap with the help of
the systems phenol/water and triethylamine/
water:When heated, a heterogeneous mixture

of phenol and water will become a

homogeneous solution when the upper

critical solution temperature (approx. 339 K)

is exceeded. However, even at higher

temperatures, a heterogeneous mixture of

triethylamine and water remains separated,

but when cooled with ice to below the lower

critical solution temperature (approx. 292 K),

it will become a homogeneous solution. The

phenol–water mixture, however, continues to

consist of two phases after cooling.
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enough. A well-known example is the system nicotine/water which exhibits a

closed miscibility gap with the critical temperatures 334 and 483 K.

14.3 Solid–Liquid Phase Diagrams (Melting Point

Diagrams)

Solid Solution Systems We will now take a look at phase diagrams containing

both solid and liquid phases. They are also called melting temperature diagrams or
melting point diagrams that, for example, play a big role in metallurgy. Especially

simple melting point diagrams represent systems whose components A and B are

infinitely soluble with each other both in the melted (1) as well as the solid states (s),

meaning that they form mixed crystals. For constructing these diagrams, the μ(x)
curves of the liquid and solid mixed phases must be considered as functions of

temperature (Fig. 14.6).

Fig. 14.6 Behavior of (average) chemical potential μ(xB) for mixtures of two components that are

indifferent both in their solid and liquid states for various temperatures (T1> T2> T3> T4> T5).

Fig. 14.5 Phase diagram of

a system with an upper and

a lower critical solution

point.
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At very high temperatures (T1), μl has for any arbitrary composition a smaller

value than μs, which means the melting process mixed phasejs!mixed phasejl
always proceeds spontaneously. For this reason, the system is liquid independent of

the composition. When the system is cooled, it will eventually reach the point (T2)
where the two μ(x) curves touch for the first time. This means that they exhibit the

same value (μl¼ μs). In our example, this is at xB¼ 0 and therefore at the melting

point of the pure substance A. At the melting temperature of A, a solid phase

(in equilibrium with a liquid phase) is present only at a mole fraction of xB¼ 0,

while the phases with all other compositions are still completely liquid. When the

temperature is further reduced (e.g., to T3), separate regions of composition appear

in which either the solid phase s or the melted phase 1 exhibits the smaller chemical

potential. Between these regions, the smallest chemical potential is obtained

through a heterogeneous mixture of melt and solid phases (l + s) as we have seen

in the last section of the previous chapter. The compositions that are determined by

the double tangent on the μl and μs curves define the solidus and liquidus points at a
given temperature. Further cooling causes the tangent’s points of contact to move.

This means that the range of the two-phase region shifts. When the melting

temperature of substance B (which melts at a lower temperature) is finally reached,

the chemical potential of the solid phase is smaller than that of the liquid phase for

all compositions except for xB¼ 1. On the other hand, at xB¼ 1 the chemical

potentials are equal so that melt is still present. The solid state is present at any

and all compositions below this temperature (e.g., at T5).
It is possible to construct a phase diagram by applying these considerations

consistently for as many temperatures as possible (Fig. 14.7). The result is a

spindle-shaped two-phase region. The upper curve shows the composition of melt

(liquidus curve or freezing curve, at which freezing begins as the mixture is cooled

down) and the lower one shows that of the solid phase (solidus curve or melting

curve, at which melting begins as the mixture is heated). Above the liquidus curve is

only melt and beneath the solidus curve is only the solid phase. Between the two

Fig. 14.7 Melting point

diagram of a system of two

substances showing

indifferent behavior in both

the liquid and solid states

(constructed using

Fig. 14.6).
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curves a separation into melt and mixed crystals of the compositions given by the

intersection points of the tie-line with the liquidus and the solidus curve takes place.

To illustrate this we will take a look at the solidification process of a homoge-

neous melt with the composition xmB, starting at a temperature T1 (Fig. 14.8, vertical
dotted line). When the liquidus curve is reached, a rather B-poor mixed crystal

begins to separate in miniscule amounts. Its composition results from the intersec-

tion point of the tie-line with the solidus curve. However, the melt exhibits a

composition that is (almost) the same as the initial one. With a lowering of

temperature, the melt becomes gradually richer in the component B (which melts

at a lower temperature) because we are moving downward on the liquidus curve. If

the melt remains in equilibrium with the mixed crystals, their B content increases

again along with progressive crystallization. For example, a melt at temperature T3
with the composition xlB can coexist with a mixed crystal having the composition

xsB. The ratio of the amounts of the two phases can be found with the help of the now

familiar lever rule. As mentioned before, the downward movement on the solidus

curve means that the composition of the already crystallized fraction must change

continuously during cooling (which is conceptualized as an equilibrium process). In

reality, such changes of composition are not that simple since the diffusion of atoms

in solids takes a very long time (see Sect. 20.2). If we cool the substance further

very slowly, we finally reach the solidus curve. The intersection point of the tie-line

with the liquidus curve shows the composition of the last tiny drop of melt. Below

the solidus curve, the entire melt has solidified. All that is left is a mixed crystal

having the same composition xmB as the original melt.

Melting point diagrams with complete miscibility only appear when the form

and size of the particles allow them to be inserted into a common lattice. Examples

of this are copper/nickel as well as the minerals fayalite (Fe2SiO4)/forsterite

(Mg2SiO4).

More Complicated Melting Point Diagrams More complicated phase diagrams

can be developed by considering the μ(x) curves of the participating components.

Fig. 14.8 Applying the

“lever rule” in a melting

point diagram for a system

containing two substances

that are indifferent in liquid

and solid states.
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While components A and B in their liquid states are mostly infinitely soluble with

each other, they may be indifferent in their solid states, as just discussed, but also

highly compatible, lowly compatible, or even incompatible or completely incom-

patible. We will take a short look at the corresponding melting point diagrams

(Fig. 14.9).

α and β mean different mixed crystals. For example, in the case of Au/Cu, this

would be a gold-rich and a copper-rich mixed crystal.

Although this may look somewhat complicated at first, a phase diagram can be

compared to a map. It is difficult and time-consuming to create a map by topo-

graphical survey, but it is easy to use it when that has already been done and when

some rules and conventions are known. It is just as difficult to calculate a phase

diagram and very time-consuming to measure it. However, once it is known it can

be used like a map assuming one observes also in this case some rules and

conventions which we have already learned about to some extent. We will illustrate

this using the melting point diagram for two components that are incompatible in

their solid states (Fig. 14.10).

There are three two-phase regions (αþ l, βþ l, αþ β ) along with the single-

phase melt (l) and the mixed crystals (α, β).

Eutectic Mixture What happens when we cool a melt having a composition xmB ?
When the temperature is lowered and the boundary of the two-phase region solid/

liquid is reached, a very B-rich mixed crystal β begins to separate from the melt.

Further cooling causes more and more solid substance to crystallize whereby the

ratio of melt to mixed crystal is determined by the lever rule. In the process, the melt

is constantly depleted of B because almost pure B (mixed only with a bit of A)

precipitates. When the system reaches the temperature Te and thereby the horizontal
line, the residual melt with the composition xeB solidifies. The μ(x) curves

(Fig. 14.11) are applied again here for the purposes of illustration.

At temperature Te, the tangent touches the μ(xB) curves at three points (once the
μl curve and twice the μs curve). This means that the melt is in equilibrium with the

Fig. 14.9 Melting point diagrams for systems containing components having indifferent behavior

in the liquid state and varying behaviors in the solid state.
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mixed crystal α and the mixed crystal β. At this point, a tangent can be plotted for

the last time on the μl curve because at lower temperatures, the chemical potential

of the melt is always greater than that of the solid state so the curve increasingly

retracts upwards. Te is therefore the lowest temperature at which the melt can exist.

This temperature is known as eutectic temperature; the term “eutectic” (abbreviated

e) comes from the Greek eutektos, meaning “easily melted.”

Let us now return to the phase diagram. Beneath the eutectic temperature Te lies
a two-phase system of a very A-rich mixed crystal α and a very B-rich mixed crystal

β. Further cooling alters the composition of the mixed crystals. The αmixed crystal

Fig. 14.10 Melting point

diagram for a system of two

components that show

incompatible behavior in

their solid states as well as

application of the “lever

rule”.

Fig. 14.11 Behavior of

(average) chemical

potential μ(xB) for a system
of two substances that are

indifferent in their liquid

states and incompatible in

their solid states, at

temperature Te.
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becomes continuously richer in A and the β mixed crystal becomes continuously

richer in B. However, these changes in composition require an extremely long time.

Now what happens if a melt with a eutectic composition of xeB is cooled? A liquid

with this composition will solidify as a whole at a single definite temperature (like a

pure substance). This means that none of the components have separated out before.

A heterogeneous mixture has been formed of simultaneously precipitated α and β
mixed crystals that also exhibits a total composition of xeB (for simplicity, the lever

rule is not drawn here). In contrast to all the others, the eutectic mixture does not

need to be cooled slowly in order to have conditions for equilibrium and one obtains

a uniform and very fine-grained structure (microcrystals).

We will look at an experiment showing what happens when we cool down

different mixtures of liquid naphthalene (C10H8) and diphenyl (phenylbenzene,

C12H10) (Experiment 14.2).

In their solid states, naphthalene and diphenyl are completely incompatible. This

means that they crystallize when cooled into an (almost) pure state (diagram on the

far right in Fig. 14.9). (The infinite gradient of the tangent showing the impossibility

of the existence of a pure substance has been mentioned in the last chapter.) Finally,

only the melts with nearly eutectic compositions, namely xNaphthalene ¼ 0:45, are

liquid.

Thermal Analysis Thermal analysis has proven to be especially suited to inves-

tigating phase diagrams. Samples of varying compositions have been melted and

then cooled down again for this. During cooling, a thermocouple measures the

mixture’s temperature as a function of time and a cooling curve is recorded

(Experiment 14.3).

Supplementary micrographs and structural investigations are often used as well.

Experiment 14.2 Melting point diagram of naphthalene and diphenyl: The test tubes with the

nine different mixtures are put in a boiling water bath in order to melt the mixtures. Subsequently,

the mixtures are allowed to cool down in front of a black background. Starting with the test tubes

on the ends the transparent melts begin to congeal and they become gradually white and more

opaque. After a while, only the melts at the center are liquid. In the end, just about everything has

solidified.
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Figure 14.12 shows (idealized) cooling curves for various liquid mixtures of the

two components A and B (which are completely incompatible in their solid states)

as well as the schematic of the corresponding micrographs. These curves were used

to construct the melting point diagram.

The pure substances (curves for xB¼ 0 and xB¼ 1) yield arrest points at the

crystallization temperature Tsl because during the process of isothermal solidifica-

tion, the cooling is “arrested” by the entropy emitted by crystallization. Only when

the entire melt has solidified, does the temperature begin to drop again.

Fig. 14.12 (a) Cooling curves for a system of two substances A and B, which are completely

incompatible in their solid states, (b) Melting point diagram constructed from the cooling curves,

(c) Corresponding micrographs.

Experiment 14.3 Cooling
curve of a mixed melt (using the
example of a lead–tin alloy):
The lead–tin alloy (40 wt% Sn;

so-called soft solder) in the test

tube is slowly melted over a

Bunsen burner. Subsequently,

the sample is allowed to cool

down. Using a thermocouple,

the temporal change of

temperature is recorded by

a plotter or a computer.
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Let us now consider the process for a mixture with the mole fraction of xB¼ 0.2.

At first, this liquid system cools evenly until it reaches a temperature at which solid

A begins to precipitate. During the continuous crystallization of A, meaning the

phase transition liquid! solid, entropy is emitted steadily; therefore, the cooling of

the system slows down considerably. Accordingly, an inflection point appears on
the cooling curve where the phase field with solid A and the remaining melt is

entered. When the system finally reaches the eutectic temperature Te, A and B

crystallize simultaneously. The rest of the sample solidifies without its composition

changing. This is shown by an arrest point on the cooling curve comparable to what

we have seen with pure substances. Initially, substance A crystallizes continuously

during the cooling process and new substance grows on crystals already present,

producing large primary A crystals. When the eutectic temperature is attained, the

entire amount of B (as well as the remaining A) must freeze at once, thereby

creating a great number of seed crystals. The micrograph of the solid mixture

shows large A crystals imbedded in extremely fine-grained B and A crystals.

If the melt has eutectic composition from the start (in our example, xB¼ 0.6), it

will continuously cool until it reaches the eutectic freezing temperature. When the

mixture’s temperature falls below this temperature, a simultaneous precipitation of

A and B takes place until the entire sample has solidified. Correspondingly, the

temperature remains constant over a longer period of time compared to other

mixtures. A micrograph shows a heterogeneous mixture of A and B microcrystals

of approximately the same size.

If there are enough cooling curves of mixtures with different compositions

available, it is possible to construct the corresponding phase diagram.

14.4 Liquid–Gaseous Phase Diagrams (Vapor Pressure

and Boiling Temperature Diagrams)

Finally, we will deal with phase diagrams for mixtures of two volatile liquids where

we will initially assume an indifferent behavior.

Vapor Pressure Diagrams At a certain temperature, and in equilibrium, a satu-

ration vapor pressure of p�lg,A Tð Þ develops over an easily evaporating liquid A

(compare Sect. 12.5). (The symbol • indicates again that the quantity refers to a pure
phase.) In order to avoid an unattractive piling up of indices, we will use p�A in the

following. If an easily evaporating substance B is dissolved in A (Fig. 14.13), the

chemical potential of A decreases as a result of dilution.

In Sect. 12.5, we were introduced to a similar situation that leads to lowering of

vapor pressure over solutions. However, foreign substance B had low volatility so

that the vapor phase was made up of only A (at least approximatively). In the case

of two volatile components, reestablishment of equilibrium is caused by lowering

of the partial pressure of A to pA in the mixed vapor (above the liquid mixed phase):
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pA ¼ x lA � p�A: ð14:1Þ

The same is also valid for the second volatile component, the substance B:

pB ¼ x lB � p�B: ð14:2Þ

Here is a somewhat different formulation of Raoult’s law: The partial pressure of

every component i in a mixed vapor equals the product of the vapor pressure of the

pure component and its mole fraction xli in the liquid mixed phase. Ideal mixtures

are subject to Raoult’s law independent of chemical composition. Conversely, this

law also represents a further experimental criterion for the indifferent behavior of

the two components relative to each other.

If we assume ideal behavior in the gas phase as well, then according to Dalton’s
law, the total vapor pressure above the mixture is the sum of the partial pressures:

p ¼ pA þ pB: ð14:3Þ

The partial pressures

pA ¼ 1� x lB
� � � p�A ¼ p�A � p�A � x lB ð14:4Þ

and

pB ¼ p�B � x lB ð14:5Þ

as well as the total pressure

p ¼ pA þ pB ¼ p�A � p�A � x lB þ p�B � x lB ¼ p�A þ p�B � p�A
� � � x lB ð14:6Þ

change linearly with the changing composition of the liquid mixture characterized

by the mole fraction xlB (Fig. 14.14).

Fig. 14.13 Forming mixed

vapor in equilibrium over a

mixture of two indifferent

liquid components A and B.
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The compositions of a liquid mixed phase and its corresponding mixed vapor

need not be identical. In fact, we can expect the fraction of the more volatile

component in the vapor to be higher. According to Dalton’s law, the following is

valid for the mole fraction xgB of component B in the vapor phase:

xgB ¼
pB
p
: ð14:7Þ

Inserting Eq. (14.2) then yields

x gB ¼
p�B
p
x lB: ð14:8Þ

If B in its pure state has a higher vapor pressure than A, then the following is valid:

p�B= p > 1 (compare Fig. 14.14) and therefore xgB > x lB. In fact, the vapor is

enriched with the more volatile component B.

If the vapor pressure (as a function of the vapor composition) is inserted into a

p(x) diagram (vapor pressure diagram or boiling pressure diagram) along with the

linear vapor pressure curve (function of the liquid’s composition) (Fig. 14.15), the

corresponding curve will always lie below the straight line. This is called the dew
point curve, while the straight line is called the boiling point curve. Below the dew

point curve, there is only the gas phase, and above the boiling point curve, there is

only the liquid phase. Both curves delineate a two-phase region in which both vapor

and liquid mixed phases are in equilibrium.

Tie-lines can again be used to determine the chemical compositions of

coexisting phases. This can be done analogously to the approach used in T(x)
diagrams discussed earlier, but here the temperature is kept constant while the

pressure is varied (Fig. 14.16). The lever rule can also be applied here to determine

the ratio of amounts. For example, if we have a liquid mixture with the composition

xmB at pressure p1, and slowly lower the pressure while keeping the temperature

constant, it will begin to vaporize when it reaches the two-phase region at pressure

Fig. 14.14 Total pressure

(solid line) and partial

pressures (dotted lines)
above a mixture of two

indifferent components A

and B at constant

temperature.
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p2. As we have already seen, the more volatile component is enriched in the vapor

phase. As the pressure is lowered even more and the vaporizing continues, the

liquid phase becomes increasingly depleted of this component. Finally, below

pressure p3, there is only vapor of the same composition as the initial liquid phase.

Boiling Temperature Diagrams Vaporization takes place much more often at

constant pressure than at constant temperature. If we continue to assume the sub-

stances A and B to be indifferent to each other in the liquid as well as the gaseous

phase, the corresponding T(x) diagram (boiling temperature diagram or often also

boiling point diagram) can be constructed analogously to the respective melting

point diagram (Fig. 14.17). The boiling point curve in this case is nothing more than

a plotting of the liquid mixture’s boiling temperature (at constant pressure such as

standard pressure) versus the mole fraction of one of the components. It delineates

the homogeneous liquid phase’s region of existence toward higher temperatures.

The composition of the vapor phase, which is in equilibrium with the corresponding

Fig. 14.16 Applying the

“lever rule” in a vapor

pressure diagram.

Fig. 14.15 Vapor pressure

diagram of a system of two

largely indifferent

components A and B

(at constant temperature).
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liquid mixture at the respective boiling point, is indicated by the dew point curve.
Above the dew point curve lies a homogeneous gas phase and between the two

curves is the two-phase region. Usually, when there are two volatile liquids A

and B, the one with the lower vapor pressure has the higher boiling temperature.

Therefore, in the boiling point diagram the regions representing different states are

exchanged compared to the ones in the vapor pressure diagram.

Distillation The differing compositions of the liquid mixed phase and its

coexisting mixed vapor in the two-phase phase region can be utilized in separating

the substances by means of distillation. First, though, we will take a look at the

boiling process of a system of the (largely) indifferent components water and

methanol (Fig. 14.18). When a mixture of composition xl1 is heated at constant

pressure until it boils, the vapor rising from it at boiling temperature T1 will have the

composition xg1. As a consequence, the methanol which has higher volatility (lower

boiling temperature) becomes enriched in the vapor phase. Further heating causes a

Fig. 14.18 Schematic

boiling point diagram of the

system water/methanol to

show simple distillation.

Fig. 14.17 Boiling point

diagram of a system with

indifferent components

(at constant pressure).
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depletion of the methanol in the liquid which leads to a rise in boiling temperature:

a slow raising of temperature changes it in the direction of T2. At the same time, the

methanol content in the vapor phase decreases and its composition shifts along the

dew point curve in the same direction the liquid phase moves along the boiling

point curve. Finally, at temperature T2, the last drop of the (almost) completely

vaporized liquid has the composition xl2, while the composition of the vapor phase is

now the same as that of the initial mixture of the liquid.

Because of the enormous increase of volume during vaporization by a factor of

about a thousand, this procedure is not practicable. The so-called simple distillation
in which the liquid mixture is brought to a boil in a flask, the vapor condensed in a

cooler, and the resulting condensate (distillate) collected in a receiver is the most

common separation process in this context. Because methanol with its lower boiling

temperature escapes preferably, the water with lower volatility is enriched in the

flask. Therefore, the boiling temperature rises more and more—even over and

above temperature T2. When the distillation process is stopped near the boiling

temperature T3 of the component which has the higher boiling temperature, a

mixture with composition xl3 (water with little methanol) remains in the flask. The

distillate in the receiver contains the more volatile component methanol with a

reduced fraction of water in contrast to xl1 (but higher compared to xg1).
The changes of the distillate in composition become more obvious when sepa-

rate portions (fractions) of it are collected in interchangeable receivers ( fractional

distillation). The first fraction has, in fact, the composition xg1 and is strongly

enriched with methanol. The next fractions are increasingly poorer in methanol

and therefore richer in water than the first one. The separation effect of fractional

distillation can be improved by redistilling the individual fractions. In the process,

the composition of the distillate moves along the dew point curve in the direction of

pure methanol. After numerous repetitions, both components are just about pure.

The disadvantage of this method is the low yield determined by the lever rule,

which means that the distillation steps must be taken very often with continuously

renewed initial mixture.

The tedious separate steps of vaporization and condensation are therefore com-

bined in practice by the process of countercurrent distillation (rectification). In a

distillation column, the ascending hotter vapor is flowing past the cooler reflux, i.e.,
a part of the condensate that is flowing back (Fig. 14.19). The close contact between

the reverse flows favors a fast entropy and energy exchange. Temperature and

composition are therefore close to the particular equilibrium (which depends upon

the height in the column) but never reach it.

Let us take a closer look at this process using the water/methanol system as an

example (Fig. 14.20). For describing the process, one imagines that the column is

separated into (hypothetical) zones in which the equilibrium between liquid and

vapor should have been established (plate or tray). When the initial liquid mixture

with a mole fraction x0 of methanol is heated in the flask, it begins to boil at

temperature T0. A part of the vapor condenses at the first plate, whereas the

remaining vapor rises further to the next plate. At the same time, cooler condensate
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from the plate above flows into this plate and warmer excess condensate leaves it. A

liquid with temperature T1 and composition x1> x0 accumulates on the plate. It fills

the plate until it flows over. In dynamic equilibrium, inflow and outflow of each

component have to compensate each other on each plate.

Fig. 14.20 Illustration of

the process of rectification

using the example of a

mixture of water and

methanol with an initial

composition x0.

Fig. 14.19 Sketch of a

distillation column for use

in laboratories.
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Each plate can be seen as an isolated distillation unit. The assumption that liquid

and vapor are in equilibrium on each plate requires that the corresponding parts of

the step curve appear in Fig. 14.20 as tie-lines and therefore horizontal lines. The

vertical parts of the curve in between imply that the exchange of substances

between the plates takes place at constant composition. In the process, the

portion of the more volatile component in the liquid and correspondingly in

the vapor, xi ¼ x li and xgi , increases from one plate to the next higher one,

x0 ! x1 ! x2 ! . . . . At the same time, the temperature in the column falls,

T0 ! T1 ! T2 ! . . ., thereby approaching that of pure methanol. A “step” in

the boiling point diagram (a combination of a horizontal and a vertical line) is

called a theoretical plate. The number of theoretical plates (our example shows

three) indicates the efficiency of the distillation column, even if it contains a

packing material (such as small glass helices) instead of true plates.

When there are enough plates and the separation efficiency of the column is

therefore sufficient, the component boiling at lower temperature will be just about

pure in the distillate. Instead of separate plates, columns in laboratories are mostly

packed with a material which has a large surface, such as rings, helices, or small

spheres made of glass, for example. Successive vaporization and condensation

steps take place on these surfaces at increasing heights in the column. The number

of theoretical plates for separating a homogeneous mixture of a given pair of

substances can be determined by inserting the possible “equilibrium steps” between

the initial composition and the composition of the distillate in the boiling point

diagram. However, in practice one has to assume a slightly higher number of plates.

Distillation is one of the most important processes used in chemical laboratories

for separating liquid mixtures. It has been in use since ancient times to extract

essential oils such as attar of roses. An important industrial application is distilling

of petroleum in oil refineries that produce the heavy and light gasoline used to fuel

engines.

Azeotropes What we have discussed so far in this section is only valid for

mixtures of components that behave indifferently toward each other in both their

liquid and vapor states. However, the liquid state often exhibits differing behavior.

If the two components are highly compatible, the stronger interaction of the

particles in the liquid mixture relative to the pure state hinders the transition to

the vapor phase. The partial pressures of the components are smaller than in the

case of indifferent behavior and the vapor pressure curves show a negative devia-

tion from Raoult’s law. Compared to the behavior of indifferent substances, the

curves appear more or less distorted. As long as the disturbance is small, the

behavior can be described in a similar manner as before.

A strong disturbance results in a vapor pressure minimum for the total pressure

in the vapor phase and therefore in the vapor pressure curve (or boiling point curve)

(Fig. 14.21a).

The dew point curve must again lie below the boiling point curve—exactly as it

does with indifferent behavior. The two curves touch each other at the vapor

pressure minimum. This means that they have a common tangent at this point,
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i.e., the liquid mixture is in equilibrium with a vapor of the same composition (!).

This type of homogeneous mixture behaves just like a pure substance. This is called

an azeotropic mixture, or an azeotrope. Its corresponding position in the vapor

pressure diagram is called an azeotropic point. The word azeotrope is derived from
the Greek words ζε�ειν (boil) and τρ�oπoς (state) combined with the prefix α- (no) to
give the overall meaning, “no change on boiling.” In the boiling point diagram, not

only the phase regions are inverted compared with the vapor pressure diagram, but

the vapor pressure minimum also becomes a boiling point maximum (Fig. 14.21b).

Therefore, these azeotropes are called maximum-boiling azeotropes or minimum-

pressure azeotropes, sometimes also negative azeotropes. Systems whose compo-

nents show highly compatible behavior in their liquid states are chloroform/acetone

or hydrogen chloride/water (hydrochloric acid).

Lowly compatible behavior by the components in the liquid state with weaker

particle interactions leads to a positive deviation from Raoult’s law. Correspond-
ingly, one can observe a vapor pressure maximum (Fig. 14.22a) as well as a boiling
point minimum (Fig. 14.22b). Acetone/carbon disulfide and ethanol/water are

examples of positive azeotropes (minimum-boiling or maximum-pressure

azeotropes).

The appearance of azeotropic points has important consequences for the distil-

lation of the mixtures concerned. First let us consider a system with a boiling point

maximum (Fig. 14.23). A liquid mixture having the composition xl1 boils at

temperature T1 and its corresponding vapor is enriched by the more volatile

component B (xg1). If the vapor is removed continuously from equilibrium by simple

distillation, meaning by condensation in a receiver, the composition of the

Fig. 14.21 (a) Vapor pressure diagram with azeotropic minimum of a binary system of two highly

compatible substances, (b) Corresponding boiling point diagram with azeotropic maximum.

14.4 Liquid–Gaseous Phase Diagrams (Vapor Pressure and Boiling Temperature. . . 377



remaining liquid shifts along the boiling point curve to higher mole fractions of A

(xl2). At the same time, the boiling temperature (T2) rises and the difference in the

composition of the liquid and vapor phases becomes noticeably smaller. By con-

tinuing this process of distillation, the residual liquid finally reaches the azeotropic

composition xl3. The boiling liquid and the vapor (or condensate as the case may be)

Fig. 14.22 (a) Vapor pressure diagram with azeotropic maximum of a binary system of two lowly

compatible substances, (b) Corresponding boiling point diagram with azeotropic minimum.

Fig. 14.23 Simple

distillation using the

example of a boiling point

diagram with an azeotropic

maximum.
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exhibit the same composition and further separation of the mixture is no longer

possible.

An example of such a negative azeotrope is hydrochloric acid with a mass

fraction wHCl ¼ 20 % ¼ 200 g kg�1
� �

that boils at 382 K (at standard pressure)

without its composition changing (Experiment 14.4).

No matter what the initial composition of a mixture is, a complete separation by

distillation is not possible but only one of the substances can be obtained in pure

Experiment 14.4 Azeotropic behavior of hydrochloric acid: When diluted hydrochloric acid in a

porcelain bowl is heated, it is primarily the water that evaporates until the residue reaches the

azeotropic composition. Further separation is not possible any longer at this point, because only

hydrochloric acid with 20 % HCl is distilled off. However, when concentrated hydrochloric acid is

heated, it is mostly hydrogen chloride that evaporates until, again, the azeotropic point is reached.

The residues in both cases exhibit identical concentrations of hydrochloric acid. This can be easily

demonstrated by titration with sodium hydroxide solution.

Fig. 14.24 Fractional

distillation using the

example of a boiling point

diagram with azeotropic

minimum.
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form together with the azeotropic mixture. This is valid as long as the distillation is

done at normal pressure, as is commonly the case. Because the azeotropic point

changes with pressure, it is possible to finally separate such mixtures as well but

only with a considerable effort.

In closing we will discuss the azeotropic behavior of a system with a boiling

point minimum (Fig. 14.24). Let us assume we have begun a fractional distillation

of a homogeneous mixture with a composition of x0 and follow the composition of

the vapor in the column. The fraction of the component that boils at higher

temperatures decreases along the dew point curve in the direction x1! x2, etc.,
until the azeotropic point is reached. This point may not be exceeded, meaning that

at the top of the column there is always a condensate with the azeotropic compo-

sition x3. A well-known and technically relevant example is the ethanol/water

system that has an azeotrope with an alcohol content of w¼ 96 % (¼ 960 g kg�1)
and a boiling temperature of 78 �C. The residue from this is almost pure water.
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Chapter 15

Interfacial Phenomena

In this chapter, we will discuss how the chemical and physical properties of sub-

stances at interfaces differ from those in the bulk. For quantitative description,

quantities like surface tension and surface energy have to be introduced. With the

help of these quantities, phenomena known from everyday life like the lotus effect

can be explained. However, perhaps you are more interested to learn how deter-

gents clean? Then have a look at Sect. 16.3 which deals with the adsorption on

liquid surfaces. The next section covers the adsorption on solid surfaces and the

variation of the extent of coverage with pressure or concentration of the substance

to be adsorbed. Langmuir’s isotherm, the simplest description of such an adsorption

process, is deduced by kinetic interpretation of the adsorption equilibrium. Alter-

natively, it can be derived by introducing the chemical potential of free and

occupied sites and considering the equilibrium condition. In the last part of the

chapter, some important applications such as surface measurement and adsorption

chromatography are discussed.

15.1 Surface Tension, Surface Energy

The interface is defined as the layer separating two phases. The interface adjacent to
a gas phase is also simply called a surface.

The particles at an interface between two phases, for example, those on the

surface of a solid or liquid, are subject to different intermolecular forces than those

inside a phase (Fig. 15.1). A particle inside a phase is attracted equally on all sides

by identical neighboring particles. This means that intermolecular forces are in

equilibrium and the net attractive pull on the particle in question equals zero.

Particles at an interface such as between a solid and air or between a liquid and

air are missing part of their neighbors. This leads to an imbalance of forces where

(especially in the case of surfaces) a one-sided pull occurs toward the interior of the

denser phase. Consequently, the neighboring particles in the interface will move
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somewhat closer together and a tensile stress in the surface layer will appear

(comparable to that in a stretched rubber membrane). This phenomenon is called

interfacial tension or surface tension and is abbreviated by σ.
Surface tension results in a tendency for drops of liquid or gas bubbles to

minimize their surface areas. If there are no other forces such as gravity at work,

they will assume a spherical shape because a sphere has the smallest surface area for

a given volume. Large drops grow at the cost of smaller ones because this also leads

to a minimizing of the total surface area (Experiment 15.1).

The tensile forces Fσ that appear most noticeably at the boundary lines of the

surface are proportional to the length l of such a contact line:

Fσ � l:

Therefore we define

Surface tension :¼ Tensile force

Contact line
or σ :¼ Fσ

l
: ð15:1Þ

The SI unit for surface tension σ is N m�1.
To increase the surface area by ΔA, an amount of energyW!A is needed because

of the surface tension σ. Interpreted atomistically, molecules are transported against

the tensile forces from inside the phase to its surface and this costs energy. The

molecules at the surface of the phase therefore have an amount of energy that is

Fig. 15.1 Model of the

surface of a condensed

phase (solid or liquid).

Experiment 15.1 Merging
of droplets of mercury:
Small droplets form when

dripping mercury in a

watch-glass filled with

ethanol. They will gradually

merge to form one

large drop.

382 15 Interfacial Phenomena



higher by the surface energy W!A than the energy of the molecules inside the

phase. Surface tension can also be understood as surface energy density.

The concept of surface tension can be illustrated by a liquid film (such as a soap

film) between a U-shaped wire frame and a slider (moveable piece of wire),

comparable to a two-dimensional cylinder and piston (Fig. 15.2).

l is the total width of the surface on the front and the back of the liquid film. The

slider with the weight hanging from it keeps the system in equilibrium. The weight

FG just compensates for the force Fσ that tries to contract the film.

In order to increase the liquid surface of the film by the small amount dA¼ l � ds,
the slider is shifted downward using only slightly more force than Fσ. The force

needed is independent of the starting position of the slider and therefore of the size

of the surface. This would be different when expanding a rubber membrane where

the applied force increases with the elongation. The energy necessary results in

dW!A ¼ Fσds ¼ σ � l � ds or finally dW!A ¼ σdA: ð15:2Þ

After transforming the expression we arrive at what we wanted to show,

σ ¼ dW!A

dA
:

An interface can be understood to be a separate phase with an area A but not a

volume (V¼ 0). We will not go into this right now. The main equation (Sect. 9.1)

for such an “interface phase” where substances can be enriched from the neighbor-

ing phases, or can migrate into those phases, is:

Fig. 15.2 Illustration of

surface tension using a soap

film in a wire frame with a

slider.
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dW ¼ σdAþ TdSþ
X
i

μidni: ð15:3Þ

The sum∑μini can be left out if we are only dealing with a pure substance. The main

equation then becomes especially simple.

The effects of surface tension can be observed concretely in an experiment

(Experiment 15.2).

Surface tension is a substance-specific quantity. For many organic liquids, at

around 298 K, it is between 15 and 30 mNm�1 (Table 15.1). The much higher value

of σ¼ 72 mN m�1 for water is due to the high polarity of water molecules and the

resulting relatively strong hydrogen bridge bonds between them. Surface tension of

mercury is even six times higher than that of water. This is because of the metallic

bonds between the atoms.

Surface tension decreases when temperature increases because the more intense

motion of the molecules leads to a lessening of the intermolecular forces. It

disappears when the critical point is reached. Table 15.2 shows the surface tension

of water at various temperatures.

Experiment 15.2 Soap
film: When the slider is

slowly pulled away from the

end of the frame (see the

hand symbol), the soap film

expands. If we let go, the

film contracts to its former

size and the slider moves

back to its original position

(note the arrow).

Table 15.1 Surface tensions

of various liquids at 298 K

(from: Lide D R (ed) (2008)

CRC Handbook of Chemistry

and Physics, 89th edn. CRC

Press, Boca Raton).

Liquid σ (mN m�1)

Diethyl ether 16.7

n-Hexane 17.9

Ethanol 22.0

Carbon tetrachloride 23.4

Acetic acid 27.1

Benzene 28.2

Water 72.0

Mercury 485.5

Table 15.2 Surface tension

of water at various

temperatures (from: Lide D R

(ed) (2008) CRC Handbook

of Chemistry and Physics,

89th edn. CRC Press, Boca

Raton).

Temperature (K) σ (mN m�1)

283 74.2

298 72.0

323 67.9

348 63.6

373 58.9
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15.2 Surface Effects

Wetting Wetting is defined as the complete covering of a solid surface by a liquid

film caused by the attractive forces between different substances at a common

interface.

If a drop of liquid is put upon a solid surface, three phases adjoin each other:

gaseous (g), liquid (l), and solid (s) (Fig. 15.3).

Relating to a short section of length l of the three-phase contact line (which in

this case is perpendicular to the plane of the drawing), we have to consider three

interface tensions: σg,l, σg,s, and σl,s. As a result, three forces σg,l � l, σg,s � l, and σl,s � l
act parallel to the arrows in Fig. 15.3. The contact line shifts right or left, and in

doing so, the contact angle θ changes accordingly until equilibrium of forces is

attained. A shift upward is impossible due to the rigid base, so we only need to

consider the force components that are parallel to the solid surface:

σg, s � l ¼ σl, s � lþ σg, l � cos θ
� � � l or σg, s ¼ σl, s þ σg, l � cos θ: ð15:4Þ

If θ< 90�, the liquid will spread across the solid surface; it wets the surface.

Complete wetting exists when θ¼ 0� (or σg,s> σl,s + σg,l; in this case, an equilibrium
of force is impossible). Water on greaseless glass shows a contact angle of � 0�.

If, however, θ> 90� (in the ideal case, 180�), no wetting will take place

(Fig. 15.4) [Examples: mercury on glass, water on lotus leaves (lotus effect),

water on polytetrafluoroethene fabric (Gore-Tex®)].

Capillary Pressure Capillary pressure corresponds to excess pressure pσ in a gas

bubble or a drop as a result of interface tension. Experiment 15.3 will serve to

clarify this.

Apparently, capillary pressure decreases as the radius increases. How can

this be explained? There is an excess pressure pσ inside a bubble, which

balances the interface tension. If the radius r grows by dr due to further inflating

of the bubble, thereby increasing volume V by dV¼ 4πr2dr, the energy to be

expended is

Fig. 15.3 Overlapping of

different interface tensions

and the corresponding

contact angle (or wetting

angle) θ of a liquid drop on

a plane solid surface.
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dW ¼ pσdV ¼ pσ � 4π r2dr:

At the same time, the surface of the bubble grows by dA¼ 8πrdr and the surface

energy grows along with it. However, in the case of a soap bubble, there are both an

inner and an outer surface to be dealt with. This means that, in total, the change of

surface energy is:

dW!A ¼ σdA ¼ σ � 16πrdr:

The volume of a sphere is 4=3πr3 and its surface is 4πr2. By taking the derivative, we obtain

dV

dr
¼ d

dr

4

3
πr3

� �
¼ 4πr2

and after rearranging

dV ¼ 4πr2dr:

Analogously, ist results for the surface:

dA

dr
¼ d

dr
4πr2
� � ¼ 8πr

Fig. 15.4 Lack of wetting

of the surface at a contact

angle of θ> 90�.

Experiment 15.3 Connected
soap bubbles: Two soap

bubbles of differing sizes are

connected via a closed

stopcock. When the stopcock is

opened, the smaller bubble will

“inflate” the larger one and

disappear in the process.
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so that

dA ¼ 8πrdr:

In equilibrium, the following is valid:

pσ � 4πr2dr ¼ σ � 16πrdr:

The resulting capillary pressure pσ in a soap bubble is then

pσ ¼
4σ

r
ð15:5Þ

which is, as expected, inversely proportional to the radius of the bubble.

Instead of a soap bubble, let us now consider a gas “bubble” (or more precisely a

gas-filled cavity) in a liquid such as the “bubbles” in champagne or, possibly, a drop

of a liquid. Now there is only one interface to be taken into account. Correspond-

ingly, the capillary pressure is

pσ ¼
2σ

r
: ð15:6Þ

Capillary pressure disappears for plane surfaces (r!1), but for very small drops,

it is quite important. For example, a drop of water with a radius of 1 μm has the

capillary pressure of 146 kPa.

Vapor Pressure of Small Drops A bulk liquid is subject to a saturation vapor

pressure of plg,r¼1. As a result of capillary pressure, the chemical potential of a

drop of liquid is higher by

Δμ1 ¼ pσ � β ¼
2σ

r
Vm

than that of a bulk liquid. This means that a decrease in the size of the drop increases

its tendency to evaporate. Equilibrium with the vapor occurs when its chemical

potential has also grown by the same difference Δμg due to a raise of pressure from
plg,r¼1 to plg,r:

Δμg ¼ RTln
plg, r

plg, r¼1
¼ 2σ

r
Vm ¼ Δμl:

We obtain
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ln
plg, r

plg, r¼1
¼ 2σVm

rRT

and, respectively,

plg, r ¼ plg, r¼1exp 2σVm=rRTð Þ Kelvin equation: ð15:7Þ

Small drops have a higher vapor pressure plg,r than that of a bulk liquid ( plg,r¼1).
Table 15.3 illustrates the rise of vapor pressure as a function of the size of drops in

the case of water drops.

Very small droplets are therefore quite unstable and the question arises of how

condensation of water vapor in air can occur at all. There have to be “condensation

nuclei,” i.e., molecules, ions, dust particles, etc., with which even just a few water

molecules can form stable aggregates that can continue to grow. If such nuclei or

surfaces that water can precipitate onto are absent, supersaturated water vapor can

exist for a very long time. Air for example can contain supersaturated water vapor

even in a clear sky. This water vapor condenses on the particles left by the engine

exhaust of an airplane and so-called condensation trails (contrails) appear behind

the plane.

Capillary Action When a capillary tube is submerged in a wetting liquid, this

liquid will rise in it up to a certain height. Experiment 15.4 is a good example for

illustrating the dependency of capillary rise upon the diameter of the capillary tube.

Wetting of the inner wall of the capillary tube by the liquid film increases the

liquid’s surface. This is opposed by surface tension. A reduction of the surface can

only occur if the liquid rises to a height h in the tube having a radius of rc
(Fig. 15.5). It forms a meniscus (the term for a curved surface in a narrow pipe).

The meniscus of a completely wetting liquid, for example, water in a glass tube,

assumes a hemispherical shape curved upward (concave surface). The water tries to

cover as much of the glass surface as possible and the hemisphere is the smallest

possible surface for the liquid. In the present case of a contact angle of θ� 0�, the
radius of curvature is equal to the capillary radius rc. The liquid rises in the capillary
until the weight FG¼mg¼ ρVg of the liquid drawn up the tube just compensates for

the force Fσ resulting from surface tension along the capillary circumference. We

obtain

Table 15.3 Increase of vapor

pressure for varying sizes of

water drops.

Radius (nm) Number of particles plg, r=plg, r¼1

103 1.4� 1011 1.001

102 1.4� 108 1.011

10 140,000 1.111

1 140 2.88
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Fσ ¼ 2πr cσ ¼ ρπr 2chg ¼ FG

or after rearranging the terms

h ¼ 2σ

ρrcg
; ð15:8Þ

where ρ stands for the density of the liquid. The capillary rise of a liquid is inversely
proportional to the capillary radius. For a water-filled glass tube in air at standard

conditions (σ¼ 0.072 N m�1 at 298 K, ρ¼ 1,000 kg m�3, and g¼ 9.81 m s�2), the
height of the water column is

h ¼ 1:47� 10�5

rc
m:

Thus for a tube with a radius of 2 cm, the water would rise only 0.7 mm, but for one

with a radius of 0.2 mm, it would already rise to a height of 70 mm.

Experiment 15.4 Capillary
tubes in action: A
communicating system of

several capillary tubes with

varying diameters is filled with

colored water. The water rises

in the tubes due to the capillary

effect and reaches different

levels. The narrower the tube,

the higher the water rises.

Fig. 15.5 A wetting liquid

rising in a capillary tube

(capillary rise).
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Moreover, the capillary rise of a liquid is directly proportional to the surface

tension. This relation can therefore be used to determine the surface tension of

liquids.

The capillary force works in the opposite direction for non-wetting liquids: The

level of the liquid is lowered and it displays a convex surface. In this case, one

speaks of a “capillary depression” (Example: mercury in a glass tube as in ther-

mometers and barometers).

15.3 Adsorption on Liquid Surfaces

Dissolved substances can influence interface tension by enriching themselves

in the interface. This phenomenon is called adsorption. The forces of attraction

A–B between the molecules of the dissolved substance B and those of the solvent

A are smaller than A–A, so that the dissolved substance is forced out of the

interior of the phase. The characteristics of the interface are modified due to

enrichment of the dissolved substance. The surface energy and therefore the

surface tension decrease so that the capillary action increases. These types of

substances are called capillary active, surface active, or interface active. They
are also called surfactants. In aqueous solutions, this characteristic is exhibited

mainly by organic compounds with long hydrophobic hydrocarbon chains and

hydrophilic head groups [hydroxyl group, carboxylate group (COO�), or sulfonic
acid group SO�3

� �
].

An experiment using a razor blade shows the influence upon surface tension by

surfactants of the kind found in dish-washing liquid (Experiment 15.5).

The surfactant molecules in the solution of a dish-washing liquid or a laundry

detergent slip between the water molecules and the hydrophobic residue of these

Experiment 15.5 Floating
razor blade: When a razor blade is

carefully laid upon a water surface,

it will sink slightly (comparable to

a weight on a tensed membrane),

but continues to float. When a

solution of dish-washing liquid is

added, the razor blade sinks to the

bottom of the container because it

can no longer be supported by the

surface tension.
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molecules then extend out of the water (Fig. 15.6). As a result, the attraction

between the water molecules due to the strong hydrogen bridge bonds decreases

along with surface tension.

If the concentration of the surfactant molecules continues to increase, the surface

will finally become completely covered by a layer of molecules (monomolecular

layer). If this concentration is exceeded, surfactant molecules will also be present in

the interior of the liquid. However, they will be oriented so that the hydrophobic

ends of the molecules are joined and shielded from the solution by the hydrophilic

head groups. As a result, micelles are formed above a certain surfactant concentra-

tion, the so-called critical micelle concentration (CMC). Micelles are colloid-sized

clusters.

The “cleaning power” of surfactants depends upon the hydrophobic hydrocarbon
residues penetrating the dirt particles (drops of oil or grease, for example) and the

textile fibers while the hydrophilic groups protrude into the water. The motion of

the piece being washed separates the dirt particles from the fibers and solubilizes

them. This means that their solubility in the solvent (in this case, water) is

noticeably improved by adding a third chemical. Moreover, micelle formation is

essential for the resorption of fat-soluble vitamins and the digestion of complicated

lipids within the human body.

Fig. 15.6 Arrangement of

surfactant molecules in a

monolayer on the surface of

water, formation of

micelles, and emulsifying

power of the surfactants.
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15.4 Adsorption on Solid Surfaces

Physisorption and Chemisorption The phenomena of adsorption on solid sur-

faces are much more varied than those on liquid surfaces. A good example for

observing these phenomena is activated carbon, a highly porous carbon with a large

specific surface (300 to 2,000 m2 g�1 carbon) and possessing excellent adsorption

capacity (Experiment 15.6).

The actual process of adsorption happens to lie between two extreme forms of

adsorption: physical adsorption (physisorption) and chemical adsorption (chemi-
sorption). These differ from each other primarily by the strength of the bonding of

the adsorptive (free particles before adsorption, gas molecules for example) to the

adsorbent, i.e., the molecules of the solid surface (for clarity, compare to Fig. 15.7).

The particles that have accumulated on the solid surface are called adsorbate.
The term physisorption is used when the molecules of a gaseous or dissolved

substance B that have accumulated on a solid adsorbent are loosely “physically”

bound (Fig. 15.8, left) as might happen by Van Der Waals’ forces:

The symbol labels a site on the surface.

Physical adsorption with a chemical drive A of the order of 8 to 10 kG has the

character of a condensation. The drive is determined almost exclusively by the type

of substance being adsorbed. The adsorbed particles can attach into several layers,

one on top of the other (multilayer adsorption), and essentially keep their structure.

Noble gases, for example, would be physisorbed at low temperatures.

In the case of chemisorption, though, a stable “chemical” bond is formed.

Chemical adsorption has the character of a chemical reaction, where the values

for the drive can typically lie between 40 and 800 kG. The drive depends signifi-

cantly upon the adsorbing solid substance involved. The molecular bond in the

adsorbate having, at most, a single accumulated layer on the adsorbent (monolayer

adsorption) can often be strongly altered so that the particles are in a very reactive

state and can even dissociate (compare Fig. 15.8, right). The adsorptive bonding of

Experiment 15.6 Adsorption
on activated carbon: When a

dye solution is poured into one

end of a column filled with

activated carbon, the solvent

will come out clear at the

other end. This experiment can

also be done with soft drinks

containing food coloring, or

even red wine.
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hydrogen to surfaces of transition metals such as Pd or Fe—which is important for

catalytic reactions—is a typical case of chemisorption (see also Sect. 19.4). In this

case, hydrogen is not adsorbed in molecular form but in its atomic form:

2 þ B2 ⇄ 2 B :

□ indicates a site on the surface able for chemisorption.

Adsorption is accompanied by a “heat effect” (Experiment 15.7). As always in

chemical reactions, there are actually two effects at work. Energy is released and

dissipated whereby entropy is generated: Sg ¼ A � Δξ=T. This exothermal contri-

bution is complemented by the (usually) exothermal latent entropy S‘ ¼ Δ□S � Δξ
(the symbol □ replaces the index R which we have commonly used to indicate

chemical reactions). The reason for the latter is the fact that adsorption on a solid

surface limits the mobility of the particles, resulting in the release of entropy.

Adsorption Isotherm We consider the adsorption of a substance B out of a gas or

a solution on adsorption sites□:

Fig. 15.8 Difference

between physisorption and

chemisorption.

Fig. 15.7 Illustration of

important terms describing

adsorption.
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þ B ⇄ B :

If the temperature remains constant, an adsorption equilibrium will be established

where the addition of particles B to and their elimination from the sites of adsorp-

tion both occur at the same rate. This is symbolized by a double arrow.

In the case of a gaseous adsorptive, the adsorbed amount nB is dependent upon

pressure p, and in the case of a dissolved adsorptive, it is dependent upon concen-

tration c. The relation

nB ¼ f pð Þ or nB ¼ f cð Þ T ¼ const:

is called the equation of the adsorption isotherm.
In the case of the formation of a monomolecular adsorption layer, the fractional

coverage Θ is often used instead of the adsorbed amount nB to symbolize the extent

of adsorption. It indicates the portion of the surface that is coated:

Θ ¼ nB
nB,mono

¼ mB

mB,mono

: ð15:9Þ

The simplest theoretical description of an isotherm is the so-called Langmuir
isotherm which is based upon a model of equivalent and independent adsorption

sites upon a homogeneous surface whereby adsorption cannot proceed beyond

monolayer coverage. Although we have mostly been dealing with static aspects

of chemical dynamics so far, we will derive this adsorption isotherm first by using

kinetic aspects (in anticipation of Chap. 16).

Adsorption equilibrium is established when the rate rads of adsorption equals the
rate rdes of desorption, meaning the release of already adsorbed molecules.

According to the concepts of kinetics, the rate of adsorption is proportional to the

product of the concentrations of the reaction partners. In this case, these are the

adsorptive and the free sites on the surface. Partial pressure p or molar concentra-

tion c can be used as the measure of adsorptive concentration. The concentration of

free sites, on the other hand, must be proportional to the fraction of surface that is

not covered, 1� Θ. In summary, we have

Experiment 15.7 Rise of
temperature in adsorption:
When acetone is poured

over activated carbon,

a noticeable rise in

temperature occurs.
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rads ¼ kads � p � 1� Θð Þ; ð15:10Þ

whereby the proportionality constant kads can also be called the rate coefficient of

adsorption. (We will deal with rate coefficients in Chap. 16 and again in more detail

in Chap. 18.)

The rate of desorption is proportional to the concentration of sites that are

already occupied and, therefore, the fractional coverage Θ. We obtain

rdes ¼ kdes � Θ ð15:11Þ

with kdes as the rate coefficient of desorption.
The following is valid for dynamical equilibrium:

kads � p � 1� Θð Þ ¼ kdes � Θ:

Solving for Θ yields:

Θ ¼ kads � p
kdes þ kads � p : ð15:12Þ

Using K
○ ¼ kads=kdes we obtain Langmuir’s adsorption isotherm:

Θ ¼ K
○ � p

1þ K
○ � p

for T ¼ const: ð15:13Þ

K
○

can be interpreted as the equilibrium constant for the process of adsorption.

Correspondingly, K
○
is dependent upon temperature (compare Chap. 6).

At low pressures, K
○ � p� 1 applies; the isotherm then rises proportionally to p.

At high pressures ðK○ � p� 1Þ, the fractional coverage asymptotically approaches

the limiting value of 1 (Fig. 15.9).

Fig. 15.9 Langmuir’s
adsorption isotherm.
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We can also derive Langmuir’s isotherm with the help of the chemical potential.

In order to do this, we consider the following sequence of simple processes:

Bsþ Hþ ! BsHþ, Protonation of a base during a titration,

Eþ B! EB, Formation of an enzyme� substrate complex in a cell,

þ B! B , Adsorption of a molecule at a surface site:

In Sect. 7.4, we dealt extensively with the first process and its description with the

help of proton potential. A characteristic common to all three processes is that in

each one, a certain type of particle occupies a certain type of site. There is

obviously a smooth transition from the first type of process to the last one in the

sequence because it is easy to insert additional intermediate links. For instance, the

gap between the first homogeneous reaction and the third heterogeneous reaction
can be bridged by the second which can be considered a bimolecular reaction

between the dissolved substances E (enzyme) and B (substrate) as well as an

adsorption of B at a site E. If we imagine the E-molecules to be combined into larger

and larger two-dimensional complexes, we arrive in stages at a contiguous surface.

We therefore want to deal with the question of the chemical potential of sites. In
order to do this, we will again consider adsorption of a substance B out of a gas or a

solution on independent adsorption sites, but now from this new point of view:

þ B ⇄ B :

Adsorption equilibrium is determined by the free and occupied sites□ and B , so

it seems obvious to assign to them chemical potentials μ(□) and μ B
� �

. A

comparison to the corresponding homogeneous reaction suggests an interesting

idea:

Aþ B ⇄ AB:

A particle A can be considered a carrier of a single adsorption site □ for B. In

order to keep the sites from influencing each other, the total concentration c¼ c(A)
+ c(AB) of free and bonded A must remain low. This then allows us to apply the

mass action equations for μ(A) and μ(AB) (compare Sect. 6.2). The condition for

equilibrium μ(A) + μ(B)¼ μ(AB) therefore assumes the form

μ
○

Að Þ þ RTln c Að Þ=c�½ � þ μ Bð Þ ¼ μ
○

ABð Þ þ RTln c ABð Þ=c�½ �: ð15:14Þ

In order to attain a description that is independent of whether a site sits upon separate

particles or upon a continuous surface and is also independent of the parts of the

carrier A that are inessential for adsorption, we slightly alter the condition for

equilibrium. c Að Þ=c � Θð Þ is the fraction of empty sites, c ABð Þ=c � Θ B
� �

is
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the fraction of occupied sites. We replace c(A) and c(AB) by c � Θð Þ and

c � Θ B
� �

and subtract μ
○

Að Þ þ RTln c=c�ð Þ from both sides:

ð15:15Þ

We consider μ
○

B
� �

� μ
○

ABð Þ � μ
○

Að Þ to be the basic value of the chemical

potential of occupied sites B , i.e., the potential μ B
� �

at full occupancy,

Θ B
� �

¼ 1. The term μ
○ ð Þ � 0 is only inserted for the sake of uniformity. It

functions as the basic value of the chemical potential of empty sites□, meaning the

potential μ(□) for Θð Þ ¼ 1.

As a result of the bond between A and B, both A and B are altered. In the case of

larger molecules, the changes primarily affect the atoms near the place of bonding;

atoms that are farther away are hardly touched. The definition above of the quantity

μ
○

B
� �

boils down to the fact that all changes to molecules A and B are formally

assigned to the adsorbed particles B. The contribution of the unaltered parts of the

carrier A is canceled, especially the contribution by all atoms of A that are outside

the sphere of influence of the bonding site.

We can now use the mass action equations shown above for independent sites,

μð Þ ¼ μ
○ ð Þ þ RTlnΘð Þ ð15:16Þ

and

μ B
� �

¼ μ
○

B
� �

þ RTlnΘ B
� �

; ð15:17Þ

to describe the adsorption of a substance B out of a dilute solution or a dilute gas on

a solid surface having equivalent adsorption sites—independently of whether or not

they are occupied. Taking the mass action equation for B,□ and B into account,

as well as the equationsΘ B
� �

¼ Θ andΘð Þ ¼ 1� Θwith fractional coverage

Θ, the condition for adsorption equilibrium is:

μ
○ ð Þ þ RTln 1� Θð Þ þ μ

○
Bð Þ þ RTln c=c�ð Þ ¼ μ

○
B

� �
þ RTlnΘ: ð15:18Þ

We subtract μ
○

B
� �

from both sides, move the logarithmic terms to one side,

divide by RT, take the exponential, and divide by c�. Because of μ○ ð Þ ¼ 0, this

leads to the relation
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1

c�
� exp

μ
○
Bð Þ � μ

○
B

� �
RT

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K
○

¼ Θ

1� Θð Þ � c: ð15:19Þ

Here,K
○
is the equilibrium constant, for which (according to Sect. 6.4) the following

is valid:

K
○¼ c�ð Þv K○ ¼ c�ð Þ�1exp

μ
○

Bð Þ � μ
○

B
� �

RT

0@ 1A with v ¼ �1:

Transformation of Eq. (15.19) finally results in the familiar equation for Langmuir’s
adsorption isotherm

Θ ¼ K
○ �c

1þ K
○ �c

: ð15:20Þ

15.5 Applying Adsorption

Surface Measurement The specific surface of a porous solid material can be

determined from the adsorbed amount of an adsorptive when its surface demand

is known. The most reliable method for doing this is based upon the physisorption

of gases (mostly nitrogen) near their boiling points. The so-called BET isotherm is

used for the analysis. This isotherm developed in 1938 by Brunauer, Emmet, and

Teller takes multilayer adsorption into account as well.

Separation of Substances Adsorption also plays a major role in separation of

substances, especially in adsorption chromatography. The method is based upon

the difference of adhesion probabilities of the substances being separated which,

being in a mobile phase (liquid, gas), are passed along a stationary phase (solid

material, for example, Al2O3, SiO2). The greater the attraction of a substance for the

stationary phase compared to the mobile phase, the slower this substance moves

up. We differentiate between gas–solid chromatography (GSC) and liquid–solid
chromatography (LSC). Depending upon the method in use, we also distinguish

between column chromatography, paper chromatography, or thin-layer chromatog-

raphy. A simple yet convincing example from everyday life is the chromatographic

separation of felt pen ink (Experiment 15.8).

The same dye in the same solvent will always move the same distance in the

same period of time. The individual components can therefore be characterized by

the Rf value (Rf stands for “retention factor”):
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R f ¼ Distance starting line� center of dot

Distance starting line� solvent front
:

Heterogeneous Catalysis Adsorption is the basis of heterogeneous catalysis,

which makes it especially important to industrial production processes. This will

be gone into more detail in Sect. 19.4.

Experiment 15.8 Chromatographic
separation of black felt pen ink: Different
black felt tip pens are used to make dots along

a line near the bottom edge of a thin-layer

chromatography (TLC) plate covered with

silica gel for thin-layer chromatography. The

bottom edge of this plate is then put into a

TLC chamber (or a beaker) containing a few

centimeters of water as solvent. A separation

of the black ink into variously colored

components (for example, violet, yellow,

blue) can soon be observed. Instead of a

TLC plate, a strip of filter or blotting paper

can also be used.
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Chapter 16

Basic Principles of Kinetics

The branch of matter dynamics called chemical kinetics will be the topic of the next
four chapters. Chemical kinetics is concerned with the temporal course of chemical

reactions, meaning one investigates how fast the reactants are consumed or the

products are formed. The goal of such investigations is to provide the means for

predicting the rate of processes and to find the influencing factors that promote a

desired reaction or inhibit an undesired one. In this introductory chapter we will first

get to know the fundamental quantities conversion rate and rate density as well as
different methods for measuring them in slow and fast reactions. In the last part

of the chapter, it will be shown how the dependence of the rate density on the

concentrations of reactants (and products) can be summarized by mathematical

expressions called rate laws. Subsequently, the relatively simple rate laws of

different types of reactions taking place in only one single step will be discussed.

16.1 Introduction

Concept of Chemical Kinetics Chemical kinetics or simply kinetics is the area of
chemistry that deals with the temporal course of transformations of substances and

the intermediate steps involved in it, especially the

• Recording of the temporal course of chemical reactions,

• Determination of (differential) rate laws and the corresponding integrated rate
laws under given conditions,

• Identification of intermediate steps (elucidation of the reaction mechanism),

• Investigation of temperature dependency,
• Investigation of facilitating and inhibiting influences (catalysis, inhibition).

The goal of investigations in this area is to provide the means for predicting the

rate of processes and to find the influencing factors that promote a desired reaction

or inhibit an undesired one.
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Reaction Resistance We expect that the greater the drive A of a chemical

transformation, meaning the greater the drop of potential from the reactants to the

products, the faster the process will run. However, it would be a mistake to believe

that the strength of the drive alone determines the speed, i.e., the rate at which the

process runs. There are inhibitions in every kind of change of substances that must

be overcome. They can be large or small, depending upon experimental conditions,

and they influence the rate of the process as much as the drive does. In a system

involving substances, the conversion in the direction of the drop in chemical

potential is inhibited or even stopped by various resistances (Fig. 16.1). This is

similar to an electrical circuit where the flow of charge in the direction of the drop in

potential is hindered by high electrical resistance or totally stops when the circuit is

interrupted. There are similar examples to be found in other fields such as mechan-

ics. An example might be bicycling on sandy paths or stirring a thick soup. A simple

idea describing the influences mentioned above would be that the rate of a trans-

formation is directly proportional to the drive and inversely proportional to the

resistance to be overcome:

rate ¼ drive

resistance
:

However, we do not encounter such simple circumstances very often. Ohm’s
law, i.e., current I¼ voltage U/resistance R, is a well-known example of this idea,

but even a lightbulb behaves differently in this case because the resistance is not

constant but increases with temperature. It is not surprising, then, when in chemical

processes such a simple law like Ohm’s is only valid for drives A� RT, meaning

when equilibrium A ¼ 0 is almost attained.

Experiment 16.1 clarifies the concept of reaction resistance using a hydrome-

chanical analogue for a reaction between dissolved substances A and B.

The reaction resistance can be changed analogously to the other examples (e.g.,

by catalysts).

Fig. 16.1 Driving force and resistance to be overcome in different processes.
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Duration of Conversion The duration of conversion, meaning the time period T
of substance transformations, is expressed by characteristic quantities such as half-

life, lifetime, or response time. It spans many orders of magnitude in the range of

T < 10�9s to T > 109a. Compared to a usual observation period T O, a transfor-

mation is

• Inhibited, when T � T O (when T is much larger than T O)

• Slow, when T � T O (when T and T O are of similar order of magnitude)

• Fast, when T � T O (when T is much smaller than T O)

The Experiments 16.2, 16.3, 16.4, and 16.5 illustrate the large interval of

durations and rates of conversion in which chemical reactions occur.

The duration of conversion increases strongly in each experiment from

Experiment 16.2 to Experiment 16.5 while the rate decreases. while the rate

decreases. The role played by the chosen time frame can be seen in the transition

“peat ! coal”: Compared to how long usual laboratory experiments take, it is

inhibited. Compared to geological time frames, it is not.

