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Preface

This book has arisen from two postgraduate level courses in Rasch measurement
theory that have been taught both online and in intensive mode for over two
decades at Murdoch University and The University of Western Australia. The
theory is generally applied in the fields of education, psychology, sociology,
marketing and health outcomes to create measures of social constructs. Social
measurement often begins with assessments in ordered categories, with two cate-
gories being a special case. To increase their reliability and validity, instruments are
composed of multiple, distinct items which assess the same variable. Rasch mea-
surement theory is used to assess the degree to which the design and administration
of the instrument are successful and to diagnose problems which need correcting.
Following confirmation that an instrument is working as required, persons may be
measured on a linear scale with an arbitrary unit and arbitrary origin.

The main audiences for the book are graduate students and professionals who are
engaged in social measurement. Therefore, the emphasis of course is on first
principles of both the theory and its applications. Because software is available to
carry out analyses of real data, small hand-worked examples are presented in the
book. The software used in the analysed examples, which is helpful in working
through the text, is RUMM2030 (Rasch unidimensional models for measurement).
Although the first principles are emphasized, much of the course is based on
research by the two authors and their colleagues.

The distinctive feature of Rasch measurement theory is that the model studied in
this book arises independently of any data—it is based on the requirement of
invariant comparisons of objects with respect to instruments within a specified
frame of reference and vice versa. This is a feature of all measurement. Deviations
of the data from the model are taken as anomalies to be explained and the
instrument improved. The approach taken is to provide the researcher with confi-
dence to be in control of the analysis and interpretation of data, and to make
professional rather than primarily statistical decisions. Because statistical principles
are necessarily involved, reviews of the necessary statistics are provided in
Appendix D.
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Graduates and professionals are likely to encounter classical test theory.
Therefore, introductory chapters review the elements of this theory. The perspective
on the relationship between Rasch measurement theory and classical test theory is
that the former is an elaboration of the ideals of the latter, not that they are entirely
in conflict. However, because the centrality of invariance as a requirement for
measurement had been articulated by two giants of social measurement, L.
L. Thurstone and L. Guttman, reference is made to their work. In particular,
Thurstone had articulated the requirements of invariance in almost identical terms
as G. Rasch, but did not express it in terms of a mathematical equation, and the
elementary Guttman design which is introduced in the early chapters, is shown to
be a deterministic form of the Rasch model. The distinctive contribution of Rasch
compared to that of Thurstone and Guttman is that the model studied in this book
has built into it the principle of invariance and is immediately probabilistic.
Therefore, the deviation of data from the model implies some kind of deviation
from invariance and measurement. Together with the relationships shown with
classical test theory, the book provides a unified theme for approaches to social
measurement, rather than as a compendium of techniques.

Finally, the book stresses that the requirement of invariance, and its expression
in the Rasch model, is necessary, but not sufficient to ensure sound measurement.
All the principles of measurement, of experimental design and of statistical infer-
ence must be applied in the process of constructing instruments that provide
invariance of comparisons and reliable and valid measurement. Indeed, the explicit
requirements of invariance in the Rasch model can at times appear more demanding
of the data than do other theories and approaches.

Crawley, Australia David Andrich
Ida Marais
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Part I
General Principles and the Dichotomous

Rasch Model



Chapter 1
The Idea of Measurement

Measurement has a long history and is so familiar to us from our work in elementary
measurement of length, mass, temperature and the like, that we take some of its
intrinsic properties for granted. It is so familiar that it is expected that primary school
children understand its key features. We consider these features in studying attempts
at measurement in the social sciences. In the process, we need to distinguish between
measurement and another familiar concept, that of assessment. The way we present
it, assessment is a necessary precursor to measurement. The assessment provides
the evidence which, under certain very strict conditions, may be transformed into
measurements.

Latent Traits

Objects, persons, institutions or entities in general have properties which can be
thought of in terms such as more or less, larger or smaller, stronger or weaker and so
on. For example, peoplemaybemore or less able at English literature ormathematics,
more or less neurotic, more or less for capital punishment, more or less tall and so
on. Corporations may be more or less community friendly, schools may be more
or less successful in producing leaders in society, and roads may be more or less
accident prone. It is such properties of entities that are to be measured, not the
entities themselves. A researcher does not measure a person but a psychological
attribute (property) of the person such as neuroticism or intelligence.

In the social sciences, these properties are often also referred to as constructs,
attributes and traits. All terms have similar connotations. In measurement and sta-
tistical contexts, where some kind of scoring is associated with the trait, the same
idea is also referred to as a variable.

Thus, the following terms are more or less synonyms, with each having a slightly
different nuance relevant for somewhat different contexts:

property ∼= trait ∼= construct ∼= attribute ∼= variable
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4 1 The Idea of Measurement

Traits are also sometimes referred to as constructs because they are hypothetical
and thus ‘constructed’ in order to be used in theories to explain human behaviour.
You will pick up the different nuances in the use of these terms in context. However,
be alert to the contexts so that you do become familiar with them as soon as possible.

Assessment: A Distinction Between Latent and Manifest

A trait is generally not measured directly. It is measured indirectly through its mani-
festation. Therefore, before a trait can bemeasured it is necessary to have a controlled
procedure tomanifest the property. This procedure we refer to as assessment.Assess-
ment is a common term and we are using it essentially as it is commonly used in
education and the social sciences. For example, it might be said that the mathematics
proficiency of a person is assessed using a mathematics test, or that the neuroticism
of a person is assessed using a neuroticism questionnaire.

In order to stress that traits are assessed indirectly through their manifestations,
traits are often referred to as latent.

Thus, an assessment is a set of observations that arise when the manifestations
of some property are observed in some systematic way that is acceptable to the
research and professional field of expertise. These observations are often said to be
produced from an instrument and in assessment of proficiency, where tasks to be
solved are presented, they are generally referred to as tests. In the case of attitudes
or opinions, where questions or statements are presented, they are often referred to
as questionnaires. We already used these terms in the two examples above.

Scoring Assessments

The observations from an assessment, often referred to as responses, are qualita-
tive. However, as a step towards measurement, these responses have an order which
immediately implies more or less of the property to be assessed. In general, and
immediately, this ordering is reflected by numbers assigned to the responses. In the
case of tests of proficiency using the multiple choice items in which one response
is deemed correct and all others incorrect, the incorrect and correct responses are
scored 0 and 1, respectively. Clearly, the score of 1 reflects more proficiency than
the score of 0. In the case of the neuroticism questionnaire, the four responses from
strongly agree, agree, disagree through to strongly disagree may be scored 0, 1, 2 and
3, respectively. If the statement implies neurotic behaviour, then a strongly disagree
response with a score of 3 will imply less neuroticism than a response of agree with
a score of 1. This is ordering of a response and the assignment of an integer to char-
acterize order is a significant, perhaps even a profound, step towards quantification,
but it is not measurement.
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We refer to responses assigned integers beginning with 0, putatively ordered
responses, as scored responses. The step of scoring responses, which we generally
take for granted, is the most important step. It is also perhaps surprising that Rasch’s
advanced mathematical theory leads to exactly this kind of intuitive assignment of
successive integers to qualitative, but putatively ordered, responses to assessments.
Many of the analyses that are carried out with responses, directly or indirectly, check
whether this step has been carried out adequately. It pertains to both the reliability
and validity of the assessments.

Dichotomous Items and Their Scoring

Instruments are generally composed of one of two kinds of items, or a combination.
One kind is assessed simply correct or incorrect, and the incorrect response is scored
0 and the correct response scored 1. These are called dichotomous items and are said
to be scored dichotomously. Clearly, there is a direction to the scoring. The response
of 1 implies a better achievement or proficiency on the trait than a score of 0. In
attitude assessment, the dichotomous responses might be the choice between agree
and disagree. A decision has to be made as to which of the two responses is to be
scored 1 and which is to be scored 0.

Polytomous Items and Their Scoring

The second kind of item permits assessment in more than two levels of proficiency.
The scoring of these items is an extension of the scoring of the dichotomous items.
Thus, the incorrect response is assigned a score of 0, and then successive levels of
proficiency, or partial credit, are given successive integers until the maximum score
is given to the totally correct response. They are called polytomous items and are said
to be scored polytomously. An item assessing attitude might have the four responses,
strongly agree, agree, disagree and strongly disagree.

Wewill see that different approaches to using these scored responses have different
degrees of rigour in their approximation to measurement, with Rasch measurement
theory (RMT) being the most advanced. The central part of this book is to learn how
assessments may be carried out, how they may be transformed into measurements
using RMT, and in the process, how to better understand the traits that are assessed
and measured.
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Key Features of Measurement in the Natural Sciences

Key features ofmeasurement are that the trait can bemapped onto a line, often termed
a linear continuum, and that the line can be divided into equal units, which can be
made greater or smaller, from some origin. These units reflect the precision of the
measuring instrument, with smaller units reflecting greater precision. This is clear
with the measurement of length itself.

Tomeasure a property of an object, the object needs to be engaged with or brought
in contact with the measuring instrument. This engagement manifests the property of
the object to be measured. This is a process for measurement, and using manifesta-
tions of properties of objects to measure them is not confined to the social sciences.
Measurement in the natural sciences also requires the property of an object to be
assessed to be manifested in some way.

Consider, for example, using the beam balance as a prototype for measuring the
mass of an object. Objects with equal mass, that is units of mass, can be accumulated
on one side until the beam balances the mass of the object on the other side. To
represent this process, a line representing the continuum of mass can be drawn, and
the mass of an object can be located on this line. Smaller units of mass give greater
precision of the measurement. This is an example where the assessment instrument
is so advanced scientifically that it can also immediately provide measurements.
This advanced state of assessment instruments is a feature of the natural sciences.
For example, spring balances, more complicated than the beam balance, and more
recently electronic instruments, immediately give a reading of the mass in terms of
units. The same feature is familiar in the measurement of temperature.

The presence of a direct reading of measurement from an assessment instrument
in the natural sciences, such as a reading of mass or temperature, results in measure-
ment and assessment often being taken together. Thus, the expression to measure
something implies both the assessment and the measurement. When we need to con-
struct or evaluate an instrument, as is often the case in the social sciences, we need
to keep the distinction between assessment and measurement. Nevertheless, because
of their close connection in the natural sciences, to measure is used even in the case
where only the assessment step has been carried out.

In order for measurements to be meaningful, the instruments, their units and the
origin have to be agreed to by those who use them. The history of physical measure-
ment shows that the standardization of units in modern measurement is relatively
recent (Alder, 2002). Understanding the traits in question and the factors that affect
them is central to constructing measuring instruments. Attempts to construct mea-
suring instruments, in turn, therefore, can clarify an understanding of a trait.
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Stevens’ Levels ofMeasurement

Because of attempts to clarify the meaning of measurement and how it might be
applied in the social sciences, Stevens (1951) defined measurement as the assigning
of numbers according to a rule. He also introduced the terms nominal, ordinal,
interval and ratio levels ofmeasurement. Alreadywe can see a disagreement between
Stevens’ perspective and what we have said above. We have stated that the step of
assigning numbers to assessments according to a carefully constructed rule in which
a greater integer score reflects a greater value of the property, provides only the step
of scoring, not measurement.

Unfortunately, despite its intentions to clarify the idea of measurement, many
researchers in social science measurement consider that Stevens’ classification sys-
tem added to the confusion for the social sciences about themeaning ofmeasurement,
rather than a clarification. We mention his definition at the outset because you will
come across it in readings in social science measurement. We now briefly review his
four levels, but rather than referring to them as levels of measurement, we refer to
them simply as a hierarchy in the use of numbers.

Nominal Use of Numbers

According to Stevens’ definition, nominal measurement refers to assigning numbers
only to indicate that, because two numbers are different from each other, then two
objects assigned different numbers are also different from each other. Numbers on
players’ clothing in sports are generally of this kind. Because they are of this kind,
carrying out standard numerical operations on these numbers does not produce num-
bers that are meaningful in the context. Therefore, it seems strange to refer to such
assignment of numbers as measurement in any sense. We would say it is a nominal
use of numbers, not nominal measurement.

Ordinal Use of Numbers

The numbers in ordinal measurement give only the order of the objects with respect
to the trait. No inferences can be made regarding the size of the differences between
objects. Our examples above of scoring an assessment are of this kind. Ranks also
are of this kind. It is possible for the difference between successive ranks, which
numerically is just a difference of 1, to represent much more variable differences on
the trait. For example, a person ranked first may be very close to a person ranked
second on some trait, or a great deal better than the person ranked second. Again we
would say it is an ordinal use of numbers, not measurement.
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Interval Use of Numbers

The numbers in intervalmeasurement have a unit but an arbitrary origin. In this case,
the differences between numbers on the scale are meaningful. For example, suppose
an object is of mass 200 kg, but for some reason, the scale starts with a 0 at 100 kg.
If the differences represent real differences of the properties of objects, for example,
suppose on the new scale with the arbitrary origin at 100 kg, object A has the number
300 and object B has the number 200. Then the difference between the numbers for
A and B is 100. However, object A is really of mass 400 kg and object B is really of
mass 300 kg. The difference between their masses is indeed 100 kg.

However, ratios of the numbers are not meaningful. Thus we cannot infer that
one object’s size of its property is twice that of another object’s just because the
ratio of the respective numbers is 2. Take again the example of an object which is
of mass 200 kg, but for some reason, the scale starts with a 0 at 100 kg. Then the
number associated with the object is now 100. If we double this number, we get 200,
suggesting that an object with twice the mass of the object is 200 kg. However, if we
double the number of the actual mass of the object (which is 200 kg) we get 400 kg.
Thus, doubling the number 100 does not give us the correct size of an object which
is twice the mass of the original object.

The familiar Celsius or centigrade scale and, in some countries, the familiar
Fahrenheit scale, for the measurement of temperature, are of this kind. Their ori-
gin, the 0 number on the scale, is arbitrary and does not represent a real temperature
of 0. Through experimentation and theoretical developments, a real origin of 0 tem-
perature is estimated to be −276.16 °C and −459.7 °F.

Researchers do refer to the application of numbers in the way described here
as interval level of measurement. The reason it is reasonable to apply the term
measurement here is that differences aremeaningful in terms of a unit, and arithmetic
operations, including ratios, can be carried out meaningfully on these differences.

Ratio Use of Numbers

The numbers, when assigned to properties of objects, inwhich ratios are immediately
meaningful have both a natural origin and a defined unit. We can say, for example,
that if the number assigned to object A is twice as large as the number assigned to
object B, then object A has twice as much of the property as object B. For example,
if object A is of mass 10 kg and object B of mass 20 kg, we can say that object B is
20/10 = 2 times the mass of object A.

We show in this book that with well-executed assessments with relevant scoring
that have measurement in mind, we can approach measurement at the interval use of
numbers. In principle, only the origin is arbitrary.
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Reliability and Validity

The process of mapping the amount of a trait on a line which can give measurements
necessarily involves numbers. The use of numbers in this way gives the potential
for precision that is not possible with qualitative descriptions. However, just because
they appear to be so precise, the precision can readily be over-interpreted. The topic
concerned with degrees of precision and related issues is generally referred to as
reliability. In addition, without a strong theoretical underpinning of the trait that
is to be measured, the instrument may provide assessments, and hence apparent
measurements, of a trait that is somewhat different from the one intended. This topic
concerned with ensuring that assessments and measurements are of the trait intended
is referred to as validity. Ideally, assessments and measurements are both reliable
and valid.

You will already know that most tests and questionnaires are composed of many
items. The reason for having many items, rather than just one, is to increase the
precision and the validity of an assessment andmeasurement. Precision is potentially
increased because there aremore score points to distinguish the objects of assessment.
Validity is potentially increased because each item can assess a slightly different
aspect of the trait to be measured. When all items assess a common trait, and each
assesses only its own unique aspect of the trait, then the assessment is said to be
unidimensional. If different items of a test assess different traits and some different
combinations of items assess different aspects of a trait, then unidimensionality of
assessment is violated, and it may be said that the assessment is multidimensional.

We are concerned with constructingmeasurements that are unidimensional. How-
ever, we need to study our assessments to check if they are indeed unidimensional.
They may be multidimensional and if they are, it becomes difficult to transform the
assessments into a measurement on a single continuum. Of course, as you will see,
unidimensionality is a matter of degree.

The term construct, which is one of our synonyms with trait above, emphasizes
that the measurement of a trait is constructed. In doing so, it helps reinforce that this
construction requires substantial experience and understanding. We revisit this term
in Chap. 3.

As another preliminary note, we need to recognize that some important educa-
tional and social issues may not be readily amenable to measurement. One of the
important functions of this book is to make you more able to construct and interpret
measurements in education, health and the social sciences without falling into the
many possible misunderstandings when using numbers as measurements.

Some Definitions

For the purposes of this book, assessment involves the engagement of an entity with
some instrument, and the recording of observations of the engagement according
to some protocol. Measurement involves some kind transformation of assessments
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and is defined as the estimation of the amount of a unidimensional trait relative to
a unit. A scale is a linear continuum partitioned into equal units which provides
the measurements, and scaling is the process of locating an entity on such a scale.
Note that the term scale is sometimes used in social measurement in a way not
consistent with assessment, measurement and scale as defined in this book. For
example, according to the above definitions, the Likert scale and Wechsler Adult
Intelligence Scale (WAIS) are not scales but assessments.

AModel of Measurement

This book is concerned with RMT and the Rasch model, a mathematical model of
measurement. The theory is concerned with the approach to constructing measure-
ments in the social sciences and goes beyond the application of the Rasch model.
The Rasch model represents the structure that responses from assessments should
have before they can provide measurement and how they can be transformed to pro-
vide measurements. In anticipation of studying this structure, the requirement is that
within a frame of reference of assessment, which includes classes of persons and
classes of items that are brought together, the comparison between the properties of
any two persons should be equivalent no matter which subset of items is used for the
comparison, and the comparison between the properties of any two items should be
equivalent no matter which subset of persons is used for the comparison.

We see this structure as necessary to provide measurements. The model provides
a criterion for measurement and when the responses fit the model, the requirements
of measurement have in principle been met. However, we shall see that fit is not
enough, and that because it is possible to obtain fit when in fact no reliable and
valid measurement has taken place we must consider fit to the model carefully. The
fit arises from the quality of the assessments, and we will see there is an intimate
connection between the construction of the assessments and the fit of responses to
the Rasch model.

The use of the model as a necessary criterion for measurement is different from
the use of many statistical models which only describe responses (Andrich, 2004).
It is part of the Rasch measurement theory. We consider this difference in the use of
models more closely in subsequent chapters.

Exercises

Categorize each of the following as either nominal, ordinal, interval or ratio use of
numbers according to Stevens (1951):

a. The numbers on a set of training weights in a gymnasium.
b. The numbers on a team of soccer (English football) players’ shirts.
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c. Scores on a biology test.
d. First, second and third place in an Olympic swimming race.
e. The numbers on a thermometer.
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Chapter 2
Constructing Instruments to Achieve
Measurement

In Chap. 1, assessment was defined as the engagement of an entity with some instru-
ment and the recording of observations of the engagement according to some proto-
col. Assessment is a precursor to measurement, which is a transformation of assess-
ments. How can assessment instruments be designed so they can be transformed
successfully into measurements?

Instruments that provide measurements have to be constructed empirically and
experimentally. They require knowingwhat demonstrates more or less of the relevant
property. For example, in the measurement of temperature, there are ways of heating
an object to increase its temperature or cooling an object to decrease its temperature.
Then an instrument has to demonstrate that it reacts consistently with this increase
or decrease with an increase or decrease in heat. Another familiar example is the
measurement of mass. Mass reacts to gravity and so gravity can be exploited to
measure different amounts ofmass. Amore complicated example is themeasurement
of the amount of sugar in a juice using the specific gravity of the juice.

The same theoretical understanding of a variable in the social sciences needs to be
present in constructingways ofmeasuring it. Although often not explicit, educational
intervention (teaching) has the intention of changing the relevant property of the
student—perhaps the understanding of mathematics, literature and so on. The tasks
and the marking keys, designed to reflect the understanding, need to be constructed
carefully.

In constructing and then administering an instrument, great care needs to be taken
so that the many aspects of administration that can go wrong do not go wrong. For
example, sufficient time to reveal understanding needs to be available. Anomalies
appear, that is results contrary to expectation, when something has gone wrong. In
these cases, we do not change the criterion of measurement—instead, we look for
a substantive or administrative reason for the anomaly. This may include the poor
design or functioning of a particular item or task, or some broader problem. The
methods of analysis that you learn in this book are about diagnosing such anomalies.
These anomalies then need to be referenced to the test, questionnaire or other aspects
of the instrument or its administration. The statistical anomalies tell you where to
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look for sources of problems but they hardly ever explain the problem. Typically the
process of instrument design consists of a number of stages. During these stages,
answers are sought to questions such as what range of content the instrument should
cover, what format the items should be in, how many items should be included, how
the items should be scored, etc.

(i) During an initial conceptualizing or planning stage the goal is to define what
needs to be measured. This is then the conceptual definition of the variable to
be measured and the measuring instrument becomes its operational definition.
This stage typically includes a diagramor conceptualmapwhich should include
the different aspects of the variable to be measured. For a test of mathematics
proficiency, thismay be the content areas, e.g. algebra,measurement, geometry,
etc. For a quality of life questionnaire, these may include aspects such as
cognitive, motor and affective functioning of a person. The map should include
the content of each of these aspects that the items are expected to cover. It will
then typically result in a set of instrument specifications that will include the
number of the items to measure each aspect or content area.

(ii) After items have been developed they are typically refined through a number
of stages. Items should be reviewed by experts and/or administered to a small
group. Typically it is not the actual responses of the small group members
that are of interest but their interpretation of the wording and response format
of each item. However, extremely unpredictable responses which invalidate
the assessment may also emerge. Items may be modified and then trialled on a
larger group. It is recommended that these trial responses be analysed according
to the Rasch model, anomalies identified and items then modified as necessary.

(iii) Sometimes items are discarded. However, it is important not to discard items
solely on statistical grounds, that is, that they misfit statistically to the model.
Instead, each item that is seen as misfitting, which means it is not operating as
consistently with the other items as indicated by the model, needs to be studied
to understand why it might be misfitting. Only if it is understood why it is
misfitting, and if it cannot be improved, should it be discarded. For example,
it may be that some distractor in a multiple-choice item is not functioning as
intended, that a response in an item of an attitude questionnaire captures some
other aspect of the variable as is usually the case with the undecided category,
or that there are too many categories in an ordered category format for raters
to be able to use them consistently. In each case, the diagnosis provides an
opportunity to not only improve the item but also to learn more about the
construct to be measured and how it might be measured.
The problem with deleting items using statistical grounds only is that it risks
eliminating items by chance that are sound, or some sound items may be
affected in their fit by other items that really do have problems. Sometimes
it is suggested that, for example, twice as many items should be constructed as
is finally used. This is sound advice if no item is eliminated only on statistical
grounds but on grounds of understood misfit, representation of items along
the continuum, redundant items and so on. Sometimes having more items than
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required for one administration of the instrument can lead to a parallel form
being constructed.

Two examples of the development of instruments used in health are provided by
Doward et al. (2003) and Gilworth et al. (2003). The data analyses described in the
rest of this book form part of the refinement stages of an assessment instrument.

Guides to test and questionnaire construction have a long history (e.g. for ques-
tionnaires Sudman & Bradburn, 1982; Oppenheim, 1992; and for achievement tests
Bloom, Hastings, &Madaus, 1971). Because there are guides that describe the whole
assessment design process in detail, the focus of this chapter is not the process of
design. Instead, the chapter is a summary of some observations on item and response
format and the scoring of items that have arisen from our research. In particular, there
is an emphasis on successive response categories that are typically defined in a rating
scale or the marking key of a test item. They are supposed to reflect successively
more of the property to be measured. However, there is no guarantee that the cate-
gories will operate as intended. The ordering should be checked. The book provides
a mechanism for doing so using the Rasch measurement model.

Instruments typically consist of items that require respondents to generate a
response and/or those that require respondents to choose a response from among
alternatives. The former is called a constructed response item and the latter a selected
response item. In the rest of this chapter, we discuss, first, how both item types can
be used to achieve measurements in tests of proficiency, and secondly, how selected
response items can be used in rating scales to achieve measurements.

Constructing Tests of Proficiency to Achieve Measurements

Three basic types of selected response items are typically used in tests of proficiency:
alternate choice, multiple-choice and matching items. Table 2.1 shows examples of
each type.

In a matching item, respondents are required to match each option in the right-
hand column with one in the left-hand column. In an alternate choice item, a stem
is followed by two response alternatives, typically TRUE/FALSE or YES/NO. An
advantage of alternate choice items is that they are easy to write but a disadvantage
is that respondents have a 50% chance of a correct answer if they guess randomly
as opposed to a 25% chance of a correct answer on a four-alternative multiple-
choice item. A multiple-choice item consists of a stem, followed by a number of
response alternatives including the key (correct answer) and some distractors (incor-
rect answers).

Distractors are an integral part of amultiple-choice item. They should be plausible
and should attract responses from those who do not have the required level of under-
standing to choose the correct answer (Smith, 1987). The quality of the distractors
can make an item more or less difficult. For the same content of an item, distractors
that are dismissed easily as incorrect responses by even the least able respondents
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Table 2.1 Examples of basic
types of selected response
items typically used in tests of
proficiency

Alternate choice An alternate choice item is an example
of a selected response item

TRUE FALSE

Multiple choice Examinees have a 25% chance of
randomly guessing the correct answer
on a multiple-choice item with

a. 2 response alternatives

b. 4 response alternatives

c. 5 response alternatives

d. 6 response alternatives

Matching In the left column below are four
different numbers of response options
for a multiple-choice item. For
numbers 1–4 listed in the left column
record the letter from the right column
that best matches an examinee’s chance
of randomly guessing the correct
answer for that item

1. 3 response options a. 25%

2. 4 response options b. 33.3%

3. 5 response options c. 16.7%

4. 6 response options d. 20%

contribute to making an item easy; distractors that cannot be dismissed easily by
even the most able respondents make an item difficult. If even one distractor cannot
be readily dismissed by the moderately and very able respondents, then this distrac-
tor will contribute to the item being more difficult. Generally, not all distracters are
equally plausible for a given proficiency of the respondents. In particular, one way
of making a distractor plausible is to have it include aspects of a correct response
(Andrich & Styles, 2009). However, there are those who argue that distractors should
be plausible but completely wrong (e.g. Bertrand & Cebula, 1980).

Also typically used in tests of proficiency are constructed response items, which
include items with a short answer up to essay type items. Van Wyke (2003) pro-
vides some guidelines for polytomous scoring of constructed response items. The
paper shows how a Rasch model analysis confirmed that the marking keys of some
mathematics items were working whereas the marking keys of other items were not
working as required. In the cases of marking keys working as required, a higher
score on an item required a greater proficiency to achieve than did a lower score. In
the cases of marking keys not working as required, a higher score did not require a
greater proficiency to achieve than did a lower score. Figure 2.1 shows the format
and content of two mathematics items analysed in the paper.
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Item S016 Marking Key

 2 2/5 

 1 1/5 

 0 incorrect response

Item S019 Marking Key

 2 135º 

 1 45º 

 0 incorrect response

Fig. 2.1 Items S016 and S019 in van Wyke (2003)

A Rasch model analysis showed that the marking key of item S019 worked as
required, whereas item S016’s did not. To arrive at the partially correct response for
item S016 the student correctly recognizes that there are five canoes to choose from,
but incorrectly states that only one will suit Amanda (1/5). To arrive at the fully
correct response, the student must recognize that two of the canoes will suit Amanda
(2/5). The problem here is that there is no logical or empirical evidence to suggest that
these responses form a developmental continuum, such that it would be meaningful
to place them along an achievement scale. As a result, the item really functions
dichotomously as correct or incorrect. Students who have little understanding of
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simple probability are not likely to even get the out of five part right, and will score 0
marks. Students with sufficient understanding to get the out of five part right are also
likely to get the number of chances right as well. As a result, the middle response
category, with a score of 1, fails to function properly.

In contrast, for item S019 the difference between a partially correct response (45°)
and a fully correct response (135°) is quite substantial. The marking key for this item
has identified two levels of response that do form part of a developmental continuum
which you will learn about; understanding that the turned angle is really 135° is more
difficult, and comes later developmentally, than recognizing that the drawn angle is
45°. Here there is logical and empirical evidence that it is meaningful to place these
responses in this order on an achievement scale. Students who are awarded 1mark for
this item know something about angle measure, whereas students who are awarded
2 marks know this, but also know something more.

The Rasch model analysis of these and other constructed response items reflect
how marking keys should operate to identify a hierarchy of responses; a higher level
response should require more proficiency than a lower level response.

Constructing Rating Scales to Achieve Measurements

Questionnaires often include selected response items with ordered response options.
Table 2.2 shows some examples from Bock (1975) of selected response formats
typically used in rating scales.

The format of the kind shown in example (d) of Table 2.2 where response options
range from Strongly approve or Strongly agree to Strongly disapprove or Strongly
disagree, is often called a Likert (1932) format.

Sometimes each response category is defineddescriptively and sometimes only the
end points are described leaving the intervening points without verbal description (b
and c). In Table 2.2, all the verbal descriptions are qualitative. Sometimes quantitative

Table 2.2 Examples of selected response formats from Bock (1975)

a 
Dislike 

extremely

Dislike 
very 
much

Dislike 
moderately

Dislike 
slightly

Neither 
like nor 
dislike

Like 
slightly

Like 
moderately

Like 
very 
much

Like 
extremely

b Weak Strong

c 
Practically 
identical 1 .    .    .    . .    .    .    . 10

Totally 
different

d 
Strongly 
approve Approve Undecided Disapprove

Strongly 
disapprove
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descriptions like ‘Once a week’ are used. In order to achieve measurement, the
number, order and wording of response categories need to be carefully considered
and checked with data.

Number, Order and Wording of Response Categories

Number and Wording of Response Categories

Hagquist and Andrich (2004) analysed responses to ameasure of self-reported health
administered to adolescents in Sweden for 3 years of investigations. Table 2.3 shows
the item characteristics at different years of investigations. They describe how Rasch
analyses revealed that response categories were not working as intended. Table 2.3
shows the experimental changes made to the number and wording of the response
categories in different years of investigations.

The table not only shows that three items were removed after the 1985/86 inves-
tigation, but also that the response categories used in 1985/86, 1993/94 and 1997/98

Table 2.3 Itemcharacteristics at different years of investigations fromHagquist andAndrich (2004)

1985/86 1989/90 1993/94 and 1997/98

Initial question How often do you
have the following
complaints?

In the last 6 months,
how often have you
had the following
complaints?

In the last 6 months,
how often have you
had the following
complaints?

Items Headache Headache Headache

Stomach ache Stomach ache Stomach ache

Backache Have been irritable or
in a bad temper

Backache

Feel low Feel nervous Feel low

Being irritable or in a
bad temper

Have had difficulty
getting to sleep

Have been irritable or
in a bad temper

Feel nervous Felt dizzy Feel nervous

Difficulty getting to
sleep

Have had difficulty
getting to sleep

Feel dizzy Feel dizzy

Response categories About every day Often About every day

More than once a
week

Sometimes More than once a
week

About once a week Seldom About once a week

About once a month Never About once a month

Seldom or never Seldom or never
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were quantitative expressions (e.g. ‘About once a week’) whereas those used in
1989/90 were qualitative (e.g. ‘Often’). Also, there were five response categories
in the 1985/86, 1993/94 and 1997/98 investigations, whereas there were four in the
1989/90 investigation.

Order of Response Categories

Successive response categories should reflect successivelymore of the propertymea-
sured. In the well-known Likert format, the ‘undecided/not sure’ response category
is placed in the middle between the other categories, as shown in example (d) of
Table 2.2. Being placed in the middle of the response continuum, it is intended
that this category imply an attitude somewhere in between Agree and Disagree or in
betweenApprove andDisapprove.However, whether this categoryworks as intended
is rarely checked.

Using the methods you learn in this book, Andrich, de Jong, & Sheridan (1997)
showed that an ‘undecided/not sure’ response category did not operate as intended
when placed in the middle between the other categories in an analysis of responses
to an instrument measuring teachers’ attitude towards a new teaching strategy. They
recommend that the ‘undecided/not sure’ category, if needed, be placed separately
to the side, e.g. strongly disagree, disagree, agree, strongly agree and undecided/not
sure.

An Example of the Assessment of Writing by Raters

Raters or judges often rate persons according to one or multiple criteria on some
performance. When rating on only one criterion it is called holistic rating, whereas
analytical rating is rating according to multiple criteria. In the latter case, a decision
has to be made regarding the number of rating criteria and the number of response
categories for each criterion.

Humphry and Heldsinger (2014) described how a rating scheme was revised
after analyses showed that the rating criteria and categories were not working as
required. The rating scheme was used in the assessment of writing of school children
in Western Australia in year levels 3, 5 and 7. Raters used the same rating scheme
to rate the writing of children in all three year levels. The criteria and number of
response categories for each criterion are shown in Table 2.4. On the left of the table
are the original rating criteria and numbers of response categories and on the right
the revised criteria and numbers of categories.

The rating scheme was revised because raters using the original scheme were
prone to give similar ratings on all the criteria arising from a holistic impression of
the writing. This is also known as a halo effect. The effect resulted not so much from
a bias of individual raters, but because of crude and arbitrary levels in the criteria of
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Table 2.4 Original and
revised classification schemes
for the assessment of writing
(Humphry & Heldsinger,
2014)

Original classification
scheme

Revised classification scheme

Criterion Score range Criterion Score range

On-balance
judgement

0–7 On-balance
judgement

0–6

Spelling 0–5 Spelling 0–5

Vocabulary 0–7 Vocabulary 0–6

Sentence
control

0–7 Sentence
structure

0–6

Punctuation 0–6 Punctuation of
sentences

0–2

Form of
writing

0–7 Punctuation
within
sentences

0–3

Subject matter 0–7 Narrative
structure

0–4

Text
organization

0–7 Paragraphing 0–2

Purpose and
audience

0–7 Characterisation
and setting

0–3

Ideas 0–5

Total score
range

0–60 Total score
range

0–42

the rating scale that did not match aspects of the writing task. In particular, the rating
categories were relatively crude and arbitrary and did not arise from the task.

The solution in this case, also described in the paper, involved a rewriting of
criteria and the number of rating categories for each criterion so that the criteria
and the number of categories for each criterion arose naturally from each task. New
data collected with the revised criteria showed that the halo effect was eliminated.
The differences in the number of categories among the criteria helped reduce the
tendency to give the same rating for each criterion.

It is evident from Table 2.4 that some, not all, criteria were changed, and that
the numbers of categories for the revised classification system were different across
criteria. This variation exemplifies making the criteria relevant to each task and to the
performances of the students engaged in each task. Both the chosen criteria and the
number of categories for each criterion reflected the evidence that could be obtained
from the writing.
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An Example of the Assessment of the Early Development
Indicator Instrument

Andrich and Styles (2004) assessed the psychometric properties of the early devel-
opment indicator (EDI) instrument. The authors aimed to establish the validity and
reliability of each of the five subscales (physical health and well-being; social com-
petence; emotional maturity; language and cognitive development; communication
skills) using the Rasch measurement model.

The results showed that in sets of items the ordering of the categories was not
working as intended. It was recommended that these items, with originally five
ordered response categories, be reduced to twoor three categories.Andrich andStyles
(2004) explain that havingmore categories than teachers could use was a problem for
reliability because assessors were not able to use the categories consistently, and for
validity because it raises the question of whether successive categories indicate more
of the property. Table 2.5 shows the items in each of the five subscales which were
recommended to have a reduced number of response categories and descriptors. To
confirm that reducing the number of categories was the relevant improvement, it was
noted that the items in those subscales that had only three ordered categories worked
correctly. These features indicated that five categories were too many categories for
early childhood teachers to respond to consistently, while they could do so with only
three categories. You will learn about the method they used to diagnose the problems
in this book.

Table 2.5 Items recommended to have a reduced number of response categories (Andrich&Styles,
2004)

Subscale Items Original
number of
categories

Recommended
number of
categories

Suggested descriptors

PHWB A2–A5

A9–A13

5

5

2

3

Never/rarely,
Usually/always
Very poor/poor,
Average,
Very good/excellent

SC C1, C2 5 3 Very poor/poor,
Average,
Very good/excellent

EM No change

LCD No change

CS B1–B7 5 3 Very poor/poor,
Average,
Very good/excellent
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The Measurement of Attitudes: Two Response Mechanisms

We conclude this chapter with a note on two response mechanisms at work in the
measurement of attitudes. One is the so-called cumulative mechanism and the other
is the unfolding mechanism. We include this section because they can be confused.
However, in this book, we only deal with the cumulative mechanism.

In both, statements or questions are asked and the persons are required to agree or
disagree to them. Sometimes persons are asked to indicate their strength of agreement
or disagreement.

The key element in the construction of these variables is that the statements
themselves represent different degrees of intensities, and that these can in principle
be placed on a line of increasing intensity. Recall that a variable indicates a construct
in which the idea of more or less, greater or smaller, and the like, is involved. Perhaps
the best way to take the construction of these variables a step further is to consider
an example. The cumulative mechanism will be considered first.

An Example: The Cumulative Mechanism

Consider the three statements below which refer to drug testing in the workplace.

In employment in the public service, drug testing Agree Disagree

1. Is acceptable in some settings A D

2. Is acceptable and may be compulsory in some settings A D

3. Should be compulsory in all settings A D

A feature of the structure of these statements is that they are of increasing intensity
for agreement with drug testing in a workplace. Their characteristic is that if you did
agree to the third statement, then you would tend to agree to the other two as well.

On the other hand, youmay agree to the first statement but not agree to the second.
If you did not agree to the second, then you would tend not to agree with the third.

If, however, you agree with the second, then you would tend to agree with the
first but may not agree to the third.

Finally, you may disagree with all three statements.

If 1 is coded as agree
and 0 is coded as disagree

then the structure of the responses that are acceptable takes the form of Table 2.6.
In this case, the agree responses can be summed to give a total score, and the

greater the score, the stronger the attitude towards drug testing. Thus, a person with
a score of 3 has a stronger attitude for drug testing than a person with a score of 2,
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Table 2.6 Cumulative
mechanism—structure of
responses

Statement

1 2 3 Total score

Typical
response
patterns

0 0 0 0

1 0 0 1

1 1 0 2

1 1 1 3

Atypical
response
patterns

0 1 0

0 0 1

1 0 1

0 1 1

and so on. This kind of structure and mechanism appears also in tests of achievement
or performance.

Because the acceptable responses accumulate as the intensity of an attitude
increases, the structure of the response mechanism is said to be cumulative.

The key point here is that if person A has an attitude stronger than person B, then
A should have agreed to all statements that B agreed to, and in addition, one more.

In general, this structure is found in performance assessments and achievement
testing when different tasks or questions have different difficulty. We deal with an
example in Chap. 5 where the cumulative mechanism is elaborated.

An Example: The Unfolding Mechanism

In employment in the public service, drug testing Agree Disagree

1. Is not acceptable in any setting A D

2. Is acceptable only in a few settings A D

3. Is acceptable in any setting A D

The three statements are also of increasing intensity in attitude, with the first not
supporting the drug testing and the last supporting it.

In this case, it is most likely that only one statement would have an agree response.
If one agreed to statement 1, it is unlikely the person would agree to statements 2 and
3. If one agreed to statement 2, it is unlikely the person would agree to statements 1
and 3, and likewise for statement 3.

The response structure, with agree being coded 1 and disagree 0, takes the form
of Table 2.7.

In this case, the measurement of attitude cannot be obtained by simply summing
the scores. Instead, values must first be given to the statements that locate them on the
line. The procedure of obtaining these values themselves is a complicated process,

https://doi.org/10.1007/978-981-13-7496-8_5
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Table 2.7 Unfolding
mechanism—structure of
responses

Statement

1 2 3

Typical response patterns 1 0 0

0 1 0

0 0 1

Atypical response patterns 0 0 0

1 1 0

0 1 1

1 0 1

1 1 1

but at this stage perhaps you can give them intuitively reasonable values. These
should be of increasing intensity. For example, we might give the first statement a
value of –1, the second a value of 0 and the third a value of +1.

Then the attitude for each pattern would be calculated as follows:

Statement

1 2 3

Value – 1.0 0.0 1.0 Attitude Values

Typical response pattern 1 0 0 (1) (–1) + 0(0) + (0) (1) = –1

0 1 0 0(–1) + 1(0) + 0(1) = 0

0 0 1 0(–1) + 0(1) + 1(1) = 1

Usually, more than three questions are asked, and havingmore questions increases
the precision of the measurement. When you look at questionnaires in the future,
consider which of these two types of structures governs them. If you are required to
construct a questionnaire that is an operationalization of a construct, then you need
to think about which of these structures you wish to use. Perhaps you can consider
a construct, and make up some statements that would form either or both structures.
You could try to ask some friends to agree or disagree to the statements, and see if
their responses conform to the expected patterns.

A Practical Approach: Likert Scales

The history and methods of measurement of social variables is interesting, but the
two principles described above are central.
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A practical method for constructing questionnaires for assessing attitudes and
opinions that was developed by Likert (1932) and which now goes under the name
of Likert-style, involved the following two modifications to the above procedures.

First, statements that reflected ambivalent attitudes, such as statement 2 in the
unfolding mechanism of drug testing in the workplace, were eliminated. Consider
the following three statements which appeared in a questionnaire constructed to
measure attitudes towards capital punishment:

1. Capital punishment is one of the most hideous practices of our time.
2. I do not believe in capital punishment but I am not sure it is not necessary.
3. Capital punishment gives the criminals what they deserve.

Statements 1 and 3 express a clear attitude, while statement 2 expresses an ambiva-
lent one. Such a statement is excluded leaving just statements 1 and 3. With all three
statements, the mechanism is unfolding.

Second, persons are asked to respond by agreeing (strongly or not) or disagreeing
(strongly or not) to the statements as in the format below:

1. Capital punishment is
one of the most
hideous practices of
our time (reversed re
capital punishment)

Strongly disagree Disagree Agree Strongly agree

3. Capital punishment
gives the criminals
what they deserve
(positive re capital
punishment)

Strongly disagree Disagree Agree Strongly agree

Persons are required to circle the number that corresponds to the response that
best reflects their opinion.

Statements 1 and 3 would then be scored in a reverse way relative to each other.
Thus, if 1 is assigned to strongly agree in statement 1, then 1 would be assigned to
strongly disagree in statement 3.

Of course, this would be done by the researcher, and not be indicated to the
respondents.

Thus suppose person A responded as below:

Strongly disagree Disagree Agree Strongly agree

1. Capital punishment is
one of the most
hideous practices of
our time (reversed)

4 3 2 1

3. Capital punishment
gives the criminals
what they deserve

1 2 3 4
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Table 2.8 Four statements on capital punishment taken from a set described in Wohwill (1963)

Strongly disagree Disagree Agree Strongly agree

A Capital punishment is
one of the most
hideous practices of
our time

4 3 2 1

B Capital punishment is
not an effective
deterrent to crime

4 3 2 1

C Until we find a more
civilized way to
prevent crime, we
must have capital
punishment

1 2 3 4

D Capital punishment
gives criminals what
they deserve

1 2 3 4

PersonAwould score 4 (reversed scoring) on the first question and 3 on the second
question giving a score of 7. This is a high score relative to the maximum possible
of 8 and minimum of 2 on the two questions, and indicates a strong positive attitude
towards capital punishment.

Now suppose person B responded as below:

Strongly disagree Disagree Agree Strongly agree

1. Capital punishment is
one of the most
hideous practices of
our time (reversed)

4 3 2 1

3. Capital punishment
gives the criminals
what they deserve

1 2 3 4

Person B would score 2 (reversed scoring) on the first question and 2 on the
second, giving a total of 4. This reflects a more moderate attitude towards capital
punishment than a score of 7 obtained by person A.

In general, more than 2 questions would be asked, perhaps 10 or so. Although
it may be difficult to construct in many cases, try also to have both the positively
worded and the negatively worded statements themselves of different intensities.

For example, the two statements above on capital punishment, which are rela-
tively extreme, may be supplemented with two other statements giving the set in
Table 2.8. These are the kinds of instruments that are often analysed using Rasch
models (Hagquist & Andrich, 2004).
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Exercises

Respond to the statements in Table 2.8 and give yourself a score. Are you for or
against capital punishment and to what degree?
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Chapter 3
Classical Test Theory

Statistics needed to understand the material in this book and in particular this
chapter:
Statistics Review 1: Summation notation, mean and variance.
Statistics Review 2: Normal distribution.
Statistics Review 3: Covariance and the variance of the sum of two variables.
Statistics Review 4: Regression and correlation.

The basic concepts of the mean and variance of a set of scores and the use of the
summation (sigma—Σ) notation, essential for understanding the material in this
book, are reviewed in Statistics Review 1 in Appendix D.

Classical Test Theory (CTT) is the oldest formalization of a theory of test scores.
An excellent review of its history is provided by Traub (1997). CTT, which was
introduced by the British Psychologist Charles Spearman early in the twentieth cen-
tury, dominated test analysis in education and psychology till the latter part of the
twentieth century. In many areas, it is becoming superseded by what is known as
modern test theory. In this book, we study in detail one of the two theories of modern
test theory, that of Rasch Measurement Theory (RMT).

We introduce, and briefly study, the elements of CTT here for four related reasons.
First, because it is the oldest theory, it gives some indication of how the field of test
theory began and how it has evolved. Second, the theory continues to be used bymany
researchers in applied assessment. Third, many of the ideas that have been developed
in the theory are relevant in all theories ofmeasurement. Fourth, by studyingCTT, and
comparing and contrasting its features with RMT, the special features of RMT can
be understood better than if it were studied on its own.Wewill see some fundamental
similarities and differences between them.

Much of CTT rests on the assumption that traits assessed in social measurement
are normally distributed. The normal distribution is reviewed in Statistics Review 2.
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Elements of CTT

Although CTT can be conceptualized in the assessment of variables such as atti-
tude as well as proficiency and is used in both contexts, for ease of exposition we
will illustrate points primarily with tests of proficiency but also with assessments
of attitude. We use the term proficiency in a generic sense as it pertains to some
kind of achievement or attainment as is found in educational assessments and per-
formance assessments which appear in health outcomes. Other relevant examples
include intelligence and aptitude assessments which focus on the possible prediction
of future achievement rather than primarily assessing material explicitly taught. CTT
was developed in this area. Often the term ability is used to characterize all these
traits, for example, reference to a person’s ability in relation to an item’s difficulty.
However, because the ability is often thought of as some innate ability unaffected by
any education and experience, which is not the case in the exposition of CTT and
RMT of this book, we will consider generally assessments of proficiency.

The Total Score on an Instrument

You will have noticed that most tests and questionnaires have multiple items. There
are two main reasons for this. First, by having more items, there are potentially
more score points and therefore greater precision of the assessment. As we will see,
precision is related to the concept of reliability which we begin to formalize in this
chapter. Second, although all items are intended to assess the same trait, each is also
intended to assess some unique aspect of the trait. Thus, there would be no point
repeating exactly the same question in an achievement test in mathematics or the
same statement in an attitude questionnaire. Having more than one item, each of
which assesses both a common and a unique aspect of the trait, potentially enhances
the validity of the instrument. We consider validity throughout. We focus here on the
formalization of reliability in CTT.

It is intended that every item included in an instrument, should add to the precision
and validity of that instrument. However, in anticipation of much of the work in CTT
and in RMT, we note that any particular item might not contribute to either precision
or validity, or not contribute as much as is required. Whether it does so or not is an
empirical question to be answered in the analysis.

A feature of CTT is that it takes the score of a person on an instrument as simply
the sum of the person’s scores on the items. Although a mean of the sum of the scores
is not taken, only the sum of the scores, the idea is the same. Thus, just as the mean
of replications of a response in general settings gives more information than just one
response, the total score on an instrument composed of many items should give more
information than one item.
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Reliability, True and Error Scores

A key concept of CTT is reliability. As the term implies, the idea of reliability has the
connotations of repeatability, consistency and predictability. It is a desirable property.
Reliability can be considered from a number of perspectives. One of the main ones
is when parallel instruments are applied to the same people. The one we consider
arises from this perspective and where the items themselves are taken as parallel to
each other in assessing the same trait.

Two other important concepts of CTT that are related to reliability are those of
each person’s true score and each person’s error score. An observed score, the total
score on the items of an instrument, is taken to be the sum of a true score and an
error score. The true score is never observed but needs to be estimated.

The concept of a latent trait variable was introduced in Chap. 1. The concept of a
true score variable introduced above is identical to a latent trait variable. The latter
is simply a more general term, while the term true score variable is identified with
CTT. Then, referenced to some defined population of persons, reliability is defined
as the ratio of the variance of the true scores among members of the population to
the variance of their observed scores.

It should be evident that if the instrument as a whole has an error, then this error
must have arisen as a result of some potential error in each response to each item.
The kind of error we are referring to is one which, by definition, would not repeat
itself systematically and that errors will tend to cancel each other out. For example,
through carelessness, a very proficient person may answer an item incorrectly and
therefore would generally not answer other items of the same kind and difficulty
incorrectly, or a person disagrees to a statement on a questionnaire but would not
generally disagree with similar statements.

Statistics Reviews

The theory and implications of CTT are formalized in terms of variances, covariance,
correlation and regression. Therefore, it is necessary to understand the concepts of
variance, covariance, correlation and regression (Statistics Reviews 3 and 4). These
calculations can be performed by even relatively modest calculators. However, it is
important to understand the ideas behind the calculations; therefore some simple
examples are shown, and it is suggested you carry out some calculations on equally
simple exercises. Besides the use of the ideas in CTT, these concepts are important
in other areas of data analysis, and therefore reviewing them will be useful to you
beyond the needs of this book.

Some elementary analyses usually carried out in conjunction with CTT are illus-
trated with the example of responses of 50 persons to a 10-item test of science profi-
ciency. The test questions are in Appendix A.1 The test was a real test administered

1Reproduced with permission from the Ray School, Chicago.
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to 8-year-old children at the Ray School in Hyde Park in Chicago. The responses
are made up. Table 3.1 shows these responses and each person’s total score. The test
includes both dichotomous and polytomous items. Items 1–5 and 7–8 are dichoto-

Table 3.1 Responses of 50 persons on a 10-item test

Person Item 1 2 3 4 5 6 7 8 9 10 Total
scoreMax score 1 1 1 1 1 4 1 1 3 4

1 1 1 1 1 1 4 1 1 3 3 17

2 0 1 1 0 1 3 0 0 1 0 7

3 1 1 1 1 1 4 1 1 3 4 18

4 1 1 1 1 1 3 0 1 3 2 14

5 1 1 1 1 1 2 0 1 3 3 14

6 1 1 1 1 1 4 1 1 3 1 15

7 1 1 1 1 1 4 1 1 2 2 15

8 1 1 0 1 1 4 1 0 1 1 11

9 1 1 1 1 0 2 1 1 3 1 12

10 1 1 1 1 1 4 0 0 3 4 16

11 0 1 1 1 1 3 0 1 3 1 12

12 1 1 1 1 1 3 1 1 0 4 14

13 1 1 1 1 1 2 1 0 3 2 13

14 1 1 0 1 1 3 1 1 2 3 14

15 1 1 1 1 1 4 0 1 1 3 14

16 1 1 1 1 1 4 0 1 3 1 14

17 1 1 1 1 1 4 1 0 3 1 14

18 1 1 1 1 0 4 1 1 2 1 13

19 1 1 1 1 1 4 1 1 3 2 16

20 1 1 0 1 1 3 1 1 3 1 13

21 1 1 1 1 1 3 0 1 2 3 14

22 1 1 1 1 1 4 1 1 1 1 13

23 1 1 1 1 1 4 1 0 3 2 15

24 1 1 1 1 1 4 1 1 3 1 15

25 1 1 0 1 1 4 1 0 2 1 12

26 1 1 1 1 1 3 1 1 3 3 16

27 1 0 1 0 1 4 1 0 2 3 13

28 1 1 1 1 1 3 1 1 3 4 17

29 1 1 1 0 1 3 1 0 3 1 12

30 0 1 1 1 1 4 1 1 3 4 17

31 1 1 1 1 1 4 1 1 3 2 16

32 1 1 1 1 1 3 1 1 2 1 13

33 1 1 0 1 1 4 1 1 3 3 16

(continued)
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Table 3.1 (continued)

Person Item 1 2 3 4 5 6 7 8 9 10 Total
scoreMax score 1 1 1 1 1 4 1 1 3 4

34 1 1 1 1 1 3 0 1 2 2 13

35 1 1 1 1 1 3 1 0 2 0 11

36 1 1 1 1 1 3 1 1 2 1 13

37 1 1 1 0 1 4 1 1 3 0 13

38 0 1 1 0 1 1 0 0 2 0 6

39 1 1 1 1 1 4 1 1 3 3 17

40 1 0 1 1 0 3 0 1 1 0 8

41 1 1 1 0 1 3 1 0 2 0 10

42 1 1 1 1 0 2 0 0 3 1 10

43 1 1 1 1 1 4 1 0 2 1 13

44 1 1 1 0 1 3 1 0 3 0 11

45 1 1 1 1 1 3 1 0 3 2 14

46 1 1 1 1 1 0 1 1 3 2 12

47 1 1 1 1 1 4 1 1 3 3 17

48 1 1 0 1 1 4 1 1 2 1 13

49 1 1 1 1 1 4 0 1 3 2 15

50 1 1 1 1 1 3 0 1 3 3 15

Total 46 48 44 43 46 166 36 34 123 90 676

Facility 0.92 0.96 0.88 0.86 0.92 0.83 0.72 0.68 0.82 0.45

Discrimination 0.36 0.25 0.05 0.52 0.33 0.51 0.31 0.48 0.47 0.76

mous and items 6, 9 and 10 are polytomous, with items 6 and 10 having a maximum
score of 4 and item 9 a maximum score of 3.

The evidence of the performances on the test is analysed in two stages. The first
stage is termed the item analysis. It checks how well the items have worked relative
to expectation. Following the item analysis, the analysis of the results focuses on the
persons. This stage is termed the person analysis.

Item Analysis

Facility of an Item

The first main concept of an item analysis is concerned with the difficulty of items
relative to the population of persons administered the test to assess a variable. It is
required that the item is not so difficult that a person cannot engage with it, or that
it is so easy that it is trivial. Although such an index is calculated, we see when
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we formalize CTT in terms of equations, that the relative difficulties of items are
only implied, and not formally part of the theory. This is one of its weaknesses and
contrasts with RMT.Although the relative difficulty of an item can be conceptualized
in the assessment of variables such as attitude, for present, and for ease of exposition,
we continue to refer to tests of proficiency. In dichotomously scored items, the index
of item difficulty is simply the proportion of personswho answered the item correctly,
called the facility of the item, and usually denoted by p. In dichotomously scored
items, the proportion correct is the same as the average score on the item.

To obtain the facility of a polytomously scored item, this relationship between
the average and the proportion correct is generalized. Thus to obtain the facility
of a polytomous item, the average score of an item is calculated. However, if the
maximum score of an item is say m, then this average will be a number between
0 and m. Therefore, to appreciate the item’s facility without having to consider its
maximum score, the average is divided by the item’smaximum scorem. This number
is, as with dichotomous items, a number between 0 and 1. The facility of each item
is shown in Table 3.1. The easiest item was item 2, with a facility of 0.96. The most
difficult item was item 10, with a facility of 0.45.

Discrimination of an Item

The term discrimination is used to indicate a statistical index which describes the
degree to which an item is consistent with the other items in helping distinguish
the proficiencies of the persons. The term discrimination in this context is not used
pejoratively. It is used to summarize the expectation that if an item assesses the same
variable as the majority of the items of an instrument, then those persons who obtain
a high score on the item, should also tend to obtain a high score on the test. Likewise,
those persons who obtain a low score on the item should tend to obtain a low total
score on the test. Although there are different calculations of the discrimination, we
simply take it as the correlation between the scores on the item and the total scores
on the test across all the persons.

Because the index of discrimination is a correlation, it cannot have a value less
than −1.0 and greater than +1.0. However, it also follows from the reasoning above
regarding the expected relationship between scores on an item and scores on the test,
that the discrimination of each is expected to be greater than 0. Consistent with this
expectation, it is taken in CTT in general, that the greater the discrimination of an
item, the better. There is no a priori specific value that CTT provides that indicates
the ideal magnitude of this correlation. However, if there were no errors, then this
correlation would be 1. We see that there is a counterpart to this correlation in RMT.

The discrimination of each item is shown in Table 3.1. The least discriminating
item was item 3, with a correlation of 0.05. The most discriminating item was item
10, with a correlation of 0.76.
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Person Analysis

In Statistics Review 1, we used the letter X to represent a score on an item and then
also the mean of the scores. However, in this chapter, we distinguish between the
variable for an item and the variable for the sum of scores across items. As you will
see, we use the letter x for the value of a response to an item and the letter y for the
sum of the scores across items. This notation will be consistent with the one we use
with RMT.

We now formalize the concepts and relationship between observed score, true
score and the error score in CTT. The governing requirement and approach to the
theory is that the series of items that make up an instrument are indicators of the
same variable.

Notation and Assumptions of CTT

Let xni be the score of person n on item i where xni can take the integer values
{0, 1, 2, . . .} and where there are I items on the test:

(i) each person n has a true score tn ,
(ii) the best overall indicator of the person’s true score is the total score yn =∑I

i=1 xni on the items,
(iii) the observed score yn has an additive error to the true score tn for each person

denoted by en ,
(iv) the errors en are not correlated with the true scores of the persons or with each

other and
(v) across a population of persons, the errors sum to 0 and they are normally

distributed.

Basic Equations of CTT

From these assumptions, derivations and definitions, Eqs. (3.1)–(3.5) follow. The
derivations ofEqs. (3.4) and (3.5) are inPart IV of this book.Weapply these equations
in an example in this chapter.

From the specification that the error, which can be positive or negative, is additive
to the true score, the basic equation of CTT is

yn = tn + en. (3.1)

Because the errors are uncorrelated with each other and with the true score,

s2y = s2t + s2e (3.2)
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and s2t = s2y − s2e , where s
2
y is the variance of the observed scores in a population of

persons, s2t is the variance of their true scores and s2e is the error variance.
Then

ryy = s2t
s2y

= s2y − s2e
s2y

(3.3)

is the proportion of true variance relative to the total variance of the test, and

t̂n = ȳ + ryy(yn − ȳ) (3.4)

is the estimated true score of the person n with an observed score of yn and ȳ is the
mean of the observed scores.

se = sy
√
1 − ryy (3.5)

is the standard error of the estimate of the true score t̂n of a person and is the same
for all persons. We note that the errors specified are considered random among each
other. As a result of the nature of the randomness, they cancel each other out rather
than propagate and become larger.

Reliability of a Test in CTT ryy

The proportion of true variance relative to the total variance of the test, specified in
Eq. (3.3) is defined as the reliability of a test. Equation (3.3) summarizes the next
most important concept of CTT after Eq. (3.1). The double subscript of the same
variable (e.g. yy) is used often to denote reliability because it can also be interpreted
as an observed correlation between the observed scores on two parallel forms of a
test.

Because it is a proportion of variances, which must be positive, the theoretical
range of a reliability value is between 0 and 1. The value depends on a number of
factors, some of which are interrelated:

(i) the number of items;
(ii) the discrimination of the items;
(iii) the alignment of the items to the persons, that is, their relative difficulties;
(iv) the variation of the true scores in the population.

If all assumptions hold, the greater the number of items the closer the facilities are
to 0.5 and the greater the variation in the true scores, the greater the reliability. We
reconsider eachof these relationships asweproceed through thebook.Weconsolidate
this idea in the next chapter where we show one method of estimating reliability.
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The Standard Error of Measurement se

The standard error of measurement in Eq. (3.5) pertains to a person. The square of
this term is the error variance, s2e , which also appears in Eq. (3.2) where it is a variance
across persons. It is no coincidence that there is a single term s2e for both of these
concepts. The reason only one term is necessary for these two conceptualizations of
error is that all errors are postulated to come from the same distribution of errors.
Thus although each person will have a different actual error, it is postulated that
these errors have a mean of 0, that they are normally distributed, and that they have
a variance of s2e . This holds whether we conceptualize one person being assessed on
multiple occasions or multiple people assessed on one occasion. This is a contrast
with the error in RMT. Given an estimate of the reliability of a test, Eq. (3.5) can be
used to estimate the error variance s2e .

It is evident from Eqs. (3.1) to (3.5) that they contain no formalization of the
facility or difficulty of an item. This is another of the contrasts with RMT.

Statistics Reviews

Statistics Reviews 3 and 4 belong together and should be seen as a whole. Covariance
is explained first in Review 3 and then used in the formula for correlation in Review
4. Correlation explained in Review 4, however, is needed to understand the variance
of the sum of two uncorrelated variables, explained in Review 3.

Example

We now briefly apply Eqs. (3.4) and (3.5) to the data of Table 3.1. The mean score
for the data from Table 3.1 is 13.52 and the variance of the scores is 6.42. We see in
the next chapter how the reliability coefficient α can be calculated. In this example
α = 0.47.

Now consider student 6 with a total score of 15. Find (i) the estimated true score,
(ii) its standard error, (iii) the 95%confidence limits of this score, and (iv) the variance
of the true scores.

(i)

t̂n = ȳ + ryy(yn − ȳ)

= 13.52 + 0.47(15 − 13.52)

= 13.52 + 0.47(1.48)

= 13.52 + 0.696

= 14.22.
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(ii)

se = sy
√
1 − ryy s2e = s2y(1 − ryy)

= √
6.42

√
1 − 0.47 = 6.42(1 − 0.47)

= 2.534
√
0.53 = 3.40

= (2.534)(0.728) se = √
3.40 = 1.84

= 1.84.
(iii) From the normal curve table, 95% of the area is contained between z = −1.96

and z = 1.96.
Therefore, the 95% confidence interval is given by
t̂n ± (1.96) se
14.22 ± (1.96)(1.84)

14.22 ± 3.61
10.60–17.83, which is a relatively wide range.

(iv) From se above, s2e = 3.40.

Therefore, from s2t = s2y − s2e , s
2
t = 6.42 − 3.40 = 3.02.

We need to appreciate that we do not have an independent absolute unit in the
above calculations. The calculations are relative to an arbitrary origin and an arbitrary
unit that are a property of the data. We examine this assertion when we study RMT.

Exercises

Table 3.2 shows an example of the results of the performance of 25 students on an
examination in economics. The examination had:

• five multiple choice questions which were scored as either wrong (0) or correct
(1),

• two short answer questions in which the maximum score was 2 (0 for totally
incorrect, 1 for partially correct and 2 for totally correct), and

• one question with a longer answer worth 6 marks.

This gave a total number of 15 marks.

1. Calculate the facility and discrimination for items 7 and 8. According to these
indices, which of these two items is more difficult and which of the two discrim-
inates more?

2. Calculate the estimate of the true score for a student with a score of 13 on the
test.

3. Calculate the mean and SD of the scores. If the test had a reliability of 0.80, what
would be the standard error of measurement for the scores?

4. What would be the 90% confidence interval for a student who scores 13 on the
test?

5. Calculate the variance of the true scores from the estimate of the standard error.

For further exercises using this example, see Exercise 1: Interpretation of
RUMM2030 printout in Appendix C.
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Table 3.2 Responses of 25
persons to eight items

Items 1 2 3 4 5 6 7 8

Maximum
score

1 1 1 1 1 2 2 6

Person

1 1 1 1 1 1 1 1 1

2 1 1 0 0 0 0 0 2

3 1 1 1 1 1 2 2 5

4 1 0 1 1 1 2 1 4

5 1 0 1 1 1 1 1 1

6 1 0 0 1 1 1 1 5

7 0 0 0 0 0 0 0 0

8 1 1 1 0 0 0 0 0

9 1 1 1 1 1 2 2 0

10 1 1 1 1 1 1 2 1

11 1 0 1 1 1 1 1 0

12 0 1 1 0 0 1 1 2

13 1 1 1 1 0 2 1 5

14 1 0 1 1 1 0 0 0

15 1 0 0 0 0 1 0 0

16 1 0 1 1 1 2 2 6

17 1 1 1 1 0 2 2 0

18 0 0 0 0 0 0 0 0

19 1 0 0 0 1 0 0 0

20 1 0 1 0 1 1 0 0

21 1 1 1 1 1 1 1 2

22 1 1 1 1 1 2 1 3

23 1 0 1 0 0 0 0 0

24 1 0 1 1 1 1 0 1

25 1 0 1 1 1 1 0 1

Reference

Traub, R. E. (1997). Classical test theory in historical perspective.EducationalMeasurement: Issues
and Practice, 16(4), 8–14.



Chapter 4
Reliability and Validity in Classical Test
Theory

Chapters 1 and 2 referred to tests and questionnaires used in assessments. The concept
of a trait was elaborated, and it was stressed that a trait was latent and not observed
directly. It was also stressed that items of an instrument were intended to manifest
the trait to be assessed.

The items of an instrument are said to operationalize a latent trait. In some cases,
it is said that they provide an operational definition of the trait. The items make
explicit the trait that is engaged with the persons and, through the responses, provide
evidence of the degree of the trait through this engagement. A test of proficiency,
for example, elicits behaviours that are supposed to count as evidence of the degree
of proficiency of a person on the trait. In this case, the items provide the instances
of the kinds of things that a person taking the test is expected to know, understand,
interpret, be able to perform and the like.

In addition to obtaining information about the test-taker, because the items provide
an operational definition of a trait, they also contribute to an empirical check of the
understanding of the trait. They do this because the performances of the test-takers
provide empirical evidence as to whether or not the items have worked together as
expected. In summary, the test results provide empirical evidence of the theory of the
construct in its context, including the administration of the instrument, the format
of the items, and so on. This chapter elaborates the idea of understanding the trait
through the empirical evidence from an instrument.

There are two major aspects of the evidence that need to be considered for an
instrument; one is reliability, already broached in the previous chapter, the other is
validity which we introduce in this chapter. Evidence on both of these is provided
in part by its internal consistency, and by its consistency with expectation. Early
texts on educational and psychological measurement that emphasize CTT include
material on reliability and validity. In some recent writing on social measurement,
the ideas of reliability and validity, and these terms, are not emphasized as such.
However, whatever the terminology and fashions, the ideas of reliability and validity
are central to any instrument. Messick (1989), Frisbie (1988), and Traub and Rowley
(1991) help appreciate the way reliability and validity are presented in the literature.
Although they are not recent papers, the points they raise are enduring.

© Springer Nature Singapore Pte Ltd. 2019
D. Andrich and I. Marais, A Course in Rasch Measurement Theory,
Springer Texts in Education, https://doi.org/10.1007/978-981-13-7496-8_4
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Validity

As inChap. 1wherewe describedStevens’ terminology in the kinds of applications of
numbers in socialmeasurement,we consider some traditional terms in the elaboration
of validity. In both cases, the terminology is introduced in part for historical reasons
and in part because it has become embedded in the literature in social measurement.
We wish to relate these terms and concepts in the literature, with which the reader
will inevitably become engaged, to the perspective taken in this book. Traditionally,
validity is articulated in terms of the following four ideas: content validity, concurrent
validity, predictive validity and construct validity.

Content validity is established by experts judging whether the content was rele-
vant, that is, by considering the operational definition of the trait. For example, in an
examination for medical practitioners in some aspect of biology, experts in medicine
would attest to the relevance of the content.

Concurrent validity is established by showing that the results on a particular
instrumentwere related in an expectedwaywith results on other relevant instruments.
For example, a test for aptitude in mathematics would be expected to be related to
performance in mathematics, but not to performance in sports. This does not mean
that some sportsmen or women are not also excellent in mathematics, but that in
general, the two are not related.

Predictive validity is established by relating the results of an instrument with per-
formances in the future on the same trait. For example, performances on an entrance
examination to university would be expected to be related to the performances of
students during their studies at university.

Construct validity is established by demonstrating that the results on the instru-
ment are consistent with expectations from a theoretical understanding of the trait.
These expectations can be demonstrated in a variety of ways.

Messick (1989) argued for construct validity to be the overarching concept and
that the other three so-called forms of validity are kinds of evidence for construct
validity. Thus, validity is taken to be identical to construct validity and one uses
whatever evidence one can to establish this kind of validity. The paper by Messick
(1989) followsmany papers on various aspects of validity in the traditional literature.
We take Messick’s position in this book and indeed expand upon it. As you will see,
this position is consistent with Raschmeasurement theory (RMT), where every piece
of evidence examined that relates responses to an instrument with analysis according
to the Rasch model is taken to provide evidence for or against construct validity of
an instrument.

InChap. 1,we noted that the terms property, trait, construct, attribute and variable
were used more or less interchangeably, each having its own nuances and often more
appropriate than another term in different contexts. At this point, we may elaborate
on the term construct. It is used in three forms in social measurement:

(i) as a verb, to construct;
(ii) as a noun, a construct;
(iii) as an adjective to describe validity, construct validity.
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An essential aspect of the use of construct is to emphasize that the trait, property
or attribute is assessed in a social context and, at least in part, socially constructed.
For example, the trait of neuroticism is conceptualized and formulated as useful by
humans in trying to understand certain patterns of behaviour. Thus, neuroticism be
referred to as a construct. Instruments assessing neuroticism have been constructed
using indicators considered to bemanifestations of neuroticism,which in turn provide
an operational definition of neuroticism. Before application, these instruments need
to have been validated in the various ways summarized above, and in other ways to
be examined in this book. The same argument for construct validation of instruments
holds for all social measurements.

Reliability

We introduced the concept of reliability in CTT in Chap. 3. Reliability concerns the
consistency ofmeasurement. Traub andRowley (1991) use the everyday life example
of a car to explain the concept of reliability. Whether a car is a reliable starter or not
can only be determined after repetitions of starting the car.

CTT focuses, as we have seen, on the test score as a whole. Therefore, one
formalization of reliability is based directly on the idea of two parallel forms of
an instrument. The correlation between the performances of the same persons on
the two forms gives an estimate of the reliability of the test. We keep in mind that
instruments are generally composed of multiple items.

In practice, one could actually construct two parallel tests. However, there are dif-
ferent conceptualizations of parallel which are relevant operationally. To understand
at least two of these, an understanding also relevant when studying RMT, it is helpful
to appreciate a distinction between the identity of an item and the relevant property
of an item. This distinction is illustrated easily with assessment of proficiency with
dichotomously scored items. The identity of the item is its content, format, marking
key and so on. The relevant property of an item in this case is its difficulty. Two
items from the same instrument generally have a different identity. However, they
may have the same difficulty.

Thus, one conception of two parallel forms is to consider that all items of the two
forms, all of which have different identities, are equally valid for the assessment of
the trait, and where the average difficulty and standard deviation of the difficulties
of the items are the same in the two forms. Another conception is to have matched
pairs of items as similar in identity as possible (content, format, marking key) and
similar in difficulty in the two forms. In general, because it is more flexible than
the latter, we take the former conception. However, there are instruments that have
parallel forms built on the latter principle.

The concept of a set of items which are equally valid in assessing a variable has
important implications for the construction of instruments. In principle, it implies
that any particular set of items is a sample of items from a whole class of items.
Sometimes such a class is referred to as a population of items or as a universe of
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items. We refer to it as a class of items. The class of items is hypothetical and infinite
in the sense that all items of the class can never be listed. Thus, no matter how
many items are constructed, another item (with another identity), can in principle
be constructed. In addition, for example, if two different experts were given the
specifications for constructing an instrument to assess some trait, they are likely to
come up with items of different identities but a similar distribution of difficulties. In
this sense the items are exchangeable. In the last section of this chapter we qualify the
concept of item exchangeability and see that, as with many aspects of measurement,
it is relative to a context.

The idea of a class of items with different identities making up parallel forms
of a test, where the different forms, even if administered to the same persons, will
give somewhat different results, implies errors of assessment. Errors of assessment,
when transformed into measurements, imply errors of measurement. The presence
of errors results in the observed correlation between the measurements from the two
parallel forms to be less than 1.0. The greater the deviation from 1.0, the greater the
size of the error.

The conception of error here is that it is random. Being randommeans that there is
no pattern to it, and that it is not correlated with any other feature of the assessment. It
also implies that the errors tend to cancel each other out. Systematic deviations which
impinge on the reliability and validity of assessment generally are given different
names. For example, if human markers are part of the assessment, in assessing
writing proficiency or in assessing the functioning of limbs, it is possible and indeed
likely that different markers will have some systematic relevant differences, perhaps
in their harshness or leniency. The presence of such human errors in assessment,
and understanding their presence, was part of the history of the development of
statistics. Alder (2002) gives an instructive account of this development. Kane (2011)
summarizes conceptions of errors in social measurement in general, and educational
measurement in particular.

Although the idea of two parallel tests is useful, and in some cases, some instru-
ments have parallel forms, repeated assessments from the same instrument on one
person are not in general feasible in social measurement. How, then, is the reliability
of an instrument in this case established?

The procedure that is most popular and efficient rests on the idea that responses
to multiple items within a single instrument are themselves replications. Taking
responses to multiple items as replications leads to a calculation of a reliability index
under certain assumptions.We proceed with the estimation of the reliability with this
conception of items as replications, and then return to consider more closely these
assumptions. The assumptions are implied by the formulation in terms of equations.

The general index of reliability calculated this way is known as coefficient α.
We first express the reliability of a test, the ratio of true score variance to the total
variance, in terms of items as replications.
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Reliability in Terms of Items

Wenow explicate the definition of reliability in CTT in terms of items as replications.
This explication helps provide, first consolidation of how the items are viewed in
CTT, and second how this contrasts with themodern test theory approach. The results
are entirely consistent with the traditional approach to CTT which focuses on the
tests and gives the same formula for calculating a reliability index, whichwe describe
later in the chapter.

As indicated above, firstwe consider that each itemof an instrument is a replication
of every other item. Thus, the items are considered as a random selection from some
class of items that assess the particular trait and that are relevant to administer to
some population of persons. Of course, the items would be administered only to a
sample of the population. Each item also assesses some unique aspect of the trait
and there is some error. Because the focus is on assessing the single trait, the unique
aspect is embedded in the error. The implication of this embedding of the unique
aspect in the error can be further considered, and we do so in a later chapter.

With the same definitions of variables as in Chap. 3, we let the observed score
xni of person n to item i also be composed of the sum of a true score and an error
score. We denote the true score referenced to the item by the Greek letter τ , giving
τn as person n’s true score, and denote the error at the item level by the Greek letter
ε, giving εni as the error when person n responds to item i.

Then, again taking that the observed score is the sum of the true score and error
score, gives

xni = τn + εni . (4.1)

We postulate the following conditions:

(i) Just as with the errors at the test level, the error scores of persons are uncorre-
lated with their true scores.

(ii) The error scores across persons and items sum to 0.
(iii) The errors across all person item combinations are homogeneous, which is

identical to postulating that the error variances are equal. We denote this vari-
ance, defined below as s2ε .

Now consider the test score yn in terms of Eq. (4.1): yn = ∑I
i=1 xni =

∑I
i=1 (τn + εni ).
Expanding,

yn =
I∑

i=1

(τn + εni )

=
I∑

i=1

τn +
I∑

i=1

εni
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= I τn +
I∑

i=1

εni , (4.2)

we cannot simplify
∑I

i=1 εni because although the variances are the same across
person–item combinations, each actual person–item combination has a unique error,
thus giving a unique sum. However, from Eq. (3.1) in Chap. 3, we have that yn =
tn + en . Therefore, we can identify

tn = I τn and en =
I∑

i=1

εni .

It may seem odd that the true score tn , as it is traditionally written, is a function
of the number of items. It may seem more natural to divide the person scores by
the number of items, so that the true score is not a function of the number of items.
However, the way it is written in CTT means that the true score is on the same kind
of scale as the observed scores. For example, if the observed scores range between 0
and 50, then the true score will in principle have the same range, and this has some
convenience. This apparent advantage implies that the items of an instrument are
fixed. This is not consistent with other conceptions where items are not unique, but
are a sample from a class of items, and where in principle, even different numbers
of items might be present in an instrument.

We now proceed to express the reliability using Eq. (4.1) and see that it illuminates
the relationship between reliability and the number of items.

The variance of the observed scores from Eq. (4.2) is then given by

s2y = I 2s2τ + I s2ε . (4.3)

Therefore, from Eq. (3.1) in Chap. 3, we can identify

s2t = I 2s2τ and s
2
e = I s2ε .

From Eq. (3.3) in Chap. 3, we have the definition of reliability as

ryy = s2t
s2y

. (4.4)

Substituting the variances from Eq. (4.3) into Eq. (4.4) gives

ryy = s2t
s2y

= I 2s2τ
I 2s2τ + I s2ε

= s2τ
s2τ + s2ε /I

. (4.5)



Reliability in Terms of Items 47

Thus, the reliability is also a ratio of the true variance relative to the total variance
at the item level, but we can now see the relationship of reliability to the number of
items. As the number of items I increases, so the error variance term s2ε /I decreases
and the reliability increases. Because the reliability is constrained between 0 and 1,
this relationship is not linear.

Coefficient Alpha (α): Estimating Reliability in CTT

As indicated above, the estimate of reliability we consider is provided by coeffi-
cient α. In proceeding with items directly, rather than from total scores, the way we
derive the equation for coefficient α is slightly different from its usual development.
This coefficient was developed by Guttman (1945) and elaborated substantially by
Cronbach (1951). This elaboration was so well received that the index is also known
simply as Cronbach’s α. Coefficient α can be applied to tests composed of items
with different maximum scores. The equation can be specialized to the case where
all items are scored dichotomously. This specialization was derived earlier by Kuder
and Richardson (1973) and so coefficient alpha can be seen as a generalization of
the Kuder–Richardson formula.

Both Kuder and Richardson, and Guttman, had various equations in their papers,
and their formulae now have the name of the equation in their original papers. Kuder
and Richardson’s most common formula is their formula 21 often referred to simply
as KR-21. Guttman’s equation was the first and he used Greek letters to name them,
hence coefficient α.

Our development of the equation for coefficient α is provided in Part IV of this
book. It takes the form

α = I

I − 1

(
s2y − ∑I

i=1 s
2
i

s2y

)

, (4.6)

where the variances of the total scores and the items, s2y and s
2
i , are calculated simply

as s2y = 1
N−1

∑N
n=1 (yn − ȳ)2 and s2i = 1

N−1

∑N
n=1 (xn − x̄)2 and where N is the

number of persons in the sample.
In coefficient α, the idea that the items are replications of each other is explicit in

the sense that any subset of the class of items is parallel to any other, with different
numbers of items simply affecting the reliability. Because the reliability is calculated
from responses of a single administration of an instrument and is based on the items
within the instrument, this form of reliability is known as internal consistency.

We now show the application of the general formula of Eq. (4.6) above. It can be
used for both dichotomous and polytomous items with variable maximum scores.
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Table 4.1 Calculating the reliability for the data in Table 3.1 of Chap. 3

Item 1 2 3 4 5 6 7 8 9 10 Total
score

Variance 0.08 0.04 0.11 0.12 0.08 0.75 0.21 0.22 0.58 1.51 6.42

Example

To see how the coefficient α equation is applied, consider the data from Table 3.1
in Chap. 3. In computing the variance in each case we continue dividing by N−1.
Table 4.1 shows the variance of each of the 10 items as well as the variance of the
total score.

Substituting the values of each s2i and s2y gives= 6.42 (0.53) = 3.40.

α = I

I − 1

(
s2y − ∑I

i=1 s
2
i

s2y

)

= 10

9

(
6.42 − (0.08 + 0.04 + 0.11 + 0.12 + 0.08 + 0.75 + 0.21 + 0.22 + 0.58 + 1.51)

6.42

)

= 10

9

(
6.42 − 3.69

6.42

)

= (1.1)(0.43) = 0.47.

This is quite a low value; however, the test is not very long. We can calculate the
error variance from Eq. (3.5) of Chap. 3 as se = sy

√
1 − ryy = 6.42(0.53) = 3.40.

There is no absolute standard in interpreting reliability coefficients. When deci-
sions about individuals are made, the reliability needs to be greater than when deci-
sions about groups are made. When decisions about groups are made a coefficient
of at least 0.65 is recommended (Traub & Rowley, 1991).

Factors Affecting the Reliability Index

Having expressed the equation for calculating reliability and having used it in an
example, makes it opportune to consider some of the factors that affect the value of
reliability.

The factors can be considered internal and external to the instrument, though
because the responses arise from the engagement of the person to the items of the
instrument, in principle all factors are always related to each other in some sense.
The explication as internal or external is made for purposes of exposition.
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Internal Factors

Number of Items

As indicated inEq. (4.5), all other factors being equal, the reliability is clearly affected
by the number of items. The relationship is not linear, but it is possible to express the
reliability of a greater or smaller number, assuming all other factors are the same,
given the reliability of a particular number of items. For example, it can be derived
readily from Eq. (4.5) that if the number of items is doubled, then the new reliability,
denoted say r∗

yy is given by

r∗
yy = 2ryy

1 + ryy
, (4.7)

where ryy is the original reliability. Equation (4.7) is known as the Spearman–Brown
formula. It can be generalized for any factor of the number of original items.

Discrimination of Items

We have already considered the discrimination of the items. The greater the discrim-
ination of the items, as defined in Chap. 3, the greater the reliability. Note that we
have used the plural of items here. The reason is that the basic equation of CTT
expressed in terms of items, Eq. (4.1), together with the three conditions, implies
that all the items have the same discrimination. They imply the same discrimination
because the error variance is assumed to be the same magnitude for all items. In
observed data, of course, they will not have the same discrimination. In the method
of assessing discrimination that we have used above, and in using the item–total cor-
relation, the check is whether each item is discriminating very much like the average
discrimination of all of the items.

Independence of Items

Another implication ofEq. (4.1),whichwehave broached, is that each of the items is a
replication of each other item. We have, in deriving the expression for the variances,
also assumed independence of the responses. This implies, for example, that one
item does not artificially relate to any other item. An example of the violation of
independence in tests of proficiency is when the answer to one item implies, or gives
a clue to, the answer to another item (Mehrens & Lehman, 1991).
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Unidimensionality Among Items

The use of the total score as a summary of a person’s value on the variable implies that
persons can be compared by their total scores, or the estimates of their true scores, and
this implies a unidimensional construct. In addition, because each person has a single
true score, which can vary in value from the true scores of other persons, Eq. (4.1)
also implies a unidimensional construct. Unidimensionality can be violated if some
items assess, in some systematic way, a different construct. An example in tests of
proficiency is when the majority of items assess proficiency in mathematics using
very little verbal description, and some items involve a large amount of complicated
written expression. It may be a surprise that within such a data set, the actual value
of α is inflated relative to what it would be had there been the same number of items
and they were all assessing mathematics proficiency in the same way as the other
items with the written complexity.

External Factors

Variance of the True Scores in the Sample

It is evident from Eq. (4.5) that the reliability will be a function of the true score
variance in the population. It also depends on the sample being a representative
sample from the population for the index to be referenced to that population. Thus,
the reliability of an instrument is not simply a property of the instrument, but is
related to the population of persons to which it is referenced. Thus, if all factors are
equal, but for some reason, one sample of persons has a smaller true variance than
another one, which could occur by chance, then the sample with the smaller variance
will provide a smaller reliability.

Alignment of the Persons to the Items

A critical implication of Eq. (4.1) is that the persons are well aligned to the items.
This means that the persons are not likely to all obtain the same score on the items. If
persons are not well aligned to the items, for example, in a proficiency test all students
find the test very easy and many have the maximum score, then the variance of the
observed scores will be truncated artificially and the instrument will have a lower
reliability than otherwise. The same effect would arise if many persons obtained the
minimum score of zero. The former effect is known as a ceiling effect and the latter
as a floor effect. We consider further each of these features affecting the reliability,
and therefore the precision, throughout the book as the opportunity arises.
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Common Factors Affecting Reliability and Validity

Crucial to measurement is the quality of the engagement of the persons to the items.
In proficiency assessment, it is important that students are in a position to answer the
questions that they can answer, that difficult questions are not at the beginning of the
test and easy ones at the end, that students are prepared and know the format of the
assessment, and so on. In the case where assessors are involved, as they are in clinical
psychological assessment and health assessment, as well as in some achievement
assessment, the quality of the assessor is critical. Poor instructions, poorly understood
and applied instructions, confusing marking keys and weak training of the assessors
will add to random error, lower discrimination of items and lower reliability.

In considerations of both reliability and validity, the concern is with potential
inferences about future data, or future observations, given the available data or avail-
able observations. If we have a reliable instrument we would expect that a replicated
assessment with a similar population would give similar results. If we have a valid
instrument we would expect that in the relevant circumstances we could predict per-
formances of the persons measured with it. It is relevant to note that persons can
and do change on a trait as a result of natural growth, teaching, rehabilitation and
so on. In the index of reliability above, the evidence provided is its reliability at a
single administration assuming that during the administration the person’s true score
is constant.

It is generally emphasized that a high reliability is necessary for validity of an
instrument. However, it is possible for high reliability to be contrived artificially and
that the high reliability is obtained at the expense of validity. Such a situation can
be envisaged readily in the assessment of attitude. For example, suppose that the
different questions in appearance are in fact the same substantive question but with
different wording. Then, unless the persons get bored and do not engage with the
items as intended, a very high value for coefficient α might be obtained. However,
this would be at the expense of validity. Within CTT, such a situation is known as
the attenuation paradox.

Causal and Index Variables

In the above discussion, we indicated that the idea of parallel forms of items meant
that in principle the items were exchangeable. They would be exchangeable in the
sense that many thermometers are exchangeable to measure a temperature in some
situation, say the temperature of a cellar. However, even thermometers are not all
exchangeable in all circumstances. The thermometer for measuring the temperature
of a cellar might range from −10 to 50 °C. Clearly, such a thermometer would not
be useful to measure temperatures to −20 °C or to 60 °C. This case is analogous to
not having items that are far too easy or far too difficult for students in proficiency
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assessment. In principle, other than practical factors, thermometers are exchangeable
because they measure the same variable.

However, CTT and RMT are not only applied where in principle the items are not
exchangeable. The summary discussion on this topic concerns causal or reflective
versus index or formative constructs. This distinction is discussed in greater detail
in Andrich (2014), Stenner, Stone, & Burdick (2009), and Tesio (2014).

Briefly, in a causal construct, where the items assessing proficiency are in principle
exchangeable, a student’smeasure on the construct governs their response to all items.
For example in a test of the construct of light in physics for a specified curriculum
and class level, many different items which are in principle exchangeable might have
been written. In the case of an index construct, the items help define the variable and
so are not in principle exchangeable. An example is given by Stenner et al. (2009)
in which socio-economic status (SES) is defined by the items ‘level of education’,
‘occupational prestige’, ‘level of income’ and the ‘desirability of the neighbourhood
in which people live’. The score on these items will be correlated positively in most
populations and it might be justified to sum them to provide a single number to
characterize SES. However, there is a sense in which if one of these items were
removed from the set, then the definition of the variable of SES is changed.

Most assessments are some combination of the construct being causal and index.
For example, in educational assessment, Andrich (2014) gives the example of a test in
physics which assesses not only the topic of light, but those of heat, sound, electricity
and magnetism, and mechanics. In that case, the items testing the knowledge of the
topic of sound are not exchangeable for the items assessing the knowledge of the topic
of heat, for example. Tesio (2014) gives examples in health outcomes assessment
which from some perspectives are causal and from others are index. The perspective
from which an item is considered contributes to its selection in instruments and how
it is dealt with if it happens not to work as well as desired.

Exercises

In the Exercises of Chap. 3, you were given a table of person–item responses.

1. Calculate the variance of each of the eight items in the test and the total score
and summarize them as below:

2
1s

2
2s

2
3s

2
4s

2
5s

2
6s

2
7s

2
8s

2
ys

2. Calculate the reliability of this test according to coefficientα. Showyourworking.
Use the variances of the eight items and the variance of the total score that you
calculated in question 1.

3. Comment on the size of the reliability.
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4. Consider a test or examination with which you are familiar with. Describe the
test and its purposes first, then comment on the reliability of the examination
and the validity in terms of the various functions the examination is supposed to
serve. How might these be investigated?

For further exercises, see Exercise 1: Interpretation of RUMM2030 printout in
Appendix C.

References

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that trans-
formed the world. New York: Free Press.

Andrich, D. (2014). A structure of index and causal variables. Rasch Measurement Transactions,
28(3), 1475–1477.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,
297–334.

Frisbie, D. A. (1988). Reliability of scores from teacher-made tests. Educational Measurement:
Issues and Practices. National Council on Measurement in Education, 7(1), 25–35.

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10, 255–282.
Kane, M. (2011). The error of our ways. Journal of Educational Measurement, 48(1), 12–30.
Kuder, G. F., & Richardson, M. W. (1973). The theory of the estimation of test reliability. Psy-
chometrika, 2, 151–160.

Mehrens, W. A., & Lehman, I. J. (1991).Measurement and evaluation in education and psychology
(4th ed.). New York: Harcourt Brace.

Messick, S. (1989). Meaning and values in test validation: The science and ethics of assessment.
Educational Researcher, 18(2), 5–11.

Stenner, A. J., Stone, M. H., & Burdick, D. S. (2009). Indexing versus measuring. Rasch Measure-
ment Transactions, 22(4), 1176–1177.

Tesio, L. (2014). Causing and being caused: Items in a questionnaire may play a different
role, depending on the complexity of the variable. Rasch Measurement Transactions, 28(1),
1454–1456.

Traub, R. E., & Rowley, G. L. (1991). Understanding reliability. Educational Measurement: Issues
and Practices. National Council on Measurement Education, 10(1), 37–45.

Further Reading

Andrich, D. (1988). Rasch models for measurement (pp. 84–86). Newbury Park, CA: Sage.
Andrich, D. (2016). Components of variance of scales with a bi-factor structure from two calcula-
tions of coefficient alpha. Educational Measurement: Issues and Practice, 35(4), 25–30.

Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (2nd ed.). New
York: Holt, Reinhart and Winston.



Chapter 5
The Guttman Structure and Analysis
of Responses

In this chapter, we elaborate the cumulative mechanism introduced in Chap. 2.When
items are placed into a single test or questionnaire, and they are considered instances
or manifestations of the same construct, for example, items of a test of reading
comprehension or of a questionnaire on depression, then the responses to the items
are generally intended to be summarized by a single score. We have seen that this is
assumed in CTT.

The only characteristic that follows from the equation and the conditions in CTT,
which assumes that the total score is a sound summary of the responses, is that
the theoretical correlations among items are positive and the same, and likewise,
therefore, that the theoretical item–total correlations are positive and the same. We
may note that, although these correlations in theory are the same, because of sampling
variation of one kind or another, in real data they will be different. The sampling
variation in CTT, as we have seen, is said to produce error. When correlations are
expected to be the same with no sampling error, then they would be expected to be
similar, though not identical, in real data which inevitably has sampling error. In
this case, it is said that the correlations are assumed or expected to be homogeneous.
In summary, for a total score to be used to summarize the responses on items of an
instrument, it is necessary that the inter-item correlations, and therefore the item–total
correlations, are positive and homogeneous.

However, we have also noted that although item facility, or its complement dif-
ficulty, is considered and described in the CTT context of analyzing data sets, item
difficulty is not formalized in any equation of CTT. Indeed, from the perspective of
CTT, it is perfectly reasonable to have all items more or less of the same relative
difficulty.

In the 1950s, the sociologist and statistician Louis Guttman contributed a great
deal to the understanding of the structure of tests. In particular, he introduced the
relevance of relative item difficulty in the specification of responses to an instru-
ment and by implication, the operational definition of a continuum. Much earlier
in the 1920s and from a different perspective, the psychologist and engineer Louis
Thurstone introduced the relevance of item difficulty in the operational definition
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Table 5.1 Guttman pattern Person response
patterns

1 2 3 4 5 6 Total score
across items

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 1

3 1 1 0 0 0 0 2

4 1 1 1 0 0 0 3

5 1 1 1 1 0 0 4

6 1 1 1 1 1 0 5

7 1 1 1 1 1 1 6

Total score
across persons

6 5 4 3 2 1

of a continuum. We will see that this perspective is consistent with that of Rasch
measurement theory (RMT).

We now study the structure of responses that Guttman introduced for two reasons;
first, because it shows an elaboration of CTT in which relative item difficulty is
explicit, second, because it leads into RMT.

Guttman (1950) enunciated the following key requirement that a set of responses
should meet before the scores on the items could be summed to give a meaningful
single score for a person. With respect to dichotomously scored items, and again
using proficiency as an example,

If person A has a greater total score than person B on a test, then person A should have
answered all the items correctly that person B has answered correctly, and in addition, some
other items that are more difficult.

If this condition is held for every pair of persons, then it would provide the perfect
Guttman structure.

The Guttman Structure

The perfect pattern of the Guttman structure for six items scored 0 for incorrect and
1 for correct is shown in Table 5.1, where the items are ordered in difficulty. In turn,
the difficulty of the items can be inferred from the number correct. Clearly, for items,
the smaller the total score, the more difficult the item, and for persons, the greater
the total score, the more proficient the person. We will see, in the section below, the
significance of the ordering of the items on a continuum.

Furthermore, for any total score of a person, the pattern of correct and incorrect
responses across the items can be inferred, and all persons with the same total score
will have the same pattern. For example, a person with a score of 3 in Table 5.1 will
have answered the three easiest items correctly and the three most difficult items
incorrectly.
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Of course, in real data, two people with the same total score may have different
patterns of correct and incorrect responses. CTTdoes not require the strict ordering of
the Guttman structure. However, in the case that items do have different difficulties,
the positive correlations among items imply more or less that persons with the same
total score will tend to obtain similar scores on the same items. Therefore, if very
many people with the same score did have entirely different patterns of responses,
then this would be evidence that the scores on the items cannot be summarized
meaningfully by a single score. For example, in a test of proficiency with items
of different difficulty in which two persons with the same total score have very
different patterns, it would imply that one person has answered some more difficult
items correctly compared to the other person, and vice versa. As a result, it seems
that it is not justifiable to conclude that these two persons have the same proficiency.

The implication of positive item-total correlations between the scores on an item
and the total score in CTT are similar though not as strict as in the Guttman structure.
In addition, as we have seen, CTT does not rely on relative difficulties of items in
its interpretations of a continuum. Therefore, though compatible, there is a major
distinction between the implication and interpretations of a Guttman structure and
the requirements of CTT.

Interpretations of the Continuum in the Guttman Structure

In general, the Guttman structure provides a tangible interpretation of a continuum,
and an understanding of what more or less on the continuum means.

The Guttman Structure and Assessment of Proficiency

In a test of proficiency, the relative difficulties of the items provide tangible evidence
of relative proficiency implied by a total score. For example, answers to the five
questions in Table 5.2 would give that kind of structure.

In the example of Table 5.2, it is very likely to obtain only Guttman patterns.
Can you tell why? In addition, from the ordering of the items the proficiency along
the continuum is relatively clear. More items could readily be constructed whose
difficulties are between those of the difficulties of items in Table 5.2.

In a set of responses to more typical items in a test of mathematics (or other tests),
it is unlikely that the perfect Guttman pattern will be found. However, if the items
are ordered according to their relative difficulty inferred from their total scores, and
the persons are ordered according to their relative proficiency again inferred from
their total scores, then it can be expected that there will be predominantly 0s in the
upper triangle of the table, and predominantly 1s in the lower triangle. In using the
Guttman structure as a framework, it is important to understand some conditions that
work against obtaining perfect Guttman patterns in real data. There are two main
reasons a Guttman pattern may not be evident.
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Table 5.2 An example of a
test in mathematics which
would result in Guttman
patterns

1. What number does 4 add 3
equal?

4 + 3 = _________

2. If x + 5 = 10, what is the
value of x?

x = _________

3. If x2 − 2x + 1 = 0, what is
the value of x?

x = _________

4. If ax
2−1 = 1, what is the

value of x?
x = _________

5. If y = 2x2, what is the rate
of change of y with respect
to x?

dy
dx = _________

(i) One reason is that the items may not be assessing the same variable as expected,
which implies that the scores on the items should not be summed to give amean-
ingful total score. For example, this might happen if items of scientific under-
standing aremixed upwith items ofmathematics understanding, understandings
that are independent of each other. The analysis is focused on this possibility.
Thus, the structure that is expected, the Guttman structure, is a hypothesis for
the patterns of observed responses.

(ii) A second reason is that, even if the items do assess the same variable, the items
may be very close in difficulty and the persons may all be close in proficiency.
For example, within classes in elementary and high schools and other teaching
situations, items are often constructed to be of relatively similar difficulty and
the people to be tested are usually taught a specific set ofmaterial and effectively
prepared for the test, and as a result, they have similar proficiencies. In such
a case, responses are not affected by relative difficulties of items and relative
proficiencies of persons and so any differences in difficulties or proficiencies
are essentially effects of random error. Thus not having a Guttman structure is
not in itself always evidence that responses should not be summed.

However, ideally in a context where an instrument is being constructed and vali-
dated, it is necessary to construct items of different difficulties and to administer them
to persons of known differences in proficiencies. Then, if an instrument is given to a
homogeneous group of persons in proficiency, and a subset of items is chosen because
they are the most relevant, then it would not be necessary to assess the responses
according to the Guttman structure. Essentially, here we have distinguished between
collecting responses to help construct and evaluate an instrument, and applying a
validated instrument to assess persons. We revisit the distinction between the stages
of constructing an instrument and using it in assessment again when we study RMT.

Despite the possibility of not having a Guttman structure even when scores on
the items of a test can be summed meaningfully, the expectation of the Guttman
structure can provide an important framework for both constructing and interpreting
the empirical evidenceprovidedby tests. First, if a test constructor, including a teacher
of a single class, knows in advance that he or she will use the Guttman structure as a
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framework for analyzing and interpreting the responses, he or she is likely to write at
least some relatively easy and some relatively difficult items.Writing some relatively
easy and difficult items, and some that are in between these extremes, helps clarify
the substantive proficiencies that reflect more or less of the variable to be assessed.
Second, to ensure the best engagement between the students and the items, the items
can be ordered in the test from easy to more difficult. It should be clear that an
ordering in which difficult items appear early in the test is likely to frustrate students
and therefore they are likely to not do as well as they could do on easier items that
appear later in the test. We noted in Chap. 2 that the cumulative mechanism of the
Guttman structure can be used in attitude measurement.

The Guttman structure is not relevant only for the assessment of proficiency. It
can be used in the assessment of attitude. A famous example in the Bogardus social
distance scale (Bogardus, 1933) in which attitudes towards different ethnic groups
were assessed by questions that reflected different degrees of acceptance and where,
in principle, responses would be expected to conform to the Guttman structure.

Elementary Analysis According to the Guttman Structure
in the Case of a Proficiency Example

We now consider an analysis of the data in Table 3.1 of Chap. 3 from the perspective
of a Guttman structure. Table 3.1 showed responses from 50 persons to a 10-item
test. Table 5.3 shows the same data, but the polytomous questions 6, 9 and 10 are now
broken down into dichotomous sub-questions. In Table 5.3, the persons are ordered
according to their total score, which is an index of their relative proficiencies and is
denoted in the table by R. The items are also ordered by their total score, which is
an index of their relative difficulties.

The responses accord relatively well with the Guttman structure, though not per-
fectly. Thus as expected, there are mostly 0s in the upper right triangle of this table,
and mostly 1s in the lower left triangle. There are also some anomalies, for example,
person 30 answered item 1, which was the second easiest, incorrectly, and it was the
only item the person answered incorrectly. This might be interpreted as a slip by the
person, but if possible, should be checked in interview with the student.

In this example, there are no missing responses. The specific place to look for
missing responses is for items at the end of the test, which would suggest the students
did not have enough time to complete the test. If there were missing responses in the
first part of the test, it would also be cause for concern, and would suggest ordering
of items in the test was not according to relative difficulty.
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Item Analysis

Range of Difficulties of Items

There does seem to be a range of difficulties of the items even though there are pairs
and triplets of items that are of the same or similar difficulty. The item order seems
to be close to the order of the items on the test. It would be necessary to consider
the content of the items in order to understand the variable. Although items in a
proficiency test cannot be expected to be in exactly the same order in the test as their
difficulties, they should be close. Similarly, if the test is not supposed to assess the
speed of responding, there should be few or no missing responses for items at the
end of the test. These and other factors demonstrate the validity of the engagement
of the students with the test. Using the Guttman structure as a framework helps in
assessing the validity of the engagement.