Reaction Intermediates and Reaction Mechanisms Closer examination has

shown that chemical reactions are not as simple as the usual summary conversion

formulas would lead us to believe, but mostly run in several steps or loops in a

sequence of reaction intermediates quickly transforming into each other and

reacting with each other. They often appear in low concentrations and remain

inconspicuous and mostly undetected. These substances, appearing only in small

or trace amounts, often form a “bottleneck” that limits the rate of a reaction. If it is

possible to facilitate the formation of such intermediates, a reaction can be pro-
moted. In contrast, it can be hindered by repressing production of certain interme-

diates. In order to approach this systematically, it is first necessary to know the steps

Experiment 16.1 Hydromechanical
analogue to reaction resistance: Colored
water is filled into one of the glass jars. (Their

special form corresponds to the “exponential

horn” in Sect. 6.7, i.e., it symbolizes the

dependence of the chemical potential upon

the amount of dissolved substance as in a

potential diagram.) The initially closed

stopcock is opened and the liquid distributes

to both jars until equilibrium is established.

The stopcock takes the role of reaction

resistance inhibiting the reaction although

it could proceed in principle.
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Experiment 16.3 Reaction of
iodate with iodide: The reaction of

IO�3 and I� in aqueous solution

proceeds more slowly than the

reaction of CO2�
3 with Zn2+—the

brown color of the iodine that

forms makes this visible (the

duration is about 30 s).

Experiment 16.4 Rusting
of iron: Rusting of a piece of
iron in humid air takes

about 10 years.

Experiment 16.5 Coal
formation: The formation

of coal from peat takes

millions of years.

Experiment 16.2 Precipitation of zinc

carbonate: If a solution containing CO2�
3

is added to a Zn2+ solution, white zinc

carbonate precipitates immediately; the

reaction proceeds very fast and is finished

after a very short time (a period of

maybe 0.3 s).
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a reaction takes. In other words, we must know the step-by-step sequence, meaning

the reaction mechanism. For this reason, elucidation of reaction mechanisms is an
important part of chemical kinetics.

16.2 Conversion Rate of a Chemical Reaction

Conversion and Conversion Rate We have already learned the terms extent of
reaction and conversion in Sect. 1.7. They are necessary to know for the following.

Let us take another look at the example of rusting of a piece of iron in humid air.

The conversion formula for this is:

4 Feþ 3 O2 þ 2 H2O! 4 FeOOH

or when we put all the substances on the right-hand side,

0! �4|{z}
vFe

Fe �3|{z}
vO2

O2 �2|{z}
vH2O

H2O þ4|{z}
vFeOOH

FeOOH:

The coefficients vi represent the conversion numbers. The extent of reaction ξ can
be calculated according to

ξ ¼ Δni
vi
¼ ni � ni, 0

vi
ð16:1Þ

[compare Eq. (1.14)], where ni represents the instantaneous amount of substance at

time t, and ni,0 represents the amount at initial time t0. ξ as well as conversionΔξ are
then functions of time. In our example, the value of ξ(t) indicates what extent the
rusting process has attained at the point in time t. Think about how old automobiles

rust. When the weather is dry, the reaction comes almost to a standstill, due to a lack

of water. The extent of reaction ξ is constant and the conversion Δξ during 1 day,

for example, is just about zero. When the weather is wet or the car is in a damp

garage, the reaction will proceed, but slowly. The extent of reaction will gradually

increase, which can be seen in the growing formation of rust. If, after being out on

winter streets, there is salt sticking to the car, the reaction will proceed especially

fast. The daily conversion can reach considerable values, to the annoyance of the

car’s owner. This observation suggests that the conversion rate ω of a reaction

should be described by the ratio “distance”/time span like it is done in mechanics,

only that “distance” as used here means the change of extent of reaction (reaction

coordinate) ξ by the continuation of the reaction during the short time span Δt
(Fig. 16.2). (We will avoid using the obvious name reaction rate for ω because it

can mean different things [more about this in Sect. 16.3)].

16.2 Conversion Rate of a Chemical Reaction 405

http://dx.doi.org/10.1007/978-3-319-15666-8_1#Sec7


Mechanical: Chemical:

υ :¼ Δx
Δt

, ω :¼ Δξ
Δt

Unit: mols�1:
ð16:2Þ

Instantaneous Rate Just as the speed of a train constantly changes by accelerating

and slowing down, the speed, the rate at which the reactants are used up and the

products are formed, can also change during a reaction. Let us consider the example

of a periodic reaction according to Thomas S. Briggs and Warren C. Rauscher, also

known as the “oscillating iodine clock” (Experiment 16.6). The repeated color

changes occur due to periodic concentration oscillations whereby the reaction

does not oscillate forward and backward. Instead, a complex combination of slow

and fast reactions in batch mode is taking place simultaneously.

In other words, we must consider an instantaneous value: the speed at the

moment in question. In order to find this instantaneous rate, it is necessary to

move to very small time spans, as is symbolically expressed by the differential

quotient dξ/dt:

Fig. 16.2 “Distance” covered as a function of time using examples of (a) a locomotive and (b) a

chemical reaction.

Experiment 16.6 Oscillating reaction
according to Briggs and Rauscher: A
solution of malonic acid, manganese

sulfate, and starch as well as a solution of

acidulated potassium iodate are filled into

a beaker. A solution of hydrogen peroxide

is then added. The color of the solution

changes periodically from colorless to

yellow brown, dark blue and then back to

colorless, and so on and so forth
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υ :¼ dx

dt
, ω :¼ dξ

dt
De Donder1929ð Þ: ð16:3Þ

The instantaneous rate corresponds to the slope of the tangent to the x(t) or ξ(t)
curve at this point. The steeper the slope, the higher the rate.

If the system in question is closed and there is only one reaction occurring inside

it we can also write

dni
dt
¼ vi

dξ

dt|{z}
ω

: ð16:4Þ

This is so because of ni ¼ ni, 0 þ viξ [compare Eq. (1.16)]. Here, ni,0 is the (time

independent) initial amount of substance. This constant term vanishes when we take

the derivative. After rearranging Eq. (16.4), the following results:

ω ¼ 1

vi

dni
dt

: ð16:5Þ

16.3 Rate Density

Concept of Rate Density We know that chemical reactions do not take place at the

same rate everywhere. For example, the flame of a candle will transform much

more substance in the hot zones than in the cooler zones relative to a volume of, say,

1 mm3 (Fig. 16.3). Δω represents the contribution of a small volume ΔV of the

reaction mixture to the total rate of conversion.

In order to characterize such local differences, we introduce a new quantity r that
specifies conversion rate per volume (of the small volume considered) which we

will call density of conversion rate or simply rate density:

Fig. 16.3 Explanation of

the concept of rate density

using the example of a

candle flame.
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r :¼ Δω
ΔV

or more precisely r :¼ dω

dV
Unit: mols�1m�3 : ð16:6Þ

The quotientΔω/ΔV expresses the average value of the conversionΔξ resulting in a
short time span Δt in the small volume ΔV considered here. Again, it is necessary to

use a very small section when trying to find the value of the rate density r at a given
point. This is characterized by the differential notation.

For future considerations, it would be practical to divide chemical reactions into

certain classes and to discuss them each separately (see Sect. 16.5). For the

moment, though, we will deal with some basic concepts.

Homogeneous and Heterogeneous Reactions A reaction is called homogeneous
when it takes place in a uniform mixture. An example of this from everyday life is a

cup of sweetened tea with lemon where table sugar (sucrose) is gradually split into

its two component parts (glucose and fructose). A reaction is called heterogeneous
when the substances involved are distributed over regions having differing proper-

ties. Rusting is a heterogeneous reaction because it takes place in four different

regions: the metallic iron, the layer of rust, the water in the fissures of the layer of

rust, and the air above. The processes of precipitation or effervescence are both

heterogeneous reactions as well.

When dealing with a homogeneous reaction where the reaction takes place

uniformly everywhere, the size of the section is unimportant so the entire volume

V of the reaction mixture can be used for calculating the rate density:

r ¼ ω

V
for reactions in a homogeneous environment at constant volume:

If we insert ω¼Δξ/Δt and Δξ¼Δni/vi as well as ci¼ ni/V, we obtain

r ¼ 1

vi
� Δci
Δt

or in the limit of very small Δt

r ¼ 1

vi
� dci
dt

: ð16:7Þ

The rate density describes the change of concentration of a certain substance per

unit of time (under the conditions mentioned above, which are a homogeneous

system having a constant volume as well as only one reaction taking place and

no exchange of substances with the environment). When the reaction runs

forward, the quantity r is positive for all the substances participating—whether

they are reactants or products. This is so because the concentration of the reactants

decreases (dci< 0) and we divide by vi< 0. r is negative when the reaction runs

backward.
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Let us take a look at one final example of this, ammonia synthesis, which is

very important to industrial applications. We assume a closed system at constant

volume:

N2 þ 3H2 ! 2NH3 or 0! �1N2 � 3H2 þ 2NH3:

We then obtain for rate density r

r ¼ � dcN2

dt
¼ �1

3

dcH2

dt
¼ þ1

2

dcNH3

dt
:

The procedures for heterogeneous reactions are less uniform. Depending upon the

application, the conversion rate can be related to various quantities, for example, for

processes related to membranes

• To the membrane surface,

• To the amount of bound enzyme there,

• To the amount of pores in the membrane,

• To the amount of available carrier molecules, etc.

In closing, a fewwords about the concept of “reaction rate.” Because homogeneous

reactions at almost constant volume—possibly a reaction in a beaker or flaskwhere the

volume of solution remains almost unchanged in a reaction process—often get

the most attention, the difference quotient Δci/Δt or the differential quotient dci/dt
for a product i or the quotient�Δci/Δt or�dci/dt for a chosen reactant i is defined as
the reaction rate. These quantities are closely related to our rate density, differing

only by the factor 1/|vi|, but due to this difference they are dependent upon the

substances and therefore not useful for our purposes. This quantity does not come

into question as a general measure for conversion rate because, for example, in

reactions between pure substances such as Feþ S! FeS the concentrations of all

substances remain constant even though the amounts vary, or in reactions between

gases the concentrations can vary as a result of compression or expansion alone

without any conversion taking place at all. For this reason, we will avoid the ambig-

uous term “reaction rate” and use the quantities introduced above.

16.4 Measuring Rate Density

Introduction When making a kinetic investigation of a reaction, its stoichiometry

must first be determined and possible side reactions must be identified. Because the

rate density is proportional to temporal change of concentration of the substances

involved in the reaction, at least when the reaction is homogeneous and the volume

is constant, the concentrations of reactants and products must be determined at

various times during the course of the reaction. Because the rates of disappearance

and formation of chemical species are related to each other, the measurement of the
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change of concentration of one of the reactants or products suffices. The tempera-

ture of a reaction mixture must be kept constant during the entire time of reaction

due to the temperature dependence of chemical reactions (think of the slowing of

biochemical processes of food in a freezer).

As we have seen, chemical reactions take place in time intervals that range from

a fraction of a second to millions of years. The speed interval to be considered is just

as great. For this reason, the experimental methods for determining rate density can

vary greatly from case to case. The basic problem in analyzing reacting systems is

that their composition is constantly changing and we do not have unlimited time to

carry out an analysis. Depending upon the speed at which a reaction runs and the

method used for analysis, there are different approaches for acquiring kinetic data.

Slow Reactions When investigating a slow reaction, a small sample of the reacting

mixture can be taken to instantly determine the concentration of the reaction

partners chemically by, for example, titration or gravimetry. This is called

real-time analysis. As an example, we will investigate the decomposition of

trichloroacetic acid by decarboxylation into chloroform according to

CCl3�COOHjw! CCl3Hjgþ CO2jg:

(see Experiment 16.7).

Physical analytic methods such as optical or electric measurement methods can

be used as well. One must always make certain, though, that the total volume of a

mixture does not change much. The sampling and analysis must also take place

quickly in relation to how long the conversion takes. If this is not possible, the

reaction continuing to take place in the sample must be stopped in some way,

possibly by diluting or cooling.

Direct measurement of concentration by utilizing some physical characteristic of

the reaction mixture is much more practical than taking and analyzing small

samples. If, for example, one of the reaction partners is a gas, the total volume

can change during the reaction taking place in a container under constant pressure

(possibly air pressure). The progress of the reaction can be followed by measuring

the change in volume over time. Let us consider the reaction of zinc with an acid

(Experiment 16.8), where hydrogen is produced and zinc is dissolved:

Experiment 16.7 Measuring rate density
by titration: A trichloroacetic acid

solution is poured into slightly alkalized

boiling water. The concentration of the

acid left in the reaction mixture after a

certain time interval can be determined by

titrating a sample with a sodium hydroxide

solution. When the titrated solution is

transferred into test tubes, the reaction

process can be followed by observing the

fill level. As the acid concentration

decreases, so does the amount of sodium

hydroxide that needs to be added.
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Znjsþ 2Hþjw! Zn2þjwþ H2jg:

The volume of the hydrogen gas can be measured easily.

Other useful characteristics for analysis are the pressure in a gas reaction at

constant volume, the refraction index, or the electric conductivity. If a reaction

changes the number or type of ions in a solution, its progress can be monitored

utilizing conductivity. As a result of hydrolysis of tertiary butyl chloride for

example, tertiary butanol is produced along with H+ and Cl� ions. The H+ ions,

in particular, strongly raise the solution’s conductivity (Experiment 16.9):

CH3ð Þ3C�Cljlþ H2Ojl! CH3ð ÞC�OHjwþ Hþjwþ Cl�jw:

A disadvantage of the methods mentioned above is their lack of specificity

because, for one thing, all particles in the gas phase contribute to the change in

volume. Therefore, molecular specific characteristics are better suited than charac-

teristics related to the entire system. One method of measurement that is often

applied in kinetics is photometry, the measurement of the absorption intensity of

light in a given spectral range. The strength of absorption or transparency for light

at a certain wavelength is a measure for the concentration of the reaction partner in

Experiment 16.8 Volumetric
determination of conversion:
Hydrochloric acid is trickled onto zinc

granules. The hydrogen gas produced by

this is caught pneumatically in a

measuring cylinder or eudiometer. Water

is used to trap the gas in the cylinder, and

the graduation allows the change of gas

volume to be measured.

Experiment 16.9 Conductometric
determination of conversion: A
conductivity meter with a double platinum

electrode is used for measuring

conductivity. (We will go into

conductivity and measuring it in more

detail in Chap. 21.) Conductivity is

temperature dependent so the use of a

thermostat is recommended. To start the

reaction, a known amount of tertiary butyl

chloride is pipetted into the demineralized

water in the measuring cell to start the

reaction.
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question. When, for example, the reaction of a potassium permanganate solution

with oxalic acid in a sulfuric acid solution is investigated (Experiment 16.10),

2 MnO�4 jwþ 5 C2O
2�
4 jwþ 16 Hþjw! 2 Mn2þjwþ 10 CO2jgþ 8 H2Ojl;

its progress can be followed by measurement of absorption in the visible range

because the permanganate ion is colored.

Fast Reactions Chemists have lately become interested in especially fast reactions

and great progress has been made in investigating them. We consider a reaction

to be fast when the complete process takes less than about 1 s to occur. Special

methods have been developed for these kinetic analyses. In the flow method, the
reaction mixture does not remain in the reaction vessel over a longer time, as it does

with the static methods discussed above, but flows through the reaction volume.

The moment the reactants enter a mixing chamber, they are very quickly and

thoroughly mixed. At that point the reaction starts; it progresses while the mixture

is flowing through the outlet tube.

The distance covered by the reaction mixture in the tube is a measure of the time

elapsed since the start of the reaction. If we observe the reaction at different

positions along this tube using, for example, a moveable spectrophotometer, we

see the mixture at different times of the reaction. The temporal coordinate of the

reaction process is thereby mapped onto the spatial coordinate along the flow tube.

When highly efficient mixing chambers are used, the flow tube technique is

applicable for fast reactions with reaction times down to the millisecond range.

A disadvantage of the flow method is that relatively large volumina of the

reaction mixture are necessary. Consumption of substances is especially great in

very fast reactions because the flow rate needs to be very high so that the reaction

process can be spread over a long enough length of the outlet tube. The “stopped-
flow method” lets us avoid this disadvantage. Here, as well, the reactants are mixed

Experiment 16.10 Photometric monitoring of the progress of a reaction: A green filter is placed

in front of a flashlight and the light is allowed to fall through a cuvette containing the reaction

mixture. At first, the light can hardly be seen because it is almost totally absorbed by the intensely

violet permanganate ions. Only as the reaction progresses, does the light eventually turn bright

green. This is because the solution gradually loses its color. A spectrophotometer is necessary for

quantitatively recording the changes of concentration.
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very quickly and then let flow into a flow tube. However, this flow tube contains a

piston that can abruptly stop the flow as soon as a given volume (mostly around

1 cm3) is injected. The reaction then continues in the resting, well-mixed solution

and can be followed from outside spectrometrically. The filling of the observation

chamber corresponds to the sudden taking of a small initial sample of the reaction

mixture, so the “stopped-flow” technique is much more economical than the flow

method. It is especially useful in investigating biochemical reactions.

When reactions with durations of conversion shorter than 10�3 s are to be

investigated, the mixing methods we have introduced no longer apply. Relaxation
methods let us avoid the time-consuming mixing of reaction partners. Instead, they

allow us to observe how a system in equilibrium reacts to an external perturbation

of equilibrium. If, for example, parameters such as pressure or temperature are

suddenly changed, a chemical reaction must take place in order to once again

establish equilibrium. This time, however, pressure or temperature takes new

values (pressure-jump or temperature-jump method). The reaction’s return to

equilibrium, called relaxation, can be followed spectroscopically.

16.5 Rate Laws of Single-Step Reactions

Basic Principles When investigated in detail, most chemical reactions can be

broken down into different steps occurring either in sequence or in parallel.

These kinds of reactions are called multistep or composite reactions. The smallest

units involved in such an analysis are called single-step or elementary reactions.

Such reactions take place in one single step. This means that all the particles

appearing in a conversion formula react simultaneously with each other. We use

the word molecularity to indicate the number of particles of reactants involved in a

single-step reaction. When one, two, three, . . . particles interact, we speak of mono-,
di-, tri-, . . . molecular reactions.

For the beginning, it will suffice to limit our investigation to only simple types of

homogeneous reactions. We are most interested in what influence

• The concentrations (and types) of reaction partners B, B0, . . . and
• The temperature, as well as

• The presence and types of substances not appearing in the conversion formula

(catalysts, inhibitors, solvents)

have upon the rate density r. Let us take a closer look at concentration dependency

using the example of decoloration of a potassium permanganate solution by oxalic

acid in a sulfur acid solution at various dilutions (Experiment 16.11). (The reaction

itself was presented already in Experiment 16.10.)

The higher the dilution, meaning the lower the concentration of reactants, the

more slowly the reaction proceeds. Obviously, the rate density depends directly

upon the concentration.
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The equation r ¼ f cB; . . . ; Tð Þ describing the relations above is called the rate
law of the reaction. Most reactions take place in many steps, so the various

dependencies can be rather complicated. However, under certain circumstances

(certain ranges of concentration, moving away from equilibrium, etc.), there are

simple relations that allow us to write the rate law in the form of a power function,

r ¼ k Tð Þ � cbB � cb
0
B0 . . . :; ð16:8Þ

where the concentrations of reactants are usually found on the right-hand side (in rare

cases, those of a product or another type of substance not found in the conversion

formula are used). We call the exponents b, b0, . . . the order of a reaction with respect
to the individual reactants B, B0, . . . . Usually, the numbers 1 and 2 appear as

exponents, rarely fractions like 1=2 or 1=3 and even more rarely negative numbers.

If, for example, the exponent is b¼ 1, the reaction is said to be first order with respect

to substance B. If b¼ 2 or b¼ 0, which can also occur, we speak of second- or zero-

order reactions with respect to B.Moreover, it is usual to introduce an overall order of
a reaction which is given by the sum b+ b0 + . . . of the exponents of all concentrations
present. It is important to note that the exponents often do not agree with

the conversion numbers. There are several relations, such as the mass action law

where conversion numbers actually appear as exponents so that they might also be

expected to appear in the rate law. However, this is not generally the case.

The proportionality factor, i.e., the rate coefficient k, generally depends strongly
upon the conditions of the reaction, especially temperature, but also upon the types

of reactants and the reaction medium. The usual name “rate constant” does not

seem appropriate here because k is not a constant. The units of k are dependent upon
the form of the rate law, as we will see.

Experiment 16.11 Concentration dependency of rate of conversion: The same amount of

acidulated oxalic acid is poured into each of three conical cups (goblets). Potassium permanganate

solution along with a larger amount of water is added to the first goblet. The same amount of

potassium permanganate solution is added to the second goblet but with less water. The third

goblet receives only potassium permanganate solution. The three solutions decolorize from violet

to wine red and then yellow brown until they are colorless. At the same time, some bubble

formation due to the generation of carbon dioxide can be observed. The decolorizing appears

just after a short time in the third goblet, while the reaction in the first goblet takes the most time.
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Finally, we will take a brief look at the relation between the order of a reaction

and the molecularity mentioned above. Reaction orders are experimentally deter-

mined quantities while molecularity (of a reaction step) is a theoretical quantity

essential for the elucidation of a reaction mechanism. In single-step reactions,

molecularity and reaction order (as well as conversion number sum) agree with

each other because all the particles react simultaneously with each other according

to their appearance in the conversion formula. Conversely, it is not necessarily

possible to infer the molecularity of an arbitrary reaction from its order. This is

because in complex reaction processes made up of several single-step reactions,

simple rate laws might still be valid.

We will limit the following to homogeneous single-step reactions in a closed

container at constant volume. Side reactions and exchange of substances with the

environment are excluded (ξ0, ξ00, . . .¼ ξother¼ const).

First-Order Reactions Consider a single-step reaction

B! products;

which comes about through random transformations of individual particles (mean-

ing their decomposition or internal rearrangement) and is thereforemonomolecular.
Assuming that almost no backward (reverse) reaction takes place, it obeys a rate

law in which the rate density r is directly proportional to the concentration c of the
substance B at the time t:

r ¼ k � cB: ð16:9Þ

This simply means that the more particles there are, the greater the number that

transform per unit time. In this case, the rate coefficient k has the unit s�1 and

therefore the characteristic of a decay frequency. Because the exponent of the

concentration cB equals 1, we have a reaction of first order in B. Moreover, the

overall order of the reaction is equal to 1. Under the conditions that apply here

(V¼ const, ξother¼ const), we also have (see Sect. 16.3):

r ¼ � dcB
dt

: ð16:10Þ

In summary, we obtain the differential rate law

� dcB
dt
¼ kcB: ð16:11Þ

The rate density at a given time corresponds to the (negative) slope of the exper-

imentally determined cB(t) curve (Fig. 16.4). The rate density at the beginning of

the reaction (t¼ 0; initial concentration cB,0) is at its maximum value and

approaches zero as substance B is used up.
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If the rate densities r are plotted as functions of the concentration cB (Fig. 16.5),

we obtain straight lines as can be expected according to Eq. (16.9). The slope

corresponds to the rate coefficient k.
Rate densities are, however, rarely determined directly because slopes can only

be determined inexactly. It is, therefore, desirable to know the mathematical relation

between the measureable quantities, i.e., concentration and time. Important param-

eters such as rate coefficient and half-life can be calculated using them. Moreover, if

we have a relation for the concentration as a function of time, and if the initial

concentration cB,0 is given, we can predict the concentration of the substance for any
point in time. This is of great importance for industrial processes.

The starting point of our considerations is Eq. (16.11) which, mathematically

speaking, is a so-called differential equation. It is necessary to find a function cB(t)
that satisfies this equation. The following relation shows a solution,

ln
cB,0
cB
¼ kt; ð16:12Þ

that establishes the desired connection between concentration and time. An alter-

native form of Eq. (16.12) is obtained by applying the quotient rule of logarithms

Fig. 16.4 Decrease in

concentration of the

reactant over time in a first-

order reaction. The rate

density at a given time can

be determined from the

slope of the tangent (light
gray). t1/2 illustrates the
half-life (the time it takes to

reduce the concentration of

the reactant to half of its

initial value).

Fig. 16.5 Rate density

as a function of the

corresponding

concentration of

substance B.
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[see Eq. (A.1.2) in the Appendix]. However, it should be kept in mind that the

argument of a logarithmic function must be dimensionless. This means that we have

to divide by an arbitrary reference value c{ having the same dimension as cB (e.g.,

the standard concentration c� ¼ 1kmolm�3):

ln cB=c
{� �� ln cB,0=c

{� � ¼ �kt:
In order to avoid unnecessarily complicated looking formulas, we will indicate

division by a reference value with curly brackets from now on; we then obtain

ln cBf g ¼ ln cB,0f g � kt: ð16:13Þ

An alternative way of expressing this is

cB ¼ cB,0 � e�k t: ð16:14Þ

The solution’s correctness can be easily confirmed by taking the derivative:

dcB
dt
¼ �cB,0 � ke�kt ¼ �kcB:

This corresponds to the differential equation (16.11) from which we started.

Solving a differential equation—finding a formula for the desired function—simply means

transforming it so that all the derivatives disappear. This requires using integral calculus.

When we do this, we speak of the integrated rate law. Let us consider this method step by

step. First, we “separate” the variables in the initial equation

� dcB
dt
¼ kcB;

this means we rearrange the equation so that all terms with the independent variable

appear on one side and all terms with the dependent variable on the other,

� 1

cB
dcB ¼ kdt:

We then integrate on both sides of the equation between the limits t¼ 0 with

corresponding initial concentration cB,0, and an arbitrary later time t with corresponding

concentration cB:

�
ðcB

cB,0

1

cB
dcB ¼ k

ðt
0

dt:

Here, the following elementary indefinite integral that we have already applied in

Sect. 5.5 serves us well:

16.5 Rate Laws of Single-Step Reactions 417

http://dx.doi.org/10.1007/978-3-319-15666-8_5#Sec5


ð
1

x
dx ¼ lnxþ constant:

This way we can directly obtain Eq. (16.12),

ln
cB,0
cB
¼ kt;

which is the desired integrated rate law.

Equation (16.14) illustrates a characteristic of first-order reactions: the concen-

tration of the reactant decreases exponentially with time (compare dashed curve in

Fig. 16.4). The paradigm for this kind of process is radioactive decay, but all

monomolecular elementary reactions such as the rearrangement of cyclopropane

into propane in the gas phase are included in this. There are many further decom-

position reactions to be found in “classical chemistry,” such as decomposition of

dinitrogen pentaoxide N2O5 in the gas phase according to

2 N2O5jg! 4 NO2jgþ O2jg

that follow a first-order rate law even if they proceed according to a complex

mechanism, i.e., even if they are not monomolecular reactions.

With the help of relation (16.14) we can check whether we are actually dealing

with a first-order reaction. However, the logarithmic relation (16.13) is more

suitable in this case. If we do have a first-order reaction, we will obtain a straight

line when ln{cB} is plotted as a function of t (Fig. 16.6). Its slope gives us the rate
coefficient k.

Another important quantity characterizing the rate of a reaction is the half-life
t1/2 (Fig. 16.4). It gives the time that elapses until the concentration of the reactant

has been reduced by half of its initial value. Now, if cB¼ cB,0/2 and t¼ t1/2 are

inserted into Eq. (16.12), it follows that

Fig. 16.6 Determining the

rate coefficient k of a first-
order reaction by drawing

the logarithm of the

concentration of the

reactant as a function

of time.
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t1=2 ¼ ln2

k
: ð16:15Þ

The half-life for a first-order reaction is therefore independent of the initial con-

centration of the reactant.

There is an increase in the concentration of the reaction product that corresponds

to the exponential decrease of the reactant concentration. It is equal to the product

of the ratio of the conversion numbers and the decrease of concentration (cB,0� cB).
Let us consider the reaction

B! 2 D

(see Fig. 16.7). The concentration cD of the reaction product D is:

cD ¼ 2 cB,0 � cBð Þ:

When Eq. (16.14) is used instead of cB, it follows that:

cD ¼ 2 cB,0 � cB,0e
�kt� � ¼ 2cB,0 1� e�kt

� �
: ð16:16Þ

When the reaction process has completely run its course, the concentration will be

cD¼ 2cB,0 at time t¼1.

Second-Order Reactions Single-step reactions

Bþ B0 ! products;

Fig. 16.7 Temporal change

of concentration of reactant

and product in a first-order

reaction of type B! 2D.
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which result from random encounters of two particles, are called bimolecular
reactions. They follow a rate law in which r is proportional to both concentrations

cB and cB0:

r ¼ k � cB � cB0 : ð16:17Þ

This relation becomes clear when one considers that two particles of the types B and

B0 will encounter each other more often, the more B there is and the more B0 is
present. A rate law for the overall order of 2 is valid here. The rate coefficient k now
has the unit m3 mol�1 s�1.

Our analysis becomes simpler when the following conversion formula:

2 B! products

is taken as the basis. We then obtain

r ¼ k � c2B: ð16:18Þ

Taking the conversion number vB¼�2 into account, the following holds for the

rate density:

r ¼ �1
2

dcB
dt

: ð16:19Þ

The differential equation to be considered is then

� dcB
dt
¼ 2kc2B: ð16:20Þ

The relation

1

cB
¼ 1

cB,0
þ 2kt ð16:21Þ

is a solution for this equation. Solving for cB yields:

cB ¼ cB,0
1þ 2k tcB,0

: ð16:22Þ

In order to find the integrated rate law, we proceed analogously to what we do with first-

order reactions. Starting with the differential equation (16.20), we first separate the

variables:
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� dcB
c2B
¼ 2kdt:

In order to solve the equation, we will need the following standard integral (compare

Sect. A.1.3 in the Appendix): ð
1

x2
dx ¼ �1

x
þ constant:

The integration limits correspond to those of the first-order reaction, resulting in

�
ðcB

cB,0

dcB
c2B
¼ 2k

ðt
0

dt:

After integrating, we obtain

1

cB
� 1

cB,0
¼ 2kt;

from which, after transformation, Eq. (16.21) results.

When cB is plotted as a function of t (Fig. 16.8), we notice that for the same

initial concentration cB,0 and the same initial rate, the curve approaches zero much

more slowly than it would in a first-order reaction.

In order to verify that we are really dealing with a second-order reaction, we plot

1/cB as a function of t (Fig. 16.9). According to Eq. (16.21), this must result in a

straight line from whose slope the rate coefficient can be determined.

We can obtain the half-life t1/2 again by inserting the value cB,0/2 for cB:

t1=2 ¼ 1

2kcB,0
: ð16:23Þ

Fig. 16.8 Temporal

progression of a second-

order reaction (compared to

a first-order reaction).
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In contrast to a first-order reaction, the half-life depends upon the initial concen-

tration of the reactant and is not characteristic for the reaction.
The general case

Bþ B0 ! products

results in very similar relations when the initial concentrations cB,0 and cB0,0 are

identical, and both reaction partners participate equally in the reaction. The con-

version number vB now equals �1, so the factor 2 drops out from all equations and

we obtain

1

cB
¼ 1

cB,0
þ kt ð16:24Þ

for the integrated rate law. The half-life equals

t1=2 ¼ 1

kcB,0
: ð16:25Þ

If the initial concentrations of reactants B and B0 are not identical, integration will

require a partial fraction decomposition. This is why only the final result will be

shown (for the sake of completeness):

ln
cB � cB0, 0
cB0 � cB,0 ¼ cB,0 � cB0, 0ð Þkt: ð16:26Þ

Second-order reactions are relatively common. We could mention the reaction

between hydrogen and iodine to form hydrogen iodide or the decomposition of

nitrogen dioxide according to

Fig. 16.9 Determining the

rate coefficient k of a
second-order reaction by

representing 1/cB as a

function of t.
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2 NO2 ! 2 NOþ O2

as examples of reactions in the gas phase. In addition, numerous reactions in

solution such as the alkaline ester saponification

CH3COOC2H5 þ OH� ! CH3COO
� þ C2H5OH

obey this rate law as well.

There are rate laws corresponding to tri- or higher molecular reactions, in which
three or more particles must encounter each other. However, these types of reac-

tions are so rare that we do not really need to go into them separately.

Zero-Order Reactions Zero-order reactions have a rate that is independent of the

concentration of the reactant(s), i.e., they are characterized by a constant rate

density:

r ¼ k: ð16:27Þ

The decrease of the reactant’s concentration is then described by

� dcB
dt
¼ k: ð16:28Þ

The solution to this differential equation is:

cB ¼ cB,0 � kt: ð16:29Þ

Integration observing the known limits,

�
ðcB

cB,0

dcB ¼ k

ðt
0

dt;

yields the following integrated rate law:

cB � cB,0 ¼ �kt:

Such behavior is not possible in single-step reactions alone, but only when a

process that acts as a kind of “bottleneck” precedes or follows the actual reaction, a

process which runs at a constant rate or serves to keep the concentration constant.

These kinds of processes can be:

• Adsorption or desorption processes such as those playing a role in heterogeneous

catalysis,

• Diffusion processes,

• Radiation with constant light intensity in photochemical reactions,

• Dissolution processes.
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Consider, for example, the decomposition of a reactant B in a saturated solution

with excess solid solute (Fig. 16.10). The actual decomposition reaction is preceded

by the solubility equilibrium

Bjs ! Bjd

[where the dissolved form is characterized by the abbreviation jd (lat. dissolutus)].

This always keeps the concentration cB constant:

r ¼ k � cB ¼ const:ð Þ ¼ k0: ð16:30Þ

This concentration can be combined with the actual rate coefficient k to produce a

new rate coefficient k0 so that the order is lowered. In this case, the term pseudo-
order may be used.

A pseudo-order can occur when reactions take place in dilute solutions where the

solvent (possibly water) simultaneously functions as the reaction partner. Because

there is a great excess of it, the solvent concentration remains almost constant in

comparison to the other substances and can, in turn, be included in the rate

coefficient.

Fig. 16.10 Decomposition

reaction of a reactant B in a

saturated solution with

excess solid solute as

example of a (pseudo-)

zero-order reaction.
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Chapter 17

Composite Reactions

Kinetic measurements show that the simple rate laws known from the last chapter

are often not sufficient for a correct description of the temporal course of a reaction

or the composition of a reaction mixture. Many reactions take place by mechanisms

that involve several elementary steps. Three fundamental types of composite

reactions are discussed in this chapter: opposing or equilibrium reactions, parallel

reactions, and consecutive reactions. Composite reactions not only play a large role

in industrial applications (e.g., heterogeneous catalysis) but are also very important

in nature (e.g., enzyme reactions).

17.1 Introduction

Kinetic investigations have shown that the simple rate laws we have learned up

until now are often not enough for describing a reaction process over time or the

composition of a reaction mixture. This tells us that even reactions that can be

described by simple overall conversion formulas often proceed according to more

complicated mechanisms. These complex reactions can be divided into three basic

types:

• Opposing or equilibrium reactions,

• Parallel reactions (also called competitive or side reactions),

• Consecutive reactions.

These basic types can also appear in combinations, such as consecutive reactions

with preceding equilibrium.

Composite reactions not only play a large role in industrial applications (e.g.,

heterogeneous catalysis) but are also important in nature (e.g., enzyme reactions).

In the following derivations, we will limit ourselves to processes where all the

substances are distributed homogeneously in a region whose volume is more or less

constant.
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17.2 Opposing Reactions

Until now we have assumed that in a reaction

Bþ B0 þ . . .!þ1 Dþ D0 þ . . .

the reactants B, B0, . . . are always completely converted into the products D, D0, . . ..
However, homogeneous reactions are never complete, but run only until the

chemical potentials of both the reactants and products are equal. Because μ(c)
tends toward �1 for c! 0, neither of the substances can totally disappear. This

can be interpreted as follows: in a backward (also called reverse) reaction (–1)

belonging to the forward reaction (+1) introduced above, the substances B, B0, . . .
can be produced from the substances D, D0, . . . :

Dþ D0 þ . . .!�1 Bþ B0 þ . . . :

The total rate density r which can be observed macroscopically is a result of the

difference of rate densities of the forward and backward reactions:

r ¼ rþ1 � r�1: ð17:1Þ

In elementary reactions, we expect the following rate laws for the rate densities of

the forward and backward reactions:

rþ1 ¼ kþ1 � cB � cB0 � � � � and r�1 ¼ k�1 � cD � cD0 � . . . ; ð17:2Þ

so that we obtain:

r ¼ kþ1 � cB � cB0 � � � � � k�1 � cD � cD0 � . . . : ð17:3Þ

k+1 and k�1 are the rate coefficients for the forward and backward reaction,

respectively. At the beginning of the reaction, the rate density is much higher in

the forward direction because there is little or no end product present. However, it

falls along with decreasing concentration of the reactants. At the same time, the rate

density in the backward direction increases along with the continuously increasing

concentrations of the products. The total rate density continues to drop until it

reaches a value of zero:

r ¼ kþ1 � cB,eq: � cB0, eq: � . . .� k�1 � cD,eq: � cD0, eq: � . . . ¼ 0: ð17:4Þ

In this state of equilibrium, both forward and backward reactions occur at the same

rate. In this case, we speak (incorrectly) of a dynamic (instead of the correct kinetic)
equilibrium (compare Sect. 6.3, last paragraph). Outwardly, the total reaction has

ceased and the equilibrium concentrations no longer change. Because of
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kþ1 � cB,eq: � cB0, eq: � . . . ¼ k�1 � cD,eq: � cD0, eq: � . . .

we have

cD,eq: � cD0, eq: � . . .
cB,eq: � cB0, eq: � . . . ¼

kþ1
k�1
¼ K

○

c ð17:5Þ

in equilibrium.

The ratio of the rate coefficients corresponds to the conventional equilibrium

constant that we were introduced to in Sect. 6.4. Therefore, Eq. (17.5) is nothing

more than the mass action law derived on the basis of another concept than what we

used so far. Such simple kinetic derivations are only possible for elementary

reactions or reactions that obey at least a rate law of the corresponding order.

There is no such limitation, though, for the matter dynamical derivation [Eqs. (6.19)

and (6.21)].

If the rate coefficient of the forward is much higher than that of the backward

reaction (k+1� k�1) and therefore K
○ � 1, equilibrium is strongly shifted toward

the side of the products. Conversely, if k+1� k�1 and therefore K
○ � 1, it will

strongly favor the reactants.

The reaction of hydrogen with iodine to form hydrogen iodide,

H2 þ I2 ! 2 HI;

which was investigated in detail by the physical chemist Max Bodenstein in 1894,

can be described as an opposing reaction. Correspondingly, its equilibrium constant

can be determined by measuring the formation and decomposition rates of the

hydrogen iodide (although this is not a bimolecular reaction but a reaction mech-

anism of greater complexity).

When investigating the time dependencies of concentrations, we will limit

ourselves to the simplest case, a reaction of the type

B !
þ1

�1
D

in which both the forward and backward reactions obey a first-order rate law. Some

examples of such equilibrium reactions are isomerizations like the transition of α-D-
glucose into β-D-glucose in an aqueous solution (Sect. 6.3). The following is valid

for the forward reaction:

rþ1 ¼ kþ1cB; ð17:6Þ

and correspondingly, for the backward reaction:
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r�1 ¼ k�1cD: ð17:7Þ

If we assume that at time t¼ 0, the initial concentration of the reactant B is cB,0, and
that there is no product, meaning cD¼ 0, then stoichiometry tells us that for every

moment during the reaction,

cB þ cD ¼ cB,0: ð17:8Þ

For the decrease of concentration of B, we obtain

� dcB
dt
¼ r ¼ rþ1 � r�1 ¼ kþ1cB � k�1cD ð17:9Þ

or after inserting cD according to Eq. (17.8)

� dcB
dt
¼ kþ1cB � k�1 cB,0 � cBð Þ ¼ kþ1 þ k�1ð ÞcB � k�1cB,0: ð17:10Þ

Calculating the integrated rate law is rather complicated, so only the end result will

be given here (it can be easily proven by taking the derivative):

cB ¼ k�1 þ kþ1 � e� kþ1þk�1ð Þt

kþ1 þ k�1
cB,0: ð17:11Þ

The following is then valid for cD:

cD ¼ cB,0 � cB ¼ cB,0 � k�1 þ kþ1 � e� kþ1þk�1ð Þ t

kþ1 þ k�1
cB,0 or

cD ¼
kþ1 1� e� kþ1þk�1ð Þ t� �

kþ1 þ k�1
cB,0: ð17:12Þ

The behavior over time of the concentrations of both reaction partners is deter-

mined by both the rate coefficients of the forward and the backward reaction. In a

graphic representation (Fig. 17.1), our expectations concerning the form of the

functions are fulfilled. As time progresses, the concentrations increasingly approach

their equilibrium values. We can determine what these are by finding the limit for

t!1, taking into account that e�x! 0 is valid for x!1:

cB,eq: ¼ k�1
kþ1 þ k�1

cB,0 ð17:13Þ

and

428 17 Composite Reactions



cD,eq: ¼ kþ1
kþ1 þ k�1

cB,0: ð17:14Þ

The form of the functions becomes clearer when we rearrange Eq. (17.12) with the

help of Eq. (17.14) and abbreviate the sum (k+1 + k�1) to k. We then obtain:

cD ¼ cD,eq: � cD,eq: � e�kt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ΔcD tð Þ

:

The termΔcD(t) describes the difference between the instantaneous concentration cD
and the final value cD,eq.: it decreases exponentially with a half-life of t1/2¼ ln2/k.

For substance B, we correspondingly have:

cB ¼ cB,eq: þ cB,0 � cB,eq:
� � � e�k t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔcB tð Þ
:

The difference between the instantaneous concentration cB and the final value cB,eq.
also decreases exponentially and with the same half-life as in the case of D. The two

curves are therefore mirror images of each other.

If the rate coefficient of the forward reaction is noticeably higher than that of the

backward reaction, meaning k+1� k�1, then Eq. (17.10) transforms into the famil-

iar Eq. (16.11) for first-order reactions. In this case, the equilibrium reaction can be

described by a simple rate law. Moreover, at the beginning of the equilibrium

reaction, when it is far away from equilibrium, the reaction can be treated as one-

sided process because the rate of the backward reaction is very small due to the very

low product concentration.

Fig. 17.1 Time dependence

of substance concentrations in

opposing reactions.
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17.3 Parallel Reactions

Identical reactants can undergo simultaneous reactions leading to different prod-

ucts. These kinds of reactions are called parallel, competitive, or side reactions.
We will look at the simple case of two parallel monomolecular elementary

reactions 1 and 2:

D      
B               .

D´ 
2

1

The individual rate densities are

r1 ¼ k1cB and r2 ¼ k2cB; ð17:15Þ

and collectively, therefore:

r ¼ r1 þ r2 ¼ k1cB þ k2cB: ð17:16Þ

The decrease in concentration of B can be described by

� dcB
dt
¼ r ¼ k1cB þ k2cB ¼ k1 þ k2ð ÞcB ¼ kcB; ð17:17Þ

where the rate coefficients k1 and k2 can combine into one coefficient k. By
integrating, we obtain analogously to Eq. (16.4),

cB ¼ cB,0e
�k t ¼ cB,0e

� k1þk2ð Þ t: ð17:18Þ

If k is the same, the change of concentration of the reactants is independent of the

number of products formed.

The formation of the product D satisfies:

dcD
dt
¼ r1 ¼ k1cB: ð17:19Þ

Inserting Eq. (17.18) yields:

dcD
dt
¼ k1cB,0 e

�k t: ð17:20Þ

After separating the variables and then integrating while taking the initial condition

cD¼ 0 at t¼ 0 into account, we obtain:
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ðcD
0

cDdcD ¼ k1cB,0

ðt
0

e�k tdt:

While the calculation on the left-hand side of the equation does not pose much

difficulty, integrating the nested function on the right needs a bit more skill. The

result for the change of concentration over time of product D is:

cD ¼ k1
k
cB,0 1� e�k t

� �
; ð17:21Þ

and correspondingly for product D0:

cD0 ¼ k2
k
cB,0 1� e�k t

� �
: ð17:22Þ

In the case of the integral

ðt
0

e�k tdt

it is a good idea to choose the function nested inside as the new variable (substitution rule)
(Appendix A1.3):

g tð Þ ¼ �k t ¼ z:

By taking the derivative we obtain

g0 tð Þ ¼ dz

dt
¼ �k:

The integration limits must be adapted to correspond to the substitution so that, in the end

ðz
0

ez � �1
k
dz ¼� 1

k

ðz
0

ezdz ¼ �1
k
ez � 1ð Þ

is the result, whereby the standard integralð
exdx ¼ ex þ constant

has served us well.

Figure 17.2 graphically illustrates the time dependency of the individual sub-

stance concentrations.
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The various products compete proportionally to their rate coefficients for the

reactant concentration:

cD : cD0 ¼ k1 : k2: ð17:23Þ

The ratio of products is therefore time independent. The fraction of a product is

higher, the greater the corresponding rate coefficient is. The fastest of the parallel

reactions determines the main product.

Parallel reactions can be differently influenced by various reaction conditions

such as change of temperature, addition of catalysts, or the choice of appropriate

solvents. This can result in differing product proportions.

Let us consider the example of chlorination of toluene:

The rate coefficient for the electrophilic substitution at the benzene nucleus

(reaction 1) is strongly raised by polar solvents at low temperatures and by using

catalysts (Lewis acids such as FeCl3), where almost only o-chlorotoluene (or p- and
m-chlorotoluene) is produced.

In contrast to this, reaction 2 is strongly accelerated by high temperatures and

UV radiation, resulting in benzyl chloride as the main product.

Fig. 17.2 Time dependence

of substance concentrations

in parallel reactions with

k1< k2.
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17.4 Consecutive Reactions

Basic Principles Reaction products often do not result from single-step reactions

of the starting substances but from consecutive elementary reactions via more or

less stable intermediate substances (I).

Let us consider as the simplest case a series of monomolecular elementary

reactions. We will ignore any backward reactions:

B!1 I!2 D:

The corresponding rate laws are:

r1 ¼ k1cB and r2 ¼ k2cI: ð17:24Þ

The following is valid for the decrease of reactant B:

� dcB
dt
¼ r1 ¼ k1cB:

This equation is identical to Eq. (16.11). By integrating we obtain:

cB ¼ cB,0e
�k1t: ð17:25Þ

As for every first-order reaction, the concentration of reactant B decreases expo-

nentially in the course of time.

The intermediate substance I is formed by reaction 1 and then decomposed in the

subsequent reaction 2, so that

dcI
dt
¼ r1 � r2 ¼ k1cB � k2cI: ð17:26Þ

This equation is more difficult to solve, so only the result is shown:

cI ¼ k1
k2 � k1

cB,0 e�k1t � e�k2t
� �

: ð17:27Þ

Formation of product D is then described by:

dcD
dt
¼ k2cD: ð17:28Þ

The concentration of D can also be determined by mass balance:
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cD ¼ cB,0 � cB � cI: ð17:29Þ

Then we obtain:

cD ¼ cB,0 � cB,0e
�k1t � k1

k2 � k1
cB,0 e�k1t � e�k2t

� � ð17:30Þ

or

cD ¼ cB,0 1� k2e
�k1t � k1e

�k2t

k2 � k1

� �
: ð17:31Þ

These rather complicated relations are illustrated in the following by plots for

different proportions of rate coefficients k1 and k2 (Fig. 17.3):
We find

• The greater the rate coefficient k1 is, the faster the concentration of reactant B

will decay exponentially to zero.

• The concentration of intermediate substance I goes through a maximum that will

be the lower, the greater the ratio k2/k1 is.

Fig. 17.3 Time dependence of substance concentrations in consecutive reactions for (a)

k1¼ 0.1 s�1, k2¼ 0.01 s�1, (b) k1¼ 0.01 s�1, k2¼ 0.005 s�1, (c) k1¼ 0.01 s�1, k2¼ 0.1 s�1.
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• The rate density rD for product formation is proportional to the concentration of I

[Eq. (17.28)]. At the beginning, it equals zero because there is no intermediate

substance present yet. A noticeable formation of product D begins only after a

certain start-up time (induction period). Induction periods are characteristic of

consecutive reactions. The formation rate density of D grows with increasing

concentration of I until the maximum value cI,max is attained, and then begins to

fall. Correspondingly, the cD(t) curve is s-shaped where the inflection point

appears at the point of time where cI and, therefore, rD have attained their

maxima.

Rate-Limiting Step In the limit of k1� k2 (Fig. 17.3a), the reactant B almost

entirely converts to I, before any subsequent reaction of I to D occurs. The

approximations cI,0� cB,0 and k1cB� 0 can be used for the decomposition of the

intermediate substance I. Equation (17.26) is simplified to:

� dcI
dt
¼ k2cI: ð17:32Þ

Integrating yields:

cI ¼ cI, 0e
�k2t

or because of cI,0� cB,0,

cI ¼ cB,0e
�k2t: ð17:33Þ

Because cB is almost totally used up upon onset of the actual formation of the

product (cB� 0), the following is valid for concentration cD:

cD � cB,0 � cI; ð17:34Þ

and therefore,

cD ¼ cB,0 1� e�k2t
� � ð17:35Þ

(dashed line in Fig. 17.3a). Formation of the product D is then determined by the

“slow” reaction 2 with its much lower rate coefficient k2. The time-dependent

concentration cD now corresponds to that of a first-order reaction (compare Sect.

16.5).

Of course, we can come to the same conclusions by taking the condition k1� k2,

in the form of k2 � k1 � �k1, and e�k1t � e�k2t, into account in Eqs. (17.27) and

(17.31).

In general, the slowest step determines the total rate of a consecutive reaction.

This can be compared to a convoy of automobiles where the slowest one determines

17.4 Consecutive Reactions 435

http://dx.doi.org/10.1007/978-3-319-15666-8_16#Sec5


how fast everyone travels. Kinetically speaking, when the rate coefficients differ

from each other by at least one order of magnitude, we refer to a rate-limiting step.

Steady-state Approximation In the reverse limit of k2� k1, the intermediate

substance I converts almost instantaneously into product D, which tells us that I

has a low concentration and a relatively short life span. We call this a very reactive
intermediate substance. After a short induction period, the low concentration of I

does not change much in the course of time (see Fig. 17.3c) compared to the

concentration changes of the other reaction participants. It can therefore be con-

sidered to be nearly constant (quasi steady state). Hence:

dcI
dt
� 0: ð17:36Þ

This method for deriving approximate solutions for kinetic equations, known as

steady-state approximation, was first introduced by the German physicochemist

Max Bodenstein. It is very helpful in simplifying complicated kinetic relations.

Applied to Eq. (17.26) the result is

dcI
dt
¼ k1cB � k2cI � 0: ð17:37Þ

Formation and decomposition rate densities of I are, as expected, approximately the

same. Therefore, the result for formation of product D is

dcD
dt
¼ k2cI ¼ k1cB ð17:38Þ

or after inserting the concentration cB from Eq. (17.25)

dcD
dt
¼ k1cB,0e

�k1t: ð17:39Þ

Integration once again proceeds according to the substitution method described in

Sect. 17.3. By taking the initial condition cD¼ 0 at t¼ 0 into account, we obtain the

following relation:

cD ¼ cB,0 1� e�k1t
� � ð17:40Þ

(dashed line in Fig. 17.3b). In this case, the slow first reaction having the rate

coefficient k1 determines the formation of the reaction product.
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Here, as well, the results are identical to the approximations of the exact

solutions of (17.27) and (17.31) for k2� k1, but were obtained by much simpler

mathematical methods.

There are numerous examples of consecutive reactions such as radioactive decay

series, hydrolyses of dicarboxylic acid esters or tertiary alkyl halides, as well as

nitrations of aromatics. Conversions of gases on catalyst surfaces are also examples

of this.

Chain Reactions Chain reactions where reactive intermediate substances (chain
carriers such as atoms, free radicals, or ions) are responsible for the permanent

repetition of steps are consecutive reactions of a special type. We distinguish the

following elementary steps in a chain reaction:

• Chain initiation: Formation of chain carriers,

• Chain propagation: Reaction of chain carriers with reactant molecules while

forming new chain carriers,

• Chain termination: Recombination of chain carriers.

The resulting rate laws are often rather complicated and exhibit fractional reaction

orders.

An example of a chain reaction is the formation of hydrogen chloride from

chlorine and hydrogen gas which proceeds explosively while producing intense

heat (chlorine–hydrogen reaction). Reactive chlorine atoms that we will call radi-

cals due to their unpaired electron (indicated by a dot) are formed during dissoci-

ation of Cl2 molecules when energy is added, possibly by a flash of light or by

heating:

Chain initiation: Cl2 ! 2 Cl�:
They initiate the actual chain:

Chain propagation:
Cl� þ H2 ! HClþ H�,
H� þ Cl2 ! HClþ Cl�:

In order to achieve the termination of the chain, a collision partner X is necessary.

This might be the wall of the reaction vessel or a nonreactive molecule to withdraw

the released energy:

Chain termination:
Cl� þ Cl� þ X! Cl2 þ X*,
H� þ H� þ X! H2 þ X*ð Þ,
H� þ Cl� þ X! HClþ X*ð Þ:

The elementary steps in the parentheses are unimportant. A large vessel surface

obviously lowers the rate of the chain reaction, because chain termination is

facilitated by it. The effect of tetraethyl lead that was used as an anti-knock agent

in fuels is based on this principle. A porous layer of lead oxide forming on the walls

of the pistons in the combustion engine (along with added chain terminating

reagents) reduces “knocking,” a premature ignition of the fuel–air mixture.
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If a chain carrier attacks a molecule that was produced earlier in the reaction,

another chain carrier will be formed, but the formation of product is slowed. In this

case, we speak of an inhibition reaction. Here is an example of formation of

hydrogen bromide from the elements that also proceeds as a chain reaction:

Inhibition:
H� þ HBr! H2 þ Br�;
Br� þ HBr! Br2 þ H�ð Þ:

Polymerization of unsaturated organic compounds (monomers) is a special type
of chain reaction. In a process of breaking of multiple bonds, new monomers

continuously attach to the radical or ionic chain carriers. An example of this is

the cationic polymerization of vinylchloride into polyvinylchloride (PVC):

.
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Chapter 18

Theory of Rate of Reaction

Everyday experience demonstrates that, most of the time, the rate of a chemical

reaction will increase with a rise in temperature. Food, for example, will spoil outside

on a hot summer day much faster than it would in a refrigerator. A simple but

remarkably accurate relationship for the temperature dependence of reaction rates

was empirically found by the Swedish chemist Svante Arrhenius in 1889. The

interpretation of the parameters in the Arrhenius equation leads to the development

of the idea that when reactants convert into products, they must go through an

activated state that requires a characteristic energy. This was the basis of two of the

most important theories of reaction rates, collision theory and transition state theory.

Collision theory, which only suffices for simple gas phase reactions, essentially views

reactants as if they were particles with a certain kinetic energy. Reactions can only

occur if two molecules collide with a minimum energy necessary for rearranging the

bonds. Matter dynamic considerations play no role here. In transition state theory, a

more comprehensive theory that can, in principle, be applied to every possible type of

reaction, the rate coefficient is expressed in terms of a difference in chemical

potentials between the reactants and a kind of “transition substance” (“ensemble”

of all activated complexes), a so-called “potential barrier.” For a deeper understand-

ing, the transition state can be interpreted on a molecular level with the help of

potential energy surfaces and the “motion” of molecules through these surfaces.

18.1 Temperature Dependence of Reaction Rate

Everyday experience demonstrates that, most of the time, the rate of a chemical

reaction will increase with a rise in temperature. Food will spoil outside on a hot

summer day much faster than it would in a refrigerator. The decolorization of

potassium permanganate by oxalic acid in a sulfuric acid solution (a reaction we

already discussed in Chap. 16) is also strongly accelerated by heating (Experiment

18.1).
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An old rule of thumb tells us that a temperature rise of 10 K doubles the rate of

reaction. This rule is valid for slow reactions that take between 1 s and 1 a, at not too

high temperatures. The actual factor lies between 1.5 and 4.

As we hinted at in Sect. 16.5, the influence of temperature upon the reaction rate

is included in the rate coefficient k. Toward the end of the nineteenth century, the

Swedish chemist Svante Arrhenius proposed after comparing the experimental

kinetic data available at that time that in most reactions, the rate coefficient changes

exponentially with the reciprocal of temperature:

k Tð Þ ¼ Ae�B=T : ð18:1Þ

The parameters A and B that Arrhenius considered to be independent of temperature

are characteristic of a reaction.

Arrhenius was also the first to interpret this result, especially the parameter B. In
a chemical reaction, the arrangement of atoms in the starting substances must be

transformed into that of the products. In this process, preexisting bonds are broken

in order to form new ones. One can imagine that a certain minimum energy, the

molar (Arrhenius) activation energy WA of the given reaction, is necessary for this.

By expanding the exponent by the gas constant R, Eq. (18.1) can be rewritten as

follows:

k Tð Þ ¼ k1e�WA=RT Arrhenius equationð Þ: ð18:2Þ

(k1 corresponds to the parameter A and WA/R corresponds to the parameter

B [in all, the exponent is then dimensionless, as it should be]).

The pre-exponential factor k1 (also called the frequency factor) mathematically

represents the limiting value of the rate coefficient for very high (and in practice

impossible to realize) temperatures above 104 K (T!1) (Fig. 18.1a).

In order to get an impression of the magnitude of activation energy in chemical

reactions, let us return to the rule of thumb mentioned above. According to this rule,

a temperature increase of 10 K from, for example, T1¼ 298 K to T2¼ 308 K, should

result in a doubling of the rate coefficient. This means that

Experiment 18.1 Temperature
dependency of rate of reaction: Potassium
permanganate and acidulated oxalic acid

solutions are brought to three different

temperatures (in an ice bath at about 0 �C,
at room temperature, and in a water bath

of about 50 �C). Starting with the coldest

oxalic acid solution, the potassium

permanganate solution of the same

temperature is added to each one. The

hottest solution loses color by far

the fastest.
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2 � k2
k1
¼ k1e�WA=RT2

k1e�WA=RT1
¼ exp

WA

R

1

T1

� 1

T2

� �
:

Taking the logarithm and solving for WA yields:

WA ¼
ln
k2
k1
� R

1

T1

� 1

T2

� ln2� 8:314 Jmol�1 K�1

1

298 K
� 1

308 K

� 53 kJmol�1:

In fact, the values for molar activation energies of many common reactions lie

between 30 and 100 kJ mol�1.
In order to find the molar activation energy for a certain reaction from experi-

mental data, it is a good idea to first take the logarithm of Eq. (18.2):

ln
k

k{
¼ ln

k1
k{
�WA

R
� 1
T
:

k{ represents an arbitrarily chosen reference value with the same dimension as

k or k1, which is introduced because the argument of a logarithm must be

dimensionless. We will try to keep the equation from becoming unnecessarily

complicated by using curly brackets to indicate the division by the reference

value (compare Sect. 16.5):

ln kf g ¼ ln k1f g �WA

R
� 1
T
: ð18:3Þ

If ln{k} is now plotted as a function of 1/T (Arrhenius diagram) (Fig. 18.1b), we

obtain a straight line from whose slope�WA/R, the molar activation energy results.

The value of ln{k1} and, therefore, k1 can be determined from the axis intercept

after extrapolation to 1/T¼ 0.

Fig. 18.1 (a) Temperature dependency of the rate coefficient k, (b) Determination of the activa-

tion energy WA from the Arrhenius diagram.
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The steeper the straight line is, meaning the higher the activation energy of the

reaction, the stronger its temperature dependency will be. When the temperatures of

reactions with low activation energies (around 10 kJ mol�1) are raised, they only

accelerate a little. The rates of reactions with high activation energies (around

60 kJ mol�1) increase strongly with rising temperatures.

If ln{k}drawn as a function of 1/T is not properly straight, the activation energy

can be determined from the slope of the tangent for a section of the curve. WA is

then no longer constant but changes with temperature. In general, reactions with

complex reaction mechanisms such as chain reactions, enzyme reactions, and

heterogeneous catalytic reactions exhibit non-Arrhenius behavior. In the following,

however, we will avoid such complications.

The Arrhenius equation is important for its development of the idea that when

reactants convert into products, they must go through an activated state that requires

a characteristic energy. This was the basis of two of the most important theories of

reaction rates, collision theory and transition state theory.

18.2 Collision Theory

A deeper understanding of what the Arrhenius parameters mean can be developed

from the collision theory of bimolecular gas phase reactions, which itself is based

upon kinetic gas theory. The requirement for two particles like H2 and I2 or two HI

particles to react with each other is that they encounter each other, i.e., that they

collide. It has been found, however, that the frequency of collisions in an ideal gas

(which is of the order of 1035 m�3 s�1 at standard conditions) by far surpasses the

number of particles present so that any gas phase reaction should actually occur in

fractions of a microsecond. However, this is not the case. Experimentally deter-

mined half-lives are much longer. For example, the reaction of H2 and I2 has a half-

life of t1/2¼ 2� 10�2 s and that of 2 HI has a half-life of t1/2¼ 5� 10�3 s.

Obviously not all collisions lead to reactions, but only those where the collision

energy has exceeded a certain minimum value necessary for rearranging the bonds

(Fig. 18.2).

Let us now consider a bimolecular gas phase reaction between particles of types

A and B from this point of view. The more particles of one type there are, the more

often collisions will occur between the different particles A and B. The collision
frequency or “collision density” ZAB, meaning the number of collisions between A

and B (given in mol) per volume and time is directly proportional to the concen-

trations of both types of particles:

ZAB � cA � cB or ZAB ¼ const: � cA � cB: ð18:4Þ

The amount of energy available at collision for breaking the bonds of two particles

A and B does not depend upon their speed υ, but upon their speed relative to each

other. The way in which they encounter each other (centrally or grazingly) and how
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they rotate or oscillate in the process also plays a role. It is plausible to note that as

υ increases, the other velocities also increase. We were introduced to Maxwell’s
distribution of speeds in Sect. 10.4. It indicates the frequency of gas particles per

velocity interval dυ as a function of velocity υ. It is relatively easy to now convert

the velocity distribution into a distribution of kinetic energy wkin ¼ 1=2mυ
2

(Fig. 18.3).