An Approximation to the Discrimination Index

As mentioned earlier in CTT, the correlation between the scores on an item and the
total scores on the test is an indication of the item’s discrimination. Here, we study
a method for calculating an approximation to the discrimination index that gives a
graphical and tangible understanding of the relationship between the responses to an
item and the total score. It is termed here simply the discrimination index (DI). Setting
up the calculation of the DI leads to a study of the Rasch model for measurement.
To calculate the DI, it is necessary to place the persons into groups based on their
total scores. Such groups are generally called class intervals and we continue to use
this term. Here we place persons into just three class intervals, those based on their
total scores, the lower third (denoted L), themiddle third (denoted M), and the upper
third (denoted U). The DI has been approximated in similar ways within CTT with
prescriptions for different numbers of class intervals and different proportions of
persons in the class intervals. However, because we are calculating the DI here to
provide a more tangible understanding of the idea of the discrimination of an item,
and to lead into Rasch measurement, and not as an end in itself, we simply use three
class intervals where the numbers in each class interval are close to one third of the
total sample of persons.

Table 5.3 already shows this classification. Thirteen people are in the lower class
interval (denoted NL for the number in the lower class interval), 20 in the middle
class interval (denoted NM), and 17 in the upper class interval (denoted NU). This
was the most convenient break-up of the 50 people into three class intervals closely
equivalent in size.

To calculate the DI for these items, sum the scores within each of the lower, and
upper class intervals, divide these by the total number of persons in the class intervals
to form a proportion of positive responses in these two class intervals, and then form
the difference between these proportions.
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This gives the DI as

DI = TSU/NU− TSL/NL

= PSU− PSL

where

TSU is the total score in the upper class interval,
TSL is the total score in the lower class interval,
PSU is the proportion of the maximum score in the upper class interval, and
PSL is the proportion of the maximum score in the lower class interval.

The DI is based on just the data in the lower and upper class intervals. However,
we would expect that the proportion of persons who answered an item correctly in
the middle class interval would be in between those of the other two class intervals.
We use this proportion later to show the discrimination of items graphically. The
proportion correct in the middle class interval (PRM) is calculated in the same way:

PRM = NRM/NM

where

PRM proportion right in the middle group,
NRM number right in the middle group, and
NM number in the middle group.

Table 5.4 shows the proportions correct in the three class intervals as well as the
index of discrimination (DI) for all the items. The CTT index of discrimination, the
correlation (r) between the item and total scores, are also shown in the table for
completeness.

Item 2 (the easiest item)
Calculating this index for item 2 gives

DI = PRU− PRL

= 17/17− 12/13 = 1.0− 0.92 = 0.08

The value of the DI index is low, very close to 0.0. However, a low value is to be
expected with an item that is either very easy or very difficult. If an item is either very
easy or very difficult, then most people have the item right or have the item wrong,
and therefore the item cannot discriminate among them. Thus while it is desirable
that the item discriminates, if the item is at the beginning of a test and very easy, or
at the end of a test and relatively difficult, then a low discrimination should not be
used as an indication that there is something necessarily wrong with the item. Since
this is the second item of the test, and therefore expected to be relatively easy, we
would not be concerned that it does not discriminate. The CTT correlation index for
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this item was 0.25, a low correlation, but not the lowest. Items 3, 6.3, 6.4 and 9.1 had
lower correlations.

Let us reflect on the way this index is calculated and why it is a reasonable index
to use. First, it is intuitively reasonable to expect that the proportion of the persons
answering correctly in the upper class interval should be greater than the proportion
answering correctly in the lower class interval. Therefore, this difference should be
positive. Further, the greater the difference, the greater the discrimination. Second,
since both proportions have to be less than or equal to 1.0, the index must have
a number between plus or minus 1.0, as one would require of a correlation. It is
empirically possible for a DI and a correlation to be negative, and this would raise
serious questions about the item, its scoring and so on.

Item 6.2 (an item of moderate difficulty)

DI = PRU− PRL

= 16/17− 5/13 = 0.94− 0.38 = 0.56

This value of 0.56 for the discrimination is greater for item 6.2 than for item 2
which was 0.08. Item 6.2 is of moderate difficulty, and so we should expect it to have
a reasonably positive discrimination, above 0.3. The relatively high value of the DI
confirms that the item has worked as intended. The CTT correlation index was 0.43.

If an item was of moderate difficulty, and the DI index was close to 0.0, then it
would be evident that the item does not discriminate, that is, that the proportion of
persons correct on the item in the lower class interval is similar to the proportion
correct in the upper class interval. In other words, the proportion correct is not related
to the performances on the other items, and therefore the item does not reinforce the
information provided by the other items of the test. Therefore, it would be concluded
that the item seems to be testing something different from the other items, or that its
construction is so bad that it is not working in the expected way. Thus, the itemwould
have to be examined closely to see what has gone wrong with its operation. It is this
kind of examination of an item that can be very informative about the construction
of the item, about the learning that has taken place, and so on. We will see that this
confounding of the discrimination and the difficulty of an item is overcome in Rasch
measurement analysis.

Item 7 (a moderately difficult item)

DI = PRU− PRL

= 14/17− 8/13 = 0.82− 0.62 = 0.20

The discrimination of this item is not as high as that of item 6.2, but it is still
positive. By looking at the pattern of results for these two items in Table 5.4, can you
see why the discrimination for item 6.2 is greater than that for item 7? The correlation
index for item 7 was 0.31.

Item 10.4 (the most difficult item)
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DI = PRU− PRL

= 10/17− 0/13 = 0.59− 0.00 = 0.59

In this case, the value of the DI is relatively high. It is high, even though this is
the most difficult item because 30% of the persons answered the item correctly. Had
only 5% of the persons answered it correctly, the DI would be very small.

Graphical Display of the Item Discrimination

The discrimination of items can be displayed graphically as shown below using the
proportions on the vertical axis and the class intervals on the horizontal axis. To
locate the scores on the horizontal axis, the average score of each of the three class
intervals is obtained. This represents the location of each class interval as a whole,
and then the proportion of persons who answered the item correctly in each class
interval is plotted on the vertical axis at the respective locations of the class intervals.

The plots of these proportions on the vertical axis and the average score of each
class interval on the horizontal axis for items 2, 6.2, 7 and 10.4 are shown in Fig. 5.1.
It should be evident that item 2 hardly discriminates—the graph is almost horizontal
indicating that the proportions correct on the item do not increasewith the proficiency
of the class interval. However, this is expected because the item is so easy that almost
all persons, even those in the lower class interval, answered this item correctly.

We expect that the proportions correct on an itemwill increasewith the proficiency
of the class interval. If the proportions correct do increasewith the proficiencies of the
class intervals, then the item discriminates positively. Items 6.2 and 10.4 discriminate
the best, while item 7 has a moderate discrimination.

Fig. 5.1 Plots of proportions correct in each of three class intervals for items 2, 6.2, 7 and 10.4
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Person Analysis

The person analysis begins at the level of the group of persons. TheGuttman structure
immediately sets up how many persons obtained a given score, which makes it easy
to proceed to make a graph of the frequency distribution. Figure 5.2 shows that the
majority of the persons had a total score greater than 10, and that the majority scored
13. It also shows that the distribution has a single mode or peak, with a few people
in the tail of the distribution at the lower end. Of course, this is exactly the same
information that can be gleaned from Table 5.3 from the columns showing the raw
scores and the frequencies in the Guttman table, but it is displayed graphically and
reinforces the interpretation.

Overall, in this test and from the perspective of a general context, the distribution
shows nothing unusual. One might check who the three persons were that obtained
only scores of 6, 7 and 8 respectively, and see what kinds of errors these students
made and which items they answered correctly even though these were the easy
items. As mentioned earlier in this chapter, in real educational test data, it is most
unlikely that the perfect Guttman pattern will be found. We will see that the Rasch
model is a probabilistic model and requires a probabilistic Guttman structure when
items have dichotomous responses. When items are ordered from least difficult to
most difficult in the Rasch model, the Guttman response pattern is the most probable
response pattern for a person.
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Extended Guttman Analysis: Polytomous Items

Tests often contain items that have a maximum score greater than 1, and it might not
be possible to break the marks into single marks as easily as was done in Table 5.1.
Table 5.5 shows the data rearranged so that scores for items belonging to the same

Table 5.5 Guttman framework including ordered category items

Person Items in order of total score (difficulty)

2 1 5 3 4 7 8 6(4) 9(3) 10(4) R F CF

38 1 0 1 1 0 0 0 1 2 0 6 1 1 Lower
group
(13)

2 1 0 1 1 0 0 0 3 1 0 7 1 2

40 0 1 0 1 1 0 1 3 1 0 8 1 3

41 1 1 1 1 0 1 0 3 2 0 10 2 5

42 1 1 0 1 1 0 0 2 3 1 10

35 1 1 1 1 1 1 0 3 2 0 11 3 8

44 1 1 1 1 0 1 0 3 3 0 11

8 1 1 1 0 1 1 0 4 1 1 11

9 1 1 0 1 1 1 1 2 3 1 12 5 13

25 1 1 1 0 1 1 0 4 2 1 12

11 1 0 1 1 1 0 1 3 3 1 12

46 1 1 1 1 1 1 1 0 3 2 12

29 1 1 1 1 0 1 0 3 3 1 12

48 1 1 1 0 1 1 1 4 2 1 13 11 24 Middle
group
(20)

18 1 1 0 1 1 1 1 4 2 1 13

32 1 1 1 1 1 1 1 3 2 1 13

20 1 1 1 0 1 1 1 3 3 1 13

13 1 1 1 1 1 1 0 2 3 2 13

22 1 1 1 1 1 1 1 4 1 1 13

34 1 1 1 1 1 0 1 3 2 2 13

43 1 1 1 1 1 1 0 4 2 1 13

36 1 1 1 1 1 1 1 3 2 1 13

37 1 1 1 1 0 1 1 4 3 0 13

27 0 1 1 1 0 1 0 4 2 3 13

12 1 1 1 1 1 1 1 3 0 4 14 9 33

21 1 1 1 1 1 0 1 3 2 3 14

14 1 1 1 0 1 1 1 3 2 3 14

15 1 1 1 1 1 0 1 4 1 3 14

16 1 1 1 1 1 0 1 4 3 1 14

17 1 1 1 1 1 1 0 4 3 1 14

(continued)
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Table 5.5 (continued)

Person Items in order of total score (difficulty)

2 1 5 3 4 7 8 6(4) 9(3) 10(4) R F CF

45 1 1 1 1 1 1 0 3 3 2 14

4 1 1 1 1 1 0 1 3 3 2 14

5 1 1 1 1 1 0 1 2 3 3 14

6 1 1 1 1 1 1 1 4 3 1 15 6 39 Upper
group
(17)

7 1 1 1 1 1 1 1 4 2 2 15

49 1 1 1 1 1 0 1 4 3 2 15

50 1 1 1 1 1 0 1 3 3 3 15

23 1 1 1 1 1 1 0 4 3 2 15

24 1 1 1 1 1 1 1 4 3 1 15

10 1 1 1 1 1 0 0 4 3 4 16 5 44

26 1 1 1 1 1 1 1 3 3 3 16

19 1 1 1 1 1 1 1 4 3 2 16

31 1 1 1 1 1 1 1 4 3 2 16

33 1 1 1 0 1 1 1 4 3 3 16

28 1 1 1 1 1 1 1 3 3 4 17 5 49

1 1 1 1 1 1 1 1 4 3 3 17

30 1 0 1 1 1 1 1 4 3 4 17

39 1 1 1 1 1 1 1 4 3 3 17

47 1 1 1 1 1 1 1 4 3 3 17

3 1 1 1 1 1 1 1 4 3 4 18 1 50

Total
score

48 46 46 44 43 36 34 166 123 90

Item 2 1 5 3 4 7 8 6(4) 9(3) 10(4)

%
Max-
imum

96 92 92 88 86 72 68 83 82 45

Note R = total score, F = frequency, CF = cumulative frequency

set are added together and persons and items are arranged according to their total
scores for a Guttman analysis. It can be seen from Table 5.5 that the totals for items
6, 9 and 10 are greater for these items than for any of the others, but this is in part
because the maximum possible score on each item is greater than for the other items.
The total scores are 166, 123 and 90 respectively, and these are shown at the bottom
of the columns of the respective items.

However, to conduct a Guttman item analysis, it is necessary to take account of
the maximum score of these items which is greater than 1. Therefore, in the last row
of Table 5.5, the scores are divided by the maximum score of the item, and this is
converted to give the % of the maximum possible score. Thus the total for item 6 is
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divided by 4, that for item 9 by 3 and that for item 10 by 4, because these are the
maximum scores that a person could obtain on these items. These figures, 41.5, 41
and 22.5, are now comparable to the scores for the other items. Because these scores
are out of 50, they are doubled to convert them to a percentage.

To set up the Guttman structure for the item analysis, we therefore need a second
table, called Table 5.6, in which we reorder the items using these new figures. In
Table 5.6 we also convert each person’s score to a proportion of the maximum, so
that it is between 0 and 1. For example, the score of 1 of person 38 on item 6 is
converted to 1/4 = 0.25, because the maximum possible score on this item was
4. The persons also must be reordered according to their new total score which is
denoted R*. This table is now convenient for further analyzing the persons and items.

Table 5.6 Guttman framework with maximum scores of items converted to 1

Person Items in order of weighted score (difficulty)

2 1 5 3 4 6(4) 9(3) 7 8 10(4) R R*

38 1 0 1 1 0 0.25 0.67 0 0 0.00 6 3.92 Lower
group
(17)

2 1 0 1 1 0 0.75 0.33 0 0 0.00 7 4.08

40 0 1 0 1 1 0.75 0.33 0 1 0.00 8 5.08

42 1 1 0 1 1 0.50 1.00 0 0 0.25 10 5.75

41 1 1 1 1 0 0.75 0.67 1 0 0.00 10 6.42

27 0 1 1 1 0 1.00 0.67 1 0 0.75 13 6.42

8 1 1 1 0 1 1.00 0.33 1 0 0.25 11 6.58

44 1 1 1 1 0 0.75 1.00 1 0 0.00 11 6.75

25 1 1 1 0 1 1.00 0.67 1 0 0.25 12 6.92

11 1 0 1 1 1 0.75 1.00 0 1 0.25 12 7.00

29 1 1 1 1 0 0.75 1.00 1 0 0.25 12 7.00

35 1 1 1 1 1 0.75 0.67 1 0 0.00 11 7.42

9 1 1 0 1 1 0.50 1.00 1 1 0.25 12 7.75

48 1 1 1 0 1 1.00 0.67 1 1 0.25 13 7.92

18 1 1 0 1 1 1.00 0.67 1 1 0.25 13 7.92

34 1 1 1 1 1 0.75 0.67 0 1 0.50 13 7.92

43 1 1 1 1 1 1.00 0.67 1 0 0.25 13 7.92

20 1 1 1 0 1 0.75 1.00 1 1 0.25 13 8.00 Middle
group
(21)

13 1 1 1 1 1 0.50 1.00 1 0 0.50 13 8.00

37 1 1 1 1 0 1.00 1.00 1 1 0.00 13 8.00

10 1 1 1 1 1 1.00 1.00 0 0 1.00 16 8.00

15 1 1 1 1 1 1.00 0.33 0 1 0.75 14 8.08

(continued)
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Table 5.6 (continued)

Person Items in order of weighted score (difficulty)

2 1 5 3 4 6(4) 9(3) 7 8 10(4) R R*

21 1 1 1 1 1 0.75 0.67 0 1 0.75 14 8.17

14 1 1 1 0 1 0.75 0.67 1 1 0.75 14 8.17

16 1 1 1 1 1 1.00 1.00 0 1 0.25 14 8.25

17 1 1 1 1 1 1.00 1.00 1 0 0.25 14 8.25

45 1 1 1 1 1 0.75 1.00 1 0 0.50 14 8.25

4 1 1 1 1 1 0.75 1.00 0 1 0.50 14 8.25

5 1 1 1 1 1 0.50 1.00 0 1 0.75 14 8.25

46 1 1 1 1 1 0.00 1.00 1 1 0.50 12 8.50

49 1 1 1 1 1 1.00 1.00 0 1 0.50 15 8.50

50 1 1 1 1 1 0.75 1.00 0 1 0.75 15 8.50

23 1 1 1 1 1 1.00 1.00 1 0 0.50 15 8.50

22 1 1 1 1 1 1.00 0.33 1 1 0.25 13 8.58

32 1 1 1 1 1 0.75 0.67 1 1 0.25 13 8.67

36 1 1 1 1 1 0.75 0.67 1 1 0.25 13 8.67

12 1 1 1 1 1 0.75 0.00 1 1 1.00 14 8.75

33 1 1 1 0 1 1.00 1.00 1 1 0.75 16 8.75

30 1 0 1 1 1 1.00 1.00 1 1 1.00 17 9.00 Upper
group
(12)

7 1 1 1 1 1 1.00 0.67 1 1 0.50 15 9.17

6 1 1 1 1 1 1.00 1.00 1 1 0.25 15 9.25

24 1 1 1 1 1 1.00 1.00 1 1 0.25 15 9.25

26 1 1 1 1 1 0.75 1.00 1 1 0.75 16 9.50

19 1 1 1 1 1 1.00 1.00 1 1 0.50 16 9.50

31 1 1 1 1 1 1.00 1.00 1 1 0.50 16 9.50

28 1 1 1 1 1 0.75 1.00 1 1 1.00 17 9.75

1 1 1 1 1 1 1.00 1.00 1 1 0.75 17 9.75

39 1 1 1 1 1 1.00 1.00 1 1 0.75 17 9.75

47 1 1 1 1 1 1.00 1.00 1 1 0.75 17 9.75

3 1 1 1 1 1 1.00 1.00 1 1 1.00 18 10.00

Total
score

48 46 46 44 43 41.5 41 36 34 22.5

Item 2 1 5 3 4 6(4) 9(3) 7 8 10(4)

%
Maxi-
mum

96 92 92 88 86 83 82 72 68 45

Note R = total score, R* = the new weighted total score
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Table 5.7 Proportions of
persons correct in each of
three class intervals and
indices of discrimination for
items 6, 9 and 10

Item

6 9 10

PRL 0.78 0.71 0.21

PRM 0.8 0.83 0.52

PRU 0.96 0.97 0.67

DI 0.18 0.26 0.46

r 0.51 0.48 0.75

Fig. 5.3 Proportions of persons correct for items 6, 9 and 10

Table 5.7 shows the required proportions to draw the discrimination curves and
calculate the discrimination index (DI) for items 6, 9 and 10. It also shows, for
completeness, the CTT correlation index.

Figure 5.3 shows a graphical representation of the way the proportions increase
as the proficiency of the group increases.

Exercises

1. Organize the data from the Exercises in Chap. 3 in terms of a Guttman structure
according to Table 5.5 in this chapter.

2. Draw a frequency distribution of the scores of the persons.
3. Organize the data in terms of a Guttman structure according to Table 5.6.
4. Calculate the discriminations for items 2, 5 and 7.
5. Draw the plots of the discriminations of items 2, 5 and 7 as in Fig. 5.1.
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6. Which of these three items is the best discriminating item? Comment on the
operation of each item.
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Chapter 6
The Dichotomous Rasch Model—The
Simplest Modern Test Theory Model

Statistics Reviews 5, 6 and 7 are intended to cover the basic ideas required for an
understanding of modern test theory.
Statistics Review 5: Probability
Statistics Review 6: Indices
Statistics Review 7: Logarithms

This chapter introduces the Rasch model for dichotomous responses, the simplest
of the modern test theory models. We refer to this model as the dichotomous Rasch
model (dichotomous RM). It has some very special properties, including some con-
nections with CTT and the Guttman structure and some critical differences from
them. Whereas the Guttman structure is deterministic, the Rasch model is proba-
bilistic. In Part III of this book, we generalize the model to polytomous responses in
more than two ordered categories. The starting point for developing the dichotomous
RM is when a person engages with an item and a response is produced.

The history of the way this model was arrived at and further explication of the case
for themodel is provided in Andrich (2004, 2005). Rasch (1960) is themajor relevant
reference of Rasch’swriting. Chapter 26 of this book is another chapter devoted to the
dichotomous Rasch model. The chapter shows a simplified illustration from Rasch’s
original work on monitoring the progress of children’s reading over time, which led
him to his work on measurement and shows the alternative notation for the model
using odds ratios.

Abstracting the Proportion of Successes in a Class Interval
to Probabilities

Before proceeding to develop theRaschmodel,we abstract the graphical construction
of the DI we studied in Chap. 5. This abstraction appears in the dichotomous RM
and therefore will be familiar.

© Springer Nature Singapore Pte Ltd. 2019
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In constructing a graphical display of theDI inChap. 5,we calculated the observed
proportion of positive responses in each of three class intervals. Then class intervals
themselves were located on the horizontal axis according to their mean score and
the proportions for each mean score for each item were plotted on the vertical axis.
Because the items were expected to assess the same variable and to conform rea-
sonably well to the Guttman structure, we expected the observed proportions of
positive responses in the class intervals to increase with the mean proficiencies of
the class intervals. In addition, the differences between the difficulties of the items
were reflected in the location of the graphs of the items.

Recall from Statistics Review 5 that a probability is a theoretical proportion and
that a probability can be considered a theoretical abstraction of an observed propor-
tion. We now consider two successive abstractions of the observed proportions in
class intervals to theoretical probabilities.

First, consider more than three class intervals; in fact, we consider one for each
total score. Thus suppose that there are many persons in an assessment, and that
there are a large number of persons who have obtained each total score. For example,
suppose there are 18 dichotomous items as in the example of proficiency assessment
in Chap. 5, but that 10 000 persons with a wide range of proficiencies had responded
to the items and that there were many persons with each total score. In that case,
each total score can be a class interval and the proportion of positive responses for
each item for each total score can be calculated.

Figure 6.1 shows an example of the observed proportions for each total score for
items 3, 7, 11 and 15 of this 18 item instrument in which 10 000 persons responded to
the items. These 10 000 persons and their responses were simulated using computer
software. It is evident that as the total score increases, then the proportion correct
increases for each item. In addition, it is evident that these four items are of increasing
difficulty, with item 3 the easiest and item 15 the most difficult. Finally, it is also
clear how the proportions converge to 1 as the total score approaches the maximum
of 18, and converge to 0 as the total score approaches 0.

Second, we abstract the continuum which shows the total scores to a theoretical
location of the persons. In terms of CTT, these are the true scores of the persons. In
particular, we will see that they are the same as the true scores in CTT at the item
level. If we abstract the continuum to true scores, then our proportions are theoretical,
that is, they are probabilities. These are probabilities that a person of a given true
score will respond positively to an item of particular difficulty. Figure 6.2 shows such
an abstraction from the example in Fig. 6.1. Instead of the total score, the true score
is located on the horizontal axis. Instead of the observed proportion of persons with a
positive response, the probability of a positive response is plotted on the vertical axis.
Unfortunately, in modern test theory this abstraction of a location on the continuum
is not called a true score, but the idea and formalization are identical. In this book, it
is the proficiency.

It is evident in the abstraction from Figs. 6.1 to 6.2 that the curves are continuous
and that the probability of a positive response ranges between 0 and 1. The curves
are at different locations, but they are parallel. We will see that this is a particular
feature of the dichotomous RM.
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Fig. 6.1 Observed proportions of positive responses for each total score for four items on an 18
dichotomous item instrument

Fig. 6.2 Probabilities of positive responses for four items of different locations as a function of the
person location on the continuum
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A Two-Way Frame of Reference and Modelling a Person’s
Response to an Item

We now develop the theoretical curves of Fig. 6.2 from the perspective of modern
test theory models, and in particular the dichotomous RM. As already noted, modern
test theory models focus on the engagement of a person with an item rather than
upon the total test score of a person as in CTT. As we will see, the total score has a
central role in the dichotomous RM, but the mathematical model commences with a
modelling of a person’s response to an item.

We begin from first principles by defining the frame of reference, central to under-
standing Rasch models. The frame of reference refers to

(i) the kind or class of items which are governed by the construct being assessed,
(ii) the kind or class of persons who are relevant to be assessed, and
(iii) the conditions of the administration of the instrument.

The structure of the frame of reference is shown in Table 6.1.
The frame of reference is also specified in CTT, although there the specification

is in terms of populations. There the instrument should be relevant for the population
of persons who are to respond to the items. Conceptually in CTT, an instrument is
applied to a random sample from the population. Likewise, the items are seen to be
a sample of items from a population or universe of items, where in principle each
item is a replication of all other items. However, as we have seen, in CTT, there is
no item location parameter such as its difficulty. The Guttman structure elaborates
CTT by implying a relative location of the items, where their differences in location
are central to understanding the variable. However, as we shall see later, there is a
sense in which items can be exchangeable.

Here, we use the general term location for the relative values of the items and
persons on a continuum because the application of the model is general, and not only
for the assessment of proficiency.

In Rasch’s two-way frame of reference, each person and each item has a location
parameter specified. Because the items are intended to assess the same variable,

Table 6.1 Rasch’s two-way
frame of reference of objects,
agents and responses

Response x Xni Agents δi

A1 A2 A3 … Ai … AI

Objects βn O1 x11

O2

O3

.

.

.

On xni
.
.
.

ON xNI
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there is of course a sense in which the items are replications of each other as in CTT.
However, although they are replications in this sense, they are not replications in the
sense that they are of the same location.

Table 6.1 shows a general frame of reference using Rasch’s terminology of objects
and agents. In our examples, the objects are persons, and the agents are items. In this
book, the location of person n on the continuum is characterized by the parameter
βn (Greek letter beta) and the location of item i on the continuum is characterized
by the parameter δi (Greek letter delta). In the assessment of proficiency, these are
referred to as proficiency and difficulty, respectively. The parameter βn , as indicated
above, is identical to the true score τn in CTT. In other modern test theory models,
this same parameter is generally notated as θn (Greek letter theta).

Engagements of Persons with Items

From the perspective of the frame of reference in Table 6.1, persons engage with
items with respect to a single variable. That is, the same person property is elicited
by each of the items for each of the persons. This same property must reside in
the items and in the persons. For example, in an assessment of proficiency in some
area of mathematics, the items have mathematics proficiency built into them, and
in answering them, a person has to exhibit this proficiency. A useful analogy is the
measurement of mass using a beam balance. On one side of the balance is one or
more masses, calibrated in some units; on the other is an object with mass. In this
case, mass is present on both sides of the balance, and in a well-constructed balance it
is only the relative masses that affect the beam’s location. Thus, the colours, volumes
and shapes of the objects should be irrelevant.

An example in human assessment that appears like the beam balance example is
an oral examination. Here, one person asks a series of questions, and the other person
responds to them. The questions should be relevant to the proficiency being assessed,
while the size, hair colour and other background characteristics of the person, should
be irrelevant. However, the requirement that background characteristics remain irrel-
evant is not always met in oral examinations or interviews. Written assessments in
part overcome the effects of irrelevant characteristics that can be present in oral
examinations. On the other hand, they can introduce other irrelevant characteristics
that must be guarded against.

Formalizing Parameters in Models

In general, Greek letters are used to characterize parameters in models and val-
ues of these parameters. Roman letters are generally used to characterize observed
responses. In Table 6.1, the response of person n to item i is denoted xni and in the
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dichotomous response case, it takes on only values xni = 0 or xni = 1. The parameters
βn and δi can take on any real values, that is, −∞ < βn < ∞ and −∞ < δi < ∞.

We now briefly state the case for the Rasch model with respect to the frame of
reference. This case drives Rasch measurement theory (RMT) and we elaborate it
throughout the rest of the book. Paraphrasing Rasch, the case is that, if comparisons
are to be made between persons in terms of their parameters and between items
in terms of their parameters, within a frame of reference, then the structure of the
responses should be such that

(i) the comparison between any two persons is independent of which subset of
items in the frame of reference is chosen for making that comparison, and
independent of any other persons that might be compared;

(ii) the comparison between any two items is independent ofwhich subset of persons
in the frame of reference is chosen formaking that comparison, and independent
of any other items that might be compared.

Such comparisons, where they exist, are said to be invariant. We stress that this
invariance of comparisons of persons and items in (i) and (ii) above is a requirement;
it is not a mere description of any data set. We revisit and stress this point throughout
the book.

One difference in the perspective between RMT and CTT is that in the former,
any subsamples from the frame of reference (in traditional terms population) need
to show the invariance of the comparisons of items, while in the latter only random
samples need to show the invariance. For example, if males and females are included
in the frame of reference or population, then the item parameters are required to
show invariance across the males and females. Clearly, the males and females are
not random samples from the population.

Effects of Spread of Item Difficulties

Because the specification of item locations in the dichotomous RM is distinctive
from CTT, we now elaborate the role of the locations of items in RMT, and indeed in
modern test theory in general. In themodern test theorymodels the assessed construct
is conceived as a single dimension along which items can be located. As we have
noted already, these differences help operationalize and clarify the construct. Various
locations of a set of items on a variable are provided in Fig. 6.3.

Line 1 in Fig. 6.3 represents an example of a person and five items located on a
variable. Items 1, 2 and 3, in this case, are closer to the low proficiency end of the
variable than the person with proficiency βn . These are items which would generally
be answered correctly by persons with proficiency βn . Items 4 and 5 require more
proficiency than items 1, 2 and 3. In a Guttman structure, the person with proficiency
βn in line 1 would answer the first three items correctly and the last two incorrectly.
However, from the curves in Fig. 6.2, we do not expect an exact Guttman pattern.
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Fig. 6.3 Locations of person proficiencies and item difficulties on a variable

Therefore, the number correct is likely to be 2, 3 or 4, and these are likely to be items
1, 2, 3 and 4 but not item 5.

If the items were located as in line 2, the person would be expected to answer
zero items correctly. If they were located as in line 3 the person would be expected
to answer four or five correctly. Although the person’s proficiency has not changed,
because of the differences in item difficulties between the examples, the expected
number of correct responses has changed.

If there are two persons, as shown in lines 4–8, then whether differences in their
proficiencies will be revealed will depend on both their locations and the relative
difficulties of the items. If all the items are located between the persons as in line 4,
person 1 would be expected to score five and person 2 to score zero. In that case,
we could infer that person 1 has greater proficiency than person 2. However, even in
this case, we wouldn’t know how much more proficient person 1 is than person 2.
The reason is that if person 1 was much further to the right on the continuum, the
person could still only score five on these items. There is a similar feature in line 6,
where the expected scores of two for person 2 and five for person 1 would reveal a
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difference between persons 1 and 2 but person 1 could be anywhere out to the right
and yet could only obtain a maximum score of five.

The situations in lines 5 and 7might reveal no differences between the twopersons,
where both may obtain a score of zero for line 5 and a score of two for line 7. In
line 8, the items are located so that the scores obtained by the two persons are likely
to reveal the locations of the individuals and reveal the difference between them.
Person 1 would be expected to score four, and person 2 to score two.

In the above discussion, and to make the point of the relevance of the locations
of the items, we assume we know the locations of the items. In well-advanced and
standardized tests, this is the case. How to establish the locations of the items is
discussed in the chapters that follow.

Person–Item Engagements

Whenperson n responds to item iwhich is scored dichotomously as positive/negative,
the person’s response xni is a function of the person’s location βn and the item’s
location δi . In the case of assessment of proficiency, the response would be a function
of the person’s proficiency and the item’s difficulty.

In the illustration with which we introduced the idea of a latent trait, we presumed
that a person would tend to answer correctly most items below the proficiency on
the trait and incorrectly most items above the same proficiency. Thus, if the person’s
proficiency is greater than the item’s difficulty, we would expect the probability of a
correct response to be greater than 0.50, that is

if (βn − δi ) > 0 then Pr{xni = 1} > 0.5.

Likewise, if the person’s proficiency is less than the item’s difficulty, we would
expect the probability of a correct response to be less than 0.50, that is

if (βn − δi ) < 0 then Pr{xni = 1} < 0.5.

It follows that in the case where the person’s proficiency and the item’s difficulty
are identical, that the probability of a correct response would be 0.50, that is

if (βn − δi ) = 0 then Pr{xni = 1} = 0.5.

This analysis allows us to relate the probability of a correct response to the dif-
ference between the person’s proficiency and the item’s difficulty. The probability,
as was reflected in Fig. 6.2, can range from 0 to 1. The difference between the
proficiency and the difficulty can range from −∞ to +∞. That is

0 ≤ Pr{xni = 1} ≤ 1, (6.1)



Person–Item Engagements 83

−∞ ≤ (βn − δi ) ≤ +∞. (6.2)

If we transform the difference between proficiency and difficulty using it as an
exponent of the base e, the expression will have the limits of zero and infinity, that is

0 ≤ e(βn−δi ) ≤ +∞. (6.3)

With a further transformation, we can obtain an expression which has the limits
zero andone and therefore can be the probability of a correct response. The expression
and its limits are

0 ≤ e(βn−δi )

1 + e(βn−δi )
≤ 1. (6.4)

If we take this formula to be the probability of a correct response for person n on
item i, the relationship can be written as

Pr {xni = 1|βn, δi } = e(βn−δi )

1 + e(βn−δi )
. (6.5)

The left-hand side of Eq. (6.5) is read as ‘the probability of person n answer-
ing positively on item i’ (or of the response of person n to item i being scored 1)
given the person’s location (proficiency) βn and the item’s location (difficulty) δi .
Equation (6.5) is the dichotomous RM.

Examples

You can appreciate this formula if you substitute some values in it. For example,
considering a person with proficiency represented on the scale by βn = 6 answering
an item located on the scale at δi = 4, the probability of a correct response is

Pr{xni = 1|βn, δi } = e(6−4)

1 + e(6−4)
= e2

1 + e2
= 7.389

8.389
= 0.88.

It is clear from the formula that it was unimportant that the proficiency was 6 and
the difficulty 4. The important thing is that the difference was 2. We will have more
to say about the implied units of this difference in the dichotomous Rasch model.
The unit is in fact arbitrary, as it is in general measurement. For the present, we
note that the difference βn − δi is said to be in logits. It is short hand for taking the
logarithm of it. Equation (6.5) which gives us the probability of a correct response
is a simple logistic function. The choices in moving from Eqs. (6.2) to (6.4) were
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made by Rasch because the requirement of invariance of comparisons listed above
lead to this simple logistic formulation.

Some further examples of the probability of a positive response are set out in
Table 6.2. These show how the probability varies according to how close the item
and person locations are on the scale.

Item Characteristic Curve and the Location of an Item

From Table 6.2, if not already from the formula itself, you can see that when the (βn

− δi ) is positive, the probability of a positive response is greater than 0.50; when
it is negative, the probability is less than 0.50; and when it is zero, the probability
is 0.50. Figure 6.4 shows the probability of a positive response as a function of the
difference between the person and item locations. It is evident that this graph is the
same as those that were abstracted from the observed proportions in Fig. 6.2.

The graph of items in Figs. 6.2 and 6.4 are called item characteristic curves.
The horizontal axis represents the variable with items and persons located on this
variable. The point on the variable at which the probability of a positive response is
0.50 is the point at which the item is located.

Table 6.2 Probabilities of correct response for persons on items of different relative difficulties

(βn − δi ) 5 4 3 2 1 0 −1 −2 −3 −4 −5

Probability of a
correct response

0.99 0.98 0.95 0.88 0.73 0.5 0.27 0.12 0.05 0.02 0.01

Fig. 6.4 Probability of a correct response to an item by persons of varying proficiency
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Fig. 6.5 Item characteristic curves for four items as a function of the person and item locations on
the continuum

Item characteristic curves for the four items shown in Fig. 6.2 are repeated in
Fig. 6.5, showing the locations δi of the items on the scale in logits.

Related curves could be drawn for persons by placing item locations on the hor-
izontal axis and plotting the probability for a person being correct in responding
to items of varying locations. Because a person’s probability of a positive response
diminishes as the item location increases, these characteristic curves would fall from
left to right.

The Dichotomous Rasch Model: A General Formula

The probability of an incorrect response on a particular item is

Pr{xni = 0|βn, δi } = 1 − Pr{xni = 1|βn, δi } = 1 − e(βn−δi )

1 + e(βn−δi )

= 1

1 + e(βn−δi )
(6.6)

We now have Eq. (6.5) as the probability of a correct response and Eq. (6.6) as
the probability of an incorrect response. We can express both responses by a single
formula
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Pr{xni |βn, δi } = exni (βn−δi )

1 + e(βn−δi )
(6.7)

in which the numerator becomes the same as in Eq. (6.5) when the response is correct
(xni = 1) and the same as in Eq. (6.6) when the response is incorrect (xni = 0). Recall
e0 = 1. The variables βn and δi are called parameters of the model of Eq. (6.7). You
can see from Table 6.2 that the values of the parameters will tend to range between
−3 and +3 logits.

Specific Objectivity

Rasch argued the importance of comparisons as a form of thinking, and further that
invariant comparisons within a specified frame of reference provided objective com-
parisons. He coined the term specific objectivity to describe the property of invariant
comparisons within a specified frame of reference. Although we acknowledge his
term, and recognize others have used it, we retain the phrase invariant comparisons.
We do this because we think the idea of invariant comparisons is compelling in its
own terms, and does not require further justification. On the other hand, specific
objectivity needs to be explained in terms of invariant comparisons. We recognize
that this choice is a matter of taste.

Exercises

1. In the Rasch model, we denote the proficiency of person n by βn .

(a) What is the corresponding parameter in CTT?
(b) When we refer to the parameter βn as the proficiency of person n, in what

sense is this a person’s proficiency?
[Use no more than two sentences to answer this question]

(c) Why is a model such as the Rasch model referred to as a unidimensional
model?
[Use no more than two sentences to answer this question]

2. Suppose person n has the proficiency βn = 1.2 and that this person attempts three
items with difficulties δ 1 = −1.0, δ2 = 1.2, and δ 3 = 2.0.

(a) What is the probability that this person will answer each item correctly?
(b) Describe in no more than two sentences what you understand by the term

probability of answering an item correctly.

3. Suppose five persons with proficiencies β1 = −1.9, β2 = −0.9, β3 = 0.1, β4 =
1.1, and β5 = 2.1 attempt an item with difficulty δ = 0.3.
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(a) What is the probability that each person will answer the item correctly?
(b) Draw a pair of axes for a graphwith the proficiency as the horizontal axis and

the probability of a correct response as the vertical axis. On this graph, plot
the probability for the five persons attempting the item.Mark the proficiency
values of the persons and the difficulty value of the item on the horizontal
axis.

For further exercises see Exercise 1: Interpretation of RUMM2030 printout in
Appendix C.
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Chapter 7
Invariance of Comparisons—Separation
of Person and Item Parameters

Statistics Review 8: Conditional probability
Statistics Review 9: Independence

You should start this chapter by reviewing conditional probability inStatistics Review
8.Make sure youunderstand the concrete example of the tossing of two coins illustrat-
ing the use of conditional probabilities. In this chapter, we set up a parallel argument
with the Rasch model. We then show through an example that the probability that a
person answers one of two items correctly depends only on the relative difficulties of
the items and is independent of the proficiency of the person. To help appreciate this
example, which involves the expression of the model and conditional probabilities,
understanding the simpler example of the tossing of two coins is very important.
Because the Rasch model implies statistical independence of responses, the prob-
ability of answering both items correctly equals the product of the probabilities of
answering the separate items correctly. This condition of independence of responses
is touched on briefly towards the end of this chapter but in more detail in subsequent
chapters of the book. It is an extremely important condition, both in the construc-
tion of instruments and in the Rasch model for analysing data from the instruments.
Statistics Review 9 reviews independence in set theory. Finally, we elaborate on the
important principle of measurement, namely invariance of comparisons, which we
introduced in the previous chapter.

A feature of CTT is that its various properties depend on the distribution of the
proficiencies of the persons. Indeed, many of the statistics depend on the assumption
that the true scores of people are normally distributed. A feature of the Rasch mea-
surement model is that no assumptions need to be made about this distribution, and
indeed, the distribution of proficienciesmay be studied empirically. In order to appre-
ciate how this works algebraically, and then conceptually, we begin by considering
that a person responds to two items which are simply scored correct or incorrect.
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Conditional Probabilities with Two Items in the Rasch Model

The calculations below are exactly as in the tables in Statistics Review 8 except that,
instead of having numerical probabilities in the expressions, we have theoretical ones
according to the model. We then use some specific values in the equations derived
from the dichotomous Rasch model. We continue to use the concepts of proficiency
and difficulty in the exposition, though locations of persons and items could be
substituted readily for these expressions.

Let the proficiency of person n be βn and the difficulty of item i be δi . Then the
probabilities of this person answering two items, i= 1 and 2, correctly or incorrectly
are shown in Table 7.1. To save space, we note that in theRaschmodel, the probability
of the two outcomes xni = 1 (correct) and xni = 0 (incorrect) are given respectively
by

Pr{xni = 1} = eβn−δi

1+ eβn−δi
and Pr{xni = 0} = 1

1+ eβn−δi

in which the denominator in both expressions is 1+ eβn−δi .
For convenience, we let γni = 1+eβn−δi and use this as the denominator through-

out.
Now we proceed with the same conditional probability argument as with the two

coins, except that once again we use the probabilities according to the model rather
than the numerical probabilities.

This means that we consider only those outcomes where one is correct (1) and
the other is incorrect (0). This subset of outcomes is shown in Table 7.2.

Table 7.1 Probabilities of responses of a person to two dichotomously scored items

Item 1 (Probability) Item 2 (Probability) Joint outcomes (Probability)

1 (eβn−δ1 )/γn1 1 (eβn−δ2 )/γn2 (eβn−δ1/γn1) (eβn−δ2/γn2)

0 1/γn1 1 (eβn−δ2 )/γn2 1/γn1 (eβn−δ2/γn2)

1 (eβn−δ1 )/γn1 0 1/γn2 (eβn−δ1/γn1) 1/γn2

0 1/γn1 0 1/γn2 1/γn1 1/γn2

Total = 1.00

Table 7.2 Probabilities of one item correct and the other incorrect

Item 1 (Probability) Item 2 (Probability) Joint outcomes (Probability)

0 1/γn1 1 (eβn−δ2 )/γn2 (eβn−δ2 )/γn1γn2

1 (eβn−δ1 )/γn1 0 1/γn2 (eβn−δ1 )/γn1γn2

Total probability (eβn−δ2 )/γn1γn2 + (eβn−δ1 )/γn1γn2

= (eβn−δ1 + eβn−δ2 )/γn1γn2
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The total probability of one of the items being correct and the other incorrect is
shown at the bottom of Table 7.2. Relative to this total probability (of either one of
the items being answered correctly and the other incorrectly), the probability that the
first item is correct and the second is incorrect is given by the ratio

Pr{(xn1 = 1, xn2 = 0)|(xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1)}
= (eβn−δ1)/γn1γn2

(eβn−δ1)/γn1γn2 + (eβn−δ2)/γn1γn2

= (eβn−δ1)/γn1γn2

(eβn−δ1 + eβn−δ2)/γn1γn2

= eβn−δ1

eβn−δ1 + eβn−δ2
= eβn e−δ1

eβn (e−δ1 + e−δ2)

= e−δ1

(e−δ1 + e−δ2)
.

That is,

Pr{(xn1 = 1, xn2 = 0)|(xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1)}
= e−δ1

(e−δ1 + e−δ2)
. (7.1)

Thus the probability that the first item is correct, when only one is correct and the
other is incorrect, depends only on the relative difficulties of the items, and does not
depend on the proficiency of the person. This is a profound equation and indicates
that the relative difficulties of the items can be found without assuming anything
about the value of the person’s proficiency.

The probability of the second item being correct when the first is incorrect is the
complement of the above result, which you might like to show.

Pr{(xn1 = 0, xn2 = 1)|(xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1)}
= e−δ2

(e−δ1 + e−δ2)
. (7.2)

A similar equation can be developed if two persons n = 1 and n = 2 respond to
one item i.

Pr{(x1i = 1, x2i = 0)|(x1i = 1, x2i = 0) or (x1i = 0, x2i = 1)}
= eβ1

(eβ1 + eβ2)
. (7.3)
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This means that the comparison of the difficulties between two items can be made
independently of the proficiency of any person, and the comparison between people
can be made independently of the difficulties of the items.

We will see how these equations might be applied in the next chapter.

Example

To consolidate the above result, below is a calculation from first principles and from
Eqs. (7.1) and (7.2) for the following case: person n with proficiency βn = 0.5
responds to item 1 with difficulty δ 1 = 0.5 and item 2 with difficulty δ2 = 1.5.

From the probabilities in Table 7.3, we have the following:
The conditional probability that item 1 is correct and item 2 is incorrect is given

by

Pr{(1, 0)|(1, 0) or (0, 1)} = 0.365

0.500
= 0.73

From Eq. (7.1) directly,

Pr{(1, 0)|(1, 0) or (0, 1)} = e−δ1

e−δ1 + e−δ2
= e−0.5

e−0.5 + e−1.5
= 0.61

0.61+ 0.22
= 0.73

which clearly is the same as from Table 7.3.
From Table 7.3, the conditional probability that item 1 is incorrect and item 2 is

correct is given by

Pr{(0, 1)|(0, 1) or (1, 0)} = 0.135

0.500
= 0.27

From Eq. (7.2) directly,

Pr{(0, 1)|(0, 1) or (1, 0)} = e−δ2

e−δ1 + e−δ2
= e−1.5

e−0.5 + e−1.5
= 0.22

0.61+ 0.22
= 0.27

which is also clearly the same as from Table 7.3.
The detailed calculations for the probabilities in Table 7.3 are shown below.

Table 7.3 Example of probabilities for βn = 0.5 with δ 1 = 0.5 and δ2 = 1.5

Item 1 (Probability) Item 2 (Probability) Joint outcomes (Probability)

0 (0.50) 1 (0.27) (0.50) (0.27) = 0.135

1 (0.50) 0 (0.73) (0.50) (0.73) = 0.365

Pr{(0 1) or (1, 0)} = 0.135 + 0.365 = 0.500
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For item 1:

Pr{xn1 = 1} = eβn−δ1

1+eβn−δ1
and Pr{xn1 = 0} = 1

1+eβn−δ1

= e0.5−0.5

1+e0.5−0.5 = 1
1+e0.5−0.5

= e0

1+e0 = 1
1+e0

= 1
1+1 = 1

1+1

= 1
2 = 0.5 = 1

2 = 0.5

Clearly also,

Pr{xn1 = 0} = 1

1+ eβn−δ1
= 1− Pr{xn1 = 1} = 1− eβn−δ1

1+ eβn−δ1
= 1.0− 0.5 = 0.5.

For item 2:

Pr{xn2 = 1} = eβn−δ2

1+ eβn−δ2
= e0.5−1.5

1+ e0.5−1.5
= e−1.0

1+ e−1.0

= 0.37

1+ 0.37
= 0.37

1.37
= 0.27 and Pr{xn2 = 0} = 1

1+ eβn−δ2
= 1− 0.27 = 0.73

You should check that you follow these calculations.

The Condition of Local Independence

Presenting the results as we have in Tables 7.1, 7.2 and 7.3 is possible because the
Rasch model implies statistical independence of responses in the sense that

Pr{((xni ))} =
∏

n

∏

i

Pr{xni }

where ((xni )) denotes the matrix of responses Xni = x, n = 1… N, I = 1… I.
That is, the probability of the set of responses to the items of an instrument equals

the product of the probabilities of the responses to each of the items. For example,
that is why we could write in Table 7.1 that the probability of a joint outcome of
answering both items correctly is the product of the probabilities of answering each
item correctly, that is (eβn−δ1/γn1) (eβn−δ2/γn2).

The Principle of Invariant Comparisons

Rasch (1961) used the term specific objectivity to describe this important principle
of invariant comparison which we summarized immediately following Eq. (7.3).
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The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; and it should also be independent of which other
stimuli within the considered class were or might also have been compared.

Symmetrically, a comparison between two individuals should be independent of which par-
ticular stimuliwithin the class consideredwere instrumental for the comparison; and it should
also be independent of which other individuals were also compared, on the same or some
other occasion. (Rasch, 1961, p. 332).

Rasch referred to such comparisons as objective. Further, to highlight that this invari-
ance is always constrained relative to a specific frame of reference, he referred to the
objectivity of the comparisons as specifically objective. From Eqs. (7.1), (7.2) and
(7.3), we saw how the comparison of the difficulties between two items can be made
independently of the proficiency of any person, and the comparison between people
can be made independently of the difficulties of the items.

Exercises

Suppose responses of person n to dichotomously scored items i, where xni = 1
represents a correct response and xni = 0 represents an incorrect response, conform
to the Rasch model. That is, suppose

Pr{xni = 1} = eβn−δi

1+ eβn−δi
and Pr{xni = 0} = 1

1+ eβn−δi

Let βn = 1.0, δ 1 = 0.5 and δ 2 = 1.5.

1. Which item is more difficult, item 1 or item 2?
2. What is the probability that the person answers each of the items correctly? i.e.

find Pr{xn1 = 1} and find Pr{xn2 = 1}.
3. What is the probability that the person will answer the first item correctly, given

that the person has answered only one of the two items correctly?
4. Suppose another person with βn = 0.5 responds to the two items. What is this

person’s probability of answering the first item correctly, given that the person
has answered only one item correctly?

5. What do you notice in comparing your answers to (3) and (4) above?
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Chapter 8
Sufficiency—The Significance of Total
Scores

This chapter involves essentially one concept: establishing the significance of the
simple total score for a person in the dichotomous RM. In both CTT and in Rasch
measurement theory (RMT), total scores play a special role. In CTT they do so by
definition; in the dichotomous RM, they do as a consequence of the specification of
the interaction between a person and an item. In this chapter there is an application
of Eqs. (7.1) and (7.2) from the previous chapter, to show that the total score is a
sufficient statistic.

The material in this chapter is not very easy. However, it is important, and it
seems that there is no way to make it very easy. It is very simple at one level, and this
simplicity also makes it sophisticated at another level. You will need to work through
it a few times. The illustrations at the end of the chapter consolidate the concept of
sufficiency.