The shaded area underneath the corresponding curve indicates the number of gas

particles having at least the kinetic energy wmin. As the temperature rises, the

proportion of particles capable of reacting strongly increases. This is mainly due

to the so-called “Boltzmann factor” e�w=kBT in the energy distribution (compare

Sect. 10.5). This factor remains when we integrate over the distribution between

w¼wmin and w¼1. Neglecting the modifying prefactors which enter into this, we

obtain a surprising result. The fraction q of all particles having a minimum energy

of wmin at temperature T equals

Fig. 18.3 Frequency of gas

particles per energy interval

dw as a function of kinetic

energy wkin at various

temperatures. The factor

e�w=kBT with w¼wkin

stemming from Maxwell’s
distribution is responsible

for the rapid fall of the

distribution curve as energy

increases.

Fig. 18.2 (a) Absence of

reaction due to too little

collision energy, (b)

Successful reaction in a

collision with high enough

energy (for the sake of

simplicity, we will imagine

that all colliding particles—

despite their differences in

size—are equally heavy and

equally fast).
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q ¼ N w  wminð Þ
Nges

� e�wmin=kBT or ð18:5Þ

q � e�Wmin=RT ; ð18:6Þ

where the energy Wmin refers to one mol of particles.

We obtain the rate density r by multiplying the collision density by the fraction

of collisions having sufficient energy:

r ¼ q � ZAB ¼ e�Wmin=RT � const: � cA � cB: ð18:7Þ

When this expression is compared to the second-order rate law (Eq. 16.17),

r ¼ k � cA � cB;

the rate coefficient k turns out to be:

k ¼ const: � e�Wmin=RT : ð18:8Þ

This relation has exactly the same form as the Arrhenius equation (18.2). The

Arrhenius parameters can then be interpreted as follows:

• The activation energy WA corresponds to a minimum energy necessary for

breaking existing bonds and forming new bonds when two gas particles collide.

• The pre-exponential factor k1 is the maximum possible rate coefficient that

could be attained if all collisions were successful.

To illustrate this, we will take a look at what fraction of gas particles would even

be capable of reacting at room temperature when we assume a typical activation

energy of 50 kJ mol�1:

q ¼ exp �WA

RT

� �
¼ exp � 50� 103 Jmol�1

8:314 Jmol�1 K�1 � 298 K

� �
¼ 1:7� 10�9;

meaning that fewer than two collisions in a billion can lead to a reaction.

The magnitudes of pre-exponential factors k1, which can be calculated with the
help of kinetic gas theory, generally agree with empirically determined values.

However, experiments can also show values that are smaller by one or two orders of

magnitude than the ones that are calculated. Obviously, a collision of two gas

particles with sufficient energy alone, does not guarantee a successful conversion.

The particles must be favorably oriented toward each other in order to make a bond

between particular atoms possible (Fig. 18.4).

We introduce the so-called steric factor p	 1 in order to correct for this

effect. Its numeric value indicates the fraction of collisions having favorable

orientation. The more complicated the particles participating in the reaction are,
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the higher the requirements for orientation will be and therefore the smaller

p will be.

Let us summarize: There are essentially three things necessary for a chemical

reaction:

• Collisions of gas particles A and B,

• Excess energy for rearrangement of bonds (activation),

• Favorable mutual orientation at collision (orientation).

18.3 Transition State Theory

Collision theory, which only suffices for simple gas reactions, essentially views

reactants as if they were particles with a certain kinetic energy. Matter dynamic

considerations play no role here. In the following, we will get to know a more

comprehensive theory that can, in principle, be applied to every possible type of

reaction.

We can imagine breaking up even single-step reactions into still smaller partial

steps. A chemical reaction, as we imagine in atomic models, is a rearrangement of

certain molecular components. Atoms making up a certain kind of molecule can be

rearranged and combined into new kinds of molecules. For this to happen, existing

bonds between atoms must be loosened or broken to form new ones. In a single-step

process, all the participating atoms must be present at the same time. They form a

so-called “transition complex” where the rearrangement takes place. This “com-

plex” is a labile entity, a kind of transition state that has a well-defined composition

and its own chemical potential, just like any substance. The configuration in the

transition state is richer in energy than the particles at the beginning or end of the

reaction. The atoms or molecules need to be in an “activated” (energy rich) state in

order to form this configuration of higher energy. Therefore, the transition complex

is also called activated complex.

Fig. 18.4 Collision with (a) unfavorable orientation, (b) favorable orientation.
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It takes a certain amount of time to pass through the transition state. This can be

regarded as a finite but extremely short lifetime. Despite their short lifetime, these

complexes behave like a kind of particle and the ensemble of these labile “transition

particles” behaves like a substance that is present in very small concentration in the

reaction mixture. In order to emphasize this aspect, we will call the ensemble of

such short-lived particles a transition substance and mark it by the symbol ‡.

Formation of a transition substance can be expressed by the following formula:

Aþ BC ! A � � � B � � � C
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{‡

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Activation

! ABþ C:

The first half-step of this transformation, which requires energy input, is called

the activation or activation reaction. We will use the index ‡ for the quantities

belonging to this process as we do with all quantities related to the transition

substance. In the second half-step, the transition substance decays into the products

(this latter step is monomolecular).

The extremely short lifetime and maximum energy distinguish between this

transition substance and the unstable intermediate substance of a consecutive

reaction (compare Sect. 17.4). The latter has “normal” bonds and can be isolated

and investigated, while the former cannot.

An optimally realistic description of transition substances based upon quantum

mechanics form the core of the theory developed in the 1930s by Henry Eyring,

Meredith Gwynne Evans, and Michael Polanyi.

A transformation of the starting substances into the final products must always

proceed over a transition substance whose instantaneous amount n‡ as well as

lifetime τ‡ will determine the rate of the reaction:

ω ¼ _ξ ¼ n‡
τ‡
: ð18:9Þ

In a homogeneous reaction, we obtain the rate density r from ω, as usual, by

dividing the equation above by volume V (where c‡¼ n‡/V is the concentration of

the transition substance):

r ¼ c‡
τ‡
: ð18:10Þ

According to considerations stemming most likely from Eyring in 1935, it can be

assumed approximately that the amount of the short-lived transition substance

present in a reaction mixture will reach a value that would form in equilibrium
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with the reactants. (This assumption is not strictly valid because there is no classical

chemical equilibrium when the transition substance constantly decays into the

products. We therefore also speak from the quasi-equilibrium assumption.)

However, if we proceed on the assumption that the transition substance exists in

close to equilibrium concentration, this quantity can easily be calculated using the

mass action law. For the reaction above we have:

K
○

‡ ¼ c‡=c
�

cA=c�ð Þ � cBC=c�ð Þ : ð18:11Þ

If we solve the equation for the concentration c‡ of the transition substance, we

obtain

c‡ ¼ K
○

‡ � c� � cA
c�
� cBC
c�

: ð18:12Þ

Eyring used quantum mechanics to derive a very simple expression for the lifetime

of the transition state:

τ‡ ¼ h

kBT
: ð18:13Þ

Here, h is Planck’s constant with h¼ 6.626� 10�34 J s and kB is Boltzmann’s
constant with kB¼ 1.381� 10�23 J K�1.

Equation (18.13) only deals with the decay of the transition substance into the

products, because the reverse decay into the reactants is compensated for by

constant formation.

The resulting order of magnitude of τ‡ at room temperature is τ‡ [¼
6.626� 10�34 J s/(1.381� 10�23 J K�1� 298 K)] � 10�13 s. The lifetime is,

indeed, very short. As temperature rises, it gets even shorter. One of the reasons is

that, on average, the transition state will be passed through more quickly because of

greater particle velocity in a warmer environment. The best aspect of this equation

is that all transition substances behave identically, independent of their type.
Because we lack the theoretical background to reason in detail about the two

Eyring assumptions—namely those concerning concentration and lifetime of tran-

sition substances—we treat them as basic assumptions that can be justified by

comparing their conclusions in retrospect with those of experience. But what are

these conclusions?

By combining the equations for c‡ and τ‡, we obtain the desired rate density r,
which we will contrast with the corresponding rate law for a second-order reaction:

18.3 Transition State Theory 447



ð18:14Þ

In the framed expression, the equilibrium number K
○

‡ is the only quantity that is

dependent upon the type of reaction. As usual, this can be calculated from the

relation

K
○

‡ ¼ exp
A
○

‡

RT

 !
¼ exp

μ
○

A þ μ
○

BC � μ
○

‡

RT

 !
¼ exp �Δ‡μ

○

RT

 !
: ð18:15Þ

The rate coefficient k then results in

k ¼ κ‡
kBT

h
� exp A

○

‡

RT

 !
¼ κ‡

kBT

h
� exp �Δ‡ μ

○

RT

 !
ð18:16Þ

with the dimensional factor κ‡ ¼ c�ð Þ�1: We will call the quantity �A‡ ¼
Δ‡μ ¼ μ‡ � μA � μBC the activation threshold of the reaction and its special

value �A○ ‡ ¼ Δ‡ μ
○
its basic value. Note that because we assume equilibrium, we

have A‡ ¼ 0. However, the basic value A
○

‡ is not equal to zero.

This conclusion is rather remarkable. It tells us that the reaction resistance and

therefore the individual differences in the rates of different reactions are solely

dependent upon the height of the potential threshold Δ‡ μ
○

between the starting

substances and the transition substance. In order to clarify this statement, the

potentials, i.e., the basic values μ
○

and the actual values μ, will be represented

graphically (Fig. 18.5).

Only in the case of basic potentials does an activation threshold Δ‡ μ
○
appear in

the form of a step ascending from the left toward the transition substance. The

threshold is equal to zero in the case of actual potentials because of the assumed

equilibrium:

Aþ BC  ! ‡ Δ‡μ ¼ 0:

The potential thresholdΔ‡ μ
○
determines the conversion rate of the reaction proceed-

ing from left to right. The higher the activation threshold is, the lower the rate

coefficient, and the slower the reaction. The rate decreases very quickly, i.e.,

exponentially, with the height of the activation threshold.

When the chemical potential μ
○

‡ of the transition substance is at the level

μ
○

A þ μ
○

BC of the reactants, meaning the activation threshold Δ‡ μ
○

is zero, and

all the substances are present in standard concentration, then our formula will

yield
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r0 � 1

10�13 s
� 103 molm�3 � exp 0ð Þ � 1� 1 ¼ 1016 molm�3 s�1

for the rate density r at normal laboratory temperatures. Since there are 103 mol of

each substance in a cubic meter, they would be used up in 10�13 s if these

conditions prevailed and the rate were constant.

The conversion rate will slow to one-tenth whenΔ‡ μ
○
grows by the decapotential

μd¼RT ln10¼ 5.71 kG [remember that exp(�RT ln10/RT)¼ 10�1] and it will take
10 times as long for the reactants to be used up. Repeatedly elevating the threshold

by RT ln10 will lengthen the duration of reaction each time by a factor of 10. After

13 such steps, the duration of reaction will have reached about 1 s which is

perceivable under normal laboratory conditions. The dividing line between fast
and slow reactions can be drawn here. Past the twentieth step, the duration of

reaction reaches 1 year, sorely taxing the stamina of even the most patient chemists.

Such reactions should be considered to be inhibited because almost no conversion

occurs within the period of observation.

In order to demonstrate the relation with Arrhenius’s proposition k¼Ae�B/T,
it is enough to apply the usual linear approximation A‡ ¼ A‡, 0 þ α T � T0ð Þ for
A‡ Tð Þ:

Fig. 18.5 Potential diagram

for describing conversion

rates. Basic values

(black bars) and actual

values (gray bars) are
represented for starting

substances and final

products as well as for the

transition substance ‡.

(The level of the basic

values of μ was arbitrarily

chosen as the zero point of

the potential scale).
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K
○

‡¼ exp
A
○

‡

RT
¼ exp

A
○

‡,0þα � T�T0ð Þ
RT

¼ exp
ðA○ ‡,0�α �T0Þ=R
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{�B

T
� expα

R

zffl}|ffl{A*

¼A*e�B=T

and consequently,

k ¼ κ‡
kBT

h
A*e�B=T :

A* corresponds to Arrhenius’s parameter A, except for the factor κ‡ � kBT/h. B is a

constant as assumed by Arrhenius, but A is not. However, compared to the factor

e�B/T, this temperature dependency is almost unnoticeable and can be ignored if the

temperature range is not too large.

The temperature coefficient α , which we can write more elaborately as α
○

‡, 0,

agrees numerically with the activation entropy, so α ¼ α
○

‡, 0 ¼ Δ‡S
○

0. It is negative

because the transition state ‡ is better ordered and lower in entropy than what it was

formed from: separated, swarming, turbulent particles. When a certain orientation

for the colliding particles is required, it is necessary for the transition state to be less

arbitrary and have more order so that the activation entropy is more strongly

negative. In collision theory, we used the steric factor to describe this characteristic.

18.4 Molecular Interpretation of the Transition State

Although the short characterization of the transition state in the last section would

basically suffice for our future purposes, a more detailed description is often desired

for a deeper understanding.

The rearrangement of atoms during a reaction does not take place all at once but

extends over a certain time span. In the process, reactant particles change into

product particles. We have seen an example of this in the reaction

A þ BC ! AB þ C

where it is assumed that the centers of mass of all three atoms always lie in a straight

line. During the reaction, when A approaches BC, the bond between B and C is

loosened. (A very simple image for this bond might be a spring.) At the same time, a

new bond between A and B starts to form. As the reaction progresses, it goes

through the aforementioned transition state (activated complex) A���B���C which

finally breaks apart forming molecule AB and atom C:
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Aþ BC ! A � � � B � � � C|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
‡

! ABþ C:

We can imagine both starting substances and final products to be extreme

arrangements of the activated complex. In the initial state, atoms B and C are at

bonding distance and atom A is far away. Figure 18.6a shows the potential energy

Wpot as a function of distance rBC between the nuclei in molecule BC (compare

Sect. 11.1). It rises sharply when the bond is compressed relative to the equilibrium

distance rBC,eq. (rBC< rBC,eq.). If the bond is elongated (rBC> rBC,eq.), Wpot

increases as well due to subsiding of attractive forces. It asymptotically approaches

a limiting value corresponding to the energy of the completely separated atoms B

and C (dissociation energy). The potential energy for various distances between the

nuclei of molecule BC can be calculated using quantum mechanics. An analogous

diagram can also be created for molecule AB (Fig. 18.6b).

The minimum of potential energy at equilibrium distance rBC,eq. (the always

present zero-point energy of the vibrational ground state will not be taken into

consideration here) represents the initial state, meaning that atom A is at a great

distance from molecule BC. If atom A approaches molecule BC, which will decay

during the reaction, then for each instant of this rearrangement, the positions of the

molecular components participating in the triatomic stretched “molecule” A���B���C
can be characterized. In this way, we end up with a very large number of interme-

diate states for the reaction. Each possible intermediate state, including the initial

and final states, has a certain potential energy assigned to it that is dependent upon

the geometry of the given arrangement, meaning the distances rAB and rBC of the

atoms. The energy can, in principle, be calculated quantum mechanically. If this

energy is plotted in the z direction as a function of the distances of the nuclei (rAB in
the x and rBC in the y direction), a three-dimensional representation will result

Fig. 18.6 Potential energy Wpot of (a) molecules BC and (b) molecules AB for large distances

from the third partners A or C. rBC,eq. and rAB,eq. are the equilibrium distances.
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(potential energy surface; Fig. 18.7). The preceding diagrams 18.6a and b form the

vertical side-walls. To make the energy surface clearer, the points of identical

energies have been connected at given intervals by lines of constant energy (contour

lines).

Initially, when A is still very far away, molecule BC is in a deep energy trough

(“bottom of the valley” on the left). If atom A approaches molecule BC, the

potential energy rises as a result of loosening of the BC bond (“movement up in

the valley”) until a maximum (“valley-ridge inflection point” or “saddle” ‡) is

obtained that equals the energetically labile transition state A���B���C. As the

distance between A and B continues to decrease, Wpot will fall again due to

formation of the AB bond in the direction of the “bottom of the valley” on the

right. At the same time, C moves away from the AB molecule that is forming. In the

final state of the reaction, we have the molecule AB in a deep energy trough

(equilibrium state rAB,eq.) as well as the separated atom C.

A clearer image of this might be gained by imagining the three-dimensional

potential energy surface (comparable to a mountainous landscape in which eleva-

tion corresponds to potential energy) to be projected upon the plane spanned by the

rAB and rBC axes. This produces a two-dimensional contour diagram that is com-

parable to a topographic contour map (Fig. 18.8a).

Although the initial and the final states of the reaction are uniquely specified, the

path by which the rearrangement converts the initial state into the final state is not.

It is easy to imagine that the individual molecular components might take very

different paths to achieve their stable final arrangements. There are any number of

Fig. 18.7 Surface of

potential energy for a linear

particle system

A � � �rAB B � � �rBC C.
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reaction paths the process of rearrangement may take. In general, there is at least

one instantaneous arrangement upon every path whose energy exceeds the energy

of the initial and final states. This state is usually called a transition or activated
state. Hence, there is at least one activated state with maximum energy on every

reaction path. Among all the reaction paths, one path stands out for which the

maximum of energy is minimal. The corresponding atomic arrangement is the

transition state in the strict sense (for short, the transition state).

An image that can make this clearer is a hiker crossing some mountains to reach

a destination leaving from a starting point. Upon each path the hiker could take, he

will find himself at a point of maximum elevation (potential energy) as he crosses

the ridge of the mountains. Among these possible paths, there are those that go over

a pass. The summit of the pass with the lowest elevation corresponds to the

transition state (in the strict sense).

The potential energy contour map (Fig. 18.8a) shows three of the many possible

paths leading from BC to AB. If we follow the change of potential energy along

these paths with the help of an energy profile (Fig. 18.8b), we see that the path

leading over the saddle point (the transition state in the strict sense) is the most

economic because it requires the least energy. This special minimum energy path is

called reaction coordinate. It is important to keep in mind that the transition state

(in the strict sense) itself corresponds to an energy maximum along this coordinate,

differentiating it from an intermediate product. The course of molecular energies of

the reaction is reflected in the course taken by the chemical potentials (compare

Fig. 18.5).

Fig. 18.8 (a) Contour map of the energy surface for the linear particle system A���B���C with three

possible paths of reaction A+BC!AB+C, (b) Corresponding energy profiles.
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Chapter 19

Catalysis

Reactions can not only be accelerated by raising their temperatures, but also by

addition of small amounts of a substance, a so-called catalyst, which is not

consumed during the process. An everyday example of a catalyst is the exhaust

gas catalytic converter in motor vehicles with gasoline engines, which eliminates

combustion pollutants by accelerating subsequent reactions. But why do reactions

proceed faster with a catalyst than without a catalyst? The catalyst lowers the

reaction resistance by opening up more easily accessible bypasses with smaller

activation thresholds. Enzymes, the vitally essential biological catalysts, and the

kinetics of their reactions with structurally suitable substrates are discussed in

detail. An enzyme can be compared to a lock into which only the proper key

(substrate) can fit (key–lock principle). This is where the “key” for the exceedingly

high substrate specificity of an enzyme lies. The chapter ends with the discussion of

the technically important heterogeneous catalysis.

19.1 Introduction

We saw in the last chapter that reactions can be accelerated by raising their

temperatures. Catalysis is an alternative method for raising the rate of a chemical

reaction. The substance which is added in a small amount for this purpose and

which is not consumed during the process is called a catalyst. The catalyst lowers
the reaction resistance by opening up more easily accessible bypasses. An everyday

example of a catalyst is the exhaust gas catalytic converter in motor vehicles with

gasoline engines, which eliminates combustion pollutants by accelerating subse-

quent reactions.

There are various types of catalysis. If all the substances participating in a

catalytic process form a uniform mixture, i.e., if they are all in the same phase
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(gaseous or liquid), it is called a homogeneous catalysis. In heterogeneous catalysis,
the catalyst and the reaction mixture are in different phases. Most heterogeneous

catalysts are solid substances, while the substances in the reaction mixture are either

gaseous or liquid. This type of catalysis plays an important role in industrial appli-

cations. Enzymatic catalysis lies somewhere in between the two. Enzymes are pro-

teins, i.e., macromolecules with diameters of between 10 and 100 nm, that are present

colloidally in a solution and are usually much larger than the substrate molecules.

Therefore, this is also referred to as microheterogeneous catalysis.
As an example, let us investigate the different types of catalysis using decom-

position of hydrogen peroxide into water and oxygen (Experiment 19.1):

2 H2O2jw! 2 H2Ojlþ O2jg:

Without adding a catalyst, the decomposition rate at room temperature is immea-

surably small. Fe3+ ions function as a homogeneous catalyst, whereas solid man-

ganese dioxide (MnO2) works as a heterogeneous catalyst. For enzymatic catalysis,

we use the enzyme catalase.

Catalase is a biocatalyst that specializes in destroying H2O2 that is poisonous for

cells. As we have seen in our experiment, it also possesses the highest efficiency.

We use the term autocatalysis if a catalyst is formed only during the reaction. An

example of this is the reaction of permanganate with oxalic acid,

2 MnO�4 jwþ 5 C2O
2�
4 jwþ 16 Hþjw! 2 Mn2þjwþ 10 CO2jgþ 8 H2Ojl;

which we have already discussed in Chaps. 16 (Experiment 16.11) and 18 (Exper-

iment 18.1) from different points of view. The Mn2+ ions that are produced

represent the catalyst. The role these Mn2+ ions play can be easily demonstrated

by adding them right at the beginning of the reaction (Experiment 19.2).

A catalytic reaction can also be inhibited or even stopped by adding a substance

called an inhibitor. Such substances are used up in the process—in contrast to

Experiment 19.1 Decomposition of H2O2 by
various catalysts: When a solution of iron(III)

chloride is added to the hydrogen peroxide

solution, a noticeable development of oxygen can

be observed after a while. When manganese

dioxide is added instead, the reaction proceeds

much faster than in the first case and also produces

fog. (Therefore, the expression “genie in a bottle”

is used for a variation of this experiment.) When

the enzyme catalase is added, a vigorous reaction

producing foam occurs.
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catalysts. When a catalyst is irreversibly deactivated, one refers to catalyst poison or
enzyme poison. The transition between inhibition and poisoning is, however, smooth.

Let us take another look at the strongly accelerated oxygen producing decomposition

of hydrogen peroxide by the enzyme catalase (Experiment 19.3). Potatoes contain this

enzyme. Its effect, which can be seen in the formation of gas bubbles, can be totally

inhibited by pretreating the potato with a mercury chloride solution. Themercury ions

alter the structure of the protein and destroy its enzyme function.

An everyday example of this is the poisoning of the previously mentioned

exhaust catalyst in motor vehicles by the heavy metal lead (also compare

Sect. 19.4). This is why lead-free fuels must always be used.

19.2 How a Catalyst Works

The Baltic German chemist and Nobel Prize laureate Wilhelm Ostwald found

already in the 1880s that by bonding to a catalyst in catalytic reactions, intermediate

substances are produced that subsequently decompose, thereby regenerating the

catalyst. A simple chemical reaction such as

Experiment 19.2 Autocatalysis: Decolorization
of the solution begins slowly but accelerates as

the reaction proceeds because more and more

Mn2+ ions are produced. If the Mn2+ ions are

added right at the beginning of the reaction, the

decolorization begins immediately.

Experiment 19.3 Inhibition of the enzyme
catalase: A piece of potato is laid in deionized

water while another piece of nearly identical size

is put into a mercury(II) chloride solution. Two

Petri dishes are then filled with a solution of

hydrogen peroxide and the two pieces of potato

are put into the Petri dishes with tweezers.

Immediately, bubbles start collecting on the

surface of the untreated piece of potato, due to

development of oxygen. The piece of potato

treated with the HgCl2 solution hardly produces

any gas.
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Aþ B ! P

can therefore be influenced by a catalyst C as follows:

Cþ A !
1
CA;

CAþ B !
2
Cþ P:

Why then, do reactions proceed faster with a catalyst (that changes the reaction

mechanism) than without a catalyst? The rate coefficient k of the uncatalyzed

reaction that proceeds via the activated complex ‡,

Aþ B ! ‡ ! P;

is determined only by the activation threshold Δ‡ μ
○
for a given temperature (Sect.

18.3). The lower the activation threshold is, the faster the reaction will run. The

higher rates of formation and decomposition of the intermediate substance CA—

compared to those of the uncatalyzed reaction—can therefore only be explained by

lower activation thresholds (Fig. 19.1):

Cþ A ! ‡0  ! CA;

CAþ B ! ‡00  ! Cþ P:

Fig. 19.1 Influence of catalyst C upon the activation thresholds.
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In the Arrhenius diagram, the lowering of the activation threshold of the catalyzed

reaction is seen by the considerably smaller slope of the corresponding straight line

(Fig. 19.2).

The decomposition of hydrogen peroxide, for instance, requires a molar activa-

tion energy of 76 kJ mol�1, which is why it runs so slowly at room temperature.

When the enzyme catalase is added, the threshold reduces to 6 kJ mol�1, leading to
extreme acceleration. However, the activation energy applies formally to the entire

changed mechanism and cannot be attributed to an individual reaction step as

before.

The temporal behavior of catalyzed reactions is determined by the rate of the

elementary reactions 1 and 2. To simplify matters, we will assume that the interme-

diate substance CA is formed slowly and decays quickly (k2� k1 orΔ‡0 μ
○

> Δ‡00 μ
○

as in Fig. 19.1); we encountered a similar case in Sect. 17.4 dealing with consecutive

reactions. The first step, the formation of CA, determines the overall rate:

r ¼ � dcA
dt
¼ dcP

dt
¼ k1cCcA ¼ kCcA: ð19:1Þ

Ideally, the concentration cC of a catalyst will remain constant during the reaction,

so there will be a linear relation between the rate density r and cA. cC can be

combined with the rate coefficient k1 to form a new coefficient kC. This means that a

reaction of the (pseudo) first order results (Fig. 19.3, catalyzed reaction).

We find a totally different temporal behavior in autocatalysis. Here, the catalyst

is formed only during the reaction. Let us look at the following simple example:

A þCð Þ ! Pþ C þCð Þ:

Fig. 19.2 Arrhenius

diagram of the uncatalyzed

and catalyzed reactions.
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The rate law is then:

r ¼ � dcA
dt
¼ dcP

dt
¼ kcCcA: ð19:2Þ

At the beginning of the reaction, the concentration of catalyst and the rate density are

both extremely small. As the formation of catalyst proceeds, the reaction rate also

increases until consumption of A finally overcompensates for the increase of

C. Consequently, the rate density passes through a maximum (Fig. 19.3, autocatalysis).

As we can see in Fig. 19.1, the presence of a catalyst in a reaction has an

influence upon the activation threshold Δ‡μ
○
, but not upon the drive A

○
. The

drive is determined exclusively by the difference of the potentials of the reactants

and products. Because the catalyst drops out of the overall conversion formula, it

can play no role in determining this value. This also means, though, that a reaction

which cannot run spontaneously due to a negative drive cannot be forced by using a

catalyst because its drive does not change. Along with the drive, the equilibrium

constant is the same for uncatalyzed and catalyzed reactions. Catalysts do not shift

the position of chemical equilibrium, but make that it is achieved faster via an easier

path for the reaction.

Catalysts not only accelerate a chemical reaction, but also help to channel a

reaction to produce a desired product. This selectivity does not contradict the fact

that the position of equilibrium itself cannot be influenced. It only means that under

given circumstances, one of the many possible spontaneous parallel reactions will

be considerably more accelerated than the others. For example, the process of

hydrogenating carbon monoxide (Fischer–Tropsch synthesis) can produce metha-

nol (catalysts: ZnO, Cr2O3) or unsaturated hydrocarbons (catalyst: Fe), depending

upon the type of catalyst used and the reaction conditions. In contrast, we use the

term specificity if a catalyst only affects certain substances. Very high selectivity

and specificity can be found in reactions catalyzed by enzymes. These are very

important reactions that will be gone into more detail in the next section.

Fig. 19.3 Time

dependency of rate density

in an uncatalyzed, a

catalyzed, and an

autocatalyzed reaction.
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19.3 Enzyme Kinetics

Enzymes Enzymes, the biocatalysts in living organisms, are almost exclusively

proteins and belong to the group of macromolecules with diameters of between

10 and 100 nm. It is not the entire molecule that is catalytically effective, though.

The actual location of a reaction is limited to a small area, the so-called active site.
This can be made up of proteinogenic amino acids or nonprotein components

(cofactors) such as heme or adenosine triphosphate. The spatial structure of the

enzyme around the active site only allows adsorption of a structurally suitable

substrate (i.e., the reactant in an enzyme-catalyzed reaction). An enzyme can be

compared to a lock into which only the proper key (substrate) can fit (key–lock

principle). This is where the “key” for the exceedingly high substrate specificity of
an enzyme lies. The formation of the enzyme substrate complex alters the electron

density distribution in the substrate and enhances its ability to continue reacting. A

converted substrate molecule then leaves the active site, making space for the next

unaltered one. This is how the enzyme urease catalyzes the hydrolysis of urea in

which ammonia and carbon dioxide are produced:

NH2ð Þ2COjwþ H2Ojl! CO2jwþ 2 NH3jw:

An alkaline milieu forms due to the ammonia:

2 NH3jwþ CO2jwþ 2 H2Ojl! 2 NHþ4 jwþ HCO�3 jwþ OH�jw:

For this reason, the sudden change in color of the indicator phenolphthalein can

serve to verify the hydrolysis (Experiment 19.4). Structurally related substances

like thiourea, methylurea, or semicarbazide are, by contrast, not decomposed. This

is an indication of the high substrate specificity of urease.

Michaelis–Menten Kinetics The cornerstone for describing simple enzyme-

catalyzed reactions was laid in 1913 by the collaboration of the German biochemist

and physician Leonor Michaelis and the Canadian physician-scientist Maud

Leonora Menten. The proposed mechanism assumes that from enzyme E and

Experiment 19.4 Catalytic decomposition of
urea by the enzyme urease: Some phenolphthalein

solution is added to solutions of urea and

methylurea which are then divided into three

goblets (see illustration). The urea solution in the

first glass serves as the reference. A suspension of

urease is added to the second goblet containing

urea solution as well as to the third containing

methylurea solution. After a short while, the urea

solution has a violet color due to formation of

ammonia, while the methylurea solution remains

unchanged.

19.3 Enzyme Kinetics 461



substrate S, an enzyme–substrate complex ES can be formed quickly and revers-

ibly. Then, in a slow step, this complex decomposes irreversibly into a product P

while the enzyme regenerates. The term irreversible means that the backward

reaction of E and P into ES can be ignored (because cP ~ 0 and/or k�2� k2):

Eþ S !
k1

k�1
ES!k2 Eþ P:

The term pre-equilibrium can also be used in this case. While Michaelis and

Menten assumed that the subsequent reaction creating the product runs so slowly

as to be negligible, the extended approach of George Edward Briggs and John

Burdon Sanderson Haldane (1925) also takes the rate coefficient of the consecutive

reaction into account.

The following is valid for the rate density in product formation:

r ¼ dcP
dt
¼ k2cES: ð19:3Þ

But how can we now obtain the required concentration of the intermediate sub-

stance cES? In order to do this, we will first set up the rate law for producing ES:

dcES
dt
¼ k1cEcS � k�1cES � k2cES: ð19:4Þ

Because the concentration of the unstable intermediate substance ES is very small

compared to the concentration of the substrate that is to be converted, a quasi-

steady state with dcES/dt� 0 can be assumed over long periods of time (compare

Sect. 17.4). We then obtain

k1cEcS ¼ k�1cES þ k2cES;

meaning that the formation of the enzyme–substrate complex takes place in a

second-order reaction having nearly the same rate as its decomposition into either

the reactants or the product following first-order kinetics. After rearranging, we

obtain the following for the desired concentration cES:

cES ¼ k1
k�1 þ k2

cEcS: ð19:5Þ

The rate coefficients can now be combined into the Michaelis constant KM (in the

Briggs–Haldane version) which is a quantity characteristic of a given enzyme and

given substrate,

KM � k�1 þ k2
k1

; ð19:6Þ
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and we obtain

cES ¼ cEcS
KM

: ð19:7Þ

The concentration cE of the free enzyme in Eq. (19.7) can be expressed by the

difference of the initial concentration cE,0 and the concentration cES of the inter-

mediate substance. Moreover, the concentration of free substrate corresponds very

closely to its total concentration because only very small amounts of enzyme are

used. We then obtain for the (steady-state) concentration of cES

cES ¼ cE,0 � cESð Þ � cS
KM

ð19:8Þ

or, after solving for cES,

cES ¼ cE,0cS
KM þ cS

: ð19:9Þ

After inserting the expression for cES into Eq. (19.3), we obtain the following for the
rate density of enzymatic catalysis:

r ¼ dcP
dt
¼ k2

cE,0cS
KM þ cS

: ð19:10Þ

This relation is called the Michaelis–Menten equation.

Initial Rate Density In order to minimize the bothersome effects of a backward

reaction of E and P into ES, of an inhibition of the enzyme by products, or of a

gradual inactivation of the enzyme, etc., we will consider the initial rate density r0,
because product concentration cP plays no role at the beginning of the reaction:

r0 ¼ dcP
dt

� �
t¼0
¼ k2

cE,0cS,0
KM þ cS,0

: ð19:11Þ

This approach is based upon the work of Michaelis and Menten. In order to

determine the initial rate density r0 as a function of initial concentration cS,0 of

substrate (at identical constant enzyme concentration), we measure the initial

increase of product concentration cp or a quantity directly proportional to cp such
as the absorption of VIS or UV radiation or the conductance. r0 corresponds to the

slope of the cP(t) curve at the beginning of the reaction, meaning at t¼ 0 (Fig. 19.4).

When the initial rate density is now represented in function of the corresponding

substrate concentration cS,0, we obtain a characteristic curve (Fig. 19.5) which we

will look into more detail in the following.
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If the substrate concentration is small (cS,0�KM), the rate density at constant

enzyme concentration cE,0 will be proportional to the substrate concentration and

the reaction will follow first-order kinetics:

r0 ¼ k2cE,0
KM

	 

cS,0: ð19:12Þ

Consequently, the plot of the initial rate density as a function of the initial substrate

concentration shows a line through the origin for very small concentrations.

As the concentration of substrate increases, the reaction order begins to take

fractional values. Finally, for high substrate concentration (cS,0�KM), the reaction

order is almost zero (i.e., r0 is no longer dependent upon cS,0). The rate density

approaches a maximum value:

r0 ¼ k2cE,0 ¼ r0,max: ð19:13Þ

Fig. 19.4 Determining the

initial rate density for

differing initial

concentrations cS,0
0 and cS,0

00

of substrate (at identical

constant enzyme

concentration).

Fig. 19.5 Dependency of

initial rate density r0 of an
enzyme-catalyzed reaction

upon the initial substrate

concentration cS,0 according
to the Michaelis–Menten

mechanism.
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Almost the entire amount of enzyme has been transformed into the ES complex and

the active sites of the enzyme are now “saturated” with substrate. In this case, the

coefficient k2 corresponds to the maximum number of substrate molecules that can

be transformed into the product by one enzyme molecule (or more exactly, by an

active site) per time unit. This number is called turnover number or molecular
activity or catalytic constant. Typical values lie between 1 and 105 s�1. The name

turnover number is unfortunate, though, since k2 represents a frequency (with unit

s�1) and not a number (unit 1).

If we take Eq. (19.13) into account, Eq. (19.10) yields a modified version of the

Michaelis–Menten equation that is valid for arbitrary substrate concentration:

r0 ¼ r0,maxcS,0
KM þ cS,0

: ð19:14Þ

An advantage of this version is that it can be applied to cases in which the molar

mass of the enzyme (and therefore its concentration) is unknown.

The Michaelis constant KM corresponds to the substrate concentration where the

enzyme works at only half the maximum possible rate, i.e., when half the active

sites are occupied. KM can also be interpreted as follows: If the rate coefficient of

product formation (k2) is much lower than k�1, which is often the case, Eq. (19.6)

simplifies to KM¼ k�1/k1. In this case, KM represents the equilibrium constant of

dissociation of the enzyme–substrate complex. It is therefore a measure of the

substrate affinity of the enzyme where low values indicate a high affinity. Typical

KM values lie between 10�1 and 10�7 mol L�1.
There is a remarkable similarity between the curve in Fig. 19.4 and the Langmuir

adsorption isotherm (Fig. 15.9). This similarity is not a purely formal coincidence,

but has a real physicochemical basis. In each case, we are dealing with the bonding

of a substance (substrate, adsorptive) on a certain number of sites (active sites,

adsorption sites) defined by experiment.

Characteristic Quantities In principle, the quantities KM and r0,max that charac-

terize an enzyme can be determined by directly fitting the Michaelis–Menten

equation to the measured data using computer supported methods of nonlinear

regression. We can simplify the analysis in a manner suggested by Hans

Lineweaver and Dean Burke in 1934 by linearizing the relation. In order to do

this, we must find the reciprocal of the Michaelis–Menten equation. After

transforming, we have:

1

r0
¼ KM

r0,max

� 1

cS,0
þ 1

r0,max

: ð19:15Þ

If we now plot 1/r0 versus 1/cS,0 (Fig. 19.6), we obtain a straight line from whose

extrapolated intersection points with the ordinate and abscissa we can determine the

values of r0,max and KM. The slope KM/r0,max can also be used to determine KM.
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The linear relation is only valid for a fixed total concentration cE,0 of enzyme. If

we change the enzyme concentration, the data points will lie along a second straight

line with a changed slope which intersects the abscissa at the same point as the

first line.

We can use the Michaelis–Menten constant KM and the rate coefficient k2 that
we determine from r0,max to compare the catalytic effectiveness of various

enzymes, or rather, the conversion of various substrates by the same enzyme. If

we limit ourselves to low substrate concentrations (cS,0�KM) that are often

encountered under physiological conditions especially with enzymes of high turn-

over number, we have according to Eq. (19.14):

r0 ¼ k2
KM

cE,0cS,0:

The quotient k2/KM represents the “apparent” rate coefficient of a second-order

reaction whose rate density is determined by the frequency of (effective) collisions

between enzyme and substrate molecules. For the same concentrations of enzyme

and substrate, respectively, the catalytic efficiency can be described by the quotient
k2/KM. With the help of the values of k2/KM, we can investigate which among

several substrates the enzyme prefers; k2/KM is therefore a measure of the substrate

specificity of an enzyme where high values indicate high specificity. Typical values

lie between 106 and 109 mol L�1 s�1. Table 19.1 is a compilation of characteristic

quantities of the enzymes urease and catalase.

Fig. 19.6 Lineweaver–

Burk diagram for two

different enzyme

concentrations cE,0.

Table 19.1 Characteristic quantities of the enzymes urease and catalase (from: Voet D, Voet JG,

Pratt CW (2002) Lehrbuch der Biochemie, 2nd edn. Wiley VCH, Weinheim).

Enzyme Substrate KM (mol L�1) k2 (s
�1) k2/KM (mol L�1 s�1)

Urease (NH2)CO 2.5� 10�2 1.0� 104 4.0� 105

Catalase H2O2 2.5� 10�2 1.0� 107 4.0� 108
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There is an upper limit for the value of k2/KM which is contingent upon the rate

of diffusion-controlled encounters of enzyme and substrate molecules, i.e., the rate

of product formation is no longer limited by the reaction rate but by the diffusion

rate. In an aqueous solution, this limiting value lies between 108 and 109mol L�1 s�1

(compare Sect. 20.2). Enzymes such as catalase that exhibit a value of k2/KM of this

order of magnitude are considered to be (almost) catalytically perfect because
(almost) every contact between enzyme and substrate leads to a reaction.

After considering enzymatic (or microheterogeneous) catalysis, we will now

take a look at the heterogeneous catalysis that is so important to industrial

applications.

19.4 Heterogeneous Catalysis

As we mentioned in the introduction, in heterogeneous catalysis, the catalyst and

the converted substances are in different phases. Catalysts in the solid state are by

far the most commonly used. They are also called contacts—especially in industrial

technology. In this case, the reaction takes place on the surface of the catalyst. An

example of this is the oxidation of acetone vapor by atmospheric oxygen on a

copper wire spiral acting as the catalyst. In the process, acetaldehyde is formed

(Experiment 19.5).

Because the accelerating effect of the solid catalyst comes from the surface

atoms, it is desirable to have the largest surface possible, meaning a high degree of

dispersion of the substance in question. In most cases, very small particles of

catalytically active material such as platinum or rhodium are applied for stability

to highly porous carrier materials with specific surfaces of several hundred square

meters per gram. Aluminum oxide, silicon dioxide, activated carbon, as well as

zeolites (crystalline aluminosilicates with numerous submicroscopic pores and

canals) are all suitable for this purpose. Examples of such supported catalysts are

Experiment 19.5 Catalysis of acetone oxidation
by copper: A copper spiral is heated by a

laboratory gas burner until all coils glow red. It is

then positioned closely over the surface of

acetone in a beaker. The processes taking place

upon the surface can be seen by the periodic

glowing of parts of the spiral. There is also the

typical stinging smell of aldehyde.
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activated carbon or quartz wool covered with highly dispersed platinum. In a

current of hydrogen, they begin to glow until the gas finally ignites (Experiment

19.6). The lighter developed by JohannWolfgang D€obereiner in 1823 is based upon
this principle.

The mechanism of heterogeneous catalysis is made up of a complex series of

individual processes:

• Diffusion of reactants toward the catalyst,

• Adsorption on the catalyst surface (The bonds in the reactant molecules can be

weakened or even broken, which facilitates the subsequent reaction.),

• Surface reaction,

• Desorption of products from the catalyst surface,

• Diffusion of products away from the catalyst.

A quantitative description of heterogeneous catalysis is very difficult because

the concentrations of the reaction partners in the adsorption layer cannot be directly

determined in most cases. In a very complicated way, they are related to the

measurable concentrations in the liquid or gas phase through the adsorption or

desorption equilibrium. This is why the mechanisms of many heterogeneously

catalyzed reactions have not yet been clarified in detail. However, common bimo-

lecular gas reactions according to

Ajgþ Bjg! Pjg

can often be divided into two principally different types:

• The Langmuir–Hinshelwood mechanism assumes that on a surface, adsorbed

neighboring fragments or atoms of reaction partners A and B react with each

other to form the product P (Fig. 19.7).

Experiment 19.6 Catalyzed gas ignition:
Hydrogen gas is passed over a small heap of

platinized activated carbon in a Petri dish or over

a pad of platinized quartz wool that is being held

with tweezers. After a short time, the catalyst

begins to glow, and the gas ignites with a gentle

bang and burns with an almost colorless flame.
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If we make the simplifying assumption that the surface reaction between the

two components represents the limiting step, the rate density for forming product

P then depends upon the number of adsorbed reactant molecules A and B and,

therefore, the corresponding degrees of coverage,

rP ¼ dpP
dt
¼ k � ΘA � ΘB;

where pP represents the partial pressure of the product.
In the simplest case of adsorption without dissociation, degrees of coverage

can be determined with the help of Langmuir isotherms.

• According to the Eley–Rideal mechanism, only component A is chemisorbed.

There is then a subsequent reaction with the free gas component B forming the

initially adsorbed product P (Fig. 19.8).

Here, as well, we will only consider the case where the surface reaction

determines the rate of reaction. Only the degree of coverage relating to compo-

nent A plays a role in the corresponding kinetic considerations, while component

B enters through its partial pressure:

rP ¼ dpP
dt
¼ k � ΘA � pB:

The most well-known type of heterogeneous catalyst is the exhaust-gas catalytic
converter found in vehicles with gasoline engines. It eliminates combustion

Fig. 19.7 Reaction of two chemisorbed components A and B to form product P (Langmuir–

Hinshelwood mechanism).

Fig. 19.8 Reaction of an adsorbed component A with the free component B (Eley–Rideal

mechanism).
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pollutants by the use of catalyzed secondary reactions. These pollutants are pri-

marily carbon monoxide CO, nitrogen oxides NOx, and unburned hydrocarbons

CxHy. The catalyst makes use of different reaction paths to convert them to the

nonpoisonous substances carbon dioxide, water, and nitrogen. The common name

three-way catalyst refers to the three most important groups of pollutants mentioned

above. The catalytically active substance is an alloy of platinum group metals,

mostly platinum and rhodium, which is dispersed finely over a fine-pored metallic

or, more commonly, ceramic honeycomb body acting as the carrier. However, in

order for the catalytic reactions to run as desired, the supply of oxygen must be

optimized. A so-called Lambda sensor is used for this. It measures the concentra-

tion of O2 in the exhaust gas and controls the optimal composition of the fuel–air

mixture going into the engine. In closing, we will look more closely at the chemism

of CO oxidation (Fig. 19.9). On platinum catalysts, this takes place according to the

Langmuir–Hinshelwood mechanism.

Fig. 19.9 Oxidation of carbon monoxide on a platinum catalyst according to the Langmuir–

Hinshelwood mechanism (strongly simplified).
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Chapter 20

Transport Phenomena

Diffusion can play an important role for the kinetics of chemical reactions in

solutions. We use that as an opportunity to discuss this process of molecular motion

more closely. The migration velocity is determined by a gradient of chemical

potential and therefore eventually by a concentration gradient. This leads us to

the quantitative description with the help of Fick’s law of diffusion. But not only

matter can be transported from one place to another but also some other properties

such as entropy or momentum. Entropy conduction is determined by the migration

of entropy down a temperature gradient and viscosity by a migration of linear

momentum down a velocity gradient. In order to carve out the commonalities and

differences of the transport phenomena discussed, they are summed up in the last

section and compared with the transport of electric charge, because the latter is the

best known of these phenomena.

20.1 Diffusion-Controlled Reactions

In order for bimolecular or trimolecular reactions to even occur, the reacting

particles must collide with each other. As we have learned, not every collision

leads to a reaction. The particles involved must bring the necessary energy for

forming the generally energy-rich transition complex, and not all of them do. The

microscopic velocity of the particles is basically the same in all states of aggrega-

tion at the same temperature. However, compared to gases, their mobility in liquids,

and especially in solids, is very low. In the extreme case of crystals, their motion is

limited to a fast oscillation around a position of rest. Only occasionally does a

switching to an interstitial site or a change of position occur. As the particles

transition from gas to solid, i.e., with increasing condensation, the frequency of

collisions and the average residence time of one particle in the neighborhood of

another rise. Gas particles colliding with each other is a very fleeting occurrence,

after which the partners immediately separate. In liquids, though, the particles
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colliding with each other are crowded by their neighbors and often remain together

for a good while.

If the activation threshold Δ{ μ
○

vanishes or is very low, just about every

encounter will lead to a reaction. Hence, it is not the height of this potential

threshold but the frequency of collisions that then determines the conversion rate.

In this case, the concentration of the transition complex can remain far below its

equilibrium value because continued supply is stalled, while decomposition con-

tinues taking place. Reactions of this kind are said to be diffusion-controlled
(or diffusion-limited) because their collision frequency is dependent upon the

diffusion rate (diffusion velocity) of the partners involved. Bimolecular reactions

in water and similarly viscous liquids are of this type if the activation threshold

sinks under the third or fourth rung of our “potential ladder,” meaning that

Δ{ μ
○
< 20 kG (see Fig. 18.2). Because diffusion in solid substances proceeds

incomparably slowly, almost all the bimolecular reactions in such an environment

are diffusion-controlled.

We will take this opportunity to discuss the transport of substances by diffusion

and the transport phenomena associated with it. Entropy transport is often closely

coupled with transport of substances so we will include it as well.

20.2 Rate of Spreading of Substances

Mobility All dissolved substances migrate under the influence of external forces.

Gravitational influences will cause them to sink; they will follow the centrifugal

force in a centrifuge or diffuse due to “chemical forces.” (In Sect. 12.2, we were

introduced to the term diffusion as spreading of substances caused by a potential

gradient and therefore essentially by differences of concentration.) There is a

unified approach that can describe all these processes. Measurements show that

the migration velocity of a substance B, or the particles it is made up of, does not

depend upon types of forces (be they mechanical, chemical, or electrical) but only

upon their magnitude. If the forces are not too great, we can assume the migration

velocity υB to be proportional to the effective force FB:

υB ¼ ωB � FB

nB
: ð20:1Þ

nB is the amount of substance B. The fact that υB is proportional to the quotient

FB/nB and not to FB makes sense because if the amount of migrating substance is

doubled, the force upon a given portion of the substance will be halved. The

migration velocity then behaves no differently than the velocity of a train of tugged

barges with the number n of barges (Fig. 20.1). We call the factor ωB the mechan-

ical mobility of substance B. The quantity has the unit
�
ms�1

�
= Nmol�1
� � ¼�

ms�1
�
= kgms�2 mol�1
� � ¼ smolkg�1.
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Mobility of particles in crystals [like for example quartz (SiO2)] at room

temperature is extremely low (Experiment 20.1).

The electrons in metals are an exception. In good conductors, they are around ten

times as mobile as gas molecules in air.

But let us now have a look at the spreading of particles in liquids or gels. In silica

gel, which is mostly made up of water, violet-colored MnO�4 ions require about

one week to move a distance of a few centimeters (Experiment 20.2). We use gel

instead of a liquid to avoid convective disturbances in diffusion.

We find similar values of diffusion velocities and relatively unified conditions in

liquids. Table 20.1 shows mobilities for various types of particles in water. The

values are valid for very small concentrations, meaning practically pure water,

Fig. 20.1 Velocity υ of a train of barges with n tugged barges to demonstrate the concept of

migration velocity υ of a substance if the amount n to be moved is increased while force F is kept

constant.

Experiment 20.1 Unevenly colored
crystals as an example of an extremely
small diffusion velocity: Even after

millions of years, amethysts, a violet

variety of quartz, can exhibit uneven

violet coloring due to diffusing Fe3+ ions.

In spite of its great age, an even

distribution has not been achieved. The

color itself results from Fe4+ ions which

are formed by irradiation of Fe3+ ions

(e.g., with naturally occurring isotopes).

Experiment 20.2 Diffusion of
permanganate in silica gel: Sodium
silicate is acidulated, whereby clear silica

gel is produced. One half of the gel is

colored by permanganate and poured into

a large test tube. The colorless half is then

also poured into the test tube. After a

week, the MnO�4 ions have already

covered a distance of a few centimeters.

The process can be followed easily using

the violet color as indicator.
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which is indicated by the index =0. (We use the slashed zero for clarity.) ω values in

other environments are presented below for comparison (Table 20.2).

Despite the low viscosity of water, the mobility of particles in aqueous solutions

is surprisingly low. The weight (force of gravity) in the Earth’s gravitational field,
for example, is much too small to evoke any noticeable effect. Only the enormous

forces in ultracentrifuges can cause an observable spreading of substances. If all

other influences could be ignored, carbon dioxide in water in the Earth’s gravita-
tional field would sink at the extremely small velocity of about 1 mm per century.

Because FB ¼ mBg ¼ nBMBg, we have:

υB ¼ ωBMBg

¼ 0:73� 10�12 smolkg�1 � 0:044kgmol�1 � 9:81ms�2

¼ 0:32� 10�12 ms�1 � 10μma�1:

In contrast, particles in gases have a high mobility. We showed this in Experiment

12.3 (spreading of Br2 in air).

Diffusion In Chap. 12, we were introduced to the driving force behind the spread-

ing of substances that we call diffusion. This is the diffusion force FB, which is

dependent upon the gradient of the chemical potential:

FB ¼ �nB � dμB
dx

:

If substance B is mobile, it will migrate in the direction of the potential gradient at a

velocity which results from combining Eqs. (12.1) and (20.1):

υB ¼ �ωB � dμB
dx

: ð20:2Þ

A flow of matter is generated in the direction of a drop in chemical potential. υB is a
(virtual) drift velocity, which results from the much faster, mostly erratic and

Table 20.1 Mobility of various kinds of particles in water. The values are valid for 298 K and for

very small concentrations.

Substance Ar CO2 D2O Na+ Cl�

ω=0 (10
�12 s mol kg�1) 0.91 0.73 1.00 0.538 0.820

ω values in other environments are presented for comparison (Table 20.2)

Table 20.2 Mobility of various kinds of particles in differing environments at a temperature of

298 K.

Substance e� (in silver) Cu (in silver) Na+ (in table salt) CO2 (in air)

ω=0 (s mol kg�1) 6� 10�8 10�41 10�35 6� 10�9
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random, actual (Brownian) molecular motion. In order to achieve a handier descrip-

tion of this process, we will introduce the following established quantities.

The throughput (of matter) is the amount of substance ΔnB passing through a

given cross-sectional area A in the time span Δt (Fig. 20.2). This includes all the
particles that are not farther away than Δx ¼ υB � Δt from area A, i.e., all the
particles inside the (dashed) cuboid with the volume A � Δx ¼ A � υB � Δt. We find

the amount of substance when we multiply this volume by the substance concen-

tration cB:

Throughput: ΔnB ¼ cB � A � υB � Δt: ð20:3Þ

We can derive other useful quantities from the throughput such as matter flux
(or current of amount of substance) JB as well as flux density (or current density)
(of matter) jB, which denotes the flux per area through which the flow passes:

Matter flux: JB ¼ ΔnB
Δt
¼ cB � A � υB; ð20:4Þ

Flux density of matterð Þ: jB ¼
JB
A

or jB ¼ cB � υB: ð20:5Þ

The relation with the chemical potential gained from Eq. (20.2) can be used for υB,
where cB � ωB appears as a kind of conductivity σB for substance B:

jB ¼ �cB � ωB

dμB
dx

with “matter conductivity” σB ¼ cB � ωB: ð20:6Þ

Law of Diffusion The flow of matter in a homogeneous environment at low

concentration cB represents an important special case. Here, the concentration,

and indirectly the position dependency of the chemical potential, can be expressed

by the mass action equation:

μB xð Þ ¼ μB,0 þ RTln
cB xð Þ
cB,0

: ð20:7Þ

Fig. 20.2 Schema of the

relationship of migration

velocity υ, concentration c,
and matter flux J or flux
density j.
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In order to obtain an expression for the potential gradient dμB(x)/dx, we must take

the derivative with respect to x at constant T. Taking the chain rule into account, we
obtain (compare Sect. A.1.2 in the Appendix):

dμB xð Þ
dx

¼ RT

cB xð Þ �
dcB xð Þ
dx

: ð20:8Þ

A few words about the calculation. The term μB,0, which is constant, drops out when taking
the derivative. The constant factor RT remains. The derivative of the logarithmic function

y ¼ lnx yields the reciprocal of its argument, meaning 1/x, whereby a constant factor there

(in this case, the factor 1/cB,0) can be omitted. The reason for this omission is simply that

ln axð Þ ¼ lnaþ lnx, and in taking the derivative, the constant expression lna disappears.

The intermediate result is RT/cB(x). According to the chain rule, we must still multiply this

result by the derivative of the “inner” function cB(x). This means multiplying by dcB(x)/dx,
as in Eq. (20.8) above.

With the help of this equation, we obtain the following expression for the drift

velocity υB and the flux density jB:

υB ¼ �ωB � dμB
dx
¼ �ωB � RT

cB

dcB
dx

or jB ¼ cB � υB ¼ �ωBRT
dcB
dx

: ð20:9Þ

The flux density is proportional to the concentration gradient. The expression ωRT
is usually abbreviated to D and called the diffusion coefficient (unit m2 s�1). This
relation was first set up in this form by the German physiologist Adolf Eugen Fick

in the year 1855:

jB ¼ �DB � dcB
dx

Fick’s firstð Þ law of diffusion: ð20:10Þ

The relation between ωB (or a corresponding quantity) and DB was only discovered

in 1908, almost simultaneously by Albert Einstein and Marian von Smoluchowski:

DB ¼ ωBRT Einstein-Smoluchowski equation: ð20:11Þ

Table 20.3 shows some values for diffusion coefficients in water.

Table 20.3 Diffusion coefficients of some substances in water at 298 K (catalase at 293 K) in the

limit of vanishing concentration. The value for water can be determined experimentally by using

H2O molecules marked with isotopes (such as H2
17O).

Substance D=0 (10
�9 m2 s�1)

Water 2.26

Hydrogen 5.11

Carbon dioxide 1.91

Acetate ion 1.29

Glucose 0.67

Catalase 0.041
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While DB in liquids at room temperature and standard pressure is of the order of

10�9 m2 s�1, the value for gases lies much higher, at around 10�4 m2 s�1. It is,
however, many orders of magnitude lower for solid substances.

The diffusion coefficient depends upon the temperature, not so much because of

the factor T appearing in Eq. (20.11), but because ωB itself is not constant. In liquids

and especially in solids, moving particles have considerable attractive forces to

overcome—meaning, there will be an activation threshold. If we assume a temper-

ature dependency with a molar activation energy WA corresponding to the Arrhe-

nius equation, we obtain

DBe e�WA=RT : ð20:12Þ

This strong temperature dependency, which is caused by the exponential expression

that is “hidden” behind ωB in the equation above, masks all the other influences

such as the linear dependency of T. For this reason, a diffusion coefficient of a

magnitude of 10�24 m2 s�1 in a solid substance at low temperatures can climb to

10�8 m2 s�1 at temperatures of 1,500 K.

Duration of Concentration Equalization In order to get an impression of how

fast a uniform distribution of substances at room temperature in a limited space can

happen, we will consider a container in which an artificial linear concentration

gradient along its largest diameter l has been created for a substance B contained in

it (Fig. 20.3). Take cB,0 as the concentration of B at uniform distribution in the

container. The concentration gradient is then dcB=dx ¼ 2cB,0=l. At the first moment

Fig. 20.3 Concentration

equalization in a container

in which a linear

concentration gradient is

initially assumed. To

achieve equalization, it is

enough to transfer the

amount of substance

n ¼ 1=2 � c0 � 1=2lð Þ � A
indicated by the gray
triangle in the lower partial

image from left to right.
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t0, the flux density jB of B is the same everywhere. The diffusion law tells us that it

is jB ¼ DB � 2cB,0=l. We assume this value to remain unchanged for a cross section

exactly through the middle of the container for a time span Δt. The amount of

substance flowing through this cross section in this time span is then

ΔnB ¼ A � Δt � jB. The amount of B flowing from left to right (in order to establish

a uniform concentration) is indicated by the dark triangle in the figure. It is exactly
1=4 of the amount of B in the container, A � l � cB,0, that is represented by the large

triangle. If ΔnB should equal this amount, then

ΔnB ¼ A � Δt � jB ¼ A � Δt � DB

2cB,0
l
¼ 1

4
A � l � cB,0 and Δt ¼ l2

8D
: ð20:13Þ

Δt roughly represents the time needed to approximately equalize the concentration

in the container. We see that the time decreases by l2, becoming very short for small

diffusion lengths. Hence, the differences in concentration equalize very quickly.

This is why for small dimensions, diffusion is a very efficient method of distribu-

tion. We see it in the exchange of substances in living cells and in the equalization

of residual differences of concentration after two different solutions have been

stirred together.

Here is an example: In liquids, low-molecular substances have a diffusion

coefficient of the order of 10�9 m2 s�1. In a red blood cell with a diameter of

about 10�5 m, the time necessary for diffusion of these substances is approximately

Δt ¼ l2

8D
¼ 10�5m

� �2
8� 10�9m2 s�1

� 10�2 s:

In normal cells having a size of about 10�4 m, the time needed isΔt� 1 s, while in a

1 L glass beaker (diameter 10�1 m), 106 s� 2 weeks are generally required. For this

reason, stirring is necessary in order to homogenize solutions in large containers.

While the container mentioned above should be closed on all sides, let us now

imagine a layer of thickness l so that a substance B can escape on either side. This

may be a plastic foil from which a plasticizer gradually diffuses. Starting on the

surface, the entire layer is gradually affected and a sinusoidal concentration profile

quickly emerges (Fig. 20.4). This profile then flattens slowly until it finally

Fig. 20.4 Sinusoidal

concentration profile on a

layer open on both sides.
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disappears altogether. At any position x, the concentration decreases exponentially

with time t:

cB ¼ cB,0 sin
πx
l
� e�t=τ1 with τ1 ¼ l2

π2DB

: ð20:14Þ

The decay time τ1 agrees with our estimate (20.13), but instead of the 8 in the

denominator, we now have π2� 9.9. Any concentration profile can be represented

by a superposition of such sinusoidal profiles that change independently of each

other in the course of time. Profiles having a “wavelength” λn ¼ λ1=n that is shorter
by 1=n n ¼ 1, 2, 3, . . .ð Þ than that of the “fundamental wave” λ1¼ 2l have a decay

time τn ¼ τ1=n2 that is shorter by the factor 1/n2 as we can see in Eq. (20.14). The

corresponding theory was developed by the French mathematician and physicist

Jean Baptiste Fourier at the beginning of the nineteenth century using heat conduc-

tion that obeys similar laws.

Diffusion Control Let us now return to the subject of Sect. 20.1. We wish to make

a rough estimate of the rate density r for a reaction Aþ B! . . ., where the

collision of two particles A and B is the step that determines the rate. For the

sake of simplicity, we imagine the particles to be spheres where the type A is

mobile and the type B is not. As soon as an A particle approaches a B particle

(or more exactly, the centers of the particles) to a distance of a0, a reaction is

assumed to occur where A disappears. In the process, an A-poor environment is

produced around B, which we will imagine as spherically symmetrical in shape and

into which the A diffuses from the surroundings. If c1A is the concentration of A in

the environment, meaning far away from B, the following equation should be valid

for cA in the depletion zone at a distance a from B:

cA ¼ c1A � 1� a0
a

� �
and therefore

dcA
da
¼ c1A �

a0
a2
:

This approach seems reasonable because for large a, cA tends toward c1A and at a

distance, a¼ a0, we have cA¼ 0, because A disappears. On the other hand, the

matter flux JA out of the environment in the B direction must be independent of

a for a a0 because A is neither formed nor destroyed under way. This applies to

the approach above because according to Fick’s law jA ¼ �DA � dcA=dað Þ, we find
for the flux JA through the surface 4πa2 of a sphere with a radius a around the center
of B:

JA ¼ 4πa2 � jAj j ¼ 4πa2 � DA � c1A
a0
a2
¼ 4πDAa0c

1
A ¼ const:
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JA multiplied by the numberNB ¼ nB=τ ¼ c1B V=τ of all the B particles in a volume

V yields the conversion rate ω. When we finally divide by V, the result is the desired
rate density r:

r ¼ k � c1A � c1B with k ¼ 4πDA

a0
τ
:

If B is also mobile, r will be somewhat greater, because DA +DB will appear in the

formula on the right instead of DA. This detail is unimportant to our estimate, so we

can omit it. According to Table 20.3, D is of the order of 10�9 m2 s�1 for low-

molecular substances in an aqueous solution, and a0 corresponds to the particle

diameters and is approximately 10�9 m. These values yield

k ¼ 4π � 10�9m2 s�1
10�9m

1:66� 10�24 mol
� 107m3 s�1 mol�1:

Compared to this, the k value for a bimolecular reaction (Sect. 18.3) with a

vanishing activation threshold, Δ{ μ
○ ¼ 0, is 1,000 times greater:

k ¼ kBT

hc�
¼ 1:38� 10�23 JK�1 � 300K

6:63� 10�34 J s� 103molm�3
� 1010m3 s�1 mol�1:

Only at an activation thresholdΔ{ μ
○
considerably above 3μd, does this step—rather

than diffusion—determine the conversion rate.