The Total Score as a Sufficient Statistic

In the previous chapter we showed that, according to the dichotomous RM, if a
person answers only one of two dichotomous items correctly, then the probability
of which one is correct and which is incorrect does not depend on the proficiency of
the person, but only the relative difficulties of the two items. We derived Eq. (7.1) in
that chapter which took the form

Pr{(xn1 = 1, xn2 = 0)|(xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1)}
= e−δ1

(e−δ1 + e−δ2)
. (8.1)

Now we represent the first part of this equation differently, in terms of the total
score, to show that it is a sufficient statistic. We set up the possible responses as in
Table 8.1.
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Table 8.1 Possible response
patterns and total scores for
the responses of one person to
two items i = 1 and i = 2

Item 1
xn1

Item 2
xn2

Total score
rn = xn1 + xn2

0 0 0

1 0 1

0 1 1

1 1 2

The key feature of Table 8.1 is that it has listed the total score of a person to the
two items. Rather than yn as we did in CTT, we denote this score for person n, rn .
In the case of two items, the total score rn of person n is given by rn = xn1 + xn2.

Notice that there are two patterns which give the total score rn = 1, and only one
pattern which gives each of the total scores rn = 0 or rn = 2.

In the case that both responses are the same, that is, there is only one pattern which
gives the total score, there is no basis for distinguishing between the difficulties of the
items. The possibility for distinguishing between their difficulties arises only when
the responses are different.

When the total score rn = 1, then the response pattern is either

(xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1)

Thus rn = 1 is identical to (xn1 = 1, xn2 = 0) or (xn1 = 0, xn2 = 1).
As a consequence, Eq. (8.1) can be written more simply as

Pr{(xn1 = 1, xn2 = 0)|rn = 1)} = e−δ1

(e−δ1 + e−δ2)
. (8.2)

This notation, while convenient, is more than convenient. Because the equation
is independent of the person parameter βn , it indicates that the total score of 1
contains all the information about the person parameter and that there is no further
information about βn in the pattern.

This structure can be expanded for the case of any number of items. In Table 8.2
we consider the case of 3 items.

With 3 dichotomous items, the possible total scores are 0, 1, 2 and 3. Because
there is only one pattern of responses that gives the extreme total scores, the scores
of 0 and 3 (which are the minimum and maximum) provide no relative information
about the items. However, given a score of either 1 or 2, there is more than one
response pattern.

Following the argument for the case of two items, the following relationships can
be established. We do not derive them here as the algebra is a little unwieldy, but it
is shown in Andrich (1988) on pages 34–40.

The probabilities of the response patterns for a total score of rn = 1 are as follows:
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Table 8.2 Responses of a
person to three items

Item 1
xn1

Item 2
xn2

Item 3
xn3

Total score
rn = xn1 + xn2 + xn3

0 0 0 0

1 0 0 1

0 1 0 1

0 0 1 1

1 1 0 2

1 0 1 2

0 1 1 2

1 1 1 3

Pr{(1, 0, 0)|rn = 1} = e−δ1

e−δ1 + e−δ2 + e−δ3

Pr{(0, 1, 0)|rn = 1} = e−δ2

e−δ1 + e−δ2 + e−δ3

Pr{(0, 0, 1)|rn = 1} = e−δ3

e−δ1 + e−δ2 + e−δ3
(8.3)

First, notice that the denominator in the three sub-equations of Eq. (8.3) is the
same and is the sum of the numerators of these equations. This structure ensures that
the sum of these conditional probabilities is 1, as they must be as the probability of
all possible outcomes.

Second, again the sub-equations of Eq. (8.3) do not contain the proficiency βn

of the person. That means, again, that the total score of the person contains all of
the information about the person, and that the response pattern does not contain any
further information about the person’s proficiency βn . This is a property of themodel,
and for it to hold in responses, the responses need to conform to the dichotomous
RM. How this conformity of responses to the model is checked is a substantial part
of later chapters of the book. The check of this conformity between the responses
and the model is referred to as a test of fit.

By a symmetrical argument, it can be shown that the total score of an item is the
key statistic containing all of the information about the difficulty of any item. You
need to think about this a little. It is both a simple and very sophisticated concept;
it took the genius of Sir Ronald Fisher, a statistician and geneticist, to formulate the
concept of sufficiency. It is the cornerstone of Rasch models, and in his book Rasch
(1960) says it was the high mark of Fisher’s contribution. Therefore, do not expect
to understand sufficiency completely on your first reading.

Third, by containing all the information of the proficiency βn of person n, the
total score is the basis for estimating βn . Thus in the dichotomous RM, the total
score emerges as the key statistic with information about the proficiency βn . This is
the same as in CTT, where the total score is simply assumed to contain all of the
information. However, because it emerges from a different formulation, some other
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properties different from CTT also emerge in the dichotomous RM. We study these
differences in the remainder of the book.

For completeness, in the case of three dichotomous items, below are the condi-
tional equations for the case that the total score is 2:

Pr{(1, 1, 0)|rn = 2} = e−δ1−δ2

e−δ1−δ2 + e−δ1−δ3 + e−δ2−δ3

Pr{(1, 0, 1)|rn = 2} = e−δ1−δ3

e−δ1−δ2 + e−δ1−δ3 + e−δ2−δ3

Pr{(0, 1, 1)|rn = 2} = e−δ2−δ3

e−δ1−δ2 + e−δ1−δ3 + e−δ2−δ3
(8.4)

Notice again that the denominator of the sub-equations of Eq. (8.4) is the same and
that it is the sum of the numerators of these equations. These equations become more
complicated as the number of items increases. They are now handled in software
either directly or indirectly.

The important point to note is that these equations do not contain the person
proficiency parameter βn . We repeat the idea that given the total score for a person,
the probability of the response does not depend on the person’s proficiency, but only
on the relative difficulties of the items. Therefore, all of the information about the
proficiency must be absorbed in the total score, and there is no further information
about the person’s proficiency in the response patterns.

Both results summarized in the above paragraph, (i) that the conditional proba-
bilities given the total score do not involve person parameters, and (ii) that the total
score contains all the information of a person’s proficiency, are used in analysing
responses with the dichotomous RM.

The major consequence of the above derivations is that all persons with the same
total score (irrespective of pattern of answers) will be given the same proficiency
estimate. This is exactly as in CTT, but as noted earlier it is a consequence of the
Rasch model and not by definition. One might ask the following question: given
that the proficiencies of persons with the same total score are the same, what are the
advantages of analysing the responses using the Rasch model? You will appreciate
some of the advantages by the end of the first part of this book.

The Response Pattern and the Total Score

There is a common question asked by people when they first become acquainted with
the Rasch model, although for some reason they do not ask this question in CTT,
though it could be asked just as legitimately. The question: if all people with the same
total score get the same proficiency estimate irrespective of the response pattern, is
there not an injustice for persons who answer more difficult items correctly? Should
not persons who answer more difficult items correctly have a greater proficiency
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estimate than those who answer the easy ones correctly? Before reading on, can you
provide arguments against any injustice?

There are two arguments against any injustice, one more informal than the other.

(a) The informal argument against any injustice

If two people A and B, say, have the same total score, and A has answered more dif-
ficult items correctly than B has, then it must also follow that person A has answered
more easy items incorrectly than B has. Therefore, although person A has answered
difficult items correctly, that person also has answered easy items incorrectly, and
if we are to be consistent then the penalty for answering an easy item incorrectly
should be the same as the reward for answering a difficult item correctly. Perhaps
person A is not as able as appears given that the person has answered easy items
incorrectly.

(b) The formal argument against any injustice

The formal argument rests on the properties of the model. It is the case that if the
responses fit the Rasch model, then the total score on a set of items contains all of
the information relevant for estimating the proficiency of the person. However, this
does not follow if the responses do not accord with the Rasch model. As indicated
above, we will study how to test the accord between the responses and the model
in subsequent chapters, but we can anticipate this a little now. In order to make this
formal argument concrete, we consider a case of 4 items and calculate the probabil-
ities of obtaining each response pattern given the total score. Table 8.3 shows such
an example. Another example with 3 items is shown in Andrich (1988) on page 40.

It can be seen in Table 8.3 that given each total score, each response pattern
has a probability of occurring, and that with items with different difficulty, these
probabilities are different. In the table, these probabilities are ordered for each total
score, with the highest probability first. The pattern with the highest probability for
each total score should be familiar. Can you see what it is before reading on?

The patterns with the highest probability for each total score have been selected
out of Table 8.3 and repeated in Table 8.4. It is evident that the response patterns with
the highest probability for each total score is a Guttman pattern. In other words, if the
responses accord with the Rasch model, then a Guttman pattern is the most likely.
The general term that is concerned with responses being in accord with a model is
fit to the model.

The results in Table 8.4 show that even if responses fit the Rasch model, we will
not always get a Guttman pattern. If they fit, then we are most likely to get Guttman
patterns, but we will get the other patterns as well, with probabilities that can be
calculated. Thus in the example of Table 8.3, even if the responses fitted the Rasch
model, we would expect that of the people who had a total score of 2, some 21.6%
would have the response pattern (1, 0, 1, 0). However, if a lot more people with a total
score of 2 had this response pattern, we would have to say that the responses do not
fit the Rasch model. We would have to conclude that the total score is not a sufficient
statistic for the proficiency, and that the total score cannot be used to infer a single
proficiency for the person. There indeed is information in the pattern of responses.
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Table 8.3 Example of
conditional probabilities of 4
items, δ1 = −1.5, δ2 = −0.5,
δ3 = 0.5, δ4 = 1.5

1

Item

2 3 4

Total
score
rn

Probability of
pattern given total
score

0 0 0 0 0 1.000a

1 0 0 0 1 0.644a

0 1 0 0 1 0.237

0 0 1 0 1 0.087

0 0 0 1 1 0.032

1.000

1 1 0 0 2 0.586a

1 0 1 0 2 0.216

1 0 0 1 2 0.079

0 0 1 1 2 0.011

0 1 1 0 2 0.079

0 1 0 1 2 0.029

1.000

1 1 1 0 3 0.644a

1 1 0 1 3 0.237

1 0 1 1 3 0.087

0 1 1 1 3 0.032

1.000

1 1 1 1 4 1.000a

Note aGuttman pattern

Table 8.4 Patterns from
Table 8.3 with the greatest
conditional probabilities 1

Item

2 3 4

Total
Score
rn

Probability of
pattern given total
score

0 0 0 0 0 1.000a

1 0 0 0 1 0.694a

1 1 0 0 2 0.586a

1 1 1 0 3 0.644a

1 1 1 1 4 1.000a

Note aGuttman pattern
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The point, then, is that the response patterns, in the case that they fit the dichoto-
mous Rasch model, are very likely to be close to the Guttman pattern (though not
perfectly) and in the case of patterns close to the Guttman pattern, there is no further
information in the profile other than that in the total score. Diagnosing where the
response patterns do not fit the Rasch model is central to the analysis of responses
according to the dichotomous RM. We study some aspects of this diagnosis in the
chapters on fit of data to the model.

Exercises

Below is a table showing the estimated person location for three persons for a test
with 42 dichotomous items. The three persons all have a total score of 21 and then the
same estimate of −0.004. Below are their response patterns when items are ordered
according to difficulty.

Person ID Total score Max score Location

01 21 42 −0.004

02 21 42 −0.004

03 21 42 −0.004

01 010110110110100111010110011100001101000001

02 111111111111111111111000100001000000000000

03 111111011101111011110001000100000001001000

Given that the location estimates of persons with the same total scores are the
same, what are the advantages of analysing the responses using the Rasch model? In
your answer refer to the data fit and the response patterns for the persons above.
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Chapter 9
Estimating Item Difficulty

The concepts of standard error of an estimate and maximum likelihood estimate
are only briefly introduced here but elaborated in the next chapter. To consolidate
the concept of sufficiency and its implication, introduced in previous chapters, this
chapter shows the application of the total score in the estimation of the relative
difficulties of two items with dichotomous responses. We show an application of
Eq. (8.2) from Chap. 8 in the estimation of item difficulty.

Application of the Conditional Equation with Just Two
Dichotomous Items and Many Persons

Estimating Relative Item Difficulties

We now show an elementary application of Eq. (8.2) from Chap. 8 in which the
difference in difficulties between two dichotomous items is estimated. This equation
is generalized in software when there are more than two dichotomous items and
when the items are polytomous. We consider these generalizations in later chapters.

We use again the data in Table 3.1 of Chap. 3, but now focus on items 1 and 8, two
dichotomous itemswith different facilities.Wewill estimate their relative difficulties.
The responses for just these two items are reproduced in Table 9.1. However, now
the persons have been reordered according to their total scores on these two items.

Recall from the previous two chapters, and from above, that the key response
patterns in the case of two dichotomous items are those in which one item is correct
and the other is incorrect, that is, where the total score on the two items is 1. Lines
in Table 9.1 mark off the persons with a total score of 1.

There are 16 persons with a total score of 1, and of these, 14 have item 1 correct
and item 8 incorrect, and 2 have item 8 correct and item 1 incorrect. The responses
for these two items are rearranged in a two-way table in Table 9.2. They show the

© Springer Nature Singapore Pte Ltd. 2019
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Table 9.1 Responses of 50
persons to two items on a
10-item test

Person 1 8 Total
score

2 0 0 0

38 0 0 0

8 1 0 1

10 1 0 1

11 0 1 1

13 1 0 1

17 1 0 1

23 1 0 1

25 1 0 1

27 1 0 1

29 1 0 1

30 0 1 1

35 1 0 1

41 1 0 1

42 1 0 1

43 1 0 1

44 1 0 1

45 1 0 1

1 1 1 2

3 1 1 2

4 1 1 2

5 1 1 2

6 1 1 2

7 1 1 2

9 1 1 2

12 1 1 2

14 1 1 2

15 1 1 2

16 1 1 2

18 1 1 2

19 1 1 2

20 1 1 2

21 1 1 2

22 1 1 2

24 1 1 2

26 1 1 2

28 1 1 2

31 1 1 2

(continued)
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Table 9.1 (continued) Person 1 8 Total
score

32 1 1 2

33 1 1 2

34 1 1 2

36 1 1 2

37 1 1 2

39 1 1 2

40 1 1 2

46 1 1 2

47 1 1 2

48 1 1 2

49 1 1 2

50 1 1 2

Total: 46 34

Facility: 92 68

Discrimination: 0.36 0.48

Table 9.2 Responses of 50 persons to items 1 and 8

frequencies of all four patterns of responses for the 50 persons, with the responses
with a total score of 1 in bold.

In order to estimate the relative difficulties of these two items using Eq. (8.2) from
Chap. 8, we rearrange it and replace the subscript 2 for item 2 with the subscript 8
for item 8. Thus, the probability of item 1 correct and item 8 incorrect, given that the
sum of the responses to the two items is 1, is

https://doi.org/10.1007/978-981-13-7496-8_8
https://doi.org/10.1007/978-981-13-7496-8_8
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Pr{(xn1 = 1, xn8 = 0)|rn = 1} = e−δ1

e−δ1 + e−δ8

= eδ8−δ1

1 + eδ8−δ1
(9.1)

We notice that this has the same structure as the dichotomous RM, except that
the two parameters are the difficulties of the two items rather than an item parameter
and a person parameter.

The probability of the complementary response, item 8 correct and item 1 incor-
rect, given that the sum of the responses to the two items is 1 is given by

Pr{(xn1 = 0, xn8 = 1)|rn = 1} = e−δ8

e−δ1 + e−δ8

= eδ1−δ8

1 + eδ1−δ8

= 1

1 + eδ8−δ1
(9.2)

We have made the denominator (1 + eδ8−δ1) in Eq. (9.2) the same as that in
Eq. (9.1). This means that in the ratio of Eqs. (9.1) and (9.2), this denominator will
cancel. Thus, the ratio of Eqs. (9.1) and (9.2) is

Pr{(xn1 = 1, xn8 = 0)|rn = 1}
Pr{(xn1 = 0, xn8 = 1)|rn = 1} = (eδ8−δ1)/(1 + eδ8−δ1)

1/(1 + eδ8−δ1)

= eδ8−δ1 (9.3)

Taking the logarithm of both sides gives

ln

[
Pr{(xn1 = 1, xn8 = 0)|rn = 1}
Pr{(xn1 = 0, xn8 = 1)|rn = 1}

]
= δ8 − δ1 (9.4)

This is the equation we use to estimate the difference δ 8 − δ 1.
Before proceeding, we stress that the above equations, and in particular Eq. (9.4)

which we use, do not have the person parameter βn of any person. Thus, although the
probabilities of a correct or incorrect response to both items depend on each person’s
parameter, Eq. (9.4) does not involve any person’s parameter. This means that the 16
responses in Table 9.2 which are in bold are replications of each other in the sense
that they are governed by the same parameter, in this case, the difference δ 8 − δ 1.

Note Eq. (9.1) is a Bernoulli variable. This is because every response is either
{(xn1 = 1, xn8 = 0)|rn = 1} or {(xn1 = 0, xn8 = 1)|rn = 1} with a complementary
probability which sums to 1. We can formalize this observation by defining a new
Bernoulli random variable a18 which takes the value a18 = 1 when {(xn1 = 1, xn8 =
0)|rn = 1} and a18 = 0 when {(xn1 = 0, xn8 = 1)|rn = 1}. The subscript 18 in
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a18 denotes reference to items 1 and 8. You may need to check Statistics Review 10
where random variables and Bernoulli random variables are defined.

Table 9.3 shows the responses from Table 9.1 for which {rn = 1} together with
values for the random variable a18 and a count of the number of persons.

In Table 9.3, we have 16 Bernoulli replications with exactly the same probability
of the response a18 = 1. This probability is given by Eq. (9.1) and is independent
of any person’s parameter which of course will all be different from each other.
Even if two people obtain the same score, it does not mean that they have the same
proficiency. They simply have the same score and we cannot distinguish between
them. However, as we add more items, we increase our opportunity to distinguish
between any two persons.

The sum of these Bernoulli variables gives a binomial variable. Therefore, we
know that the estimate of the probabilities Pr{(xn1 = 1, xn8 = 0)|rn = 1} is simply
the mean of the number of responses a18 = 1, which is the proportion of responses
{(xn1 = 1, xn8 = 0)|rn = 1}.

The probability of the complementary response {(xn1 = 0, xn8 = 1)|rn = 1} is
simply 1 − Pr{(xn1 = 1, xn8 = 0)|rn = 1} and its estimate is the complementary
proportion of responses to that of {(xn1 = 0, xn8 = 1)|rn = 1}. We may write

Proportion{(xn1 = 1, xn8 = 0)|rn = 1} = 14

16
and

Proportion{(xn1 = 0, xn8 = 1)|rn = 1} = 2

16

Table 9.3 Responses of persons to two items given {rn = 1}
Person Person count Item 1 Item 8 {rn = 1} a18

8 1 1 0 1 1

10 2 1 0 1 1

11 3 0 1 1 0

13 4 1 0 1 1

17 5 1 0 1 1

23 6 1 0 1 1

25 7 1 0 1 1

27 8 1 0 1 1

29 9 1 0 1 1

30 10 0 1 1 0

35 11 1 0 1 1

41 12 1 0 1 1

42 13 1 0 1 1

43 14 1 0 1 1

44 15 1 0 1 1

45 16 1 0 1 1

Total = 16 Sum = 14
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Substituting these proportions as estimates of the respective probabilities in
Eq. (9.4) gives

ln

[
14/16

2/16

]
= ln

[
14

2

]
= ln[7] = δ̂8 − δ̂1.

That is,

δ̂8 − δ̂1 = ln[7] = 1.946. (9.5)

Thus item 8 is more difficult than item 1, and our estimate is that the difference
is 1.946 logits. To designate that this is an estimate, the item parameters δ 8, δ 1 now
have a ‘hat’ δ̂ 8, δ̂ 1.

One canmake tangible the difference in difficulties of the two items by considering
the proportion of persons who have item 1 correct, given that they have only one
of items 1 and 8 correct. This proportion is 14/16, that is 0.875, which is relatively
large. Complementary to this proportion, the proportion of persons who have item 8
correct given that they have only one of items 1 and 8 correct, is 2/16, that is 0.125.
This is a small proportion. Clearly, item 1 is substantially easier than item 8.

An important point to notice, and to understand, is that this difference is not
the same as if we only considered the number of persons who answered each item
correctly. It is evident from Table 9.2 that 46 persons answered item 1 correctly
and 34 answered item 8 correctly. These are respective proportions of 0.92 and
0.68. Thus although item 8 shows itself to be more difficult than item 1, as in the
above calculations, it appears to be closer in difficulty if only the number correct is
considered. The reason for this can be explained by considering the high number of
very proficient persons who answered both items correctly. When these are included
in the overall calculation of difficulty (or facility), the difference in difficulties of
the items appears smaller than in the conditional estimation given the total score.
Thus, suppose that there were another 20 persons in the sample who were very
proficient and that they answered both items correctly. Then the numbers correct
would be respectively 66 and 54 from a total of 70 persons. The proportions correct
are respectively 0.94 and 0.77, suggesting an even smaller difference in difficulties
between the two items.

In these latter calculations, the apparent relative difficulties are affected by the
proficiencies of the person; while the calculation conditional on the total score of 1
is not affected by these proficiencies.

Estimating Person Proficiencies

We have stressed that in the dichotomous RM, the sufficiency of the total score for
the person’s proficiency implies that all the information regarding this proficiency is
in the total score, and no further information is in the response pattern. We consider
the estimation of the person proficiency in the next chapter.
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An Arbitrary Origin and an Arbitrary Unit

The Arbitrary Origin

We noted it incidentally above, but it is essential to appreciate that we have estimated
only the difference between items 1 and 8. We cannot give each item its own inde-
pendent difficulty estimate. However, for purposes of efficiency, we can give each
its own value by setting an arbitrary origin.

In any analysis, this is generally done by setting the sum of the item parameters
to zero.

In the above example, we set

δ̂ 8 + δ̂ 1 = 0 (9.6)

Then by adding Eqs. (9.5)–(9.6), we have

2δ̂8 = 1.946; δ̂8 = 0.973,

and by subtracting Eq. (9.5) from Eq. (9.6), we have

2δ̂1 = −1.946; δ̂1 = −0.973.

Now we can write that δ̂1 = −0.973 and δ̂8 = 0.973 recognizing that this origin
of 0, to which each value is referenced, is indeed arbitrary.

Although the origin in any analysis is arbitrary and is generally set to 0, it is often
convenient to set it to some other value. For example, if a test has been defined in
some previous application, and new items are added to the test, then the new items
need to be referenced to the same origin as the previous application. This can be done
in a number of ways, with only one constraint the equivalent of Eq. (9.6) required.
For example, suppose a test composed of some items from a previous administration
and some new items is administered to a group of people. Then, the analysis can
be performed with the mean difficulty of the previous items fixed to their difficulty
on the previous administration. Fixing this mean retains the origin of the previous
administration and the difficulty estimates of the new items will have the same origin
as the previous administration.

The choice of origin affects the proficiency values of the persons that are estimated
with the items. For example, suppose the arbitrary origin of 0 was changed, to avoid
negative numbers, to be say 50. That implies that 50 was added to the estimated value
of each item. Because the difference βn − δi must remain constant, each person’s
proficiency must also have the value 50 added to it. For example, for a group of
persons, the mean would be adjusted from whatever its value, β̄, might be from an
analysis in which the origin of the items is 0, to have 50 added to it.
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The Arbitrary Unit

The arbitrary origin is more visible than the arbitrary unit. This is because each
analysis has to make this explicit. To see the role of the arbitrary unit, consider the
original equation, Eq. (6.5), of the dichotomous Rasch model from Chap. 6 which is
reproduced below

Pr{xni = 1|βn, δi } = e(βn−δi )

1 + e(βn−δi )
(9.7)

Equation (9.7) can be written as

Pr{xni = 1|βn, δi } = eα(βn/α−δi /α)

1 + eα(βn/α−δi /α)

= eα(β∗
n−δ∗

i )

1 + eα(β∗
n−δ∗

i )
(9.8)

where α > 0 is an arbitrary real number,

β∗
n = βn/α; δ∗

i = δi/α (9.9)

without changing the value of the probability in Eq. (9.7). In general, we leave the
value α = 1 in writing the equation and in estimation. That is why it is not as
conspicuous as the specification of the constraint that provides the origin. The value
of α needs to be greater than 0, otherwise, the item does not operate in the same way
as the other items. However, that it can be given different values is the sense in which
the unit is arbitrary. It is stressed that it is the expression of the values of the person
and item parameters that is arbitrary.

For example, if we specify that α = 2 in the analysis of the data set of Table 9.3,
then the estimates would be given by

2/(δ̂8/2 − δ̂1/2) = 2(δ̂∗
8 − δ̂∗

1)

= ln[7] = 1.946 (9.10)

from which

(δ̂∗
8 − δ̂∗

1) = 1.946/2 = 0.973 (9.11)

If each item were to be given a single value by imposing the arbitrary origin
δ̂∗
8 + δ̂∗

1 = 0, then

δ̂∗
8 = 0.4865 and δ̂∗

1 = −0.4865.

https://doi.org/10.1007/978-981-13-7496-8_6
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As with the origin, which sometimes needs to be defined given some previous
administration of a test, the unit might also have to be defined given a previous
administration of a test with new items. As indicated above, one constraint such
as the mean of the item difficulties of some set of items in a joint analysis with
new items can retain the origin. To retain the unit from a previous administration of
some items, fixing the difficulties of just two items is sufficient. However, if there
are more than two previous or original items in a data set with some new items,
as is usually the case, then all their values might be fixed to that from the previous
analysis. Another option is to fix, not only their mean, but their standard deviation
from a previous analysis. Then the estimates of the remaining items are in the same
unit as the original items. In summary, to fix the origin one constraint is needed on
the sum of the difficulties, and to fix the unit one constraint is required on the spread
of the difficulties.

Generalizing to Many Items

As indicated above the equations for estimating the item parameters, conditioning out
the person parameters can be generalized for purposes of estimating the responses of
many persons to many items. There are two ways of proceeding. One is to proceed
by considering all possible combinations of pairs and build up an equation that way.
That is, the pairwise structure in Table 9.2 is built up with all the pairs of items.
The other one is to extend Eqs. (8.3) and (8.4) from Chap. 8. The former is easier in
some ways but has some disadvantages, and the latter which follows, more rigorous
theoretically, is more complicated and it too has some disadvantages. However, from
an estimation point of view only, for the same items, as the sample size of persons
increases both converge to the same estimates. In practice, when data approximate
the model, they are also virtually indistinguishable.

Maximum Likelihood Estimate (MLE)

Equation (9.4) which we used to estimate the difference between the difficulties of
items 1 and 8 needs to be generalized in a different way when there are more items.
Equation (9.4) is referred to as a maximum likelihood estimate. It is the complemen-
tary feature of sufficiency formulated by Fisher. Although MLE is different from the
least squares estimate, we considered for fitting a regression equation in Statistics
Review 4, it has the same idea. In the case of a least squares estimate, the estimated
values of the parameters of the linear model are such that the sum of squares of the
deviations about the linear regression line are aminimum. In the MLE, the estimated
value of the parameter is the one which maximizes the probability that this set of
responses is observed according to the model. This probability of a set of responses
is called a likelihood. Because it requires calculus to find the maximum value of a

https://doi.org/10.1007/978-981-13-7496-8_8
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function, we do not derive this equation here. We show a little more of the MLE in
the next chapter when we consider the estimation of the person locations, given the
item location estimates are taken as known.

Because the equations first involved conditioning on the total score, and eliminat-
ing the person parameter, the estimation is knownas conditionalmaximum likelihood
estimation.

Item Difficulty Estimates

The difficulties of all of the items of the example in Chap. 3 taken as dichotomous
items are displayed in Table 9.4. The method of estimation is based on the first of
the above generalizations from the estimation of the relative difficulties of just two
items. That is, a table is formed for a pair of items just like Table 9.2, for example in
this case items 1 and 8. Then taking item 1 as the focus first, a table such as Table 9.2
is made up for item 1 in relation to every other item. The statistic for item 1 then
is the sum, over all item pairs, of the number of times this item has a response of 1
when the response to the other item is 0. Then such a table is formed for every item
in relation to the other items.

Table 9.4 Difficulty estimates for dichotomous items

Item Linear total Location SE Total score

2 209 −2.004 0.715 48

1 194 −1.296 0.544 46

5 195 −1.264 0.538 46

6.4 204 −1.100 0.508 46

3 195 −0.672 0.443 44

4 170 −0.676 0.443 43

6.3 182 −0.539 0.426 43

9.1 179 −0.335 0.403 42

9.3 175 −0.338 0.403 42

6.1 166 −0.220 0.391 41

9.2 153 0.063 0.366 39

6.2 137 0.435 0.341 36

7 144 0.421 0.342 36

10.1 133 0.551 0.335 35

8 124 0.598 0.333 34

10.3 70 1.573 0.314 24

10.2 47 2.269 0.330 16

10.4 37 2.535 0.343 15

https://doi.org/10.1007/978-981-13-7496-8_3
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Table 9.4 shows for each item a Linear Total and a Total Score. The former is the
total we referred to above, the number of times an item has a positive response when
another item has a negative response, summed over all the pairs of items. The latter
is simply the number of positive (correct) responses for each item, which we had
calculated as part of the Guttman analysis of the responses. The items are ordered
according to their total score, not the linear total. These two totals are not identical,
but their order is very close. Because the estimation uses the linear total, not the
total score, the total scores of the items are not in exact correspondence with their
relative difficulties. However, again they are close. The secondmethodwementioned
above, that which generalizes to many items, does give difficulty estimates which are
exactly in the same order as the total scores. However, if the responses fit the Rasch
model, then as the sample size increases, the two kinds of estimates get closer and
closer together, they converge. In practice, as indicated above, they are very close to
each other and well within the standard error of the estimate of the item difficulty.

The standard errors of the estimates of the item locations (difficulties) are also
shown in Table 9.4. They also arise directly out of maximum likelihood estimation
theory. We revisit them in the next chapter when we consider the estimation of the
person parameters, given that we have used the conditional method of estimating the
item parameters while eliminating all the person parameters. Sometimes the process
of estimating the item difficulties, which locates the items on the continuum, is called
test or item calibration. Then the process of estimating the person proficiencies,
which locates the persons on the same continuum, is termed person measurement.

Exercises

1. Estimate the relative difficulties of item 1 and item 2 from the data set used in
the Exercises at the end of Chap. 3 using the process shown above.

2. What are the estimates if the difficulties need to be expressed in ½ of the unit
that appears when α = 1.

3. Suppose that both the origin and the unit need to be specified to an a priori value.
Specifically, suppose that the mean of the item difficulties needs to be 10 and
that the unit, as in 2 above, is ½ of the unit that appears when α = 1. What are
the difficulty estimates?

Further Reading

Andrich, D. (1988). Rasch models for measurement. Newbury Park, CA: Sage.
Humphry, S., & Andrich, D. (2008). Understanding the unit implicit in the Rasch model. Journal
of Applied Measurement, 9, 249–264.
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Chapter 10
Estimating Person Proficiency
and Person Separation

Statistics Review 10: Bernoulli and Binomial random variables.
We continue with the dichotomous Rasch model and with the context of the assess-
ment of proficiency. In this chapter, we use the set of responses of persons to items
to estimate their proficiencies, given the estimates of item difficulties. Where the
previous chapter was concerned with item calibration, this chapter is concerned with
person measurement.

In theory, by conditioning on the total scores of items, we can estimate the person
parameters independently of all item parameters. However, that has only recently
been made operational and it is not yet practical. Instead, in estimating the person
parameters it is assumed that the item parameters are known. This can be assumed
if they have been estimated as described in the previous chapter.

Let the probability of a correct response of person n to item i be denoted simply
as Pni . Then, according to the dichotomous Rasch model, this probability is given
by

Pni = Pr{xni = 1} = eβn−δi

1 + eβn−δi
. (10.1)

Make sure you understand the probability of a Bernoulli randomvariable in Statis-
tics Review 10 that helps in understanding the use and meaning of Pni .

This section could be in a statistics review. However, because we consider that
the way the items are formalized, how the probability statements are interpreted, and
how the scores on items can be summed, is integral to the interpretation of statistical
analyses of assessments, we have included it in the main part of the book.

Solution Equations in the Rasch Model

Recall from previous chapters that the total score is a sufficient statistic for its
parameter, in this case, the proficiency of the person. Thus, the total person score
rn = ∑I

i = 1 xni is the sufficient statistic for the estimate of the person proficiency

© Springer Nature Singapore Pte Ltd. 2019
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βn where I is the number of items responded to by person n. That is, all of the
information about βn resides in the total score rn .

In the previous chapters, we used the sufficiency of the total score to show how
the person parameter can be eliminated to produce equations for estimating the item
difficulties without knowledge of the person proficiencies.We now use the total score
for a second purpose, to estimate the proficiency βn of person n, given that we have
the estimates of the item difficulties. We can now relate this estimation to Statistics
Review 10.

We build the equation for the estimation of the person parameter by analogy. We
then write out the formal equation and show how it can be derived using the idea of
maximum likelihood introduced in the last chapter.

In Statistics Review 10, we show an example where the outcomes of Bernoulli
variables are summed and where the responses are replications of each other in
the sense that the probability of a positive response is the same (i.e. a Binomial
experiment). Below we show an example where the outcomes of Bernoulli variables
are summed but where the probability of each response is different. Suppose person
n responds to 10 items which are analogous to the 10 tosses of a coin in Statistic
Review 10. The responses and the total score are shown in Table 10.1.

Now, rather than each response being a replication of the same person answering
the same item, each item is different and will have a different difficulty from every
other item. As a result, the items are not replications of each other as in the case of
replicated Bernoulli variables (Binomial experiment).

Therefore, we need to imagine the mean score of each item in a different way.
We take two steps to build up this imaginary set up. First, imagine that each item is
given many times to the person, and consider the estimate of the probability that the
person answers each item correctly. This would be the mean number of times of the
many replications that the person answers the item correctly. However, we recognize
that it is not reasonable to ask the same person to answer the same item many times.
Therefore, second, imagine that it is not the identical item that is administered on
more than one occasion, but that there are many different items of exactly the same
difficulty that are administered to the person. In this case, the theoreticalmean number
of correct responses will be the estimate of the probability that the person will answer
correctly any one of these itemswith the same difficulty. The distinction in the second
last sentence above between the identity of an item and the difficulty of an item will
appear throughout this book.

Table 10.1 Responses of person n to 10 items

Random variables xn1 xn2 xn3 xn4 xn5 xn6 xn7 xn8 xn9 xn10 Total
Score
rn

Value 1 1 1 0 1 1 0 0 1 0 6
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Table 10.2 Probabilities of responses of a person to 10 items: the proficiencyof personn isβn = 0.5
and the difficulties of the items are δ1 = −2.5, δ2 = −2.0, δ3 = −1.5, δ4 = −1.0, δ5 = −0.5,
δ6 = 0.5, δ7 = 1.0, δ8 = 1.05, δ9 = 1.5, δ10 = 2.0

Random
variables

xn1 xn2 xn3 xn4 xn5 xn6 xn7 xn8 xn9 xn10 Total
score
rn

Observed value 1 1 1 0 1 1 0 0 1 0 6

Average X̄ni 0.95 0.92 0.88 0.82 0.73 0.50 0.38 0.37 0.27 0.18 6.0

Probability Pni 0.95 0.92 0.88 0.82 0.73 0.50 0.38 0.37 0.27 0.18 6.0

Table 10.2 shows a set of observed responses and such estimated probabilities of
a correct response for each item which satisfy another condition. This condition is
as follows:

The sum of the probabilities (theoretical means) of the number of times each item
is answered correctly is equal to the number of items that are answered correctly.
Thus, the sum of each row in Table 10.2 is 6.

To think about this, it might help if you imagine first that 10 items of exactly the
same difficulty were answered by a person. If the probability of being correct on
these items is 0.6, then one would expect that the number of times a correct answer
would be given is 6.

That is,

0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6 = 10(0.6) = 6

as in the coin example in Statistics Review 10.
The case in Table 10.2 is analogous, except that every item has a different prob-

ability (theoretical mean number) of correct responses. For example, starting from
the left, the items are successively more difficult for the person. Nevertheless, the
sum of all of these probabilities should equal the number of correct responses, in this
case 6.

The Solution Equation for the Estimate of Person Proficiency

The above rationale permits setting up equations to estimate the proficiency of each
person, given the estimates of the difficulty for each item.

Table 10.2 shows the set up that the sum of the probabilities (means) of each item
correct should be equal to the total number of correct responses. In equation form,

rn =
10∑

i = 1

xni =
10∑

i = 1

Pni . (10.2)
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However, the probability that a person answers an item correctly can be expressed
in terms of the person’s proficiency and the item’s difficulty, that is, the dichotomous
RM equation:

Pni = eβn−δi

1 + eβn−δi
(10.3)

Therefore, Eq. (10.2) can be written as

rn =
10∑

i = 1

eβn−δi

1 + eβn−δi

= eβn−δ1

1 + eβn−δ1
+ eβn−δ2

1 + eβn−δ2
+ · · · · · · eβn−δi

1 + eβn−δi
· · · · · · + eβn−δ10

1 + eβn−δ10
(10.4)

In words, the sum of the probabilities (or theoretical means) of answering each
item correctly, must be equal to the number correct. In general, replacing the 10 items
by any number of, say I, items gives

rn =
I∑

i = 1

eβn−δi

1 + eβn−δi
. (10.5)

Thus, given that the difficulties of the items are known, for example, estimated
using the procedures from the last chapter, the one unknown value βn in Eq. (10.5)
can be calculated.

Solving the Equation by Iteration

This equation cannot be solved explicitly and we rely on computers to solve it. The
equation is solved iteratively in a systematic way but iteratively. In particular, an
initial value of βn is started with, the probabilities calculated and summed. If this
sum is greater than rn that indicates that our first estimate of βn is too large and that
we should reduce it a little. On the other hand, if it is less than rn , it indicates that
our estimate is too small and that we should increase it a little. That is one iteration.
The same procedure is continued with the new value, and this is the second iteration.
When the sum of the probabilities is close enough to rn according to some criterion
that is set, for example, only 0.001 different from rn , then the iterations are stopped
and it is said that the iterations have converged on a solution to the chosen criterion of
accuracy. The chosen criterion is called the convergence criterion. You do not have
to carry out these calculations, but it helps to have an idea of how they are done.

For example, in the above case of 10 items, suppose we knew the items to have
the difficulties shown in Table 10.2, and that we know the person’s total score was
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rn = 6 as above. Our first estimate for the proficiency might be β(0)
n = 0.25 (based

on experience).
Then inserting this value in Eq. (10.5) gives

10∑

i = 1

eβn−δi

1 + eβn−δi
= eβ

(0)
n −δ1

1 + eβ
(0)
n −δ1

+ eβ
(0)
n −δ2

1 + eβ
(0)
n −δ2

+ · · · · · · + eβ
(0)
n −δ10

1 + eβ
(0)
n −δ10

= e0.25+2.5

1 + e0.25+2.5
+ e0.25+2.0

1 + e0.25+2.0
+ · · · · · · + e0.25−2.0

1 + e0.25−2.0

= 0.94 + 0.90 + 0.85 + 0.78 + 0.68 + 0.44

+ 0.32 + 0.31 + 0.22 + 0.15 = 5.59.

This means that with a proficiency of βn = 0.25, the person would be expected
to obtain a score of 5.59. However, the person has a score of 6.0, therefore, the
proficiency estimate should be a little greater.

We could try β(1)
n = 0.40. In that case, we would obtain

10∑

i = 1

eβn−δi

1 + eβn−δi
= eβ

(1)
n −δ1

1 + eβ
(1)
n −δ1

+ eβ
(1)
n −δ2

1 + eβ
(1)
n −δ2

+ · · · · · · + eβ
(1)
n −δ10

1 + eβ
(1)
n −δ10

= e0.40+2.5

1 + e0.40+2.5
+ e0.40+2.0

1 + e0.40+2.0
+ · · · · · · + e0.40−2.0

1 + e0.40−2.0

= 0.95 + 0.92 + 0.87 + 0.80 + 0.71 + 0.48 + 0.35

+ 0.34 + 0.25 + 0.17 = 5.84.

The value of βn must be a little greater than 0.40, and so we could try 0.45. By
this successive process, we would reach βn = 0.50 correct to two decimal places.

It sometimes happens that the process does not converge to a solution. However,
this is rare in the Rasch model and if it occurs, there are mechanisms to make the
algorithm a little more sophisticated and to obtain convergence. Most computer
programs have this sophistication built into them. If the Rasch model equation really
does not converge, then this is a property of the data and not the model. Again, this
is rare, but it is possible. Fischer (1981) describes such a case.

Initial Estimates

To set initial estimates for each βn it is common to assume all items have the same
difficulty of 0. In that case, Eq. (10.5) reduces to

rn =
I∑

i=1

eβn

1 + eβn
= I

eβn

1 + eβn
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rn
I

= eβn

1 + eβn
(10.6)

and 1 − rn
I

= 1 − eβn

1 + eβn
i.e.

I − rn
I

= 1

1 + eβn

and inverting gives

I

I − rn
= 1 + eβn (10.7)

Multiplying Eq. (10.6) by (10.7) gives

rn
I

(
I

I − rn

)

= eβn

1 + eβn
(1 + eβn ) i.e.

rn
I − rn

= eβn

andβn = log

(
rn

I − rn

)

(10.8)

Proficiency Estimates for Each Person

Below is an analysis of the data from Table 5.3 of Chap. 5. Table 10.3 shows the
proficiency associated with each total score for the set of items, and three features
are noted.

For Responses to the Same Items, the Same Total Score Leads
to the Same Person Estimate

Where students respond to the same items, then irrespective of the pattern of
responses, the same total score leads to the same proficiency estimate. This is evident
from Eq. (10.5), in which there is no information about the actual responses—only
the total score is used. It is a manifestation of the sufficiency of the total score for
the person parameter β.

Estimate for a Score of 0 or Maximum Score

For a person with the maximum total score of 18, the proficiency estimate is infinite
(+∞). This is because the person’s proficiency is above the limit of the difficulty of
the test, and the probability of a correct response must be 1.00 for all the items. It is
as if an adult stood on a weighing machine for babies, and the indicator hit the top of
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Table 10.3 Proficiency estimates for the dichotomous items of Table 5.3, persons are ordered by
proficiency and items by difficulty

Person Responses Total Score rn Location β̂ (MLE) SE

38 101101001010000000 6 −0.920 0.550

2 101101110100000000 7 −0.625 0.537

40 010111110000101000 8 −0.340 0.531

42 110011111110010000 10 0.227 0.538

41 111101111101000000 10 0.227 0.538

44 111101111111000000 11 0.523 0.551

8 111110110101110000 11 0.523 0.551

35 111111011101100000 11 0.523 0.551

11 101111111110011000 12 0.837 0.572

9 110111111011011000 12 0.837 0.572

46 111011011011011010 12 0.837 0.572

29 111101111011110000 12 0.837 0.572

25 111110101111110000 12 0.837 0.572

27 011101111101100111 13 1.181 0.602

18 110111110111101001 13 1.181 0.602

36 111011110111111000 13 1.181 0.602

37 111101111111101000 13 1.181 0.602

20 111110011111101100 13 1.181 0.602

48 111110101111111000 13 1.181 0.602

13 111111011011110100 13 1.181 0.602

34 111111011100111100 13 1.181 0.602

32 111111101011111000 13 1.181 0.602

22 111111101101101001 13 1.181 0.602

43 111111111101110000 13 1.181 0.602

14 111110101111011110 14 1.570 0.647

12 111111100101011111 14 1.570 0.647

15 111111100110111110 14 1.570 0.647

21 111111111000111110 14 1.570 0.647

5 111111111010011110 14 1.570 0.647

4 111111111110011100 14 1.570 0.647

16 111111111110111000 14 1.570 0.647

45 111111111111000011 14 1.570 0.647

17 111111111111100100 14 1.570 0.647

7 111111110111111100 15 2.030 0.714

50 111111111110011110 15 2.030 0.714

49 111111111110111100 15 2.030 0.714

(continued)
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Table 10.3 (continued)

Person Responses Total Score rn Location β̂ (MLE) SE

23 111111111111110001 15 2.030 0.714

6 111111111111111000 15 2.030 0.714

24 111111111111111000 15 2.030 0.714

33 111110111111111101 16 2.615 0.826

26 111111011111111101 16 2.615 0.826

10 111111111110110111 16 2.615 0.826

31 111111111111101110 16 2.615 0.826

19 111111111111111010 16 2.615 0.826

30 101111111111111111 17 3.481 1.081

28 111011111111111111 17 3.481 1.081

1 111111111111101111 17 3.481 1.081

39 111111111111111101 17 3.481 1.081

47 111111111111111101 17 3.481 1.081

3 111111111111111111 18 + ∞ (4.762) ∞ (1.658)

the available scale, in which case the person’s weight is unknown. Clearly, the person
is beyond the limit measurable by the particular machine. In that case, it would be
necessary to use a weighing machine that measures greater weights. In the example
with items, the person would take more difficult items to establish a finite estimate of
proficiency. Thus, the person is not thought to actually have infinite proficiency, it is
just that a finite estimate cannot be obtained from these particular items. Likewise, if
a person answered all the items incorrectly, then the person would have a proficiency
estimate of −∞. In order to get a finite estimate of proficiency for such a person,
easier items should be used.

Sometimes groups of people need to be compared say for relative improvement or
for baseline data. For example, we may have responses from boys and girls and we
might have assessed them on some proficiency before some program of teaching is
in place. If different numbers of boys and girls obtain a 0 score or maximum score, it
would bias the comparison of the boys and girls if they were left out. Although they
are left out in the item calibration, they cannot be left out of the group comparisons.
Therefore, there is the need to provide an estimate of a person with a maximum (or
minimum score of 0). Different methods have been devised for this purpose, and they
all involve some extra assumption or reasoning that goes beyond the model itself.
Some methods make it explicit that the person with a maximum or minimum score
belongs to the population of persons. In RUMM2030 (Andrich, Sheridan, & Luo,
2018), a value is extrapolated by observing that the relative differences in successive
values at the extremes increase. Thus, in this example, the successive difference
between the scores of 15 and 14, 16 and 15 and 17 and 16 are 0.46, 0.59 and 0.87,
showing successive increases. The procedure in RUMM2030 specifically uses the
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geometric mean of the differences of the three scores before the maximum score. As
a result, the extrapolated value for a score of 18 is 4.762. The same principle is used
to extrapolate the value for a score of 0, shown later for this example.

The Standard Error of Measurement of a Person

There is an extra column in Table 10.3 giving the standard error of measurement for
each person. We do not derive this equation in this book, but it also arises directly
from maximum likelihood theory.

The equation for estimating this standard error is relatively simple, it is given by

σβ̂ = 1
√∑I

i=1 Pni (1 − Pni )
(10.9)

UnlikeCTT, the standard error is not the same for all persons. CompareEq. (10.9)
with Eq. (3.5) of Chap. 3 where the CTT standard error is a function of test reliability
and variance. In the dichotomous RM the standard error of measurement depends
on the total score; if a person has answered few or very many items correctly, then
the standard error is greater than if the person has answered a moderate number of
items correctly. If a person has answered all the items correctly, then the standard
error is infinitely large. This is consistent with not having a finite estimate of the
person’s proficiency. Again, RUMM2030 provides a value using Eq. (10.9) for the
extrapolated value. As expected, it is large and larger than the standard error for the
score one less than the maximum.

Proficiency Estimate for Each Total Score When All Persons
Respond to the Same Items

In the case that all persons have responded to all items, there is another way of
displaying the information in Table 10.3. It is displayed by the total score, the profi-
ciency estimate associated with the total score, and the standard error. Table 10.4 is
such a table.

Two special features of Table 10.4 are noted. First, total scoreswith zero frequency
(e.g. a score of 9) have proficiency estimates, and second transformation from a total
score to an estimate is non-linear.
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Table 10.4 Total scores,
frequencies, proficiency
estimates and standard errors

Raw score Frequency Location (MLE) Std Error

0 0 − ∞ (−4.543) ∞ (1.679)

1 0 −3.316 1.050

2 0 −2.515 0.784

3 0 −1.993 0.672

4 0 −1.584 0.611

5 0 −1.235 0.573

6 1 −0.920 0.550

7 1 −0.625 0.537

8 1 −0.340 0.531

9 0 −0.059 0.531

10 2 0.227 0.538

11 3 0.523 0.551

12 5 0.837 0.572

13 11 1.181 0.602

14 9 1.570 0.647

15 6 2.030 0.714

16 5 2.615 0.826

17 5 3.481 1.081

18 1 + ∞ (4.762) ∞ (1.658)

Estimates for Every Total Score

There are some scores in Table 10.4 which no one has achieved. For example, there is
no one with a score of 1, 2, 3, 4, 5 and 9. Nevertheless, there is a proficiency estimate
associated with these scores. This is because, given the difficulty of the items, the
proficiency for each total score can be estimated from Eq. (10.5). Likewise, the
standard error for these scores can be estimated from Eq. (10.9).

For example, for a score of 9, Eq. (10.5) becomes

9 =
18∑

i=1

eβn−δi

1 + eβn−δi

and every person who has responded to these items obtains the same estimate.
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Non-linear Transformation from Raw Score to Person
Estimate

Although the distance between all successive total scores is 1, the distances between
the proficiency estimates for successive total scores are different. For example, the
proficiency difference between scores of 4 and 5 is −1.584 to (−1.235) = −0.349
while the difference between scores of 10 and 11 is 0.227–(0.523) = −0.296. These
differences reflect the non-linear transformation of the raw scores to the estimates.
This non-linear transformation is an attempt to undo the implicit effects of con-
strained, finite, minimum and maximum scores. When there are many maximum
scores because there are not enough items of greater difficulty, and when there are
many scores of 0 because there are not enough easier items, it is said that there is a
ceiling and floor effect, respectively.

Figure 10.1 shows the non-linear transformation graphically for the responses in
Table 10.4. The estimates are not symmetrical around 0 because the items are not
uniformly spaced. Figure 10.2 shows how the standard errors of the estimates are
greater at the extremes than in the middle of the score range.

Fig. 10.1 Non-linear transformation of the total score to an estimate
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Fig. 10.2 Standard errors as a function of the estimates

Displaying Person and Item Estimates on the Same
Continuum

Figure 10.3 shows a graphical display of the person location estimates of Table 10.4
in this chapter and the item location estimates from Table 9.4 in the previous chapter.
It shows the information from these two tables as histograms on the same scale,
one above the horizontal axis showing the person distribution, and one below the
horizontal axis showing the item distribution. This graph makes the interpretation of
the person values more tangible in terms of the locations of the items. It is clear from
this Figure that the persons overall found this test relatively easy. Thus, with a person
mean of the order of 1.58, and the mean of the item difficulties defined to be 0.0, the
probability that the average student will answer correctly a question with difficulty 0,
given by Eq. (10.1), is 0.829. In tests of proficiency, we might expect success rates to
be of more than 50%. However, there are individual students whose success is very
low. In principle, it is possible to have different students attempt different questions
which are adapted to their proficiencies, so students do not attempt items that are
either too difficult or too easy for them.We consider this possibility, and the facilities
of the Rasch model to cater to it, in a subsequent chapter.
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Fig. 10.3 Item and person estimates on the latent continuum

CTT Reliability Calculated from Rasch Person Parameter
Estimates

The calculation of a reliability index has not been very common in modern test
theory. However, it is possible to construct an index of reliability which is analogous
in calculation and interpretation, and generally in value, using Rasch measurement
theory. We demonstrate its construction first and then comment on its interpretation.

Derivation of rβ

Given the estimates of proficiency and the standard error of these estimates, it is
possible to calculate a reliability index in a simple way.

The key point is to apply the CTT formula for reliability, Eq. (3.3) of Chap. 3:

ryy = s2t
s2y

= s2y − s2e
s2y

(10.10)

However, instead of using the raw scores in this equation, we use the proficiency
estimates. We use the same process in applying Eq. (10.10) except that we do this
with the proficiencies. Thus, we consider that the proficiency estimate β̂n for each
person n can be expressed as the sum of the true latent proficiency and the error, that
is

β̂n = βn + εn (10.11)
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Thus instead of s2x we use σ̂ 2
β̂
which is the estimate of the variance of the estimates

of proficiencies. This is simply given by

σ̂ 2
β̂

=
∑N

n=1

(
β̂n − ¯̂

β
)2

N − 1
(10.12)

where ¯̂
β is the mean of the estimates of the persons.

This variance, being of the estimates, includes the variance of the errors σ̂ 2
ε̂
. To

account for this variance of errors, the best we can do, even though the errors are a
function of the locations of the persons, is take the average of the estimates of the
variance of errors for each person. This is given simply by taking the average of the
squares of the standard errors of measurement for each person, that is

σ̂ 2
ε̂ =

∑N
n=1 σ̂ 2

n

N
(10.13)

The key feature of reliability in CTT is that it indicates the degree to which there
is systematic variance among the persons relative to the error variance—it is the ratio
of the estimated true variance relative to the true variance plus the error variance. In
CTT, the reliability index can give the impression that it is a property of the test, when
it is a property of the persons as identified by the test. The same test administered
to people of a similar class of persons, but with a smaller true variance would be
shown to have a lower reliability. Thus, the index needs to be interpreted with the
distribution of the persons in mind.

Therefore, to focus on this qualification to its interpretation, we refer to this index
(which is of the same kind as the traditional reliability index) as the person separation
index (PSI) denoted rβ . Finally, therefore, we have

rβ = σ̂ 2
β − σ̂ 2

ε

σ̂ 2
β

(10.14)

where the components are given by Eqs. (10.12) and (10.13).
In the case with person/item distributions that are standard and to which the CTT

reliability is correctly applied, the values of the coefficient α and those obtained from
Eq. (10.14) are very similar (Andrich, 1982). However, in cases where coefficient
α should not really be interpreted, the values might vary. The situation can occur
when there is an artificially skewed distribution of scores in which there are floor or
ceiling effects in the responses. Then the assumption that the sum of the item scores
is effectively unbounded is grossly violated, and the coefficient α becomes inflated.
It is inflated effectively because the scores of each person on the items may be more
similar than they would be if there were no floor or ceiling effect. On the other hand,
the error in the Rasch model is larger at the low and high scores and therefore rβ will
be larger than α. In cases where every person responds to every item, both can be
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calculated and compared. If they are very different, then the person/item distribution
should be reexamined before either is interpreted. In any case, the interpretation of
this index requires an examination of the person/item distribution and if there are
floor and ceiling effects these should be noted. There are of course other factors
that can affect the interpretation of this index and this is just one of them. Floor and
ceiling effects will generate different values of rβ compared to α.

Example 1 For the data that are analyzed in Table 10.3,
σ̂ 2

β̂
= 1.25 and σ̂ 2

ε̂
= 0.54

Therefore, r̂β = σ̂ 2
β̂
−σ̂ 2

ε̂

σ̂ 2
β̂

= 1.25−0.54
1.25 = 0.71

1.25 = 0.57.

Example 2 For the data including graded responses that are analyzed in Part III of
this book,

σ̂ 2
β̂

= 0.79 and σ̂ 2
ε̂

= 0.43

Therefore, r̂β = σ̂ 2
β̂
−σ̂ 2

ε̂

σ̂ 2
β̂

= 0.79−0.43
0.79 = 0.36

0.79 = 0.46.

These are very moderate values and are explained by the fact that the test was
a little easy and persons were grouped at the top end of the range, and that the
test is short. That this index is smaller when the data are grouped indicates that the
responses within the items that are combined have some dependencies and that the
dichotomous data gave an artificially high reliability.

In addition to providing the same kind of information as the index α, this index
is readily calculated if there are missing data without any extra assumptions needing
to be made. Missing data can occur either with some people missing some items at
random or when there is some structural missing data, for example, different groups
of persons are not all given the same items. This case is considered in the chapter
where linking tests with common items are discussed.

In addition, as is considered in Part II of this book, the index is relevant in the
power to detect misfit of the responses to the Rasch model.

Principle of Maximum Likelihood

Wenow take the opportunity to showmore explicitly the idea ofmaximum likelihood,
which is central to estimation in the Rasch model and statistics in general. Again,
some of this material could be a statistics review, but because it is central to the Rasch
model we have retained it in the main section of the book.

We have in the dichotomous RM that

Pr{xni = 1} = eβn−δi

1 + eβn−δi
; Pr{xni = 0} = 1

1 + eβn−δi
(10.15)

We have seen that these two sub equations can be written as one equation:
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Pr{xni } = exni (βn−δi )

1 + eβn−δi
(10.16)

Now consider the probability, according to this equation, that the first person
(Person 38) in Table 10.3 has those responses. To do this, we apply the principle of
statistical independence we broached in Chap. 7. Thus, a person’s actual response to
one question does not affect the response to any other question, other than through the
person’s proficiency parameter, which governs responses to all items. Accordingly,
the probability of the person’s responses is given by the product of the probabilities
of responses to individual items. This probability is

Pr{(x1i )} =
18∏

i=1

ex1i (β1−δi )

1 + eβ1−δi

= e1(β1−δ1)

1 + eβ1−δ1

e0(β1−δ2)

1 + eβ1−δ2

e1(β1−δ3)

1 + eβ1−δ3
. . .

e0(β1−δ18)

1 + eβ1−δ18
. (10.17)

This equation can be simplified by simply summing the exponents of the numera-
tors, and multiplying the denominator term which is exactly the same in every term.

This gives

Pr{(x1i )} =
18∏

i=1

ex1i (β1−δi )

1 + eβ1−δi

= e6β1−∑k
i=1 x1i δi

∏18
i=1 (1 + eβ1−δi )

. (10.18)

Notice that the coefficient of the person proficiency β 1 in the numerator is the
person’s total score—the sufficient statistic. The other term in the numerator is simply
the sum of parameters of the items that the person has answered correctly. We will
see that this term plays no role in the final equation.

Nowconsider the same equation for every other person. Equation (10.18) is simply
repeated for each person. We now assume statistical independence of responses
betweenpersons. For example,we consider that the students havenotworked together
to provide the same response to any item. Then to obtain the probability of the matrix
of responses, we simply multiply Eq. (10.18) across all persons. This is written in
general, with N = 50 and I = 18, as

L = Pr{(xni )} =
N∏

n = 1

I∏

i = 1

exni (βn−δi )

1 + eβn−δi

= e1(β1−δ1)

1 + eβ1−δ1

e0(β1−δ2)

1 + eβ1−δ2

e1(β1−δ3)

1 + eβ1−δ3
· · · e0(β1−δ18)

1 + eβ1−δ18
· · · · · ·

e1(β49−δ1)

1 + eβ49−δ1

e1(β49−δ2)

1 + eβ49−δ2

e1(β49−δ3)

1 + eβ49−δ3
· · · e1(β49−δ18)

1 + eβ49−δ18
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= e6β1+······+17β49−∑N
n = 1

∑I
i = 1 xni δi

N∏

n = 1

I∏

i = 1

1

1 + eβn−δi
(10.19)

The last person (Person 3) is not included in Eq. (10.19) because that person has
the maximum score of 18 and the person’s theoretical estimate is +∞. This person’s
estimate is extrapolated, not estimated.

L in front of this equation stands for the Likelihood of the responses, which is the
joint probability of the matrix of all responses across persons and items.

Now take the logarithm of Eq. (10.19) which gives the log-likelihood:

ln L = 6β1 + · · · · · · + 17β49 −
N∑

n = 1

I∑

i = 1

xniδi − ln
N∑

n = 1

I∑

i = 1

1 + eβn−δi (10.20)

Now the task is to find the βn value for each person that gives the maximum value
for Eq. (10.20), which is the same value that maximizes the likelihood of Eq. (10.19).
For example, we could try different values as we did above in obtaining a person’s
estimate. To obtain the equation for the maximum value requires calculus. It involves
differentiating Eq. (10.20) successively with respect to each person’s parameter βn .
It turns out that equation is exactly Eq. (10.5) we used above.

Thus,

rn =
I∑

i = 1

eβn−δi

1 + eβn−δi
(10.21)

gives the maximum likelihood estimate of the person parameter in the dichotomous
RM.

As indicated in Chap. 9, maximum likelihood estimation is analogous but a differ-
ent principle from that which is used in regression described in the statistics reviews.
In regression, the criterion for the estimates is that the parameter estimates of the
model are such that the residuals between the model and the data are minimized. In
maximum likelihood, the parameter estimates of the model are such that the like-
lihood of the data is a maximum. Often, but not always, minimizing residuals and
maximizing the likelihood give the same estimates.

Bias in the Estimate

The estimates of person parameters in the Rasch model are biased in the sense that
with a fixed number of items, the person parameters at extremes are a little more
extreme than they should be. The probabilities that are estimated are not biased,
but the non-linear relationship between the person parameters and the probabilities
creates a bias. This bias tends to 0 as the number of items is increased, and tends to 0
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more quickly if the person and item distributions are well aligned. Various software
packages for the person estimation have modifications to the maximum likelihood
estimates which shrink the extreme values; RUMM2030 is one of these.

Exercises

1. In this chapter, an example of a person answering 10 items was used to illustrate
the estimate of a person’s proficiency. The item difficulties were δ1 = −2.5,
δ2 = −2.0, δ3 = −1.5, δ4 = −1.0, δ5 = −0.5, δ6 = 0.5, δ7 = 1.0, δ8 = 1.05,
δ9 = 1.5, δ10 = 2.0.
The person answered six of the items correctly, that is rn = 6 = 6. An initial
value of β(0)

n = 0.25 was used as an estimate of the person’s proficiency, and
inserted into Eq. (10.5) to give

10∑

i = 1

eβn−δi

1 + eβn−δi
= eβ

(0)
n −δ1

1 + eβ
(0)
n −δ1

+ eβ
(0)
n −δ2

1 + eβ
(0)
n −δ2

+ · · · · · · + eβ
(0)
n −δ10

1 + eβ
(0)
n −δ10

= e0.25+2.5

1 + e0.25+2.5
+ e0.25+2.0

1 + e0.25+2.0
+ · · · · · · + e0.25−2.0

1 + e0.25−2.0

= 0.94 + 0.90 + 0.85 + 0.78 + 0.68

+ 0.44 + 0.32 + 0.31 + 0.22 + 0.15 = 5.59.

Because 5.59 is less than 6, a proficiency value a little greater than 0.25 was tried,
in particular, β(1)

n = 0.40 to give

10∑

i = 1

eβn−δi

1 + eβn−δi
= eβ

(1)
n −δ1

1 + eβ
(1)
n −δ1

+ eβ
(1)
n −δ2

1 + eβ
(1)
n −δ2

+ · · · · · · + eβ
(1)
n −δ10

1 + eβ
(1)
n −δ10

= e0.40+2.5

1 + e0.40+2.5
+ e0.40+2.0

1 + e0.40+2.0
+ · · · · · · + e0.40−2.0

1 + e0.40−2.0

= 0.95 + 0.92 + 0.87 + 0.80 + 0.71 + 0.48

+ 0.35 + 0.34 + 0.25 + 0.17 = 5.84.

This sum of 5.84 is again less than 6. Therefore, the proficiency estimate must
be greater than 0.40.

(a) Try the value β(2)
n = 0.45 in Eq. (10.5) as above. Is the required proficiency

estimate greater than 0.45 or less than 0.45?
(b) Try the value β(3)

n = 0.55 in Eq. (10.5) as above. Is the required proficiency
estimate greater than 0.55 or less than 0.55?

(c) Try the value β(4)
n = 0.50 in Eq. (10.5) as above. Which of these values that

have been tried is the best estimate?
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2. Calculate the PSI index of reliability for data where σ̂ 2
β̂

= 1.51 and σ̂ 2
ε̂

= 0.32.
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Chapter 11
Equating—Linking Instruments
Through Common Items

Linking of Instruments with Common Items

In many areas of social measurement, different instruments but with some common
items, have been constructed to assess the same variable, and it is considered impor-
tant to place them on the same scale. In these cases of some common items between
two instruments, the implication is that not all persons have attempted the same items.
We comment on applications of this feature after we describe a method for applying
the Rasch model for analyzing a data matrix when not all persons have attempted
all items. Often, when two sets of items with some common items are placed on the
same scale, it is said that the sets of items have been linked. Such a design was in the
original work of Rasch which led him to his theory of measurement (Rasch, 1960).

Linking Three Items Where One Item Is Common to Two
Groups

To illustrate the procedure, we expand on the estimation of item locations in Chap. 9
where we estimated the relative difficulties of two items, items 1 and 8 fromTable 3.1
in Chap. 3. We consider the case where item 8 and another item, called item 11 that
assessed the same content and could have been in the same test, have been answered
by another group of people for whom the test is relevant. Thus, item 8 is common
to two groups of persons, and items 1 and 11 are answered by only one of the two
groups. Figure 11.1 shows the design of the administration of these three items.
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Estimating Differences Between Difficulties and then
Adjusting the Origin

In Chap. 9, we already estimated the difference between difficulties of items 1 and 8.
We consider that this estimate has come from responses by group 1 in Fig. 11.1. The
relative difficulties were δ̂1 = −0.973, δ̂8 = 0.973 where, because we can estimate
only a difference, we made δ̂ 1 + δ̂ 8 = 0. We use the same procedure to estimate the
difference between difficulties of items 8 and 11 as we did to estimate the difference
between difficulties of items 1 and 8.

Table 11.1 shows the relevant responses to items 8 and 11 from group 2. It shows
that seven persons had a total score of 1 on the two items.

Following the procedures of Eq. (9.4) in Chap. 9 we have

Proportion{(xn8 = 1, xn11 = 0)|rn = 1} = 5

7
and

Proportion{(xn8 = 0, xn11 = 1)|rn = 1} = 2

7
.

Substituting these proportions as estimates of the respective probabilities in
Eq. (9.5) of Chap. 9 gives

ln

[
5/7

2/7

]
= ln

[
5

2

]
= ln[2.5] = δ̂11 − δ̂8.

Fig. 11.1 Linking design
for three items with one item
common to two groups

Item 1 Item 8 Item 11

Group 1 

Group 2 

Table 11.1 Responses of
persons to items 8 and 11
given {rn − 1}

Person Person count Item 8 Item 11 {rn − 1} a811

3 1 1 0 1 1

4 2 1 0 1 1

5 3 1 0 1 1

6 4 1 0 1 1

7 5 0 1 1 0

8 6 0 1 1 0

9 7 1 0 1 1

Total = 7 Sum = 5
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That is,

δ̂11 − δ̂8 = ln[2.5] = 0.916.

Setting δ̂8 + δ̂11 = 0, gives δ̂8 = −0.458 and δ̂11 = 0.458.
Now we have two values for Item 8, δ̂8 = 0.973 from the comparison with item

1 with the responses from group 1, and δ̂8 = −0.458 from a comparison with item
11 obtained from group 2. To place estimates of all three items on the same scale we
note that the origin is arbitrary in each set of estimates and that only the difference
between item difficulties has been estimated.

Thus, we can add constants to the estimates providingwe preserve the differences.
We can simply retain the value of item 8 as estimated fromgroup 1, find the difference
with its value obtained from group 2, and then add the same value to item 11.

The difference between the two estimates for Item 8 is 0.973− (−0.458)= 1.431.
Adding 1.431 to both the estimates of items 8 and 11 from group 2 gives δ̂8 = 0.973
and δ̂11 = 1.889. Thus, now item 8 has the same estimate in group 2 as in group 1,
and the difference of 0.916 between items 8 and 11 obtained from group 2 has been
retained. Table 11.2 summarizes the calculations. In this calculation, the average of
the difficulties of all three items is 0.630.

If it is deemed convenient for some reason that the sum of these item difficulties is
0, then this can be achieved simply by subtracting the average difficulty of the items
from each item. The estimates with this subtraction, which give δ̂1 + δ̂8 + δ̂11 = 0,
is shown in the last row of Table 11.2.

Table 11.2 shows that item 11 is more difficult than item 8 and very much more
difficult than item 1. Perhaps group 2 was more proficient than group 1 and that is
the reason that the more difficult item was given to this group.

The case of three items was shown above for purposes of exposition. In general,
there are of course many items in each test, and more than one common item. The
generalization of the procedure above, where there are many items, is to calculate the
mean of the common items in the two groups, and then add the difference between
these means to all items of one of the sets of items. Another procedure is to analyze
all the responses of all the items and take advantage of the analysis which handles
missing responses. In Fig. 11.1 responses of group 2 to item 1 and group 1 to item
11 are said to be missing. This procedure is described next.

Table 11.2 Estimates of
items 1, 8 and 11 placed on
the same scale

Items δ̂ 1 δ̂ 8 δ̂ 11 Mean

Group 1 −0.973 0.973

Group 2 −0.458 0.458

0.973 − (−0.458) 1.431 1.431

Estimates −0.973 0.973 1.889 0.630

Estimates Mean 0.0 −1.603 0.343 1.259 0.000
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Estimating Differences Between Difficulties Simultaneously
by Maximum Likelihood

We now summarize the approach that can estimate the parameters simultaneously
in the case that not all persons respond to all items. We use the example of the three
items 1, 8 and 11 with data from Table 11.1 of this chapter and Table 9.3 of Chap. 9.
We show this because it is the basic method used by computer programs and we
think it helps to understand the principles by which the programs provide estimates.

Before proceeding, we show how the complementary equations, Eqs. (9.1) and
(9.2) of Chap. 9 with respect to items 1 and 8, can be written as a single equation.

These equations are

P1.8|1 = Pr{(xn1 = 1, xn8 = 0)|rn = 1} = e−δ1

e−δ1 + e−δ8
(11.1)

P8.1|1 = Pr{(xn1 = 0, xn8 = 1)|rn = 1} = e−δ8

e−δ1 + e−δ8
(11.2)

We introduce the simplified notation of Pi. j |1 because we use it below to help
summarize the solution equations. The first subscript indicates the item which has
the response 1, and the second the one that has the response 0.

Equations (11.1) and (11.2) can be written as a single equation in the form

Pr{(Xn1 = xn1, Xn8 = xn8)|rn = 1} = e−xn1δ1−xn8δ8

e−δ1 + e−δ8
. (11.3)

It is evident that when {(Xn1 = 1, Xn8 = 0)|rn = 1} and the values are substituted
in Eq. (11.3), that it results in Eq. (11.1), and that when {(Xn1 = 0, Xn8 = 1)|rn = 1}
and the values are substituted in Eq. (11.3), that it results in Eq. (11.2).

In general, for any two items i, j Eq. (11.3) generalizes to

Pr{(Xni = xni , Xnj = xnj )|rn = 1} = e−xni δi−xnj δ j

e−δi + e−δ j
. (11.4)

From Eq. (11.3), and focusing on just the two items 1 and 8, we can write the
likelihood L of the responses. There are 16 cases in Table 9.3 of Chap. 9 which have
a total score of rn = 1 and we can, therefore, write L of the set of responses as the
product of these probabilities (which are conditional on a total score of 1); it is called
a conditional likelihood. Thus

L =
16∏
n=1

e−xn1δ1−xn8δ8

e−δ1 + e−δ8
=

∏16
n=1 e

−xn1δ1−xn8δ8

(e−δ1 + e−δ8)16

= e−
∑16

n=1 xn1δ1−
∑16

n=1 xn8δ8

(e−δ1 + e−δ8)16
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= e−δ1
∑16

n=1 xn1−δ8
∑16

n=1 xn8

(e−δ1 + e−δ8)16

= e−14δ1−2δ8

(e−δ1 + e−δ8)16
(11.5)

The coefficients
∑16

n=1 xn1 and
∑16

n=1 xn8 of δ 1 and δ 8, respectively, are 14 and 2
(the sum of the responses), which is the number of times each one has a score of 1
when the other has a score of 0.

Taking the logarithm gives

ln L = −14δ1 − 2δ8 − 16 ln(e−δ1 + e−δ8). (11.6)

We need calculus to derive equations that give values of δ 1 and δ 8 that maximize
the value of Eq. (11.6). There is one equation for each item. These are obtained by
differentiating Eq. (11.6) first with respect to δ 1 and then with respect to δ 8.

This gives for the respective items

δ1 : −14+ 16
e−δ̂1

e−δ̂1 + e−δ̂8
= 0 (11.7)

and

δ8 : −2+ 16
e−δ̂8

e−δ̂1 + e−δ̂8
= 0. (11.8)

We have placed a “hat” on the parameters to indicate that when they satisfy
these equations, they are estimates. It is also evident that the ratios that involve the
parameters are simply the conditional probabilities of Eqs. (11.1) and (11.2). As a
result, we can write

δ1 : −14+ 16P̂1.8|1 = 0 (11.9)

and

δ8 : −2+ 16P̂8.1|1 = 0. (11.10)

Equations (11.9) and (11.10) have the form of the solution for a binomial variable
which can be seen by writing them as

δ1 : 16 P̂1.8|1 = 14 (11.11)

and
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δ8 : 16P̂8.1|1 = 2. (11.12)

However, these two equations are not independent, and therefore there are many
solutions that satisfy them. One way of telling that the equations are not independent
is to check if the sum of the equations reduces to an identity. In fact, we can see
that, because P̂1.8|1 = 1 − P̂8.1|1 the sum of the left side of the two equations,
16P̂1.8|1 + 16P̂8.1|1 = 16(1) = 16, is exactly the sum of their right-hand sides,
14+ 2 = 16. The dependence arises because, although there is a parameter for each
item, the only information available is about their difference. To obtain a solution for
Eqs. (11.11) and (11.12) that can be agreed upon, it is conventional to fix the sum of
the estimates to be 0, as we did in Chap. 9. It is, however, possible to fix the value
of one of the items and let the other take the estimate from the responses. Thus the
additional equation generally specified is

δ̂1 + δ̂8 = 0. (11.13)

The solution to these equations is found iteratively, as shown for person estimates
in Chap. 10. That is, initial values are placed on the left side of Eqs. (11.11) and
(11.12), and then based on their differences from 0, adjustments are made with the
constraint of Eq. (11.13) imposed with each iteration until the difference is small
enough to be acceptable, perhaps 0.0001.

Wedonot go through the process, but for completeness,wenote that ifweplace the
solutions we had already established in Chap. 9, that is δ̂1 = −0.973 and δ̂8 = 0.973,
into Eqs. (11.11), (11.12), and (11.13), we obtain 16P̂1.8|1 = 14 and 16P̂8.1|1 = 2.

Estimating Item Parameters Simultaneously by Maximum
Likelihood in the Presence of Missing Responses

With the notation and development above, we now generalize the procedure to the
case of the design in Fig. 11.1 with three items in which only one item is common
to both groups. As indicated above because not all persons have responded to all
items, a design such as that one is often described as having missing data or missing
responses.

Themaximum likelihood estimation of the three items simultaneously requires the
likelihood of all conditional responses. In the example, this is given by multiplying
the conditional probabilities of the responses between items 1 and 8 and the responses
between items 8 and 11. This gives

L =
16∏
n=1

e−xn1δ1−xn8δ8

e−δ1 + e−δ8

23∏
n=17

e−xn8δ8−xn11δ11

e−δ8 + e−δ11
(11.14)
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where the product in the second term which has responses to items 8 and 11 is made
to run from n= 17 to 23 because they are different persons from thosewho responded
to items 1 and 8, which we have running from n = 1 to 16.

Then expanding Eq. (11.14)

L = e−
∑16

n=1 xn1δ1−
∑16

n=1 xn8δ8

(e−δ1 + e−δ8)16

e−
∑23

n=17 xn8δ8−
∑23

n=17 xn11δ11

(e−δ8 + e−δ11)7
(11.15)

and the log likelihood is

ln L = −
16∑
n=1

xn1δ1 −
16∑
n=1

xn8δ8 −
23∑

n=17

xn8δ8 −
23∑

n=17

xn11δ11 − 16 ln(e−δ1 + e−δ8)

− 7 ln(e−δ8 + e−δ11)

= −14δ1 − 2δ8 − 5δ8 − 2δ11 − 16 ln(e−δ1 + e−δ8) − 7 ln(e−δ8 + e−δ11)

= −14δ1 − 7δ8 − 2δ11 − 16 ln(e−δ1 + e−δ8) − 7 ln(e−δ8 + e−δ11) (11.16)

It is evident that item 8, the item common to the two groups, is involved in more
responses than the other two items which are responded to by only one group.

Using calculus, the equations that maximize the likelihood are

δ1 : −14+ 16
e−δ̂1

e−δ̂1 + e−δ̂8
= −14+ 16P̂1.8|1 = 0 (11.17)

δ8 : −7+ 16
e−δ̂8

e−δ̂1 + e−δ̂8
+ 7

e−δ̂8

e−δ̂1 + e−δ̂8
= −7+ 16P̂8.1|1 + 7P̂8.1|1 = 0 (11.18)

δ11 : −2+ 7
e−δ̂11

e−δ̂8 + e−δ̂11
= −2+ 7P̂11.8|1 = 0. (11.19)

These equations are also not independent, and to obtain a particular solution, we
impose the constraint

δ̂ 1 + δ̂ 8 + δ̂ 11 = 0. (11.20)

Again, these equations are solved iteratively. We do not proceed to solve these
equations in this way, but we leave it as an exercise to show that the solution in the
last row of Table 11.2,

δ̂1 = −1.603, δ̂8 = 0.343, δ̂11 = 1.259, satisfies Eqs. (11.17), (11.18), (11.19)
and (11.20).

The above method of maximum likelihood is called conditional pairwise estima-
tion. It has some desirable properties, including that the estimates obtained converge
to the correct estimates as the sample size increases. However, because the same item
appears in different pairings, the responses are not totally independent, and therefore
it is not used directly in tests of fit. We consider tests of fit in subsequent chapters.
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The design of Fig. 11.1 generalizes so that, providing each item is paired with at
least one other item in a data matrix, the estimation can be carried out. We refer to
this point again in the last section of the chapter.

Equating Scores of Persons Who Have Answered Different
Items from the Same Set of Items

We have considered, above, placing items on the same scale when not all persons
have answered all items. Focusing now on persons, we recall that in the Rasch model
all persons with the same total score will have the same proficiency estimate. This
is because the total score is a sufficient statistic for the estimation of proficiency.
However, if two persons have responded to different items, then because the difficul-
ties of the items are different, persons with the same total score will have different
proficiency estimates. Thus, if a person has attempted 20 relatively difficult items
and has a score of 15, then that will give a greater proficiency estimate than if the
person had attempted 20 relatively easy items and also has a score of 15.

To show how this appears in the estimation Eq. (10.5) from Chap. 10, it may be
modified to

rn =
I∑

i=1

ani xni =
In∑
i=1

ani
eβ̂n−δ̂i

1+ eβ̂n−δ̂i
(11.21)

where In , with the subscript n, indicates the number of items person n has completed
and ani is a dichotomous variable that takes on the value 1 if person n has responded
to item i , and 0 if person n has not responded to item i . Thus, the sum on both sides
of Eq. (11.21) only contains the items to which the person has responded.

Table 11.3 shows the items from the example in Chap. 3 analyzed as dichotomous
items, as in Chap. 9. The items have been labelled and ordered in terms of their
difficulties. The top part of Table 11.3 shows two subtests formed from two different
sets of items, one with the easiest 9 items and one with the most difficult 9 items.
The second part of the table shows the proficiency estimates on each of the possible
scores from 1 to 8, with extrapolated values for 0 and 9. It is evident that for the
same total score, the proficiency estimate on the more difficult items is greater than
that from the easier items. Figure 11.2 shows the graphical relationship between the
scale values of β and scores on the two tests.

In each case, the person’s total score (on those items attempted) is the relevant
statistic for estimating the proficiency, but the estimate itself depends on the difficulty
(parameters) of the items. If the items are on the same scale, then the proficiency
estimates will also be on the same scale.
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Table 11.3 Person estimates
from two sets of items on the
same scale

Item subtests selections

Item Set 1 Set 2

2 X

1 X

5 X

6.4 X

3 X

4 X

6.3 X

9.1 X

9.3 X

6.1 X

9.2 X

6.2 X

7 X

10.1 X

8 X

10.3 X

10.2 X

10.4 X

No. 9 9

Max 9 9

Total score and equivalent proficiencies

Score Set 1 Set 2

0 −3.642 −1.992

1 −2.764 −1.117

2 −2.088 −0.422

3 −1.572 0.122

4 −1.120 0.617

5 −0.688 1.112

6 −0.242 1.640

7 0.263 2.247

8 0.923 3.022

9 1.780 3.926
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Fig. 11.2 Estimates of person proficiency from two tests composed of items on the same scale

Applications

Estimating item locations on the same scale where not all persons have responded to
all items is common in education. For example, in large scale assessment exercises,
at national and international levels, it may be necessary to compare the proficiencies
of persons over different year groups, and older year groups need to be administered
more difficult items than younger year groups. In order to link the items administered
to the two groups, some common items, those whichmay be somewhat more difficult
for the younger group but not too difficult, and somewhat easier for the older group
but not too easy, may be administered as common items. Then all items are linked
through the common items as shown above, and person estimates are obtained only
from those items to which the persons have responded.

As a concrete example, in Australia, there is a National Assessment Program in
Literacy and Numeracy (NAPLAN) in which students in years 3, 5, 7 and 9 are
assessed and the assessments are placed on the same scale. This design of the assess-
ments requires that there are some common items between adjacent year groups,
with the majority of items unique to each year group.

Another example in education is where achievements over time are to be com-
pared. It is important that the items from year to year are not the same. If they are,
then performance on the items becomes an end itself and students and teachers can
prepare just for those items. In this case, validity is destroyed, and improvements
would be considered artificial. Instead, new items which assess the same variable
need to be constructed. Then, the items from different times of assessment can be
considered illustrative of achievement of the variable and the performance does not
depend on which items have been chosen. To link the items over different times, it
is necessary to have some items that are not made public and that are used across
times. These items provide the link.

The above procedure for linking items is possible provided there is an overlap of
persons and items so that there are nomutually exclusive blocks of persons and items.
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The greater the overlap, the stronger the link. Once the link has been made and the
item parameters have been estimated, then the person parameters can be estimated
from the different subsets of items, and these estimates are on the same scale.

The above example of NAPLAN involves common items between adjacent year
groups, with the older students being given more difficult items. If you recall reading
Rasch’s Chap. 1 in Rasch (1960), this is exactly the design he had in measuring
students’ progress in reading with older students being given more difficult texts
to read, but with students mostly from adjacent year groups having some texts in
common.

Having items on the same scale and having students answer only those items
which are close to their own proficiencies, is the basis of computer adaptive testing.
Here, students are administered items that are close to their proficiency and not those
either too difficult or too easy. Styles and Andrich (1993) show an example in which
items were administered in a computer adaptive testing format and two forms of a
test were linked using the principles described above.

Most modern computer programs can cater automatically for data missing in the
sense that not all persons have attempted all items. This means that, in principle, it
is possible to equate the scores of two or more tests from a common set of items that
have been compiled from the same joint analysis.

In CTT, the approach to equating is to take people from the same population,
and preferably the same people, and administer them all the tests to be equated.
The persons are then ordered by their total scores on the respective tests, and the
cumulative percentages are calculated. Then scores on different tests which reflect
the same cumulative percentage are taken to be equivalent. This procedure is referred
to as equipercentile equating. Styles and Andrich (1993) compare a Rasch equating
to an equipercentile equating from CTT. The advantage of using the Rasch model is
that not all students need to be administered the same items.

In addition to examples in education, there are examples of linking items in the
health outcomes areas. Here there have been many instruments constructed that
attempt to assess the same health status and many have some similar or same items.
In the cases where there are common items, it is possible to link these different instru-
ments. Linking such instruments means that studies which have used the different
instruments can be compared.
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Chapter 12
Comparisons and Contrasts Between
Classical and Rasch Measurement
Theories

Motivations and Background to CTT and RMT

In this chapter, we summarize some comparisons and contrasts between Classical
Test Theory (CTT) and Rasch Measurement Theory (RMT). Because the motivation
of the theories and models appear so different we could take the position that the two
theories are incompatible. However, although there are critical differences between
the two, because of the way the theories are reflected in their assumptions and in
their respective mathematical expressions as models, we take the position that RMT
can be seen as an elaboration of CTT. We justify such a position in this chapter.

We begin by summarizing the very differentmotivations of the respective theories.
We suggest that just because they have different motivations RMT can end up being
an elaboration of CTT.We further suggest in a later chapter, which deals with general
Item Response Theory (IRT), that if one sets out to elaborate CTT directly, it does
not lead to the kind of elaboration of CTT that RMT provides. In particular, it does
not lead to the total score of a person on a set of items being the key statistic. Instead,
the elaborations can be seen as an ad hoc addition of parameters to account better
for different data sets.

Motivation of CTT

CTT, which appeared early in the twentieth century, seems to have arisen from the
following ingredients. First, from a substantive point of view, the emergence and
formalization of testing, in particular, intelligence testing for assessing whether or
not young children could profit from a regular education in this period. Second, the
development and application of the correlation coefficient in the human sciences
using simply summed scores on dichotomously scored items that provided a test
score. Third, from the developments in the analysis of data, the acceptance that
observations could show random variation, where random variation may be seen
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as an error. Further, theoretical developments of error variance lead to the normal
distribution and its application with true and error scores being additive. Fourth, the
idea that different dichotomously scored items of a test administered to a person
could be seen as replications of each other in some sense. As a result of these being
replications, the possibility of summing the random variables to give a total score for
a person seemed to have been justified rather than simply assumed. However, and
asymmetrically, it was understood that different persons have different proficiencies.

Motivation of RMT

As we have indicated already, the motivation for RMT is that within a frame of
reference, the comparisons of persons and the comparisons of items are invariant
with respect to different subsets of items and persons, respectively. The comparisons
are in terms of characterizations of persons and items with real numbers. The history
of Rasch’s development of his theory of measurement can be obtained from the
foreword to his book, Probabilistic Models for Some Intelligence and Attainment
Tests (1960), as well as from Andersen and Olsen (2001) and Andrich (2005).

As a consultant to the Danish Institute of Educational Research, Rasch was asked
to help devise a study which would ascertain the effectiveness of a reading pro-
gram for children who had reading difficulties. Instead of any conception of CTT,
he approached the problem as he had done with research studies he worked on in
biomedical and other research areas. There were different pieces of data collected,
but the data set we refer to is the one in which the children read different texts out
loud and the responses recorded were the errors they made in reading the words.

If the growth of students was to be assessed, then they had to be given texts to read
that were not so difficult that the students would not engage with the reading, and
not so easy that they would not make any errors at all. However, if they improved in
their reading over time, then as their reading improved, they needed to be given more
difficult texts. Therefore, the different texts of different difficulty had to be placed
on the same scale.

Clearly, different words were of somewhat different difficulty within a text, but
nevertheless, the texts were relatively homogeneous and were chosen to be of differ-
ent overall difficulty. To place these texts on the same scale a linking design of the
kind we saw in the last chapter was used. Thus, adjacent grades read common texts,
and also texts that were of a relevant difficulty for the grade. Rasch characterized a
response with a parameter for a person’s reading proficiency, and a parameter for a
text’s reading difficulty. Because the error countwas relatively small, he knew that the
Poisson distribution had the potential to be useful in characterizing the distribution
of responses. However, his use of the Poisson was distinctive—it was to characterize
the error count of a particular person to a particular text, rather than a population of
persons to a group of texts. Thus, he focused on the individual, and did not assume
a normal distribution of persons as was done in CTT.
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The references above describe how Rasch came to appreciate that his characteri-
zation provided the possibility of eliminating the person parameters while estimating
the difficulties of the texts, and vice versa, and the formalization of the models that
provided invariant comparisons. Rasch then worked out the model for dichotomous
responses by extrapolating the response structure that would be required if each word
was characterized for its difficulty, for each word to be read that would lead to the
Poisson model for the text as a whole. He then applied it to two data sets he had
at hand, a Danish intelligence test, and the nonverbal Ravens Progressive Matrices
test. In the former, the responses did not conform to the model, in the latter they
essentially did. In the former, he was able, from the study of fit, to diagnose different
dimensions that were being assessed.

This is a brief summary of the way Rasch came upon the model for dichotomous
responses, a way that was very different from the way CTT was developed. It was
a model for dichotomous responses which had the property of sufficiency and the
possibility of eliminating one set of parameters while estimating the others. This is
the case for the model. It was not that it accounted for any data set. It came before
any data were collected with its use in mind. However, one feature was common
with CTT, that the items of a test assessed the same variable and that somehow, each
person should be characterized by a single number.

Relating Characteristics of CTT and RMT

Instead of simply listing similarities and differences under respective headings, we
consider a particular feature and indicate the similarities and differences. These are
summarized in Table 12.1.

The Total Scores of Persons

We have seen that in CTT for dichotomous responses, each response to an item is
scored 0 and 1 and that the sum of these scores is assumed to characterize a person.
In RMT, the items are scored in the same way, and it turns out that as a consequence
of the model, the total score of a person is the sufficient statistic for the person’s
parameter estimate, and likewise for items.

However, there are differences between the use of the total score to estimate
the true score in CTT and the dichotomous RM estimate in RMT. In anticipation
of considering these differences, Fig. 12.1 shows the raw score distribution of the
example in Chap. 9 where all items are dichotomous.
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Table 12.1 Some comparisons between CTT and RMT for dichotomous responses

CTT RMT

Motivation Multiple items are a form of
replication in the assessment
of a person

Requirement: invariance of
comparisons of items and
persons relative to each other
within a frame of reference

Assumptions, requirements,
and implications

Unidimensionality,
independent responses and a
normal distribution of the
variable in the population

Unidimensionality,
independent responses, but
no assumption of the
distribution of persons

Item locations Outside the theory, no
formalization
In practice, a facility index
referenced to a population

Formalized as a difficulty δi
and comparisons between
items invariant with respect
to the person distribution
Central to defining a
continuum

Algebraic formalization xni = τn + εni
xni discrete!

V [ε] = s2ε for all person/item
engagements
Equal correlation among all
pairs of items in the
population

uni = (βn − δi ) + εni
uni continuous
uni > 0 ⇒ xni = 1

V [ε] = s2ε

Pni = P r{xni = 1} =
eβn−δi

1+eβn−δi

Equal slopes for the ICCs

Key property Total score on a set of items
is defined (asserted) to
characterize a person

The total score as the
sufficient statistic for βn
follows from the model

Person estimation t̂n = ȳ + ryy(yn − ȳ)
Linear relation between total
score yn and true score

estimate t̂n which is also a
function of the group
distribution and the reliability

y = rn = ∑I
i=1 Pni

Non-linear relation between
total score rn and location

estimate β̂n which is
independent of the group
distribution and of the
reliability

SE of the person estimate se = sy
√

(1 − ryy)

Same for all persons
σ

β̂
= 1/

√
I∑

i=1
Pni (1 − Pni )

Variable depending on person
and item locations and
greater at extreme scores

(continued)
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Table 12.1 (continued)

CTT RMT

Reliability
ryy = s2r

s2y
= s2r

s2r + s2e

r̂yy = I

I − 1

s2y − ∑I
i=1 s

2
i

s2y
Ratio of the estimated true
variance relative to observed
variance, e.g. coefficient α
calculated from variances
involving observed scores

rβ = σ̂ 2
β − σ̂ 2

ε

σ̂ 2
β

r̂β =
σ̂ 2

β̂
− σ̂ 2

ε̂

σ̂ 2
β̂

Ratio of the estimated
location variance relative to
observed variance, e.g. the
index of person separation
calculated from variances of
estimates and their standard
errors

Missing responses and
linking/equating

Missing responses generally
imputed, coefficient α can
only be calculated with
complete data
Equipercentile equating

Missing responses are
handled routinely, different
persons can respond to
different subsets of items and
obtain proficiency estimates
on the same scale

Item discrimination Assumes common
discrimination
Individual item
discrimination outside the
theory
In practice item
discrimination is used as a fit
index and low discrimination
is a concern
The greater the
discrimination the better,
though it is understood it can
be too high, resulting from
strong local dependence,
which leads to a loss of
validity
It is known as the attenuation
paradox

Assumes common
discrimination
Individual item
discrimination outside the
theory
In practice different
discriminations observed
from a fit to the model
perspective
The discrimination of items
in each analysis sets the scale
for the ICCs
Items discriminating
significantly greater than the
average and relatively worse
than the average are both of
concern

CTT Estimation of the True Score

From Eq. (3.4) in Chap. 3, we have that the estimate of the true score for a person is
given by

t̂n = ȳ + ryy(yn − ȳ). (12.1)
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Fig. 12.1 Distribution of total scores

Clearly, the estimate is referenced to the mean ȳ of the group and to the reliability
ryy of the instrument in that group. Furthermore, the relationship between the true
score estimates and the raw scores is linear.

The variance of the true scores is given by

V [t̂n] = r2yyV [y] (12.2)

with SD[t̂n] = ryy SD[y] showing that the standard deviation of the true scores is
shrunk by a factor of ryy . In the example, this is given by SD[t̂n] = 0.604(2.508) =
1.514.

Moreover, the difference between two true score estimates from successive total
scores is given by

t̂x+1 − t̂x = ȳ + ryy(yx+1 − ȳ) − [ȳ + ryy(yx − ȳ)]
= ȳ + ryy yx+1 − ryy ȳ − ȳ − ryy yx + ryy ȳ

= ryy yx+1 − ryy yx
= ryy(yx+1 − yx )

= ryy(1)

= ryy (12.3)
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Fig. 12.2 Distribution of estimated true scores

That is, the difference between two successive raw scores has been shrunk by
exactly the reliability.

In the example of Chap. 9, the coefficient alpha reliability is α = 0.604 (this
is different from the value calculated in Chap. 3, 0.47, when the items were not all
dichotomous). Figure 12.2 shows the frequency distribution for the true scores, where
the true score estimates are obtained from Eq. (12.1). It is evident that the shape of
the distribution is the same as in Fig. 12.1, except that in terms of the raw score scale,
the difference between successive scores is smaller in Fig. 12.2 than Fig. 12.1.

Finally, because there is no parameter for an item to take account of its difficulty,
for the above comparisons to be made, it is necessary that all persons have responded
to the same items.

RMT Estimation of the Person Location Estimates

The person estimates in the dichotomous RM are given by Eq. (10.5) of Chap. 10:

rn =
I∑

i=1

eβn−δi

1 + eβn−δi
(12.4)
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Fig. 12.3 Non linear transformation of the total score to a Rasch model estimate

Figure 10.1 fromChap. 10 is reproduced in Fig. 12.3, however, the person estimates in
Fig. 12.3 have been calculated using weighted likelihood estimation in RUMM2030.
All such transformations have the S-shape shown in this figure. Figure 12.3 also
shows the transformation of the scores 3 or less and 15 or greater. It is evident that
within the range of 3–15, the transformed scores in logits and the total scores have
virtually a linear relationship. However, beyond these scores the transformation is
noticeably non-linearwith the differences between successive logit scores increasing.

For purposes of comparison with the true score distribution of Figs. 12.2 and 12.4
shows the distribution of dichotomous RM estimates obtained from Eq. (12.4). It is
evident that although the distribution is still skewed because the scores at the extremes
are stretched, the distribution appears less skewed in Fig. 12.4 than Fig. 12.2.

CTT Estimation of Standard Errors of True Scores

We recall that the standard errors in CTT are the same for all scores, and are given
by Eq. (3.5) of Chap. 3:

se = sy
√
1 − ryy .
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Fig. 12.4 Distribution of the dichotomous Rasch model estimates

In the above example, this value is

se = 2.508
√
1 − 0.604 = 2.508(0.629) = 1.578.

RMT Estimation of Standard Errors of Person Location
Estimates

The Rasch model standard errors, given by Eq. (10.9) of Chap. 10:

σβ̂ = 1/

√
√
√
√

I∑

i=1

Pni (1 − Pni )

increase as the estimates become more extreme.
These were shown in Table 10.4 and Fig. 10.2 of Chap. 10.
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Part II
The Dichotomous Rasch Model: Fit of

Responses to the Model



Chapter 13
Fit of Responses to the Model I—Item
Characteristic Curve and Chi-Square
Tests of Fit

Statistics Review 11: The Chi-square test

There are typically two aspects to fit of responses to the model that need to be
considered: how the items fit the model and how the persons fit the model. Fit can
be assessed graphically and also formally through the use of statistics. This chapter
involves two parts: (1) a review of the Item Characteristic Curve (ICC) as a graphical
test of item fit including comparing observed proportions in class intervals with the
ICC; (2) the χ2 test as a statistical test of fit between the data and the ICC. The fit-
residual statistic to assess both person and item fit will be discussed in a subsequent
chapter.

Statistics Review 13: Distribution theory

Part II of this book consists of more advanced concepts in Rasch measurement.
A number of chapters deal with violations of the Rasch model and how these are
revealed in tests of fit. Distribution theory is very important in understanding and
carrying out tests of fit. In order to understand tests of fit review distribution theory
in Statistics Review 13.

A Graphical Test of Item Fit

The Item Characteristic Curve (ICC)

In Classical Test Theory (CTT) the empirical check that the items are working as
expected is carried out by calculating the discrimination index. This was discussed
in Chap. 3. In CTT there is no special criterion as to what is a good discrimination
and what is a bad one—it is simply the case that the greater the discrimination the
better. You will see that with Rasch Measurement Theory (RMT), this idea can be
refined substantially. We continue with items or tasks that are scored dichotomously
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Fig. 13.1 Item characteristic
curve for dichotomous item
6.2 of Table 5.3

(right or wrong), and then in Chap. 20 we will see how the same ideas can be applied
to ratings of performance where partial credit is given.

You were introduced to the item characteristic curve (ICC) in Chap. 6. This is the
probability that a person n with given proficiency βn responds correctly to an item
i with difficulty δi . Such a curve is reproduced in Fig. 13.1 for item 6.2 from the
data in Table 5.3 in Chap. 5. Notice that where the proficiency βn = δ6.2 = 0.43, the
probability of a correct response is equal to 0.5.

The curve in Fig. 13.1 is a theoretical curve for a given item difficulty. It shows
the probability that a person with any particular proficiency will answer the item
correctly.We also know that this probability is a theoretical proportion of the number
of correct responses. It is also the theoretical average of the number of persons who
answered the item correctly. If we had many people with the same total score, and
therefore the same proficiency estimate, we could compare the observed proportion
correct on the item with the theoretical probability. Often we do not have enough
people with the same total score for the entire score range. We can, however, form
class intervals exactly as we did in analyzing data according to the Guttman structure.

We now proceed to elaborate the Guttman analysis in terms of the Rasch model
for the data from Table 5.3 of Chap. 5, as below.

Observed Proportions in Class Intervals

From the proficiency of each person,we form class intervals and calculate the average
proficiency. This is similar to finding the average of the raw scores in order to locate
each class interval, but rather than the raw scores it is the estimated proficiencies that
are used. Now, we simply call them class intervals because sometimes we may wish
to have more than three class intervals.

We continue with the example listed in Table 10.3 of Chap. 10. However, for
the person estimates, and to illustrate the effect of the bias mentioned in Chap. 10,
the person estimates are what is referred to as weighted likelihood estimates. The
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RUMM2030 Interpreting Manual (Andrich, Sheridan, & Luo, 2018) describes these
estimates in more detail. In Table 10.3, the persons are ordered according to their
proficiency and items are ordered according to their difficulty. Because of a special
feature in the way the difficulties of the items are estimated, and to ensure there is
no bias in the estimates, it turns out that the items are not in the exact same order
as are the items in the original Guttman analysis in Table 5.3 of Chap. 5. Items 3
and 4 which are very close to each other in difficulty change their order, as well as
items 6.2 and 7. The effect is relatively small, and only when items are very close
to each other can the difficulties appear in an order not quite the same as the order
of their total scores. It is also a sign that the data do not fit the model perfectly. If
the sample was very large, and the data fitted the model perfectly, then this reversal
would not occur even for items that are close together in difficulty. In that case, if
persons answer the same items, then they will always be ordered according to their
total scores.

For convenience, and for comparison with the previous analysis, we again form
three class intervals as in the Guttman analysis. Table 13.1 reproduces Table 10.3,
but instead of the standard error for each person, three class intervals are formed.

In this case, the class intervals have the same persons as in the Guttman analysis
in Table 5.3 of Chap. 5. The program RUMM2030 places people into class intervals
in such a way that they are as close to equal in size as possible. A difference between
Table 13.1 and the Guttman analysis of Chap. 5 is that the person who answered all
the items correctly is not included in this analysis.