Due to their larger particle diameters and decreased diffusion coefficients, high-

molecular substances such as enzymes lead to considerably lower k values of the

order of 105 to 106 m3 s�1 mol�1.

20.3 Fluidity

Viscosity Gases and liquids can flow more or less easily. Shear forces cause the

particles to rub and slide against each other. The more viscous the liquid or gas is

under equal driving forces.

• The lower the flow velocity and therefore for example the outflow velocity

associated with it (Experiment 20.3),

• The slower the migration of dissolved substances in it (diffusion, sedimentation,

ion migration).

Flow of substances is always hindered by inner friction. The driving force needs

to overcome this resistive force. Let us imagine two parallel plates with surfaces of

A at a set distance of d from each other. There is a gas or liquid between these plates

acting as a kind of lubricant (Fig. 20.5). The upper plate is now passed over the

stationary lower plate in the x direction at a constant speed υ0. If we were to look at
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the liquid at microscopic scale, we would see that due to adhesion forces, its

particles adhere to the plates in a thin layer. The particles are motionless on the

stationary lower plate, while the particles on the upper plate are carried along at the

speed υ0. The liquid lying in between can be imagined as divided into thin, flat

layers where the speed will be higher, the closer it is to the upper plate. A linear

velocity profile υx zð Þ emerges that is dependent upon the vertical distance z from the

lower plate. A stack of glass plates held together by honey can serve as a model

(Experiment 20.4).

The particles do not adhere to their original layer but can leave it by taking their

þx momentum (in the x direction) so that a transport of momentum takes place

perpendicular to the direction of motion. When particles move from a lower to a

higher layer, they will have a braking effect because they have a lower momentum

in the x direction than the other particles. Conversely, an acceleration will occur due
to particles moving down from a higher layer. These interactions are noticeable as

Experiment 20.3 Outflow
of various glycerin–water
mixtures: Three glycerin–
water mixtures with

different compositions are

filled into separating

funnels. The stopcocks are

then quickly opened, one

after the other. The lower

the fraction of viscous

glycerin, the faster the

mixture flows out.

Fig. 20.5 Linear velocity

profile of a liquid or,

in this case, a gas between

one moveable and one

stationary plate. A change

of particles between the

layers is related to a

momentum transport.
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so-called inner friction (as opposed to outer friction between two solid bodies such

as static friction and rolling friction where it is mostly only surfaces that are

affected). The friction force Ff to be overcome is not only dependent upon the

surface A, but also upon the transfer of momentum between the layers and therefore

the velocity gradient Δυx=Δz,

F f ¼ �η � A � ΔυxΔz
Newton’s law of friction global formð Þ; ð20:15Þ

where, in our case, we simply have Δυx=Δz ¼ υ0=d. The proportionality factor η is
called the (dynamic) viscosity. It is a property of a substance and its SI unit is

N s m�2¼ Pa s. Table 20.4 contains viscosities for some substances at 293 K. In

addition, the ratio v ¼ η=ρ, the so-called kinematic viscosity, has been included. We

will return to this further down.

A force F can be considered a momentum current (a flux of momentum) Jþ (Sect.
2.7). Consider one-dimensional motion, say pushing a motor vehicle (Fig. 2.12). If

þ indicates the momentum of the object being moved and F is the only force acting

Experiment 20.4 Honey
experiment: About ten glass

plates (microscope slides,

for example) are smeared

with honey and then stacked

one upon the other. The

slow slide of the topmost

plate leads to a movement

by all of them (except the

lowest one which is held in

place).

Table 20.4 Dynamic and

kinematic viscosity, η and v
(¼ η/ρ), of various substances
at 293 K.

Substance η (10�3 Pa s) v (10�6 m2 s)

Water 1.002 1.004

Mercury 1.526 0.115

Diethyl ether 0.243 0.340

Benzene 0.604 0.736

Ethylene glycol 19.9 17.9

Glycerin 1,412 1,120

Honey ~104 ~104

Tar >105 >105

Hydrogen 0.89� 10�2 106

Oxygen 2.03� 10�2 15.3
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upon it (i.e., if F is the only path over which the object exchanges momentum with

its environment), we have:

F ¼ Jþ ¼ dþ

dt

�
for several paths we have :

X
i

Fi ¼
X
i

Jþ, i ¼ dþ

dt

�
:

If we imagine momentum flowing via a straight rod having a uniform cross section

of A into an object being pushed in the x direction, the momentum current density
everywhere in the rod will equal jþ ¼ Jþ=A. The transport of momentum here

occurs at the speed of sound, without loss and without energy being dissipated and

entropy being generated.

The momentum transport we are interested in here differs in several ways from

the one just discussed. It is not one-dimensional, so for vector quantities such as

momentum and velocity we need to distinguish the components in the x, y, and
z directions. In Fig. 20.4, these are the directions left to right, front to back, and

bottom to top. Our case is comparably simple because only the x components þx and
υx of momentum and velocity do not equal zero. Unlike before, the momentum is

not conveyed in the x direction but perpendicularly to it, following the velocity

gradient dυx=dz, from top to bottom. The fact that we are dealing with the z-
component of the flux of þx may be expressed by notations such as Jþx,z or (Jþ)x,z.
Since this is the only relevant component here, we can forgo the indices and simply

write Jþ, which is identical to the force appearing in Newton’s law of friction

(20.15). If we introduce this quantity or, rather, the related momentum flux density

jþ ¼ Jþ=A into the friction law, and replace the difference quotient Δυx=Δz by the

differential quotient dυx=dz, it turns into

jþ ¼ �η
dυx
dz

Newton’s law of friction local formð Þ: ð20:16Þ

The velocityυx appears here in the role of a potential belonging to the substance-like
quantity momentum þx. We describe it as “kinetic” or “kinematic” to distinguish it

from other potentials such as the chemical potential μ or the “thermal potential” T.

Duration of Velocity Equalization If the upper plate is not constantly pushed

forward giving it a constant supply of momentum þx, the fluid flow between the

plates will soon come to a stop. This also happens when the lower plate is not held

so that momentum cannot flow off there. In this situation, the momentum behaves

like a diffusing substance in a closed container. For the sake of simplicity, we will

imagine the plates to have no mass so that they can adapt without inertia to the

velocity of the adjacent layer of liquid. All that remains is the redistribution of

momentum þx in the liquid where the excess in the upper half is to be moved to the

lower half. If ρ is the density of the liquid, mass (first term), average velocity

(second term), and momentum (third term) are:

above : 1=4 ρ � A � d, 3=4υ0, 3=8 ρ � A � d � υ0,
below : 1=4 ρ � A � d, 1=4υ0, 1=8 ρ � A � d � υ0:
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In order to attain a uniform distribution, it is enough to relocateΔþx ¼ 1=8ρ � A � d � υ0
from above to below. Having an initial velocity gradient of υ0=d, the amount

Δþx ¼ jþ
�� �� � A � Δt ¼ η � υ0=dð Þ � A � Δt can be conveyed downward in the time

span Δt. If we equate both Δþx values and solve for Δt, we obtain a relation

corresponding to Eq. (20.13) where v is the kinematic viscosity mentioned above:

Δt ¼ d2

8v
with v ¼ η

ρ
: ð20:17Þ

v has the same SI unit as the diffusion coefficient D, namely m2 s�1. The statements

above about concentration profiles and their decomposition into sinusoidal contri-

butions and their decay times are correspondingly valid for velocity profiles υx zð Þ.
Particles in a Viscous Medium In many examples, particles such as molecules or

macromolecules or ions move in a medium having a viscosity of η. However, let us
first consider the motion of a macroscopic sphere with radius r at a velocity of υ in a
liquid or gas. This motion is caused by a force such as the force of gravity. A

frictional force acts against it and this force will be greater the more viscous the

medium is and the larger the sphere. It also rises as velocity increases. From the

field of hydrodynamics, we obtain

F f ¼ 6π � η � r � υ Stokes’ law: ð20:18Þ

This equation can also be used approximately for microscopic particles like the

molecules and ions mentioned above. We expect that the diffusion coefficientDB of

a substance B will be the smaller, the more viscous the medium is in which it

migrates. Let us consider a simple example of a rigid, spherical particle with the

radius r. The diffusion force [expressed by Eq. (20.1)] is counteracted by the Stokes
frictional force [Eq. (20.18)]:

FB ¼ τ � υB
ωB

¼ 6π � η � rB � υB ¼ F f ;

where nB ¼ τ because we are only considering a single B particle, meaning an

amount of substance B exactly corresponding to the elementary amount of sub-

stance τ. The result for mobility ωB is then

ωB ¼ τ

6π � η � rB ð20:19Þ

and because of DB ¼ ωBRT (Einstein–Smoluchowski equation), the diffusion

coefficient equals

DB ¼ kBT

6π � η � rB ; ð20:20Þ
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where kB ¼ τR is the Boltzmann constant. Because of this relation, we expect a

temperature dependency for the viscosity of liquids which is the reciprocal of that

of the diffusion coefficient [Eq. (20.12)]. If we take into account only the most

important contribution, the exponential expression, we obtain:

η e η1 � eþWA=RT , where, for example,WA H2Oð Þ � 16kJmol�1; ð20:21Þ

therefore, we should expect a temperature dependency for the viscosity of liquids

which is the reciprocal of that of the diffusion coefficient [Eq. (20.12)].

Viscosity should strongly reduce as temperature rises. Boiling water has four

times lower viscosity than water at room temperature, allowing it to run corre-

spondingly faster through a filter. This is good for laboratory work as well as

making coffee.

20.4 Entropy Conduction

Entropy Conductivity Most of our experiences of entropy are gained in everyday

life, even if unconsciously. The coffee in a thermos remains hot because it is

difficult for entropy to penetrate the vacuum jacket, while coffee in a cup cools

down fairly quickly because entropy leaves along with the steam rising from

it. Gases and foam materials whose volumes are up to 97 % gas-filled pockets

strongly hinder the flow of entropy, while metal exhibits a conductivity of about

1,000 times that much. We will quantify this phenomenon in the following

(Fig. 20.6).

We will consider the simplest case, a homogeneous, isotropic body with a

constant cross section A. Isotropic means that—in contrast to a block of wood,

for example—all the directions are equal. If the temperature drops from left to right,

entropy moves in this direction. Because most substance properties more or less

depend upon temperature, and this is also true for the quantity that interests us here,

we will only consider a small temperature difference ΔT� T between the left and

right sides of the body. The entropy flux (or current) JS or the entropy flux

Fig. 20.6 Entropy

conduction.
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(or current) density jS ¼ JS=A are proportional to the temperature gradient ΔT/Δx
or more precisely dT/dx:

JS ¼ σS � A � ΔTΔx or jS ¼ �σS �
dT

dx
Fourier’s law: ð20:22Þ

These are two simple versions, a global one and a local one, of a law mentioned at

the end of Sect. 20.2 for which Fourier introduced solution methods in 1822 which

have proven applicable to many areas of physics and mathematics. σS is the entropy
conductivity. Instead of σS, in tables we usually find the entropy conductivity

multiplied by T, the “heat conductivity” (or thermal conductivity) λ ¼ T � σS.
Table 20.5 contains some values for these two quantities.

The example of water shows us that neither λ nor σS can be considered constant.
In the case of monoatomic or biatomic gases such as air, σS changes in proportion to

T�1/2 and therefore λ e Tþ1=2. This dependency is mostly neglected because any

mistakes involving it are unimportant compared to other less controllable

influences.

Let us take a look at an experiment showing different entropy conductivities in

various solid substances (Experiment 20.5).

Table 20.5 Entropy conductivity σS and thermal conductivity λ at room temperature, when not

otherwise indicated.

Substance σS (Ct K
�1 s�1 m�1) λ (J K�1 s�1 m�1)

Diamond 8 2,300

Copper 1.3 400

Brass (40 % Zn) 0.2 113

Stainless steel 0.05 15

Glass 0.003 0.8

Water (0 �C) 0.00205 0.56

Water (100 �C) 0.00182 0.68

Foam materials 0.00015 0.04

Air 0.000087 0.026

Experiment 20.5 Entropy
conduction in solid
substances: A cross made of

a copper rod, a brass rod,

and a steel rod with wax

spheres attached to their

ends is heated in the middle.

The wax spheres fall off one

after another according to

the different entropy

conductivities: first copper,

then brass, and finally, steel.
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Duration of Temperature Equalization When making a boiled egg for breakfast

we want to know how long it needs to boil to reach the soft or hard consistency that

we desire. This question is similar to the one about how long it takes for an

equalization of concentration to be achieved in a closed container (Fig. 20.3). We

will refer to the same image, but will now plot temperature T instead of concentra-

tion c along the ordinate. In place of the equalized concentration c0 obtained in the

end, we have the corresponding temperature T0. We assume a linear temperature

gradient where, on the far left, we have a temperature of T0 +ΔT, and on the far

right, T0�ΔT, with ΔT� T. The gray triangle on the left corresponds to an excess

of entropy of ΔS ¼ 1=2 C � 1=2ΔT in the left part of the body and for which there is a

corresponding lack of entropy on the right. C is the entropy capacity C ¼ m � c of the
entire body,m ¼ ρ � A � l its mass, ρ is the density, and c ¼ C=m the specific entropy
capacity. While C, A, l, and m are characteristics of the body, ρ and c indicate

properties of the substance it is made up of. In summary:

ΔS ¼ 1=2 C � 1=2 ΔT ¼ 1=4c ρAl � ΔT:

If we imagine a constant temperature gradient of 2ΔT/l, then an amount of entropy

equal to

ΔS ¼ JSΔt ¼ σS � A � 2ΔT
l

Δt

will flow from left to right during the short time span Δt (see Fourier’s law

[Eq. (20.22)]. If we equate both ΔS values and solve for Δt, we obtain an approx-

imate value for the duration of temperature equalization:

Δt ¼ l2

8a
with a ¼ σS

ρc
¼ λ

ρcs
: ð20:23Þ

The coefficient a in the denominator is called the “temperature conductivity,”

although this is somewhat misleading because it is not the temperature which is

conducted. In the formula on the right, a is not only expressed by the entropic

quantities σS and c, but also by their energetic opposites λ and cs, thermal conduc-

tivity and specific heat capacity. (We use the symbol cs instead of the usual c to

avoid any confusion with the symbol c for concentration.)

Coupling of Matter and Entropy Currents What happens when a substance is

simultaneously subjected to a gradient of its potential μ and the temperature T? Let
us imagine a pond where the water below is cold, T1, and heats up in the Sun

becoming warm above with T2> T1. Then μ2 ¼ μ1 þ α � T2 � T1ð Þ < μ1 would be

the case because α¼�Sm is negative. Consequently, there is a drive for water to

rise upward. The entropy in the water strives downward, and in the process, both
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influences cancel each other. The amount of energy Wn +WS expended for shifting

an amount of water n upward is:

Wn þWS ¼ μ2 � μ1ð Þnþ T2 � T1ð ÞS ¼ �Sm T2 � T1ð Þnþ T2 � T1ð ÞSm � n ¼ 0:

This is not always the case. When a dissolved substance diffuses, the molar

entropy carried along with it, the so-called transfer entropy S�m, is greater or smaller

than Sm. S
�
m is about 2.7 Ct mol�1 greater in a cane sugar solution with a concen-

tration of 1 kmol L�1. The influence of entropy gains the upper hand here so the

sugar is forced to the cooler side. At a temperature difference of 10 K, and an

enrichment of about 1.1 %, the two effects just compensate for each other. Let us

calculate the energy expenditure for the transport of a small amount of sugar n from
the cooler side, T1, to the warmer side, T2> T1:

Wn þWS ¼ μ2 � μ1ð Þ � nþ T2 � T1ð Þ � S*m � n,
¼ �� μ1 � Sm T2 � T1ð Þð Þ � μ1 þ RT1ln1:011ð Þ þ T2 � T1ð ÞS*m

� � n,
¼ S*m � Sm
� �

T2 � T1ð Þ � RT1ln1:011
� � � n,

¼ 2:7Ctmol�1 � 10K� 8:3Ctmol�1 � 300K� ln1:011
� � � n ¼ 27� 27½ � � n ¼ 0:

Differences in the chemical potential caused by a temperature gradient are called

thermodiffusion, whereas the inverse effect where temperature differences are

caused by a gradient of the chemical potential is called the diffusion-thermo effect.
Such couplings between currents are common. The most well known is the thermo-
electric effect which is caused by a coupling of entropy and charge currents.

20.5 Comparative Overview

Transport Equations In order to carve out the commonalities and differences of

the phenomena we have discussed, we will sum them up here. In doing so, we will

add another phenomenon: transport of electric charge (Fig. 20.7), because it is the

best known of these. Its concepts can serve as an example or help in orientation. In

all four cases, diffusion, viscous flow, entropy conduction, and conduction of

electricity, there is a substance-like quantity (substance B, momentum þx, entropy
S, and charge Q) being conveyed along the gradients of the corresponding poten-

tials (chemical μB, “kinetic” υx, “thermal” T, and electric φ). In order to look at all

this uniformly, we can imagine a small cuboid shaped section of a larger area with

the base area A and the height l. The height should be so small that despite an

assumed potential difference, the cuboid can be considered homogeneous.

A drop in potential of ΔμB, Δυx, ΔT, Δφ from the upper surface to the lower

surface drives a current of JB, Jþ, JS, JQ downward through the cuboid as long as

there is a corresponding conductivity σB, σþ, σS, σQ to allow for this. The current is

proportional to the cross section A and the potential difference and inversely
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proportional to the length l through which the current flows whereby the conduc-

tivity σB, σþ, σS, σQ appears as a proportionality factor. The formulas have been

compiled in Table 20.6, where in the case of charge, the usual symbols I, j, and σ
have been used instead of JQ, jQ, and σQ. The names of the persons for whom these

laws have been named are at the top of the table. In the line below that are the

analogous “local” laws in which the current J is replaced by the corresponding

current density j ¼ J=A and the quotient “potential difference/length” is formu-

lated as the derivative of the potential in question with respect to the spatial

coordinate z.
The most well-known version of Ohm’s law is I ¼ U=RQ, where I generally

means “current,” U ¼ �Δφ “voltage,” RQ ¼ ρQ � l=A “(electric) resistance,” and

ρQ ¼ 1=σ “(electric) resistivity.” The “conductance” GQ ¼ 1=RQ is often used

Fig. 20.7 Comparison of different transport processes: (a) substance, (b) momentum, (c) entropy,

(d) charge. Pb is the dissipation rate, _Sg ¼ Pb=T the generation rate of entropy, if T is the

instantaneous average temperature of the body. In the case of (c), the generated entropy leaves

along the same path as the one entering from above (indicated by the arrow bending backward).

Table 20.6 Comparison of related formulas for different transport processes.

Diffusion

(Fick)

Viscous flow

(Newton)

Entropy

conduction

(Fourier)

Electric

conduction

(Ohm)

Global form JB ¼ �σB � A ΔμB
l

J px ¼ �σ p � A Δυx
l

JS ¼ �σS � A ΔT
l I ¼ �σ � A Δφ

l

Local form jB ¼ �σB � dμBdz j px ¼ �σ p � dυxdz
jS ¼ �σS � dTdz j ¼ �σ � dφ

dz

Special form

(example)
jB ¼ �DB � dcBdz F f ¼ �η � A � dυxdz

JQ ¼ �λ dT
dz

I ¼ U
RQ

Conductivity σB ¼ cBDB=RT σþ ¼ η σS ¼ λ=RT σ ¼ 1=ρQ
“Diffusivity” DB v ¼ η=ρ a ¼ λ= csρð Þ –

The formulas in the first line are analogous to each other as are the ones in the second line. In the

third line, they are adapted to special applications and contain quantities that only correspond to

each other to a certain extent. In the fourth line the “conductivities” and in the fifth line the

corresponding “equalization coefficients” (“diffusivities”) are expressed by the preferred quanti-

ties of their respective domains. (The index Q in the fourth row corresponds to “heat” and in the

fifth row, however, to “charge”)
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instead of RQ, which gives Ohm’s law the following form: I ¼ GQ � U. For clarity’s
sake, we have included the index Q because we are already using the symbols

without indexes for other purposes. There is a comparable diversity for the formulas

in the other columns, so it is difficult to find their common pattern. To give an

example, the inverse φ ¼ η�1 of the viscosity η is in use as well. It is called fluidity
and corresponds to the resistivity ρQ.

“Diffusivities” Despite their very different names, the “diffusion coefficient” DB,

the “kinematic viscosity” v, and the “temperature conductivity” a are analogous

quantities. They all have the SI unit m2 s�1 and quantify properties of substances

with respect to different transport processes that determine the durations of equal-

ization processes. They are called diffusivities (or “equalization coefficients”).
They can be written as the quotient “conductivity/capacity density,” as would

be expected. The more conductive the medium, the more quickly the potential

differences equalize. The larger the amount to be transported, i.e., the higher the

capacities at equal potential differences, the longer it will take. Because σB ¼ cBωB

describes the “matter conductivity” [Eq. (20.6)] and bB ¼ cB=RT the “matter

capacity density” (Sect. 6.7), the following is valid:

DB ¼ ωBRT ¼ ωBcB
cB=RT

¼ σB
bB
¼ “matter conductivity”

“matter capacity density”
:

In the case of momentum, the mass m ¼ ρ � V plays the role of “capacity” and

because þx ¼ mυx, taking the derivative with respect to the proper “potential” υx
simply results in dþx=dυx ¼ m. The corresponding “capacity density” is therefore

the mass density m=V ¼ ρ. Viscosity η corresponds to momentum conductivity σþ,
so the following holds:

vB ¼ η

ρ
¼ “momentum conductivity”

“momentum capacity density”
:

In Eq. (20.23) for the temperature conductivity (thermal diffusivity) a ¼ σS= ρ � cð Þ, c
indicates the specific or entropy capacity permass andρ � c is the corresponding volumic

quantity, the corresponding “capacity density,” so that:

a ¼ σS
ρc
¼ “entropy conductivity”

“entropy capacity density”
:

Accompanying Energy Currents Each of the currents JB, Jþ, JS, JQ is accompa-

nied by an energy current JW ¼ μB � JB, JW ¼ υx � Jþ, JW ¼ T � JS, JW ¼ φ � JQ.
More energy flows in than flows out because the potentials at the inflow are higher

than at the outflow. The excess energy could be used for other purposes if there

were an apparatus for doing so. This does not happen here. Instead, as the energy is

dissipated while entropy is generated, the energy is lost or becomes “useless.” The

dissipation power Pb (the part of the energy current that is dissipated or “burnt”) is
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given in Fig. 20.7 for the cases illustrated there. If T is the temperature, the

generation rate of entropy resulting from it is:

_Sg ¼ Pb

T
:

If this entropy is not drawn off, the body will heat up continuously. However, if the

entropy is allowed to flow away at a constant temperature T, energy, namely Pb,

will also flow off along the same path. The energy current then bifurcates as part of

it flows out with the entropy Sg.
This looks a little different in case c of Fig. 20.7, because the entropy Sg

generated there flows away along the same path as the one flowing in above.

While the entropy continually grows as it moves through the temperature gradient,

the energy remains the same. For this reason, there is a preferred description of this

case in which the energy itself is considered the flowing substance. The

corresponding current density jW ¼ T � jS is obtained by multiplying Eq. (20.22)

for entropy by the temperature T, where we also replace T � σS, as is usual in this

case, by λ:

JW ¼ λ � A � ΔT
Δx

or jW ¼ �λ �
dT

dx
“heat conduction equation”: ð20:24Þ

20.5 Comparative Overview 491



Chapter 21

Electrolyte Solutions

A discussion of the chemical drive of solvation and hydration processes, respec-

tively, leads to the introduction of the basic concept of electrolytic dissociation, the
disintegration of a substance in solution into mobile ions. Subsequently, we learn

about the migration of these ions along an electric potential gradient as a special

case of spreading of substances in space. The ionic mobilities provide a link to

conductance and the related quantities conductivity as well as molar and ionic

conductivity. For determining the conductivity of ions experimentally, the intro-

duction of the term transport number which indicates the different contribution of

ions to the electric current in electrolytes is very useful. In the last section, the

technique for measuring conductivities is presented as well as its application in

analytical chemistry where conductometric titration is a routine method.

21.1 Electrolytic Dissociation

Electrolytes are substances in solid, melted, or dissolved states that either fully or

partly disintegrate into mobile ions. In the first chapter, we were introduced to the

concept of ions as “substances” according to

Cl½ �� ¼ Cl1e1 or Na½ �þ ¼ Na1e�1:

Actual electrolytes already contain mobile ions such as molten salts or salt solutions

(molten table salt or a solution of table salt, for example), but in some cases also

solids (solid electrolytes in fuel cells). The substances referred to are already

composed of ions in the solid state. Almost all salts are like this; one example is

NaCljs � NaþCl�½ �js! Naþjwþ Cl�jw:

In this case we speak of true electrolytes.
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Substances that only form mobile ions when they are dissolved are generally

considered electrolytes, in a wider sense. Among the so-called potential electrolytes
are acids and organic bases such as

HCljgþ H2Ojl! H3O
þjwþ Cl�jw:

These types of decomposition processes are called electrolytic dissociation. As in
the previous examples, this kind of dissociation often appears in aqueous solutions

but hardly plays a role in gaseous states or in other solvents. The reason for this is

that ions in water—in contrast to other environments—have an unusually low

chemical potential. Let us consider the lowering of potential that results when

ions are transferred from a gaseous state into an aqueous solution (Table 21.1,

top). Just how dramatic this effect is can be appreciated when it is compared to a

corresponding process using neutral particles (Table 21.1, bottom).

The difference μg � μw is simply the drive of the process of dissolution

Bjg! Bjw:

If the sequence of numbers at the top referring to ions is carefully compared to the

one below for neutral particles, we find that the changes of potential differ by

several orders of magnitude. The values for ions reach or even exceed the drive for

forming covalent bonds. If atomic hydrogen unites with atomic chlorine, oxygen,

nitrogen, carbon, etc.,

Hþ R! H�R;

the following would be valid:

A ¼ μH þ μR � μH�R ¼ 300 . . . 400 kG:

Generally, the drive of the following reaction:

Aþ Bþ Cþ . . .! ABC . . .

is considered to be the measure of the bonding strength between two or more

substances, or in other words, it is the measure of the affinity between the

substances:

Table 21.1 Lowering of the chemical potential during transition of a substance from a gaseous

state into an aqueous solution (Bjg!Bjw). The values are valid for 298 K and equal concentra-

tions in the gas and solution.

Substance H+ H3O
+ OH� Cl� Na+ Mg2+ Al3+

μg � μw kGð Þ 1,090 418 460 333 411 1,893 4,621

Substance Hg Ar H2 CO2 HCl NH3 D2O

μg � μw kGð Þ 3 �8 10 0 9 18 27
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AABC... :¼ μA þ μB þ μC þ . . .� μABC...:

We should remember that AABC... is not constant, but depends upon the milieu the

participating substances are in. The values applying in the limit state T, p! 0 are

usually chosen for theoretical considerations and are called bonding energies.
The concept of bonding strength is not only used for the substances but also for

their atomic or molecular building blocks. We speak of the bonding strength of

atoms in a molecular or crystal structure (or the bonding energy when T and

p vanish).

In this sense, the values in our table describe the bonding strength of ions onto

water under the conditions described there. This becomes clearer when we rewrite

the process of dissolving in terms of the general conversion formula above:

Bzjgþ vH2Ojl! B H2Oð Þv
� �zjw � Bzjwþ vH2Ojl:

Ions cannot carry just any amount of charge, but only a single electric elementary
charge (e0¼ 1.602� 10�19 C) or integer multiples of it. This is expressed by the

charge number (or valence) z. The number of water molecules in the complex

[B(H2O)v]
z is high and not sharply defined, so the bonded H2O molecules are usually

formally separated and included in the water of the solution. The leftover ion Bzjw is

assigned a value of the chemical potential so that the sum of the potentials does not

change:

μ Bzjwð Þ � μ B H2Oð Þv
� �jw� �� v � μ H2Ojlð Þ:

Formally, the water in the conversion formula can be canceled so that the bonding

strength is simply the difference of potential values of the ions in the gas and

dissolved state, as seen in the table. Although H+jw and H3O
+jw both describe the

same kind of ion, the values of the corresponding chemical potentials are not equal.

The relation results from

μ H3O
þjwð Þ ¼ μ Hþjwð Þ þ μ H2Ojlð Þ:

The way ions bond to water can be most easily described as an ordered agglomer-

ation of water dipoles on a central ion. As a whole, a water molecule is neutral, but

due to its bent structure, the positive and negative charge within it is unevenly

distributed, causing it to have a positive as well as a negative pole which represent

an electric dipole. The negative pole of this bent molecule is found on the side of the

oxygen atom, and the positive pole on the side of the hydrogen atoms (Fig. 21.1).

Such molecular dipoles are attracted by ions exactly like a magnetic dipole—say

a magnetic needle—is attracted by the pole of a magnet. This is how an ion

surrounds itself with numerous water molecules that are sometimes strongly and

sometimes loosely bonded. This is not much different from a magnetic pole that is

put into a box of needles. This process, which creates a more or less ordered and not
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very sharply bounded shell of solvent particles around an ion, is generally called

solvation or, if the solvent is water as it mostly is, hydration (Fig. 21.2).

This process releases a rather large amount of energy which roughly grows with

the square of the charge number, but it is also dependent upon other characteristics

of the ion such as the ionic radius. This quadratic relation is reflected in the bonding

strength to the water. Compare for example the values for Na+, Mg2+, and Al3+ in

Table 21.1.

Hydration also explains the fact that table salt and hydrogen chloride form freely

moving ions in water but not in air. Dissolving in water takes place by dissociation

into ions because the bonding of the ions in the assemblies formed by them, whether

lattice or molecule, is weaker than their bonding to the water. The ions are virtually

torn out of their old bonds by the formation of many new bonds to water molecules.

In the case of electrolytic dissociation, which can proceed in several steps and in

many ways, different particles can be produced, for example:

Each type of particle basically behaves like an independent substance with its own

concentration and its own chemical potential. However, dissociation will produce

Fig. 21.1 Dipole

characteristics of a bent

water molecule (valence

angle between the two

hydrogen atoms bonded to

oxygen: 104�).

Fig. 21.2 Hydration of ions

while dissolving a NaCl

crystal in water.
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equal numbers of positive and negative charges, so the solution remains neutral

overall. The so-called charge neutrality rule (electroneutrality rule) is valid here:

zAcA þ zBcB þ � � � ¼ 0 short
X
i

zici ¼ 0: ð21:1Þ

We can violate this rule by adding ions of a uniform sign from outside. An addition

of ions of this type is only possible in extremely small amounts because the solution

becomes charged in the process and the strong electric field it produces does not

allow more to come in (compare Chap. 22). For this reason, although the

electroneutrality rule is not strictly obeyed, it is to a high degree in all electrolyte

solutions. We are therefore not completely free in choosing ion concentrations

because field forces enforce electroneutrality of the solution.

21.2 Electric Potential

In the previous chapter we dealt with rates of spreading of substances and their

causes. Migration of ions is influenced by additional forces caused by the electric

charge of the particles. The force F acting upon a charge Q in an electric field E is

given by

F ¼ Q � E: ð21:2Þ

Similar to the “chemical” forces in diffusion, we can imagine electrostatic forces

being produced by a drop in a potential, in this case, the electric potential φ. We can

construct a quantity φ(x) for any field E(x) so that

E xð Þ ¼ � dφ xð Þ
dx

: ð21:3Þ

If the field E has a constant value of E0, the potential φ(x) will be a linear function of
position x, φ xð Þ ¼ φ 0ð Þ � E0 � x, whose graph is a “ramp” with a constant gradient

(Fig. 21.3). In general, it is also possible to give a three-dimensional field distribu-

tion E
!

x; y; zð Þ a potential φ(x, y, z) whose gradient at position x, y, z is exactly equal
to the field E

!
x; y; zð Þ there. In this case, we must write the field E as a vector because

its complete determination requires magnitude and direction or the values of its

three components Ex, Ey, Ez. However, the one-dimensional description is enough

for our purposes here.

In a (chemically uniform) electric conductor such as a piece of copper or a salt

solution, initial differences of potential are immediately compensated for by charge

transfer if the conductor does not have a potential gradient forced upon it by an

outside source—for instance, in a current carrying copper wire or a working
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electrolytic cell. The interior electric field disappears, E(inside)¼ 0. It is then

possible to assign a uniform and location independent potential φ(C) to a (chem-

ically uniform) conductor C that does not carry a current. This simplifies the

description considerably. In the field of electrical engineering, the ground is

considered to be a conductor with approximately uniform potential.

The zero point of the potential φ can be arbitrarily chosen by assigning a random

point, possibly x¼ 0, the value 0, φ(0)¼ 0. The potential of the ground terminal in

electrical devices or circuits is usually set at zero, φ(ground)¼ 0.

The values of electric potentials are given in Volts (V) (like voltages). Therefore,

the electric potential of the positive pole of a typical three-cell lantern is φ(positive
pole)¼ +4.5 V if the negative pole is grounded, φ(negative pole)¼ 0. The differ-

ence between the electric potentials Δφ ¼ φ2 � φ1 at two different positions 1 and

2, is called the voltage U. The sign of voltage is defined as follows. Let us utilize an
index of the type 1!2 where the numbers refer to the initial and end points. U1!2

counts as positive if U1!2 attempts to drive a positive charge from position 1 to

position 2, meaning when the potential φ1 lies higher than φ2. Therefore, we have

U1!2 ¼ φ1 � φ2 ¼ �Δφ: ð21:4Þ

We need the minus sign here if we wish to hold to the general convention that for

an arbitrary quantityG, ΔG symbolizes the differenceGfinal � Ginitial. Thus, U1!2

represents the drive for the transport of charge from position 1 to position 2, very

similarly to how A1!2 represents the drive for a substance flowing from 1 to 2:

A1!2 ¼ μ1 � μ2 ¼ �Δμ: ð21:5Þ

Because of this analogy, A is sometimes referred to as chemical tension (just like

voltage refers to the notion of electric tension). In order to avoid always having to

write the index 1!2, we will tacitly agree to take the direction of the coordinate axes

as the reference direction. For two points lying approximately on a line parallel

to the x-axis going from left to right, we will say that U ¼ φ lefthand positionð Þ�
φ righthand positionð Þ; the same holds true for the other coordinate directions.

Fig. 21.3 Form of the

electric potential φ in a

uniform current carrying

conductor of the length l.
The end on the right is

grounded so that φ(l )¼ 0,

while φ(0) is positive. A
uniform potential gradient

from left to right is formed,

meaning an electric field

with constant field

strength E0.
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The electric potential allows us the advantage of using similar descriptions for

both chemical and electrical phenomena. The equation for the force upon a small

sample of amount n (“test” amount) in a nonhomogeneous environment, meaning

with position dependent chemical potential μ(x), F ¼ �n � dμ=dxð Þ [Eq. (12.1)] can
be taken as the analogue of an equation for the force on a “test” charge Q in an

electric field. Such a field is an environment having a position dependent electric

potential φ(x). We only need to insert Eq. (21.3) into Eq. (21.2):

F ¼ �Q � dφ
dx

: ð21:6Þ

21.3 Ion Migration

The force upon a small sample of amount n of ions is made up of at least two

components,

F ¼ �n � dμ
dx
� Q � dφ

dx
þ . . . e:g:, additional forces caused by counter-movementð

of ions of opposite chargeÞ: ð21:7Þ

The electric potential gradient is produced by two electrodes immersed in an

electrolyte solution. These electrodes are connected to a direct-current voltage

source and they establish the electronic conducting contact to the differently

conducting phase (electrolyte solution). They are very often made up of metal

sheets or wires. Depending upon the sign of the ionic charge, the resulting electric

force will lead to a migration in the direction of the electric field or opposite to

it. The positively charged cations migrate toward the minus pole. This is the

electrode with the lower electric potential which functions here as a cathode.
Cathodes are the electrodes where electrons are transferred to the reacting sub-

stances, i.e., where a process of reduction takes place. (We will deal in more detail

with redox reactions in Sect. 22.4). On the other hand, negatively charged anions
migrate toward the positive pole (the electrode with the higher electric potential).

The anode absorbs electrons from the reacting substances and an oxidation process

occurs there. Each ion carries a charge of ze0 causing a transport of charge, an

electric current. This electric current caused by ions is easy to demonstrate

(Experiment 21.1).

Similar to the case of diffusion, we can now, in principle, calculate the migration

velocity υ of the ions using the equation υ ¼ ω � F=n [Eq. (20.1)] and ignoring any

additional forces:

υ ¼ ω � F
n
¼ �ω � dμ

dx
� ω � Q

n
� dφ
dx

: ð21:8Þ

The charge of an ion ensemble (all the ions of one type) results from its amount of

substance n and the charge number z of each individual ion:
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Q ¼ zFn: ð21:9Þ

The Faraday constantF ¼ e0=τ gives the amount of charge of 1 mol of monovalent

cations and is equal to 96,485 C mol�1. The relation in Eq. (21.9) was discovered in
1831 by the eminent English experimental physicist and chemist Michael Faraday,

and formulated in the so-called Faraday laws.
Inserting into the equation above yields

υ ¼ �ω � dμ
dx
� ωzF � dφ

dx
: ð21:10Þ

The product ωzF is referred to as electric mobility and is abbreviated with the

symbol u. The unit for electric mobility m2 V�1 s�1 results from the unit m s�1 of
the migration velocity and V m�1 of the potential gradient.

If there is no gradient of the chemical potential μ, the result for the speed of the

ions is:

υ ¼ �u � dφ
dx
¼ u � E: ð21:11Þ

Numerical values for the electric mobility of selected ions are compiled in

Table 21.2. The index =0 indicates strongly diluted solutions, meaning solutions

with vanishingly small concentrations in which no interaction between the ions

takes place.

The migration velocity of ions appears relatively small at first glance. For

example, in the case of a voltage drop of 1 V and a 1 cm thick layer of solution

and therefore a field of 100 V m�1, it will be between 10�5 and 10�6 m s�1. Even
so, in 1 s, the ion will cover a distance of almost 10,000 times its diameter.

In closing this section, we will look more closely at the motion of one individual

ion with the charge ze0. The ion is initially accelerated by the electric force

F¼Q �E, i.e., by

F ¼ ze0E: ð21:12Þ

Experiment 21.1 Charge transport
through saline solutions: Two cables

are connected to each other over a

voltage source and a light bulb. The

ends of the cables are immersed in a

Petri dish filled with distilled water.

The bulb remains dark. When table salt

is sprinkled into the water, the light

bulb begins to glow.
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The faster it moves, though, the greater the frictional force due to viscosity η that

acts in the opposite direction. If we now assume that the ions behave almost like

rigid spheres with radius r, we can make use of the Stokes law FR ¼ 6πηrυð Þ of
hydrodynamics we were introduced to in the last chapter. After a short response

time, the opposing forces affecting the ion become equal,

ze0E ¼ 6πηrυ;

and the ion will move at a constant velocity of migration:

υ ¼ ze0
6πηr

E: ð21:13Þ

A comparison of this expression with Eq. (21.11) shows that

u ¼ ze0
6πηr

: ð21:14Þ

The electric mobility is therefore inversely proportional to the viscosity of the

medium. Because η is strongly dependent upon temperature (compare Sect. 20.3),

the temperature must be taken into account when determining u. According to

Eq. (21.14), the smaller the ion radius is, the greater the electric mobility should

be. Let us now take a look at the series Liþ ! Rbþ and NHþ4 ! N C3H7ð Þþ4 in

Table 21.2. We clearly see that these theoretical predictions hold for the large

Table 21.2 Electric mobility of ions at 298 K in water (strongly diluted) (from: Lide D R

(ed) (2008) CRC Handbook of Chemistry and Physics, 89th edn. CRC Press, Boca Raton).

Ion u=0 (10
�8 m2 V�1 s�1) Ion u=0 (10

�8 m2 V�1 s�1)

Hþ 36.2 OH� �20.5
Liþ 4.0 F� �5.7
Naþ 5.2 Cl� �7.9
Kþ 7.6 Br� �8.1
Rbþ 8.1 I� �8.0
Csþ 8.0 NO�3 �7.4
Agþ 6.4 CH3COO

� �4.2
NHþ4 7.6 MnO�4 �6.4
N CH3ð Þþ4 4.7 HCO�3 �4.6
N C2H5ð Þþ4 3.4 CO2�

3
�7.2

N C3H7ð Þþ4 2.4 SO2�
4

�8.3
Mg2þ 5.5

Ca2þ 6.2

Ba2þ 6.6

Cu2þ 5.6
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tetraalkylammonium ions but not for small alkali ions. Making use of the ion radii

determined by the lattice dimensions of solid salts, we see that the K+ ion is almost

twice the size of the Li+ ion, but it exhibits a much greater mobility. Until now,

though, we have only considered “naked” ions. We have not taken into account the

fact that ions have a solvation shell or, in an aqueous solution, a hydration shell

which they must “drag” along. The ions will “puff up” and the smaller they are, the

more they puff up. More precisely: Small ions form a much stronger electric field

Ee 1=r2� �
and accumulate more water dipoles, which leads to increasing radii of

the hydrated ions in the series Li+!Rb+. If we take the radius of the hydrated ions

into account in Eq. (21.14), the ratio of mobilities agrees with the theoretical

expectations. In the case of the large tetraalkylammonium ions, hydration does

not play a decisive role.

What surprises us, though, is the unusually high mobility of the very small

protons. This is due to the special structure of water which exhibits a relatively high

order even in its liquid state due to formation of “hydrogen bridge bonds.” Naked
protons do not persist in water because of the strong electric fields emanating from

them, so they immediately accumulate on the negative side of the water dipoles and

form H3O
+ ions. Consequently, the positive charge is not concentrated on the

original proton, but is symmetrically distributed over all three protons. Correspond-

ingly, a separation of a proton on the opposite side of the H3O
+ ion becomes

possible so that the positive charge appears to have “moved” across the diameter

of the ion without a true ion migration in the sense discussed so far, having

occurred. The separated proton can reattach to another water molecule, etc. Ulti-

mately, an efficient “proton transport” along a chain of water molecules takes place

through rearrangement of bonds (Grotthus mechanism). Applying an electric field

will cause the previously arbitrary “migration” of positive charge to be directed

toward the negative electrode (Fig. 21.4).

The high mobility of the proton is connected to the special transport mechanism

and the structure of the water molecule. Protons in other types of solvents exhibit a

mobility similar to other ions. However, the special transport mechanism can be

transferred to migration of hydroxide ions in water because they are also part of the

Fig. 21.4 Simplified representation of charge transport by protons in water.
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solvent, i.e., components of a water molecule. This is why these ions also show

relatively high mobility. The migration of protons and hydroxide ions in an electric

field produced by a direct-current voltage source can be made visible by discoloring

the column of agar–agar gel containing an indicator (Experiment 21.2).

21.4 Conductivity of Electrolyte Solutions

Now we will consider a special case that is particularly suited to visualization and

calculation, the processes in a cuboid electrolytic trough with a cross section A and

a length l and with two electrodes attached to its end walls (Fig. 21.5). There is an

electrolyte solution with a concentration c in the trough. A direct-current voltage

U is established across the electrodes.

Initially, there is no gradient of the chemical potential μ available, but there is a

uniform gradient of the electric potential φ,

dμ

dx
¼ 0,

dφ

dx
¼ Δφ

Δx
¼ φ2 � φ1

x2 � x1
¼ �U

l
: ð21:15Þ

The mobile ions begin to migrate perpendicularly to the electrodes in the constant

electric field causing, as stated above, a charge flow or electric current. Equation
(21.11) gives us the migration velocity under these conditions:

υ ¼ u � U
l
: ð21:16Þ

In order to calculate the chargeΔQmoving through the cross-sectional area A of the

cuboid, we will limit ourselves to just one type of mobile ion. We will imagine the

corresponding counter-ion to be immobile, i.e., it contributes almost nothing to

charge transport. The charge transported in relation to the amount Δn of ions

transferred is obviously

Experiment 21.2 Ion migration: A U-tube

contains agar–agar gel mixed with a universal

indicator and table salt. Hydrochloric acid is

poured into the left leg and sodium hydroxide

is poured into the leg on the right. Afterward,

an electrode is dipped into each leg and then

attached to a direct-current voltage source

(the acidic side with the positive terminal and

the alkaline side with the negative terminal).

Two discoloration zones emerge and slowly

spread. Because of the different ion

mobilities, the discoloration zone caused by

migration of OH� ions is only half as large as

the zone produced by migration of H3O
+ ions.
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ΔQ ¼ zF � Δn: ð21:17Þ

If we divide this equation by the time span Δt (which we must imagine as very short

so that no noticeable shifts of concentration occur), we obtain the electric current I,

I ¼ ΔQ
Δt
¼ zF

Δn
Δt
¼ zF � J: ð21:18Þ

We were introduced to Eq. (20.4) for describing a matter flux (or current of amount

of substance) J in the last chapter,

J ¼ c � A � υ:

If we take Eq. (21.16) above for the migration velocity v into account, we obtain:

J ¼ c � A � u � U
l
: ð21:19Þ

The electric current is therefore equal to

I ¼ zF � c � A � u � U
l
: ð21:20Þ

Usually there are several types of mobile ions present. As long as they remain

undisturbed in their migration, which is only the case in strongly diluted solutions,

the contributions of the individual types of ions, whether cations or anions, add up

to the electric current I. Instead of Eq. (21.20), we then have the following relation:

I ¼ U � A
l
�
X
i

ziF � ci � ui: ð21:21Þ

Fig. 21.5 Electrolytic

trough filled with the

solution of an electrolyte in

which only the positive ions

are considered sufficiently

mobile.
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An electrolyte solution of a given composition will have a current I proportional to
voltage U. This reminds us of the well-known Ohm’s law for homogeneous

conductors:

U ¼ R � I or I ¼ G � U: ð21:22Þ

R is the Ohmic resistance and G is the conductance with

G ¼ 1

R
: ð21:23Þ

Conductance is usually given in the unit Siemens (S¼Ω�1). The validity of

Ohm’s law for the case of electrolyte solutions can be experimentally proven

(Experiment 21.3 showing electrolysis of a copper sulfate solution with copper

electrodes).

If Eq. (21.22) is compared to Eq. (21.21), we see that the conductance of an

electrolyte solution depends upon the types of ions (via zi, ui), their concentrations
(ci), as well as the dimension of the ionic conductor (cross-sectional area A and

distance between electrodes l ):

G ¼ A

l

X
i

ziF � ci � ui: ð21:24Þ

In analogy to resistivity ρ, the conductivity σ (unit S m�1) is a quantity character-

istic of an electrolyte solution of given composition. It is independent of the

geometry of the cell:

R ¼ ρ � l
A

or G ¼ σ � A
l
: ð21:25Þ

If we compare this last expression to Eq. (21.24), we obtain an important equation

that is valid for any electrolyte solution such as for example also seawater or gastric

juice:

σ ¼
X
i

ziF � ci � ui “Four-factor formula:” ð21:26Þ

Experiment 21.3 Ohm’s
law for electrolytes: Two Cu
electrodes are immersed in a

CuSO4 solution and are

connected to a direct-current

voltage source. When the

voltage is raised in steps

(up to approx. 2 V), the

current rises proportionally.
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In the following we will limit ourselves to solutions of just one electrolyte having

the concentration c. We will assume that it completely dissociates which means we

will have vi ions of charge number zi (ci¼ vic) per formula unit. The following is

then valid:

σ ¼
X
i

ziF � vic � ui ¼ c
X
i

viziuiF : ð21:27Þ

The conductivity σ generally increases with concentration c of the dissolved

electrolytes. However, mobility u is markedly dependent upon c as well so the

two influences overlap. In order to separately investigate the second one, we

consider the molar conductivity Λ,

Λ ¼ σ

c
¼
X
i

viziuiF : ð21:28Þ

The fraction of molar conductivity attributed to the ion of type i is called the (molar)

ionic conductivity Λi:

Λi ¼ ziuiF : ð21:29Þ

This allows us to simplify Eq. (21.28) to

Λ ¼
X
i

viΛi: ð21:30Þ

According to the equations above, the molar conductivity Λ should be independent

of the concentration. However, this is only true in the limit of infinite dilution. In

order to ensure the validity of the equation, we replace Λ by Λ=0, which is the molar

conductivity at infinitely low concentrations (molar conductivity at infinite dilution
or limiting molar conductivity):

Λ
=0 ¼

X
i

viΛ
=0
i : ð21:31Þ

Only in strongly diluted solutions where there are no noticeable interactions

between the ions do the individual ions move in the electric field independently

of the type of counter-ions. This law of independent migration of ions was found by
the German physicist Friedrich Kohlrausch in the nineteenth century.

The cations and anions migrating in opposite directions are hindered in the same

way one is hindered in a moving crowd of people on a sidewalk. The denser the

crowd is, the stronger the effect will be. The hydration shell the ion drags with it

plays a role as well as its tendency to surround itself with a cloud of oppositely

charged ions. We will return to the latter effect in the next section.
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In conclusion, we will look at the simple case of an electrolyte made up of only

two ions Czþ
vþA

z�
v� which decomposes into v+ cations C of charge number z+ and v�

anions A of charge number z�. The resulting molar conductivity is then:

Λ ¼ vþzþuþ þ v�z�u�ð ÞF : ð21:32Þ

The fractions of molar conductivity Λ+ and Λ� belonging to the cations and anions

are:

Λþ ¼ zþuþF ; Λ� ¼ z�u�F : ð21:33Þ

For Eq. (21.30) we can write:

Λ ¼ vþΛþ þ v�Λ�: ð21:34Þ

The corresponding limiting molar conductivity results in:

Λ
=0 ¼ vþΛ

=0
þ þ v�Λ

=0
�: ð21:35Þ

Finally, a reminder that there is no unified usage of the term molar conductivity in

the literature. For example, we often find the value of ionic conductivity for the

fraction 1=jzij of an ion of charge number zi in tables, for example, Λ 1=2Ba
2þ� �

,

Λ 1=3La
3þð Þ, etc. This is done in order to obtain expressions independent of charge

number. To avoid errors we should always keep in mind what types of particles the

listed values are for and the calculations should be adapted accordingly.

21.5 Concentration Dependence of Conductivity

In more strongly concentrated solutions, the electrostatic attractive forces of the

ions cause the ions to prefer to be surrounded by counter-ions (Fig. 21.6a). Apply-

ing a field results in the counter-ions migrating in the opposite direction (Fig. 21.6b)

so that as concentration c grows, there is—simply speaking—an increasing obstruc-

tion of ion migration. The Debye–Hückel theory describes the different types of

mutual obstruction of the ions in more detail.

Fig. 21.6 Positive ion with

counter-ions (a) without

external electric field, (b) in

an external electric field;

the positive ion migrates to

the right, the counter-ions

to the left.
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Therefore, the electric mobility and the corresponding molar conductivity Λ are

lower than they would be at infinite dilution. The concentration dependency of Λ
can be demonstrated using an experimental setup analogous to Experiment 21.3

(Experiment 21.4).

Addition of water increases the vertical distance between the charge carriers

migrating in different horizontal levels so that they do hinder each other less, but it

does not change their numbers, the forces of electric field driving them or the

distances covered by them.

Two different cases can be discerned in the concentration dependency of Λ
(Fig. 21.7):

• Strong electrolytes. These electrolytes completely dissociate independent of

their concentration (potassium chloride, KC1, for example); they exhibit only

a slight drop of molar conductivity with increased concentration.

Experiment 21.4 Concentration
dependency of molar conductivity: The
copper sulfate solution is successively diluted

at constant voltage. The corresponding

current I is measured at each step. This is

proportional to Λ and independent of the

volume of solution. (Doubling the amount of

water halves the concentration, but doubles

the cross-sectional area the current flows

through so that the influences compensate for

each other.) We observe an increase of

conductivity with decreasing concentration.

Fig. 21.7 Concentration

dependency of molar

conductivity of strong and

weak electrolytes using KCl

(black) and CH3COOH

(gray) as examples

(at 298 K).
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• Weak electrolytes. In the case of weak electrolytes (acetic acid, CH3COOH, for

example), the extent to which the electrolyte dissociates into ions strongly

depends upon the total concentration c. The fraction

α ¼ cdiss
c

ð21:36Þ

of all molecules that are dissociated is referred to as the degree of dissociation α.
The degree of dissociation drastically reduces as concentration rises. Undisso-

ciated molecules contribute nothing to conductivity. Only the ions (ci¼ viαc)
do contribute, so the concentration dependency of the molar conductivity

Λ ¼
X
i

viαΛi ð21:37Þ

is mostly determined by the degree of dissociation. When the total concentra-

tion c is increased, Λ will decrease to relatively low values already at low

concentrations.

We will now consider strong electrolytes which can easily be investigated

experimentally. Around 1900, the German physicist Friedrich Kohlrausch empiri-

cally found the following relation between molar conductivity Λ, concentration c,

and limiting molar conductivity Λ=0:

Λ ¼ Λ
=0 � b

ffiffiffi
c
p

: ð21:38Þ

This relation is called Kohlrausch’s square root law. It can be theoretically

supported with the help of the Debye–Hückel theory. The limiting molar conduc-

tivity Λ=0 is impossible to measure directly because at infinite dilution, the solution

does not conduct electricity. However, if Λ is plotted as a function of
ffiffiffi
c
p

at

concentrations that are not too high, we obtain a linear relation (Fig. 21.8) and

Λ=0 can be determined from extrapolation to the intercept of the straight line.

Fig. 21.8 Molar con-

ductivity of aqueous

KC1 solutions at 298 K

as a function of
ffiffiffi
c
p

(experimental data from

Hamann CH, Vielstich W

(1998) Elektrochemie.

Wiley-VCH, Weinheim).
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As the charge numbers of the ions increase, the constant b assumes higher

values—evidenced by the increasing gradients of the corresponding straight lines

(Fig. 21.9, H2SO4 and CuSO4 [Λ 1=2H2SO4ð Þ and Λ 1=2CuSO4ð Þ are shown for easier

comparison)], because polyvalent electrolytes exhibit stronger interaction between

the ions.

Figure 21.9 also shows the behavior of the molar conductivity of acetic acid as

an example of weak electrolytes (which are principally organic acids and bases).

The strong decrease of conductivity, which resembles a hyperbola, is caused by the

dissociation equilibrium between the ions and the uncharged molecules. We can use

the following formula for the case of acetic acid:

CH3COOHjw ! Hþjwþ CH3COO
�jw

or abbreviated to

HAcjw ! Hþjwþ Ac�jw:

Equilibrium can be described by the conventional equilibrium constant K
○

c (com-

pare Sect. 6.5):

K
○

c ¼ c Hþð Þ � c Ac�ð Þ
c HAcð Þ : ð21:39Þ

If c is the total concentration of the acetic acid and cdiss is the equilibrium

concentration of the ions, the following is valid if degree of dissociation α is

included:

c Hþð Þ ¼ c Ac�ð Þ ¼ αc and c HAcð Þ ¼ 1� αð Þc: ð21:40Þ

Fig. 21.9 Molar

conductivity of some

electrolyte solutions at

298 K as functions of
ffiffiffi
c
p

.
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Inserting into Eq. (21.39) yields Ostwald’s dilution law:

K
○

c ¼ α2

1� α
� c: ð21:41Þ

When we calculate the degree of dissociation α for various total concentrations c of

acetic acid [K
○

c (acetic acid)¼ 1.74� 10�5 kmol m�3], we obtain the graph of

Fig. 21.10.

A weak electrolyte only fully dissociates into ions (α� 1) at infinite dilution. As

concentration c grows, α drastically decreases. If we assume that the strong

decrease of molar conductivity is caused mostly by reduction of the degree of

dissociation, then both quantities should be proportional to each other. If we further

assume that at infinite dilution, i.e., for a degree of dissociation α equal to 1, the

limiting molar conductivity Λ=0 will be attained, we have:

Λ

Λ=0
¼ α: ð21:42Þ

By inserting this expression into Eq. (21.41), we find for low degrees of dissociation

(α� 1, meaning (1� α)� 1):

K
○

c ¼ Λ

Λ=0

� �2

� c or Λ ¼ Λ
=0

ffiffiffiffiffi
K
○

c

q
� 1ffiffiffi

c
p : ð21:43Þ

If we plot Λ as a function of
ffiffiffi
c
p

, this corresponds to the equation of a simple

hyperbola y ¼ a=xð Þ, as we would expect from the graph (Fig. 21.9).

Conversely, Eq. (21.42) can be used to determine the degree of dissociation α of

a weak electrolyte at a given concentration c by measuring the molar conductivity.

Moreover, with the help of Eq. (21.41), the equilibrium constant of the substance

becomes accessible. However, for these calculations we need the limiting molar

conductivity Λ=0. This quantity is very difficult to find experimentally because the

steep rise of the Λ at low concentrations makes an extrapolation to infinite dilution

very uncertain. The law of independent migration of ions [Eq. (21.35)] offers a way

out. In the case of infinite dilution, the limiting molar conductivity of acetic acid is

the sum of the contributions of cation and anion:

Fig. 21.10 Degree of

dissociation α as a function

of the total concentration of

acetic acid.
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Λ
=0 HAcð Þ ¼ Λ

=0 Hþð Þ þ Λ
=0 Ac�ð Þ: ð21:44Þ

By clever combination

Λ
=0 HAcð Þ ¼ Λ

=0 Hþð Þ þ Λ
=0 Ac�ð Þ þ Λ

=0 Naþð Þ � Λ
=0 Naþð Þ þ Λ

=0 Cl�ð Þ
� Λ

=0 Cl�ð Þ; ð21:45Þ

the corresponding value can be determined from the limiting molar conductivities

for the strong electrolytes HCl, NaCl, and sodium acetate (NaAc), which are easily

accessible experimentally by extrapolation using Kohlrausch’s square root law:

Λ
=0 HAcð Þ ¼ Λ

=0 HClð Þ þ Λ
=0 NaAcð Þ � Λ

=0 NaClð Þ: ð21:46Þ

21.6 Transport Numbers

So far, we have delved into the mobility and limiting molar conductivity of ions.

We have shown the usefulness of these values that are characteristic of individual

types of ions [compare Eq. (21.44)]. But how do we obtain this experimental data?

Measuring conductivity is obviously not sufficient because electrolyte solutions

always contain cations and anions.

One possibility is to directly measure an ion’s migration velocity υ. Two

electrolyte solutions of differing densities are necessary for this. Each should

have one type of ion in common and one with a different color, and be carefully

layered on top of each other so that the interface between them is as sharp as

possible (Fig. 21.11). The colored indicator ion in the solution below should also

exhibit lower mobility. A suitable combination for this would be a colorless KNO3

Fig. 21.11 Experiment for

directly measuring

migration velocity. We

consider only the interface

in the right limb because it

remains sharp, while the

interface in the left limb

becomes blurred.
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solution and a violet-colored KMnO4 solution. When a direct-current voltage is

applied to this combination, the ions will begin to migrate and the interface will

shift (“method of migrating interface”). In the right-hand limb of the U-tube (anode

limb) the less mobile permanganate ions can never overtake the nitrate ions.

However, they also cannot lag behind the nitrate ions because the solution must

remain electrically neutral. A slightly diluted zone is formed with a somewhat

enhanced field, assuring that the permanganate ions can keep up with the migrating

nitrate ions.

As a result, the interface migrates with the velocity of the nitrate ions. This is

easy to determine from the distance covered s for a given time t:

υ ¼ s

t
: ð21:47Þ

When the applied voltage and the distance between the electrodes are known,

Eq. (21.16) can be transformed to find the electric mobility,

u ¼ υ � l
U
; ð21:48Þ

or the ion conductivity,

Λ ¼ z � u � F : ð21:49Þ

The method described above is not universally applicable because most ions are

colorless.

We will therefore introduce another experimentally accessible quantity which is

dependent upon ion mobility or ion conductivity. This is the so-called transport
number t. Depending upon their mobility and charge, the individual ions will
contribute to a larger or smaller extent to the total current I. In a solution where

only one electrolyte is dissolved, the resulting transport number for the cations is

tþ ¼ Iþ
I
; ð21:50Þ

where I+ is the current caused by the migration of cations. The transport number for

anions is analogous to this:

t� ¼ I�
I
: ð21:51Þ

Because the total current is the sum of the currents transported by the cations and

anions, it immediately follows that

tþ þ t� ¼ 1: ð21:52Þ
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Therefore, the transport number of an ion, by definition, depends upon the type of

counter-ion involved.

By inserting Eq. (21.21) into (21.50), and taking the electroneutrality rule into

account [Eq. (21.1)] with c+z+¼�c�z�, we obtain

tþ ¼ Iþ
Iþ þ I�

¼ cþzþF � uþ
cþzþF � uþ þ c�z�F � u� ¼

cþzþF � uþ
cþzþF uþ � u�ð Þ

¼ uþ
uþ � u�

: ð21:53Þ

(Remember that the electric mobilities u� of anions are negative.) Equation (21.33)
and the relation ci¼ vic can be used to find a relationship between the transport

number of an ion and the ion conductivity:

tþ ¼ c � vþzþF � uþ
c � vþzþF � uþ þ c � v�z�F � u� ¼

vþΛþ
vþΛþ þ v�Λ�

¼ vþΛþ
Λ

: ð21:54Þ

The following is correspondingly valid for vanishingly small concentrations:

t
=0
þ ¼

vþΛ
=0
þ

Λ =0
: ð21:55Þ

Of course, there are completely analogous relations for anions. If the transport

numbers t
=0
þ or t

=0
� can be determined experimentally, the limiting molar conduc-

tivity of the electrolytes—accessible via Kohlrausch’s square root law for strong

electrolytes—can be used to calculate the individual ion mobilities, which is the

goal of this procedure.

How can we measure the transport numbers? Formally, we first divide the

electrolysis trough in Fig. 21.5 into two separate compartments, a cathode com-

partment (CC) and an anode compartment (AC). When a current I is allowed to

flow through the cell for a time span t, a total charge of Q¼ I � t will be transported.
The cations take over the part Q+ of the transport, and the anions transport the part

Q�. Therefore, Qþ=zþe0 cations migrate out of the anode compartment into

the cathode compartment in the time t. In the same time span, during electrolysis,

Q=zþe0 cations are discharged at the cathode and “disappear” from the cathode

compartment. The total change of the number of cations in the cathode compart-

ment (NþCC) is then:

ΔNþCC ¼
Qþ
zþe0

� Q

zþe0
¼ � Q�

zþe0
: ð21:56Þ

The amount of substance of cations decreases correspondingly in the cathode

compartment:
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ΔnþCC ¼
ΔNþCC
τ
¼ �Q�

zþF
: ð21:57Þ

It is easy to quantitatively determine this change of amount of substance by titrating

before and after the passage of the current. This makes the transported amount of

charge Q� and, ultimately, the transfer number t� accessible. The change of

amount of substance in the cathode compartment gives us the transport number of

the anions!

A totally analogous balance can be made for the anions in the anode

compartment:

ΔN�AC ¼ �
Q�
z�e0

þ Q

z�e0
¼ Qþ

z�e0
ð21:58Þ

and therefore:

Δn�AC ¼
ΔN�AC

τ
¼ Qþ

z�F
: ð21:59Þ

The amount of substance of anions in the anode compartment also decreases

(because z� is negative). This yields the transport number of the cations.

We have not yet dealt with the behavior of the counter-ions in the two compart-

ments. Not only cations migrate into the cathode compartment in time t, but also

ΔN�CC ¼
Q�
z�e0

ð21:60Þ

anions from the cathode compartment migrate into the anode compartment, which

corresponds to a change of amount of substance

Δn�CC ¼
ΔN�CC
τ
¼ Q�

z�F
: ð21:61Þ

We can formulate the change of numbers of cations in the anode compartment

analogously:

ΔNþAC ¼ �
Qþ
zþe0

ð21:62Þ

or

ΔnþAC ¼
ΔNþAC

τ
¼ �Qþ

zþF
: ð21:63Þ
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Comparing Eqs. (21.57) and (21.61) as well as (21.59) and (21.63) shows that

ΔnþCC � zþ þ Δn�CC � z� ¼ 0 and Δn�AC � z� þ ΔnþAC � zþ ¼ 0: ð21:64Þ

The electroneutrality rule is therefore satisfied in both the cathode and anode

compartments.

We will now consider the determination of the transport number using the

example of a 1:1 electrolyte (this is an electrolyte where the two ions both have a

charge number of 1). We choose hydrochloric acid and pour it into the divided

trough already mentioned (Fig. 21.12 top). We also assume that the cations exhibit

four times the mobility of the anions which is approximately the case with H+ and

Cl� ions. A total of 5 mol of charge should be transported by the current. This

means that 5 mol of cations are discharged at the cathode and 5 mol of anions at the

anode. At the same time, 4 mol of cations are transported from the anode compart-

ment into the cathode compartment, while only 1 mol of anions are transported in

the opposite direction (Fig. 21.12, center). In all, 5 mol of electrolytes “disappear”

in the form of gases H2 and Cl2, from the electrolysis trough. In the process, a deficit

of just 1 mol results in the cathode compartment while the deficit in the anode

compartment is 4 mol (Fig. 21.12, bottom).

The ratio of changes of amount of substance ΔnCC and ΔnAC of 1:4 (or the

corresponding ratio of changes of concentration) equals the ratio of mobilities of

anions and cations and the ratio of the transport numbers:

Fig. 21.12 Schema to

illustrate the transport

numbers: Change of amount

of substance in the cathode

and anode compartments

during electrolysis.
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ΔnCC
ΔnAC

¼ ΔcCC
ΔcAC

¼ �u�
uþ
¼ t�

tþ
: ð21:65Þ

Using Eq. (21.52), we find:

ΔcCC
ΔcAC

¼ t�
1� t�

ð21:66Þ

or

t� ¼ ΔcCC
ΔcCC þ ΔcAC

: ð21:67Þ

Analogously,

tþ ¼ ΔcAC
ΔcCC þ ΔcAC

: ð21:68Þ

Figure 21.13 shows the experimental setup of a special electrolytic cell introduced

by the German physicist Johann Wilhelm Hittorf. One platinum sheet serves as the

cathode and one serves as the anode. After a given duration of electrolysis, the

stopcock is closed and the solutions from both the anode compartment and cathode

compartment are drained off and then titrated. Subsequently, the transport numbers

can be determined from the reduction of concentration in both electrode compart-

ments (so-called Hittorf method).

Fig. 21.13 Experimental

setup of a Hittorf cell.
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There is still one last problem to discuss: Although we are actually interested

in the transport numbers t
=0
þ or t

=0
� at infinite dilution in order to calculate the

characteristic molar conductivities for individual types of ions, nature only allows

us to experiment using a real solution having finite dilution. As concentration

increases, the ionic conductivity as well as the molar conductivity of the electro-

lytes continuously decrease. As a result, the concentration dependency largely

cancels out when we calculate the ratio. At concentrations that are not too high

(below 10 mol m�3), we have approximately tþ ¼ t
=0
þ or t� ¼ t

=0
�.

21.7 Conductivity Measurement and Its Applications

As stated in Sect. 21.4, the conductivity of an electrolyte solution is closely related

to the conductance and, therefore, the electric resistance measured between the

electrodes of a conductometric cell (cross-sectional area A, distance l ) when a

voltage of U is applied:

σ ¼ G � l
A
¼ 1

R
� l
A
: ð21:69Þ

Platinated platinum or graphite is generally used as the inert electrode material.

There is, however, a metrological problem that must be avoided in electrolysis,

meaning the decomposition of the electrolyte and the polarization of the electrodes

related to it. For this reason, we use a high-frequency alternating voltage because

only then is the assumed ohmic behavior [Eq. (21.22)] of the electrolyte resistance

guaranteed. Typically, a Wheatstone bridge circuit (Fig. 21.14) can be employed

for measuring the resistance of the electrolyte cell. A resistor having a variable

resistance Rv is adjusted so that the ammeter shows no current. A current equal to

zero means:

R

Rv

¼ R1

R2

or R ¼ R1 � Rv

R2

:

R1 and R2 are predetermined resistances. These days, Wheatstone’s bridge circuit is
only used for precision measurements, if at all. Modern instruments for measuring

conductivity work using automatic balancing by a complex electronic circuitry and

display the desired resistance directly (or, when appropriately calibrated, the

conductivity).

The surface area of the electrodes and their arrangement in the conductometric

cell influence the electric resistance via the quotient l/A, the so-called cell constant.
However, these geometric quantities are often difficult to investigate, especially in

the case of platinated electrodes. Therefore, the cell constant is determined by using

a calibrating solution of known σ value (usually a solution of potassium chloride).

These days, commercial equipment for measuring conductivity (conductometer) is
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delivered with the cell constant already defined and tested so that it can immedi-

ately show conductivity. The accuracy of the device can be checked and calibrated,

if need be, by using a calibration solution.

It is important that the temperature has to be carefully adjusted each time

conductivity is measured, because viscosity will, for example, noticeably decrease

in aqueous solutions as temperature increases (compare Sect. 20.3). Correspond-

ingly, conductivity will increase by ca. 2 % with a temperature change of 1 �C [due

to relations (20.21), (21.14), and (21.26)].

Several matter dynamical constants can be determined by measuring conductiv-

ities, such as molar conductivity at infinite dilution or dissociation constants of

weak electrolytes (compare Sect. 21.5). Conductivity measurements are also useful

for kinetic investigations (see Experiment 16.9).

When determining concentrations in analytic chemistry, measurement of con-

ductivity is the preferred method for indexing the end point of a titration (conduc-
tometric titration). A change of conductivity during titration can be caused by a

change of number of ions or their type. An example of this is the neutralizing of a

strong acid (hydrochloric acid, HC1, for example) with a strong base (possibly

sodium hydroxide, NaOH). When the conductivity (or a quantity proportional to it

such as the conductance) is represented as a function of the amount of added base

(Fig. 21.15), the reaction

Hþjwþ Cl�jwð Þ þ Naþjwþ OH�jwð Þ ! Naþjwþ Cl�jwþ H2Ojl

Fig. 21.14 Experimental

setup (Wheatstone’s bridge
circuit) for determining the

electric resistance of an

electrolyte solution.
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initially causes a lowering of the measured value because highly mobile H+ ions are

replaced by much less mobile Na+ ions (compare Sect. 21.3). However, the total

concentration of ions does not change up to the equivalence point! Only after

exceeding the equivalence point, does the conductivity begin to increase again

because the total ionic concentration continuously rises by further addition of Na+

and OH- ions.

Precipitation titrations can also be indexed conductometrically.

Fig. 21.15 Conductometric

titration of a strong acid

(hydrochloric acid, for

example) with a strong base

(possibly sodium

hydroxide, NaOH) (The

contributions of the various

electrolytes to the

conductivity are represented

by dashed lines.).
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Chapter 22

Electrode Reactions and Galvani Potential

Differences

Initially, the terms Galvani potential for the electric potential in the bulk of a

phase, electrochemical potential eμ, and electron potential μe are introduced to

characterize processes in which charge-carrying species are involved. The elec-

trochemical potentials can be used to determine the Galvani potential difference

between two phases in equilibrium, as an especially simple example between two

different metals. The formation of an electric double layer at the interface of both

metals as well as the corresponding Galvani potential difference, the so-called

contact voltage, will be presented. More important for practical use like that in

galvanic cells is, however, the Galvani potential difference between a metal

electrode and an electrolyte solution. The electrochemical potentials and their

possible composition dependence are used to describe the underlying charge

transfer reaction and to derive Nernst’s equation. This type of charge transfer

reaction can be regarded from a formal point of view as a special kind of a

so-called redox reaction. Redox reactions in which electrons are transferred

from one species to another are together with the proton transfer typical of

acid–base reactions central to chemistry and its applications. Subsequently, dif-

ferent types of half-cells such as redox electrodes, gas electrodes, as well as film

electrodes and the corresponding Galvani potential differences are discussed. The

Galvani potential differences across liquid–liquid interfaces and membranes will

be the topic of the last section. Such membrane voltages described by Donnan’s
equation play an important role in biological membranes, for example, for infor-

mation transfer in nerve cells.
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22.1 Galvani Potential Difference and Electrochemical

Potential

In the first chapter, we were introduced to the concept of phase for a homogeneous

region. If such a phase is electrically conductive due to its mobile electrons or ions,

and is isolated from the environment, all differences of the electric potential will

quickly equalize. The entire interior of the phase will then have a uniform value of

the potential—except for a microscopically thin surface layer. We then simply

speak of the inner electric potential (or Galvani potential) of the phase. However,
the electric potential will generally not equalize between two chemically different

phases that border on each other, such as two metals or a metal and a solution. In

fact, a very definite electric potential difference meaning an electric voltage will

usually form. These kinds of voltages appearing at phase boundaries are referred to

as Galvani potential differences (or Galvani voltages). (In literature, sometimes the

term Galvani potential is used for this kind of voltage instead of Galvani potential

difference. But this could lead to misunderstandings and should therefore be

avoided.) The rules of signs for voltages discussed in Sect. 21.2 are also valid here,

U1!2 ¼ φ1 � φ2 ¼ �Δφ:

φ1 and φ2 are the inner electric potentials (Galvani potentials) of both phases.

The interiors of such phases are electrically neutral because the electroneutrality

rule is valid for any arbitrary part of the phase [compare Eq. (21.1)]:

Q ¼
X
i

ziFni ¼ 0: ð22:1Þ

Excess positive or negative charge carriers accumulate in the boundary layer.

However, compared to the amount of substance in the interior, their quantity is so

small (in the order of 10�10 mol per cm2 of interface) that they are of no account in

the balance (22.1). Although the charge carriers in the boundary layer determine the

electric potential, they will not change the composition or chemical processes in the

interior of the phase. We will go into this again later on.

If a small amount Δni of a substance i having a charge ofΔQ ¼ ziFΔni is added
to a phase with a Galvani potential ofφ ¼ 0, or alternatively to a second chemically

homogeneous phase with a potential of φ 6¼ 0, the expended energy will differ by

φ � ΔQ. This difference is due to the energy

Wt ¼ φ � ΔQ ð22:2Þ

that has to be expended when transferring the charge ΔQ against the electric field

between two locations of unequal electric potential (in this case 0!φ) or is

released (depending upon the signs of zi and φ).
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What are the consequences of this for the chemical potential of substance i? Let
us think back to the hypothetical measurement method of Sect. 4.8. If we assign the

value μi to the chemical potential in the phase with the Galvani potential φ ¼ 0, its

value eμi in the phase having φ 6¼ 0 must be different by the energy change φ � ΔQ
per transferred amount of substance Δni, i.e., by φ � ΔQ=Δni ¼ φ � ziF :

eμi ¼ μi|{z}
chemical

þ ziF φ|ffl{zffl}
electrical term

: ð22:3Þ

eμi is called the electrochemical potential to distinguish it from μi. Because the

location where the quantity φ has the value 0 can be chosen at will, the division ofeμi into a chemical and an electric term in Eq. (22.3) is more or less arbitrary. If we

assign different names to eμi and μi in the following, this is for practical reasons only
and is of no principal importance. When it is unnecessary to distinguish between the

two, we will simply speak of the “potential of a substance.” These expressions were

also used by Josiah Willard Gibbs. Equation (22.3) succinctly describes the simple

φ dependency of this potential. In the case of charged substances zi 6¼ 0ð Þ, the
electric expression is proportional to φ, while it drops out for uncharged substances.

What effect does the electric term ziFφ have upon the chemical behavior of a

substance? We were dealing with charged substances—different types of ions—

before without having to consider their charge. Why wasn’t this necessary? The

answer is simple. As long as there is no charge being moved between regions of

differing potentials in a process, the contributions by the electric terms cancel each

other out in the calculations of drives.

Let us consider the homogeneous reaction of iron (II) ions with permanganate

ions in an acidic solution as well as a heterogeneous reaction of dissolving calcium

sulfate in water. For clarity, we will omit the chemical terms and insert only the

electric ones below the substances into the conversion formula:

and

In the first case, charge switches from one substance to the other—as is the case in

all homogeneous reactions where ions participate—but remains at the same level of

potential φ. In the second case,Ca2þ andSO2�
4 migrate from the solid substance into

the solution, but the charges carried along compensate for each other so that the
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total charge transferred from the solid into the liquid phase becomes zero. The drive

for the dissolution process and the solubility of the salt are not influenced by any

differences of Galvani potential φ between the two phases.

However, things are different if charge is, in fact, transferred between regions of

different electric potentials. In this case, the electrochemical potential eμi should be

considered instead of the chemical potential μi of the participating charge-carrying

substances. Reactions correspondingly run in the direction of decreasing electro-

chemical potential (just as reactions between electrically neutral substances always

occur in the direction of a drop in chemical potential). We will deal with these kinds

of reactions in the following.

22.2 Electron Potential in Metals and Contact Potential

Difference

An especially simple example of Galvani potential differences is the so-called

contact potential difference (or contact voltage) between two metals. The electrons

e� in a metal can be assigned a chemical potential, similar to ions in a solution. In

this case it is the electron potential μe. (We will only attach an index indicating

charge such as +, 2�, etc., to formulas and names of substances when it is necessary

or useful for clarity. Expressions like e� and e will be treated as equal.) μe will be
different depending upon the metal in question.

The electron potential in alkaline and alkaline-earth metals is comparatively

high, meaning the tendency to emit electrons is high. When this kind of metal is

heated, the electrons evaporate out of it easily and can be removed by an electrode

that is positively charged against the metal. The electrons can then be collimated

and accelerated using auxiliary electrodes and can be used for an array of purposes.

The electrons in these metals are referred to as weakly bound. We can express the

bonding strength of the electrons to a metal in the same way we express the bonding

strength of ions to water as a solvent, i.e., as the difference of electron potential in

the metal and the gaseous state: Δμe ¼ μe metalð Þ � μe gasð Þ. Table 22.1 shows

corresponding values for some typical metals as well as graphite.

The bonding strength is of the same magnitude as the bonding strength of

monovalent ions to water (compare Table 21.1). The electrons in platinum are

especially strongly bound. It is very difficult for them to move from the metal into

the gaseous area, but they can move freely in the interior of the metal.

When two different metals touch each other, the one that binds electrons more

strongly will extract electrons from the other one. In other words, the electrons will

Table 22.1 Examples of differences of electron potentials in metal and gaseous state (at 298 K

and 100 kPa).

Substance Na Zn Cu Fe Ag Pt Cjgraphite
Δμe (kG) �212 �404 �424 �439 �446 �509 �412
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follow the chemical potential from the metal with higher electron potential into the

one with lower potential. In the process, one metal will be positively charged and

the other negatively. Copper, for example, binds electrons somewhat more strongly

than zinc (Δμe ¼ �424kG as opposed to �404 kG according to Table 22.1). When

copper and zinc are brought into contact, electrons flow from the zinc into the

copper and the copper charges negatively and the zinc positively.

The electric field that forms between the separated charges causes the depletion

and enrichment zones in each metal to be limited to a thin boundary layer. The two

boundary layers together are called an electric double layer where the distance

between the opposite charges is of an order of magnitude of 10�10 m. The electric

field emanating from the boundary layer of one of the phases is shielded by the

opposite charge of the other layer so that no field exists beyond the double layer. As

a result of charging, a potential difference (electric voltage) forms between the

metals. In this case, the Galvani potential difference corresponds to the drop of

potential from the interior (meaning outside of the boundary layer) of phase I to the

interior of phase II. The voltage UI!II works here as the electric drive for

transporting the negative (!) charge carriers. Let us return to our example of contact

between copper and zinc: the electric potential of the copper decreases and the

electric potential of the zinc increases. An electric drive is formed that opposes the

chemical drive.

This transport process continues until equilibrium is established between the

chemical drive as a result of a drop in chemical potential and the opposing electric

drive due to a drop in electric potential. These two opposing tendencies are summed

up in the electrochemical potential mentioned above. Electrochemical equilibrium
then generally means that the difference of electrochemical potentials of charge

carriers of type i in two phases I and II, Δeμi, will equal zero:

Δeμi ¼ 0 electrochemical equilibrium: ð22:4Þ

This is equivalent to the electrochemical potential in both phases I and II being

equal:

eμi Ið Þ ¼ eμi IIð Þ: ð22:5Þ

When Eq. (22.3) is inserted into the condition for equilibrium, it follows that

μi Ið Þ þ ziFφ Ið Þ ¼ μi IIð Þ þ ziFφ IIð Þ or μi IIð Þ � μi Ið Þ ¼ �ziF φ IIð Þ � φ Ið Þ½ �:

Finally we obtain:

Δφ ¼ φ IIð Þ � φ Ið Þ ¼ � μi IIð Þ � μi Ið Þ
ziF

¼ �Δμi
ziF

: ð22:6Þ

Because Ai, I!II ¼ �Δμi and Δφ ¼ �UI!II, the Galvani voltage UI!II in equilib-

rium between the metals results in
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UI!II ¼ �Ai, I!II

ziF
, or abbreviated, U ¼ � Ai

ziF
: ð22:7Þ

We will again emphasize the fact that the electrochemical equilibrium is in no way

identical to simultaneously existing chemical and electric equilibria. Rather, the

effects of the chemical “tension” A and the electric tension (or voltage) U are in

balance. Neither A nor U need to vanish in order for the condition for equilibrium

Δeμi ¼ 0 to be satisfied, as we can see in Eq. (22.7).

In the example of two metals in contact, the exchanged charge carriers are

electrons. The electron potential μe for the metal in question should be inserted

for the chemical potential, and the charge number zi should receive a value of

ze¼�1. We then obtain

Δφ ¼ � μe IIð Þ � μe Ið Þ
zeF

¼ Δμe
F

ð22:8Þ

or for the contact voltage

UI!II ¼ �Ae, I!II

zeF
, abbreviated U ¼ Ae

F
: ð22:9Þ

Figure 22.1 graphically illustrates this relation.

The Galvani potential difference formed between copper and zinc is not very

high—it is about 0.2 V—but it is high enough to be easily measured in principle.

However, this voltage is unnoticeable when the piece of copper and the piece of

zinc are attached to the two cables of a voltmeter. The entire circuit made up of

copper, zinc, cables, and voltmeter behaves as if the contact voltage between the

two metals did not exist. Why is this? First we must keep in mind that a contact

voltage does not form at only one location but at every location of contact between

different metals. To simplify this, let us imagine all the cables and the wires inside

Fig. 22.1 Illustration of

contact voltage and

electrochemical equilibrium

for two metals I and II in

contact.
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our voltmeter to be made of copper. Along with the contact between the pieces of

copper and zinc, a second such contact will appear where the cable is attached to the

piece of zinc. A Galvani potential difference is formed here as well and its

magnitude will be the same as that of the first contact. The electric potential rises

by 0.2 V at the transition from copper to zinc but falls again by the same amount

when we go from zinc on the other side to the copper cables. The voltmeter does not

indicate these steps of potential. Even when any number of electron conductors are

joined together forming a circuit, the Galvani voltages will cancel each other.

Voltage sources cannot be built this way. This changes when ion conductors are

added to the electron conductors in the circuit. When this happens, the Galvani

potential difference no longer needs to cancel each other and a voltage source will

form. This voltage source is called a galvanic cell. We will go more deeply into

galvanic cells in Chap. 23.

22.3 Galvani Potential Difference Between Metal

and Solution

It will change nothing if, instead of electrons, we consider ions J as the charge-

carrying particles exchanged between phases, for example, between a solution and

a solid such as an ion-exchange resin or a metal. A metal (abbreviation: Me) can be

imagined as basically made up of freely moving negative electrons and positive

metal ions arranged on lattice sites. The chemical potential of the metal ions

together with those of the electrons yields the potential of the metal as a whole:

μ Með Þ ¼ μ Jjmð Þ þ zJμ ejmð Þ: ð22:10Þ

zJ is the charge number of the metal ions. If two of these potentials are known, the

third can be calculated from them. Let us look at the example of copper:

μ Cuð Þ ¼ μ Cu2þjm� �þ 2μ ejmð Þ:

The abbreviation jm indicates a metallic phase, generally the pure metal phase

which is pure copper in this case, but it can also be an alloy. In order to give the

formulas more clarity, we will write them as follows:

μ Með Þ ¼ μJ Með Þ þ z
J
μe Með Þ:

A copper sheet (phase II), dipped into a copper-salt solution (e.g.. a copper sulfate

solution) (phase I), can exchange Cu2+ ions with the solution [abbreviated: d (for

dissolved); compare Sect. 1.6]:

22.3 Galvani Potential Difference Between Metal and Solution 527

http://dx.doi.org/10.1007/978-3-319-15666-8_1#Sec6
http://dx.doi.org/10.1007/978-3-319-15666-8_23


Cu2þjd! Cu2þjs:

Because the chemical potential of the Cu2+ ions in the metal lies generally much

lower than that in a solution, ions migrate out of the solution and into the metal. In

the process, charge passes through the interface. This is called a charge transfer
reaction. Water is, by far, the most common solvent, so we will assume aqueous

solutions (abbreviation: jw) in the following. We will generally use the term

electrodes for metals (in this case, copper) or other types of electron conductors

(graphite, among others), which have the purpose of transferring electric charge

between the usual conductors in circuits and other mediums—a solution, for

example (compare Sect. 21.3).

The deposition of the metal ions, in our example copper ions, charges the metal

positively relative to the electrolyte solution. This positive charge is limited to a

thin boundary layer at the surface of the metal. It attracts anions toward the

neighborhood of the electrode which leads to an excess of negative charge in the

boundary layer of the solution. An electric potential difference will then form

between the two phases. The positive charges remaining on the surface of the

metallic phase form an electric double layer together with the anions which are

enriched near the phase boundary because of electrostatic forces. This double layer

is composed of a “rigid” double layer (Helmholtz double layer) and a “diffuse”
double layer (Gouy–Chapman double layer) (Fig. 22.2).

The strong field near the metallic phase and the ensuing strong interaction forces

cause the solvated anions to arrange themselves fairly rigidly like “pearls on a

Fig. 22.2 Electric double

layer at the phase boundary

between a metal (Me) and

an electrolyte solution (S) as

well as the corresponding

potential (o.H.: outer

Helmholtz plane, d:
thickness of the rigid double

layer).
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string” along the surface of the electrode—as far as their solvation shells allow; at

least this is the picture we form. The ions in the solution form the outer Helmholtz

layer and the charges on the surface of the electrode the inner layer. The distance

between the layers is determined by the plane going through the cores of the

solvated ions—the outer Helmholtz plane. The electric potential varies linearly

between the two charge layers.

As the distance to the phase boundary grows, thermal motion increasingly

disturbs the ordering of the ions. In this diffuse double layer, which extends rather

far into the solution, the solvated ions are present in higher concentrations than in

the interior of the electrolyte solution (abbreviation: S). The concentration as well

as the electric potential decay almost exponentially to the values inside the phase

[φ(S) in the case of the potential].

Even the smallest amount of ions is enough to charge the metal sheet so strongly

that the chemical forces are no longer sufficient to continue forcing more cations into

the metal against the electric field. The resulting voltage can be calculated

analogously to the contact voltage between metals. We will need to insert

Δφ ¼ φ metalð Þ�φ solutionð Þ and Δμ ¼ μ ion in metalð Þ � μ ion in solutionð Þ as

well as the ionic charge number into Eqs. (22.6) and (22.7). The equation for ion

type J with the charge number zJ is then:

φ Með Þ � φ Sð Þ ¼ � μJ Með Þ � μJ Sð Þ
zJF

, or more simply Δφ ¼ �ΔμJ
zJF

ð22:11Þ

or, if we replace the potential differences (electric and chemical) by the

corresponding drives,

US!Me ¼ �AJ Jjd! Jjmð Þ
zJF

, abbreviated U ¼ � AJ

zJF
: ð22:12Þ

AJ indicates the chemical drive of the process of metal ion J in solution (which is

almost always aqueous)!metal ion J in metal.

We can write the following for our example of a copper sheet dipped into an

aqueous copper-salt solution:

Δφ ¼ � μCu2þ Með Þ � μCu2þ Sð Þ
2F

:

We obtain charge transfer in the opposite direction if the chemical potential of the

ions in the solution predominates. This is, for example, generally the case with a

zinc rod immersed in a zinc-salt solution. The Zn2+ ions migrate out of the metal

into the solution and, as a result, the metal charges negatively relative to the

solution.
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The chemical potential of the metal ions in solution phase S depends upon their

concentration. We will refer to the mass action equation (Sect. 6.2) to calculate this

concentration dependency:

μJ Sð Þ ¼ μ
○
J Sð Þ þ RTln

cJ Sð Þ
c�
¼ μ

○
J Sð Þ þ RTlncr, J Sð Þ: ð22:13Þ

In this case, μ
○
J Sð Þ is the basic value of the chemical potential of the metal ions in

the solution at the standard concentration c� ¼ 1kmolm�3ð¼ 1molL�1Þ and

arbitrary temperature T and pressure p.
The chemical potential of the metal ions in pure metal is naturally independent

of concentration. According to Eq. (22.10), at corresponding temperature T and

corresponding pressure p, it is:

μJ Með Þ ¼ μ Með Þ � zJμe Með Þ: ð22:14Þ

Inserting into Eq. (22.11) yields:

Δφ ¼ �
μ Með Þ � zJμe Með Þ�� �μ○J Sð Þ þ RTlncr, J Sð Þ
h i

zJF

and finally,

Δφ ¼ μ
○
J Sð Þ � μ Með Þ þ zJμe Með Þ

zJF
þ RT

zJF
lncr, J Sð Þ: ð22:15Þ

Here, we are mainly interested in the concentration dependency of

Δφ ¼ φ Með Þ � φ Sð Þ. The first term in Eq. (22.15) still depends upon temperature

T and pressure p, but not upon the concentration of metal ions in the solution.

For this reason, we abbreviate it just like the corresponding chemical quantities to

Δφ○ ¼ �U
○
:

Δφ ¼ Δ φ
○ þ RT

zJF
ln
cJ Sð Þ
c�

or U ¼ U
○ � RT

zJF
ln
cJ Sð Þ
c�

: ð22:16Þ

Again, we callΔ φ
○
andU

○
the basic values. According to Eq. (22.16), Δφ increases

with the concentration of metal ions: The more concentrated the solution, the higher

the potential φ(Me) compared to φ(S). This equation, which describes the concen-

tration dependency of Δφ or U, is also called Nernst’s equation.
If the electrode is not made up of pure metal, but is a homogeneous alloy

(possibly an amalgam), the concentration dependency in the metallic phase must
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also be taken into account by the corresponding mass action equation. We then

obtain the following relation instead of Eq. (22.16):

Δφ ¼ Δφ
○ þ RT

zJF
ln

cJ Sð Þ
cJ Með Þ : ð22:17Þ

The following formulation of the exchange reaction,

Cujs ! Cu2þjwþ 2 e�;

illustrates that the case of a metal in contact with a solution of its ions can be

regarded from a formal point of view as a special kind of a so-called redox reaction.

Redox reactions will be the subject of the next section.

22.4 Redox Reactions

One essential characteristic of redox reactions is that the participating substances

exchange electrons e� and therefore electric charge as well. Because of this charge

transfer, charged particles, meaning ions, always appear as reaction partners in this

kind of transformation. We will treat ensembles of a type of ion as we would treat

ensembles of neutral particles—namely as substances, even when it is not possible

to isolate these substances into pure form. This means that we consider hydrogen

carbonate (HCO�3 ) and calcium(II) (Ca2þ ) as substances (quasi “charged sub-

stances”) like the “neutral” substances carbonic acid (H2CO3) and calcium(II)

carbonate (CaCO3). Redox reactions are transfer reactions like the acid–base

reactions in Chap. 7; only instead of an exchange of protons, we have an exchange

of electrons. Conceptually, they can then be treated in the same way.

When a substance B emits electrons, it leaves behind a new substance D. B is

referred to as the reducing agent (or reductant) (abbreviation: Rd) and D as the

oxidizing agent (or oxidant) (abbreviation: Ox). We use the abbreviations Rd and

Ox for any type of particle whether it is positive, neutral, or negative, freely mobile

in a solution or in a gas, or is only a component in a crystal. The simplest form of

electron donation can be expressed as follows:

Rd! Ox|fflfflfflfflfflffl{zfflfflfflfflfflffl}
redox pair

þ e: að Þ

The substances Rd and Ox together form a so-called redox pair or redox system
Rd/Ox (equivalent to an acid–base pair Ad/Bs). Ox is the oxidizing agent belonging
(corresponding, conjugated) to Rd, and Rd is the reducing agent belonging to Ox. If
the process runs from left to right, we say that the reducing agent is being oxidized,

and if it runs in the opposite direction, we say that the oxidizing agent is being
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reduced. It is often advantageous to speak of the oxidation or the reduction of a

redox pair as a unit. An oxidation is equivalent to electron release out of the redox

system and a reduction is equal to electron acceptance. An example of this is the

oxidation of Fe2+ ions to Fe3+ ions in an aqueous solution:

Fe2þjw! Fe3þjwþ e�:

Free electrons are extremely reactive so, under normal laboratory conditions, they

cannot accumulate anywhere in noticeable amounts. As they form, or rather in

avoiding the free state, they are immediately used up. Process (a) never appears

alone, but always paired with a second one of the same kind (a0):

Rd*! Ox*þ e: a0ð Þ

When the first process (a) runs forward, the second one (a0) is driven backward, and
vice versa. This reaction pair, made up of one oxidation and one reduction process,

is called a redox reaction, and the processes (a) and (a0) the respective half-
reactions.

Let us return to the simple basic process (a) and generalize it. On the one hand,

several electrons will often be exchanged simultaneously and, on the other, several

substances can appear in place of the simple substances Rd and Ox. We will

indicate the conversion number of the electrons with ve and allow that Rd and Ox

can mean combinations of substances. The generalized process is then:

vRd0Rd
0 þ vRd00Rd

00 þ . . .
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Rd

! vOx0Ox
0 þ vOx00Ox

00 þ . . .
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ox

þυee:

The following is an example of a half-reaction in which composite reducing and

oxidizing agents participate:

Mn2þjwþ 12 H2Ojl! MnO�4 jwþ 8 H3O
þjwþ 5 e�:

A redox pair behaves like an electron reservoir. When the reservoir is completely

filled, the pair is in its totally reduced form, Rd. If it is completely empty, only the

oxidized form Ox will be present. The different redox pairs and electron reservoirs,

respectively, have a greater or a smaller tendency to donate electrons. We can

describe this by a chemical potential we will call the electron potential of the redox
pair Rd/Ox:

μe Rd=Oxð Þ :¼ 1

υe
μRd � μOx½ �: ð22:18Þ
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This equation is very similar to the definition of the proton potential μp [Eq. (7.1)].
This one as well results from the equilibrium condition for a transformation, in this

case for the reaction

Rd ! Oxþ vee

according to

μRd ¼ μOx þ veμe:

The electron potential, like the proton potential, describes the strength of a tendency

to transfer (in this case) electrons to other substances. If the chemical potential μe of
the electrons in the surroundings is lower than μe(Rd/Ox), i.e., if μe< μe(Rd/Ox),
electrons will be released to the environment and the electron reservoir will be

discharged. However, if μe is higher on the outside, μe> μe(Rd/Ox), the redox pair

will accept electrons, and the reservoir will begin to fill up and be charged. The

limiting value μe(Rd/Ox) indicates the chemical potential of the electrons up to

where donating electrons is just possible. In other words, the electron potential

measures the maximum “electron pressure” the redox pair is able to produce.

Acceptance of electrons is equivalent to a reduction, so μe(Rd/Ox) is also a measure

of how strongly reducing a pair Rd/Ox is, meaning its reductive capacity.
Because the electron potential of a redox pair is characteristic of it, it is

necessary to state which pair μe refers to. If Rd or Ox stands for a composite

agent, we stipulate:

μRd ¼ vRd0 μRd0 þ vRd00 μRd00 þ . . . and μOx ¼ vOx0 μOx0 þ vOx00 μOx00 þ . . . :

Table 22.2 shows some examples of values where water appears as both reducing

and oxidizing agent.

Table 22.2 Standard values

of electron potentials of some

redox systems (298 K,

100 kPa, 1 kmol m�3 in
aqueous solution).

Reducing agent/Oxidizing agent μ�e kGð Þ
Kjs=Kþjw +283

1=2 H2jgþ OH�jw=H2Ojl +80

Fejs=Fe2þjw +39

1=2 H2jgþ H2Ojl=H3O
þjw 0

Sn2þjw=Sn4þjw �14
2 OH�jw=1=2O2jgþ H2Ojl �39
I�jw=1=2I2js �52
Fe2þjw=Fe3þjw �74
3 H2Ojl=1=2 O2jgþ 2 H3O

þjw �119
Mn2þjwþ 12 H2Ojl=MnO�4 jwþ 8 H3O

þjw �146
HFjgþ H2Ojl=1=2 F2jgþ H3O

þjw �275
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If an exchange of electrons between two redox pairs is allowed to take place, the

“stronger” pair, meaning the one with the higher potential, will give off electrons to

the “weaker” pair, which will then be reduced. If, for example, an Sn2+ solution is

added to an Fe3+ solution, the Fe3+ will be reduced to Fe2+ and the Sn2+

will be oxidized to Sn4+, because according to the levels of the electron potentials

(μ�e Sn2þ=Sn4þð Þ ¼ �14kG;μ�e Fe2þ=Fe3þð Þ ¼ �74kG), the redox pair Sn2þ=Sn4þ is
more strongly reducing than the redox pair Fe2þ=Fe3þ (Experiment 22.1).

Electron transfer is often strongly inhibited and does not run as promptly as

proton exchange. For this reason, it is often possible to manipulate redox pairs in

aqueous solutions that, depending upon the levels of their electron potentials,

should reduce the water or its components to H2 or oxidize it to O2. For example,

in an acidic solution, the μ�e value of the Mn2þ=MnO�4 system is so low at �146 kG
that it can draw electrons out of water (or more exactly, the H2O=O2 pair) having a

μ�e of �119 kG. Even so, permanganate solutions can be kept for months.

22.5 Galvani Potential Difference of Half-Cells

Redox Electrodes When a chemically indifferent metal like platinum is immersed

in a solution of a redox pair (meaning a homogeneous redox system), it will

exchange almost no metal ions with the solution but will accept (or release)

electrons. For the example of an aqueous solution of a redox pair in combination

with a Pt electrode, we can formulate the process as follows:

Rdjw ! Oxjwþ veejPt:

In the process, an electrochemical equilibrium will be established whereby the

metal sheet or rod is charged and an electric double layer is formed. A well-defined

Experiment 22.1 Reduction of
Fe3+ by Sn2+ ions: An iron (III)

nitrate solution is combined with

a tin (II) chloride solution. The

progress of the reaction can be

easily followed if a few drops of

thiocyanate solution are added to

the iron (III) salt solution at the

beginning. The initially strong

red color caused by the iron (III)

thiocyanate complex disappears a

few minutes after Sn2+ is added.
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Galvani voltage UI!II then forms between the solution (phase I) and the inert metal

(phase II), exactly as it would form between two metals (Fig. 22.3). We can

calculate the Galvani potential difference or the Galvani voltage, respectively,

according to Eq. (22.8) or Eq. (22.9), by inserting the value of the electron potential

in the metal, here the commonly used platinum (Pt), and of the redox pair Rd/Ox in

the solution (S), Δμe ¼ μe Ptð Þ � μe Sð Þ:

Δφ ¼ φ IIð Þ � φ Ið Þ ¼ � μe Ptð Þ � μe Sð Þ
zeF

¼ Δμe
F

ð22:19Þ

or

UI!II ¼ �Ae, I!II

zeF
, abbreivated to U ¼ Ae

F
; ð22:20Þ

where the charge number of the electrons ze¼�1 was inserted on the right in

each case.

If we allow for the concentration dependency of the chemical potential in

relation (22.19), we obtain another version of Nernst’s equation. Thus, according
to Eq. (22.18), the following is valid for the electron potential of the redox pair in

the solution:

μe Sð Þ ¼ μe Rd=Oxð Þ ¼ 1

ve
μ Rdð Þ � μ Oxð Þ½ �;

Fig. 22.3 Formation of an

electric potential difference in

the case of a homogeneous

redox system (phase I) in

contact with a noble metal

electrode (phase II).
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and therefore,

μe Sð Þ ¼ 1

ve
μ
○

Rdð Þ þ RTlncr Rdð Þ
� �

� μ
○

Oxð Þ þ RTlncr Oxð Þ
� �h i

or

μe Sð Þ ¼ 1

ve
μ
○

Rdð Þ þ RTln
c Rdð Þ
c�

� �
� μ

○
Oxð Þ þ RTln

c Oxð Þ
c�

� �	 

:

By transforming we obtain [remembering the rules for logarithms: lna� lnb ¼
ln a=bð Þ (see also Sect. A.1.1 in the Appendix)]:

μe Sð Þ ¼ 1

ve
μ
○

Rdð Þ � μ
○

Oxð Þ�þ RTln
c Rdð Þ
c Oxð Þ

	 

: ð22:21Þ

Inserting into Eq. (22.19) yields:

Δφ ¼
μe Ptð Þ � 1

ve

�
μ
○

Rdð Þ � μ
○

Oxð Þ�þ RTln
c Rdð Þ
c Oxð Þ

	 

F

or

Δφ ¼ veμe Ptð Þ þ μ
○

Oxð Þ � μ
○

Rdð Þ
veF

þ RT

veF
ln
c Oxð Þ
c Rdð Þ : ð22:22Þ

If we again abbreviate the first term in Eq. (22.22) to Δ φ
○
, we obtain:

Δφ ¼ Δ φ
○ þ RT

veF
ln
c Oxð Þ
c Rdð Þ : ð22:23Þ

This version of Nernst’s equation describes the dependency of the electric potential
differenceΔφ ¼ φ Ptð Þ � φ Sð Þ upon the concentrations of the oxidized and reduced
forms of the redox pair in question. The higher the concentration c(Ox) of the
oxidizing agent and the lower the concentration c(Rd) of the corresponding reduc-

ing agent, the higher φ(Pt) will be compared to φ(S). We expect this because when

the concentration c(Ox) is high, the electron reservoir representing the redox pairs

will be almost completely empty. Hence, there is the strong tendency to extract

electrons from the noble metal which then becomes positively charged relative to

the solution. However, if the concentration c(Ox) is low compared to c(Rd), the
electron reservoir will be almost full and will have a strong tendency to donate

electrons to the noble metal which will then become negatively charged. The

electron gas of the metal acts as a kind of reservoir with an extremely small capacity

that can accept or release electrons.
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If we apply Eq. (22.23) to our first example of the simple redox pair of bivalent

and trivalent iron, we then have:

Δφ ¼ Δ φ
○

Fe2þ=Fe3þ
� �þ RT

F
ln
c Fe3þð Þ
c Fe2þð Þ :

If we have a composite redox system Rd! Oxþ vee, in which Rd stands for the

combination of substances vRd0Rd
0 þ vRd00Rd

00 þ . . . and Ox stands for the combi-

nation vOx0Ox
0 þ vOx00Ox

00 þ . . ., we can derive the generalized form of Nernst’s
equation analogously and then obtain:

Δφ¼
veμe Ptð ÞþvOx0 μ

○
Ox0ð ÞþvOx00 μ

○
Ox00ð Þþ . . .� vRd0 μ

○
Rd0ð ÞþvRd00 μ

○
Rd00ð Þþ . . .

� �
veF

þ RT

veF
vOx0 lncr Ox

0ð ÞþvOx00 lncr Ox
00ð Þþ . . .� vRd0 lncrðRd0 ÞþvRd00 lncr Rd

00ð Þþ . . .
� �h i

or

Δφ ¼ Δ φ
○ þ RT

veF
ln

cr Ox
0ð ÞvOx0 � cr Ox00ð ÞvOx00 � . . .

cr Rd
0� �v

Rd
0 � cr Rd

00� �v
Rd
00 � . . .

or in abbreviated form

Δφ ¼ Δ φ
○ þ RT

veF
ln

Yk
i¼1

cr Oxið ÞvOxi

Yl
j¼1

cr Rd j

� �vRd j

: ð22:24Þ

The product sign (∏) is defined similarly to the summation sign (∑), but in this case,
a multiplication of factors follows.

This looks rather complicated at first, but the method quickly becomes clearer

when we use our second example of the oxidation of Mn2+ ions:

Δφ ¼ Δ φ
○

Mn2þ=Mn�4
� �þ RT

5F
ln
cr Mn2þð Þ � cr H3O

þð Þ8
cr MnO�4
� � :

Because of its high concentration, we will again use the potential of the pure solvent

μ
○

H2Oð Þ for water (compare Sect. 6.3) and factor it into the concentration-

independent term Δφ
○
.

The piece of metal (in this case, platinum) conveying electric charge between the

usual conductors in a circuit and another medium (in this case, a solution) is called
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as already mentioned an electrode. We will call the combination of an electrode and

a redox pair a galvanic half-cell (or an electrode in a wider sense).

In contrast to the homogeneous redox systems discussed above, there are

numerous systems where the participating substances are not all together in one

solution but are distributed over different phases. An example of this is when one of

the partners is present in the form of a gas or a solid substance. If we combine such a

redox pair with a metal like platinum, we not only have a phase boundary metal/

solution, but several other similar interfaces, say, between platinum and gas or

between platinum and solid substance. Now the question arises of which of these

interfaces the Galvani potential difference forms across that corresponds to the

electron transition between redox pair and platinum. This can only be the phase

where the positive excess charge remains after the electrons separate from the redox

pair. Exactly this phase will be charged in opposition to the metal. If the redox pair

is made up of substances in two or three phases, we want to assign the exchangeable

electrons to one certain phase. We choose the one where the positive charge

remains after donating electrons. We will call this phase the corresponding
electrolyte.

Gas Electrodes Let us look at an example of a gas electrode, a so-called hydrogen
electrode: A platinum sheet is immersed in a solution containing hydrogen ions and

is bathed in hydrogen gas (Fig. 22.4). In the case of the redox pair H2jg and 2H+jw,
the electrons are not considered to come from the gas phase, which remains neutral

when releasing electrons, but to come out of the solution because the positive H+

ions accumulate there. The donated electrons are missing in this phase.

The conversion formula is:

H2jg! 2 Hþjwþ 2 e�jPt:

Fig. 22.4 A very simple

hydrogen electrode as an

example of a heterogeneous

redox system. The enlarged

section shows the electrode

processes more clearly.
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The electric potential difference in equilibrium can be calculated analogously to

how homogeneous redox systems are calculated, but the equation

μ H2ð Þ ¼ μ
○

H2ð Þ þ RTln
p H2ð Þ
p�
¼ μ

○
H2ð Þ þ RTln pr H2ð Þ

is applied to the chemical potential of the hydrogen gas because the concentration

of a dissolved gas is proportional to its pressure in the gas phase (compare Sect.

6.6). The electron potential of the redox pair H2/H
+ then results in:

μe H2=H
þð Þ ¼ 1

2
μ H2ð Þ � 2μ Hþð Þ½ �:

Using the hydrogen electrode as an example of a gas electrode, we finally arrive at

Δφ ¼ 2μe Ptð Þ þ 2 μ
○

Hþð Þ � μ
○

H2ð Þ
2F

þ RT

2F
ln
cr H

þð Þ2
pr H2ð Þ ð22:25Þ

or abbreviated

Δφ ¼ Δφ
○

H2=H
þð Þ þ RT

F
ln

cr H
þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pr H2ð Þp : ð22:26Þ

Metal–Metal Ion Electrodes Until now, we have only discussed half-cells with

so-called inert electrodes that can exchange electrons but not ions with other

substances. The noble metal platinum is the preferred material for inert electrodes.

In contrast to this, a metal can itself be part of a (heterogeneous) redox pair. In such

a case, ions are exchanged between the solution and the metal. (We discussed this in

detail in Sect. 22.3.) But formally, we can also imagine that the metal which is part

of the redox pair is conductively connected to a piece of platinum and immersed in

the corresponding electrolyte. Then we can deal with the metal–metal ion elec-

trodes in the same way as with the redox electrodes discussed above, meaning we

imagine that the conversed electrons are finally taken from the platinum

Mejs ! Mezþjwþ vejPtð Þ. This approach has the advantage that the contact poten-
tial differences which appear by connecting the electrodes with a measuring device

are made equal, meaning they cancel each other and can therefore be neglected. As

an example, we will consider a silver–silver ion electrode (Fig. 22.5), which is

composed of a piece of silver connected to a piece of platinum and immersed in a

solution of Ag+ ions, possibly a silver nitrate solution. Ag and the Ag+ ions in the

solution then form the redox pair.

Also in this case, the Galvani potential difference in equilibrium can be calcu-

lated analogously to how homogeneous redox systems are calculated, and finally

we obtain the equation
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Δφ ¼ Δ φ
○ þ RT

veF
ln
cr Mezþð Þ
cr Með Þ : ð22:27Þ

In the case of a pure solid metal phase, the mass action term drops out (compare

Sect. 6.6) and therefore we have

Δφ ¼ Δ φ
○ þ RT

veF
lncr Mezþð Þ: ð22:28Þ

Both equations show, as expected, great similarities with Eq. (22.16) and

Eq. (22.17). According to the relation Mejs ! Mezþjwþ vejPt, we have always

zJ¼ ve.
If we apply Eq. (22.28) to our example, the silver–silver ion electrode, this

results in:

Δφ ¼ Δ φ
○

Ag=Agþð Þ þ RT

F
lncr Ag

þð Þ:

As we see, the Galvani potential difference depends solely upon the amount of Ag+

ions in the solution. This is a fact that can also be used for analytic purposes (see

Sect. 23.4).

Film Electrodes There are special cases where an ion electrode can react to ions

other than its corresponding ones. We can have electrodes that react to Cl� ions

when silver is coated with a thin layer of low-soluble silver chloride (Fig. 22.6).

This type of electrode is called a film electrode. Although the silver chloride is not a

Fig. 22.5 Silver–silver ion

electrode as an example of a

metal–metal ion electrode.
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metal, it is about as conducting as water. It is a solid electrolyte in which the silver

ions have a certain mobility. The process of conduction can be illustrated by

imagining the Ag+ ions to be forcing their way through the spaces between the

much larger spherical Cl� ions. This is possible because the ions are not rigid

spheres but elastic entities. They are never at rest. At room temperature, they

oscillate and collide with each other at speeds comparable to gas molecules,

meaning several hundred m s�1. The Ag+ ions move particularly easily along the

grain boundaries where differently oriented crystalline parts meet.

Let us imagine a piece of silver with an AgCl film to be immersed in a Cl�

solution. Two phase boundaries will form, one between the metal and the film and

the other between the film and the solution. The interface metal/film is permeable

for Ag+ but not for Cl� ions or electrons. It is impermeable to Cl� ions because they
cannot be inserted into the metal lattice and electrons cannot pass through because

silver chloride does not conduct electrons. Therefore, a Galvani potential difference

will form there that is determined only by the chemical potentials of the Ag+ ions in

both phases. These are fixed values, so the Galvani potential difference will also

have a fixed value. The interface film/solution is permeable to both Cl� and Ag+ so

that Ag+ and Cl� ions compete to set the Galvani potential difference. However,

free Ag+ ions in a Cl� solution can only be present in extremely low concentrations,

so they are hopelessly outnumbered by the Cl� ions. This is why only the Cl� ions

determine the potential difference at this interface.

The electrode reaction can be described by

Agjsþ Cl�jw! AgCljsþ e�:

In this case, we must consider the composite redox pair (Ag +Cl�)/AgCl. We

obtain the corresponding Galvani potential difference Δφ of the silver–silver

chloride electrode by inserting the information about the redox pair into

Eq. (22.24):

Fig. 22.6 Cross section

through the surface of a

electrode, in this case, a

silver–silver chloride

electrode.
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Δφ ¼ Δφ
○�

Agþ Cl�ð Þ=AgCl�þ RT

F
ln

1

cr Cl
�ð Þ

or

Δφ ¼ Δφ
○�

Agþ Cl�ð Þ=AgCl�� RT

F
ln
c Cl�ð Þ
c�

: ð22:29Þ

The mass action term drops out in the case of the solid substances Ag and AgCl

(compare Sect. 6.6), but the related basic values of the chemical potential are

included in Δ φ
○
. Corresponding anion-sensitive electrodes can be produced for

Br�, I�, S2�, SCN�, . . . by using silver with films of AgBr, AgI, Ag2S, AgSCN, . . . .

22.6 Galvani Potential Difference Across Liquid–Liquid

Interfaces

A Galvani potential difference can form not only across the interface electrode/

electrolyte solution but also across the interface between two electrolyte solutions.

There is usually a fine-pored wall (made of sintered glass or ceramic), a so-called

diaphragm, to stabilize the phase boundary so that the solutions do not mix too

quickly.

A Galvani potential difference is caused by the different chemical potentials of

the various types of ions in the two neighboring phases. The potential gradient

causes the ions to diffuse through the phase boundary. Because they have different

mobility, they also migrate at different rates so that the charge separates and there is

a jump of electric potential across the interface. This Galvani potential difference—

called diffusion (Galvani) voltage (or liquid junction voltage) Udiff.—is generally

very difficult to calculate. However, there is a rather simple equation for the special

case where only two ions can be exchanged. This special case occurs, for example,

when two solutions of different concentrations c(I) and c(II) of the same binary
electrolyte are allowed to border each other. Different concentrations of sodium

chloride can be used as an example for this.

Both types of ions migrate out of the more concentrated solution into the more

diluted one as they are driven by the gradients of their chemical potentials. In the

process, the more mobile ion (let it be the negative ion as would be the case for Na+

and Cl�) moves a bit more quickly, so that the more dilute solution is charged

negatively due to the retardation of the positive ions. Different electric potentials

then develop in the two solutions. As a result, an electric potential gradient exists in

the interface so that the ions there are not only subject to chemical forces but to

electric ones as well. These forces cause the ions hurrying ahead to slow down and

the slower ones behind to accelerate, so that both types of ions finally move through
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the phase boundary at the same rate. The potential difference Δφdiff. in the steady

state for a 1–1 electrolyte turns out to be

Δφdiff: ¼ φ IIð Þ � φ Ið Þ ¼ � tþ � t�ð Þ
F

RTln
c IIð Þ
c Ið Þ ¼ �Udiff:; ð22:30Þ

where tþ and t� are the transport numbers of the cations or anions, respectively

(compare Sect. 21.6).

The equal migration velocities of the positive and negative ions serve as the point of departure

for our calculation. We will use the expression [Eq. (21.8)] we were introduced to in our

discussion of ion migration, for our approach to velocity. We indicate the quantities having to

do with positive ions with the index +, and we use the index � for the corresponding

quantities of negative ions.We use the letter x for the position coordinate that is perpendicular
to the boundary layer of our electrolytes. We speak of a boundary layer rather than an

interface because such layers have finite thickness that constantly widens by diffusion. We

will consider a small volume element in this boundary layer, containing equal amounts n+ and
n� of positive and negative ions. Depending on the gradients of chemical and electric

potentials present, chemical and electric forces simultaneously act upon these ions

υþ ¼ ωþ � Fþ
nþ
¼ �ωþ � dμþ

dx
� ωþzþF � dφ

dx
;

υ� ¼ ω� � F�
n�
¼ �ω� � dμ�

dx
� ω�z�F � dφ

dx
:

By applying the mass action equation, we obtain dμ=dx ¼ RT=c � dc=dx [Eq. (20.8)].

Since cþ xð Þ ¼ c� xð Þ ¼ c xð Þ must always hold because of charge neutrality, we have

dμþ=dx ¼ dμ�=dx ¼ dμ�=dx. If we take both z+¼+1 and z�¼�1 and υþ ¼ υ� into

account, we can write:

υþ ¼ �ωþ � dμ�
dx
� ωþF � dφ

dx
¼ υ� ¼ �ω� � dμ�

dx
þ ω�F � dφ

dx
:

By putting all the expressions with dμ�=dx on the right side of the equation, and the

others on the left, we obtain

� ωþ þ ω�ð Þ � F � dφ
dx
¼ ωþ � ω�ð Þ � dμ�

dx
and therefore

dφ

dx
¼ �ωþ � ω�

ωþ þ ω�
� 1
F
� dμ�
dx

:

If we consider the quotient formed from the mobilities as independent of concentration

(which is only possible to a certain extent because the ω values are influenced by the

composition of the solution), the differentials can be replaced by finite differences. Δx
drops out of the equation and we obtain

Δφdiff: ¼ �
ωþ � ω�
ωþ þ ω�

� Δμ�
F

:
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With the help of the mass action equations, and assuming c Ið Þ, c IIð Þ � c�, the result is

Δμ ¼ μ IIð Þ � μ Ið Þ ¼ μ
○

IIð Þ þ RTln
c IIð Þ
c�
� μ

○
Ið Þ � RTln

c Ið Þ
c�
¼ RTln

c IIð Þ
c Ið Þ :

Because the solution is uniform, the basic values of the potentials cancel each other.

Keeping in mind that ω+/(ω+ +ω�) equals u+/(u+� u�) (because u ¼ ωzF ) and therefore

equals tþ, and that ω�/(ω+ +ω�) equals t�, we obtain Eq. (22.30).

The more strongly the mobilities of the two ions differ, the higher the diffusion

voltage will be. Conversely, it disappears when the anions and cations possess equal

mobility. This is a fact that can be utilized for practical applications, as we will see

in the next chapter (Sect. 23.1).

22.7 Galvani Potential Difference Across Membranes

Let us now modify the setup in the last section. We separate the two electrolyte

solutions of different concentrations, c(I) and c(II), by an ion-selective membrane.
This membrane allows only one type of ion J to permeate it. We will again use the

example of two NaCI solutions separated by a membrane only permeable for Na+

cations.

The difference of chemical potentials on either side of the membrane causes a

natural tendency toward equalization of concentration for all the ions. However,

because the membrane is only permeable for Na+ ions, only these can migrate from

the side having higher concentration [say, cJ(II)] to the side of lower concentration

[cJ(I)] (Fig. 22.7), resulting in an excess of positive charge on the side of the diluted

Fig. 22.7 Formation of membrane voltage.
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solution as well as an excess of negative charge on the side of the more highly

concentrated solution. An electric potential difference Δφ then develops between

the two regions. As the potential difference develops, it generates an electric field

with a strong backward driving force. This causes the flow of ions to cease even

before weighable amounts of Na+ have been transported. In contrast to diffusion

voltage forming because of constant substance transport, a membrane voltage is an
effect related to equilibrium. Analogous to Eq. (22.11), we obtain the following for

the potential difference Δφ:

Δφ ¼ �ΔμJ
zJF

: ð22:31Þ

Applying the mass action equations under the same conditions as in the last section,

meaning dilute solutions (cJ Ið Þ, cJ IIð Þ � c�) and the same solvent on both sides of

the membrane
�
μ
○
J Ið Þ ¼ μ

○
J IIð Þ

�
, results in:

ΔμJ ¼ μJ IIð Þ � μJ Ið Þ ¼ μ
○
J IIð Þ þ RTln

cJ IIð Þ
c�
� μ

○
J Ið Þ � RTln

cJ Ið Þ
c�
¼ RTln

cJ IIð Þ
cJ Ið Þ :

The difference of electric potential between the two solutions, the so-called mem-

brane voltage, equals in equilibrium

Δφ ¼ φ IIð Þ � φ Ið Þ ¼ � RT

zJF
ln
cJ IIð Þ
cJ Ið Þ ¼ �U ð22:32Þ

Extremely thin layers of glass containing Na2O or Li2O are very suitable

membranes for Na+ or Li+ ions. The ions are just slightly mobile in the amorphous

SiO2 structure, just enough for us to measure a membrane voltage with high

resistance voltmeters. A thin LaF3 layer is suitable as a membrane for F� ions

and specifically pretreated ZrO2, as a membrane for O2� ions at higher temperature.

Membrane voltages play an important role in biological membranes, for example,

for information transfer in nerve cells.

If the concentration cJ(I) of the ion on one side is kept constant, the membrane

voltage will be determined by cJ(II) alone. It can therefore be understood as a

measure of the ion concentration cJ. The most well-known application of this type is

the measurement of proton potentials, i.e., pH values by glass electrodes.
When a piece of soda-rich glass (solidified SiO2–CaO–Na2O melt) is immersed

in water, extremely thin “swollen” layers will gradually begin to form at the surface

where the cations (Na+) bonded to the SiO2 structure are largely replaced by

(hydrated) hydrogen ions (H3O
+). This type of glass acts as a kind of membrane

permeable for hydrogen ions or hydroxide ions. The mechanism for ion transfer is

indicated in Fig. 22.8. For this reason, a membrane voltage should develop across

the glass membrane, which, according to Eq. (22.31), is determined by the differ-

ence of proton potential on both sides of the membrane, Δμ p ¼ μ p IIð Þ � μ p Ið Þ.
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When a buffer solution is put on one side that keeps the μp(I) value constant, only
the proton potential μ p IIð Þ ¼ �μd � pH [Eq. (7.10)] will determine the measurable

voltage. The decapotential μd is an abbreviation for RTln10. Under these conditions,
the membrane voltage is also a measure of the pH value of the solution on the other

side of the membrane. We then have an arrangement that is suitable for measuring

pH values and proton potentials, respectively.

If a membrane is permeable for several types of ions, Eq. (22.32) must be

satisfied individually for each type of ion J, K, . . . :

Δφ ¼ � RT

zJF
ln
cJ IIð Þ
cJ Ið Þ ¼ �

RT

zKF
ln
cK IIð Þ
cK Ið Þ ¼ . . . : ð22:33Þ

According to the rules for logarithms, we can add the factors 1/z as exponents to the
argument of the logarithmic function: a � logb ¼ logba (compare Sect. A.1.1 in the

Appendix):

�RT

F
ln

cJ IIð Þ
cJ Ið Þ

� � 1
zJ ¼ �RT

F
ln

cK IIð Þ
cK Ið Þ

� � 1
zK ¼ . . . :

Multiplying by �F=RT and taking the exponential function leads to

cJ IIð Þ
cJ Ið Þ

� � 1
zJ ¼ cK IIð Þ

cK Ið Þ
� � 1

zK ¼ . . . : ð22:34Þ

This equation, called the Donnan equation, is named after the British chemist

Frederick George Donnan who published his important paper about the theory of

membrane equilibrium in 1911.

Fig. 22.8 Cross section through a membrane of a glass electrode (above, “apparent” transport of
H+ ions using several steps, below that of OH� ions).
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There is a better known special form of Eq. (22.34) for z+¼ 1 and z�¼�1,
meaning two oppositely charged monovalent ions:

cþ IIð Þ
cþ Ið Þ ¼

c� IIð Þ
c� Ið Þ

� ��1
¼ c� Ið Þ

c� IIð Þ

or

cþ Ið Þ � c� Ið Þ ¼ cþ IIð Þ � c� IIð Þ: ð22:35Þ

We arrive at the surprisingly simple conclusion that the product of the concentra-

tions of permeable cations and anions in both electrolyte solutions must be the same

in equilibrium.

If the membrane is permeable to all the types of ions present, the concentrations

will equalize and the electric potential difference will disappear. However, if the

membrane is impermeable to a type of ion B and cB on both sides is unequal, there

will be an electric voltage across the membrane even at equilibrium.