The proportions of people who answered each item correctly in each class interval
are calculated as in the Guttman analysis. These are shown for item 6.2 in Table 13.2.
However, in addition to the observed proportion of people who answered the item
correctly in each class interval,we nowhave an expected proportion correct according
to the Rasch model—this is the estimated probability shown in Table 13.2.

Figure 13.1 is now repeated in Fig. 13.2, but the proficiencies for each of the class
intervals and the proportion of persons who answered the item correctly in that class
interval are also shown.

The essential difference between Fig. 13.2 and the Guttman analysis is that in
Fig. 13.2 we have a theoretical curve against which to compare the proportions
of persons in each class interval who answered the item correctly. In the Guttman
analysis, we did not have such a curve. All we knew was that we would want these
proportions to increase as the total scores of the persons in the class intervals (that
is, their average proficiencies) increased.

Item 6.2 is an item whose discrimination is excellent—even a bit “too good”. The
proportions are a little steeper than the theoretical curve. We come back to this point
later in this chapter and again in the next chapter. Figures 13.3 and 13.4 show similar
information for items 9.2 and 9.3. Item 9.3 does not discriminate very well—the
observed proportions are flatter than the theoretical curve. However, this is in part
because the item is very easy and all the class intervals have a high mean.

It is important that you appreciate the two ways in which these figures differ from
the Guttman structure.
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(1) Unlike the Guttman analysis, there is a theoretical curve as a criterion.
(2) Unlike the Guttman analysis, where the raw scores are averaged in the class

intervals, the proficiencies are estimated first and then the average is taken.

In formulating a model for data, it is expected that the data will accord well
with the model. Recall that the Rasch model is a theoretical model based on the
requirement of invariant comparisons. However, when the data do not accord with
the model, then the model can still be very useful in understanding the data. It helps
to diagnose where the data are different from what was expected from the model.
Usually, there is an explanation for such effects. Often, experience can tell you what
has gone wrong quickly. However, equally often one needs to know the test, the

Table 13.1 Table 10.3 formed into three class intervals

Person Responses Total score
rn

Location β̂ (WLE) Class interval
average proficiency
¯̂
β

38 101101001010000000 6 −0.889 0.311

2 101101110100000000 7 −0.608

40 010111110000101000 8 −0.335

42 110011111110010000 10 0.209

41 111101111101000000 10 0.209

44 111101111111000000 11 0.493

8 111110110101110000 11 0.493

35 111111011101100000 11 0.493

11 101111111110011000 12 0.795

9 110111111011011000 12 0.795

46 111011011011011010 12 0.795

29 111101111011110000 12 0.795

25 111110101111110000 12 0.795

27 011101111101100111 13 1.123 1.289

18 110111110111101001 13 1.123

36 111011110111111000 13 1.123

37 111101111111101000 13 1.123

20 111110011111101100 13 1.123

48 111110101111111000 13 1.123

13 111111011011110100 13 1.123

34 111111011100111100 13 1.123

32 111111101011111000 13 1.123

22 111111101101101001 13 1.123

(continued)
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Table 13.1 (continued)

Person Responses Total score
rn

Location β̂ (WLE) Class interval
average proficiency
¯̂
β

43 111111111101110000 13 1.123

14 111110101111011110 14 1.492

12 111111100101011111 14 1.492

15 111111100110111110 14 1.492

21 111111111000111110 14 1.492

5 111111111010011110 14 1.492

4 111111111110011100 14 1.492

16 111111111110111000 14 1.492

45 111111111111000011 14 1.492

17 111111111111100100 14 1.492

7 111111110111111100 15 1.920 2.470

50 111111111110011110 15 1.920

49 111111111110111100 15 1.920

23 111111111111110001 15 1.920

6 111111111111111000 15 1.920

24 111111111111111000 15 1.920

33 111110111111111101 16 2.445

26 111111011111111101 16 2.445

10 111111111110110111 16 2.445

31 111111111111101110 16 2.445

19 111111111111111010 16 2.445

30 101111111111111111 17 3.153

28 111011111111111111 17 3.153

1 111111111111101111 17 3.153

39 111111111111111101 17 3.153

47 111111111111111101 17 3.153

3 111111111111111111 18 +∞

Table 13.2 Proportion of correct responses for item 6.2 in each class interval

Item Proficiency Observed proportion correct Estimated probability correct

CI1 0.311 0.38 0.47

CI2 1.289 0.75 0.70

CI3 2.470 0.94 0.87
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population, and the test conditions in order to understand any discrepancies between
the model and the data.

Whenwe have a theoretical curve, it is evident that when the observed proportions
deviate substantially from this theoretical curve, then we have some kind of misfit
between the data and the model. It is relevant to appreciate that the discrimination
of the theoretical curve is the average discrimination of all the items. This provides
the frame of reference to study an item with greater or smaller discrimination, and
then substantial deviations are seen as outliers.

There are three kinds of ways that the observed proportions might deviate from
the theoretical values, which are given as follows:

1. The observed proportions are flatter than the theoretical curve, in which case the
item does not discriminate enough. Item 9.3 is such an item.

2. The observed proportions are haphazardly and substantially different from the
theoretical curve. This requires specific interpretation with knowledge of the
construct.

Fig. 13.2 ICC and proportions correct in three class intervals for item 6.2

Fig. 13.3 ICC and proportions correct in three class intervals for item 9.2
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Fig. 13.4 ICC and proportions correct in three class intervals for item 9.3

3. The observed proportions are steeper than the theoretical curve. This means that
the discrimination is greater than expected. Item 6.2 in Fig. 13.2 is an example of
such an item. This is another difference between CTT and Rasch measurement
theory (RMT). In the former, the greater the discrimination the better. In the latter,
when the observed proportions are systematically greater than the theoretical
proportions, then we also show concern. Rasch himself was concerned indirectly
with this case; in principle, it shows that there is a greater dependence among
responses in one form or another.

1 and 3 describe cases of systematic misfit and 2 describes non-systematic misfit.

A Formalised Test of Item Fit—χ2

To check if the data do accord with the model, we compare the expected number
of correct responses in each class interval according to the model with the actual
observed number of correct responses. This kind of comparison is called a test of fit.
We can now formalize a test of fit between the data and the model for each item as
a statistical χ2 test as follows:

(1) We find the number of people who answered item i correctly in class interval g.
This number is called Tgi .

(2) We find the number of people who are expected to answer the item correctly by
first finding the probability that the persons in each class interval answered each
item correctly. This number is given by the probability that the people in each
class interval would answer the item correctly times the number of people in
the class interval. Recall that the probability is simply a theoretical proportion.
For example, if the probability is 0.3, and there were 10 people in the class
interval, then the number who should have answered it correctly would be
(10)(0.3) = 3.
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In general, if Ng is the number of people in each class interval g, and Pgi is the
theoretical proportion, that is the probability, that a person in class interval g
answers item i correctly, then NgPgi is the expected number of people in that
class interval who answer item i correctly.

(3) For any item i, the difference between the observed number who answered the
item correctly and the expected number is formed.
This may be written as

Tgi − NgPgi (13.1)

where Ng is the number of persons in class interval g, Pgi is the probability that
a person in class interval g will answer item i correctly, and Tgi is the number
of persons in class interval g who do answer item i correctly.

In the graphical analysis, we compare the observed proportion with the estimated
probability. For the formal statistical analysis, it turns out to be convenient to consider
the total number correct rather than the proportion—however, the interpretation is
the same.

Second, this difference is divided by the standard deviation of the number who
are likely to answer the item correctly. This gives more tangible meaning to the
difference and gives a standardized residual Zgi . It is a standard score and may be
expressed as

Zgi = Tgi − NgPgi
σgi

(13.2)

where σgi = √
NgPgi (1 − Pgi ) is the standard deviation of the number correct.

The greater the standardized difference, the less likely the item will fit the model.
One could compare each of the standardized residuals against a standardized

normal deviated from the normal distribution, and if it were greater than about +2
or less than −2 we could show concern, and that is in fact carried out.

However, to obtain an index for an item as a whole, these residuals are simply
squared and added up and this gives an approximate χ2 distribution on G − 1 class
intervals where G is the number of class intervals, i.e.

χ2
i =

G∑

g=1

z2gi (13.3)

This number can be compared to the values of a theoretical χ2 distribution on the
specified degrees of freedom. This comparison can tell how likely it is that a χ2 of
this value or greater is to occur by chance.

You could make these comparisons by looking up a table. However, all of
this information is provided in RUMM2030. Below is an interpretation of the
RUMM2030 χ2 test of fit output.
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Interpretation of Computer Printout—Test of Fit Output

Below is a printout of the information that is provided by RUMM2030 for Item 6.2.
This is followed by an explanation of each of the symbols in the table.

Item 6.2 (I0013) Locn = 0.435

GROUP LOCATION COMPONENT Category Responses

No Size Max Mean Residual ChiSqu 0 1

1 13 0.795 0.311 −0.670 0.448 OBS.P 0.62 0.38

EST.P 0.53 0.47

OM = 0.38 EV = 0.47 OM-EV = −0.09 ES = −0.19 OBS.T 0.38

2 20 1.492 1.289 0.489 0.239 OBS.P 0.25 0.75

EST.P 0.30 0.70

OM = 0.75 EV = 0.70 OM-EV = 0.05 ES = 0.11 OBS.T 0.75

3 16 3.153 2.470 0.769 0.592 OBS.P 0.06 0.94

EST.P 0.12 0.88

OM = 0.94 EV = 0.87 OM-EV = 0.06 ES = 0.19 OBS.T 0.94

AVE = 0.71

ITEM: df = 2 ChiSqu = 1.279 Significance = 0.528

Note The value of EV and EST.P for Category Response 1 (in the dichotomous model) might not be identical
due to rounding errors

Item 6.2 (I0013): 13 is the order of the item, and Item 6.2 is the label we have
given to this item.

Locn = 0.435: Locn is short for location of the item on the continuum, and it is
the same as the difficulty of the item.

GROUP: This is the class interval. No is the group number or class interval. Size
is the number of people in the group. Group 1 has 13 people in it, group 2 has 20 and
group 3 has 16.

LOCATION: This is the person variable. It could have been called the person
location. Max is the maximum proficiency of the group. It can help to check where
the cut-off for the interval has been made by the computer program. This is 0.795
for group 1 (class interval 1). Mean is obviously the group’s average location or
proficiency, which is 0.311 for group 1.

COMPONENT: This refers to the components of the Chi-square statistic.Resid-
ual is the standardized difference between the observed number of persons in the
group who have answered the item correctly and the expected number according to
the model. This has a value of −0.670 for group 1. The equation for this value is
given in Statistics Review 11.

Chi Squ: This is the Chi-square component for the group or class interval. It is
simply the square of the residual value. This has a value of 0.448 for group 1.
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Category Response: This indicates the response category. 0, 1 indicate that the
possible scores for the item are 0 and 1. You will see when we deal with partial credit
or rated items that these numbers can extend to 0, 1, 2 and so on.

OM: This is the observed mean for the class interval, expressed as a proportion.
This value is 0.38 for group 1.

EV: This is the expected mean according to the model. This value is 0.47 for class
interval 1.

OBS.P: This is the proportion of persons who responded with the scores of 0 or
1 in the class interval. This value is 0.62 for the score of 0 and 0.38 for the score of
1 for group 1. Note that with dichotomous responses, where scores can be only 0 or
1, that these proportions sum to 1; that is 0.62 + 0.38 = 1.00. In the dichotomous
case, the value for the score of 1 is the same as the OM.

EST.P: This is the estimated probability of personswho respondedwith the scores
of 0 or 1 in the class interval. This value is 0.53 for the score of 0 and 0.47 for the
score of 1 for group 1. Note again that with dichotomous responses, where scores
can be only 0 or 1, that the sum of these probabilities also adds to 1.0; that is 0.53 +
0.47 = 1.00. In the dichotomous case, the value for the score of 1 is also the same
as the EV.

OBS.T: This is the probability of the response of 1 given that the response is either
0 or 1. In the case of the dichotomous item, this is the same as the probability of the
response of 1, but it is different in the case of items with more than two categories.

OM-EV: This is the difference between the observed mean and the expected
value.

ES: (Optional) This is a special standardized difference between OM and EV
which does not take into account the size of the class interval.

df: This is the degrees of freedom for the Chi-square test. In this case, where there
are three class intervals, the number of degrees of freedom is 3 − 1 = 2.

Chi Squ: This is the total Chi-square for the item. For item 6.2 it is 0.448+ 0.239
+ 0.592 = 1.279.

Significance: This indicates the probability that a value as large as this would
occur by chance if the responses fitted the model. In this case, it is evident that the
probability is very high (0.528) that this value could have occurred by chance. That
means that this item does fit the model very well. If the value were less than 0.01,
then it would be considered unlikely to fit the model. This statistic, however, needs
to be interpreted with some experience. It only approximates a Chi-square statistic
and is inflated when the estimated probabilities are close to 0 or 1, and increases with
the sample size. It is better to use it as an order statistic to see which items show
much larger values than others, and to look at the graph such as the one in Fig. 13.2.
It is also affected by how the groups are formed, although with large groups this
should not have a large effect. In this item, the observed proportions are close to the
theoretical curve.

The χ2 statistic calculated as shown above is an excellent approximation for its
purpose. However, it is sensitive to sample size, and therefore the same magnitude
of discrepancies between the observed and expected frequencies will show as signif-
icant with increasing sample size. Here the graphical evidence should be taken into
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account. In addition, the perspective that the ICC reflects the average discrimination
can be exploited. The items can be ordered by the magnitude of their χ2 values and
those with large values can be seen as outliers. Sometimes just one or two items
stand out as outliers. In such cases, the content and format of the items needs to
be considered in interpreting the outliers. Sometimes the source of its misfit is an
incorrect key for the correct answer in a multiple-choice item.

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in
Appendix C.
Exercise 3: Advanced analysis of dichotomous responses Part A in Appendix C.

Reference

Andrich, D., Sheridan, B. E., & Luo, G. (2018). RUMM2030: Rasch unidimensional models for
measurement. Interpreting RUMM2030 Part III Estimation and statistical techniques. Perth,
Western Australia: RUMM Laboratory.

Further Reading

Andrich, D. (1988). Rasch models for measurement (pp. 63–67). Newbury Park, CA: Sage.
Masters, G. N. (1988). Item discrimination: When more is worse. Journal of Educational Measure-
ment, 25(1), 15–29.



Chapter 14
Violations of the Assumption
of Independence I—Multidimensionality
and Response Dependence

Statistics Review 9: Independence

In this chapter, we emphasize that independence of responses, formalized in the
Rasch model, is a requirement for fit to the model. We outline the different ways
independence can be violated, how these violations have been formalized, methods
of detection, and describe the effects of violations of this assumption on estimates. In
Chap. 24: Violations of the Assumption of Independence II—The Polytomous Rasch
Model more methods of detection are outlined, most of which use the polytomous
Rasch model (PRM).

Local Independence

The statistical independence formalized in the Rasch model reflects the intentions of
test developers when constructing and assembling items. The same independence is
implied in CTT. The Rasch model is typically used for analyses of the psychometric
properties of scales or tests in which responses to a number of different items are
summed. They are summed because they are considered to capture a unidimensional
construct. The summed responses of more than one item should be more valid and
reliable than a response to one item only. However, this is true only when each item
measures the same trait as the other items in the scale and provides some unique
information not provided by the other items. In other words, in order to provide a
reliable scale of summed items each item needs to provide related but independent
information, or relevant but not redundant information. An analysis according to
the Rasch model will reveal, as an anomaly, items that do not provide relevant or
independent information.

© Springer Nature Singapore Pte Ltd. 2019
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The dichotomous Rasch model is

Pr{Xni = x} = [exp(x(βn − δi ))]/[1 + exp(βn − δi )] (14.1)

where x ∈ {0, 1} is the integer response variable for person n with proficiency βn

responding to item i with difficulty δi . The model implies a single dimension with
values of β and δ located additively on the same scale.

The model also implies statistical independence of responses in the sense that

Pr{((xni ))} =
∏

n

∏

i

Pr {xni } (14.2)

where ((xni )) denotes the matrix of responses Xni = x, n = 1 . . . N , i = 1 . . . I .
That is, the probability of answering the set of items correctly equals the product of
the probabilities of answering the individual items correctly.

The holding of Eqs. (14.1) and (14.2) together is generally referred to as local
independence (Lazarsfeld & Henry, 1966; Andrich, 1991). The term local refers to
the idea that all the variation among responses to an item is accounted for by the
person parameter β, and therefore that for the same value of β, there is no further
relationship among responses.

In the Rasch model, the person parameter β is the source of general dependence
among responses to items in the sense that a person with a high value of β will tend
to respond positively to all items, and the opposite for a person with a low value of
β. In the estimation of the item parameters, β can be eliminated. With this parameter
eliminated, or for the same value of β, there should be no further relationship among
the items. The absence of this kind of relationship is referred to as local independence.

Two Violations of Local Independence

Local independence in Rasch models defined as above can be violated in two generic
ways. First, there may be person parameters other than β that are involved in the
response. This is a violation of unidimensionality and therefore statistical indepen-
dence relative to the model of Eq. (14.1).

Second, for the same person and therefore the same value of β, the response to
one item might depend on the response to a previous item. This is a violation of
statistical independence relative to Eq. (14.2). To distinguish this latter violation of
Eq. (14.2) from the violation of unidimensionality, we refer to the latter as response
dependence. Both these violations have been formalized algebraically in Marais and
Andrich (2008a, b). The papers also provide some examples of these two types of
violations of independence in practice.
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Multidimensionality

Many scales in psychology, education and social measurement in general,
which are constructed to measure a single variable, are nevertheless com-
posed of subsets of items which measure different but related aspects of
the variable. An example is the Functional Independence Measure (FIM™)
motor scale (Keith, Granger, Hamilton, & Sherwin, 1987), which con-
sists of 13 items, ranging from bladder management to climbing stairs.
These items can be grouped into subsets, for example, Sphincter Control
can comprise Bowel Management and Bladder Management. Although the pres-
ence of subsets captures better the complexity of a variable and increases its validity,
it compromises the model’s unidimensionality. Another example is the Australian
Scholastic Aptitude Test (ASAT) where items, which are summed, are grouped into
subsets representing mathematics, science, humanities and social science (Bell, Pat-
tison, & Withers, 1988).

Multidimensionality is also found in items that are linked by attributes such as
common stimulus materials, common item stems, common item structures or com-
mon item content. These have been described as subtests (Andrich, 1985), testlets
(Wang, Bradlow, & Wainer, 2002) or item bundles (Rosenbaum, 1988; Wilson &
Adams, 1995).

Formalization of Multidimensionality

Marais and Andrich (2008b) formalized multidimensionality in the following way.
Consider a scale composed of s = 1, 2, …, S subsets and

βns = βn + csβ
′
ns (14.3)

where cs > 0, βn is the common trait for person n among subsets and is the same
variable as in Eq. (14.1), β ′

ns is the distinct trait characterized by subset s and is
uncorrelated with βn .

Therefore, βn is the value of the main, common variable or trait among subsets,
and β ′

ns is the variable or trait unique to each subset. The value cs characterizes the
magnitude of the variable of subset s relative to the common variable among subsets.

Consider Figs. 14.1 and 14.2. In Fig. 14.1 all six items measure the variable βn .
In Fig. 14.2 all six items measure the common variable βn , but in addition, items 1–3
also measure the unique variable β ′

n1 and items 4–6 also measure the unique variable
β ′
n2.
The design for S subsets, each with I items, is summarized in Table 14.1.
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Fig. 14.1 Unidimensional

Fig. 14.2 Multidimensional

Table 14.1 Summary of subset design

Items Subsets

1 2 … S

1 βn1 = βn + c1β ′
n1 βn2 = βn + c2β ′

n2 … βnS = βn + cSβ ′
nS

2 βn1 = βn + c1β ′
n1 βn2 = βn + c2β ′

n2 … βnS = βn + cSβ ′
nS

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

I βn1 = βn + c1β ′
n1 βn2 = βn + c2β ′

n2 … βnS = βn + cSβ ′
nS
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Detection of Multidimensionality

Individual Item Fit

Violations of independence will be reflected in the fit of data to the model. In
general, over-discriminating items often indicate response dependence and under-
discriminating items often indicate multidimensionality. Response dependence
increases the similarity of the responses of persons across items and responses are
then more Guttman-like than they should be under no response dependence. Multidi-
mensionality acts as an extra source of variation (noise) in the data and the responses
are less Guttman-like than they would be under no dependence.

Correlations of Standardized Residuals Between Items

Violations of local independence can be further assessed by examining patterns
among the standardized item residuals. High correlations between standardized item
residuals indicate a violation of local independence.

Principal Component Analysis (PCA) of the Item Residuals

A principal component analysis (PCA) of the item residuals provides further infor-
mation about multidimensionality. After accounting for the single dimension of the
items by the Rasch model, there should be no further pattern among the residuals.
If a PCA indicates a meaningful pattern for the scale or test, it can indicate a lack of
unidimensionality. It can also indicate response dependence considered in the next
section. The context needs to be used to decide the source of the correlation.

Table 14.2 shows the results of a PCA on a data set simulated to be multidimen-
sional. Only principal components up to 10 are shown due to restrictions on space.
Items are sorted according to their loadings on principal component one (PC1). It is
clear that items 1–15 load positively on PC1. The remaining items load negatively
on this component.

Table 14.3 shows the summary of the PCA. The Eigenvalue of 2.87 for the first
component is considerably larger than the Eigenvalues for the other components. The
first principal component explained 9.56%of the total variance among residuals. This
all suggests multidimensionality with items 1–15 and 16–30 tapping into a second
factor after the main factor had been extracted.
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Table 14.2 Results of a PCA, items sorted according to their loadings on PC1

RUMM2030 Project: MD2 Analysis: RUN1

Title: RUN1

Display: PC loadings

Item PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

I0008 0.392 −0.098 −0.271 −0.200 −0.148 0.112 −0.005 −0.325 0.106 0.083

I0010 0.370 −0.083 0.120 −0.030 0.049 −0.375 −0.004 −0.200 0.165 0.080

I0009 0.369 0.007 −0.170 −0.097 0.188 −0.061 0.313 −0.202 −0.176 −0.395

I0006 0.363 −0.167 0.346 −0.107 −0.072 −0.267 −0.127 0.115 0.041 0.049

I0005 0.346 −0.260 −0.030 −0.384 −0.039 0.116 −0.183 −0.181 −0.200 0.139

I0001 0.325 0.042 0.230 −0.158 0.153 −0.084 0.082 −0.033 −0.197 −0.146

I0007 0.320 0.299 −0.106 0.017 0.162 −0.246 0.063 0.217 0.188 0.254

I0011 0.303 −0.119 −0.039 0.304 −0.216 −0.065 −0.080 −0.194 0.019 −0.308

I0015 0.289 −0.015 0.015 0.401 −0.345 −0.038 0.077 0.041 0.034 0.319

I0013 0.282 −0.059 −0.150 −0.017 0.073 0.386 −0.308 0.278 −0.292 −0.114

I0012 0.262 0.057 −0.380 0.180 0.197 −0.070 0.187 0.090 −0.024 0.220

I0002 0.256 −0.187 0.131 0.166 −0.301 0.306 0.173 0.311 −0.208 −0.096

I0003 0.251 0.458 −0.040 −0.137 −0.141 0.198 0.091 0.107 0.089 0.031

I0014 0.250 0.066 −0.180 0.015 0.225 0.022 −0.373 0.244 0.428 −0.116

I0004 0.195 0.127 0.621 0.219 0.164 0.219 −0.003 −0.003 0.042 0.034

I0030 −0.193 0.532 −0.045 −0.095 −0.198 0.032 −0.182 −0.065 −0.185 −0.114

I0016 −0.231 −0.030 −0.133 0.287 0.100 −0.356 0.036 −0.084 −0.385 0.119

I0028 −0.236 0.481 0.208 −0.116 −0.108 0.003 0.113 0.040 0.151 −0.074

I0029 −0.266 0.057 −0.071 −0.141 0.025 −0.311 −0.093 0.466 −0.354 −0.110

I0019 −0.271 −0.087 −0.248 0.425 0.106 0.189 0.001 −0.062 0.224 −0.114

I0025 −0.302 0.080 0.051 −0.122 0.210 0.225 0.026 −0.137 −0.198 0.487

I0027 −0.306 −0.323 0.167 −0.062 −0.164 −0.068 −0.047 0.281 0.269 0.013

I0017 −0.307 0.042 −0.182 −0.350 −0.024 −0.032 0.157 −0.044 0.253 −0.168

I0026 −0.309 0.146 0.290 0.198 0.233 0.042 −0.259 −0.370 −0.038 −0.062

I0018 −0.338 0.131 −0.224 0.195 −0.190 −0.094 −0.353 −0.046 −0.084 0.077

I0021 −0.343 −0.238 0.092 −0.019 0.436 −0.109 0.044 0.136 0.017 −0.083

I0022 −0.347 0.006 0.077 0.024 −0.360 −0.158 0.374 −0.023 −0.029 −0.103

I0024 −0.361 −0.226 −0.015 −0.241 −0.141 0.095 0.026 −0.021 0.062 0.345

I0023 −0.362 −0.159 0.008 −0.097 −0.211 −0.059 −0.316 −0.132 0.034 −0.172

I0020 −0.390 −0.133 −0.055 0.052 0.178 0.315 0.319 0.038 0.057 −0.080

Other Tests of Multidimensionality

If a PCA indicates that the residuals pattern intomore than one subscale, RUMM2030
provides additional tests of unidimensionality. In Chap. 24:Violations of the Assump-
tion of Independence II—The Polytomous Rasch Model a method for estimating the
magnitude of multidimensionality, c in Eq. (24.2), is discussed. This method makes
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Table 14.3 Summary of the
PCA in Table 14.2

RUMM2030 Project: MD2 Analysis: RUN1

Title: RUN1

Display: Principal component summary

PC Eigen Percent (%) CPercent (%) StdErr

PC001 2.869 9.56 9.56 0.402

PC002 1.317 4.39 13.95 0.175

PC003 1.251 4.17 18.12 0.165

PC004 1.209 4.03 22.15 0.164

PC005 1.163 3.88 26.03 0.159

PC006 1.126 3.75 29.78 0.153

PC007 1.097 3.66 33.44 0.149

PC008 1.084 3.61 37.05 0.146

PC009 1.083 3.61 40.66 0.147

PC010 1.065 3.55 44.21 0.143

PC011 1.047 3.49 47.70 0.138

PC012 1.009 3.36 51.06 0.136

PC013 1.003 3.34 54.41 0.135

PC014 0.974 3.25 57.66 0.128

PC015 0.959 3.20 60.85 0.129

PC016 0.933 3.11 63.96 0.127

PC017 0.929 3.10 67.06 0.127

PC018 0.911 3.04 70.09 0.124

PC019 0.902 3.01 73.10 0.122

PC020 0.885 2.95 76.05 0.122

PC021 0.860 2.87 78.91 0.117

PC022 0.837 2.79 81.70 0.113

PC023 0.830 2.77 84.47 0.114

PC024 0.811 2.70 87.17 0.110

PC025 0.801 2.67 89.84 0.109

PC026 0.772 2.57 92.41 0.106

PC027 0.740 2.47 94.88 0.102

PC028 0.725 2.42 97.30 0.098

PC029 0.706 2.35 99.65 0.096

PC030 0.104 0.35 100.00 0.030



180 14 Violations of the Assumption of Independence I …

use of the polytomous Rasch model. Another method for testing the equivalence of
two subsets of items, hypothesized to measure two different dimensions, is intro-
duced.

Response Dependence

A second violation of the assumption of independence is response dependence.
Response dependence occurs when a person’s response to an item depends on the
person’s response to a previous item. This can occur in cases where a correct answer
on a question gives a clue or the answer to one or more subsequent questions. Or
the case where the structure of different questions is such that an answer to one
question logically implies the answer to another question. Kreiner and Christensen
(2007) show that the items Climbing one flight of stairs and Climbing several flights
of stairs of the physical functioning subscale of the SF-36, a widely used rating scale
in health research, are response dependent. Similarly, the items Walking one block,
Walking several blocks and Walking more than a mile are dependent in this way.
They should be different levels of one ordered category item. Another example is
where judges make decisions on multiple criteria with respect to some object and a
halo effect operates across all criteria.

Formalization of Response Dependence

The statistical independence of the model of Eq. (14.1) implies that

Pr{Xnj = x j |Xni = xi } = Pr{Xnj = x j }. (14.4)

Marais and Andrich (2008a) formalised response dependence of item j on item i
by

Pr{Xnj = x j |Xni = xi }
= {exp[x j (βn − δ j − (1 − 2xi )d)]}/{1 + exp[x j (βn − δ j − (1 − 2xi )d)]}.

(14.5)

Equation (14.5) does not satisfy Eq. (14.4). The value d characterizes the magni-
tude of response dependence. A correct response xi = 1 by person n to item i reduces
the difficulty of item j to δ j − d thus increasing the probability of the same correct
response x j = 1 to item j. Similarly, the response xi = 0 on item i increases the
difficulty of item j to δ j + d, thus increasing the probability of the same incorrect
response x j = 0 to item j.
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Detection of Response Dependence

Individual Item Fit

Violations of independence will be reflected in the fit of data to the model. In
general, over-discriminating items often indicate response dependence and under-
discriminating items often indicate multidimensionality. Response dependence
increases the similarity of the responses of persons across items and responses are
then more Guttman-like than they should be under no dependence. Multidimension-
ality acts as an extra source of variation (noise) in the data, and the responses are less
Guttman-like than they would be under no dependence.

Correlations Between Standardized Item Residuals

Response dependence can be further assessed by examining patterns among the
standardized item residuals. High correlations between standardized item residuals
indicate a violation of the assumption of independence. Table 14.4 shows the corre-
lations between the standardized item residuals for a data set in which a dichotomous
item, item 5, was simulated to depend on another dichotomous item, item 4. The cor-
relation between items 4 and 5 is 0.48 and is considerably larger than the correlations
between other items, which are mostly negative.

Table 14.4 Correlations between standardized item residuals (only the first ten items are shown
due to space restrictions)

RUMM2030 Project: RD Analysis: R

Title: R

Display: Residual correlation matrix

Item I0001 I0002 I0003 I0004 I0005 I0006 I0007 I0008 I0009 I0010

I0001 1.000

I0002 −0.057 1.000

I0003 −0.026 −0.061 1.000

I0004 −0.012 −0.008 −0.057 1.000

I0005 −0.038 −0.044 −0.080 0.481 1.000

I0006 −0.053 −0.011 −0.017 −0.112 −0.127 1.000

I0007 −0.078 −0.065 −0.006 −0.019 −0.005 −0.038 1.000

I0008 −0.080 0.017 −0.051 −0.047 −0.058 −0.002 −0.054 1.000

I0009 −0.022 −0.008 −0.053 −0.081 −0.075 −0.033 0.015 −0.030 1.000

I0010 0.071 0.006 −0.036 −0.099 −0.065 −0.042 −0.039 −0.035 −0.029 1.000
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Estimating the Magnitude of Response Dependence

Andrich and Kreiner (2010) describe a way of estimating the value of d in Eq. (14.5),
which characterizes the magnitude of response dependence. It is estimated as a
change in the location of the difficulty of item j caused by its dependence on item i.
The focus is on dependence between two dichotomous items.

According to the procedure described by Andrich and Kreiner (2010), item 5
was resolved into two distinct items, now called items 5S0 and 5S1. Item 5S0 is
composed of responses to item 5 from those persons whose responses on item 4 are
0. Item 5S1 is composed of responses to item 5 from those persons whose responses
on item 4 are 1. Because these two items are still dependent on item 4, item 4 is
deleted from the analysis. Table 14.5 shows the individual item estimates and fit
statistics for these two items. It is clear from Table 14.5 that these two items have
very different difficulty estimates. The above steps can be carried out routinely in
RUMM2030. The difference in their estimates gives an estimate of the magnitude of
response dependence between items 4 and 5, according to Eq. (14.6).

d̂ = (δ̂ j i0 − δ̂ j i1)/2 (14.6)

The estimated magnitude of d̂ = (−0.618 – (−4.865))/2 = 2.12 is very close to
the value of d = 2 used to simulate the data set.

Table 14.6 shows the individual item estimates and fit statistics for items 5S0
and 5S1 when exactly the same data set was simulated with no dependence between
items 4 and 5. It is clear that the resolved items have very similar estimates. Once
again, the estimated magnitude of d̂ = (−2.507 – (−2.355))/2 = 0.08 is very close
to the value of d = 0 used to simulate the data set without response dependence.

Table 14.5 Individual item fit statistics for items 5S0 and 5S1 in the case of dependence

Seq Item Type Location SE FitResid DF ChiSq DF Prob

31 005S0 Poly −0.618 0.196 −0.973 171.68 11.779 9 0.226

32 005S1 Poly −4.865 0.296 −0.294 763.87 6.202 9 0.720

Table 14.6 Individual item fit statistics for items 5S0 and 5S1 in the case of no dependence

Seq Item Type Location SE FitResid DF ChiSq DF Prob

31 005S0 Poly −2.507 0.181 −1.270 172.64 7.171 9 0.619

32 005S1 Poly −2.355 0.123 −1.088 763.87 8.270 9 0.507
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No dependence 

Response dependence 

Multidimensionality

Fig. 14.3 Person and item distributions for both types of dependence as well as no dependence
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The Effects of Violations of Independence

Although some have concluded that, in the specific situation they describe, viola-
tions of independence did not have big effects on estimates (e.g. Smith, 2005 cited
in Marais & Andrich, 2008a), we have found significant effects. These effects are
described in Marais and Andrich (2008a, b). Figure 14.3 shows person and item
distributions from these simulation studies. Data were simulated with no depen-
dence. Data were also simulated according to the same specifications but with either
response dependence or multidimensionality. It is clear from these person distri-
butions that, relative to the condition with no dependence, the variance increased
with response dependence and decreased with multidimensionality. In summary, in
these simulation studies response dependence resulted in increased reliability and
increased variance of person estimates. Multidimensionality resulted in decreased
reliability and decreased variance of person estimates. These inferences could be
made because the properties of the data were known from the simulations. In real
data, professional judgement from multiple pieces of evidence in context is required
to decide the source of dependence.

Exercises

Exercise 6: Analysis of data with dependence in Appendix C.
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Chapter 15
Fit of Responses to the Model
II—Analysis of Residuals and General
Principles

The first part of this chapter concerns an analysis of residuals where the focus is on
the response of each person to each item. In particular, given the parameter estimates,
the residual is formed between the response of a person to an item and the expected
value according to the model. The estimates are compared and a new residual is
constructed to summarize the fit of an item, or a person’s profile, to the model. The
second part of this chapter contains some general principles for assessing the fit of
responses to the model.

The Fit-Residual

The residual of the response xni of each person n for each item i is simply

xni − E[xni ], (15.1)

wherein the case of the dichotomous Rasch model

E[xni ] = Pr{xni = 1} = Pni . (15.2)

The residual itself is a difference. To assess whether the magnitude is large or
not, it is referenced to its standard deviation,

√
V [xni ]. Therefore, the standardized

residual

zni = xni − E[xni ]√
V [xni ] (15.3)

is formed where V [xni ] = E[x2ni ] − (E[xni ])2 is the variance of xni .
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The theoretical mean over an imagined infinite number of replications is E[zni ] =
0 and V [zni ] = 1. Because of the estimation equations for the person parameters, the
sum of the standardized residuals will always be close to 0. In maximum likelihood
estimation, it is exactly 0.

Therefore, to assess the magnitude of the residuals, these are squared to give z2ni .
From these squared residuals, we obtain a summary value for a person and a summary
value for an item by summing over the items or persons, respectively:

y2n =
I∑

i=1

z2ni , (15.4)

y2i =
N∑

n=1

z2ni . (15.5)

These summary values now need to be compared to their expected values—their
expected values are their degrees of freedom. Therefore, a single person or item
residual value that summarizes all the person–item residuals are respectively given
by

y2n − E[y2n ] =
I∑

i=1

z2ni −
I∑

i=1

fni , (15.6)

y2i − E[y2i ] =
N∑

n=1

z2ni −
N∑

n=1

fni . (15.7)

These residuals can be standardized by dividing by their respective standard devi-
ations:

Zn = y2n − E[y2n ]√
V [y2n ]

, (15.8)

Zi = y2i − E[y2i ]√
V [y2i ]

. (15.9)

Approximations for the Degrees of Freedom

In the RUMM2030 Interpreting Manual (Andrich, Sheridan, & Luo, 2018) there is
a discussion on the approximation to the calculation of the degrees of freedom.
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Shape of the Natural Residual Distributions

It is evident that the smallest possible value for any z2ni is 0. For example, consider
a dichotomously scored item. As the person’s proficiency increases relative to an
item’s difficulty, so the expected value becomes closer and closer to 1. If the person’s
response is 1, then the residual will be close to zero. However, if the response is
0, then the residual will be large. The residual value has a lower bound. This will
occur when the observed and expected values are the same. However, it has no
upper bound—as the observed and expected values become more different, then the
standardized residual increases in value, and therefore, so does z2ni . Figure 15.1 shows
these possible values for the squared standardized residuals for person locations
between −3 and +3 logits and for an item with difficulty 0.5, for both a response of
1 and a response of 0. It is clear that they can take on values with a pattern, which is
formally called a locus. You may wish to choose a person location for an item and
calculate z2ni for an item of difficulty 0.5 and verify Fig. 15.1.

Because z2ni has a minimum value of 0, the minimum values of y2n and y2i are also
0. As a result, Zn and Zi tend to be skewed. This skew can be ameliorated in general
by an alternative transformation, which we now describe. However, it is stressed that
these are all approximations and to take note of the cautions below on interpreting
fit statistics. Fit statistics should be interpreted relatively, in context and from the
perspective of outliers, and not against an absolute value.

Instead of forming the differences, y2n − E[y2n ] and y2i − E[y2i ], we form the ratios

y2n/E[y2n ] (15.10)

and

y2i /E[y2i ]. (15.11)

Fig. 15.1 Squared
standardized residuals for a
dichotomous item of
difficulty 0.5
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Further description of the transformation based on the ratios of Eqs. (15.10) and
(15.11) is provided in the RUMM2030 Interpreting Manual (Andrich et al., 2018).
The final statistic is called the fit-residual. This is the residual reported in the various
statistics. Smith (2002) has carried out many studies on statistics related to the fit-
residual index of fit.

However, RUMM2030 also shows the distribution of the residuals from
Eqs. (15.8) and (15.9), and these are called natural residual distributions. The graph-
ical displays can be helpful in understanding the interpretation of these residuals.
These can be obtained from the main display of RUMM2030 under the heading
Residual Statistics Distribution.

Interpreting the Sign of the Fit-Residual

Each item and each person has a summary statistic that is termed a fit-residual
calculated as described above. In the case of a dichotomous item, the smallest set of
residuals occurs when the persons have a Guttman pattern. In that case,

∑N
n=1 z

2
ni is

a minimum, and following the transformation, the value of Eq. (15.9) is negative. On
the other hand, the maximum value of

∑N
n=1 z

2
ni will occur when the response pattern

is exactly the opposite of a Guttman pattern. In that case, the value of Eq. (15.9) is
positive. Thus, a value that is negative and large in magnitude reflects an item with a
response pattern whose empirical discrimination tends to be greater than that of the
summary discrimination of the rest of the items (the ICC). Likewise, a positive value
that is large in magnitude reflects an item with a response pattern whose empirical
discrimination tends to be less than that of the summary discrimination of the rest
of the items. The same interpretation of the sign can be made with respect to the
response pattern of a person.

Outfit as a Statistic

In various software, there is a fit statistic referred to as Outfit. It is analogous and
will give similar results and interpretations, as the fit-residual in RUMM2030.

Infit as a Statistic

There is a complementary statistic called Infit. This statistic is constructed in a similar
way, but it weights the standardized residual for a person to an item by its variance.
This means that a standardized residual where a person’s location is very different
from the location of an item is weighted less than one that is close to the person’s
location. The rationale for this weighting is that when a person is far from the item’s
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location, then the residual is very large for an unexpected response, as shown in
Fig. 15.1, but that the effect on the estimate is less than that of an item that is close
to the person’s location.

The Infit statistic will generally, except in very unusual cases, show less misfit
than the Outfit statistic.

The Correlation Among Residuals

If the data fit the model, then over a reasonably large number of persons and items,
say 400 persons and 20 dichotomous items, the residuals should not be correlated
with each other. Therefore, their correlations should be close to 0. RUMM2030 has a
facility to show these correlations. In fact, if the data fit themodel, then the smaller the
number of items, the more these residuals will in theory show a negative correlation.
There will likely be a small negative correlation among the residuals, for example
of the order of −0.03. However, if the correlation is relatively large, for example, +
0.3, then this suggests that the pair of items assess some aspect, which is different
from the common variable among the items.

The Principal Component Analysis (PCA) of Residuals

The Principal Component Analysis (PCA) in RUMM2030 is analogous to a factor
analysis, and the results are interpreted in the same way. The hypothesis being tested
with a Rasch model analysis is that the response structure is unidimensional and
that, apart from a single variable and the item parameters mapped on this variable,
the remaining variation is random. The PCA focuses the pattern of residuals on to
successive components to summarize which subsets of items assess an aspect in
common, which is not accounted for by the single variable. For example, the first
principal component of the residualsmight showanumber of itemswith large positive
correlations (often called loadings), and another number with negative loadings. In
that case, it might be that those two sets of items assess an aspect in common which
is different from what all the items assess in common.

Generally, only the first two principal components can be interpretedmeaningfully
in terms of subsets of items that might have aspects more in common with each other
than with the rest of the items. This does not mean that such a subset of items does not
assess the same variable as the other items; it simply means that these items assess
an aspect, in addition, that is common among them.

The PCA can show a pattern when the individual correlations would not suggest
that there are any patterns—it concentrates the evidence of any relationships.
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General Principles in Assessing Fit

There are many ways of examining whether the data fit the model. No single fit
statistic alone is sufficient to make a judgment on whether an item fits the model.
Smith and Plackner (2009) suggest using a ‘family’ of fit statistics in assessing fit.

Interpreting Fit Statistics Relatively and in Context

Although the various fit statistics are constructed with a sound rationale, there are a
number of reasons why they have to be used in context. First, in any analysis, there
may be many items and many persons, and tests of fit made with respect to different
hypotheses for misfit. And all of them are related to each other. For example, if one
item is removed from a set, the fit statistics will change for all the items. It may be
that only one item misfits the model, and that all others do fit. In that case, removing
an item will result in the other items showing fit. However, with real data that is
rare—there are degrees of fit and misfit.

In the extreme, there are items that really do misfit, and there are data sets as a
whole where there is a poor fit. However, in general, fit needs to be seen as relative.
Thus, fit statistics of any kind should be ordered in the first instance and those items
with the worst fit studied first. Further, relatively large misfit needs to be considered
an anomaly, and studied and understood substantively.

Second, the statistics involve discrete responses, and the statistics that are con-
structed as random normal deviates are approximations. This feature interacts with
the one above to make the distributions not fit the normal distribution, when the data
fit the model, perfectly.

Third, various statistics are affected by the sample size, but these are affected
differently by the sample size. They are also affected by the alignment between the
persons and the items—the better they are aligned, the more likely to detect misfit.

No fit statistic is necessary and sufficient to assess that the data fit the model—the
misfit of an item, which looks large, may even be localized in one area of the con-
tinuum. For these reasons, the study of fit is a forensic analysis, and every data set
should be considered as if it is a case study. All the relevant evidence needs to be
considered in making a decision. Of course, there will be cases with such large misfit
that it is clear that the item does not belong to the set. However, it is still helpful
to consider this an anomaly and to understand why there is such a large misfit of
an item, which presumably is in the set because the constructors considered that it
should belong to the set.

Further, every conclusion should be considered against the substantive variable,
its purpose and its application. It is not a matter of assessing statistical fit only against
some theoretical values. Theoretical values, such as a fit-residual greater than +3 or
−3 can be helpful, but it should not be the sole basis used for excluding an item from
a test, for example. Graphs of ICC curves should also be considered.
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All these fit statistics should be used as guides, and multiple pieces of evidence
should be used in making any decision to modify, discard, or deal with an item in
any way. Remember, the item was there because it was believed that it conformed to
the theoretical construct that was being operationalized using an instrument.

Power of the Tests of Fit as a Function of the Sample Size

No real data set fits any model perfectly. Therefore, a level of precision can be found
in which any model will be rejected. The precision, or in statistical terms, the power
of the test of fit, is governed by the sample size. The greater the sample size, the
greater the power in detecting misfit. For very large sample sizes, the power to detect
misfit is so great that any data set will misfit. Therefore, some realistic sample sizes
need to be used in studying fit. One guideline is that between 10 and 20 persons
for every threshold in the item set should be adequate to conduct the tests of fit. Of
course, if the data fit with respect to a bigger number, then that is fine.

Generally, the number of persons one has in a sample is not a function of exper-
imental design, but how many persons need to be assessed. There is no reason why
the power of the fit analysis should be directly related to the number of persons that
have to be assessed.

Sample Size in Relation to the Number of Item Thresholds

Tests of fit are affected by many factors in context, including the sample size. In
general, the greater the sample size, themore powerful the test of fit that the responses
do not fit the model. Essentially, it is one of precision—the greater the sample size,
the greater the precision of the estimates and therefore the greater the evidence if the
responses do not fit the model. This is as it should be, though some fit statistics are
more sensitive than others.

Often in real data, the sample size is just the size that is in the population to be
tested, and it might be over a hundred thousand. In that case, no real data will fit
the model. However, the precision implied by such a sample size is generally much
greater than is required, and the responses give meaningful comparisons. That is, for
the item calibration and fit stage, it is not necessary to have such a large sample.

One rule of thumb based on substantial experience and simulation is that the
number of persons chosen should increase as the number of item thresholds increases.
The ratio that seems reasonable is between 10 and 20 persons for each threshold. For
example, in a dichotomous test of 20 items, it would be useful to have at least 400
persons, and in an assessment with 10 polytomous items with 3 thresholds each (30
thresholds altogether), it would be useful to have at least 600 persons. However, this
does not mean that smaller numbers of people might not give meaningful results.
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There may be perspectives fromwhich the results are very interpretable, for example
a very anomalous item.

Furthermore,wewould not expect verymeaningful values of the abovefit statistics
unless there were something like 20 thresholds so that there were 21 score points,
that is, scores between 0 and 20, and these had reasonable frequencies. Less score
points than this make the spread of the persons rather narrow. Complementing these
recommendations is that the responses should not have floor or ceiling effects, that is,
that the persons are not too far to one or the other end of the scale such that the items
are not distinguishing among persons. Some data sets cannot avoid such effects,
for example, when a clinical population is assessed with an instrument constructed
to distinguish among members of a non-clinical population, or when a standard
population is assessed with an instrument constructed to distinguish amongmembers
of a clinical population. However, then even greater caution is required to interpret
the fit statistics. Ideally, such data should not be used to investigate the fit properties
of the items.

Adjusting the Sample Size

RUMM2030 has an option for modifying the sample size for the Chi-square (χ2)
fit statistic. Table 15.1 shows the summary fit statistics and the second set of χ2 fit
statistics. The latter set involves the same data as the first one, but the sample size in
the calculation has been adjusted to 1000. As a result of this adjustment, we expect
the fit to appear better. As is evident, the fit is better—every item has a smaller χ2

value and a greater probability of arising by chance.
The above adjustment is algebraic; it assumes that the observed and expected

values are the same in each class interval, but that the sample size is smaller. It is
possible to adjust the sample size to be larger.

This is not the same as taking a smaller random sample and rerunning the whole
analysis on this randomsample.Although thefitwill generally bebetterwith a smaller
sample, even in this case, there is more random variation than simply adjusting the
sample size in the statistic.

Power of Tests of Fit as a Function of the Separation Index

Although our estimates, when the data fit the model, are independent of the distri-
bution of the persons, the tests of fit are not. It is necessary to have a range of person
locations in order for there to be some power in the test of fit. This is indicated qualita-
tively with the person separation index. The greater the separation index, the greater
the spread of persons relative to the standard errors, and therefore the greater the
power of the test of fit. Remember, this is the power to detect misfit. The greater the
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distance of the majority of persons from an item, the greater the power of detecting
misfit for that item.

Test of Fit is Relative to the Group and the Set of Items

In particular, every test of fit of an item is relative to the total set of items. Thus,
the Rasch model estimates the parameters in the model from all of the items. In
principle, the model parameters are those that come from the data on the assumption
of the model. If an item is removed, then the rest of the items provide the frame of
reference for the estimates and fit. The fit values will change if an item is deleted.
If one item shows a large misfit compared to the others, then if this item is removed
the rest might fit well.

Bonferroni Correction

Typically, many tests of fit are conducted. There is concern that with many tests of fit,
some will be significant just by chance. There are suggestions for correction of the
significance level in the literature, and a common one is the Bonferroni correction
(Bland & Altman, 1995). This is very simple to carry out—the chosen probability
value of significance is simply divided by the number of tests of fit. The Bonferroni
correction is an adjustment to the significance level to reduce the risk of a type I error.
A type I error occurs when a significant misfit is found when there is none. A type II
error occurswhennomisfit is foundwhen there is one. There is somecontroversywith
this correction. In RUMM2030, both the numbers with correction and the numbers
without correction are provided to give the users discretion in making decisions. It
also permits them to report both.

RUMM2030 Specifics

In RUMM2030, the χ2 and item fit-residual statistics are provided in addition to
graphical evidence of item fit, the item ICCs. There is also an option to calculate and
display another fit statistic, based on ANOVA (Include ANOVA Item Fit Statistics
checkbox on the Analysis Control form). There are no absolute criteria for interpret-
ing fit statistics. The default for the fit-residual statistic in RUMM2030 is 2.5 but that
can be changed (Change Residual criterion on the Analysis Control form).

A total item–trait interaction χ2 statistic is provided with its probability value and
degrees of freedom, which is the number of items multiplied by the item degrees of
freedom (χ2 degrees of freedom for an item is the number of class intervals minus 1).
The total item–trait interaction χ2 statistic reflects the property of invariance across
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the trait. A significant value means that the hierarchical ordering of one or more
items varies across the trait. Also provided are the item fit-residual mean and SD,
with ideal values of 0 and 1, respectively.