Here is an example illustrating the case we just discussed. There are numerous

higher-molecular substances in a cell. They carry charged groups such as proteins

and nucleic acids that the cell membrane is practically impermeable to. We can

imagine a solution of such a substance Protz+ having a positive charge number z and
the corresponding number of small counter-ions Cl� contained in a cell membrane

that allows small ions to permeate it. The system floats in a table salt solution

(Fig. 22.9). Assume the Cl� concentrations inside (I) and outside (II) to be the same

initially, cCl� Ið Þ ¼ cCl� IIð Þ ¼ c0. A steep μ(Na+) gradient then exists from outside

inward because there should not be any Na+ inside. Na+ begins to flow in, charging

the interior (II) of the cell positively. This, in turn, elicits an inflow of the Cl� ions

attracted to the positive interior. This happens against the gradient of concentration
cCl� ! A noticeable amount of table salt ends up in the cell as a result of this. The

drive for the inflow of Na+ continuously decreases as the content of Na+ continues

to increase. Likewise, the inflow of Cl� becomes increasingly difficult as the

amount of Cl� grows until the whole process finally stops. Because of cNaþ Ið Þ

Fig. 22.9 Protein

solution—the protein here

is assumed to be a cation

having charge number z and
Cl� as the counter-ion—

contained in a membrane

permeable only to small

ions and surrounded by a

NaCl solution.
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¼ cCl� Ið Þ � c0 and cProtzþ IIð Þ ¼ c0=z, the three unknowns Δφ as well as cNaþ IIð Þ and
cCl� IIð Þ can be calculated from the following equations:

cNaþ Ið Þ � cCl� Ið Þ ¼ cNaþ IIð Þ � cCl� IIð Þ Donnan equation,

zcProtzþ IIð Þ þ cNaþ IIð Þ ¼ cCl� IIð Þ Electroneutrality rule,

Δφ¼�RT

F
ln
cNaþ IIð Þ
cNaþ Ið Þ ¼

RT

F
ln
cCl� IIð Þ
cCl� Ið Þ ¼ �U Membrane voltage Donnan volt:ð Þ:

However, these types of equilibria almost never occur in living cells. Pumping

processes and other activities cause finite flows of ions.
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Chapter 23

Redox Potentials and Galvanic Cells

In the last chapter, we learned a lot about Galvani potential differences across

different individual interfaces and the usefulness of these potential differences, but

we did not get to know how they can be measured. The problem is that it is

impossible to measure the Galvani potential difference across a single interface in

a half-cell directly, because an electrolyte’s contact to the conductors of an electric
measuring device requires a second electrode and this produces a new interface

with an additional Galvani potential difference. The way out of the dilemma is the

use of always the same reference half-cell, the standard hydrogen electrode, so that

the measured voltage of the galvanic cell is only determined by the measuring half-

cell. In this way, we obtain the so-called redox potential of a half-cell which

represents, just like the electron potential, a measure of the strengths of reducing

or oxidizing agents. The redox potentials under standard conditions are often

compiled according to their values in a table, the electrochemical series. The
combination of two arbitrary half-cells results in a galvanic cell. The reversible

cell voltage of such a cell, meaning the cell voltage in equilibrium, can be described

by Nernst’s equation and used to predict the chemical drive, the equilibrium

constant, and other thermodynamic properties of chemical reactions. Subsequently,

some technically important galvanic cells will be discussed, which yield usable

energy due to the spontaneous chemical reactions running inside them. In closing,

the technique of potentiometry and the corresponding potentiometric titration is

presented. This electroanalytical method uses the concentration dependence of the

reversible cell voltage for quantitative analysis of ions.

23.1 Measuring Redox Potentials

Standard Hydrogen Electrode It is impossible to measure the Galvani potential

difference across a single individual interface directly, because an electrolyte’s
contact to the conductors of an electric measuring device requires a second
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electrode and this produces a new interface with an additional Galvani potential

difference. The usual measuring device is a voltmeter showing the sum of the two

(or more) Galvani potential differences forming across the different interfaces. The

total arrangement, a combination of two half-cells, is a so-called galvanic cell. If all
the potential differences except one are kept constant, the total voltage will be

influenced only by changes to this single Galvani potential difference. Measure-

ment techniques often make use of this principle. It is possible for the Galvani

potential difference to remain constant at one electrode by keeping the conditions

there constant. In other words, we always use the same reference half-cell. In
general, when reporting measured values, a standard hydrogen electrode (abbrevi-
ated to SHE) functions as this reference half-cell. The redox pair involved is made

up of hydrogen gas at standard pressure 100 kPa, and a solution of hydrogen ions

with a pH value of 0.

In Chap. 22 (Sect. 22.4), we were introduced to a simple version of such a half-

cell. In the case of the reference half-cell, it is made up of a platinum sheet electrode

that is immersed in an acid solution and bathed in hydrogen gas. The electrode has

undergone a special platinization process that gives it a rough, strongly enlarged

surface (up to 500 times). This large surface facilitates the exchange of charge

between metal and solution. It should be remembered that pH¼ 0 means that it is

not the concentration which is prescribed, but the proton potential μp. Depending
upon the acid used and other substance present, the c(H+) value can be a little

greater or smaller than 1 kmol m�3, but μp must correspond exactly to the basic

value!

Salt Bridges The different measuring half-cells must be conductively connected

to the reference half-cell. This electric contact between the two electrolyte solutions

could be accomplished with a diaphragm. In this case, however, a noticeable

Galvani potential difference (up to a few 10 mV) may form across the interface

between the two solutions (diffusion voltage), disturbing the measurement (com-

pare Sect. 22.6). We use a trick in order to reduce the diffusion voltage close to a

value of zero. The electrolyte solutions are not brought directly in contact but

separated by a third electrolyte solution with high concentration. This third elec-

trolyte should have only two types of ions with equal but opposite charge, and

mobilities that are as similar as possible. Two examples of such electrolytes are KCl

und NH4NO3. The reason for this is that only a comparably small diffusion voltage

will form across the interface of such a highly concentrated electrolyte and a less

concentrated ion solution. If the ions are equally mobile, one type will not move

faster than the other and no charging and no electric potential difference will occur.

When there is a great excess of both ions, the other ions will be unable to act against

these superior numbers. The diffusion voltage forming will not be exactly 0, but

certainly much smaller than it would be without the intermediate electrolyte. This

type of almost zero voltage connection between two electrolytes is called a salt
bridge. The residual voltage is approximately 1 mV.

Figure 23.1 shows a practical example. The two legs of the H-shaped container

are filled with saturated KCI solution. There are diaphragms at the bottom of each
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leg (a wad of cotton wool, a frit, a capillary, etc.). Diffusion voltages form across

the diaphragms at the junctions to the different electrolyte solutions. As a rule, these

voltages can be ignored, because they are small and tend to cancel each other as

they have opposite signs relative to the positive direction of the current (which goes

from left to right).

This arrangement of a fixed reference half-cell and salt bridge (Fig. 23.2) is

frequently used in chemical measurements. It is important to perform the measure-

ments with a current as weak as possible (ideally with no current) so that the

electrochemical equilibria remain undisturbed. This can be accomplished by apply-

ing an equal counter-voltage from an external voltage source in combination with

an adjustable resistor. It is much simpler and more precise, though, to use a

voltmeter with high internal resistance.

Fig. 23.1 Example of a salt

bridge for producing an

(almost) voltage-free

connection between two

electrolytes.

Fig. 23.2 Galvanic cell

made up of a reference half-

cell (standard hydrogen

electrode) and a measuring

half-cell containing the

redox pair Rd/Ox dissolved

in the corresponding

electrolyte.
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Redox Potentials The total voltage U of the cell is essentially determined by the

Galvani potential difference of the electrode in the measuring half-cell. U is

actually the sum of four Galvani potential differences where the contributions of

the two in the middle can generally be ignored. Because the first Galvani potential

difference (for T¼ const.) remains constant for all the measurements, the fourth

potential difference is almost the only influence upon U which is then a measure of

how high the electrode is charged compared to the electrolyte. If the copper

conductors of the measurement device are connected to the platinum electrode,

two new Galvani potential difference will appear (so-called contact voltages

between the metals), which exactly compensate for each other. The voltage

between the copper conductors—shown on the measurement device—will agree

with the voltage U. Therefore, U serves as the measure of the fourth Galvani

potential difference which cannot be measured directly. If we keep in mind the

cell notation convention from left to right when adding the four Galvani potential

differences (i.e., electric potential differences), we have:

�U ¼ Δφ left half-cellð Þ þ Δφ left salt br:ð Þ þ Δφ right0 salt br:ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

þ Δφ right half-cellð Þ:

If we use the abbreviations “l” and “r” for left and right, we obtain:

�U ¼ φ Sð Þl � φ Ptð Þl
� �þ φ Ptð Þr � φ Sð Þr

� �
:

By convention, the half-cell where the oxidation takes place has to be written on the

left side and the half-cell where the reduction takes place on the right side (“reduc-

tion on the right”).

We form the difference Δφ as we did before, meaning that the electric potential

of the solution is subtracted from that of the metallic phase, and we obtain:

�U ¼ � φ Ptð Þl � φ Sð Þl
� �þ φ Ptð Þr � φ Sð Þr

� � ¼ Δφ meas:ð Þ � Δφ ref:ð Þ:

This measure, which has been adapted for practical purposes, is frequently used in

chemistry under the name of redox potential E of a redox pair Rd/Ox or as electrode
potential or half-cell potential. (In the following, however, we will avoid use of the
term electrode potential, because it could be confused with electron potential.):

E ¼ �U ¼ Δφ meas:ð Þ � Δφ ref:ð Þ: ð23:1Þ

Except for one summand, the redox potential describes the potential difference that

develops between an indifferent electrode and its corresponding electrolyte in a

measuring half-cell. If we use a standard hydrogen electrode as the reference

electrode, we obtain
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E ¼ Δφ meas:ð Þ � Δφ
○

H2=H
þð Þ: ð23:2Þ

Due to the prevailing conditions for the hydrogen electrode, only the basic value

needs to be considered. If we choose the Galvani potential difference of the

standard hydrogen electrode at standard temperature T� ¼ 298K as the zero

point, i.e., Δφ� H2=H
þð Þ ¼ 0, the definition E¼Δφ(meas.) is valid. This means

that the redox potential agrees with the Galvani voltage UMe!S across the measur-

ing electrode.

The redox potential measured in this way is independent of the material the

indifferent electrode is made up of. If we totally replace the platinum with a

different metal, possibly nickel or palladium, there will be no change to the voltage

shown by the measuring device, although the Galvani voltage between electrode

and electrolyte does not remain the same. The reason for this becomes clear when

we replace the redox potential E by the chemical potentials of the participating

substances, i.e., their electron potentials, by referring back to Eq. (22.19):

E ¼ Δφ meas:ð Þ � Δφ re f:ð Þ ¼ μe Ptð Þ � μe Rd=Oxð Þ
F

� μe Ptð Þ � μe H2=H
þð Þ

F
:

The chemical potential of the electrons in the metal drops out so that E is indepen-

dent of whatever the electrode is made of:

E ¼ � μe Rd=Oxð Þ � μe H2=H
þð Þ

F
: ð23:3Þ

If we imagine the transferred electrons to be taken from the platinum, the metal ion

electrodes conductively connected to the platinum of the reference electrode can

be formally considered as redox electrodes. The redox potential of a copper ion

electrode would then be:

E ¼ μe Ptð Þ � μe Cu=Cu2þð Þ
F

� μe Ptð Þ � μe H2=H
þð Þ

F

¼ � μe Cu=Cu2þð Þ � μe H2=H
þð Þ

F
:

The redox potential indicates up to a factor of�F , how high the level of the electron

potential μe(Rd/Ox) is, compared to the level μe(H2/H
+) of a fixed reference redox

pair (where the minus sign before �F comes from the electrons’ charge number

�1). So seen, E only appears to represent an electric quantity. Actually, E describes

a chemical quantity, a chemical potential difference in the same way that the

difference in levels of mercury in a mercury manometer does not represent a

geometric quantity but a dynamic quantity: the difference in pressure.

We were introduced to the redox pair
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H2jg! 2Hþjwþ 2e�jPt

as a general system of reference for the chemical potential of electrons under

standard conditions (compare Sect. 4.4). If the temperature is allowed to vary, the

chemical potentials of the substances will correspond to their basic values. In order

to find the electron potential of this reference redox pair that is only dependent upon

temperature, we can use the defining equation (22.18) for μe(Rd/Ox):

μe H2=H
þð Þ ¼ μ

○
e H2=H

þð Þ ¼ 1=2 μ
○

H2; Tð Þ � 2μ
○
Hþ; Tð Þ

h i
: ð23:4Þ

In particular, for T� ¼ 298K we have μ�e H2=H
þð Þ ¼ 0. At standard temperature,

Eq. (23.3) therefore simplifies to

E ¼ � μe Rd=Oxð Þ
F

: ð23:5Þ

Nernst’s Equation In closing, we will talk about the concentration dependency of

the redox potential. We obtain the following relation for a simple redox pair

Rd!Ox+ vee by inserting the μe(Rd/Ox) defining equation into Eq. (23.3):

E ¼ �
1

ve
μ Rdð Þ � μ Oxð Þ½ � � μ

○
e H2=H

þð Þ
F

:

Allowing for the mass action equation μB ¼ μ
○
B þ RTln cB=c

�ð Þ for μ(Rd) and

μ(Ox) yields

E ¼ �
μ
○
Rdð Þ � μ

○
Oxð Þ�� μ

○
e

�
H2=H

þ
h �

veF
þ RT

veF
� ln c Oxð Þ

c Rdð Þ : ð23:6Þ

By abbreviating the first term (the basic value of the redox potential) to E
○
, we

obtain the corresponding Nernst equation:

E ¼ E
○ þ RT

veF
� ln c Oxð Þ

c Rdð Þ : ð23:7Þ

As we would expect from relation (23.2), the redox potential shows the same

concentration dependency as the Galvani potential difference [Eq. (22.23)]. The

various versions of Nernst’s equation generally exhibit great similarity to the proton

level equation [Eq. (7.12)]. This equation describes the dependency of proton

potential μp upon the ratio of acid and base concentrations, i.e., upon c(Ad)/c(Bs).
The similarity results from the direct relation of the Galvani potential difference of

a half-cell or its redox potential with the electron potential μe [Eqs. (22.19) or

(23.3)], which is formally closely related to the proton potential.
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The frequently used “decadic” version of Eq. (23.7) can be obtained by going

from the natural logarithm to the logarithm to base 10 in the second term (the

so-called mass action term of the redox potential):

E ¼ E
○ þEN Tð Þ

ve
� lg c Oxð Þ

c Rdð Þ : ð23:8Þ

The following is valid for the factor

EN Tð Þ :¼ RTln10

F
ð23:9Þ

at the standard temperature T� ¼ 298K:

E�N ¼ EN T�ð Þ ¼ 8:314JK�1mol�1 � 298K� 2:303

96, 485Cmol�1
¼ 0:059V:

In the case of the composite redox pair Rd!Ox+ vee, where Rd stands for the

combination of substances Rd0 +Rd00 + . . . and Ox stands for the combination Ox0 +
Ox00 + . . ., we must correspondingly alter the Nernst equation [compare derivation of

Eq. (22.24)]:

E ¼ E
○
Rd=Oxð Þ þ EN Tð Þ

ve
� lg cr Ox

0ð ÞvOx0 � cr Ox00ð ÞvOx00 � . . .
cr Rd

0ð ÞvRd0 � cr Rd00ð ÞvRd00 � . . . :

or abbreviated

E ¼ E
○
Rd=Oxð Þ þ EN Tð Þ

ve
� lg

Y k

i¼1 cr Oxið ÞvOxiY l

j¼1 cr Rd j

� �vRd j

:

Using the redox potential of the pair made up of bivalent and trivalent iron as a

simple example we obtain with ve¼ 1:

E ¼ E
○
Fe2þ=Fe3þ
� �þ EN � lg c Fe3þð Þ

c Fe2þð Þ

or, at the standard temperature T� ¼ 298K,

E ¼ E� Fe2þ=Fe3þ
� �þ 0:059V � lg c Fe3þð Þ

c Fe2þð Þ :

Increasing c(Fe3+)/c(Fe2+) tenfold leads to a 59 mV increase of E. The concentra-
tion dependency of the redox potential E(Fe2+/Fe3+) is shown in Fig. 23.3.
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If the concentrations of the oxidized and reduced forms of the redox pair

are equal
�
c Oxð Þ ¼ c Rdð Þ or c Oxð Þ= c Rdð Þ þ c Oxð Þð Þ ¼ 0:5

�
, then according to

Eq. (23.7), the redox potential will correspond to the standard value E� (because

ln1¼ 0). However, if the concentration of the oxidizing agent is greater than that of

the corresponding reducing agent, the redox potential will be shifted to higher

values, and if it is smaller, there will be a shift to lower values. This is expected

because when we have a high concentration c(Ox), there will be a strong tendency

to “snatch” electrons from the measuring electrode, thereby giving it a positive

potential. On the other hand, if c(Rd) is high, the tendency will be to emit electrons

to the measuring electrode, resulting in a lowering of its potential [ln(c(Ox)/c(Rd))
will be negative for c(Ox)< c(Rd)].

In contrast, the redox potential of the hydrogen electrode results in

E ¼ E
○
H2=H

þð Þ þ EN

2
� lg cHþ=c

�ð Þ2
pH2

= p�

with ve¼ 2. Because of E� H2= Hþð Þ ¼ 0, the equation simplifies to

E ¼ 0:059V

2
� lg cHþ=c

�ð Þ2
pH2

=p�
:

Electrochemical Series Some redox potentials under standard conditions (T� ¼
298K, p� ¼ 100 kPa, c� ¼ 1 kmolm�3 in aqueous solutions) have been compiled

in the following table (Table 23.1). This kind of sequence of standard redox

potentials is also called the electrochemical series. The half-cells in question

have been characterized by the corresponding “Stockholm convention” of 1953.

In this convention, a phase boundary is denoted by a single vertical line.

Equation (23.6) tells us that although the standard value of a redox potential

E� depends upon the type of reference electrode being used, it is otherwise a

characteristic quantity for the redox pair because of its direct dependency upon

the electron potential. Just like the electron potential, it represents a measure of

Fig. 23.3 Concentration

dependency of the redox

potential E for the pair Fe2+/

Fe3+ at 298 K. [The abscissa

shows the fraction in

oxidized form, meaning the

ratio c(Ox)/(c(Rd)+ c(Ox))].
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Table 23.1 Redox potentials at standard conditions (298 K, 100 kPa, 1 kmol m�3 in an aqueous

solution), based upon a standard hydrogen electrode (from: Lide D R (ed) (2008) CRC Handbook

of Chemistry and Physics, 89th edn. CRC Press, Boca Raton).

Half cell Electrode reaction E� Vð Þ
Li
��Liþ Liþ þ e� ! Li �3.0401

Cs
��Csþ Csþ þ e� ! Cs �3.026

Rb
��Rbþ Rbþ þ e� ! Rb �2.98

K
��Kþ Kþ þ e� ! K �2.931

Ca
��Ca2þ Ca2þ þ 2 e� ! Ca �2.868

Na
��Naþ Naþ þ e� ! Na �2.71

Mg
��Mg2þ Mg2þ þ 2 e� ! Mg �2.372

Al
��Al3þ Al3þ þ 3 e� ! Al �1.662

Zn
��Zn2þ Zn2þ þ 2 e� ! Zn �0.7618

Fe
��Fe2þ Fe2þ þ 2 e� ! Fe �0.447

Cd
��Cd2þ Cd2þ þ 2 e� ! Cd �0.4030

Ni
��Ni2þ Ni2þ þ 2 e� ! Ni �0.257

Pb
��Pb2þ Pb2þ þ 2 e� ! Pb �0.1262

Cu
��Cu2þ Cu2þ þ 2 e� ! Cu +0.3419

Ag
��Agþ Agþ þ e� ! Ag +0.7996

2Hg
��Hg2þ2 Hg2þ2 þ 2 e� ! 2 Hg +0.7973

Au
��Auþ Auþ þ e� ! Au +1.692

Pt
��H2

��OH� 2 H2Oþ 2 e� ! H2 þ 2 OH� �0.8277
Pt
��Cr2þ, Cr3þ Cr3þ þ e� ! Cr2þ �0.407

Pt
��H2

��Hþ 2Hþ þ 2 e� ! H2 0.00000

Pt
��Sn2þ, Sn4þ Sn4þ þ 2 e� ! Sn2þ +0.151

Pt
��Cuþ, Cu2þ Cu2þ þ e� ! Cuþ +0.153

Pt
�� Fe CNð Þ6
� �4�

, Fe CNð Þ6
� �3�

Fe CNð Þ6
� �3� þ e� ! Fe CNð Þ6

� �4� +0.358

Pt
��O2

��OH� O2 þ H2Oþ 2 e� ! H2 þ 2OH� +0.401

Pt
��I2 ��I� I2 þ 2 e� ! 2I� +0.5355

Pt
��Fe2þ, Fe3þ Fe3þ þ e� ! Fe2þ +0.771

Pt
��O2

��Hþ 1=2O2 þ 2Hþ þ 2 e� ! H2O +1.229

Pt
��Cl2��Cl� Cl2 þ 2 e� ! 2Cl� +1.35827

Pt
��F2 ��F� F2 þ 2 e� ! 2F� +2.866

Pb
��PbSO4

��SO2�
4 PbSO4 þ 2 e� ! Pbþ SO2�

4
�0.3588

Ag
��AgI��I� AgIþ e� ! Agþ I� �0.15224

Ag
��AgCl��Cl� AgClþ e� ! Agþ Cl� +0.22233

Hg
��Hg2Cl2 ��Cl� Hg2Cl2 þ 2 e� ! 2 Hgþ 2Cl� +0.26808

23.1 Measuring Redox Potentials 557



the strengths of the reducing or the oxidizing agents. A strongly negative value

of the redox potential means that the corresponding redox pair is highly

reductive and will have a strong tendency to “press” electrons onto the measur-

ing electrode, producing a high “electron pressure.” Correspondingly, a more

strongly reductive redox pair with a lower redox potential can force electrons

onto a “weaker” pair in contact with it. A look at the redox potentials tells

us that the redox pair Sn2+/Sn4+ is more strongly reductive than the redox pair

Fe2+/Fe3+
�
E�ðSn2þ=Sn4þÞ ¼ þ0:151V; E�ðFe2þ=Fe3þÞ ¼ þ0:771V� (compare

Sect. 22.4).

Reference Electrodes The advantage of the standard hydrogen electrode used as

the reference for a given redox potential is that its equilibrium Galvani potential

difference adjusts quickly and reproducibly. It is, however, rather complicated to

deal with because, among other things, a bottle containing oxygen-free (and highly

explosive) hydrogen gas is necessary.

A film electrode made up of silver–silver chloride also has a well-reproducible

Galvani potential difference, as we saw in Sect. 22.5. Because it is much easier to

handle than a standard hydrogen electrode, it is the preferred reference electrode. Its

structure is rather simple: Silver chloride is precipitated directly onto a silver wire

as a thin layer by electrolysis—the wire is immersed in a highly concentrated

chloride solution—mostly potassium chloride (saturated or 3 kmol m�3). The
concentration of Cl� ions determines the Galvani potential difference. In practice

and for simplicity (Fig. 23.4), the electrolyte solutions in the reference half-cell and

the (integrated) salt bridge are made equal. The diaphragm between these two parts

can therefore be left out and only one diaphragm at the measuring cell is necessary.

The potassium and chloride ions are about equally mobile and highly concentrated,

so no noticeable diffusion voltage builds up at this point of contact.

Because of the constant potential differences at the charge exchanging inter-

faces, the silver–silver chloride reference electrode forms a kind of “pluggable

connector” between the metallic conductors and the outer solution. This makes it

possible to easily determine the variable potential differences in the circuit. This

Fig. 23.4 Practical

construction of a silver–

silver chloride reference

electrode.
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allows us to determine the Galvani potential difference of a measuring half-cell

relative to this new reference point and then convert to the standard hydrogen

electrode (SHE). However, the potential differences of the silver–silver chloride

electrode relative to the SHE must be known. At 298 K and using saturated KCI

solution as the electrolyte, it is +0.1976 V.

In principle, a calomel electrode is very similar. Here, mercury (Hg) and low

soluble mercury(I)chloride (calomel, Hg2Cl2) replace Ag and AgCl. The liquidity

of mercury necessitates a somewhat different arrangement, but the process is

the same.

23.2 Cell Voltage

Until now, we have been dealing mostly with reactions of the type Rd!Ox+ vee.
Since free electrons cannot be obtained under the usual laboratory conditions, these

kinds of processes never happen alone, but always occur in pairs—as we have

mentioned already. Therefore, a complete redox reaction is composed of two half-
reactions,

Rd! Oxþ vee and Rd*! Ox*þ vee;

where the first runs backward and the second runs forward or vice versa. In order for

coupling to be possible, the two half-reactions must be formulated so that the

conversion number ve of the electrons is the same in both of them. If necessary,

this can be accomplished by multiplying the conversion formulas by the appropriate

numerical factors. The resulting total reaction would then be:

Rdþ Ox*! Oxþ Rd*:

The half-reactions of the reaction 2 Fe3+jw+Sn2+jw! 2 Fe2+jw+Sn4+jw (compare

Experiment 22.1) must be correspondingly formulated as follows:

Sn2þjw! Sn4þjwþ 2 e� and 2 Fe2þjw 2 Fe3þjwþ 2 e�:

This example shows how a reaction can run under conditions where the electrons

are directly exchanged between the substances. A further example is the reaction of

zinc cuttings with a copper sulfate solution (Experiment 23.1),

Znjsþ Cu2þjw! Zn2þjwþ Cujs;

where the following half-reactions,

Znjs! Zn2þjwþ 2 e� and Cujs Cu2þjwþ 2 e�;
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must be considered [respective redox potentials: E�
�
Zn=Zn2

þ� ¼ �0:7618V,
E�ðCu=Cu2þÞ ¼ þ0:3419V].

According to Eq. (8.18), the energy Wξ necessary for a small conversion Δξ of
the total reaction is

Wξ ¼ �A � Δξ ¼ μ Cuð Þ þ μðZn2þÞ � μ Znð Þ � μðCu2þÞ� � � Δξ; ð23:10Þ

in which energy Wξ< 0 is released during the spontaneous process (A > 0). This

released energy is dissipated and entropy is generated, which is expressed by a

warming of the reaction mixture.

The two half-reactions can also be spatially separated from each other by

dividing them into the two half-cells of a galvanic cell where they are connected

to each other by an exterior circuit. For example, the so-called Daniell cell
(Fig. 23.5) is composed of a Zn and a Cu electrode that are immersed in

corresponding Zn2+ or Cu2+ solutions whereby these electrolyte solutions are in

contact with each other through a diaphragm. To avoid diffusion voltages, a salt

bridge can be used instead.

The gradient of the chemical potential continues to drive the reaction

Znjsþ Cu2þjw! Zn2þjwþ Cujs:

However, the reactants can no longer reach each other so easily because they are

separated by a “wall” (the electrolyte solutions) that ions can permeate but electrons

cannot. The only possibility is for the ions and electrons to go “separate ways.”

While the ions can migrate into the electrolyte solution, the electrons must be

diverted through the external circuit. Zinc ions at the zinc electrode go into the

solution, meaning that oxidation takes place, so we know we are dealing with an

anode (Fig. 23.6). The accumulation of electrons caused by the electrons left behind

gives this electrode a negative charge. At the copper electrode, on the other hand,

Experiment 23.1 Reduction of Cu2+ ions by
zinc: When zinc cuttings are poured into a

solution containing copper ions, they precipitate

densely and immediately turn black. The

precipitate then slowly turns coppery brown

while the solution’s color successively changes

from blue to green to brown and, finally,

colorless. Simultaneously, the temperature rises

considerably.
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copper ions are deposited in the form of neutral copper. This means that the ions are

reduced (cathode). The “electron suction” caused by the consumption of electrons

gives this electrode a positive charge and an electric voltage then develops between

the two electrodes. However, immediately after even extremely small amounts of

ions have transferred, electrochemical equilibrium occurs at the electrodes (com-

pare Sect. 22.3).

Using the example of a Daniell cell, we will consider the conventions used in

representing galvanic cells. In a cell diagram, as previously mentioned, a vertical

line symbolizes a phase boundary. A dashed line represents a diaphragm through

which both electrolyte solutions in the half-cell are in contact with each other. If the

diffusion voltage is minimized, possibly by the use of a salt bridge, a dashed double

Fig. 23.6 Electrode

processes in a Daniell cell

and nomenclature.

Fig. 23.5 Schematic of a

Daniell cell.
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line will stand for this. Therefore, depending upon the setup, the abbreviation for a

Daniell cell is

ZnjZn2þ┆Cu2þ jCu or ZnjZn2þ┆┆Cu2þ jCu:

If the direction of a reaction is arbitrarily chosen when writing the conversion

formula of a cell reaction, for example,

Znjsþ Cu2þjw! Zn2þjwþ Cujs;

without first predicting how it may spontaneously run, the redox pair will be

oxidized in the first partial reaction, and in the other partial reaction, the other

pair will be reduced:

Oxidation anodeð Þ: Znjs! Zn2þjwþ 2 e� left, in the cell diagramð Þ,
Reduction cathodeð Þ: Cu2þjwþ 2 e� ! Cujs right, in the cell diagramð Þ:

If the reaction actually does run spontaneously in the chosen direction, positive

charge will be transported through the cell from left to right (and because of this,

from right to left through the external part of the electric circuit). The electrode on

the right is the positive terminal. When we measure the voltage of this cell for zero

current flowing in order not to disturb the equilibrium, it corresponds to the

difference of the cathode and anode potentials:

�U ¼ ΔE ¼ E cathodeð Þ � E anodeð Þ ¼ EðCu=Cu2þÞ � EðZn=Zn2þÞ: ð23:11Þ

As mentioned in the previous section, zero current flowing can be realized by using

of a voltmeter with high internal resistance or by applying an equal counter-voltage

from an external voltage source in combination with an adjustable resistor. Even if

the second method, the classical Poggendorff compensation method, is more

complicated it is interesting from a theoretical point of view because it illustrates

the thermodynamic relevance of ΔE. A very slight, in principle infinitesimally

small, decrease of the opposing voltage will allow the reaction to proceed in the

spontaneous direction; an infinitesimal increase of the opposing voltage, however,

will force the reaction backward. Only if the opposing voltage exactly corresponds

to the potential difference generated by the cell, the cell properties are determined

under reversible conditions and, therefore, in electrochemical equilibrium.

ΔE is often called the electromotive force (EMF). But we will avoid using this

term because it is potentially misleading: An electric potential difference is not a

force! Instead, we will use the term “reversible cell voltage” (“zero-current cell

voltage”, “open circuit voltage”). We will consider ΔE to be positive in the case

discussed here. At standard conditions, the resulting value for the Daniell cell is
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ΔE� ¼ E�ðCu=Cu2þÞ � E�ðZn=Zn2þÞ ¼ þ0:3402V� �0:7628Vð Þ
¼ þ1:103V:

However, if the reaction does not run spontaneously in the chosen direction, as

would happen in the case of

Zn2þjwþ Cujs! Znjsþ Cu2þjw;

the cell voltage defined by convention changes its sign and ΔE becomes negative.

In summary: In a spontaneous reaction, the electrode with the higher redox

potential is the cathode and the one with lower redox potential is the anode. In other

words, the redox pair with the higher redox potential will be reduced. The redox

pair with the lower redox potential, however, will be oxidized.

We know (compare Sect. 4.7) that there is a close relation between the reversible

cell voltage ΔE and the chemical drive A of the underlying total reaction. We will

use our example to see how this works. We will rearrange Eq. (23.10):

�A � Δξ ¼ μ Cuð Þ � μðCu2þÞ� �� μ Znð Þ � μðZn2þÞ� �� � � Δξ: ð23:12Þ

According to the defining equation for the redox potential, the following holds for

both redox pairs:

μ Cuð Þ � μðCu2þÞ ¼ �2 � F � E Cu=Cu2þ
� �

or

μ Znð Þ � μðZn2þÞ ¼ �2 � F � E Zn=Zn2þ
� �

:

By inserting into Eq. (23.12) and dividing both sides by Δξ, we obtain

�A ¼ �2 � F � EðCu=Cu2þÞ þ 2 � F � EðZn=Zn2þÞ ¼ �2 � F � ΔE ð23:13Þ

and finally

ΔE ¼ �U ¼ A

2F
: ð23:14Þ

Wecan obtain the same result more simply if we equate the energy released during the

reaction process with the energy emitted electricallyWξ ¼ �A � Δξ ¼ U � veFΔξ:

ΔE ¼ �U ¼ A

veF
; ð23:15Þ
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where ve is the number of electrons exchanged in a formula conversion.

Measurement of cell voltages for zero current flowing through the cell can

therefore be used to determine the drive of a reaction. In practice, it is usually the

standard values of these quantities that are determined and tabulated.

The reversible cell voltage is concentration dependent, just as the redox potential

is. We will consider the general cell reaction

Rdþ Ox*! Rd*þ Ox:

If we now apply Nernst’s equation for redox potentials,

E Ox=Rdð Þ ¼ E
○
Ox=Rdð Þ þ RT

veF
� ln cr Oxð Þ

cr Rdð Þ

or

E Ox*=Rd*ð Þ ¼ E
○
Ox*=Rd*ð Þ þ RT

veF
� ln cr Ox*ð Þ

cr Rd*ð Þ ;

we obtain the following relation:

ΔE ¼ E Ox*=Rd*ð Þ � E Ox=Rdð Þ

¼ E
○
Ox*=Rd*ð Þ þ RT

veF
� ln c Ox*ð Þ

c Rd*ð Þ � E
○
Ox=Rdð Þ � RT

veF
� ln c Oxð Þ

c Rdð Þ

and then Nernst’s equation for the total reaction

ΔE ¼ΔE
○ þ RT

veF
� ln c Ox*ð Þ � c Rdð Þ

c Rd*ð Þ � c Oxð Þ ð23:16Þ

with ΔE
○ ¼ E

○
Ox*=Rd*ð Þ � E

○
Ox=Rdð Þ as the basic value for the reversible cell

voltage ΔE. The concentration dependency of ΔE in the case of a Daniell cell, for

example, yields

ΔE ¼ ΔE
○ þRT

2F
� ln cr Cu

2þð Þ
cr Zn2þð Þ :

If we replace the voltmeter in the experiment above (Fig. 23.5) with a load having a

finite resistance R, possibly a small motor (Experiment 23.2), an electric current

I will flow through the cell and the external circuit.

The Daniell cell discussed here is just one of many possible designs of galvanic

cells (we will see more in Sect. 23.3). What they all have in common is that a

chemical reaction (divided into two partial reactions) is used to drive an electron

current. These cells make it possible to electrically utilize the energy released by
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chemical reactions. In the ideal case, there will be no disturbing side reactions

occurring in the cell, so that chemical changes are only possible by the one reaction

and only simultaneously with an exchange of electrons through the electrodes. In

such cells, electron flow and chemical reaction are tightly coupled.

However, the electric voltage falls when the current flows through a load

because the electrochemical equilibrium is disturbed. Electric and chemical poten-

tial differences are no longer in balance: More zinc ions at the zinc electrode go into

the solution and copper ions discharge at the copper electrode.

Galvanic cells yield usable energy due to the spontaneous chemical reactions

running inside them, but reversing the cell reaction must be forced by adding

energy. This process, which is connected to chemical changes in the electrolyte,

is called electrolysis.

23.3 Technically Important Galvanic Cells

In closing we will discuss some technically important galvanic cells. We will

differentiate between primary cells, secondary cells, and fuel cells.

Primary Cells The processes running at the electrodes of primary cells (also

called primary batteries) are irreversible, meaning that these batteries are not

intended to be recharged. A well-known example of such a battery is the zinc–
manganese dioxide cell, also known as the zinc–carbon dry battery, which is a

further development of the galvanic cell patented by Georges Leclanché in 1866. It

is made up of a zinc can acting as the anode and a cathode composed of a carbon rod

surrounded by a mixture of manganese dioxide and carbon black (Fig. 23.7). The

carbon black is added to increase the low electric conductivity of the manganese

dioxide. The electrolyte is a paste of a 20 % solution of ammonium chloride

thickened by starch or sawdust. This is why such galvanic elements are called dry

batteries. The following simplified processes take place at the electrodes and in the

electrolyte:

Experiment 23.2 Daniell
cell: A small motor with a

black and white disk

(to show motion) can be

driven using a Daniell cell.
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Anode �ð Þ: Znjs! Zn2þjwþ 2 e�

Cathode þð Þ: 2 MnO2jsþ 2 H2Ojlþ 2 e� ! 2 MnOOHjsþ 2 OH�jw
Electrolyte : Zn2þjwþ 2 NHþ4 jwþ 2 Cl�jwþ 2 OH�jw! Zn NH3ð Þ2Cl2jsþ 2 H2Ojl
Total reaction: Znjsþ 2 MnO2jsþ 2 NH4Cljw ! 2 MnOOHjsþ Zn NH3ð Þ2Cl2js

When a current flows, the manganese dioxide is reduced to MnOOH (Mn4+!Mn3+),

and the primarily formed zinc ions react with the electrolyte to form the hardly soluble

complex Zn(NH3)2Cl2.

At standard conditions, the redox potential of the zinc electrode equals�0.76 V.
The redox potential of the manganese dioxide electrode is about +1.1 V and the

nominal voltage at normal usage is around 1.5–1.6 V.

A fundamental improvement upon the zinc–carbon battery is the alkaline-man-
ganese dioxide battery (short alkaline battery), which has a higher current-carrying
capability and capacity and a longer shelf life. In this type of battery, potassium

hydroxide solution is the electrolyte and the anode is zinc powder mixed with the

electrolyte and a thickening agent to form a paste. This paste is put into a hollow

cylinder made up of a compressed mixture of manganese dioxide and graphite. The

cylinder lies against the inner wall of a steel can, forming the cathode. The electrode

arrangement is opposite to that of the zinc–carbon battery.

The zinc–mercury oxide button cell (Fig. 23.8) uses a pellet of mercury oxide

with a little graphite added to it for better conductivity as cathode. The anode of this

battery is zinc powder (pressed or amalgamated). The electrolyte, a concentrated

ZnO saturated potassium hydroxide solution, is on a cellulose felt. The following

shows the simplified processes at the electrodes:

Anode �ð Þ : Znjsþ 2 OH�jw! Zn OHð Þ2jsþ 2 e�

Cathode þð Þ : HgO þ H2Oþ 2 e� ! Hgþ 2 OH�

Total reaction: Znjsþ HgO þ H2O! Zn OHð Þ2jsþ Hg

These button cells have a very long shelf life (up to 10 years) and their nominal

voltage during discharge remains practically constant at 1.35 V. They have been

normally used in small devices with low power demand such as watches, pocket

Fig. 23.7 Schematic cross

section of a zinc–carbon dry

battery.
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calculators, hearing aids, and cardiac pacemakers. However, due to the toxicity of

the mercury, they are now replaced by the similar zinc–silver oxide cells or zinc–air

cells.

Secondary Cells In contrast to what is the case in primary cells, it is mostly

reversible processes that run at the electrodes of secondary cells (also called

secondary batteries or accumulators). These cells are rechargeable.
The most common of this type of cell is the lead-acid battery that was developed

in the nineteenth century. In its charged state, it is, in principle, made up of a lead

anode and a lead oxide cathode. The electrolyte is sulfuric acid (25–30 %) saturated

with lead sulfate. A simplified representation of the battery’s charging and

discharging processes shows the following reactions:

Negative electrode: PbjsþSO2�
4 jw !

discharge

charge

PbSO4jsþ 2 e�

Positive electrode: PbO2jsþSO2�
4 jwþ 4 H3O

þjwþ 2 e� !
discharge

charge

PbSO4jsþ 6 H2Ojl

Total reaction: PbjsþPbO2jsþ 2H2SO4jw !
discharge

charge

2 PbSO4jsþ 2H2Ojl

When the battery is discharging, metallic lead oxidizes into lead sulfate and lead

oxide is reduced to lead sulfate. Therefore, lead sulfate forms at both electrodes. At

the same time, sulfuric acid is consumed and water is produced so that the density of

sulfuric acid falls as discharging progresses. The state of the battery’s charge can

then be determined by this change of density.

Under standard conditions, the redox potential of the half-cell PbjPbSO4jSO2�
4 is

�0.36 V, and that of the half-cell PbO2jPbSO4jSO2�
4 is +1.69 V. The nominal

voltage of the cell is about 2 V. Depending upon the charge state and charging and

discharging current, it can fluctuate between 1.75 and 2.4 V.

In order to recharge the battery, i.e., to “force” the reaction in the opposite

direction, energy input is necessary. In the process, lead or lead oxide will reform at

the lead sulfate electrodes.

When constructing a lead-acid battery it is important to remember that both

electrode types need the largest surfaces possible so that the electrochemical

reaction can occur at the highest possible rate. This can be attained, for example,

by coating lead grids alloyed with antimony or calcium with a paste of Pb, PbO, and

PbSO4. The plates then receive opposite charges in acid, forming lead sponge on

Fig. 23.8 Cross section of

a zinc–mercury oxide

button cell.
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one side and porous lead oxide on the other (formation process). In order to avoid

short circuiting through physical contact, the electrodes are separated by micropo-

rous plastic. Rechargeable lead-acid batteries can be produced in a closed construc-

tion (with valve), which is advantageous for transport and maintenance. In this case,

the electrolyte is not liquid but fixed in a gel or a fibrous mat.

The most common use for rechargeable lead batteries in everyday life is for

starting combustion engines in motor vehicles. Six cells in series deliver a terminal

voltage of about 12 V. The constant running of the vehicle’s generator keeps

recharging the battery.

The negative electrodes in nickel–cadmium batteries are made up of finely

distributed cadmium. The positive electrodes are composed of Ni(III) oxide

hydroxide (with graphite or Ni powder added to enhance the conductivity). The

electrolyte is usually a 20 % potassium hydroxide solution.

As the battery charges and discharges, the following simplified reactions take

place at the electrodes:

Negative electrode : Cdjsþ 2 OH�jw !
discharge

charge

Cd OHð Þ2jsþ 2 e�

Positive electrode : 2 NiOOHjsþ 2 H2Ojlþ 2 e� !
discharge

charge

2 Ni OHð Þ2jsþ 2 OH�jw

In all, during discharging, metallic cadmium is transformed into the bivalent state

(solid cadmium(II) hydroxide) by oxidation and trivalent nickel is reduced into

bivalent nickel (solid nickel(II) hydroxide):

Total reaction : Cdjsþ 2 NiOOHjsþ 2 H2Ojl !
discharge

charge

Cd OHð Þ2jsþ 2 Ni OHð Þ2js

The nominal voltage of a nickel–cadmium battery is 1.2 V.

Gas-proof constructions are often designed like commercial batteries (including

button cells), so they can replace the primary cells in portable electric and

microelectric devices. Meanwhile, usage of nickel–cadmium batteries is strongly

limited by law because of the dangers related to toxic cadmium.

A more environmentally friendly replacement for the Ni–Cd battery is the

nickel–metal-hydride battery (NiMH), in which cadmium is replaced by a metal

alloy that is able to store hydrogen reversibly. In the charged state, we have an anode

made of metal hydride which is produced during the charging process by storing

atomic hydrogen in a crystal lattice of the alloy (e.g., La0.8Nd0.2Ni2.5Co2.4Si0.1). As

the cell discharges, the stored hydrogen oxidizes on the electrode’s surface:
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Negative electrode : MHjsþ OH�jw !
discharge

charge

Mjsþ H2Ojlþ e�:

The cathode and electrolyte are identical to those in the NiCd battery. The total

reaction is then:

Total reaction : MHjs þ NiOOHjs !
discharge

charge

Mjsþ Ni OHð Þ2js:

Again, the cell voltage is about 1.2 V, so the voltage of the NiMH cell is compatible

with that of the NiCd cell. Along with its environmental advantages, it also has

greater capacity and durability. However, its load capacity is lower.

Special accumulators for hybrid (electric) vehicles have been developed on the

basis of nickel–metal hydride cells, i.e., cars powered by electric engines in

combination with other energy converters (mostly combustion engines).

Fuel Cells In contrast to the galvanic cells we have discussed up to now, fuel cells

have a constant feed of the substances consumed at the electrodes. This means that,

theoretically, a current can be made to flow indefinitely. The term “fuel cell”

actually means that substances can be converted there that are normally considered

fuels and are otherwise burned for heating or for gaining energy. One well-known

example of this is the so-called hydrogen–oxygen fuel cell (Fig. 23.9), which is used
in manned space flight. This kind of cell uses hydrogen as the fuel and oxygen as the

oxidizing agent. The electrolyte is a concentrated aqueous solution of KOH at

elevated temperature and pressure [hence the alternative name alkaline fuel cell

(AFC)]. The gases are conducted through porous plate electrodes (possibly made up

of sinter nickel or pressed active carbon powder), the so-called gas diffusion

Fig. 23.9 Schematic of a

hydrogen–oxygen fuel cell.
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electrodes. In order to promote the splitting of hydrogen and oxygen molecules

which precedes the actual reaction, the plates are coated with a small amount of a

catalytic substance such as platinum or palladium.

The following simplified reactions then take place at the electrodes:

Anode �ð Þ : 2 H2jgþ 4 OH�jw! 4 H2Ojlþ 4 e�

Cathode þð Þ: O2jgþ 2 H2Ojlþ 4 e� ! 4 OH�jw
Total reaction: 2 H2jgþ O2jg! 2 H2Ojl

The fuel oxidizes at the fuel cell’s anode and oxygen reduces at the cathode. In total,
the hydrogen undergoes a process of “cold combustion” where it turns into water.

The cell voltage (at 200 �C and 4 MPa) is about 1.2 V.

Carbon monoxide as well as low-molecular organic compounds such as methane

(CH4) or methanol (CH3OH) can also serve as fuels, and along with oxygen, air can

also be an oxidizing agent. In place of KOH, solid electrolytes such as polymer

membranes permeable only for protons [polymer electrolyte membrane fuel cells

(PEMFC)] or oxygen-ion conducting oxide ceramics (yttria-stabilized zirconia)

[solid oxide fuel cells (SOFC)] can also be used. One more possibility is melted

salt as the electrolyte.

23.4 Cell Voltage Measurement and Its Application

We mentioned in Sect. 23.2 that galvanic cells can make the energy released by a

chemical reaction usable, but they can also be utilized as a “measuring instrument”

for the differences of redox potentials and therefore the electron potentials of

various redox pairs. Moreover, because the electron potential itself is determined

by the chemical potentials of the substances making up the redox pair, it is also

possible to find the μ values as well as the drive A of the underlying total reaction

with the help of galvanic cells. Reversible cell voltages measured with zero current

can be used to determine these quantities and derived ones such as equilibrium

constants.

Chemical potentials also depend upon the concentrations of substances, and in

many cases, these dependencies are well known. Therefore, it is possible to utilize

the measured voltages to find ion concentrations, especially solubilities and pH

values (see Sect. 22.7). This method is called potentiometry and is widely applied in
analytic chemistry.

Let us consider the simple example of determining the concentration of Ag+ ions

in an aqueous solution. We use a piece of silver as the electrode sensitive to Ag+

ions, which we combine with the solution into a half-cell. Ag and the Ag+ ions

together form a redox pair to which we can assign the following electron potential:
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μeðAg=AgþÞ ¼ μAg � μAgþ ¼ μAg � μ
○
Agþ � RTln

cAgþ

c�
:

Because, at a given temperature, μAg and μ
○
Agþ have constant values, the electron

potential and the corresponding Galvani potential difference developing between

the metal and the solution depend only upon the concentration of Ag+ ions in the

solution (see also Sect. 22.5). If we now measure the Galvani potential difference

relative to the standard hydrogen electrode to find the redox potential, we can apply

Nernst’s equation to determine the concentration cAgþ in the solution.

Measuring chemical potentials or determining concentrations using galvanic

cells looks very promising at first. However, at many electrodes, potential differ-

ences develop only very gradually or can be disturbed by secondary reactions.

These may consist of the formation of cover layers or may be the result of other

redox pairs participating in the exchange of charge. Moreover, considerable devi-

ations from the mass action equation—and therefore Nernst’s equation—appear for

ion concentrations above 10 mol m�3 (see also Sect. 6.2), so that the concentrations
determined from measured cell voltage are often inexact. For this reason,

potentiometry is combined with titration (potentiometric titration) because here

the precision of the absolute value is unimportant. For example, the concentration

of the ion that determines the potential may be changed by precipitation titration.
We shall take a closer look at this by considering the determination of the silver

content of a solution by titration with a KCl standard solution:

Agþjwþ Cl�jw! AgCljs:

In this case, we are following the redox potential of the Ag/Ag+ electrode E ¼ E�þð
RT�=Fð Þ � lncAgþ ¼ 0:7996þ 0:059 � lgcAgþV SHE at T� ¼ 298KÞas a function
of the addition of titrator (Fig. 23.10). When KCI standard solution is added drop by

Fig. 23.10 Change of

redox potential at an

Ag/Ag+ electrode during

potentiometric titration of a

silver-containing solution

with a KCl standard

solution (solid line) and first
derivative of the titration

curve (dotted line).

23.4 Cell Voltage Measurement and Its Application 571

http://dx.doi.org/10.1007/978-3-319-15666-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-15666-8_22#Sec5


drop to the Ag+ solution, the AgCl immediately precipitates and the concentration of

Ag+ ions in the recipient steadily decreases. This means that with each decrease of

one decade of Ag+ ion concentration, there is a lowering of potential of 59 mV. At

the equivalence point, there is an abrupt fall of Ag+ concentration and the

corresponding potential, because at this point, one drop of KCl is enough to pretty

much remove all the remaining Ag+ ions. As a consequence, the concentration

of Ag+ ions is determined only by the solubility equilibrium of the silver chloride

[K
○

sd AgClð Þ ¼ cr Ag
þð Þ � cr Cl�ð Þ ¼ 1:78� 10�10 ; compare also Sect. 6.6] and is

therefore very low. According to the solubility product, a further addition of KCl

solution continues to lower the Ag+ concentration but, in parallel with the steady

addition of KCl, the Ag+ concentration drops now also steadily.

The equivalence point is determined by the inflection point of the titration curve.

The first derivative of the titration curve is often used for a more exact determina-

tion of this point because a maximum is easier to localize than an inflection point.

In practice, the quotient ΔE/ΔV is plotted as a function of the given volume of

titrator V. (ΔE corresponds to the difference of two consecutive measured values.)

The end point of acid–base titrations, complexometric titrations, or redox
titrations can also be potentiometrically indexed by the use of suitable electrodes,

for example, the glass electrode discussed in Sect. 22.7 in the case of acid–base

reactions. The advantage of this method is that colored or cloudy solutions can also

be titrated and it is simple to automate because an easily measured electric quantity

participates.
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Chapter 24

Thermodynamic Functions

In addition to the terms discussed so far a number of other quantities and functions

are used in thermodynamics without which textbooks that follow the conventional

concept cannot manage. Because knowing these additional terms is essential for

understanding traditional textbooks and the corresponding data collections, we will

deal with the most important of them in this chapter and establish the relations to the

concept chosen in this book. The major subsidiary terms are the four energetic

quantities inner energy U, enthalpy H, Helmholtz energy A, and Gibbs energy G.
The same quantity can serve different purposes depending on the variables chosen.

The function U(S, V, . . .) characterizes the system under consideration. It is almost

never explicitly stated (the abstractness of the variable S can be considered the

underlying cause for this), but its differential plays a central role for all derivations.

The functions U(T, V, . . .) and H(T, p, . . .) serve to describe the heat exchanged

between system and surroundings under different experimental conditions (the first

at constant volume, the second at constant pressure). The functions A(T, V, . . .) and
G(T, p, . . .) play a similar role. Both are used to calculate the energy released during

the considered process. This enables us to predict whether or not the process may

run spontaneously. In the last section, we will discuss quantities such as activity,

fugacity, etc. These quantities are used for describing deviations from what is

considered ideal behavior of dissolved substances and gases.

24.1 Introduction

The subject of thermodynamics is a prime example of an axiomatic science whose

basic assumptions are gained from everyday experiences. These basic assumptions

first lead to fundamental laws from which a large number of other laws and relations

are derived. The modest number of assumptions on the one hand and the abundance

of derived results on the other is a widely admired characteristic of this science.

Thermal effects are a part of almost every process dealt with in everyday life,
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including technological ones. These effects are often unnoticeable or undesirable,

so that we are prone to overlook them. However, they do often rule the processes,

making it necessary to deal with them. The ubiquity of thermal effects indicates the

special role of heat in nature. It is therefore of great importance to know what this

role is.

Thermodynamics, as it has developed in the last 150 years, is criticized for its

lack of tangibility. Not only beginners complain of this, but sometimes even pro-

fessionals do as well. This lack of tangibility makes it difficult to evaluate results

qualitatively for their relevancy, algebraic signs, or orders of magnitude. Although

many relations can be formally derived, one does not “understand” them as one

would understand them in the field of mechanics, for example. Intuition is hindering

and even misleading. Results must simply be accepted and the arguments that are

allowed must simply be memorized. With growing routine, one will gradually

forget one’s concerns.
The attempt has been made to compensate for this lack of tangibility by using an

expanded formalism. The most noticeable differences between this expanded

formalism and the presentation in this book are additionally introduced quantities

such as enthalpy and free energy (in various forms), without which textbooks that

follow the conventional concept cannot manage. Because knowing these new

quantities is essential for understanding traditional textbooks and the corresponding

data collections, we will deal with the most important of them in the following.

24.2 Heat Functions

Preliminary Remarks Thermodynamics is considered conceptually very diffi-

cult—even if this is not true for the mathematics involved. For example, Arnold

Münster wrote 1969 in his textbook about chemical thermodynamics: “In contrast

[to the mathematical formalism], the conceptualization in thermodynamics is

especially abstract and this abstract conceptualization is the core of the difficulty

of this scientific area.” This is due to the awkwardness of attribution of the heat

quantities. Intuition and language from everyday experience give us preconceived

structures. Because of their fuzziness, we are free to some degree in attributing

everyday and physical concepts. However, ill-judged arbitrariness leads to difficulties.

The everyday expression “heat” has many meanings. In the field of thermody-

namics, there are at least three quantities to which that name suits:

The name “heat (energy)” (or “thermal energy”) for Q is admittedly too general but

for the moment it should suffice to grasp the underlying idea. The correlation of the
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terms shown vertically on top of each other should have been easy and natural.

However, in 1850, a different decision was made indicated by the lines. The results

of this decision can be summed up as follows:

� The quantity S cannot be interpreted macroscopically. Therefore one tends to

avoid this quantity and to replace it with energetic terms.

� The quantity Q is automatically connected to characteristics that Q doesn’t
actually possess, leading to misconceptions. We will come back to this below.

Q is mathematically inconvenient as a process quantity (see Sect. 1.6) so it also

seems advantageous to avoid Q and to rewrite it using other quantities.

� In order to mitigate the conceptual difficulties and to bridge gaps in understand-

ing, a number of new quantities have been introduced.

The question of how, in history, it could come to such a decision and why

subsequent changes are difficult, if not impossible, would be a chapter in itself.

Although this is an interesting and important question, we must exclude it here.

Let us now take a look at the most important of the additionally introduced

quantities. In the conventional terminology of thermodynamics, heat (symbol Q)
stands for the energy exchanged thermally between system and surroundings and

work (symbol W ) for the one exchanged mechanically. These terms will now and

then appear in the following whereas we avoided them so far. In these and similar

cases we spoke neutrally about expended (or released) energy. Therefore, a few

words of explanation:

Work W and Heat Q As yet, we mentioned work W only shortly in Sect. 2.1. In

more detail, we presented mechanical work by means of the relation “work¼ force

times distance” as access route to an indirect introduction of the term energy. In

mechanics, work generally describes a quantity which is defined as product of a

displacement Δx (e.g., along the x-axis) with a force Fx, causing the displacement:

W!x ¼ Fx � Δx:

The same applies to displacements in arbitrary directions. Already in mechanics,

the term is generalized. One considers an increase of volume ΔV, an increase of

surface ΔA, etc., also as “displacement” and the pressure p in hydraulics (Sect. 2.5),
the surface tension σ (Sect. 15.2), etc., as corresponding “force” causing the change:

W!V ¼ p � ΔV;
W!A ¼ σ � ΔA, etc:

The volume V, the surface A, . . . are regarded as “generalized coordinates” and

correspondingly p, σ, . . . as “generalized forces.”

In thermodynamics, one encounters the term “pressure–volume work” which

relates to the compressibility of an elastic body (e.g., also of a gas). The more an

object is pressed from all sides, meaning the more work has to be done, the more

strongly volume V decreases. Therefore, a minus sign appears in the expression:
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W!V ¼ � p � ΔV: ð24:1Þ

As yet, also heat Q was only marginally mentioned such as in Sects. 3.1, 3.11, and

8.7. According to the traditional view, it characterizes the energy transferred

thermally between a system and its surroundings because of differences in temper-

ature. As a consequence of this type of energy exchange, the entropy of the system

changes.

Process Quantities The phrase “work has to be done” in the case of something

being displaced against a counteracting force or inhibition already expresses that

work describes a certain aspect of a process. It causes therefore no difficulties to

accept that work represents a so-called process quantity or corresponds to a process.
This is completely different in the case of the term heat. In everyday language

but also in many fields of science and technology, one tends to the suggestion that

the heat that is added to the body or generated in it is contained in the body (and

therefore represents a state function). As long as energy exchange on other paths

than the thermal one is negligibly small this simple suggestion (“The heat that goes

in can only come out again as heat”) actually suffices to explain qualitatively and

quantitatively a lot of effects in context with heat in everyday life or in other fields

such as in building industry. The suggestion fails, however, if the bodies in

consideration can exchange energy on others than thermal paths. In this case, it

makes no sense to speak of “heat content.” In most of the textbooks on thermody-

namics, the term “heat” as quantity Q indicates, as mentioned above, something

different, namely a mode of energy transfer. It depends on the conditions under

which the transfer process acting on energy takes place. According to this view,

heat is like work a process quantity.

In order to avoid misunderstandings, we will use the symbol “ δ ” instead of the

simple “d” for the cases of small changes of the process quantities exchanged heat

Qe and expended work We (see Sect. 1.6).

Internal Energy U Kinetic and potential energies Wkin and Wpot contribute to the

total energyWtotal of a body. It possesses these energies when it moves or when it is

raised or lowered as a whole. These energies are mostly insignificant in chemistry.

They are additive terms that depend upon the (linear) velocity υ (such as Wkin) or

elevation h (such as Wpot) and can be easily split off so that, as a rule, instead of

Wtotal, only the residual, the so-called internal energy U, is considered. The internal
energy of a body that can only exchange energy as heat Qe (see Sect. 8.7) and work

We (in this case “pressure–volume work” by increasing or decreasing its volume

V [see Eq. (24.1)] with the surroundings, can change as follows:

dU ¼ δQe þ δWe ¼ TdS� pdV where dSg ¼ 0
� �

: ð24:2Þ

The energy absorbed by a body in different ways (mechanically, thermally, chem-

ically, electrically, etc.) is not stored in these different forms. Rather, it forms a

common energy supply (Fig. 24.1).
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In the case of a body that can be expanded and heated, there is no quantity

describing what might be called the amount of heat contained in it or simply its

“heat content” (Fig. 24.2). One says that heat is a process variable and not a state
variable. If we wish to describe the state of a body by using its temperature T and its

volume V or its pressure p, for instance, in mathematical terms this means that the

functions Q(T, V) or Q(T, p) or derivatives thereof do not exist. The consequences

of this are aggravating, as we will soon see.

When there is only a single path available for an exchange of energy with the

surroundings, such as in the case of “heat reservoirs” often used in thought

Fig. 24.1 Pond as model. The idea that a body would contain the added heat Q as such is

unsupportable in the same way that it is impossible to see in a pond how much of the water

came from rain, dew, or groundwater.

Fig. 24.2 Transfer of entropy St in a reversible cycle from a cold to a warm reservoir. Changes of

volume are indicated by arrows (initial state: contour line solid, final state: contour line dashed).
More heat Q flows off with the entropy St than in Qout>Qin, even though the body completely

reverts to its initial state after every cycle and does not cool down at all. This means that energy is

emitted as heat, which was not present in that form before but is generated. The question remains:

what phase of the process does this happen in and how?
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experiments, energy can only be exchanged over this path. The heat Q that goes in

can only come out again as heat. The situation is similar for a body having a

pressure p that is either constant or is only dependent upon its volume V, p¼ f(V )
(Fig. 24.3). Whether or not it expands in the process is unimportant. However, if it

does expand, a part of the energy which flowed in as heat is diverted to the outside

over the mechanical path, but it flows back unchanged when energy is retrieved

over the thermal path.

Such examples erroneously lead us to think of heat as being an entity contained

in bodies (see above). Expressions such as “heat capacity” or “conduction of heat”

support these images. They are holdovers of the time before heat was deemed a

special mode of energy transfer.

Including Irreversible Processes Equation (24.1) changes when friction plays a

role as it does in Fig. 24.4. Keep in mind that the exchanged entropy Se, the
generated entropy Sg, and the external pressure pe are not state variables of the

gas, but entropy S and internal pressure p are:

ð24:3Þ

Fig. 24.3 Cylinder that

uses a spring-loaded piston

to press upon a gas

contained in it.

Fig. 24.4 Gas in a cylinder whose piston cannot

move without friction. The work dWe¼ –pedV
performed upon the piston by the external

pressure pe (>internal pressure p) when the

volume changes, dV< 0, is greater due to friction,

while the amount of heat δQe¼ TδSe needed for

same change of state is correspondingly smaller.
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Consider now not friction but a chemical reaction continuously running against

inhibitions causing generation of entropy (Fig. 24.5). This is common in chemistry.

The following is valid for the change of the internal energy:

ð24:4Þ

The last two formulas, Eqs. (24.2) and (24.3), specify an increase of energy dU
which is caused by a small change of state. The expression under the curly brackets

shows which state parameters are responsible and to what extent, while the expres-

sion on the right side describes how this increased demand is met. If we insert dS
¼ δSe þ δSg (see Sect. 8.7), meaning δSe ¼ dS� δSg, and there and then solve for

TδSg, we obtain formal expressions that we can easily visualize:

TδSg|ffl{zffl}
δQg

¼ � pe � pð Þ � dV|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
δWb

, and TδSg|ffl{zffl}
δQg

¼ Adξ|{z}
δWb

: ð24:5Þ

Just as frictional work –( pe – p) � dV is used to generate entropy, the equivalent is

true for the work against reaction inhibitions.