The default number of class intervals will be 10 for a sample of N = 1000. The
initial number of class intervals is calculated by RUMM2030 to have at least 50
persons in a class interval, if possible. There is an option to change the Number
of Class Intervals on the Analysis Control form (the minimum number is 2 and
the maximum is 10). RUMM2030 allocates persons to class intervals based on the
person location distribution for the total sample. If missing data is present, then some
or not all persons will have responded to every item, possibly leading to very small
numbers of persons in specific class intervals for some items. In this case, the class
interval distributions are adjusted on an item-by-item basis in RUMM2030.

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in
Appendix C.
Exercise 3: Advanced analysis of dichotomous responses Part A in Appendix C.
Exercise 6: Analysis of data with dependence in Appendix C.
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Chapter 16
Fit of Responses to the Model
III—Differential Item Functioning

Statistics Review 12: Analysis of variance (ANOVA)

The first section of this chapter describes how to visualize DIF from the ICC; the next
section deals with how to confirm DIF statistically; finally, the concepts of artificial
DIF and resolving items with DIF are introduced.

Differential item functioning (DIF) occurs when items do not function in the
same way for different groups of people, who otherwise have the same value on the
trait. DIF refers to items having different relative difficulty for groups and there-
fore violating invariance, and has been referred to as bias. It does not refer directly
to one group of people having a greater score than another group on the item. In
developing a new measure, whether it is an achievement test or a questionnaire,
it is important to investigate whether the items have different meanings for differ-
ent groups (e.g. male/female, employed/unemployed, married/not married). If valid
quantitative comparisons are to be made among groups, the item parameters need
to be invariant across the groups to be compared. This measurement requirement of
invariance seems to have been first articulated by Thurstone:

If the scale is to be regarded as valid, the scale values of the statements should not be affected
by the opinions of the people who help construct it. This may turn out to be a severe test,
but the scaling method must stand such a test before it can be accepted as being more than a
description of the people who construct the scale (Thurstone, 1928, p. 547 cited in Andrich
& Hagquist, 2004).

The property of invariance quoted fromThurstone above implies a requirement of the
data. Anymodel can be applied to different subgroups in order to investigate whether
or not there is invariance amongst the parameters estimated. The main advantage of
the Rasch model in the study of invariance is that it has this property built into its
own structure. Its general form (Rasch, 1961) was developed from the requirements
that

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; and it should also be independent of which other
stimuli within the considered class were or might also have been compared.

© Springer Nature Singapore Pte Ltd. 2019
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Symmetrically, a comparison between two individuals should be independent of which par-
ticular stimuli within the class considered were instrumental for comparison; and it should
also be independent of which other individuals were also compared, on the same or on some
other occasion (Rasch, 1961, p. 322 cited in Andrich & Hagquist, 2004).

In principle, two different approaches can be taken to identify DIF. One approach
is to estimate a single set of parameters for each item and then study the residuals
identified by the different groups. For example, if the groups were boys and girls,
one would analyse boys’ and girls’ responses in the same analysis and compare
a mean residual for boys with a mean residual for girls. Another approach is to
estimate parameters in different groups and then compare the estimates. Both of
these approaches are described in detail in Andrich and Hagquist (2004). In this
chapter, we look at the first approach and describe this approach using the example
from Andrich and Hagquist.

The example involves survey data from a study collected in 1998 among Year
9 students in Sweden. The data collection involved a questionnaire including eight
items intended to be a measure of well-being and perceived health. The questions
were ‘During this school year, have you…’ felt that you have had difficulty in con-
centrating? felt that you have had difficulty in sleeping? suffered from headaches?
suffered from stomach aches? felt tense? had little appetite? felt low? felt giddy?
The response categories for all the items were never, seldom, sometimes, often and
always. The total number of persons used in the analysis was 654, with 301 boys and
353 girls.

It was important to assess if the survey items functioned the same way for boys
and girls, that is, that they are not biased towards one group. DIF can be visualized
or detected graphically by means of the item characteristic curve (ICC). It can also
be confirmed statistically.

Identifying DIF Graphically

There is a vast literature on DIF. From the perspective of detecting DIF in this book,
we focus on the item characteristic curve (ICC). Thus a single ICC is estimated
for all persons irrespective of group membership, and then the observed means of
responses in class intervals across the continuum should be close to the ICC. In the
case of dichotomous responses, the observed means are the proportions of positive
responses, and the expected value is simply the probability of a positive response.

Within the tradition of modern test theory, the fundamental idea of no DIF among
groups is that for the same values of the trait, the expected value of a member from
any group of individuals is identical. The expected values are displayed in an item’s
ICC. From this perspective of an invariant ICC, there are in principle three basic
kinds of DIF:

(i) the locations of the curves are different in the different groups but their slopes
are the same. DIF with parallel slopes is referred to as uniform DIF.
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Fig. 16.1 Graphical comparison between means of boys and girls in 5 class intervals for item 3
showing no systematic difference between genders

(ii) the locations are the same but their slopes are different. DIF with non-parallel
slopes is referred to as non-uniform DIF.

(iii) both their slopes and their locations are different. This DIF is also called non-
uniform DIF.

To check graphically if an item has DIF between boys and girls we can look at
the ICC for the item. The observed means in class intervals are displayed separately
for boys and girls. The ICC for item 3 (headaches) is shown in Fig. 16.1. The graph
shows that the observed means of the boys and girls in the class intervals are both
close to each other and close to the expected values. This evidence indicates that the
item fits the model and that there is no DIF.

The graph for the two groups is very different in Fig. 16.2, which shows the ICC
for item 7 (felt low). For the same class interval, that is mean person location, girls
have systematically higher observed means than boys. The observed means of the
girls are greater than expected and of the boys less than expected. Item 7 shows
uniform DIF. If the slopes were not parallel and crossed, they would have shown
non-uniform DIF.

Identifying DIF Statistically Using ANOVA of Residuals

Whilst the graphical display gives a visual orientation to the data, DIF can be con-
firmed statistically through an analysis of the residuals. The standardised residual of
each person n to each item i is given by

zni = xni − E[xni ]√
V [xni ] , (16.1)
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Fig. 16.2 Graphical comparison between means of boys and girls in 5 class intervals for item 7
showing a DIF effect between genders

where E[xni ] is the expected value given person n’s and item i’s parameter estimates,
and V [xni ] is the variance.

For the purpose of the detailed analysis, each person is further identified by the
gender group g and by the class interval c. This gives the residuals

zncgi = xncgi − E[xncgi ]
√

V [xncgi ] . (16.2)

These residuals are analysed according to standard analysis of variance (ANOVA).
ANOVA is a statistical procedure used to determine whether there is a significant
difference between the means of two or more groups. In the case of identifying DIF,
ANOVA is used to determine whether there is a significant difference among the
mean residuals for the groups of interest, in this case boys and girls. The question
about whether means are different is answered by analysing the variation among the
means. In an analysis of variance, F-ratios are constructed. An F-ratio is a ratio of the
estimated variance of residuals among groups and the estimated variance of residuals
within groups. Under the assumption that the means come from a single random set
of residuals from within the groups, then the theoretical value of this ratio is 1.0. If
the F-ratio is greater than 1.0, this could indicate that there is a real difference among
the group means. How much greater than 1 does it need to be before we can say the
group means are significantly different?

Because we are working with estimates of variances in ANOVA we cannot say
with 100% certainty whether an observed difference is real. It may just be a chance
difference, a peculiarity of the particular sample of residuals. In the ANOVA output
below, both an F-ratio and a probability are given. If the probability is less than a
certain chosen criterion one can conclude that the difference between the means is
statistically significant. That is, the F-ratio of this magnitude would occur by chance
less often than indicated by the probability. If the probability is greater than the
chosen criterion one can conclude that the difference is not statistically significant.
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Values of 0.01 or 0.05 are the criteria chosen most often. If the difference between
the means of boys and girls are significant we say there is a main effect of gender.
Please refer to Statistics Review 12 for an explanation of the concepts underlying
analysis of variance.

Table 16.1 provides a summary of the analysis of variance of the residuals with
the F-ratio and its significance for each of the eight items for (i) the uniform DIF
gender effect, (ii) the non-uniform DIF interaction effect, and (iii) the class interval
effect.

Returning to the graphs in Figs. 16.1 and 16.2, it would be expected that there is
not a significant main effect of gender for item 3 and that there is a significant main
effect of gender for item 7. For item 3, we are interested in the gender F-ratio of
0.024 which is not statistically significant according to the chosen criterion of 0.01
(p = 0.871). There is not a main effect of gender. For item 7 the main effect of gender
is statistically significant. The gender F-ratio is 44.543 and the probability is 0.000.
This confirms the uniform DIF we identified graphically in Fig. 16.2.

In the first section, we noted that there are in principle three basic kinds of DIF.
An ANOVAmain effect confirms uniformDIF, that is, the locations of the curves are
different in the different groups but their slopes are parallel. To determine whether
the slopes are not parallel for the different groups, i.e. to confirm non-uniform DIF,
we need to look at another type of effect in ANOVA called an interaction effect.
An interaction effect occurs when the residuals are different for different groups
depending on the class intervals.

Table 16.1 Analysis of variance of residuals for the test of DIF between genders taken from
Andrich and Hagquist (2004)

Items ANOVA

Gender Gender by class
interval

Class interval

F (df: 1, 639) p < F (df: 4, 639) p < F (df: 4, 639) p <

1 Concentrating?
(B > G)

11.744 0.001 −0.671 N/Sig 2.252 0.061

2 Sleeping?
(B > G)

8.882 0.003 1.155 0.329 0.521 0.723

3 Headaches? 0.024 0.871 0.569 0.688 0.186 0.944

4 Stomach
aches?
(G > B)

19.362 0.000 1.418 0.225 1.825 0.121

5 Tense? 0.003 0.958 0.526 0.720 2.154 0.072

6 Appetite? 1.316 0.250 0.697 0.597 0.831 0.508

7 Low?
(G > B)

44.543 0.000 0.597 0.668 0.951 0.565

8 Giddy? 5.800 0.015 1.537 0.189 0.407 0.806

Number of class intervals = 5; p < 0.01 taken as significant
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The gender by class interval interaction effect indicateswhether the discrimination
or slope of the item for the two genders is different. For item 3 the gender by class
interval F-ratio is 0.569 which is not statistically significant (p = 0.688). For item 7
the gender by class interval F-ratio is 0.597 which is also not statistically significant
(p = 0.668). This confirms no non-uniform DIF for items 3 and 7 in Figs. 16.1 and
16.2.

In addition to confirming the graphical interpretations from Figs. 16.1 and 16.2,
Table 16.1 shows that for item 4 (Suffered from stomach aches) there is also gender
DIF. In particular, there is a greater prevalence of ailment in girls (for the same overall
location). Item 1 (Difficulty in concentrating) and item 2 (Difficulty in sleeping) show
marginal greater prevalence of ailments in boys than girls (again, for the same overall
location). The above evidence was used to conclude that four items, items 1, 2, 4 and
7 show DIF, which is primarily uniform. This, of course, implies that the remaining
four items were taken not to show DIF. Item 8 (Felt giddy) did not show either
uniform or non-uniform DIF. In that analysis, the DIF criterion was set at the 0.01
level and so the main effect of gender was taken as not significant.

In summary, two ANOVA effects are relevant to consider for DIF. The first is
whether there is a main group effect, and the second whether there is a group by
class interval effect. The former indicates whether or not the mean of the size of the
residuals of the two groups on the average is different. The latter indicates whether
the discrimination or slope of the item for the two groups is different.

For completeness, we can consider the class interval effect. This gives analogous
information to the χ2 test across intervals. That is, it checks whether, irrespective of
groups, the mean residuals are statistically equivalent among class intervals. If these
are significantly different, then that implies that the actual means are not close to the
theoretical curve.

In our discussion on DIF, we have focused on just two groups. We consider them
of equal status. In some work on DIF, the perspective is that there is a standard or
main group and that there is a subgroup, sometimes referred to as a focal group,
which might have items which are biased against it. However, we do not take that
perspective here. Indeed, we suggest that unless there is some special reason, the
sample sizes of the two groups should be as close as possible to the same. This is
because if the sample sizes are different, and there is DIF, then the estimates will be
weighted by the estimates that would be present for the group with the larger sample
size.

In the previous section, we discussed detectingDIF. In the next section, we discuss
ways of studying DIF more closely, as well as the concepts of artificial DIF and
resolving items. Sometimes the term splitting is used, but we use resolving to convey
the sense of showing the constituent parts of the DIF.
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Artificial DIF

Andrich and Hagquist (2012) introduce the concept of artificial DIF. The basic issue
is that in forming class intervals, the known values of persons on the continuum
are not known—only estimates are known. When class intervals are formed using
estimates, which is effectively the same total score, then if some item has a higher
value for a class interval, and the total score for the class interval across items is fixed,
then other items must have some lower values. Thus, the artificial DIF favours the
group opposite to that of the real DIF. Whether or not it becomes noticeable depends
on other features of the data.

For the rest of the illustrations of this chapter, a set of data was simulated to
represent 1000 boys and 1000 girls. There were 8 items, each with 4 categories. All
items have the same location and the same thresholds for boys and girls, except item
3 was simulated to have a location value with a difference between boys and girls of
0.71 logits favouring boys.

Table 16.2 shows that there is no non-uniform DIF, and there is no misfit across
the continuum as evidenced by the class interval fit statistics. However, two items
showmisfit due to gender. One is item 3 which is expected because of the simulation.
However, item 4 also shows DIF. This item shows artificial DIF.

A RUMM2030 analysis of the real data shown in Table 16.1, which is explained
in more detail below, also shows this effect.

In this example, artificial DIF manifested itself in item 4 most noticeably, though
in theory there is a small artificial effect in all items. The reason it showed statistical
significance in item 4, and not other items, is that item 4 must have, by chance, had
some DIF favouring girls, and with the extra effect of artificial DIF, it showed up.

The magnitude of real DIF and incidents of artificial DIF, on item parameter
estimates can be quantified. This is done by resolving the items into group specific
items. To quantify DIF, items showing DIF must be resolved sequentially, and in
particular, if there is more than one item that shows DIF, then the one to deal with
first is the one which has the highest Mean Square. Thus if item 3 is resolved, then

Table 16.2 DIF summary with items 3 and 4 significant at this level for gender effect

Item Class interval Gender Class interval by gender

MS F DF Prob MS F DF Prob MS F DF Prob

I0001 2.445 3.129 9 0.001 0.054 0.069 1 0.793 1.306 1.671 9 0.091

I0002 1.173 1.327 9 0.217 0.108 0.121 1 0.728 1.558 1.762 9 0.071

I0003 1.219 1.521 9 0.135 79.599 99.301 1 0.000 1.328 1.656 9 0.094

I0004 0.510 0.563 9 0.828 18.739 20.711 1 0.000 0.916 1.012 9 0.428

I0005 1.369 1.544 9 0.127 0.096 0.108 1 0.742 0.762 0.859 9 0.562

I0006 1.537 1.813 9 0.061 2.888 3.407 1 0.065 1.436 1.694 9 0.085

I0007 2.390 2.934 9 0.002 0.507 0.622 1 0.430 0.842 1.034 9 0.410

I0008 1.753 2.120 9 0.025 3.374 4.081 1 0.044 0.428 0.517 9 0.863
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the rest of the items should fit. However, if there is another item then that shows DIF,
it would be resolved, and so on.

Resolving Items

Resolving item 3 in this example, means creating two new items, one responded to
only by boys and the other only by girls. The resolved item does not show DIF in the
ANOVA because boys and girls now have distinct items. In RUMM2030 it is simply
referred to as split.

The resolution of an item creates missing responses in some cells of the data
matrix. If it is the only item with real DIF, and it generated artificial DIF in any other
items, then when the item is resolved the artificial DIF effect will not be present in
an analysis of the modified matrix.

Table 16.3 shows the ANOVA of residuals after item 3 has been resolved. At
the same level of statistical significance as in Table 16.2, no item shows misfit. It
is evident that item 4 has a marginal misfit, and indeed it shows marginally higher
scores for girls. The artificial DIF put it over the significance limit.

Figure 16.3 shows the ICCs for boys and girls for item3. It also shows the observed
means in the class intervals, which are close to their respective curves. Recall that
the overall item location difference that was simulated was 0.71. From the location
estimates in Fig. 16.3 the estimated difference is 0.44 − (−0.31) = 0.75. This is a
very good estimate of the effect that was simulated. The slope estimates reflect the
threshold estimates, and relative to the mean of the thresholds they were identical
with a difference of only 0.07.

Thus resolving the items in this way gives an excellent, theoretically sound way
of estimating the effect of DIF in terms of the parameters of the items.

Table 16.3 DIF summary after item 3 is resolved: no significance at this level

Item Class interval Gender Class interval by gender

MS F DF Prob MS F DF Prob MS F DF Prob

I0001 2.3982 3.0344 9 0.0013 1.3065 1.6531 1 0.1987 1.2281 1.5538 9 0.1238

I0002 0.9771 1.0994 9 0.3597 0.7221 0.8125 1 0.3675 1.6876 1.8989 9 0.0480

I0004 0.8938 0.9837 9 0.4513 9.1339 10.0524 1 0.0016 0.7556 0.8316 9 0.5870

I0005 1.1879 1.3305 9 0.2156 0.9769 1.0941 1 0.2957 0.8672 0.9713 9 0.4618

I0006 1.6465 1.9283 9 0.0441 0.1625 0.1903 1 0.6627 1.0606 1.2421 9 0.2645

I0007 2.1511 2.6181 9 0.0052 0.4434 0.5397 1 0.4627 0.9264 1.1275 9 0.3394

I0008 1.5762 1.8877 9 0.0496 0.1439 0.1723 1 0.6782 0.4738 0.5674 9 0.8247

Girls 1.1452 1.4603 9 0.1581 0.0000 0.0000 0 1.0000 0.0000 0.0000 0 1.0000

Boys 0.9829 1.1782 9 0.3053 0.0000 0.0000 0 1.0000 0.0000 0.0000 0 1.0000
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Fig. 16.3 Resolved item 3 for boys and girls

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in
Appendix C.
Exercise 5: Analysis of data with differential item functioning in Appendix C.
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Chapter 17
Fit of Responses to the Model
IV—Guessing

In this chapter, we study misfit due to guessing on multiple-choice items. The 3P
model is discussed in Chap. 18: Other Models of Modern Test Theory for Dichoto-
mous Responses.

Multiple-choice items arewidespread in educational tests of proficiency.Guessing
can be a threat to measurement, even on a well-constructed multiple-choice test. A
person who does not know the correct answer either guesses randomly among all
response alternatives, or based on partial knowledge first eliminates one or more of
the alternatives and then selects randomly from the remainder.

Multiple-choice items are generally scored dichotomously and often analysed
according to the dichotomous Rasch model. However, although the Rasch model
has the desirable property of invariance realized through sufficiency, it makes no
provision for guessing behaviour. From the Rasch paradigm perspective, the model
is an operational rendition of fundamental measurement (Andrich, 2004) and the
occurrence of random guessing is not a desirable property of a measurement system.
So guessing is not a property of the model but of the data. When there is misfit
between the data and the model, it is seen as an anomaly revealed in the data. If
possible, new data should be generated that better conform to the model. This can be
done in various ways, for example by improving the targeting of the test or changing
test instructions. The ICC in Fig. 17.1 shows an item on which low proficiency
persons guessed.

This itemdoes not fit theRaschmodel.When amodel, like the simple dichotomous
Rasch model does not fit the data, analysts in the traditional paradigm choose a more
complex model, like Birnbaum’s (1968) three-parameter (3P) model, on the grounds
that it accounts better for the data (Andrich, 2004). The 3P, which models guessing
in addition to different discrimination powers of items, is thought to more truly
represent the behaviour of empirical items. In the 3P model the probability of a
correct response is expressed as

Pr{Xni = 1} = ci + (1− ci )P
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Fig. 17.1 ICC of an item with guessing

where P = [exp(αi (βn − δi ))]/[1+ exp(βn − δi )], αi is the discrimination of item i
and ci is taken as the guessing parameter of item i. If it is not estimated but defined
by the number of alternatives, then ci = 1/C where C is the number of response
alternatives, which is theminimum probability that person n answers item i correctly.

Conceptual problems with the 3P model have been identified (e.g. Waller, 1973).
In the 3P model guessing is considered an item parameter and, if not defined a
priori, it is estimated along with other item parameters. However, it is persons rather
than items who guess. The c parameter affects the probability of a correct response
by every person to every item, and the model assumes all persons employ random
guessing and they only guess on items to which they do not know the answer.

Guessing on a multiple-choice item occurs when a person does not know the
correct answer, and this is more likely to be when a person has low proficiency
relative to the item’s difficulty (Andrich, Marais, & Humphry, 2012). Therefore
lower proficiency students answer items correctly at a greater rate than they would if
only their proficiency, and no guessing, played a role. An example of health outcomes
where the symptoms in the data were similar to guessingwas when older people were
being assessed for memory functioning. They were given a list of words, and a short
time later they were asked to recall each word. If the word was recalled, it was given
a positive response. However, if they did not recall a word, they were given a prompt.
Then if they recalled the word with a prompt, it was given a positive response. Thus
persons who recalled a word with no prompt were given the same score of 1 as those
personswho recalled awordwith a prompt. Can you seewhy the effect here is similar
to that of guessing?

Tailored Analysis

Waller (1973) proposed a procedure that removes the effect of guessing in estimating
item and person parameters in the two-parameter (2P) model, another item response
theorymodel which is discussed in Chap. 18. His ‘Ability Removing RandomGuess-
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ing’ (ARRG) procedure (Waller, 1973, 1989; Andrich et al., 2012) is based on the
idea that guessing occurs when the item is too difficult for a person. Formally, guess-
ing occurs when the probability of answering an item correctly is lower than the
probability of answering the item correctly by chance. For example, in the case of
an item with 4 response alternatives, these are the responses for a person where
Pr{Xni = 1} < 0.25. To remove the effect of such guessing, all responses for which
Pr{Xni = 1} < 0.25 are removed. This is in effect removing all the responses on
items that are too hard for the person, a form of post-hoc tailored testing. Waller
stressed that, rather than estimating and correcting for guessing, as is done in the 3P
model, this procedure eliminates the noise guessing creates. Noise is a term used in
statistics to contrast with the concept of signal, where the former dilutes the latter. As
a result, information for every person is used, but only where one can be reasonably
sure it is valid information. Waller (1976) applied the ARRG procedure using the
Rasch model, and found that item locations and locations of persons who guessed
were better recovered with this procedure. Apart fromWaller’s (1976) limited study
and the more recent studies by Andrich, Marais and Humphry (2012, 2016), there
seem to be no other studies which investigate the effects of guessing on Rasch model
estimates and the effect of procedures like the ARRG on its estimates. In the paper
by Andrich et al. (2012) a procedure similar to Waller’s is elaborated and applied.
It is referred to as a tailored analysis. A novel way of testing whether an item has
significant guessing is described and applied to both a simulated and an empirical
data set in that paper. The procedure is summarized below.

Identifying and Correcting for Guessing

The procedure for identifying and accounting for guessing requires a number of
successive analyses. Andrich et al. (2016) described these as initial, tailored, origin-
equated and all-anchored analyses. The initial analysis is self-explanatory in that it
is the first analysis of the set of data in which both the item and person parameters
are estimated. The tailored analysis is a form of post-hoc adapting or tailoring of a
person’s proficiency relative to an item’s difficulty before administering the item. An
item that is considered too difficult for a person is not administered. In the post-hoc
tailoring, this involves using the parameters of the initial analysis to eliminate those
responses likely to be guessed. Thus from the initial analysis, and based on a person’s
proficiency estimate and an item’s difficulty estimate, if the probability of a response
according to the dichotomous Rasch model is less than chance (e.g. 0.25 in the case
of 4 alternatives), then this response, whether correct or not, is converted to missing
data. Because correctly guessed responses will generate more correct responses than
justified for an itembased on its difficulty, the itemwill appear easier in the initial than
in the tailored analysis. Because more guessing is likely to occur on more difficult
items, the more difficult the item, the greater the increase in its relative difficulty in
the tailored analysis compared to the initial analysis.
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However, because the sum of the item difficulties is constrained to the same value
in a typical analysis, for example 0, the difficulties cannot be compared directly. Thus
because the more difficult items will be more difficult in the tailored analysis, and
the item difficulty estimates sum to 0, the easier items will be easier. To compare
the difficulties from the two analyses, it is necessary to equate the origin of the two
analyses. This is carried out in the third analysis in which the mean or average of
the difficulties of a few very easy items, which are not expected to be affected by
guessing, is fixed to be identical. Because it is considered that the tailored analysis
gives the best estimates of the difficulties, this analysis is retained, and initial data
is re-analysed with the average of the few easy items equated to their average in the
tailored analysis. This is the origin-equated analysis. The difficulties of the tailored
and the origin-equated analyses can be compared,with the expectation that the greater
the difficulty of the item, the greater its difficulty in the tailored analysis.

In the above analyses, and any analysis, it is not known whether a person actu-
ally has guessed a correct answer, and for policy reasons, students generally cannot
be penalized because they may have guessed an item’s correct answer. Therefore,
to estimate students’ proficiencies in which the item difficulties are not biased by
guessing, a fourth analysis is carried out in which the initial data are re-analysed with
all item difficulties fixed to those from the tailored analysis. This is the all-anchored
analysis. The proficiency estimates of the origin-equated and the all-anchored analy-
ses can be compared. As expected, because of guessing, the proficiency estimates of
the less proficient students are greater in the all-anchored analysis. However, the pro-
ficiency estimates of the more proficient students are also greater in the all-anchored
analysis. This arises because the more proficient students receive greater credit for
answering correctly the more difficult items, which have a greater difficulty estimate
in the all-anchored compared to the origin-equated analysis. The rationale for this
effect is described in more detail in Andrich et al. (2016).

These analyses can be carried out routinely in RUMM2030. Following the initial
analysis, the tailored analysis can be run in which the user can specify the chance
probability value below which a response is converted to a missing response. The
origin-equated analysis can be carried out by first saving an anchor file from the
tailored analysis with only the easy items saved on it. Then the initial data are re-
analysed with the option Average item anchoring and the saved anchor file loaded.
Now the mean of the easy items will be the same in the new analysis as in the
tailored analysis, but all itemswill have new difficulty estimates. For the all-anchored
analysis, all items from the tailored analysis are saved as an anchor file. Then the
initial data are re-analysed with the option Individual item anchoring and the saved
anchor file loaded. Now all item difficulties remain as in the tailored analysis, but
each person has a new estimate.
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Exercises

Exercise 3: Advanced analysis of dichotomous responses Part B in Appendix C.
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Chapter 18
Other Models of Modern Test Theory
for Dichotomous Responses

There are a number of models in modern test theory for analysing dichotomous
responses. Dichotomous responses are scored into two categories, for example cor-
rect (1) and incorrect (0) or agree (1) and disagree (0). Three common unidimen-
sional models are the Rasch model of Rasch Measurement Theory (RMT), and the
two-parameter logistic (2PL) model and three-parameter logistic (3PL) model of
item response theory (IRT). The distinction between Rasch measurement and item
response theories is explained in Andrich (2004, 2011).

The Rasch Model

The Rasch model for dichotomous responses takes the form

Pr{Xni = 1|βn, δi } = eβn−δi /
(
1+ eβn−δi

)
, (18.1)

where βn is the proficiency of person n and δi is the difficulty of item i (Rasch, 1960).
Figure 18.1 shows the item characteristic curves from the Rasch model for three

items of different difficulty.
The Rasch model has a single person parameter and a single item parameter.

The following features of the Item Characteristic Curve (ICC) in the Rasch model
have been studied in Chap. 7 and are relevant to recall here. First, the probability
of answering an item correctly gradually increases with proficiency level. Second,
the slopes of the curves are equal producing parallel curves that do not cross. Third,
the point of inflection of the curve occurs where the probability of answering the
item correctly is 0.5. The relevance of non-crossing ICCs for dichotomous items is
described in Wright (1997). The central relevance is that for all values of a person
location, the items have the same order of difficulty. From the perspective of IRT,
the Rasch model for dichotomous responses is known simply as the one-parameter
logistic (1PL) model.
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Fig. 18.1 Item characteristic curves from the Rasch model

2PL Model

The two-parameter logistic (2PL) model for dichotomous responses takes the form

Pr{Xni = 1|βn, δi , αi } = eαi (βn−δi )/
[
1+ eαi (βn−δi )

]
, (18.2)

where βn is the proficiency of person n, δi is the difficulty and αi is the discrimination
parameter for item i (Birnbaum, 1968). The discrimination parameter characterizes
the slope of the ICC.

The addition of the discrimination parameter means the 2PL can model items,
which are not equally related to the latent trait (Embretson & Reise, 2000). Because
they may not have equal slopes, as shown in Fig. 18.2, it is possible for the ICCs of
the 2PL model to cross. The point of inflection of the curve still occurs where the
probability of answering the item correctly is 0.5.

A consequence of including the discrimination parameter in the 2PLmodel is that
the interpretation of item difficulties becomes ambiguous (Ryan, 1983). In particular,
because the relative orderingof the itemsdepends on the proficiencyof the person, it is
not possible to order the items according to difficulty when items vary significantly in
discrimination (Ryan, 1983). Figure 18.2 illustrates how the probability of answering
an item correctly depends on the proficiency of the person, despite all three items
having the same difficulty. For example, for a person with a proficiency of−2 logits
on the scale in Fig. 18.2 the ordering of the difficulties is items 1, 2, 3, while for a
person with a proficiency of 2 logits the ordering is items 3, 2, 1. In addition, unlike
the Rasch model, the total score is not a sufficient statistic for the person parameter.
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Fig. 18.2 Item characteristic curves from the 2PL model

3PL Model

The three-parameter logistic (3PL) model for dichotomous responses to multiple-
choice items takes the form

Pr{Xni = 1|βn, δi , αi , γi } = γi + (1− γi )Pni = Pni + γi (1− Pni ), (18.3)

where Pni = eαi (βn−δi )/
[
1+ eαi (βn−δi )

]
, βn is the proficiency of person n, δi is the dif-

ficulty, αi is the discrimination and γi is the guessing parameter for item i (Birnbaum,
1968).

How guessing can be considered from the perspective of the Rasch model was
summarized in Chap. 17. The 3PL model involves a single person parameter and
three itemparameters; location, discrimination and guessing. The guessing parameter
manifests as a lower asymptote on the ICC, as shown in Fig. 18.3. When an item can
be guessed correctly, the probability of success is greater than zero (Embretson &
Reise, 2000). Hence the ICC does not fall to zero, even for low proficiency persons,
because guessing increases the probability of success on an item. The probability
of success from random guessing is 1/C when there are C alternative responses to
a multiple-choice (MC) item. Estimates of the lower asymptote in the 3PL model
often differ from 1/C because persons can eliminate MC alternatives (Embretson &
Reise, 2000) or be attracted to an incorrect MC alternative. Item difficulty occurs at
the point of inflection in the ICC but is not necessarily associated with a probability
of 0.5 (Embretson & Reise, 2000). This is illustrated in Fig. 18.3.
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Fig. 18.3 Item characteristic curves from the 3PL model

The parameter estimates are dependent on the distribution of the persons who
respond to the items (Maris & Bechger, 2009). Also, as in the 2PL, it is difficult to
interpret an individual parameter because all the parameters are estimated simultane-
ously and influence each other (Han, 2012). Again, the total score is not a sufficient
statistic for the person parameter.
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Chapter 19
Comparisons and Contrasts Between
Item Response Theory and Rasch
Measurement Theory

This chapter is a review, and an extension of ideas, functions and approaches to mea-
surement in education and the social sciences that leads into the remaining chapters.

Approaches to Measurement and the Data-Model
Relationship in Measurement

There has been a substantial degree of controversy in the approaches to social mea-
surement. Because you are likely to come across this controversy in some guise or
another, often not explicit, we consider it in this chapter. However, the controversy
centres on two paradigms involved in the relationship between models and data
(Andrich, 2004, 2011).

The controversy rests on the approach taken to measurement when statistical
models are applied in the way they might be applied to data where the measurements
already exist, and not in the many details of estimation, tests of fit, and so on. The
technical details are generally common, although different models lend themselves
to different considerations in the tests of fit. In both approaches, it is taken for granted
that the raw data may need to be transformed if the data are intended to provide any
generality across time, across instruments and across locations.

In constructing measurements of some construct, there are two simultaneous
goals:

(i) to better understand the construct or variable of measurement, and to modify
the instruments in order to improve their operationalization and measurement
of the construct;

(ii) to assess and formally measure the locations of objects of measurement, in our
case often proficiencies or attitudes of people, on the construct or variable.

The two approaches to the data model relationship in constructing instruments
for measurement are briefly summarized below.
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Approach 1

Best efforts are made to construct test instruments which have content validity. Then
an effort is made to construct plausible models that will characterize the data. The
models have both the item (test) parameters, which help clarify the instrument and
operationalize the construct, and person parameters. There is no particular a priori
restriction on the class of models, and the parameters in these models, that might
be used. Instead, the main criterion is whether the model fits the data. If the chosen
model does not fit the data, another model of the same kind but with more parameters
is tried. The model with more parameters will generally account for the data better
than one with less parameters. This is the approach of IRT.

Approach 2

Best efforts are made to construct test instruments which have content validity. Then
an effort is made to identify models that might characterize the data and which also
subscribe to certain criteria of measurement. The models have both the item (test)
parameters, which help clarify the instrument and operationalize the construct, and
person parameters. There is a particular a priori restriction on the class of models
and the parameters in these models that might be used. The case for these models is
independent of any data sets, and data should be valid in content and also conform
as close as possible to the models. We have seen in Chap. 7 that the case for the
models rests on a certain kind of invariance that the responses should have in order
that meaningful comparisons can be made as a result of the measurements.

It is this approach that is applied with RMT. Because it involves approaches
that are essentially incompatible, we call the difference between the IRT and RMT
approaches a paradigm difference.

The approach fostered in this book is the second, RMT, approach. This approach
has traditionally been more unusual, but not uncommon, and is becoming more com-
mon.Equivalent criteria have been articulated byL.L.Thurstone (1920s), L.Guttman
(1940s), and G. Rasch (1960s). Their criteria are consistent with each other, and con-
sistent with the philosophy of Kuhn (1961) regarding the function of measurement in
physical science. Kuhn andThurstone are considered briefly at the end of this chapter.
Guttman is considered separately, both earlier in this book and in the next chapter.

In this section, we build up a particular kind of invariance and function of mea-
surement by considering quotes from key people. This criterion and function of
measurement is also consistent with the approach taken in this book.



The Function of Measurement in Quantitative Research … 223

The Function of Measurement in Quantitative Research
in the Natural Sciences: Thomas Kuhn

Thomas Kuhn was a physicist who turned to the history and philosophy of science
and introduced the term paradigm in the philosophical discourse of the history of
science and measurement. He introduced the idea that, in addition to traditional,
cumulative science, there are episodes in the history of science in which the thinking
is revolutionary. These intellectual revolutions can take centuries to be completed.
Kuhn’s key publications appeared in the 1960s.

What Do Text Books Teach Is the Function of Measurement
in Science?

In textbooks the numbers that result from measurements usually appear as the archetypes of
the ‘irreducible and stubborn facts’ to which the scientist must, by struggle, make his theories
conform…But in scientific practice, as seen through the journal literature, the scientist often
seems rather to be struggling with facts, trying to force them to conformity with a theory he
does not doubt. Quantitative facts cease to seem simply the ‘given’. They must be fought
for and with, and in this fight the theory with which they are to be compared proves the
most potent weapon. Often scientists cannot get numbers that compare well with theory
until they know what numbers they should be making nature yield (Emphasis added) (Kuhn,
1961/1977, p. 193).

What Does Kuhn Say Is the Function of Measurement
in Scientific Research?

Only a miniscule fraction of even the best and most creative measurements undertaken by
natural scientists are motivated by a desire to discover new laws and to confirm old ones
(Kuhn, 1961, p. 187).

…new laws of nature are very seldom discovered simply by inspecting the results of mea-
surement made without advance knowledge of those laws. …because nature itself needs to
be forced to yield the appropriate results, the route from theory or law to measurement can
almost never be traveled backwards (Emphasis added) (Kuhn, 1961/1977, p. 197).

Is There a Role for Qualitative Study in Quantitative Scientific
Research?

…that large amounts of qualitative work have usually been prerequisite to fruitful quantifi-
cation in the physical sciences (Emphasis added) (Kuhn, 1961, p. 180).
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If discovering new laws or confirming existing ones is not the function of mea-
surement, then

What Is the Function and Role of Measurement in Science?

To the extent that measurement and quantitative technique play an especially significant role
in scientific discovery, they do so precisely because, by displaying serious anomaly, they tell
scientists when and where to look for a new qualitative phenomenon. To the nature of that
phenomenon, they usually provide no clues (Emphasis added) (Kuhn, 1961/1977, p. 205).

In summary, the function of measurement in physical science is the search for
anomalies.

The Properties Required of Measurement in the Social
Sciences: L. L. Thurstone

Thurstone was an engineer, who worked for some period with Thomas Edison, but
then turned to psychology and was Professor of Psychology at The University of
Chicago. His work on measurement in the social sciences was strongly influenced
by his engineering and scientific background. Thurstone’s key publications appeared
in the 1920s.

Social Variables—What Is Distinctive About Variables
of Measurement in the Social Sciences and What Are
the Limits to Such Variables?

One of the main requirements of a truly subjective metric is that it shall be entirely indepen-
dent of all physical phenomena. In freeing ourselves completely from physical measurement,
we are also free to experiment with aesthetic objects and with many other types of stimuli
to which there does not correspond any known physical measurement (Thurstone, 1959,
p. 182–83).

Thus They Must Be Independent of Physical Variables—What
Else?

The various opinions cannot be completely described merely as more or less. They scatter
in many dimensions, but the very idea of measurement implies a linear continuum of some
sort, such as length, price, volume, weight, age. When the idea of measurement is applied to
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scholastic achievement, for example, it is necessary to force the qualitative variations into a
scholastic linear scale of some kind (Thurstone, 1959, p. 218–19).

Why Do You Think We Have Quantification in the Social
Sciences?

In practice, we have the following examples: marks for proficiency, performance
and achievements, marks on national tests of educational progress and in attitude
measurement. Clearly, in attempts to measure, the construct must include the idea of
more or less, greater or lesser, stronger or weaker, and so on.

A Requirement for Measuring Instruments

If a scale is to be regarded as valid, the scale values of the statements should not be affected
by the opinions of the people who help to construct it. This may turn out to be a severe test
in practice, but the scaling method must stand such a test before it can be accepted as being
more than a description of the people who construct the scale (Thurstone, 1959, p. 228).

If the scale value of one of the statements should be affected by the opinion of any individual
person or group, then it would be impossible to compare the opinion distributions of two
groups on the same base (Thurstone, 1928, p. 416).

Thus in measurement, it is necessary for the instrument to operate the same way
(invariantly) across groups. Do these requirements seem reasonable?

Georg Rasch

Rasch was a Danish mathematician and statistician, who was asked to help monitor
the progress of students in reading and, in the process, developed a class of models
for measurement in the social sciences. He then carried out statistical consulting to
earn a living between the first and second world wars. Through a scholarship, he
studied with Ronald Fisher for a year in 1934.

Rasch completed his career as Professor of Statistics as Applied to the Social
Sciences at The University of Copenhagen. His consulting included, when it was
formed, work for the Danish Institute for Educational Research and this is where his
innovative work first took shape. He also had strong links with the Departments of
Statistics and Education at TheUniversity of Chicago in the 1960s and 1970s. His last
official appointmentwas asVisitingProfessor in theDepartments ofMathematics and
Education at The University of Western Australia in 1974. Rasch’s key publications
appeared between 1960 and 1977.
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On reporting on the work he did with models for reading and other kinds of data,
he wrote the following regarding the relationship between a model and data.

It is tempting, therefore, in the case with deviations of one sort or other to ask whether it
is the model or the test that has gone wrong. In one sense this of course turns the question
upside down, but in another sense the question is meaningful. For one thing, it is not easy to
believe that several cases of accordance between model and observations should be isolated
occurrences (Emphasis in original) (Rasch, 1960, p. 51).

What kind of model is a Rasch model for measurement? The model arises from the
following requirement.

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; and it should also be independent of which other
stimuli within the considered class were or might also have been compared.

Symmetrically, a comparison between two individuals should be independent of which par-
ticular stimuli within the class considered were instrumental for comparison; and it should
also be independent of which other individuals were also compared, on the same or on some
other occasion (Rasch, 1961, p. 332).

Compare this statement with that of Thurstone’s regarding the property of an instru-
ment. This invariance seems very important, not just for science and generality, but
where humans are concerned, for social justice and for accurate diagnoses.

For example

(i) if two markers grade student performance, we would require that the grades are
independent of which marker is grading;

(ii) if two radiologists are studyingX-rays, wewould require that the interpretations
are independent of which radiologist is reading the X-rays.

The Criterion of Invariance

The requirements of invariance articulated by Thurstone and Rasch are not descrip-
tions of any data set. They are requirements that data need to meet if they are to be
used in measurement.

The distinctive part of Rasch’smodels is that the criterion of invariance is built into
the model, and the models are innately probabilistic. Then the check on invariance
involves checking if the responses conform to the model. There are many ways in
which the responses may not conform to the model. These are discussed in some
detail in the rest of this book. We can consider such responses as, in some sense,
anomalies.

It is a challenge in many situations (physical and social science) to meet this
requirement. Meeting this requirement brings, as noted by Kuhn in physics, an inte-
gration of qualitative and quantitative considerations. The RUMM2030 program is
consistent with this philosophy. It enables the examination of data from many per-
spectives with the researcher in control.
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With more parameters than the Rasch models, other models are likely to absorb
some of this lack of invariance. By not absorbing features of the data that models
with more parameters would, the Rasch models are more likely to reveal anomalies
in the data.

Fit with Respect to the Model and Fit with Respect
to Measurement

Another perspective in the distinction between the IRT and Rasch measurement
theory (RMT) paradigms is to contrast the concept of misfit. It helps to set the IRT
paradigm in context.

The datamodelling paradigm that arose from the natural sciences has been adopted
in the social sciences and in IRT. However, in the natural sciences, it is taken for
granted that the data are already measurements. For example,

“Laws of error,” i.e., probability distributions assumed to describe the distribution of the
errors arising in repeated measurement of a fixed quantity by the same procedure under
constant conditions,were introduced in the latter half of the eighteenth century to demonstrate
the utility of taking the arithmetic mean of a number of measurements or observed values
of the same quantity as a good choice for the value of the magnitude of this quantity on the
basis of the measurements or observations in hand (Eisenhart, 1983, p. 1).

Other discrete laws of error were proposed and studied by Lagrange; continuous laws of error
by Simpson, Lambert, Laplace, Lagrange, and D. Bernoulli culminating in the quadratic
exponential law of Gauss fx (x) = (h/

√
π) exp(−h2x2), upon which Gauss based his first

formulation of the method of least squares, which became almost universally regarded in
the nineteenth century as “the law of error” (Eisenhart, 1983, p. 1).

Notice that the distribution pertains to random errors ofmeasurement. The Gaussian
is the basis of the t, χ2, and F distributions in which assessment is made as to
whether or not the model has accounted for all the systematic variance. If it has
not, then the distribution, given the model and its parameter estimates, will not be a
random error distribution. Then a model with more parameters, which may account
for the systematic factor or factors not accounted for by the simpler model, is sought.
However, all these distributions assume that the data analysed are measurements.

In RMT, the task is to demonstrate that the instruments are producing numbers
which are as close to measurement as can be obtained. The criterion is that of a rele-
vant Rasch model which has properties of measurement and is not chosen to describe
any particular data set. In RMT, the misfit of concern is relative to measurement. If
one then uses a more complex model, misfit from measurement is absorbed into the
model. The model will fit better because it has additional parameters such as dis-
crimination parameters for items. However, this better fit may be hiding deviations
from measurement, for example lack of invariance with respect to different groups
and across the continuum, which the Rasch model highlights.

From the above perspective, when one is satisfied that the data show adequate
measurement properties, thenmodelling such as the application of hierarchical linear
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models to make group comparisons, and so on, becomes appropriate. Then the use
of modelling data is analogous to the way data are modelled in the natural sciences.

The Linear Continuum as an Idealization

In concluding this chapter, we note again Thurstone’s comment above: “When the
idea of measurement is applied to scholastic achievement, for example, it is neces-
sary to force the qualitative variations into a scholastic linear scale of some kind”
(Thurstone, 1959, p. 218–19). The linear scale implies the mapping of the magni-
tude of the property onto a line. However, it must be appreciated that the line is an
idealized abstraction and that there is no real line in nature. Thus, the property of
measurement does not itself have to appear linear. For example, an electric wire that
connects a power point to a computer might be bent in many places, but the strength
of the electric current going through it, or the resistance of the wire, can be measured
by the mapping of their magnitudes onto this idealized line.

Exercises

1. Summarize, in no more than 200 words, the idea of a paradigm in research and
in scientific research.

2. Summarize, in no more than 300 words, the distinction between the two
approaches to measurement outlined in this chapter. Relate this distinction to
the idea of paradigms of research and to how models are used in these two
paradigms.
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Part III
Extending the Dichotomous Rasch Model:

The Polytomous Rasch Model



Chapter 20
The Polytomous Rasch Model I

Statistics Review 13: Distribution theory

In Chap. 3, it was shown that the analysis of items that are rated or given partial credit
could be combined with items that are scored simply xni = 0 or xni = 1. In such
items, the scores assigned are extended beyond 0 and 1 to give, for example xni = 0
or xni = 1 or xni = 2 or xni = 3. We have already used the term dichotomous for the
case where items are scored 0 or 1 and the term polytomouswhen there are more than
two graded categories. Sometimes you will see polychotomous. Psychometricians
have discussed which is aetiologically correct and there seems to be a consensus that
it is polytomous.

We stress here the ordering of the categories, such as when one awards the marks
of 0 for poor performance, 1 for moderate performance and 2 for excellent perfor-
mance, where these performances are defined operationally in some way. Even in
the dichotomous case, however, the categories were ordered in the sense that there
was a preferred outcome—a score of 1 for correct is considered better than a score
of 0 for incorrect. Sometimes in attitude questionnaires, the direction of the ordering
is genuinely arbitrary, but in any case, an order is implied and needs to be consistent
among items.

The analysis of polytomous data generalizes readily from the dichotomous, but in
order to see this, review the preliminary idea about average values from the dichoto-
mous case to the polytomous one in Statistics Review 13.

The Model for Ordered Polytomous Responses

We first consider the case of an item with three ordered response categories. We
have seen in Statistics Review 13 how we can use the idea of a probability to obtain
a theoretical mean, where in the dichotomous case the probability of success is the
mean. We now set up the model in a form that gives the probability that each score
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Fig. 20.1 ICCs for both the 0 response and the 1 response

will occur as a function of the proficiency of the person and the difficulty of the item.
This is a generalization of the Rasch model for dichotomous items.

You will recall that, in full, the Rasch model for dichotomous responses is

Pr{xni = 1} = eβn−δi

1 + eβn−δi
and Pr{xni = 0} = 1

1 + eβn−δi
. (20.1)

So far we have drawn only the ICC for the correct response xni = 1. This is
adequate in the dichotomous case because there are only two possible responses and
the probability of a score of 0 is always a complement of a score of 1, Pr{0}+ Pr{1}
= 1.

Figure 20.1 shows the ICCs for both the 0 response and the 1 response for a
simulated dichotomous item. It is clear from Fig. 20.1 that the probability of 0
decreases as the proficiency of the person increases, complementing the probability
of 1.

Suppose, however, that we now have an item in which the possible scores are
0, 1 and 2. We might in advance consider the kind of probability curves these three
responses should have. Figure 20.2 shows such response probabilities for a simulated
polytomous item of difficulty δ = 0.067. The item’s thresholds τ1 and τ2, the points
of equal probability for adjacent categories, are also shown.

Figure 20.2 shows that the response for the score xni = 0 is essentially the same
as in the dichotomous case—as the proficiency increases, the probability of a score
of 0 decreases. Also as the proficiency increases, the probability of a maximum score
of 2 increases. Both as expected. However, between these curves is the curve which
shows the probability of a score of 1. This curve shows that when a person is of
moderate proficiency relative to the item’s difficulty, then the most likely score is a
1. This structure is central to the model for graded, partial credit, or rating responses.
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Fig. 20.2 ICCs for the 0, 1 and 2 responses in an item with three categories

In Fig. 20.2 there are two new parameters, τ1i and τ2i . These thresholds are the
points where the probability of a response of either 0 or 1, and 1 or 2, respectively,
are equally likely. In the case of a dichotomous response (with two categories), the
only threshold is the difficulty which is the point where the probability of either 0 or
1 is equally likely. In the case of three categories there are two thresholds, each of
which qualifies the average difficulty of the item, which is still denoted by δi and is
the mean of the thresholds; δi = (τ1i + τ2i )/2 in the case of two thresholds.

The generalization of the Rasch model for dichotomous responses is now shown.
You might be interested that the model is relatively recent as far as models are
concerned. Itwas derived in two related papers,Andersen (1977) andAndrich (1978),
and is based on the work of Rasch (1961).

First, we rewrite the case of the dichotomousmodel so that it is easier to generalize.
The more complete and symmetric expressions for the parts of Eq. (20.1) are

Pr{xni = 0} = e0(βn−δi )

e0(βn−δi ) + e1(βn−δi )
; (20.2a)

Pr{xni = 1} = e1(βn−δi )

e0(βn−δi ) + e1(βn−δi )
. (20.2b)

Because any number to the power of 0 is 1, then e0(βn−δi ) = e0 = 1 in Eq. (20.2a)
giving Pr{xni = 0} = e0(βn−δi )

e0(βn−δi )+e1(βn−δi )
= 1

1+e1(βn−δi )
, as required.

Notice that again the expressions, Eqs. (20.2a) and (20.2b), have the same denom-
inator, which is the sum of the numerators. The numerators carry the essential form of
the model, and the denominator simply ensures that the sum of the two probabilities
is 1.