Generated Heat Heat is generated by friction. Around the middle of the nine-

teenth century, this important insight led to upheaval in the field of thermodynam-

ics. The effects of the energy contribution TδSg upon the bodies involved are the

same as the effects of heat added to them. It seems logical, therefore, to call this

kind of contribution heat or, more exactly, generated heat δQg. Hence, it appears

justified to call the expression TδSg on the left of Eq. (24.5)—as is customary—the

(generated) frictional heat, and, correspondingly, to call the one on the right the

generated reaction heat.
The contribution δQg, which is always positive and only disappears in the

limiting case, stands in opposition to the quantity dQ as the exchanged heat. For
clarity, the latter is symbolized by δQe already used in this chapter. δQe can be

either positive or negative, because during heat exchange heat can be added but also

removed. The sum δQe þ δQg ¼ δQtotal would represent the total amount of heat

collected. There appears to be no problem with adding up infinitesimally small

contributions going over some path from a state I to a state II or to calculate the

corresponding entropies after dividing the contributions by T:

Fig. 24.5 Cylinder (with

frictionless piston). A

chemical reaction takes

place inside the cylinder.

Extent and drive of the

reaction are described by ξ
and A, respectively.
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Se ¼
ðII
I

δQe

T
, Sg ¼

ðII
I

δQg

T
, ΔS ¼

ðII
I

δQtotal

T
: ð24:6Þ

A conflict arises when we consider entropy generation in conduction of heat. When

we have heatQt coming out of a hot reservoir (2) into a cold one (1) with a temperature

of T2> T1, the entropy generated by this is a result of the sums of the entropy changes

ΔS1 ¼ Qt=T1 and ΔS2 ¼ �Qt=T2 of the two reservoirs: Sg ¼ Qt=T1 � Qt=T2 : Sg
appears in the cold reservoir, so Qg¼ T1Sg should be the generated heat. This result

seems ridiculous because heat conductance is considered a process where heat is

conserved and remains constant.

However, this conclusion is not as absurd as it may appear at first glance. It can

be justified if Qg is considered compensation for the reduction of “free energy.” If

this energy is used in a “heat engine,” it does so at the cost of the transferred heat Q,
causing less of it to arrive at the cold reservoir. If this energy remains unused, it is

“burnt” (dissipated) and the generated heat Qg compensates for the expected

decrease so that the same amount of heat arrives at the cold reservoir as is emitted

from the hotter reservoir.

Two Prototypical Examples In chemistry, we are primarily interested in systems

in which at least one chemical transformation takes place. The case in Fig. 24.5

gives us a concrete example where, instead of the slow decay of ozone, we can

imagine some other kind of gas reaction. We will choose two special cases. The first

one is the reaction of formation of water where the process can be controlled by

turning a catalyst on or off. The second case is the dimerization of nitrogen dioxide

(see Experiment 9.3) in which the participating gases, the brown nitrogen dioxide

and its colorless dimer, are permanently in a strongly temperature dependent

equilibrium:

2 H2jgþ O2jg! 2 H2Ojg, inhibited,

2 NO2jg⇄N2O4jg, uninhibited:

At first, our second example appears to be a rarely seen exception and hardly worth

mentioning. It is, surprisingly, extremely common. An ensemble of molecules in a

certain state of excitation, association, or conformation, can be considered an

independent substance. Experiment 9.3 offers an example of such a case. Con-

versely, a mixture of chemicals where equilibrium between the individual compo-

nents is established very quickly can be treated as one substance and calculations

can be performed accordingly.

In order to characterize the state of the system in our simple prototypical

examples, we need three parameters. Along with entropy S and volume V, we can
use the extent of reaction ξ. The main equation for systems of this type (see Sect.

9.1), formulated with the help of the internal energy U, is:

580 24 Thermodynamic Functions

http://dx.doi.org/10.1007/978-3-319-15666-8_9#Sec1
http://dx.doi.org/10.1007/978-3-319-15666-8_9#Fig5
http://dx.doi.org/10.1007/978-3-319-15666-8_9#Fig5


dU ¼ TdS� pdV � Adξ: ð24:7Þ

In order to understand the conventional approach, we must first think of this

equation as being unknown to us. It serves only as a background that allows us to

consider the following development from another viewpoint.

Applying the First and Second Laws (of Thermodynamics) The equation dU
¼ δQe þ δWe generally serves as a first step toward the calculus of thermodynamics

to be created. It is considered an application of the First Law where the new state

variable U can be constructed with the help of the two measurable process quan-

tities Qe andWe. At first, we will limit ourselves to simple, closed systems, meaning

systems without any exchange of substance with the surroundings and in which

temperature and pressure are the same everywhere. Except as heat, energy can only

be transferred in or out, without friction, by changes to the volume: δWe ¼ � pdV
and therefore

dU ¼ δQe � pdV: ð24:8Þ

In the second step, the process quantity δQe is replaced by TdS as an application of

the Second Law. S is considered abstract but, like U, is actually a quantity that is

measurable or obtainable from measured data. Because only processes for which

δQe 	 TdS can take place, Eq. (24.8) converts to:

dU 	 TdS� pdV for spontaneousprocesses: ð24:9Þ

This relation concisely summarizes the two Laws. Note that it only contains state

variables. This is an important and helpful characteristic to keep in mind. Starting

from this equation, a specific formalism with its own new quantities and terms is

developed. These new quantities and terms are not necessary for understanding

physical chemistry, but are crucial for understanding the pertinent literature.

Let us first consider changes of state that do not generate entropy. In this case,

instead of the inequality above, the following equation is valid:

dU ¼ TdS� pdV for reversibleprocesses: ð24:10Þ

We know that the state of our model systems is determined by three parameters

such as S, V, and ξ. Therefore, the formula above appears incomplete. It can be

easily completed as follows:

dU ¼ TdS� pdV þ ?dξ: ð24:11Þ

At this stage of the thermodynamic calculus formulated according to the traditional

concept, the variable represented by the question mark is still unknown. It is

important to close this gap. This is mathematically simple because except for the

quantity we are seeking, all the others can be measured. The missing quantity
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equals the derivative of internal energy with respect to the extent of reaction at

constant S and V:

? ¼ ∂U
∂ξ

� �
S,V

:

Nonetheless, one commonly sees a problem whose solution requires a specially

created formalism. Why is this?

The abstractness of the variable S can be considered the underlying cause for

this. When it appears as a function of quantities like the more or less familiar T, p, V,
ξ, . . ., it is already almost incomprehensible. The situation becomes even more

difficult when S appears as a parameter upon which other variables depend in as yet

unknown ways. The manipulation necessary to overcome this obstacle will be

described in Sect. 24.3.

Equation (24.10) is a special case of Eq. (24.11) in which the expression ?dξ is
left out. Under which conditions is this allowed? In anticipation of the subsequent

derivation we equate ?dξ with�Adξ. The answer to this will be different in each of
our examples. The summand �Adξ disappears, because in the first example, ξ is

constant so that dξ¼ 0. In the second example, equilibrium remains unaltered

through all changes, so A ¼ 0 is always the case.

“Heat Content” It has already been mentioned at the beginning that there is no

quantity of this type. There are replacements for this quantity in the traditional

concept, though. For instance, internal energy U at constant volume (isochoric
processes) can play this role. This results from the equation dU ¼ δQe � pdV if we

set dV¼ 0. This is succinctly expressed in the formulas:

dUð ÞV ¼ δQeð ÞV or ΔUð ÞV ¼ ΔVU ¼ Qe,V : ð24:12Þ

This relation can be used to define various other isochoric heat quantities such as

integral and differential, molar and specific heats of reaction and the corresponding

heat capacities. The most well known of these quantities is the “(global or integral)

heat capacity at constant volume” or isochoric heat capacity, which we got to know
briefly in Sect. 9.1:

CV ¼ ∂U
∂T

� �
V

or more precisely, CV ¼ ∂U
∂T

� �
V, rev

: ð24:13Þ

The expression on the right specifically expresses what the one on the left implies.

This is the fact that entropy may not be generated because this would reduce the

amount of heat being supplied, falsifying the result. In the case of water formation,

reversibility requires ξ¼ const., and in the case of NO2 dimerization, A ¼ 0:
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Case 1: CV ¼ ∂U
∂T

� �
V,ξ

, Case 2: CV ¼ ∂U
∂T

� �
V,A ¼ 0

:

From another common point of view “heat capacity” is only a name for the

expression on the left in line (24.13), regardless of whether or not it describes in

reality a temperature-related quantity. We will return to the subject in a somewhat

different context in the subsection “Heat capacities” below.

Enthalpy The quantity U can only appear in the role of “heat content” when

volume V is constant. The most important case in practice, however, is the transfer

of heat Q when pressure p is kept constant, instead of V (isobaric processes). In

everyday life, but also in science and technology, many processes take place under

conditions where the atmosphere ensures an approximately constant pressure (e.g.,

reactions in open flasks in the laboratory). A state quantity conceived for exactly

this purpose is enthalpy H. Translated from the Greek it means “in-heat” or, more

extensively, “heat content.” It is defined as being derived from internal energy:

ð24:14Þ

This formula is equivalent to Eq. (24.4)

The expression above, on the right, is the formal result of the defining equation when we

first use the sum rule for the formation of differentials from two (and more) functions (see

Sect. A.1.2 in the Appendix),

dH ¼ d U þ pVð Þ ¼ dU þ d pVð Þ;

subsequently the corresponding product rule,

dH ¼ dU þ Vdpþ pdV;

and then insert dU ¼ δQe � pdV,

dH ¼ δQe � /pdV þ Vdpþ /pdV ¼ δQe þ Vdp:

The expression below the parentheses results when the main equation dU ¼ TdS� pdV �
Adξ [Eq. (24.7)] is used instead:

dH ¼ TdS� /pdV � Adξþ Vd pþ /pdV ¼ TdSþ Vdp� Adξ:

The expression above the parentheses in Eq. (24.14) describes what one notices

of the action in the system in the surroundings. The expression below describes

what is actually happening in the system itself. As before, we have everything we

need mathematically to calculate the missing quantity (represented again by the

question mark and later identified as A) from the measured data:
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? ¼ ∂H
∂ξ

� �
S, p

:

Here the problem is the same as with internal energy: a quantity we do not

understand (entropy) as an independent variable. For this reason, the purpose of

the variable H is perceived differently, namely in its suitability for calculating

isobaric heat effects. Equation (24.14) simplifies at constant pressure (dp¼ 0):

dHð Þ p ¼ δQeð Þ p or ΔHð Þ p ¼ Δ pH ¼ Qe, p: ð24:15Þ

As we have seen in the case above of internal energy [Eq. (24.12)], this relation can

be useful for defining various isobaric heat quantities such as integral and differ-

ential, molar and specific heats of reaction, transition, solution, mixing, etc. These

are all produced similarly at constant p and T and, depending upon the process in

question, each one can have various symbols and names. We will be content with

only two examples, one integral quantity and one differential quantity:

ΔHð ÞT, p � ΔT, pH general isothermal-isobaric change of enthalpy,

∂H
∂ξ

� �
T, p

� ΔRH differential molarð Þ enthalpy of reaction:
ð24:16Þ

The word “heat” in names of quantities is almost always left out. One reason for this

is that reaction enthalpies ΔRH can be defined for both spontaneous as well as

forced processes; however, they appear as heat only in spontaneous processes. In

the process 2 H2 þ O2 ! 2 H2O, it would make sense to speak of the “heat of

formation of water,” while in the opposite case of 2 H2O! 2 H2 þ O2, it would

make rarely sense to speak of “heat of decomposition of water.”

We will take a closer look at the molar enthalpy of reaction of a spontaneously

running process based upon Eq. (24.14). We will keep an eye on the effects on the

surroundings (upper line) as well as what is happening inside the system (lower

line). In both cases, we will make use of the possibility of writing a derivative as a

differential quotient and to convert it using the rules of fractions:

(Vdp disappears because p¼ const., therefore dp¼ 0, and the dξ cancels out). The
result in the upper line tells us that ΔRH describes an effect noticeable in the

surroundings as exchanged heat. The lower line states that the effect in the system

is made up of two contributions, “latent heat” and released energy; the latter can be

arbitrarily made use of. In particular, it can be dissipated. There is more about this
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in Sects. 8.6 and 8.7. We will omit it here because in the traditional structure of

thermodynamics, it can only be discussed later on (see Sect. 24.4).

Heat Capacities We will call the amount of entropy necessary for heating a body

by 1 K the entropy capacity C, while heat capacity C will describe the necessary

heat (Qe) for the same process. We also assume that no entropy (Sg) and therefore

no heat (Qg) is generated in the interior. The amount of entropy or heat the body can

absorb depends upon whether it can expand or not—whether or not pressure p or

volume V is constant. There may be additional conditions which need to be met. To

be more mathematically correct, we might write:

CV ¼ dS

dT

� �
V

¼ ∂S
∂T

� �
V

, CV ¼ δQe

dT

� �
V

¼ = =∂Qe

∂T

� �
V

:

The second to last expression in parentheses can be understood as a quotient of the

differential form δQe¼ TdS and the differential dT subject to the side condition

V¼ const. or dV¼ 0. The last expression, however, requires that the function whose

derivative is to be taken, i.e., Q(T, V ), actually exists, which is not the case, as we

have seen above. However, if we insert δQe¼ TdS into the second to last differen-

tial quotient, we obtain:

CV ¼ δQe

dT

� �
V

¼ TdS

dT

� �
V

¼ T
dS

dT

� �
V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

not mandatory

¼ TCV :

EquationCV ¼ TCV appears so self-evident as to make the intermediate steps above

superfluous. We also see that heat and entropy capacities only differ from each

other by the factor T not only at constant volume but at constant pressure p as well,
or if another quantity X is kept constant:

C p ¼ TC p, CX ¼ TCX , etc:

Entropy is usually considered to be an abstract and especially difficult quantity. The

attempt has therefore been made to perform calculations and derivations using other

quantities, especially energetic quantities and to express the chemical data using

those quantities. This works very well in the case of CV because internal energyU at

constant volume can play the role of “heat content” [cf. Eq. (24.12)]. If we write all

the intermediate steps as above, we have:

CV ¼ δQe

dT

� �
V

¼ δQeð ÞV
dT

¼ dUð ÞV
dT

¼ dU

dT

� �
V|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

not mandatory

¼ ∂U
∂T

� �
V

;

in short,
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CV ¼ ∂U
∂T

� �
V

“ integralð Þ heat capacity at constant volume:”

When pressure remains constant, enthalpy H plays the role of “heat content”

[cf. Eq. (24.15)], and we can forgo writing the intermediate steps:

C p ¼ ∂H
∂T

� �
p

“ integralð Þ heat capacity at constant pressure:”

In fact, heat capacities are commonly not defined in terms of exchanged heat (Qe),

but are directly used as derivatives of internal energy U and enthalpy H. The
disadvantage here is that, for every side condition (constant volume, constant

pressure, constant X, etc.), a different quantity is necessary for the role of “heat

content.”

The fact that we have not addressed all the different types of heat capacities

became evident at the end of the subsection on “Heat content” where a certain

difficulty became apparent in our two prototypical example systems. Along with the

integral quantities dealt with above, we need various specific (related to the mass)

and molar (related to the amount of substance) quantities derived from them. We

can omit them here because their definitions and applications follow known

patterns.

24.3 Free Energy

Basic Idea Already in the nineteenth century it was assumed that the energy Wf

released in a chemical transformation as well as the heat Qg generated by it were a

measure of the “driving force” of such a process. Energy was considered to be free
when, for given conditions, it could be used for some other purpose, especially

generation of entropy.Wf increases proportionally to the conversionΔξ, soWf itself

is not the correct measure, but Wf, relative to the conversion, is: Wf/Δξ or, more

exactly, δWf/dξ.
If the available energy Wf can be calculated for the process, then the “driving

forces” can be derived from it and we can predict whether or not the process may

run spontaneously. However, Wf cannot be determined only from a change to the

total energy. The amount of it that can be released depends upon the particular

circumstances. Depending upon the general conditions, different types of positive

and negative contributions must be considered (see Fig. 24.6 and Experiment 24.1).

In Experiment 24.1 the free energy Wf of a raised body, which is lowered in

water (case 1) and in air (case 2), is used to lift a second object. In the second case

the lifting height is considerably greater. This energy Wf can be put to any number

of other uses, especially for generation of entropy.
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U as Free Energy Let us again consider the concrete system of water formation in

our prototypical example system, where the process is controlled by a catalyst.

Volume V and entropy S should be kept constant. In the case of volume, this can be

accomplished by blocking the piston. It is more difficult to do for entropy because

although the entropy leaves the system, all other exchanges of entropy should also

be prevented. This can be done by not dissipating the released energy Wf in the

system, but to first remove it electrically and to only produce the heat Qg¼Wf

outside of the system (Fig. 24.7).

In systems of this type, the internal energy U at constant S and V appears as

stored free energy, which we can simply express in one or the other of the following

ways:

Fig. 24.6 A body sinking in air (left) and in water (right). The free and available energyWf on the

left is the total energy Wf¼FG � h originally expended to raise it in the air. Only a part of this,

Wf¼ (FG�FB) � h, is available on the right because energy is needed for pushing the body

downward against the effect of buoyancy (FG force of gravity, FB buoyancy, h height).

Experiment 24.1 Using the free energy Wf of a raised body (on the right) to lift a second object

(middle) using ropes and hoisting drums. The dashed line shows the change of position of the same

object if the first object is lowered in air. Wf is greater here so that the attainable lifting height

increases correspondingly.
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Wf ¼ ΔUð ÞS,V ¼ ΔS,VU or δWf ¼ dUð ÞS,V :

Above, we have attempted to demonstrate such an implementation of an isentropic-

isochoric process. This is not the point, though. All the necessary quantities are

measurable so that the missing measure of the drive could be calculated:

δWf

dξ

� �
S,V

¼ dU

dξ

� �
S,V

¼

= =TdS� = =pdV � Adξ

dξ

 !
S,V

¼ �A /dξ
/dξ

� �
S,V

¼ �A: ð24:17Þ

(Because S and V are constant, TdS and pdV disappear, so that dξ cancels.) In order
to get a feel for the traditional way of thinking about this, we must ignore the

expression on the right. The goal is to develop a “deeper understanding” from the

expression on the left (and ones similar to it, which we will go into later) of the

actual causes of chemical transformations and what parameters can be used to

influence them.

In this context, it is remarkable that Josiah Willard Gibbs chose this method of

using energy at constant entropy to derive numerous results for the behavior of

homogeneous and heterogeneous chemical systems. Except for the path for outflow

of entropy, all other energy paths should be blocked. The actual trick of Gibbs’
method is to remove entropy generation (Sg) from the system and the energyWb that

is used and dissipated along with it. Neither Sg norWb feed back upon the system; it

is as if they did not exist. Under these conditions, if there is an entropy generating

process, the internal energy U decreases. Equilibrium is reached if U has a mini-

mum. The quantity U plays a role analogous to potential energy in mechanics. This

applies to stability or lability of equilibria as well.

There is another notable point. The temperature in the system need not be

temporally nor spatially constant. The transfer of a quantity of entropy St from a

hot to a cold subarea by use of an auxiliary body that repeatedly undergoes a

reversible cyclic process (see Fig. 24.2) delivers useful work to be stored in the

system because all the possible paths for energy outflow have been blocked. Energy

U remains constant in the process. Transferring the same amount of entropy St by

Fig. 24.7 A cylinder thermally insulated on all sides with built-in fuel cell. The fuel cell serves to

remove the energy released by the reaction of H2 and O2 to H2Ojg out of the cylinder, while the

latent heat Q‘ that develops in the process of water formation cannot leave the cylinder. The piston

remains stationary and therefore the volume constant.
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heat conduction, however, causes a decrease of U, while the same amount of

entropy St as before is transferred from the hotter subarea to the colder subarea.

U decreases, because under the conditions chosen by Gibbs also energy “flows out”

together with the removal of entropy Sg from the location where it was generated.

Helmholtz Energy Let us again imagine a system at constant volume, but now at

fixed temperature T, instead of fixed entropy S (Fig. 24.8). This may again be our

example of the formation of water in a cylinder with a blocked piston, but in this

case, heat exchange takes place with an exterior reservoir. In contrast to our

previous case, the outflow of released and dissipated energy Wf¼Qg during a

given conversion Δξ requires no special measures because it runs by itself. The

generated entropy Sg ¼ Wf=T does not enter into the entropy balance ΔS of our

system because whatever is generated inside flows out. Not only�Wf appears in the

energy balance ΔU, but the (negative) term TΔS does as well, which is caused by

the change of chemical composition of our system:

ΔU ¼ TΔS�Wf or more detailed, U2 � U1 ¼ TS2 � TS1 �Wf :

The equation, solved for Wf, results first in

Wf ¼ � U2 � TS2ð Þ þ U1 � TS1ð Þ and finally in Wf ¼ �Δ U � TSð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

:

Here, T plays the role of a constant parameter.

The additional quantity A :¼U� TS introduced in the traditional concept of

thermodynamics actually appears as a reservoir of free energy Wf under the given

conditions (constant temperature and volume, no exchange of substances with the

surroundings). When the supply of A decreases, energy Wf¼ –ΔA becomes avail-

able for any purpose—depending upon the equipment being used. In general,

without proper equipment, Wf will be dissipated. This is no different than when

energy is used from other sources (sun, wind, water, coal). However, the contribu-

tion TΔS cannot just be used freely. It is “earmarked” for a specific purpose—in this

case, for shifting entropy between the system and the surroundings.

In the past, the quantity A was called “free energy.” The fact that, under different
conditions, there are other quantities that play the same role (for instance, U in

closed systems at constant S and V ) makes the name too general. It is therefore

recommended calling the quantity A the Helmholtz free energy or just Helmholtz
energy.

Fig. 24.8 Cylinder

exchanging heat with a

reservoir at constant

temperature T. The piston is

fixed so that V remains

constant.

24.3 Free Energy 589



The fact that A can appear as “free energy” and under which circumstances this

happens can be formally expressed similarly to how we did this in the case of the

quantity U:

Wf ¼ ΔAð ÞT,V ¼ ΔT,VA or δWf ¼ dAð ÞT,V :

The definition of the quantity A :¼ U � TS and the main equation dU ¼ TdS�
pdV � Adξ of our example system lead to the following expression for the

differential dA [by using the product rule for the term d(TS)]:

dA ¼ d U � TSð Þ ¼ dU � d TSð Þ ¼ /TdS� pdV � Adξð Þ � SdT þ /TdSð Þ

or

ð24:18Þ

The idea behind dealing with “free energy” Wf was the possibility of gleaning a

measure for the “driving force” of chemical transformation; actually, not Wf itself,

but δWf relative to the conversion dξ was the sought-after measure:

δWf

dξ

� �
T,V

¼ dA

dξ

� �
T,V

¼ � = =SdT � = =pdV � Adξ

dξ

 !
T,V

¼ �A /dξ

/dξ

� �
T,V

¼ �A: ð24:19Þ

(The terms �SdT and �pdV vanish because according to the chosen conditions,

temperature T as well as volume V should be constant, meaning dT¼ 0 and dV¼ 0.

Subsequently, dξ cancels.)
We see that the quantity intended to be the “driving force”—in this case of the

reaction of formation of water—can be written as a derivative of the state function

A(T, V, ξ). We already arrived at an equivalent result in Eq. (24.17). The essential

difference here in contrast to before is that entropy S does not appear as an

independent variable.

Gibbs Energy In practical cases, it happens muchmore often that not volume V but

pressure p is kept constant along with temperature T. It is easy to include such cases
(Fig. 24.9). Another pathway over which energy can be exchanged is the mechanical

one through a moving piston. This does not change anything about the balance of

entropy, but it does affect the balance of energy which now looks like this:

Fig. 24.9 Cylinder

exchanging heat with a

reservoir at constant

temperature T. The piston is

freely moveable at constant

external pressure p.
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ΔU ¼ TΔS� pΔV �Wf or U2 � U1 ¼ TS2 � TS1 � pV2 þ pV1 �Wf :

The equation, solved for Wf, results first in

Wf ¼ � U2 � TS2 þ pV2ð Þ þ U1 � TS1 þ pV1ð Þ

and finally in Wf ¼ �ΔðU þ pV
zfflfflfflffl}|fflfflfflffl{H

�TS|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
G

Þ:

Here, T as well as p appear in the role of a constant parameter.

As before the quantity A, the quantity G :¼ U þ pV � TS ¼ H � TS, a further
quantity introduced in the conventional concept of thermodynamics, acts as a

reservoir of free energy Wf, but here under the changed conditions p, T¼ const.

(instead of V, T¼ const.). If G decreases under these conditions, energy Wf¼�ΔG
becomes available for many uses, especially for dissipation.

In the past, the quantity G ¼ H � TS was called “free enthalpy,” analogous to

A ¼ U � TS, which was called “free energy.” Today Gibbs free energy or just

Gibbs energy is the recommended expression (IUPAC). How and when G can

appear in the role of “free energy” can be formally expressed very similarly to the

cases of U and A:

Wf ¼ ΔGð ÞT,V ¼ ΔT,VG or δWf ¼ dGð ÞT,V :

We obtain the following expression for the differential dG from the definition G :¼
U + pV� T S and the main equation dU ¼ TdS� pdV � Adξ:

dG ¼ d U þ pV � TSð Þ ¼ dU þ d pVð Þ � d TSð Þ
¼ ð /TdS� /

pdV � AdξÞ þ ðVdpþ /

pdVÞ � SdT þ /TdSð Þ

and therefore

ð24:20Þ

from which we can conclude that the quantity we are seeking as the “driving

force” of a reaction can be expressed in numerous ways as the derivative

of a state function, in the present case, as the derivative of the function

G(T, p, ξ) (same procedure as in the case of the derivative of the state function

A(T, V, ξ)):
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δWf

dξ

� �
T, p

¼ dG

dξ

� �
T, p

¼ � = =SdT þ = =Vdp� Adξ

dξ

 !
T, p

¼ � /Adξ

/dξ

� �
¼ �A: ð24:21Þ

As we have also seen with enthalpy H, there are numerous other quantities that can

be derived using G as the basis. Here are just two examples, an integral and a

differential quantity:

ΔGð ÞT, p � ΔT, pG general isothermal-isobaric change of Gibbs energy,

∂G
∂ξ

� �
T, p

� ΔRG differential molarð Þ Gibbs energy of reaction:

ð24:22Þ

Spontaneous Process The most commonly observed transformations in chemis-

try are, as already mentioned, those at constant temperature and constant pressure,

which is why the mathematical tools are generally oriented toward these condi-

tions. The heat function that we deal with the most is enthalpy H(T, p, ξ, . . .) and
the quantity most often playing the role of free energy is the Gibbs energy G(T, p,
ξ, . . .). Until now, we have only allowed a single parameter ξ, but it is also

possible to observe two or more transformations or other types of change at the

same time. Spontaneous changes in closed systems at constant T and p are only

possible in the direction in which the free energy decreases, in this case, the

Gibbs energy:

We have included two further possibilities. These are different state functions

depending upon the side conditions that must be met. For chemical transformations

of all types, meaning the processes chemists are most interested in, all these

conditions for spontaneous processes can be simply summed up as one, we already

know very well and used very often (see e.g. Sect. 4.6): A > 0 [cf. Eqs. (24.17),

(24.19), and (24.21)].

If we have (dG)T,p¼ 0 for small changes of state, there will be no preferred

direction and the system will be in equilibrium. Correspondingly, under other side

conditions, (dA)T,V¼ 0, (dU )S,V¼ 0, etc., are valid. For chemical transformations

this means simply A ¼ 0.

Coupling The thermodynamic functions G(T, p, ξ), A(T, V, ξ), U(S, V, ξ), . . .,
allow for another type of application if we keep in mind that the mixed second

derivatives are independent of the order in which the derivatives are taken
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(Schwarz’ theorem). Here, it is taken for granted that these derivations exist and are

continuous.

In the case of a state function Z¼ f(x, y) Schwarz’ theorem states that

∂
∂y

∂Z
∂x

� �
y

 !
x

¼ ∂
∂x

∂Z
∂y

� �
x

� �
y

or alternatively formulated

∂2
Z

∂x∂y

 !
¼ ∂2

Z

∂y∂x

 !
:

This can be used to derive several important relations between different coeffi-

cients. At first, Eq. (24.20) yields:

S ¼ � ∂G
∂T

� �
p,ξ

, V ¼ þ ∂G
∂ p

� �
T,ξ

, A ¼ � ∂G
∂ξ

� �
T, p

: ð24:23Þ

If one takes derivates of the quantities S, V, A, represented themselves as deriva-

tives, one can use Schwarz’ theorem:

∂S
∂ p

� �
T,ξ

¼ � ∂2
G

∂ p∂T

 !
ξ

¼ � ∂2
G

∂T∂ p

 !
ξ

¼ � ∂V
∂T

� �
p,ξ

,

∂S
∂ξ

� �
T, p

¼ � ∂2
G

∂ξ∂T

 !
p

¼ � ∂2
G

∂T∂ξ

 !
p

¼ þ ∂A
∂T

� �
p,ξ

,

∂V
∂ξ

� �
T, p

¼ þ ∂2
G

∂ξ∂ p

 !
T

¼ þ ∂2
G

∂ p∂ξ

 !
T

¼ � ∂A
∂ p

� �
T,ξ

:

For better understanding, let us take a look at the first line. The parameter ξ should be

always constant meaning it is enough if we focus on the function G¼ f(T, p) and their

differential dG ¼ �SdT þ Vdp. To begin with, the derivative of this function is firstly

taken with respect to T at constant p and secondly with respect to p at constant T:

∂G
∂T

� �
p

¼ �S and
∂G
∂ p

� �
T

¼ V:

Subsequently, the derivative of the expression on the left is taken with respect to p at

constant T and that on the right with respect to T at constant p:

∂2
G

∂T∂ p

 !
¼ ∂

∂ p

∂G
∂T

� �
p

 !
T

¼ � ∂S
∂ p

� �
T

,
∂2

G

∂ p∂T

 !
¼ ∂

∂T
∂G
∂ p

� �
T

� �
p

¼ ∂V
∂T

� �
p

:

Because the expressions on the left in both equations are equal according to Schwarz’
theorem, this also holds true for the expressions on the right.
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This same pattern can be used for finding numerous other relations. However, we

do not need this method because the flip rule leads directly to the same result

without taking the detour over a second derivative of an appropriately chosen

thermodynamic function. The relation in the first line, for example, is already

well known from Sect. 9.2 [Eq. (9.7)].

24.4 Partial Molar Quantities

Molar Enthalpy When dealing with enthalpy, it is common to use the same

procedure as the one applied for quantifying a substance’s volume demand and

associating the volume demand of a mixture to the individual components (see Sect.

8.2). Enthalpy at fixed T and p for pure substances increases proportionally to the

amount of substance n, so the characteristic molar quantity is the enthalpy relative

to n:

Hm ¼ H

n
molar enthalpy:

ð24:24Þ

For a substance in a mixture of other substances, this is defined correspondingly

[cf. Eq. (8.2)]:

Hm ¼ ∂H
∂n

� �
T, p,n0,n00, ...

partialð Þ molar enthalpy of a substance: ð24:25Þ

The enthalpy of the total mixture equals the sum of the contributions by the

individual components A, B, C, . . . . We were introduced to this for volume and

entropy before [cf. Eqs. (8.3) and (8.12)]:

H ¼ nAHA þ nBHB þ nCHC þ . . . : ð24:26Þ

If we are interested in the (differential) molar enthalpy of reaction ΔRH(ξ) of a
transformation which takes place in the system under consideration, we again start

from the general conversion formula for an arbitrary reaction between pure or

dissolved substances (like in Chap. 8):

vBj jBþ jvB0 jB0 þ . . .! vDDþ vD0D
0 þ . . . :

For better understanding of the following approach it is recommendable to read the

short Sect. 8.3 again. Analogously to the molar volume of reaction ΔRV(ξ) and the

molar entropy of reaction ΔRS(ξ) discussed in the mentioned Section, we obtain for

the molar enthalpy of reaction ΔRH(ξ) in the case of small conversions Δξ (when p,
T, ξ0, ξ00, . . . are kept constant):
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ΔRH ¼ ΔH
Δξ
¼ vBHB þ vB0HB0 þ . . .þ vDHD þ vD0HD0 þ . . . ¼

X
i

viHi: ð24:27Þ

Applied to our prototypical example reaction 2 H2jgþ O2jg! 2 H2Ojg, the equa-
tion becomes:

ΔRH ¼ �2H H2jgð Þ � H O2jgð Þ þ 2H H2Ojgð Þ:

Because the conversion numbers of the reactants are negative and those of the

products positive, the expression can be read as a difference:

ΔRH ¼ 2H H2Ojgð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
products

� 2H H2jgð Þ þ H O2jgð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reactants

:

This means we follow the familiar schema when calculating ΔRH: “The sum of the

molar characteristic quantities of the products minus the sum of the molar charac-

teristic quantities of the reactants.”

In the limit, we require the Δξ to be infinitesimally small in Eq. (24.27). This is

again expressed formally by using the symbol ∂ instead of the difference Δ. If we
now introduce all the quantities that are to be kept constant as indices of the

differential quotient, the equation takes the following form:

ΔRH ¼ ∂H
∂ξ

� �
p,T,ξ0,ξ00, ...

¼
X
i

viHi: ð24:28Þ

This is the (differential) molar enthalpy of reaction ΔRH mentioned above [see

Eq. (24.16)].

Molar Gibbs Energy Other extensive thermodynamic quantities are dealt with in

the same way. In the case of pure substances, they are considered a function of T, p,
n, and for a substance in a mixture with other substances, as a function of T, p, n, n0,
n00, . . . . The Gibbs energy G is especially interesting in this context because in the

conventional thermodynamic calculations, it is very closely connected with the

chemical potential. In the case of a pure substance at fixed T and p,G is proportional

to the amount of substance n. Therefore, G itself does not serve as the substance-

specific characteristic, but the quotient G/n:

Gm ¼ G

n
molar Gibbs energy: ð24:29Þ

We proceed accordingly for a substance in a mixture with other substances:
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Gm ¼ ∂G
∂n

� �
T, p,n0,n00, ...

partialð Þ molar Gibbs energy of a substance:

ð24:30Þ

The values for the mixture as a whole are added up from the contributions by

the individual components A, B, C, . . . just as they are for volume, entropy,

enthalpy:

G ¼ nAGA þ nBGB þ nCGC þ . . . : ð24:31Þ

The (differential molar) Gibbs energy of reaction ΔRG of a transformation can be

expressed analogously to how we dealt with the enthalpy of reaction ΔRH. In the

case of small conversions Δξ, when p, T, ξ0, ξ00, . . . are again kept constant, we

obtain:

ΔRG ¼ ΔG
Δξ
¼ vBGB þ vB0GB0 þ . . .þ vDGD þ vD0GD0 þ . . . ¼

X
i

viGi ð24:32Þ

or more precisely for vanishingly small conversions dξ:

ΔRG ¼ ∂G
∂ξ

� �
p,T,ξ0,ξ00, ...

¼
X
i

viGi: ð24:33Þ

This is the (differential molar) Gibbs energy of reaction already mentioned

[cf. Eq. (24.22)].

Chemical Potential We obtain the differential dG from the definition for Gibbs

energy G :¼ U þ pV � TS and the main equation for a mixture dW ¼ dU ¼ TdS
� pdV þ μAdnA þ μBdnB þ . . . [see Eq. (9.2)]:

dG ¼ �SdT þ Vdpþ μAdnA þ μBdnB þ . . . : ð24:34Þ

Because we consider the material system in question to be at rest and weightless, we

can equate the total energy W to the internal energy U.

Let us have a closer look at the derivation of Eq. (24.34). For the differential dG we obtain

from the definition of G:

dG ¼ dU þ d pVð Þ � d TSð Þ ¼ dU þ Vdpþ pdV � SdT � TdS:

Substitution of the differential dU according to the main equation results in

dG ¼ /TdS� /

pdV þ μAdnA þ μBdnB þ . . .
� �

þ Vdpþ /

pdV � SdT � /TdS
� �

and therefore
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dG ¼ �SdT þ Vdpþ μAdnA þ μBdnB þ . . . :

For a substance B as a component of a mixture of other substances A, C, . . .,
Eq. (24.34) formally results in the following:

GB ¼ ∂G
∂nB

� �
T, p,nA, ...

¼ dG

dnB

� �
T, p,nA, ...

¼
� = =SdT þ = =Vdpþ = =μAdnA þ μB /dnB þ . . .

/dnB

0@ 1A
T, p,nA, ...

¼ μB:

“Chemical potential” and “partial molar Gibbs energy” of a substance are identical!

This makes it possible to construct simple translation rules between conventional

formalisms and the one used by us:

GB ¼ μB, HB ¼ μB þ TSB,

ΔRG ¼ �A, ΔRH ¼ �A þ TΔRS:

If we insert GB¼ μB into Eq. (24.33), we obtain:

ΔRG ¼ vBμB þ vB0μB0 þ . . .þ vDμD þ vD0μD0 þ . . . ¼
X
i

viμi:

This is nothing else than�A (see Sect. 8.6). The expression for HB is obtained by using

the definition for G :¼H� TS,

HB ¼ GB þ TSB ¼ μB þ TSB;

and that for ΔRH by inserting the equation above into Eq. (24.28):

ΔRH ¼ vB μB þ TSBð Þ þ vB0 μB0 þ TSB0ð Þ þ . . .þ vD μD þ TSDð Þ þ vD0 μD0 þ TSD0ð Þ þ . . .

and therefore

ΔRH ¼ vBμB þ vB0μB0 þ . . .þ vDμD þ vD0μD0ð Þ
þ T vBSB þ vB0SB0 þ . . .þ vDSD þ vD0SD0 þ . . .ð Þ

The expression in the first set of parentheses corresponds again to �A and that in the

second set of parentheses to ΔRS [according to Eq. (8.13)].

In books of tables, usually the standard values of molar Gibbs free energies of

formation Δ fG of substances are listed. Δ fG is the change of Gibbs free energy

that accompanies the formation of 1 mol of the substance in question, pure or

dissolved, from its elements under standard conditions. Because Δ fG is nothing

else than a special case of ΔRG, it corresponds to the negative “drive of formation”

�Að Þ or the positive “drive of decomposition” A, respectively. In Sect. 4.6, however,
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we have learned that the chemical drive to decompose corresponds to the chemical

potential of the substance. Therefore, the tabulatedΔ fG values are nothing else than

the standard values of the chemical potential we have used in this book!

The “chemical potential μ” and “drive (affinity) A” are not considered indepen-

dent concepts in the conventional thermodynamic formalism. Therefore, one does

not directly define the temperature and pressure coefficients α and β, as well as α
and ß ; rather, they are always expressed in terms of different quantities:

αB ¼ �SB, βB ¼ VB see Eqs: 9:11ð Þ and 9:16ð Þ½ �;
α ¼ ΔRS, ß ¼ �ΔRV see Eqs: 9:13ð Þ and 9:18ð Þ½ �:

If one is interested, for example, in the temperature coefficient of the chemical

potential of a substance, it is only necessary to find the value of the corresponding

molar entropy in an appropriate table book and to change the sign.

If the equation HB ¼ μB þ TSB is solved for μB, and HB ¼ UB þ pVB is taken

into consideration, we obtain a relation that can be interpreted descriptively

(Fig. 24.10):

μB ¼ HB � TSB ¼ UB þ pVB � TSB:

24.5 Activities

Basic Idea The quantities used for describing deviations from what is considered

ideal behavior of gases and dissolved substances are another characteristic feature

of the traditional formalism. We prefer to take the discrepancies into account by

additional terms in the chemical potential because these quantities can be seam-

lessly inserted into the thermodynamic apparatus. By contrast, in the traditional

Fig. 24.10 Chemical potential μB visualized as the energy released when a small amount of dnB
disappears, shown here as a section of a larger area of a pure substance B. As B disappears in the

section, the energy dU in it is released. The volume dV of the part shrinks down to a point while the

entropy dS in it is moved to the surrounding matter. The shrinking down to a point causes

a contribution to the released energy of +p � dV and the displacement of entropy causes one of

�T � dS.
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approach, it is customary to introduce the necessary corrections as correcting

factors to the measures of composition (concentration, etc.) and to use these

modified quantities instead of the actual ones.

The basic idea is the same one as for mass action. The higher the concentration

cB of a dissolved substance B, the stronger its influence upon the formation of some

product will be. The simplest case is a dissolved substance D. When compared to its

content, the effect is simply proportional to the concentration cB. We imagine this is

valid as long as cB remains small and the B atoms are therefore far enough apart

from each other. At higher concentrations, the atoms begin to influence each other.

This can either strengthen or weaken their influence upon the formation of product,

just as if the concentration of B had increased or decreased. This apparent increase

or decrease is described by a factor γB, the so-called activity coefficient, which
multiplies cB. γBcB is basically the “chemically effective” or “chemically active”

concentration of B that can be greater or smaller than the actual cB. The concen-

tration cB itself does not appear as the argument of a logarithmic function in the

mass action equation, but rather the relative concentration cr,B ¼ cB=c or the active
relative concentration γBcB=c, which is usually but inaccurately called the activity
of B:

μB ¼ μ
○
B þ RTln

γBcB
cπ|{z}
aB

with aB as activity of B on the c scaleð Þ: ð24:35Þ

Activities and activity coefficients are commonly used in order to rewrite some

frequently used equations into more pleasing form. In this manner, some relations

can be written in especially short form. There is a certain difficulty, though, in the

fact that these quantities are introduced and applied in many variations. To intro-

duce the subject, we will choose the most general form that is less often used but

can be most easily understood.

Chemical Activity This quantity (symbol λB), which is assigned to a substance B,

is formed by a simple scale transformation from the chemical potential μB:

μB ¼ RTlnλB or λB ¼ exp
μB
RT

� �
:

We call the quantity λB the chemical activity. This is based upon the name “chemical

potential” for the quantity μB, from which it stems. The recommended name “abso-

lute activity” is unfitting because, depending upon the choice of zero point for the

scale of μ, other “relative” λB values can result that differ by fixed factors.

λB results from μB by transforming into an exponential scale. Conversely, the

potential can be regained when the activities are transferred into a corresponding

logarithmic scale. It becomes easy to understand why (except for some special

cases) every statement that can be formulated with chemical potential can also be

expressed by chemical activities and vice versa. Qualitatively seen, activities are

measures of a substance’s tendency to transform, just as potentials are.
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Such coexistence of various scales is not uncommon in science and technology.

If a quantity changes by many orders of magnitude, it is common to start using

logarithmic scales in order to represent the entire range of values more easily. For

example, the concentration cHþ of hydrogen ions changes by 14 orders of magnitude

from that in a strongly acidic solution to that in a strongly basic one; and the

acoustic power of an acoustic source changes by 13 orders of magnitude from the

auditory threshold to the pain threshold. In the first case, instead of thecHþ value, the
preferred one is the pH value, which was originally introduced as a logarithmic

measure for hydrogen ion concentration pH ¼ �lg cHþ=cð Þ (see Sect. 7.3). In the

second case, instead of the acoustic power P, it is the acoustic power level
(or sound power level) lg(P/P0) with the reference value P0¼ 10–12 W that is

used. Figure 24.11 illustrates how the μ and λ scales relate to each other.

Residual Activities In Chap. 13, we were introduced to the first steps of a kind of

series expansion for the content dependence of chemical potential. The description

can be refined by repeated splitting into a basic value describing a main effect and a

residual value summing up the side effects:

As a result, the quantity μ is split into a sum μ ¼ μ� þ μ*þ μ**þ μ***þ . . .
which, depending upon how accurate it must be, can have more or fewer terms. The

sum transforms into a product if the potentials are transformed into activities:

λ ¼ λ� � λ* � λ** � λ*** � . . . :

At that point (Chap. 13), we only used a two-step approach [see Eq. (13.2)],

so that μ(x) appeared to split into three terms: basic value

μ
� þ basic value* μ

� þ residual value* μ
þ
. Three factors then correspondingly

appear in the activity scale:

For clarity’s sake, we will only use “basic term” and “residual term” for expressions

Fig. 24.11 Relationship between μ and λ scales at 298 K.
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of the first step. Otherwise we will use appropriate alternative names such as “mass

action term” for the basic term of step 2 and “extra term” for the corresponding

residual term. The mass action term μ
�

xð Þ is given by the relation μ
� ¼ RTlnx.

Correspondingly, the λ
�

xð Þ value results in λ
� ¼ exp RTlnxð Þ=RT½ � ¼ exp lnx½ � ¼ x:

Going from potentials to exponentially growing activities leads to unwieldy

values (see Fig. 24.12) which are not suitable for numerical calculations and

tabulating of chemical data. This is why the basic values of λ are rarely used but

usually only the residual values λ
�
. The latter are commonly called “activity” and an

independent symbol is introduced a (� λ
� ¼ λ

�
xð Þ � λþ xð Þ ¼ λ

þ
xð Þ � x with λ

þ
xð Þ in

the role of an activity coefficient).

When dealing with mixtures and solutions, there are different approaches to

separating basic and residual values (see Sect. 1.5). We tend to assume that the

participating substances in a mixture can be dealt with uniformly; in particular, a

substance can appear in a pure state in the same liquid or solid α-, β-, γ- . . . phase. In
a solution, however, we contrast the solvent as the main component and the

solutes B, C, . . . as the others. The sweetened tea in Fig. 24.12 is an example of

such a solution. Considered as a mixture, this would mean that the sugar should be

treated as a liquid component in the entire range of 0 to 100 %. For a solvent and

all components of mixtures, we always use μ
○
� � μ

�� �
or λ

○

� in the pure state as the

Fig. 24.12 Potential μ and activity λ for cane sugar in a glass of Turkish tea

(ϑ¼ 50 �C, c¼ 1,000 mol m�3), divided into basic values μ
○

and λ
○
, mass action contributions μ

�

and λ
�
, as well as extra values μ

þ
and λ

þ
:

μ ¼ μ
○
c þ μ

�
c þ μ

þ
c ¼ �1, 575:59þ 0:00 þ 0:65ð ÞkG;

λ ¼ λ
○

c � λ
�
c � λ
þ
c ¼ 2:03� 10�245 � 1:00� 1:27:

At the taste threshold at approximately 5 mol m�3, the values are:

μ ¼ μ
○
c þ μ

�
c þ μ

þ
c ¼ �1, 575:59� 14:23 þ 0:003ð Þ kG;

λ ¼ λ
○

c � λ
�
c � λ
þ
c ¼ 2:03� 10�245 � 5� 10�3 � 1:001:
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basic value for potential μ or activity λ. For dissolved substances, in contrast, we

choose μ
○
or λ

○
which is extrapolated to the standard value c, x ¼ 1ð Þ, b, . . . starting

from very low concentrations along an imagined ideal curve. In Sects. 6.2 and 13.2,

we took a closer look at the method where the concentration c or the molar

fraction x served as a measure of composition. We deal similarly with other

measures of composition, at least with those that change proportionally to each

other for small values. The basic values of the chemical potential for a substance

B dissolved in a solvent A, μ
○
�B, μ

○
c,BjA, μ

○
x,BjA, μ

○
b,BjA, . . . and the corresponding

λ values λ
○

�B, λ
○

c,BjA, λ
○

x,BjA, λ
○

b,BjA, . . . are all different. We will not discuss here

how to convert one into another.

Activity Coefficients The (residual) activities aB are themselves decomposed into

a product of the particular concentration (or mole fraction) and its activity coeffi-

cient, as follows:

a�B ¼ xBγ�B, ac,B ¼ cr,Bγc,B, ax,B ¼ xB γx,B, ab,B ¼ br,B γb,B, . . . :

Again, cr,B describes the relative concentration cB=c, while br,B is the relative

molality bB=b. Depending upon the chosen basic value, the resulting activities

will vary and can be distinguished by indices. If it is clear which alternative is

meant, extra identifiers can be omitted.

We use the abbreviation “Suc” for cane sugar (sucrose) in our example in

Fig. 24.12. The following holds for the activity coefficient at the standard concen-

tration of 1,000 mol m�3: γc Sucð Þ � λþc Sucð Þ ¼ 1:27. This value indicates graph-

ically that the sugar in the tea glass behaves as if its concentration were 27 % higher

than it actually is. Correspondingly, γc(Suc)¼ 1.001 at the taste threshold, in other

words at a concentration of only 5 mol m�3, means that the deviations from ideal

behavior are immeasurably small for such dilutions. This is true for neutral sub-

stances, while charged (ionic) ones still display noticeable deviations at concentra-

tions below 10 mol m�3.
In the limit of “infinite” dilution, when the content of B in A (but also

the content of all other substances C, D, . . . in A, if they exist) tends to

0, γc,;¼ γx,;¼ γb,;¼ . . .¼ 1 is valid for the activity coefficients. γ�; ¼ 1 is corre-

spondingly valid for the solvent. We have chosen the “slashed zero” ; as the index,
as we did in Sect. 13.3 in order to characterize this state.

Viewing the (residual) activities a as modified measures of composition is quite

graphic: the corresponding activity coefficient can be simply understood as a fitting

correction factor. This approach can be applied independently of which of the usual

measures of composition are being used, whether it is concentration c or cr, mole

fraction x, molality b or br, etc. It is also simpler than using the extra potential μ
þ
,

especially when we try to understand the basic quantities themselves as “partial

molar Gibbs energies.” However, understanding becomes more difficult when

trying to capture and calculate the influence of parameters like pressure, tempera-

ture, contents of components in mixtures, etc.
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Drives Activities are usually introduced to describe deviations of the functions

μ(x) or μ(c), etc., from values considered ideal at the same temperature and

pressure, μ ¼ μ
○
� þ RTlnx or μ ¼ μ

○
c þ RTlncr as well as μ ¼ μ

○
x þ RTlnx. As

mentioned right at the start, to correct for this, the actual measure of composition is

replaced by the “active” one a�, ac, ax, ab, . . .which results from themutual interaction

of the substances. A mixed approach is employed here in which we apply the basic

values in the scale of the potential and the residual values in the activity scale. This is a

compromise that lets us avoid the clumsy and extremely large or extremely small basic

values of λ, while allowing for the graphic appeal of the λ residuals.
Let us now consider the familiar example of cane sugar decomposing into

glucose and fructose: Sucjw+H2Ojl!Glcjw+Frujw (see Sect. 6.3). The process

runs slowly in our tea glass if the tea is slightly acidified (maybe with some lemon

juice). We can write the drive A for this process using the approach discussed in

Sect. 6.3: the relative concentrations cr of the dissolved substances are replaced by

the activities ac. This time, though, we must remember that the potential of solvent

A (in this case, water) can be markedly different due to possible higher concentra-

tions of dissolved B, C, . . . . We can achieve this formally by including the residual

value RT ln a�A for the solvent as well:

Notice that we write the activity a� and not ac for the solvent. This is important

because the indexes � and c, etc., are almost always omitted since it is generally

clear from the context which one of these is meant. As before, the contributions of

μ
�
� or a� are omitted for substances being converted in their pure states. Although

they can be written for pure substances,μ
�
� ¼ 0and a�¼ 1,μ

�
� as a summand or a� as

a factor does not affect the result. A simple example of this is dissolving cane sugar

in water: Sucjs! Sucjw:

The activity of the pure solid substance sucrose is, as mentioned, a�(Sucjs)¼ 1.

The above can easily be transferred to other chemical transformations. For

example:

BþB0 þ . . .!DþD0 þ . . . or 0! vBBþ vB0B
0 þ . . .þ vDDþ vDDþ vD0D

0 þ . . . :

The conversion numbers vB, vB0, . . ., vD, vD0, . . . are always negative for reactants

and positive for products. In our example on the left they are only �1 or +1, while

on the right, they can be random or even fractions. In our example and especially

further below, we should note that the more general way of writing on the right,
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despite its very different appearance, leads to the simpler one on the left if the

conversion number +1 for the reactants and �1 for the products are used and the

quantities suitably transposed.

The negative drive �A can be written as a sum of the potentials μ of the

participating substances, weighted with the conversion numbers [cf. Eq. (4.3)]:

�A ¼ �μB � μB0 � . . .þ μD þ μD0 þ . . .

or in general

�A ¼ vBμB þ vB0μB0 þ . . .þ vDμD þ vD0μD0 þ . . . :

If we decompose the potentials into basic and residual terms, μ ¼ μ
○ þRTlna, we

obtain:

�A ¼ �A○�A
�

¼ ð� μ
○
B � μ

○
B0 � . . .þ μ

○
D þ μ

○
D0 þ . . .Þ þ RTln

aDaD0 . . .

aBaB0 . . .
: ð24:36Þ

or in general

�A ¼ �A○�A
�

¼ ðvB μ○B þ . . .þ vD μ
○
D þ . . .Þ þ RTln aB

vB � . . . � aDvD � . . .ð Þ: ð24:37Þ

“Reactivities” Just as we can convert the chemical potentials μ into chemical

activities λ, we can transform sums of potentials μB + μC + μD + . . . into products of

activities λB � λC � λD �. . .:

exp
μB þ μC þ μD þ . . .

RT
¼ exp

μB
RT
� exp μC

RT
� exp μD

RT
. . . ¼ λB � λC � λD � . . . :

Multiples of potentials v μ can be similarly converted into powers of activities λv:

exp
vμ

RT
¼ exp

μ

RT

� �v
¼ λv:

Drives A can also be similarly converted into activities, either in their entireties or

decomposed into basic and residual values, A ¼ A
○ þA

�
, or into basic, mass action,

and extra terms A ¼ A
○ þA

� þ A
þ
,
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exp
A

RT|fflfflffl{zfflfflffl}
K

¼ exp
A
○

RT|fflfflffl{zfflfflffl}
K
○

� exp A
�

RT|fflfflffl{zfflfflffl}
K
�
¼ exp

A
○

RT|fflfflffl{zfflfflffl}
K
○

� exp A
�

RT|fflfflffl{zfflfflffl}
K
�

� exp A
þ

RT|fflfflffl{zfflfflffl}
K
þ

: ð24:38Þ

Basically, the quantity K is a measure of the “drive” or “strength” of a reaction as

much as the quantity A, from which it stems. The only difference is that the scales

are different and certain conditions are formulated differently. While A > 0 means

that the process runs forward, A < 0 denotes a backward tendency, and A ¼ 0

indicates equilibrium, the corresponding conditions in the new, exponential scale

are K > 1,K < 1, and K ¼ 1, respectively. In order to emphasize its relation to

activity, K can be called “reactivity,” but the name is actually unnecessary.

Mass Action Law The quantityK is itself extremely unusual, but the factors K
○ �K�

or K
○ �K� �Kþ , into which it can be decomposed, are not. When discussing the mass

action law in Sect. 6.4, we encountered the quantity K
○

as a “(numerical) equilib-

rium constant” or “equilibrium number” [Eq. (6.18)]. We are also familiar withK
�
,

not as itself but as the reciprocal valueK
� �1 (but we did not use this symbol as yet).

Generally,K
� �1 appears in the mass action law as a quotient where the numerator

corresponds to the products and the denominator corresponds to the reactants.

This can be shown as follows. When the drive disappears, A ¼ 0, equilibrium is

established, so that K ¼ K
� � K○ ¼ 1 or K

○ ¼ K
� �1 (or K

○ ¼K� �1Kþ �1) is valid. If we
insertA

�
from Eq. (24.36) or Eq. (24.37) into the expression forK

�
in Eq. (24.38), we

obtain the conditions for equilibrium in the following form:

K
○ ¼ aD � aD0 � . . .

aB � aB0 � . . .
� �

eq:

or K
○ ¼ aB

vB � . . . � aDvD � . . .ð Þeq::

If all the substances B, B0, . . ., D, D0, . . . are dissolved components in a dilute

solution, the activities a¼ γc cr can be replaced by the relative concentrations cr,
because we have in the case of strong dilution γc¼ 1. The conditions above then

give way to the equations familiar to us from Sect. 6.4:

K
○ ¼ cr Dð Þ � cr D0ð Þ � . . .

cr Bð Þ � cr B0ð Þ � . . .
� �

eq:

or K
○ ¼ cr Bð ÞvB � . . . � cr Dð ÞvD � . . .ð Þeq::

The expression in parentheses on the right side of the equation is justK
� �1 . In this

case, K
þ ¼ 1 is valid for the extra factor K

þ
in which the activity coefficients are

summed up, because all activity coefficients, as mentioned, should be equal to 1. In

the general case, however, we have:
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K
þ �1 ¼ γc Dð Þ � γc D0ð Þ � . . .

γc Bð Þ � γc B0ð Þ � . . . or K
þ �1 ¼ γc,B

vB � . . . � γc,DvD � . . . :

The Special Case of Gases For a gas B in a mixture of gases, the partial pressure

pB¼ xB � p or the relative partial pressure pr,B ¼ xB � p= p are preferred measures

of composition. Neither pB nor pr,B are themselves “chemically active” but a

changed value ap,B¼ γp,B � pr,B (according to general belief, this is the result of

the interaction of the particles). Similar to the activities discussed above, ac,BjA,
ax,BjA, ab,BjA, . . . and γc,BjA, γx,BjA, γb,BjA, . . ., the same scale transformation also

produces ap,B and γp,B from the corresponding potentials: a p,B ¼ expðμ� p,B=RTÞ
and γ p,B ¼ expðμþ p,B=RTÞ:

Still, there is an important difference here. A vacuum plays the role of solvent A

as a medium in which the substances are dispersed. While A continues to exist even

at finite pressures when no other substances are distributed within it, this is not true

for a vacuum. Starting from a state of very low total pressure p0, we extrapolate

from pB¼ xB p0 to pB ¼ xB p at constant temperature T and obtain a value which is

used as basic value μ
○

p,B of the chemical potential μB. Extrapolation is done along

the ideal logarithmic curve μ ¼ μ0 þ RTln p= p0ð Þ. Differently from the basic

values μ
○

c,BjA, μ
○

x,BjA, μ
○

b,BjA, . . . of the potential μB of a substance B in a solid

or liquid mixed phase, μ
○

p,B is not dependent upon pressure. It is also not dependent

upon a solvent, because there is none.

In 1901, Gilbert Lewis suggested the name “fugacity”—meaning volatility—for

the modified pressure γp,B � pB (not γp,B � pr,B!) and gave it its own symbol fB.
Correspondingly, the quantity γp,B is also known as the fugacity coefficient (symbol

ϕB). Lewis described this quantity as a “tendency to transition” or “tendency to

escape.” Hewas describing the tendency of a substance in one phase to go into another

one, and especially as a gas to volatilize. The concept of activity also came from

Lewis, who introduced it in 1908 as modified concentration. This made it possible to

treat substances that are not noticeably volatile but are easily dissolved in water (urea,

glycerin, cane sugar, etc.) according to the same paradigm used for fugacious

substances.
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Appendix

A.1. Foundations of Mathematics

A.1.1. Linear, Logarithmic, and Exponential Functions

In physical chemistry, functions generally describe the relations between various

quantities. The simplest case would be how a quantity y depends upon another

quantity x: y¼ f(x). Here, x represents the independent variable that is pre-

determined and varied in an experiment. y is the dependent variable (dependent

upon x) whose changes are measured. A good image of the function can be gained

by plotting a selection of pairs (x, y) resulting from y¼ f(x) as points in an (x, y)
coordinate system.

We can say that y is linearly dependent upon x when an increase of x by a fixed

amount a (the starting value of x can be arbitrarily chosen) causes y to increase by a
fixed amount b (Fig. A.1).

In order to make it easier to compare with other dependencies, we will sum it up

briefly in one line:

y ¼ f xð Þ is linear if: x! xþ a) y! yþ b:

However, y is logarithmically dependent upon x if an increase of x (x> 0, but

otherwise arbitrary) by a fixed factor α causes an increase of y by a fixed amount

b (Fig. A.2); in short:

y ¼ f xð Þ is logarithmic if: x! x � α) y! yþ b:

We can supplement these statements with another useful one. We say that y is

exponentially dependent upon x when an increase of x by a fixed amount a causes

an increase of y by a fixed factor β (Fig. A.3); in short:
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G. Job, R. Rüffler, Physical Chemistry from a Different Angle,
DOI 10.1007/978-3-319-15666-8

607



Fig. A.1 Linear relation

between y and x.

Fig. A.2 Logarithmic

relation between y and x.

Fig. A.3 Exponential

relation between y and x.
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y ¼ f xð Þ is exponential if: x! xþ a) y! y � β:

While we can usually distinguish between a linear “curve” (straight line) and a

curve just by glancing at them, classifying curves into categories is much more

difficult. The easy to check characteristics mentioned above help in determining

what type of curve we are dealing with. For example, we can quickly check whether

or not a given curve is logarithmic by choosing the most simple α¼ 2 and, using an

arbitrarily chosen starting point, repeatedly increasing or decreasing the abscissa by

the same factor (as in Fig. A.2). Conversely, this characteristic can also serve to

quickly sketch the curve.

Unfortunately, the mathematical expressions for the linear, logarithmic, and

exponential relation do not allow us to see the similarity that is noticeable in the

expressions mentioned above. We write

y ¼ mxþ n, if y depends linearly upon x,

y ¼ logm
x

n
, if y depends logarithmically upon x,

y ¼ mx � n, if y depends exponentially upon x:

In the case of straight lines, m represents the slope and n is the y-intercept.
By contrast, m represents the base in logarithmic and exponential relations. The

irrational Euler’s number e¼ 2.7182. . . is often used as the base. When this is done,

we speak of natural logarithms, abbreviated to ln, or (natural) exponential func-
tions, which we call e-functions because of their relation to the number e. We then

obtain:

y ¼ lnx or

y ¼ ex � expx:

In closing, we will repeat a few rules for logarithmic expressions. When the base

m is fixed (omitted for simplicity’s sake), the following is valid:

log x � yð Þ ¼ logxþ logy; ðA:1Þ
log x=yð Þ ¼ logx� logy; ðA:2Þ
log xað Þ ¼ a � logx: ðA:3Þ

When the base changes, the general rule (with bases b and c) is

logbx ¼ logbc � logcx ðA:4Þ

which results in the special case for bases e (Euler’s number) and 10

logex ¼ loge10 � log10x

or using different notation
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lnx ¼ ln10 � lgx; ðA:5Þ

where the abbreviation lg stands for the decadic logarithm or common logarithm
(logarithm to base 10).

A.1.2. Dealing with Differentials

Most of the functions we deal with in physical chemistry are, casually expressed,

“user friendly.” Their graphs are almost always smooth curves without jumps,

bends, or gaps so that a few points are enough to indicate a complete picture

(compare the graphs in Sect. A.1.1). The interesting points on such graphs are

often the zero points, maxima, minima, and inflection points as well as intersection

points with other curves. Elementary mathematics gives us the tools to calculate the

coordinates of such points, at least in simpler cases.

One important intermediate step to getting there is calculating the slope m of a

graph at a given point x (Fig. A.4a). The “user-friendly” (differentiable) functions
which we almost always deal with are represented by graphs that, if we look at them

with a magnifying glass, are almost straight in a small neighborhood around a point

x. Enlarging this section even more would show no discernible curvature at all

(Fig. A.4b). In physical chemistry, we generally choose a representation where the

curvature is still discernible, but so weak that the observer can easily imagine what

the results would be if it disappeared altogether.

This trick proves to be extremely useful. We know how to calculate the slope of

a straight line: m¼Δy/Δx, where Δy¼ y2� y1 indicates the increase in “height” if

one proceeds a distance Δx¼ x2� x1 from location x1 to x2. In order to express that,
for a curve, the increase in the x direction must be very small or even infinitesimally

Fig. A.4 (a) Graphic representation of an arbitrary functional relation y¼ f(x) in the (x, y)
coordinate system, (b) Strongly magnified section around the point (x1, y1).
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small, the symbol Δ for the difference is replaced by the symbol d for the

differential: m ¼ dy=dx. This was Gottfried Wilhelm Leibniz’s original idea

when he chose this suggestive syntax. We do not need to be bothered by the fact

that differentials in mathematics today are introduced as limits. It is enough for us to

utilize the procedures described in order to gain quick access to the necessary

sophisticated mathematical “tools.”

A specific slope m corresponds to each value of x, so the slope itself represents a

function of x which is naturally different from f(x). In order to distinguish the two, as
well as to show where it comes from, it is indicated by an apostrophe 0 (Langrange’s
notation). We then write y0 ¼ f 0(x), by replacing m by y0 ¼ dy=dxð Þ. f 0(x) is the

derivative of the function f(x). There are numerous rules in mathematics for finding

the derived function f 0(x) corresponding to a given f(x) as well as methods for finding

the antiderivative f(x) for a given function f 0(x) (compare Sect. A.1.3).

Let us remember the most important derivatives and rules for calculating them.

When taking a derivative, the degree of a power function is always lowered by one,

y ¼ xn ) y0 ¼ nxn�1 : ðA:6Þ

The exponential function, on the other hand, agrees with its derivative,

y ¼ ex ) y0 ¼ ex; ðA:7Þ

and in the case of the natural logarithm, we obtain

y ¼ lnx ) y0 ¼ 1

x
x > 0ð Þ: ðA:8Þ

A constant factor k is preserved when taking the derivative:

y ¼ k � f xð Þ ) y0 ¼ k � f 0 xð Þ: ðA:9Þ

Sums (as well as differences) of two or more functions can be derived term by term:

y ¼ f xð Þ � g xð Þ ) y0 ¼ f 0 xð Þ � g0 xð Þ: ðA:10Þ

The so-called product rule is applied to the product of two functions,

y ¼ f xð Þ � g xð Þ ) y0 ¼ f 0 xð Þ � g xð Þ þ f xð Þ � g0 xð Þ; ðA:11Þ

and the quotient rule is applied to quotients,

y ¼ f xð Þ
g xð Þ ) y0 ¼ f 0 xð Þ � g xð Þ � f xð Þ � g0 xð Þ

g xð Þð Þ2 : ðA:12Þ

The chain rule describes how derivatives of composite (or nested) functions can be
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taken. The simplest chain is composed of an outer function f(z) with an inner
function z¼ g(x), which can be written as y¼ f(g(x)). The following is valid:

y ¼ f g xð Þð Þ ) y0 ¼ f 0 zð Þ � g0 xð Þ: ðA:13Þ

More simply: The derivative of the total function is the product of the derivative of

the outer function and the derivative of the inner function.

Instead of using Langrange’s notation, the above rules are often formulated in

thermodynamics by the use of differentials. We then have for two functions f and g:

d f � gð Þ ¼ d f � dg,

d f � gð Þ ¼ gd f þ fdg,

d
f

g

� �
¼ gd f � fdg

g2
;

and finally for a function f¼ f(g), where g¼ g(x):

d f

dx
¼ d f

dg
� dg
dx

:

In this (Leibniz) form, the structure of the chain rule is emphasized more clearly.

In the field of physical chemistry, the quantity y we have been considering is

generally dependent upon several quantities y¼ f(x1, x2 . . .), but in the simplest

case, just two: y ¼ f u; υð Þ. The graph of such a function, which is represented in a

triaxial u; υ; yð Þ coordinate system, is no longer a curve but a surface (Fig. A.5a). If

we are dealing with “user-friendly” functions, and we almost always are, the

surface in question will be smooth although bent but without holes, folds, or

jumps. In an arbitrarily chosen point P, this kind of surface can rise sharply in the

direction parallel to the u-axis. At the same time, it might only rise slightly, run

horizontally, or even fall in the direction parallel to the υ -axis. If we look at it

through a magnifying glass, a small enough section around point P appears plane,

with no visible curvature (Fig. A.5b). If the gradientsm!u andm!υ in the direction

of the u- and υ-axes are known (the arrow in the index indicates an increase in a

certain direction), it is then possible to calculate the increase of Δy when proceed-

ing in the u direction by Δu as well as in the υ direction by Δυ, at least when the

increase is so small that the surface in the area can be considered flat. This is

illustrated in Fig. A.5b. In order to indicate the increase, we have again replaced the

differences with differentials:

dy ¼ m!u � duþ m!υ � dυ:

If we are interested in the increase in the u direction, we need to insert dυ ¼ 0 into

the expression above and obtain dy ¼ m!u � du or, when transformed,

m!u ¼ dy=du. In order to express that the result is valid only when υ is kept

constant, we write:
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m!u ¼ dy

du

� �
υ

and correspondingly m!υ ¼ dy

dυ

� �
u

:

(The expression in parentheses is to be read as “dy with respect to du at constant υ”).
The use of the rounded parentheses has become standard in physical

chemistry. They can also be used for the differential dy where we then write

dyð Þυ ¼ m!u � duð Þυ to save us the trouble of writing dυ ¼ 0. In our example,

both u and υ appear as independent variables, so duð Þυ � du. In this case, the

two expressions with and without parentheses are the same.

If the function y ¼ f u; υð Þ is known, the two slopes m!u and m!υ can be

calculated by referring to the usual rules for determining derivatives. In the case of

m!u, only u is considered variable, while υ is treated as a constant parameter. We

are used to this with functions of one variable when fixed parameters appear in the

formulas.

What appears here to be a slope of a graph is, as a rule, in physical chemistry

a quantity that quantifies an observable characteristic and for which there is

already a symbol. Such signs might be α � m!u and β � m!υ. The quantities

α and β are themselves functions of u and υ. We could therefore write α ¼ f 0u u; υð Þ
and β ¼ f 0υ u; υð Þ to show that they derive from the function y ¼ f u; υð Þ.

f 0u u; υð Þ and f 0υ u; υð Þ are called partial derivatives of the function f u; υð Þ. There
are numerous similar, less clear-cut ways of expressing this, including ones that

relate to calculations of slopes as quotients of two differentials. They are all called

partial differential quotients:

Fig. A.5 (a) Graphic representation of the functional relation y ¼ f u; υð Þ as a surface in the

u; υ; yð Þ coordinate system, (b) Magnified section around point P.
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α ¼ ∂ f u; υð Þ
∂u

¼ ∂y u; υð Þ
∂u

¼ ∂y
∂u

� �
υ

¼ dyð Þυ
du

,

β ¼ ∂ f u; υð Þ
∂υ

¼ ∂y u; υð Þ
∂υ

¼ ∂y
∂υ

� �
u

¼ dyð Þu
dυ

:

Mathematics Physics Chemistry

Writing the rounded ∂ instead of the straight d should remind us that in the

numerator of the expressions above, we mean only the increase dyð Þυ, i.e., when
u changes by du, while all other variables (only υ in this case) remain unchanged.

This is correspondingly valid for the expression below. In mathematics, the first

notation is the preferred one. The second one is preferred in physics, and in

(physical) chemistry, it is the third one. In the latter notation, the rounded ∂ can

be replaced by the straight d, without anything changing. This fourth form is

especially suited as an intermediate step in converting various differential quotients

one into another. In such calculations, one starts with the complete differential dy,
only later taking the appropriate side conditions into account:

dy ¼ dy

du

� �
υ

duþ dy

dυ

� �
u

dυ: ðA:14Þ

We will close our discussion of this here. We will have the opportunity of dealing

with examples of this method often enough. Some important rules for converting

differential quotients have been compiled in Sect. 9.4.

A.1.3. Antiderivatives and Integration

Knowing how to deal with differentials plays an essential role in physical

chemistry because many quantities there are related to each other through expres-

sions containing them. It is therefore important to not deal only with taking

derivatives, but with the inverse operation as well. This means finding—for a

given function f(x)—the antiderivative F(x) whose derivative results in f(x),

dF xð Þ
dx
¼ f xð Þ:

We obtain first examples of antiderivatives by simply reversing the arrows in the

expressions (A.6) to (A.8). F(x)¼ lnx is then an antiderivative of f(x)¼ 1/x.
However, it is only possible to determine an antiderivative up to a constant additive

term C because it drops out when taking the derivative. Along with F(x), all
functions F(x) +C are an antiderivative of f(x).

For reasons we will go into below, an antiderivative is also called an indefinite
integral. Determining it by reversing the derivative is known as indefinite integra-
tion. The summand C is the so-called constant of integration.
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Let us consider a problem that, at first glance, does not appear to have anything

to do with finding an antiderivative, namely determining the “area under a curve” of

an arbitrary function y¼ f(x). This is the area that is bordered by the curve between
two limits x1 and x2 and the x-axis (Fig. A.6). We obtain approximations of surface

area A by dividing the surface into strips having width Δx, each one limited by a

horizontal line at its function value and then adding the areas f(x)Δx of these strips:

A �
X

f xð ÞΔx:

We use the Greek letter ∑ as the symbol for calculating a sum.

If very small interval widths dx are used, we obtain the exact value for A:

A ¼
ðx2
x1

f xð Þdx:

Here, we are speaking of a definite integral of the function between the limits x1 and
x2 (in short: “Integral of f(x) with respect to x from x1 to x2”). The elongated S used

as the symbol indicates the underlying summation and is based upon the work of the

German mathematician and philosopher Gottfried Wilhelm von Leibniz.

Let us return to a “user-friendly” function, i.e., the differentiable function y¼F(x)
(Fig. A.7a). We will connect the function values at intervals Δx by straight lines and
obtain an approximation (gray dotted line) of the function. The gradient m of such a

connecting line then results in

m ¼ Δy

Δx
;

where Δy indicates the function’s increase of “height” in the chosen interval.

Fig. A.6 Approximation of

the definite integral of f(x)
from x1 to x2 as the area
under the curve.
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As we see in Fig. A.7b, a “column” is erected above each interval with the width

Δx. Its height corresponds to the appropriate gradient m in graph A.7a. We then

obtain the following for the area of the rectangle:

ΔA ¼ m � Δx;

this means that it corresponds to the distance Δy (the terms “surface area” and

“distance” are meant figuratively because the variables, and the functions, are

normally linked to units). If all the intervals between x1 and x2 are combined, the

entire area under the histogram (compare Sect. A.1.4 for the term) equals the

increase F(x2)�F(x1) of the function F(x).
If we finally allow the interval width to decrease, the broken line will change into

the correct curve F(x). Its gradient will correspond to the derivative F0(x)¼ dF/dx
(Fig. A.7c). The surface area of the histogram merges with the surface under the

curve dF/dx¼ f(x) and can be described by the definite integral (Fig. A.7d):ðx2
x1

f xð Þdx:

Fig. A.7 Relation between the increase of the antiderivative F(x) (above) and the area (integral)

under the curve dF/dx¼ f(x) (below); (a, b) Approximate, (c, d) After the limiting process.
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The surface continues to correspond to the increase of the function F(x). This means

that the definite integral of f(x) with respect to x between the limits x1 and x2
corresponds to the difference of function values F(x) at these integration limits:ðx2

x1

f xð Þdx ¼ F x2ð Þ � F x1ð Þ;

where f(x)¼ dF(x)/dx.At the end, the definite integral is a real number value. F(x) is
nothing more than the antiderivative of the function f(x), which has been integrated.
The relation between the terms antiderivative and (definite) integral now becomes

clear. The indefinite integral, however, in which no limits of integration are

specified (therefore the name) is a function, more precisely, an infinite number of

functions which differ only by a constant.

We will briefly compile the antiderivatives of some elementary functions in the

following.

When we integrate a power function we obtain

y ¼ xn )
ð
ydx ¼ 1

nþ 1
xnþ1 þ C n 6¼ 1ð Þ; ðA:15Þ

so that, for example, ð
1

x2
dx ¼ �1

x
þ C:

In the rule above, the exponent n¼ 1 is not allowed because the function f(x)¼ 1/x
is not the derivative of the function F(x)¼ x0, but is the derivative of the function
F(x)¼ lnx as we have seen in Sect. A.1.2. More precisely,

y ¼ 1

x
)

ð
ydx ¼ ln xj j þ C; ðA:16Þ

since this rule is also valid for negative x values. The antiderivative for x> 0 is

F(x)¼ lnx, and for x< 0, it is F(x)¼ ln(�x).
The following holds for the exponential function:

y ¼ ex )
ð
ydx ¼ ex þ C: ðA:17Þ

There are general rules for integration, just as there are general rules for differen-

tiation. We will discuss the most important ones in closing.
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A constant factor k is conserved during integration:

y ¼ k � f xð Þ )
ð
ydx ¼ k

ð
f xð Þdx: ðA:18Þ

In cases of sums (or differences) of two or more functions, each term is integrated

individually:

y ¼ f xð Þ � g xð Þ )
ð
ydx ¼

ð
f xð Þdx �

ð
g xð Þdx: ðA:19Þ

When integrating nested functions, it is often a good idea to define the inner

function as a new variable (substitution rule). We wish to determine the indefinite

integral of the function

y ¼ f g xð Þð Þ so we insert g xð Þ ¼ z

as a variable. The inverse function belonging to z¼ g(x) is then x¼ g�1(z)¼φ(z).
The differential dx must also be replaced by a differential of the new variable,

meaning dz. The necessary relation is achieved by taking the derivative:

φ 0 zð Þ ¼ dx

dz
and therefore dx ¼ φ0 zð Þdz :

We then obtain: ð
ydx ¼

ð
f zð Þ � φ0 zð Þdz: ðA:20Þ

The substitution rule is the reverse of the chain rule of differential calculus. The

method looks more complicated than it actually is. Let us consider an example: We

are looking for an antiderivative ofð
3xþ 4ð Þ2dx:

We now set z¼ 3x+ 4 and by differentiation obtain either dx/dz¼ 1/3 or dx¼ dz/3.
According to the substitution rule, the result is:ð

3xþ 4ð Þ2dx ¼
ð

1=3z
2dz ¼ 1=9 z

3 ¼ 1=9 3xþ 4ð Þ3:

These general rules are also applicable when calculating definite integrals, but in

the case of substitution, the integration limits must be adapted accordingly.
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A.1.4. Short Detour into Statistics and Probability Calculation

Statistics is a body of mathematical methods used for analyzing large amounts of

data. The goal of statistics is to condense the data in a way that allows us to arrive at

statements regarding the basic principles and structures of the data.

Important parameters are average values which can be calculated from a series

of attribute values xi such as measured values of a (random) sample. The most

commonly used average value is the arithmetic mean xarithm:, which is defined as the

sum of all values divided by the number N of the values:

xarithm: ¼ x1 þ x2 þ . . .þ xN
N

:

This can be expressed with the help of the sigma sign:

xarithm: ¼ 1

N

XN
i¼1

xi: ðA:21Þ

Let us take a closer look at the measured values of the random sample. There is a

certain scatter caused by statistical errors, but most lie around the mean value with

only a few exhibiting greater deviations. In order to gain a better idea of this

distribution of measured values, we divide the data field between xmin and xmax

into uniformly wide bins (classes) and assign each value to its corresponding class.

This method allows us to find the frequency distribution of the attribute values

described by the absolute frequency Ni of the results in class i, or their relative
frequency pi,

pi ¼
Ni

N
:

Fig. A.8 Histogram of a

discrete frequency

distribution.
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The form of distribution is often illustrated by a histogram (Fig. A.8) where a

“column” is erected over each class, whose area is proportional to the frequency in

question.

We will now turn to the question of what kind of frequency distribution

theoretically results from random (statistical) fluctuations. To do this, we need

some basic concepts from the theory of probability, which deal with randomly

distributed quantities and events. Each result of a measurement can be understood

as an event. In order to quantify a random result or event E—meaning an event

whose occurrence under given circumstances is uncertain, i.e., neither certain nor

impossible—it is assigned a certain value, i.e., its probability p(E). This indicates
the relative frequency of an event occurring if there are enough trials (in the limit,

an infinite number, n!1, law of large numbers). p(E) lies between 0 (impossible)

and 1 (100 %, meaning certain) including the limits, 0	 p(E)	 1. The sum of the

probabilities of all possible events must equal 1.

If measured quantities are continuously variable, which is often the case, the

concept of frequency must be adapted accordingly. To do this, we can imagine the

range of variable x being divided into small intervals [x, x+Δx]. The relative

frequency then results in

p xð Þ ¼ 1

N

ΔN xð Þ
Δx

;

where ΔN(x) is the number of results in the corresponding interval. If we assume a

quantity having a dimension, p(x) would have a dimension of 1/x. In this case, it is

better to speak of density of the relative frequency. Let us now make the interval Δx
very small (Δx! 0 in the limit), which we express by using the differential quotient

instead of the difference quotient:

p xð Þ ¼ 1

N

dN xð Þ
dx

:

The now continuous distribution is represented by the probability density function p(x).
The probability density function of the most well-known and most utilized

distribution, the so-called normal distribution, is given by

p xð Þ ¼ 1ffiffiffiffiffi
2π
p � σexp �

x� μð Þ2
2σ2

 !
; ðA:22Þ

where μ is the expected value (expectation) and σ the standard deviation. This is

based upon work by the German mathematician and physical scientist Carl Frie-

drich Gauss in the nineteenth century and is also called the Gaussian distribution.

The graph of the probability density function is a bell-shaped curve that is

symmetrical to the value of μ and whose form is determined by the parameter σ
(Fig. A.9). The maximum of the curve is found at μ and has a height given by the
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prefactor. The two inflection points of the curve are found at locations μ� σ and

μ+ σ. Because σ is in the denominator of the prefactor, the curve becomes wider

and flatter as σ increases. The area under the curve is constant and equals 1 because

it is the sum of the relative frequencies of all possible events and therefore

corresponds to the probability of a definite event.

Under certain conditions that are approximately fulfilled in practice, we can

expect that the distribution of continuously variable measured values of x around a

central value μ can be described by a normal distribution as a result of numerous

independent random disturbances. This is where the expression “expected value”

for the center of the distribution comes from. x� μ represents the deviation of the

measured value from the expected value whose spread is determined by the

parameter σ (called the “standard deviation”). A low standard deviation, for exam-

ple, indicates that the measured values tend to be very close to the expected value; a

high standard deviation, however, indicates that the measured values are widely

spread.

The normal distribution is valid if there are many (theoretically infinitely many)

measurements. In practice, there is always a finite number N of measured values.

They represent a random selection of the (infinite) number of possible values of the

entire population. In statistics, we refer to this as a “random sample.” The arith-

metic mean of a random sample taken from a normally distributed population

(discussed at the beginning of the section) is a suitable estimate of the expected

value.

A.2. Tables

A.2.1. Table of Chemical Potentials

The following Table contains values of the chemical potentials μ and corresponding
temperature coefficients α for more than 400 inorganic and organic substances,

compiled from the sources listed in the bibliography.

Fig. A.9 Normal

distribution: probability

density for a continuously

variable quantity.
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The scale is defined by:

• μ¼ 0 for the elements in their most stable modification (except phosphorus) in

the standard state, omitting nuclear entropy.

• μ¼ 0 for H+jw in the standard state, entropy of H+jw set at zero.

The data are valid

• At standard conditions (T¼ 298.15 K, p¼ 100 kPa),

• For a dissolved substance with the standard value of concentration

(1,000 mol m�3),
• For a gaseous or dissolved substance in the ideal state without interaction of the

spatially distributed molecules,

• For all substances for the elements in their natural isotopic compositions.

Some tips: The element symbols in the content formulas are arranged in the

following sequence (with decreasing rank):

• Electropositive elements (metals, noble gases),

• Electronegative elements (nonmetals except noble gases, O, H),

• Oxygen,

• Hydrogen.

Water can be found under OH2, for example, and sulfuric acid under SO4H2.

References

1. Landolt-B€ornstein, New Series (1999–2001) Thermodynamical Properties of

Inorganic Materials, Part 1 to 4, Vol IV/19. Springer, Berlin
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4. Alberty RA (1998) Calculation of Standard Transformed Gibbs Energies and
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6. Landolt-B€ornstein (1961) Kalorische Zustandsgr€oßen, 6th edn, Vol II/4.

Springer, Heidelberg

7. Calculated from various data (acid constants . . .)

622 Appendix



Substance Phase μ (kG) α (G K�1) Refs.

Ag g 246.01 �173.00 [1]

Ag s 0.00 �42.55 [1]

Ag+ w 77.11 �72.68 [2]

AgBr s �96.97 �107.11 [1]

AgCl s �109.82 �96.23 [1]

AgI s �66.35 �115.48 [1]

AgNO2 s 19.13 �128.20 [2]

AgNO3 s �33.41 �140.92 [2]

Ag2O s �11.25 �121.00 [1]

Ag2S s �40.46 �142.89 [1]

Ag2SO4 s �617.95 �200.41 [1]

Al g 289.38 �164.55 [1]

Al l 7.20 �39.55 [5]

Al s 0.00 �28.30 [1]

Al3+ w �485.00 +321.70 [2]

AlCl3 s �630.01 �109.29 [1]

Al2O3 s, α, corundum �1,582.26 �50.94 [1]

Ar g 0.00 �154.84 [1]

As g 260.46 �174.21 [3]

As s, α, gray 0.00 �35.69 [1]

Au g 328.84 �180.51 [1]

Au s 0.00 �47.49 [1]

Au2O3 s 77.86 �130.33 [3]

B g 521.01 �153.44 [1]

B s 0.00 �5.90 [1]

Ba g 146.94 �170.25 [5]

Ba s 0.00 �62.50 [1]

Ba2+ w �560.77 �9.60 [2]

BaCO3 s �1,135.33 �112.10 [1]

BaCl2 s �806.94 �123.70 [1]

BaI2 s �602.00 �165.20 [1]

BaO s �520.25 �72.00 [1]

BaS s �456.00 �78.20 [2]

BaSO4 s �1,347.86 �132.10 [1]

Be g 286.20 �136.27 [1]

Be s 0.00 �9.50 [1]

Bi g 169.90 �187.01 [1]

Bi s 0.00 �56.74 [1]

Br g 82.38 �175.02 [1]

Br� w �104.00 �82.40 [2]

BrH g �53.40 �198.70 [1]

Br2 g 3.11 �245.47 [1]

Br2 l 0.00 �152.21 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

C g 671.26 �158.10 [1]

C s, diamond 2.90 �2.36 [1]

C s, graphite 0.00 �5.74 [1]

CCl2O g, carbonyl dichloride (phosgene) �204.6 �283.53 [2]

CCl4 g, tetrachloromethane �58.15 �310.23 [3]

CCl4 l, tetrachloromethane �62.54 �216.19 [3]

CF4 g, tetrafluoromethane �888.52 �261.45 [1]

CHCl3 l, trichloromethane (chloroform) �73.66 �201.70 [2]

CH2Cl2 l, dichloromethane �67.26 �177.80 [2]

CH2O g, methanal (formaldehyde) �109.87 �218.77 [3]

CH2O g, methanoic acid (formic acid) �350.97 �248.85 [3]

CH2O l, methanoic acid (formic acid) �361.37 �128.95 [3]

CH3 g, methyl 148.63 �194.00 [1]

CH3Cl g, monochloromethane �58.34 �234.39 [1]

CH4 g, methane �50.53 �186.37 [1]

CH4N2O s, diaminomethanal (urea) �197.33 �104.60 [2]

CH4O g, methanol �162.30 �239.87 [1]

CH4O l, methanol �166.25 �126.70 [1]

CN� w 172.40 �94.10 [2]

CNH g, hydrogen cyanide 124.70 �201.78 [2]

CNH l, hydrogen cyanide 124.97 �112.84 [2]

CO g �137.17 �197.67 [1]

CO2 g �394.37 �213.78 [1]

CO2 w �385.98 �117.60 [2]

CO3
2� w �527.81 +56.90 [2]

CO3H
� w �586.77 �91.20 [2]

CO3H2 w �623.08 �187.40 [2]

CS2 l 65.13 �151.36 [1]

C2H2 g, ethyne (acetylene) 209.88 �200.93 [1]

C2H2O2 s, ethanedioic acid (oxalic acid) �697.97 �120.10 [6]

C2H3O2
� w, acetate anion �369.31 �86.60 [2]

C2H4 g, ethene (ethylene) 68.36 �219.32 [1]

C2H4O g, ethanal (acetaldehyde) �133.24 �264.33 [3]

C2H4O l, ethanal (acetaldehyde) �128.12 �160.20 [2]

C2H4O2 l, ethanoic acid (acetic acid) �389.23 �159.83 [1]

C2H4O2 w, ethanoic acid (acetic acid) �396.46 �178.70 [2]

C2H5Cl g, monochloroethane �60.39 �276.00 [2]

C2H5O2N s, 2-aminoethanoic acid (glycine) �368.44 �103.51 [2]

C2H6 g, ethane �32.01 �229.16 [1]

C2H6O g, ethoxyethane(dimethylether) �112.59 �266.38 [2]

C2H6O g, ethanol �167.87 �281.62 [1]

C2H6O l, ethanol �174.63 �160.71 [1]

C2H6O2 l, ethane-1.2-diol (ethylene glycol) �323.23 �166.94 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

C3H4 g, propyne 194.49 �248.22 [3]

C3H5O3
� w, lactate anion �516.72 �146.44 [4]

C3H6 g, propene 62.82 �267.05 [3]

C3H6 g, cyclopropane 104.28 �238.01 [3]

C3H6O l, 2-propanone (acetone) �155.26 �200.41 [3]

C3H6O3 w, 2-hydroxypropanoic acid (lactic acid) �538.77 �221.75 [4]

C3H8 g, propane �23.37 �270.02 [3]

C4H8 g, 1-butene 203.11 �290.90 [3]

C4H8O2 l, ethyl ethanoate (ethyl acetate) �323.19 �259.00 [6]

C4H10 g, butane �16.99 �310.23 [3]

C5H10 l, cyclopentane �36.49 �204.10 [6]

C5H12 g, pentane �8.18 �349.06 [3]

C5H12 l, pentane �9.21 �262.70 [6]

C6H5Cl l, chlorobenzene �93.65 �194.10 [6]

C6H6 g, benzene 129.79 �269.31 [1]

C6H6 l, benzene 125.05 �171.54 [1]

C6H6O s, benzenol (phenol) �50.22 �144.01 [3]

C6H6N l, benzeneamine (aniline) 147.58 �192.00 [6]

C6H12 l, cyclohexane 26.89 �204.35 [3]

C6H12O6 s, β-fructose (fruit sugar) �905.65 �212.74 [4]

C6H12O6 w, fructose (fruit sugar) �915.51 �279.65 [4]

C6H12O6 s, α-D-glucose (grape sugar) �910.56 �212.13 [4]

C6H12O6 s, β-D-glucose (grape sugar) �908.89 �228.03 [4]

C6H12O6 w, α-D-glucose (grape sugar) �914.54 �264.01 [4]

C6H12O6 w, β-D-glucose (grape sugar) �915.79 �264.01 [4]

C6H12O6 w, α, β-D-glucose (grape sugar) �916.97 �269.45 [4]

C6H14 l, hexane �4.04 �296.02 [3]

C7H6O2 s, benzenecarboxylic acid (benzoic acid) �245.20 �167.60 [6]

C7H8 g, methylbenzene (toluene) 122.19 �320.77 [3]

C7H8 l, methylbenzene (toluene) 113.96 �220.96 [3]

C8H18 l, octane 6.71 �361.21 [3]

C12H22O11 s, sucrose (cane sugar) �1,557.60 �392.40 [4]

C12H22O111 w, sucrose (cane sugar) �1,564.70 �435.40 [4]

Ca g 144.02 �154.89 [1]

Ca s, α 0.00 �41.59 [1]

Ca2+ w �553.58 +53.10 [2]

CaBr2 s �664.78 �130.00 [1]

CaCO3 s, aragonite �1,127.85 �88.70 [2]

CaCO3 s, calcite �1,128.79 �92.70 [2]

CaC2 s �64.55 �70.29 [1]

CaCl2 s �748.79 �108.37 [1]

CaF2 s �1,175.55 �68.45 [1]

CaO s �603.30 �38.10 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

Ca(OH)2 s �898.24 �83.40 [1]

CaSO4 s �1,325.14 �106.69 [1]

Cd g 77.23 �167.75 [1]

Cd s 0.00 �51.80 [1]

Cd2+ w �77.61 73.20 [2]

CdCO3 s �670.53 �92.47 [1]

CdO s �229.72 �54.81 [1]

Cl g 105.31 �165.19 [1]

Cl� g �240.17 �153.36 [5]

Cl� w �131.23 �56.50 [2]

ClH g �95.30 �186.90 [1]

ClH w �97.00 [7]

ClO2 g 122.83 �256.88 [1]

ClO4
� w �8.52 �182.00 [2]

ClO4H w 48.56 [7]

Cl2 g 0.00 �223.08 [1]

Co g 379.47 �179.52 [1]

Co s, α, hexagonal 0.00 �30.04 [1]

Cr g 352.20 �174.31 [1]

Cr s 0.00 �23.54 [1]

CrO4
2� w �727.75 �50.21 [2]

Cr2O3 s �1,058.99 �81.10 [1]

Cr2O7
2� w �1,301.10 �261.90 [2]

Cs g 49.56 �175.60 [1]

Cs s 0.00 �85.23 [1]

Cs+ w �292.02 �133.05 [2]

Cu g 298.31 �166.29 [1]

Cu s 0.00 �33.15 [1]

Cu+ w 49.98 �40.60 [2]

Cu2+ w 65.49 99.60 [2]

CuCl2 s �173.73 �108.07 [1]

CuO s �128.08 �42.74 [1]

CuS s �53.47 �66.48 [3]

CuSO4 s �660.78 �109.25 [1]

CuSO4�H2O s �914.76 �145.10 [1]

CuSO4�5H2O s �1,876.83 �301.25 [1]

Cu2O s �147.84 �92.55 [1]

D g, deuterium 206.55 �123.35 [1]

DH g �1.46 �143.80 [1]

DOH g �233.09 �199.51 [1]

D2 g 0.00 �144.96 [1]

F g 62.28 �158.75 [1]

F� g �262.00 �145.58 [5]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

F� w �278.79 +13.80 [2]

FH g �275.40 �173.78 [1]

F2 g 0.00 �202.79 [1]

Fe g 368.32 �180.49 [1]

Fe l 5.34 �35.55 [5]

Fe s, α, cubic 0.00 �27.28 [1]

Fe2+ w �78.90 137.70 [2]

Fe3+ w �4.70 315.90 [2]

Fe(OH)2 s �496.98 �88.00 [3]

Fe(OH)3 s �708.98 �105.00 [1]

FeS s �101.97 �60.32 [3]

FeSO4 s �824.89 �120.96 [1]

FeS2 s, pyrite �166.90 �52.93 [2]

Fe2O3 s, hematite �741.04 �87.40 [1]

Fe3O4 s, magnetite �1,017.48 �145.27 [1]

Ga g 233.74 �169.04 [1]

Ga s 0.00 �40.73 [1]

Ge g 333.68 �167.90 [3]

Ge s 0.00 �31.09 [1]

H g 203.28 �114.72 [1]

H+ w 0.00 0.00 [2]

H2 g 0.00 �130.68 [1]

He g 0.00 �126.15 [1]

Hg g 32.46 �174.97 [1]

Hg l 0.00 �75.90 [1]

Hg2+ w 164.40 32.20 [2]

HgCl2 s �183.44 �144.49 [1]

HgI2 s, red �101.70 �180.00 [2]

HgI2 s, yellow �101.15 �186.29 [7]

HgO s, red �58.54 �70.29 [2]

HgO s, yellow �58.41 �71.10 [2]

HgS s, black �47.70 �88.30 [2]

HgS s, red �50.60 �82.40 [2]

Hg2
2þ w 153.52 �84.50 [2]

Hg2Cl2 s �209.33 �192.54 [1]

Hf g 579.62 �186.90 [1]

Hf s 0.00 �43.56 [1]

I g 70.17 �180.78 [1]

I� w �51.57 �111.30 [2]

IH g 1.70 �206.59 [1]

I2 g 19.32 �260.68 [1]

I2 l 3.32 �150.36 [5]

I2 s 0.00 �116.14 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

I2 w 16.40 �137.20 [2]

In g 206.08 �173.78 [1]

In s 0.00 �57.65 [1]

Ir g 622.87 �193.58 [1]

Ir s 0.00 �35.51 [1]

K g 60.48 �160.34 [1]

K s 0.00 �64.68 [1]

K+ w �283.27 �102.50 [2]

KBr s �380.07 �95.92 [1]

KCl s �408.76 �82.56 [1]

KF s �538.93 �66.55 [1]

KI s �324.32 �106.05 [1]

KOH s �379.46 �81.25 [1]

K2O s �321.17 �96.00 [1]

K2SO4 s �1,319.59 �175.54 [1]

Kr g 0.00 �164.09 [1]

La g 392.59 �182.38 [1]

La s 0.00 �56.90 [1]

Li g 126.66 �138.77 [2]

Li s 0.00 �29.12 [1]

Li+ w �293.31 �13.40 [2]

LiH g 116.47 �170.91 [1]

LiH s �68.63 �20.60 [1]

Mg g 115.98 �148.65 [1]

Mg s 0.00 �32.67 [1]

Mg2+ w �454.80 +138.10 [2]

MgCO3 s �1,012.21 �65.09 [1]

MgCl2 s �594.77 �89.62 [1]

MgO s �569.31 �26.95 [1]

MgS s �343.70 �50.33 [1]

MgSO4 s �1,174.48 �91.60 [1]

Mn g 238.50 �173.70 [2]

Mn s 0.00 �32.22 [1]

Mn2+ w �228.10 73.60 [2]

MnO2 s �465.08 �53.05 [1]

MnO4
� w �447.20 �191.20 [2]

Mo g 611.88 �181.95 [1]

Mo s 0.00 �28.56 [1]

N g 455.55 �153.30 [1]

NH3 g �16.45 �192.45 [2]

NH3 l �10.16 �103.90 [7]

NH3 w �26.59 �111.30 [2]

NH4
þ w �79.31 �113.40 [2]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

NH4Cl s �203.09 �94.86 [1]

NO g 87.59 �210.74 [1]

NOCl g 67.11 �261.58 [1]

NO2 g 52.31 �240.17 [1]

NO3
� w �108.74 �146.40 [2]

NO3H g �73.69 �266.88 [1]

NO3H l �80.71 �155.60 [2]

N2 g 0.00 �191.61 [1]

N2H4 l 149.34 �121.21 [2]

N2H4O3 s, ammonium nitrate �183.76 �150.81 [1]

N2O g 104.20 �219.85 [2]

N2O4 g 97.89 �304.29 [2]

N2O4 l 97.54 �209.20 [2]

N2O5 g 115.10 �355.70 [2]

N2O5 s 113.90 �178.20 [2]

N3H g 328.10 �238.97 [2]

N3H l 327.30 �140.60 [2]

Na g 76.96 �153.72 [1]

Na s 0.00 �51.30 [1]

Na+ w �261.91 �59.00 [2]

NaBr s �349.09 �86.93 [1]

NaCl s �384.07 �72.12 [1]

NaI s �286.41 �98.56 [1]

NaOH s �379.65 �64.43 [1]

NaSO4H s �992.80 �113.00 [2]

Na2O s �379.18 �75.04 [1]

Na2SO4 s �1,270.02 �149.58 [1]

Nb g 678.42 �186.27 [1]

Nb s 0.00 �36.27 [1]

Ne g 0.00 �146.33 [1]

Ni g 384.50 �182.19 [2]

Ni s 0.00 �29.80 [1]

Ni2+ w �45.60 128.90 [2]

NiCl2 s �258.65 �98.10 [1]

NiO s �211.59 �38.07 [1]

NiSO4 s �759.70 �92.00 [2]

O g 231.74 �161.06 [1]

OD2 g �234.54 �198.34 [3]

OD2 l �243.40 �75.94 [3]

OD2 s �242.89 �50.59 [7]

OH� w �157.24 10.75 [2]

OH2 g �228.58 �188.83 [1]

(continued)

Appendix 629



Substance Phase μ (kG) α (G K�1) Refs.

OH2 l �237.14 �69.95 [1]

OH2 s �236.55 �44.81 [7]

OH3
þ w �237.14 �69.95 [1]

O2 g 0.00 �205.15 [1]

O2 w 16.40 �110.9 [2]

O2H2 g �105.45 �233.00 [1]

O2H2 l �120.42 �109.62 [1]

O2H2 w �134.03 �143.90 [2]

O3 g 163.29 �239.01 [1]

Os g 740.31 �192.58 [1]

Os s 0.00 �32.64 [1]

P g 280.09 �163.20 [1]

P s, red �12.02 �22.85 [1]

P s, white 0.00 �41.09 [1]

PCl3 g �269.61 �311.68 [5]

PCl3 l �274.04 �218.49 [1]

PCl5 g �305.00 �364.58 [2]

PH3 g 13.55 �210.31 [3]

PO4
3� w �1,018.70 222.00 [2]

PO4H
2� w �1,089.15 33.50 [2]

PO4H
2� w �1,130.28 �90.40 [2]

PO4H3 l �1,123.60 �150.78 [5]

PO4H3 w �1,018.70 222.00 [2]

P4O10 g �2,671.28 �402.09 [1]

P4O10 s �2,724.15 �231.00 [1]

Pb g 162.23 �175.37 [1]

Pb l 2.22 �71.71 [5]

Pb s 0.00 �64.80 [1]

Pb2+ w �24.43 �10.50 [2]

PbCO3 s �625.41 �130.96 [1]

PbI2 s �173.57 �174.84 [1]

PbI2 s �173.57 �174.84 [1]

PbO s, yellow �188.68 �68.70 [1]

PbO s, red �188.92 �67.84 [1]

PbO2 s �215.39 �71.80 [1]

PbS s �97.77 �91.20 [1]

PbSO4 s �816.20 �148.49 [1]

Pd g 338.028 �167.06 [3]

Pd s 0.00 �37.82 [1]

Pt g 520.05 �192.41 [1]

Pt s 0.00 �41.63 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

Re g 729.42 �118.93 [1]

Re s 0.00 �36.48 [1]

Rh g 509.01 �185.83 [1]

Rh s 0.00 �31.56 [1]

Ru g 604.92 �186.51 [1]

Ru s 0.00 �28.61 [1]

S g 236.70 �167.83 [1]

S s, α, rhombic 0.00 �32.07 [1]

S s, β, monoclinic 0.07 �33.03 [5]

S2� w 85.80 +14.60 [2]

SF6 g �1,115.42 �291.67 [1]

SH� w 12.08 �62.80 [2]

SH2 g �33.44 �205.80 [1]

SH2 w �27.83 �121.00 [2]

SO2 g �300.12 �248.21 [1]

SO3 g �371.01 �256.77 [1]

SO3
2� w �486.50 29.00 [2]

SO3H
� w �527.78 �139.70 [2]

SO3H2 w �537.81 �232.20 [2]

SO4
2� w �744.53 �20.10 [2]

SO4
H� w �755.91 �131.80 [2]

SO4H2 l �689.92 �156.90 [1]

SO4H2 w �738.79 [7]

S2Cl2 g �28.66 �327.22 [1]

Sb g 227.00 �180.27 [1]

Sb s 0.00 �45.52 [1]

Sc g 335.92 �174.79 [1]

Sc s 0.00 �34.64 [1]

Se g 197.41 �176.73 [1]

Se s 0.00 �42.00 [1]

Si g 405.53 �168.00 [1]

Si s 0.00 �18.81 [1]

SiCl4 g �622.39 �331.45 [1]

SiO2 s, α, cristobalite �855.43 �42.68 [2]

SiO2 s, α, quartz �856.29 �41.46 [1]

Sn g 266.22 �168.49 [1]

Sn s, β, white 0.00 �51.18 [1]

Sn2+ w �27.2 17.0 [2]

Sn4+ w +1.9 [7]

SnO s �251.91 �57.17 [1]

SnO2 s �515.82 �49.01 [1]

Sr g 128.02 �164.64 [1]

Sr s 0.00 �55.69 [1]

(continued)
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Substance Phase μ (kG) α (G K�1) Refs.

Te g 169.65 �182.71 [1]

Te s 0.00 �49.22 [1]

Ti g 429.12 �180.30 [1]

Ti s 0.00 �30.72 [1]

TiCl4 l �737.20 �252.34 [2]

TiO4 s, rutile �888.77 �50.62 [1]

Tl g 146.22 �181.00 [1]

Tl s 0.00 �64.30 [1]

U g 490.40 �199.79 [1]

U s 0.00 �50.20 [1]

V g 472.19 �182.30 [1]

V s 0.00 �30.89 [1]

W g 809.11 �174.00 [1]

W s 0.00 �32.62 [1]

Xe g 0.00 �169.58 [1]

Zn g 94.81 �161.00 [1]

Zn s 0.00 �41.63 [1]

Zn2+ w �147.06 112.1 [2]

ZnCO3 s �731.45 �82.43 [1]

ZnCl2 s �370.32 �111.50 [1]

ZnI2 s �209.26 �161.50 [3]

ZnO s �320.37 �43.16 [1]

ZnS s, zinc blende �198.52 �58.66 [1]

ZnSO4 s �871.45 �110.50 [3]

Zr g 556.91 �181.34 [1]

Zr s 0.00 �39.18 [1]
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Index

A

Absolute entropy, determination, 73

Absolute temperature, 69, 273

Absolute zero (point), 273

Accumulator, 567

Acid, 188

Acid-base indicator, 215

Acid-base pair, 188

strong, 193

weak, 195

Acid-base reaction, 189

Acid-base titration, 206

Acidity constant, 198

Activated complex, 445

Activation, 446

Activation energy, 440

Activation entropy, 450

Activation threshold, 448

Active site (of an enzyme), 461

Activity, 601

chemical, 599

Activity coefficient, 599, 602

Adsorbate, 392

Adsorbent, 392

Adsorption

on liquid surfaces, 390

on solid surfaces, 392

Adsorption chromatography, 398

Adsorption equilibrium, 394

Adsorption isotherm, 393

Adsorptive, 392

Affinity, 108

Alkaline battery, 566

Allotropy, 311

Amorphous, 20

Amount of substance, 14

Amphoteric, 192

Anion, 499

Anode, 499

Antiderivative, 611, 614

Arrhenius activation energy, 440

Arrhenius diagram, 441

Arrhenius equation, 440

August vapor pressure formula, 306

Autocatalysis, 456

Avogadro constant, 15

Avogadro’s principle, 275
Azeotrope, 376

B

Barometric formula, 293

Base, 188

Basic stoichiometric equation, 27

Basic substance, 4

Basic value

chemical drive, 159

chemical potential, 156

molar entropy, 231

molar volume, 224

Battery

primary, 565

secondary, 567

Bimolecular reaction, 420

Biocatalyst, 461

Boiling point, 75, 136, 305

raising, 147, 331

standard, 305
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Boiling point curve, 371, 372

Boiling point diagram, 372

Boiling pressure curve, 303

Boltzmann’s distribution law, 293

Boltzmann constant, 278

Bonding energy, 495

Bonding strength, 494

Boyle–Mariotte’s law, 272
Brownian motion, 56

Buffer, 210

Buffer capacity, 210

C

Calomel electrode, 559

Calorimeter, 66, 246

Capillary action, 388

Capillary active, 390

Capillary pressure, 385

Carnot (unit), 71

Catalysis, 455

enzymatic, 456, 461

heterogeneous, 456, 467

homogeneous, 456

mechanism, 457

microheterogeneous, 456

Catalyst, 455

Catalyst poison, 457

Catalytic efficiency, 466

Cathode, 499

Cation, 499

Cell

primary, 565

secondary, 567

Cell constant, 518

Cell voltage (reversible), 562

measurement, 570

Celsius temperature, 70

Chain reaction, 437

Charge, 16

Charge number, 495

Charles’s law, 273
Chemical drive, 108

basic value, 159

concentration dependence, 159

pressure coefficient, 141, 263

pressure dependence, 140

temperature coefficient, 131, 260

temperature dependence, 130

Chemical drive, determination

calorimetric, 245

chemical (mass action law), 170

electrochemical, 564

Chemical engine, 236

Chemical potential, 93, 596

average (heterogeneous mixture), 346

average (homogeneous mixture), 344

basic characteristics, 96

basic value, 156

concentration coefficient, 155

concentration dependence, 154

prediction of transformations, 107

pressure coefficient, 140, 262

ideal gas, 148, 276

pressure dependence, 140

reference level, 100

standard value, 103

temperature coefficient, 131, 259

temperature dependence, 130

Chemisorption, 392

Chromatography

adsorption, 398

partition, 182

Cohesion pressure, 296

Colligative properties, 320, 332

Collision frequency, 442

Collision theory, 442

Colloid, 16

Composite reaction, 413, 425

Compressibility, 267

ideal gas, 276

Concentration

mass, 18

molar, 17

Condensation, 300

Conductance, 505

Conduction

entropy, 89, 485

Conductivity

entropy, 486

electric, 505

concentration dependence, 507

(molar) ionic, 506

measurement, 518

limiting molar, 506

molar, 506

thermal, 486

Conductometric cell, 518

Conductometric titration, 519

Conode, 359

Consecutive reaction, 433

Conservation of energy, 38

Contact angle, 385

Contact potential difference, 524

Content formula, 4

Content number, 4
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Conversion, 28

degree, 163

extent, 27

Conversion density, 163

Conversion formula, 25

Conversion number, 26

Conversion rate, 405

Conversion rate density, 407

measurement, 409

flow method, 412

relaxation method, 413

temperature dependence, 439

Cooling curve, 367

Coupling, 249

chemical-chemical (n-n), 263
in the opposite direction, 254

in the same direction, 254

mechanical-chemical (V-n), 262
mechanical-thermal (V-S), 255

thermal-chemical (S-n), 259
Coverage, fractional, 394

Covolume, 296

Critical micelle concentration, 391

Critical point, 302

Critical pressure, 302

Critical solution point

lower, 360

upper, 359

Critical temperature, 302

Cryoscopic constant, 332

Crystalline, 20

Cubic expansion coefficient, 255

ideal gas, 276

Current, electric, 499, 503

Cyclic process, 255

D

Dalton’s law, 171
Daniell cell, 560

Deca potential, 157

Decomposition pressure, 150, 175

Decomposition temperature, 138

Degree of dissociation, 509

Degree of freedom, 281

Degree of protonation, 201

Derivative, 611

Desorption, 394

Dew point curve, 371, 373

Distillation, 373

Differential coefficient, 610

conversion, 267

partial, 613

Diffusion, 316, 474

Diffusion coefficient, 476

temperature dependence, 477

Diffusion-controlled reaction, 471, 479

Diffusion force, 317

Diffusion voltage, 542

Dipole, electric, 495

Displacement coefficient, 263

Dissociation

degree, 509

electrolytic, 493

Distribution equilibrium, 181

Donnan equation, 546

Double layer, electric, 525, 528

Drive, chemical. See Chemical drive

Dynamic equilibrium, 165, 395, 428

E

Ebullioscopic constant, 332

Efficiency, 86

Einstein–Smoluchowski equation, 476

Electric charge, 16

Electric conductivity, 505

Electric current, 499, 503

Electric double layer, 525, 528

Electric field, 497

Electric mobility, 500

Electric potential, 497

Electric resistance, 505

Electrochemical potential, 523

Electrochemical series, 556

Electrode, 499, 528, 538

calomel, 559

film, 540

gas, 538

glass, 545

hydrogen (gas), 538

standard (SHE), 549

metal-metal ion, 539

redox, 534

reference, 558

silver-silver chloride, 540, 558

Electrode potential. See Redox potential

Electrolysis, 565

Electrolyte

true, 493

potential, 494

strong, 508

weak, 509

Electrolytic dissociation, 493

Electromotive force. See Reversible
cell voltage
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Electron potential

in metals, 524

of a redox pair, 532

Electroneutrality rule, 497

Elementary amount (of substance), 15

Elementary charge, 16, 495

Elementary reaction, 413

Eley-rideal mechanism, 469

Endothermic, 240

Endotropic, 233, 240

Energy, 31

burnt, 79

conservation, 38

free, 586

Gibbs, 591

Helmholtz, 589

internal, 576

kinetic, 43

potential, 46

Enthalpy, 583

molar, 594

Entropy, 49

absolute, 74

exchanged, 65, 80, 240

generated, 65, 79, 240

latent, 84, 241

macroscopic properties, 51

molar (see Molar entropy)

zero-point, 63

Entropy capacity, 75, 253, 487

difference Cp � CV, 269

ideal gas, 276

ideal gas, 282

molar, 76

specific, 76, 487

Entropy conduction, 89, 485

Entropy conductivity, 486

Entropy conservation, 56

Entropy demand. See Molar entropy

Entropy flux, 485

Entropy generation, 57, 89

Entropy transfer, 62

Enzymatic catalysis, 456, 461

Enzyme, 456, 461

Equilibrium

chemical, 99, 109, 166

distribution, 181

dynamic, 165, 395, 428

electrochemical, 525

heterogeneous, 175

homogeneous, 166, 174

Equilibrium composition, 169

Equilibrium constant, 167, 427

Equilibrium number, 167

temperature dependence, 182

Equilibrium reaction, 426

Equivalence point, 207

Euler’s number, 609

Eutectic mixture, 365

Exchanged entropy, 65, 80, 240

Excitation equation, 285

Exhaust-gas catalytic converter, 469

Exothermic, 240

Exotropic, 233, 240

Expansion coefficient, cubic. See Cubic
expansion coefficient

Exponential function, 609

Extensive factor, 45

Extensive quantity, 24, 45

Extent of reaction, 27

Extra potential, 342

F

Fahrenheit temperature, 70

Faraday constant, 500

Faraday’s law, 500
Fick’s law, 476
Field, electric, 497

Film electrode, 540

First law (of thermodynamics), 53

First-order reaction, 415

Flip rule, 257

Flow method, 412

Flux

entropy, 485

matter, 475

Flux density, 475

Force, 32

Force-like quantity, 45, 253

Fourier’s law, 486
Fractional coverage, 394

Free energy, 586

Freezing point, 75

lowering, 146, 329

raising, 147

Frequency factor, 440

Friction

inner, 482

Newton’s law, 482
outer, 482

Fuel cell, 569

hydrogen-oxygen, 569

polymer electrolyte membrane, 570

solid oxide, 570

Fugacity, 606
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Fugacity coefficient, 606

Function

derived, 611

exponential, 609

linear, 607

logarithmic, 607

G

Galvani potential, 522

Galvani potential difference, 522

Galvanic cell (reversible), 120, 550

Galvanic half-cell, 538

Gas, 19

ideal, 274

Gas constant, general, 148, 275

Gas electrode, 538

Gas law, general, 275

Gaussian distribution, 289, 620

Gay-Lussac’s law, 273
General gas constant, 148, 275

General gas law, 275

Generated entropy, 65, 79, 240

Gibbs (unit), 101, 124

Gibbs (free) energy, 591

molar, 595

Gibbs-Helmholtz equation, 245

Glass electrode, 545

Grüneisen’s rule, 221

H

Half-life, 418, 421

Heat, 80, 574

Heat capacity, 253, 582, 585

molar, 76, 253

specific, 253

Heat conduction. See Entropy conduction

Heat effect, 237

Heat engine, 85

Heat pump, 85

Helmholtz (free) energy, 589

Henderson-Hasselbalch equation, 201

Henry’s law, 180
Heterogeneous, 4

Heterogeneous catalysis, 456, 467

Heterogeneous mixture, 16, 335

chemical potential, 346

Heterogeneous reaction, 408

Histogram, 620

Hittorf method, 517

Homogeneous, 4

Homogeneous catalysis, 456

Homogeneous mixture, 16, 335

chemical potential, 344

Homogeneous reaction, 408

Hooke’s law, 40
Hydration, 496

Hydrogen (gas) electrode, 538

standard (SHE), 549

Hydron, 188

Hydrophilic, 341

Hydrophobic, 341

I

Ideal gas, 274

Ideal mixture, 339, 350

Indicator. See Acid-base indicator
Indirect mass action, 318

Induction period, 435

Inhibitor, 456

Integration, 614

Intensive factor, 45

Intensive quantity, 24, 45

Interface, 381

Interfacial tension, 382

Intermediate (of a reaction), 403

Internal energy, 576

Internal pressure, 296

Ion, 7

Ionic conductivity, 506

Irreversible process, 58

Isobar, 273

Isomerism

stereo, 162

structural, 6

Isotherm, 272

Isotonic solution, 326

J

Joule (unit), 32

K

Kelvin (unit), 70

Kelvin’s equation, 388
Kinetic energy, 43

Kohlrausch’s law of independent migration of

ions, 506

Kohlrausch’s square root law, 509

L

Langmuir-Hinshelwood mechanism, 468
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Langmuir isotherm, 394

Latent entropy, 84, 241

Law of equipartition (of energy), 281

Law of thermodynamics

first, 53

second, 53, 58

third, 62

Lead-acid battery, 567

Le Chatelier-Braun’s principle, 264
Level equation, 201

Lever rule, 346

Limiting molar conductivity, 506

Lineweaver-Burke diagram, 465

Liquid, 19, 300

Liquidus curve, 363

Logarithmic function, 607

M

Main coefficient, 253

Main effect, 253

Main equation, 250

Main quantity, 252

Mass, molar, 16

Mass action, 154

indirect, 318

Mass action equation, 156

Mass action law, 166, 605

applications, 172

Mass concentration, 18

Mass fraction, 17

Matter capacity, 183

Matter capacity density, 183

Matter flux, 475

Maxwell’s construction, 302
Maxwell’s relation, 255
Maxwell’s speed distribution, 291

Melting point, 75, 134, 308

standard, 308

Melting point diagram, 362

Melting pressure curve, 308

Membrane voltage, 545

Metal-metal ion electrode, 539

Metastable substance, 106

Metricization, 8

Micelle, 391

critical concentration, 391

Michaelis constant, 462

Michaelis-Menten equation, 463

Michaelis-Menten kinetics, 461

Microheterogeneous catalysis, 456

Migration of ions, independent, 506

Migration velocity

of uncharged particles, 472

of ions, 499

Milieu, 97

Miscibility diagram, 359

Miscibility gap, 352

Mixed crystal, 362

Mixed phase, 16

Mixture

heterogeneous, 16, 335

homogeneous, 16, 335

ideal, 339, 350

of highly compatible substances, 341

of incompatible substances, 340

of indifferent substances, 340

of lowly compatible substances, 340

Mixing

chemical drive, 349

molar entropy, 349

molar volume, 349

Mobility

electric, 500

mechanical, 472

Modification, 20, 311

Mol (unit), 15

Molality, 18

Molar concentration, 17

Molar conductivity, 506

limiting, 506

Molar entropy, 72, 228

basic value, 231

of fusion, 75, 311

of mixing, 349

partial, 230

standard value, 72, 231

of vaporization, 75, 307

Molar mass, 16

determination, 332

Molar reaction entropy, 232

exchanged, 242

generated, 242

latent, 242

Molar reaction volume, 227

Molar volume, 220

basic value, 224

partial, 224

standard value, 221, 224

of mixing, 349

Molarity, 17

Molecularity (of reaction), 413

Mole fraction, 17

Momentum, 44, 279

Monomolecular reaction, 415

Monoprotic, 188
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N

Nernst’s distribution law, 182

Nernst’s equation, 530, 536, 554, 564
Newton’s law of friction, 482

Nickel-cadmium battery, 568

Nickel-metal hydride battery, 568

Normal distribution, 289, 620

O

Ohmic resistance, 505

Ohm’s law, 489, 505
Opposing reaction, 426

Osmometry, 333

Osmosis, 321

Osmotic concentration, 325

Osmotic pressure, 322

Ostwald’s dilution law, 511

Oxidizing agent, oxidant, 531

P

Parallel reaction, 430

Partial differential coefficient, 613

Partial molar entropy, 230

Partial molar volume, 224

Partial pressure, 171

Partition chromatography, 182

Phase

mixed, 16

single, 16

Phase boundary, 308

Phase diagram, 308

Phase transition, 25

pressure, 143

temperature, 134

Photometry, 411

pH value, 199

Physisorption, 392

Pictet-Trouton’s rule, 233, 307
pK value, 198

Plate, theoretical, 376

Polymerization, 438

Polymorphism, 311

Polyprotic, 188

Position-like quantity, 46, 253

Potential

chemical (see Chemical potential)

electric, 497

electrochemical, 523

Potential diagram, 116, 183

Potential energy, 46

Potentiometric titration, 570

Potentiometry, 570

Pre-exponential factor, 440

Pressure, 41

capillary, 385

critical, 302

osmotic, 322

partial, 171

Pressure coefficient, relative, 269

Primary battery, 565

alkaline battery, 566

zinc-carbon dry battery, 565

zinc-manganese dioxide battery, 565

zinc-mercury oxide button cell, 566

Principle of mobile equilibrium, 264

Probability calculation, 619

Process quantity, 22, 576

Proticity, 188

Proton, 188

Proton acceptor, 188

Proton donor, 188

Proton potential, 190

Protonation

equation, 202

degree, 201

Pseudo reaction order, 424

Q

Quadratic degree of freedom, 281

Quantity

extensive, 24

force-like, 45, 253

intensive, 24

position-like, 46, 253

substance-like, 24, 252

Quantum number, 15

R

Raoult’s law, 327
Rate coefficient, 414

Rate constant. See Rate coefficient
Rate density. See also Conversion rate density

initial, 463

Rate law, 414

integrated, 417

Rate limiting step, 436

Reaction

bimolecular, 420

composite, 425

consecutive, 433

diffusion-controlled, 471, 479

first-order, 415
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Reaction (cont.)
heterogeneous, 408

homogeneous, 408

monomolecular, 415

opposing, 426

parallel, 430

second-order, 419

zero-order, 423

Reaction coordinate, 453

Reaction entropy, molar. See Molar reaction

entropy

Reaction equation. See Conversion formula

Reaction formula. See Conversion formula

Reaction mechanism, 405

Reaction order, 414

Reaction rate. See Conversion rate

Reaction resistance, 402, 448, 455

Reaction volume, molar. See Molar reaction

volume

Redox electrode, 534

Redox pair, 531

Redox potential, 552

basic value, 554

Redox reaction, 531

Reducing agent, reductant, 531

Reductive capacity, 533

Reference electrode, 558

calomel electrode, 559

silver-silver chloride electrode, 558

standard hydrogen electrode, 549

Refrigerator, 65

Relaxation method, 413

Resistance

electric, 505

ohmic, 505

reaction, 402, 448, 455

Resistivity, 505

Reversible cell voltage, 562

Reversible process, 57

Richards’s rule, 233
Root mean square speed, 282

S

Salt bridge, 550

Salting-in effect, 264

Salting-out effect, 264

Saturation concentration, 177

Schwarz’ theorem, 593

Second law of thermodynamics, 53, 58

Secondary battery, 567

lead-acid battery, 567

nickel-cadmium battery, 568

nickel-metal hydride battery, 568

Second-order reaction, 419

Selectivity (of a catalyst), 460

Side coefficient, 254

Side effect, 254

Single-step reaction, 413

Silver-silver chloride electrode, 540, 558

Solid, 19

amorphous, 20

crystalline, 20

Solidus curve, 363

Solubility

of gases, 180

of ionic solids, 176

Solubility product, 177

Solution, 16

saturated, 176

Solution point, critical. See Critical solution
point

Solvation, 496

Specificity (of a catalyst), 460

Speed distribution, Maxwell, 291

Stable substance, 106

Standard conditions, 72, 102, 104

Standard value

chemical drive, 109

chemical potential, 103

molar entropy, 72, 231

molar volume, 221, 224

State, 18

of aggregation, 19

State equation, 22

State quantity, 21

Steady-state approximation, 436

Steric factor, 444

Stoichiometric coefficient. See Conversion
number

Stoichiometric equation, basic, 27

Stokes law, 484, 501

Sublimation point, 137

Sublimation pressure curve, 308

Substance, 4

spreading, 313

Substance-like quantity, 24, 252

Substrate, 461

Supercritical fluid, 302

Surface, 381

measurement, 398

Surface energy, 383

Surface tension, 382

Surfactant, 390

Surroundings, 18

System, 18
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T

Temperature, 68

absolute, 69, 273

critical, 302

Theoretical plate, 376

Thermal analysis, 367

Thermal conductivity, 486

Thermal expansion, 60

Thermodynamic temperature, 69

Third law (of thermodynamics), 62

Tie-line, 359

Transformation (of substances), 25

Transition complex, 445

Transition pressure curve, 311

Transition state, 445

Transition state theory, 445

Transition substance, 446

Transport equation, 488

Transport number, 512

Transport phenomena, 471

Triple point, 309

Turnover number, 465

U

Unstable substance, 106

V

Valence, 495

Van der Waals constants, 298

Van der Waals equation, 298

Van der Waals forces, 296

Van’t Hoff’s equation, 324
Vapor pressure, 176, 301

of small drops, 387

Vapor pressure curve, 303

Vapor pressure diagram, 369

Vapor pressure lowering, 326

Variable

dependent, 607

independent, 607

Viscosity, 480

dynamic, 482

kinematic, 482

Voltage, 498

Volume, molar. See Molar volume

Volume demand. See Molar volume

W

Wetting, 385

Wheatstone bridge circuit, 518

Work

mechanical, 31, 575

pressure-volume, 575

Z

Zero point, absolute, 273

Zero-point entropy, 63

Zinc-carbon dry battery, 565

Zinc-manganese dioxide battery, 565

Zinc-mercury oxide button cell, 566
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