Notice also that the number multiplying (βn − δi ) is the score of the respon-
se—when the response is xni = 0, then (βn −δi ) is multiplied by 0 to give 0 (βn −δi )
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in the exponent of the numerator; when the response is xni = 1, then (βn − δi ) is
multiplied by 1 to give 1 (βn −δi ) in the exponent of the numerator. We might expect
that when the item has three categories and the possible scores are 0, 1 and 2, that
this feature will remain, and that when the response is xni = 2, then (βn − δi ) will
be multiplied by 2. This is indeed the case.

With three categories, the model takes the form

Pr{xni = 0} = e0(βn−δi )

e0(βn−δi ) + e−τ1i+1(βn−δi ) + e−τ1i−τ2i+2(βn−δi )
(20.3a)

Pr{xni = 1} = e−τ1i+1(βn−δi )

e0(βn−δi ) + e−τ1i+1(βn−δi ) + e−τ1i−τ2i+2(βn−δi )
(20.3b)

Pr{xni = 2} = e−τ1i−τ2i+2(βn−δi )

e0(βn−δi ) + e−τ1i+1(βn−δi ) + e−τ1i−τ2i+2(βn−δi )
(20.3c)

The equations involve the two thresholds. If the response is 0, and therefore no
threshold has been exceeded, then no threshold appears in the numerator and the
coefficient or multiplier of (βn − δi ) is 0. If the response is 1 and therefore only the
first threshold has been exceeded and the rest have been failed, then the first threshold
appears in the numerator and the coefficient or multiplier of (βn − δi ) is 1. If the
response is 2 and therefore both the first and second thresholds have been exceeded,
then both thresholds appear in the numerator and the coefficient or multiplier of
(βn − δi ) is 2.

The denominator is once again the sum of all the numerators—in this case there
are 3 numerators.

This kind of expression generalizes to any number of scores. It can be written for
any score xni in the following form:

Pr{xni = x} = e−τ1i−τ2i ...−τxi+x(βn−δi )

∑mi
x ′=0 e

−τ1i−τ2i ...−τx ′ i+x ′(βn−δi )
. (20.4)

The denominator is just the sum of all of the numerators, and the numerator is a
generalization of the case with three categories.

The above development of the model includes the hypothesis that the thresholds
are ordered such that τmi > τm−1i > · · · τ2i > τ1i . In estimates of the parameters, it
is possible for them to show a reversed ordering. If there is a reversed ordering of
the thresholds, then there is a problem with the way that the categories function. A
fuller discussion of this feature is provided in subsequent chapters on the polytomous
Rasch model.
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Test of Fit Between the Data and the Model

A key aspect of checking fit between the model and the data is once again the
comparison of the observed mean for a class interval and the theoretical mean or,
formally, the expected value E[X]. Given the proficiency and the item parameter
estimates, the probabilities of responding in each category for each item are estimated
from Eq. (20.4).

The expected value (theoretical mean) is given by
Expected Value:

E[Xni ] =
mi∑

x=0

Pxi (xi ) (20.5)

where Pxi is the probability of a score of x determined from Eq. (20.4).
The observed mean is calculated by the same expression,

ObservedMean =
mi∑

x=0

pxi (xi ) (20.6)

except that instead of the Pxi being a probability estimated according to the model,
it is the observed proportion pxi of the number of responses in category x. Each
person’s expected value is calculated, and then the expected values and observed
scores of persons in each class interval are analyzed.

Interpretation from a Computer Output

Below is the RUMM2030 output from analysis according to the Rasch model for
ordered response categories of the data in Chap. 3. Recall that in this analysis, some
of the items scored 0 and 1 could be put naturally into sets. In particular, these were
items 6, 9 and 10. The scores for each of these item sets were added together so that
items 6, 9, and 10 are now polytomous items.

Proportions in Each Category

To get an orientation to the data and the analysis, Table 20.1 shows the distribution
of responses of all persons in each of the categories for each of the items. This
information is taken directly from the computer program used to analyze the data.

https://doi.org/10.1007/978-981-13-7496-8_3
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Table 20.1 Observed proportions of responses in each category for each item

Item number Item label Score

0 1 2 3 4

1 m001 0.08 0.92

2 m002 0.04 0.96

3 m003 0.12 0.88

4 m004 0.14 0.86

5 m005 0.08 0.92

6 m006 0.02 0.02 0.08 0.39 0.49

7 m007 0.29 0.71

8 m008 0.33 0.67

9 m009 0.02 0.10 0.29 0.59

10 m010 0.14 0.35 0.20 0.22 0.08

Table 20.2 Estimated thresholds for all items

Item number Item label Location estimate Threshold estimates

1 2 3 4

1 m001 −0.997 0.000

2 m002 −1.752 0.000

3 m003 −0.378 0.000

4 m004 −0.327 0.000

5 m005 −0.868 0.000

6 m006 0.452 0.326 −0.829 −0.614 1.118a

7 m007 0.745 0.000

8 m008 0.960 0.000

9 m009 0.259 −0.738 −0.018 0.757

10 m010 1.910 −1.523 0.610 −0.183 1.096a

aThese thresholds show disorder and this implies that there is a problem with the operation of the
categories

Threshold Estimates for the Items

Table 20.2 shows the threshold estimates for all of the items. Note that there are
no threshold estimates for the items that are scored simply 0 and 1. Also, there is
a problem with two items because the thresholds are not correctly ordered. Later
in this chapter, and the next chapter, the ordering of the thresholds is considered in
more detail. Here we are simply providing an orientation to the analysis.
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Table 20.3 Estimated difficulties for all items

Item number Location estimate δi Std. error

m001 −0.997 0.550

m002 −1.752 0.747

m003 −0.378 0.444

m004 −0.327 0.437

m005 −0.868 0.525

m006 0.452 0.192

m007 0.745 0.336

m008 0.960 0.325

m009 0.259 0.214

m010 1.910 0.147

Location (Difficulty) Estimates for the Items

Table 20.3 shows the difficulty δi estimates, headed LOCATION, and their standard
errors for each of the items. Notice that the sum of the thresholds in Table 20.2 sum
to 0.

The Test of Fit for a Dichotomous Item Scored 0 or 1

Table 20.4 shows the details for the test of fit for itemm007, which was considered in
detail in Chap. 13. It is one of the dichotomously scored items. The output is equiva-
lent, though not identical, because the simultaneous estimates of the parameters with
polytomous scoring with other items rearranged the values a little.

The item fits the model, as in the previous analysis when all items were treated as
dichotomous, which is evident from the χ2 value of 1.315 and significance of 0.505.

Figure 20.3 shows the item characteristic curve (ICC) for item m007 under the
analysis where some items are scored as partial credit. In this case, the item does
not discriminate as well as it did before when all the items were treated as dichoto-
mous—the points showing the observed proportions are flatter than the theoretical
curve.

https://doi.org/10.1007/978-981-13-7496-8_13


240 20 The Polytomous Rasch Model I

Fig. 20.3 Item characteristic curve for item m007

The Test of Fit for a Partial Credit Item m009 Scored 0, 1, 2
or 3

Table 20.5 shows the details for the test of fit for item m009 which has possible
scores of 0, 1, 2 and 3. The structure of the output is the same as for dichotomously
scored items.

According to the χ2 statistic, item m009 shows poor fit. The item characteristic
curve for this item is shown in Fig. 20.4. The observed means for each class interval

Table 20.4 Test of fit for item m007 with a location of 0.746

Group Location Component Category responses

No. Size Max Mean Residual ChiSqu 0 1

1 13 1.186 0.736 0.858 0.737 OBS.P 0.38 0.62

EST.P 0.50 0.50

OM = 0.62 EV = 0.50 OM-EV = 0.12 ES = 0.24 OBS.T 0.62

2 20 1.864 1.671 −0.146 0.021 OBS.P 0.30 0.70

EST.P 0.28 0.72

OM = 0.70 EV = 0.71 OM-EV = −0.01 ES = −0.03 OBS.T 0.70

3 16 3.451 2.769 −0.746 0.557 OBS.P 0.19 0.81

EST.P 0.12 0.88

OM = 0.81 EV = 0.87 OM-EV = −0.06 ES = −0.19 OBS.T 0.81

AVE = 0.78

ITEM: df = 2.00 ChiSqu = 1.315 Significance = 0.505
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Table 20.5 Test of fit for item m009 with a location of 0.257

Group Location Component Category responses

No. Size Max Mean Residual ChiSqu 0 1 2 3

1 13 1.186 0.736 1.414 2.001 OBS.P 0.00 0.23 0.31 0.46

EST.P. 0.07 0.24 0.39 0.30

OM = 2.23 EV = 1.89 OM-EV = 0.34 ES = 0.39 OBS.T 1.00 0.57 0.60

2 20 1.864 1.671 −2.026 4.106 OBS.P 0.05 0.10 0.45 0.40

EST.P 0.01 0.07 0.31 0.60

OM = 2.20 EV = 2.51 OM-EV = −0.31 ES = −0.45 OBS.T 0.67 0.82 0.47

3 16 3.451 2.769 1.184 1.401 OBS.P 0.00 0.00 0.06 0.94

EST.P 0.00 0.01 0.15 0.84

OM = 2.94 EV = 2.81 OM-EV = 0.13 ES = 0.30 OBS.T ** 1.00 0.94

AVE = 2.46

ITEM: df = 2.00 ChiSqu = 7.507 Significance = 0.000

Note ** = undefined

Fig. 20.4 Item characteristic curve for item m009

can again be compared to their expected values. It is evident that item m009 does
not discriminate as well as it might across the first two groups.

Threshold Order for Item m009 Scored 0, 1, 2 and 3

In addition to the test of fit in terms of theoretical and observed means, the
order of the thresholds which form the categories of the items is important. The
thresholds are shown in Table 20.2, and for this item they are in the correct
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Fig. 20.5 Category characteristic curves for item m009

order:−0.738,−0.018, 0.757. By convention in the form of Eq. (20.4), these thresh-
olds have a mean of 0. To locate the thresholds on the common scale, the item
difficulty (0.257) has to be taken into account and located first—then the thresholds
are located around the item difficulty. Figure 20.5 shows the category characteristic
curves (CCCs) for this item. They show the probabilities of each response category
as a function of person proficiency. Because the thresholds are ordered, the curves
show the required relationship shown in Fig. 20.2.

Threshold Order for Item m010 Scored 0, 1, 2, 3 and 4

The thresholds for item m010 shown in Table 20.2 have the values −1.523, 0.610, −
0.183 and 1.096. These are not in the correct order. Figure 20.6 shows the CCCs for
this item. The curves show a relationship which is a mess. In particular, there is no
region of the continuum in which a score of 2 is the most likely. That is, even in the
region of proficiencies where the expected (mean) score is 2, people are more likely
to obtain one of the other scores. This indicates that the categories are not working as
intended; as the proficiency of persons increases, the probability of gaining a higher
score does not increase systematically—a score of 2 is never the most likely. This
means that the item should be studied to understand why categories are not working
as intended.

Although the categories are not working as intended, according to the χ2 test, the
item fits the model. The ICC is shown in Fig. 20.7. It must be remembered that the
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Fig. 20.6 Category characteristic curves for item m010

Fig. 20.7 Item characteristic curve for item m010

sample size is very small for detecting misfit this way, but it does show that the data
may show a discrepancy from the model in one way and not in another way.

Estimates of the Proficiencies of the Persons

In the case with partial credit, the total score has the same property as it does with
dichotomous items; if the data fit the Rasch model, then the total score contains all of
the information for the person. Table 20.6 shows the proficiency estimates, and the
standard errors, associated with each total score. Once again, different total scores
show different standard errors, with the scores in the middle having smaller ones
than those on the extreme.
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Table 20.6 Proficiency
estimates associated with
each total score

Total score Frequency Proficiency
estimate

Standard error

0 0 −∞ ∞
1 0 −2.690 1.076

2 0 −1.846 0.801

3 0 −1.308 0.675

4 0 −0.908 0.592

5 0 −0.591 0.537

6 1 −0.324 0.500

7 1 −0.084 0.481

8 1 0.144 0.476

9 0 0.374 0.485

10 2 0.619 0.505

11 3 0.888 0.532

12 5 1.186 0.560

13 11 1.513 0.582

14 0 1.864 0.603

15 6 2.247 0.641

16 5 2.714 0.738

17 5 3.451 1.024

18 1 +∞ ∞
Mean = 1.782 Std. deviation = 0.889

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in
Appendix C.
Exercise 4: Advanced analysis of polytomous responses in Appendix C.
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Chapter 21
The Polytomous Rasch Model II

This chapter revises and goes beyond Chap. 20 in understanding the polytomous
Rasch model. The chapter revises the model for more than two ordered categories
as a direct, generalization of the simple logistic model of Rasch for dichotomous
responses. Examples of such a response format include the familiar Likert-style
attitude or personality items in questionnaires, aswell as somepartial credit structures
in assessing proficiency.

Key features of themodel are that (i) the successive categories are scoredwith suc-
cessive integers as is done in Classical Test Theory (CTT); (ii) nevertheless, distances
between thresholds which define the categories are estimated and no assumptions
about equal sizes of the categories need be made; (iii) the model retains the dis-
tinctive properties of Rasch’s model in terms of the separation of person and item
parameters; (iv) the threshold estimates do not have to be in the natural order. The
ordering of threshold estimates is a property of the data, and if the estimates are not
in their natural order, it shows that the categories are not working as required.

Andrich (1978) shows the original derivation of the model in which the scoring
of the categories by integers and the interpretation of the more general parameters
derived by Rasch and Andersen were clarified. Andrich (2010a, b) shows recent
summaries of the model.

Rated Data in the Social Sciences

(a) According to Dawes (1972) 60% of studies have only rated dependent variables.
Since then, because of an increase in performance assessment and applications
in health outcomes, it is likely to have increased.

(b) Rating is often used in place of measurement, but the measurement analogy is
retained, e.g. grading of essays as in the structure below.
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0 1 2 3 4 Scores or ratings

_____|__________|________|___________|______________

1τ 2τ 3τ 4τ
E D C B A

Fail Pass Credit Distinction High distinction

The continuum is partitioned into hypothetical regions by thresholds, τ1, τ2, τ3,
τ4, and the scores in the successive categories follow the measurement analogy. In
the case of the dichotomous model, there is only the one threshold.

(c) Often more than one sub-criterion is used, though in the end the scores on these
criteria are aggregated, e.g. for the grading of essays:

Criterion Rating xni for person n

(i) Organization 0–3 xn1

(ii) Content 0–4 xn2

(iii) Grammar 0–5 xn3

Total rating ∑3
i=1 xni = rn

Successive categories are scoredwith successive integers, irrespective of threshold
distances between categories. Note that different criteria can have different numbers
of categories.

The Partial Credit and Rating Scale Specifications

Often when the number of categories is the same for all items, and the format for all
items is the same, it is possible to estimate only one set of thresholds for all items.
In that case, the model has been called the rating scale model. When the items have
different numbers of categories, or where all the items have the same number of
categories but the thresholds are estimated for each of the items, the model has been
called the partial credit model (Masters, 2016). However, these are modifications
only to the number of parameters estimated—the response structure for the response
of a person to an item is identical. Therefore, unless specialized, we refer to the
model as the Polytomous Rasch Model (PRM), and refer to the former as the rating
scale parameterization and the latter as the partial credit parameterization. We write
this difference formally in a subsequent section.
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The Generalization to Three Ordered Categories

Figure 21.1 includes the probability curve of the third category, which is in themiddle
of the two other categories scored 0 and 2. First, with three categories there are two
thresholds. Even without knowledge of the Rasch model, if we were to draw the
probability of such a category as a function of the proficiency of a person, we saw
in the last chapter that we would draw something like the graph in Fig. 21.1. This
graph shows a region where, in between the two thresholds, the category has a higher
probability than either of the two other categories.

The explicit Eqs. (20.3a, 20.3b, 20.3c) from the last chapter are repeated below
and interpreted further. Notice how the thresholds appear successively as sums of the
thresholds up to the threshold corresponding to the score.However, donot bedeceived
into thinking that the process is somehow successive—the response is simply a
classification into one of three ordered categories.

Pr{0;β, δ, τ1, τ2} = 1

γ

Pr{1;β, δ, τ1, τ2} = 1

γ
exp[−τ1 + 1(β − δ)]

Pr{2;β, δ, τ1, τ2} = 1

γ
exp[−(τ1 + τ2) + 2(β − δ)]

where γ = 1 + exp[−τ1 + 1(β − δ)] + exp[−(τ1 + τ2) + 2(β − δ)].
Notice that the denominator is still the sum of all the terms of the numerator.

Fig. 21.1 Probability curves for three ordered categories
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For completeness and symmetry of the expressions, we can introduce a threshold
τ0, τ0 ≡ 0. It does not change any values but we can write the first term in the same
format as the other terms. This gives

Pr
{
0;β, δ, (τ )

} = 1

γ
exp[−τ0 + 0(β − δ)]; τ0 ≡ 0

Pr
{
1;β, δ, (τ )

} = 1

γ
exp[−(τ0 + τ1) + 1(β − δ)]

Pr
{
2;β, δ, (τ )

} = 1

γ
exp[−(τ0 + τ1 + τ2) + 2(β − δ)]; τ1 + τ2 = 0

where x ∈ {0, 1, 2}, γ = ∑2
k=0 exp

[
−∑k

x ′=0 τx ′ + k(β − δ)
]
and τ is the vector of

thresholds of the item.
Notice that in the above formulationwemake the thresholds sum to zero: τ1+τ2 =

0.
This means that the parameter δ is the difficulty of the item and that the thresholds

are located around the item, with the item’s difficulty in the middle of the thresholds.
Note that the successive categories are scored by successive integers beginning

with 0, where 0, 1, 2 is just an extension of the 0, 1 scoring for two ordered categories.
In addition, even though the successive categories are scoredwith successive integers,
the thresholds are estimated. They do not have to be equidistant.

In early discussions of more formal models for ordered categories there was a
belief that integer scoring required equal distances. You can read in the literature
the reason the integer scoring appears, but it is not because the distances between
categories are somehow equal. In any case, with three categories, there are just two
thresholds and there is only one distance as such between them, not three.

The Expected Value Curve

We saw in Statistics Review 14 that the expected value E[X] and the probability
π1 = π of the response of 1, in the dichotomous Bernoulli variable, was the same:
E[X ] = π1 = π .

However, in the case of more than two ordered categories, m + 1, with scores 0,
1, 2, …, m,

E[X ] =
m∑

x=0

xπ x

where

πx is the probability of a response with score x.
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Fig. 21.2 E[X] for an item with three ordered categories

Figure 21.2 shows the E[X] for item 13 where m = 2.
We notice that there is a slope parameter with this item. It is the rate of change

of the expected value at the location of the item δ = 0.909. The slope is considered
further later in the chapter.

The Structure of the PRM

The structure of the PRM and its relation to the dichotomous Rasch model at the
thresholds, can be seen by forming the probability of a response in the higher of two
adjacent categories, given that the response is in one of these two categories.

For example, consider

Pr
{
2;β, δ, τ

}

Pr
{
1;β, δ, τ

} + Pr
{
2;β, δ, τ

}

= {exp[−(τ0 + τ1 + τ2) + 2(β − δ)]}/γ
{exp[−(τ0 + τ1) + 1(β − δ)]}/γ + exp[−(τ0 + τ1 + τ2) + 2(β − δ)]}/γ

= exp[−τ2 + (β − δ)]
1 + exp[−τ2 + (β − δ)]

= exp[β + (−δ − τ2)]
1 + exp[β + (−δ − τ2)]

= exp[β − (δ + τ2)]
1 + exp[β − (δ + τ2)]
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Fig. 21.3 Conditional probability of a dichotomous response in the higher of two adjacent cate-
gories

where δ2 = δ+τ2. We can see that this is just the dichotomous Rasch model with the
difficulty of the item in the dichotomousmodel replaced by the difficulty of threshold
2, where the difficulty τ2 of the threshold, relative to the item’s difficulty δ, is added
to this item’s difficulty.

Figure 21.3 shows the two curves: Pr{1}
Pr{0}+Pr{1} and

Pr{2}
Pr{1}+Pr{2} for item 13. The spread

parameter is defined in Chap. 22.
Thus, the structure of the polytomous item is that the thresholds are simply char-

acterized by the dichotomous Rasch model. These curves are parallel as in the usual
case of dichotomous items which form a single set of items.

The Generalization to Any Number of Categories m + 1

Pr
{
0;β, δ, τ

} = 1

γ
exp[−τ0 + 0(β − δ)]

Pr
{
1;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1) + 1(β − δ)]

Pr
{
2;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1 + τ2) + 2(β − δ)]

Pr
{
3;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3) + 3(β − δ)]

. . .

Pr
{
x;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + τx ) + x(β − δ)]
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. . .

Pr
{
m;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · + τx + · · · + τm) + m(β − δ)]

(21.1)

where
∑m

x ′=0 τ = 0 and γ = ∑m
k=0 exp

[
−

(∑k
x ′=0 τx ′

)
+ k(β − δ)

]
.

Define κ0 = κm = 0,

κ1 = −τ1

κ2 = −τ1 − τ2

κm = −τ1 − τ2 − · · · − τm = 0

Then,

Pr
{
k;β, δ, τ

} = 1

γ
exp[κx + x(β − δ)] (21.2)

where γ = ∑m
k=0 exp[κk + k(β − δ)] and the κs are known as category coefficients.

In the simple specialization of Eq. (21.1) to the dichotomous case when m = 1,
κ0 = κm ≡ 0.

Figure 21.4 shows category probability or characteristic curves for an item with
unequally spaced thresholds and 4 categories.

Figure 21.5 shows the expected value curve for the item in Fig. 21.4. Notice that
now the maximum value of E[X] is 3.

Fig. 21.4 Category characteristic curves for an item with unequally spaced thresholds and 4 cate-
gories
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Fig. 21.5 The expected value curve for an item with unequally spaced thresholds and 4 categories

Fig. 21.6 Conditional dichotomous responses for three thresholds

Figure 21.6 shows the threshold probability curves, as in Fig. 21.3, but now
superimposed on the category characteristic curves for the same item as in Fig. 21.4.
These are shown as dotted curves.

The Slope of E[X]

The slope of E[X ] is a function of the distance between the thresholds, the closer the
thresholds, the steeper the slope. Of course, the slope of the curve changes at each
point, but we summarise the slope at the value of the location of the item δi . This is
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Fig. 21.7 Two items with different slopes of E[X ]

the mean of the thresholds on the continuum. Figure 21.7 shows two items, where
one has a steeper slope than the other.

Latent Threshold Curves

Figure 21.8 shows the category characteristic curves for the two items in Fig. 21.7.
Although the slopes of the E[X ] curves are different, the latent dichotomous thresh-
olds characteristic curves in Fig. 21.8 for both items, and all of their thresholds, are
parallel.

The threshold curves are shown in dotted lines because they are not observed.
They are part of the latent structure of the PRM. The threshold characteristic curve,
the conditional probability of the higher of two categories given that the response

Fig. 21.8 a An item with a smaller average distance between thresholds. b An item with a larger
average distance between thresholds
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is in one of the two categories, is inferred—there is no dichotomous response at a
threshold.

Diagnosing Problems with the Functioning of the Categories

The Rasch model for ordered categories has two unusual properties. First, in the
model, and this was known to Rasch (1966), it is not an arbitrary matter to collapse
and combine categories. If one has three categories functioning well, then if two
categories are combined, they will not fit the data as well. Second, the thresholds that
define the categories on the continuum do not need to be correctly ordered. If the
estimates from the data are not correctly ordered, then this means that the categories
are not functioning as intended.

Figure 21.9 shows the category curves for item 10 from the same example as the
items shown above. This example has a number of attitude items which are graded
in four categories: strongly disagree, disagree, agree, and strongly agree. Consider
the shape and the relationship amongst the category response functions for this item,
and in particular, consider the response in the category scored 2. There is a region in
which the third category (score 2) never has a maximum probability. This indicates
a problem with the operation of the category.

Although there is a problem with the category, the evidence does not explain
why there is a problem. There may be many reasons why there is a problem. We
consider this example briefly by considering some complementary evidence. One
of the most important things to consider is the distribution of persons in relation
to the thresholds. It may be that there are just not enough people in the relevant

Fig. 21.9 An example where a category is not functioning as intended
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Fig. 21.10 Distribution of persons and thresholds

categories to give sound estimates. This appears to be the case for these items. First,
Fig. 21.10 shows the person distribution relative to the thresholds. It is evident that
most people are between−4 and 2 logits with some people at the extremes. However,
from Fig. 21.9, the thresholds of the item 10 go beyond 3 logits. This suggests there
might be a lack of data in the region of the reversed thresholds of the item.

Table 21.1 below shows the frequencies of responses in each category for each
item. It is evident that there are indeed very few cases in the categories for scores
of 2 and 3, and therefore not much can be read from the reversed thresholds in this
case.

However, it is possible to get reversed thresholds even if there are many people
in the relevant categories. Andrich (2011) shows such an example. Also, examples
where there are structural explanations of reversed thresholds in the assessment of
educational proficiency is given in vanWyke (2003). He considers the implication of
evidence of reversed thresholds and shows the application of the model to construct
a continuum of educational proficiency in mathematics.

The Partial Credit and Rating Parameterizations of the PRM

We begin with Eq. (21.1) where the thresholds are explicit.

Pr
{
x;β, δ, τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · τx ) + x(β − δ)] (21.3)
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Table 21.1 Frequencies of
responses in each category
highlighting item 10

Seq Code Cat 1 Cat 2 Cat 3 Cat 4

1 I0001 82 65 2 0

2 I0002 8 34 87 20

3 I0003 19 85 44 1

4 I0004 12 36 61 39

5 I0005 39 89 17 4

6 I0006 2 57 73 17

7 I0007 22 81 39 7

8 I0008 26 93 26 4

9 I0009 46 87 12 4

10 I0010 33 113 2 1

11 I0011 30 70 42 7

12 I0012 11 133 5 0

13 I0013 104 36 6 3

14 I0014 27 119 3 0

15 I0015 22 59 66 2

16 I0016 15 75 42 17

17 I0017 76 69 2 2

18 I0018 64 75 10 0

19 I0019 36 106 6 1

20 I0020 52 81 14 2

21 I0021 19 71 39 20

22 I0022 13 94 36 6

23 I0023 35 86 26 2

24 I0024 20 59 49 21

25 I0025 13 82 51 3

26 I0026 62 60 23 4

27 I0027 31 75 36 7

The Rating Scale Parameterization

If the items have a different overall location parameter δ, we notate it δi . Then if all the
items have the same number of categories, and if they have the same descriptors, we
might hypothesize that the thresholds for the different items are all the same value.
In that case, we do not subscript the thresholds with different items. An example
where the same descriptors might be present is in attitude or opinion surveys where
a number of questions have the same categories labels such as

Strongly Disagree (SD) Disagree (D) Agree (A) Strongly Agree (SA)
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Then the model takes the form

Pr
{
x;β, δi , τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · τx ) + x(β − δi )] (21.4)

where the thresholds are not subscripted by the item parameter, which the overall
location is so subscripted.

Of course, it is possible that the threshold estimates are not equidistant across
items. In that case, there is an interaction between the distances between the thresh-
olds and the items.

Sometimes there are two kinds of items, for example those worded positively and
negatively. In that case, it might be that the negatively worded items have similar
threshold distances and the positively worded items have similar threshold distances,
but that the positively and negativelyworded items have different threshold distances.
We may write the model differently, with the derivation below.

Expanding the numerator in Eq. (21.4), we have

Pr
{
x; β, δi , τ

} = 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · τx ) + x(β − δi )]

= 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · τx ) + xβ − xδi ]

= 1

γ
exp[−(τ0 + τ1 + τ2 + τ3 + · · · τx ) − (δi + δi + δi + · · · δi )︸ ︷︷ ︸

x

+xβ]

= 1

γ
exp[−(τ0 + τ1 + δi + τ2 + δi + τ3 + δi · · · τx + δi ) + xβ]

= 1

γ
exp[−(τi0 + δi1 + δi2 + δi3 + · · · + δi x ) + xβ]

= 1

γ
exp

[

−
x∑

k=0

δik + xβ

]

where now δi x = δi + τx and δi0 ≡ 0.
The thresholds δi x for all items have the same origin and can be compared across

items. The thresholds τx , x = 1, 2, . . . ,m are mean deviated from each item’s
difficulty. Both forms can be instructive depending on the context of interpretation.
In RUMM2030 τx , x = 1, 2, . . . ,m are called centralized thresholds because they
are centred about the item’s location δi , and δi x are called uncentralized thresholds.

The Partial Credit Parameterization

In tests of proficiency, different items may have different numbers of categories
and therefore the thresholds cannot be expected to be the same distance apart. In
that case, the location of the item δ and the thresholds τ1, τ2, τ3, . . . , τx , . . . τm are
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subscripted with i. Furthermore, the maximum scorem is subscripted by i. This gives
the parameterization

Pr
{
x;β, δi , τ

} = 1

γ
exp[−(τ1i + τ2i + τ3i + · · · τxi ) + x(β − δi )] (21.5)

where γ = ∑mi
k=0 exp

[
−

(∑k
x ′=0 τx ′

)
+ k(β − δi )

]
.

This parameterization can also be cast into the form

Pr{x;β, δ} = 1

γ
exp

[

−
x∑

k=0

δik + xβ

]

where γ =
mi∑

k=0

exp

[

−
(

k∑

x ′=0

δi x ′

)

+ kβ

]

(21.6)

In summary, the only difference between the rating and partial credit parametriza-
tions is that the former has all items having the same number of thresholds and the
thresholds, which are deviations from the location of the items, are all the same, while
in the latter the mean deviated thresholds are not the same. The rating and partial
credit parameterizations can both be used when all items have the same number of
categories. In the case that there are different numbers of categories among items,
then the partial credit parameterization needs to be used. When the item location is
added to the thresholds, then the thresholds are referenced to the same origin and
can be compared.

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in Appendix
C.
Exercise 4: Advanced analysis of polytomous responses in Appendix C.
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Chapter 22
The Polytomous Rasch Model III

This chapter elaborates further on aspects of the Polytomous Rasch model (PRM).
First, it considers a reparameterization of the thresholds which has some advantages
in the estimation of the parameters of the model. It is a reparameterization used in
RUMM2030. Second, we consolidate the interpretation of responses in terms of an
independent response space that is relevant in the case that the model is used with
responses in ordered categories. Third, we elaborate on the rescoring of ordered
categories in the case of problems with the operation of the categories. Fourth, we
compare the Rasch model with the other model used for ordered categories, com-
monly known as the Graded Response Model (GRM).

Reparameterisation of the Thresholds

Andrich (1985) and Andrich and Luo (2003) reparameterized the thresholds with
some advantages for parameter estimation. These advantages include that the esti-
mation can be carried out and all thresholds estimated, even if some categories have
zero frequency. Suppose that we assume that the thresholds for an item are equally
spaced.

We start with the PRM in the form from the last chapter,

Pr{k, β, δ, τ } = 1

γ
exp [κx + x(β − δ)] (22.1)

where γ = ∑m
k=0 exp[κk + k(β − δ)] is a normalizing factor which is the sum of all

the numerators ensuring that the sum of the probabilities is 1, and

κx = −τ0 − τ1 − · · · − τx . (22.2)

We continue to drop the subscripts n and i, recognizing that we are referring to
just one person responding to one item.
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Equidistant Thresholds

To start with, suppose there are just three thresholds and four categories (m = 3).
Then let

τ2 − τ1 = τ3 − τ2 = 2λ

where λ is the half distance between successive thresholds, that is, (τ2 − τ1)/2 =
(τ3 − τ2)/2 = λ.

Then it can be shown that κx = −∑x
k=0 τk = −τ0 . . . − τx = x(m − x)λ.

We show below that the result is true. Remember τ0 ≡ 0 and κm =
− ∑m=3

k=0 τk = −τ0 − τ1 − τ2 − τ3 = 0 in the form of Eq. (22.2) above. The thresh-
olds in this form are deviations from the item’s overall location δ and therefore sum
to zero: κm = −∑m=3

k=0 τk = −(τ0 + τ1 + τ2 + τ3) = −0 = 0.
To make the illustration concrete, suppose τ1 = −1.5, τ2 = 0 and τ3 = 1.5.
Then λ = (τ2 − τ1)/2 = (τ3 − τ2)/2 = 0.75.
Table 22.1 shows the structure of κx = −∑x

k=0 τk = −τ0 · · · − τx = x(m − x)λ.
Then the model can be written as

Pr{x;β, δ, θ} = 1

γ
exp [x(m − x)λ + x(β − δ)] (22.3)

Table 22.1 The structure of the category coefficients for equal threshold distances

x κx x(m − x)λ; m = 3

0
κ0 = −

0∑

k=0
τk = −τ0 ≡ 0

0(3 − 0)λ = (0)(3)λ

= 0

1
κ1 = −

1∑

k=0

τk = −τ0 − τ1 = −τ1

= −(−1.5)

= 1.5

1(3 − 1)λ = (1)(2)λ

= 2(0.75)

= 1.5

2
κ2 = −

2∑

k=0

τk = −τ0 − τ1 − τ2

= −(−1.5) − 0

= 1.5

2(3 − 2)λ = (2)(1)λ

= 2(0.75)

= 1.5

3
κ3 = −

3∑

k=0

τk = −τ0 − τ1 − τ2 − τ3

= −(τ1 + τ2 + τ3) ≡ 0

3(3 − 3)λ = (3)(0)λ

= 0
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The parameter λ can be considered to characterize the spread of the responses.
The greater the value of λ, the narrower the spread of responses (that is, the greater
the proportion of responses in the middle category); the smaller the value of λ, the
greater the spread of responses (that is, the greater the proportion of responses in the
extreme categories). In RUMM2030, this parameter is called the spread.

Even if there are more than three thresholds, m > 3, and they are assumed to be
equidistant, that is λ = (τ2 − τ1)/2 = (τ3 − τ2)/2 = · · · = (τm − τm−1)/2, the same
formula Eq. (22.3) holds.

In this case, the number of parameters estimated is less than the number of thresh-
olds. Only one parameter for thresholds is estimated, the average distance between
them, even though there might be more than three thresholds.

Recovering the Thresholds

To obtain a value for each threshold, we note that with an estimate of λ we have
an estimate of all of the category coefficients, κ̂x = x(m − x)λ̂. Then, we apply
Eq. (22.2) in the following way:

From

κx = −τ0 − τ1 − · · · − τx ,

κx − κx+1 = (−τ0 − τ1 − · · · − τx ) − (−τ0 − τ1 − · · · − τx − τx+1)

= τx+1.

Thus suppose that we had obtained the estimate λ̂ = 0.75. Then

κ̂0 = x(m − x)λ̂ = 0(3 − 0)(0.75) = 0,

κ̂1 = x(m − x)λ̂ = 1(3 − 1)(0.75) = 1.5,

κ̂2 = x(m − x)λ̂ = 2(3 − 2)(0.75) = 1.5,

κ̂m = x(m − x)λ̂ = 3(3 − 3)(0.75) = 0,

and

κ̂0 − κ̂1 = τ̂1 = 0 − 1.5 = −1.5,

κ̂1 − κ̂2 = τ̂2 = 1.5 − 1.5 = 0.0,

κ̂2 − κ̂3 = τ̂3 = 1.5 − 0 = 1.5.
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Non-equidistant Thresholds

Now suppose that the thresholds are not equidistant, that is, they are skewed.
For example, suppose τ1 = −1.7, τ2 = −0.6, τ3 = 2.3. Then κ0 = κm = 0 as

before, but now τ2−τ1 = 1.1 and τ3−τ2 = 2.9.We can still find the average distance
between the successive thresholds [(τ2−τ1)+(τ3−τ2)]/2 = (1.1+2.9)/2 = 4/2 =
2. Therefore, the half distance λ is 2/2 = 1.

Suppose we consider the thresholds from the perspective of a deviation of each
from equidistance.

We let 1.1 = τ2 − τ1 = 2λ − 6η and 2.9 = τ3 − τ2 = 2λ − 6η.
Then

1.1 = τ2 − τ1 = 2λ − 6η = 2(1) − 6η

6η = 2 − 1.1 = 0.9

η = 0.15

This is consistent with the second of the above expressions. Inserting η = 0.15
gives

2.9 = τ3 − τ2 = 2λ − 6η = 2(1) − 6(0.15)

= 2 + 0.9

= 2.9

The coefficient 6 of η eliminates the need for fractions in the following expression:

κx = x(m − x)λ + x(m − x)(2x − m)η.

The parameter η characterizes the deviation of the thresholds from equidistance.
It is therefore an indicator of the skewness of the thresholds. The greater its value,
the greater the deviation of the successive thresholds distances from equidistance.
Table 22.2 demonstrates that the expression gives the required values with the above
example.

The equation for the model may then be expressed as

Pr{x;β, δ, λ, η} = 1

γ
[x(m − x)λ + x(m − x)(2x − m)η + x(β − δ)]. (22.4)

This equation can hold for any number of thresholds, three or greater. However, if
there are more than three thresholds, then this equation estimates a smaller number
of parameters than the possible number of thresholds that can be estimated. The
maximum number of parameters is the number of thresholds.

With estimates of λ and η, we have an estimate of the category coefficients κx and
from these we can again use Eq. (22.2) to recover the actual thresholds.
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Table 22.2 The structure of the category coefficients for non-equal threshold distances

x κx x(m − x)λ + x(m − x)(2x − m)η

0
κ0 = −

0∑

k=0
τk = −τ0 ≡ 0

0(3 − 0)1 + 0(3 − 0)(2(0) − 3)(0.15)

= 0

1
κ1 = −

1∑

k=0

τk = −τ0 − τ1 = −τ1

= −(−1.7)

= 1.7

1(3 − 1)1 + 1(3 − 1)(2(1) − 3)(0.15)

= 2 + 2(−1)(0.15)

= 2 − 0.3 = 1.7

2
κ2 = −

2∑

k=0

τk = −τ0 − τ1 − τ2

= −(−1.7) − (−0.6)

= 2.3

2(3 − 2)1 + 2(3 − 2)(2(2) − 3)(0.15)

= 2 + 2(4 − 3)(0.15)

= 2 + 2(0.15) = 2.3

3
κ3 = −

3∑

k=0

τk = −τ0 − τ1 − τ2 − τ3

= −(τ1 + τ2 + τ3) ≡ 0

3(3 − 3)1 + 3(3 − 3)(2(3) − 3)(0.15)

= 0

Thus suppose we have as estimates λ̂ = 1 and η̂ = 0.15 for a four-category item
(three thresholds) as above. Then

κ̂x = x(m − x)λ̂ + x(m − x)(2x − m)η̂

κ̂0 = 0(3 − 0)λ̂ + 0(3 − 0)(2(0) − 3)η̂ = 0λ̂ + 0η̂ = 0,

κ̂1 = 1(3 − 1)λ̂ + 1(3 − 1)(2(1) − 3)η̂ = 2λ̂ + 1(2)(−1)η̂

= 2(1) − 2(0.15) = 2 − 0.30 = 1.7,

κ̂2 = 2(3 − 2)λ̂ + 2(3 − 2)(2(2) − 3)η̂ = 2λ̂ + 2(1)(1)η̂

= 2(1) + 2(0.15) = 2 + 0.30 = 2.3,

κ̂3 = 3(3 − 3)λ̂ + 0(3 − 3)(2(3) − 3)η̂ = 0λ̂ + 0η̂ = 0,

and

κ̂0 − κ̂1 = τ̂1 = 0 − 1.7 = −1.7,

κ̂1 − κ̂2 = τ̂2 = 1.7 − 2.3 = −0.6,

κ̂2 − κ̂3 = τ̂3 = 2.3 − 0 = 2.3.

In summary,with two thresholdswe can have, in addition to the location parameter
δ, the spread parameter λ; with three thresholds, as we showed above, we can have,
in addition to the location parameter δ, up to a spread and skewness parameters λ, η.
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With four thresholds we can have, in addition to the location parameter, up to a
spread, skewness and kurtosis parameter. This is four parameters for the thresholds.
With five thresholds we can have another parameter, and so on. We call these the
principal components of the thresholds following the use of the term by Guttman
(1950). This is discussed in some detail in Andrich (1985).

In each case, we can have less parameters estimated than the number of thresholds,
but not more parameters than the number of thresholds. However, each threshold
has an estimated value as shown above. In RUMM2030, the number of parameters
estimated is up to the kurtosis parameter even if the number of thresholds is greater
than four. The thresholds are then recovered from the category coefficients as shown
above.

Inference of an Independent Response Space

Andrich (2010) shows that, in the case of a single response in more than two ordered
categories, for example, some kind of an ordered category response, the analysis can
be interpreted as if there was a separate response at each of the thresholds and the
analysis carried out with the dichotomous Rasch model.

Of course, we do not have such a data set, but it is remarkable that whenwe analyse
ordered category data with the PRM, it is as if we had independent, dichotomous
responses at the thresholds, and that we have analysed these dichotomous responses
using the dichotomous Rasch model. It is this inference that permits us to realize that
when we have reversed thresholds and that we have a problem with the empirical
ordering of the categories. The derivation of the model which explains this inference
is shown in Chap. 27.

Rescoring Items

One of the apparently surprising features of the PRM is that if the data fit the model
perfectly for some number of categories, then combining a pair of adjacent categories
by summing their frequencies destroys the fit of the responses to the Rasch model
with the fewer number of categories.

Only in the case that a threshold does not discriminate between a pair of adjacent
categories, it is theoretically justified to pool the frequencies of adjacent categories.
Often when the threshold estimates are reversed from their natural order, it is rea-
sonable to consider combining categories. As part of this consideration, the discrim-
ination at the thresholds can be considered. Sometimes, the thresholds might not be
reversed, but the discrimination at a pair of thresholds might be close to zero and the
categories could be combined.

RUMM2030 permits you to study the discrimination at the thresholds graphically.
Before considering an example where a threshold did not discriminate, we consider
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Fig. 22.1 An item where all four thresholds operated successfully

how we infer whether a threshold is discriminating properly or not. The inference
about discrimination at the threshold is identical to the inference from dichotomous
items. In the example below, where an item had five categories, there are four thresh-
olds and at each threshold we can infer a dichotomous response. For each threshold
x, we consider the proportion of responses in two adjacent categories for each class
interval

Proportion (x)

Proportion (x − 1) + Proportion (x)

These should follow the dichotomous Rasch model at the thresholds. Figure 22.1
shows such an example for an item with five categories where all the thresholds
operated as required. The persons were classified into five class intervals and the
above proportions calculated for each pair of adjacent categories. The dots show the
proportions, which should be close to the respective theoretical threshold probability
curves.

Below is an output in which the discrimination at a threshold was close to zero.
Only the discrimination at threshold 3 is shown. All other thresholds discriminated
well. Therefore, categories 2 and 3 should be combined. RUMM2030 permits you
to do another analysis by rescoring the item (Fig. 22.2).

It is important to appreciate that this kind of combining of categories from an
analysis should be treated as hypothesis testing of the possible reconstruction of
the categories for future administration of the instrument. The combining of cate-
gories after the data are collected does not imply formal equivalence with combining
categories and defining a new category from the original two categories.
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Fig. 22.2 An item where threshold 3 did not discriminate

Exercises

Exercise 4: Advanced analysis of polytomous responses in Appendix C.
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Chapter 23
Fit of Responses to the Polytomous Rasch
Model

The Fit-Residual

The residual of the response xni of each person n for each item i is simply

xni − E [xni ], (23.1)

where

E [xni ] =
mi∑

x=0

x Pr{xni }, (23.2)

Pr{xni } = 1

γni
e
−

x∑
k=0

τki+x(βn−δi )

, τ0i ≡ 0 (23.3)

and γni = ∑mi
x=0 e

− ∑x
k=0 τki+x(βn−δi ) is a normalizing factor which ensures that the

probabilities of Eq. (23.2) sum to 1.

To obtain E [xni ], the estimates
(
β̂n, δ̂i , τ̂ki

)
are placed into Eq. (23.3) and in

turn into Eq. (23.2). Because we insert estimates
(
β̂n, δ̂i , τ̂ki

)
, E [xni ] of Eq. (23.2)

could be written with a ‘hat’ as Ê [xni ]. However, we generally do not do that,
understanding that in the context, we have inserted the estimates. The residual itself
is a difference. To assess whether the magnitude is large or not, it is referenced to its
standard deviation. Therefore, the standardized residual

zni = xni − E [xni ]√
V [xni ] (23.4)

is formed where V [xni ] = E
[
x2ni

] − (E [xni ])
2 is the variance of xni , E [x2ni ] =∑mi

x=0 x
2 Pr{xni }.
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The theoretical mean over an imagined infinite number of replications is zero,

E [zni ] = 0. If knownvalues of
(
β̂n, δ̂i , τ̂ki

)
, which did not come from the estimates

from the data, were used in obtaining E [xni ] and V [xni ], then the variance V [zni ] =
1. This is just the variance of standardized scores. However, because we are using the
estimates of the parameters from the same data as we are using to form the residuals,
the variance of the residuals will be less than 1, and it will be the degrees of freedom.
Say the degrees of freedom are fni < 1, which we use shortly.

Deriving the Fit-Residual for the Persons

Because the sum of the residuals will be close to zero, no matter how good the fit, to
obtain a magnitude of the residual, it is first squared. From Eq. (23.4),

Y 2
n =

I∑

i=1

z2ni . (23.5)

Y 2
n itself has an expected value given by E

[
Y 2
n

] = E
[∑

i Y
2
ni

] = ∑
i E

[
Y 2
ni

]
.

In the case where no parameters are estimated, E
[
Y 2
ni

] = 1 so that∑
i E

[
Y 2
ni

] = 1. However, in the case where degrees of freedom are lost through
estimation, E [Y 2

ni ] = fni . We estimate the degrees of freedom by subtracting the
effective number of parameters estimated from the data and then apportioning this
to each person–item combination and then summing over all the items.

E
[
Y 2
n

] =
∑

i

fni = fn = I
(N − 1)(I − 1) − (m − 1)

N I
,

that is

fn = [(N − 1)(I − 1) − (m − 1)]/N , (23.6)

where fn are the degrees of freedom associated with each person n.
Then the residual Y 2

n − E [Y 2
n ], which has an expected value of 0, can be used

to test the fit of the responses of person n. In order to make a formal test of fit, this
residual can be standardized by calculating the variance of Y 2

n . This can be obtained
from V

[
Y 2
n

] = V
[∑

i Y
2
ni

] = ∑
i V

[
Y 2
ni

]
.

The test statistic Tn1 can then take the form

Tn1 = Y 2
n − E

[
Y 2
n

]
√
V

[
Y 2
n

] . (23.7)
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A transformation of Tn1, see Eq. (23.9), which makes the distribution more sym-
metrical, can be made. This is done simply by first forming the mean square ratio

Y 2
n / fn, (23.8)

which has an expected value of 1, and then taking its natural logarithm.
Because Eq. (23.8) is in the ratio form,
if Y 2

n / fn = c and Y 2
n > fn , then c > 0 and

log
(
Y 2
n / fn

) = log c = C > 0.

If Y 2
n < fn by a symmetrical amount in the ratio, that is Y 2

n / fn = 1/c, then

log
(
Y 2
n / fn

) = − log c = −C.

For example, if Y 2
n is 3 times its expected value of fn , then

log
(
Y 2
n / fn

) = log 3 = 1.099.

And if Y 2
n is 1/3 times its expected value of fn , then

log
(
Y 2
n / fn

) = − log 3 = −1.099.

Furthermore, when Y 2
n = fn , then log

(
Y 2
n / fn

) = 0.
After another transformation which can be found in the Further Reading, we

reach the ratio

Tn2 = log
(
Y 2
n / fn

)
√
V

(
Y 2
n / fn

) = fn
(
log Y 2

n − log fn
)

√
V

(
Y 2
n

) . (23.9)

This is amore symmetrical distribution than the one in Eq. (23.7)with E [Tn2] = 0
and V [Tn2] = 1. The proper shape of this distribution is not known but it should be
close to a normal distribution. If Y 2

n were a χ2 distribution on 20 or more degrees
of freedom, then the logarithmic transformation would convert a 2.5% one-tailed
test for a normal distribution (Tn2 ∼= 2) to a 1% one-tailed test on the original χ2

distribution. For this reason, a Tn2 value of |Tn2| = 2 is taken as a general critical
value for fit of a person to the model if fn > 20. The effect of the variance of Y 2

n not
being 2 fn , as would be the case if it were actually distributed as χ2, is not known,
but on the basis of simulations, the particular statistic seems to work very well.

Other similar-based statistics reported in the literature (Wright & Stone, 1979;
Wright & Masters, 1982) use a different weighting procedure to account for the fact
that V

[
Y 2
ni

]
is a function of (βn − δi ) and to make Y 2

n symmetrical.
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If the value from Eq. (23.9) is large in magnitude and negative, then the response
profile of the person is very Guttman-like. For example, in proficiency assessment,
easy items are answered correctly and difficult items incorrectly. On the other hand,
if it is large in magnitude and positive, then the person’s response profile is erratic
relative to the difficulties of the items.

Of course, the earlier advice to use fit statistics in context, and not absolutely,
holds here as well. Thus, a key to interpreting this statistic is not simply to use an
absolute value, such as +2.5 or −2.5, but to order the persons by this fit statistic
and see how the values change and if there are some persons at either extreme who
are very different from those a little less extreme—that is, see if there are small
differences between them or if there is a big jump in values. If there is, then these
are the persons whose profiles would be of most concern.

Deriving the Fit-Residual for the Items

The difference, xni −E [xni ], can also be standardized for each item and summed over
the persons attempting the item. Beginning with Eq. (23.4), by taking the summation
over persons, equivalent to Eq. (23.5), gives for an item

Y 2
i =

N∑

n=1

z2ni . (23.10)

Transforming these squared terms produces the item-based test statistic Ti1, equiv-
alent to Eq. (23.7) for the persons.

Ti1 = Y 2
i − E

[
Y 2
i

]
√
V

[
Y 2
i

] . (23.11)

As with the Tn1 statistic for the persons, the distribution of Ti1 is also not sym-
metrical. Therefore, using ±2 Ti1, say, as an approximation to the 95% confidence
interval in a normal distribution would be misleading. The same logarithmic trans-
formation described for the person case can also be made to Ti1, which makes the
distribution more symmetrical.

The degrees of freedom for each item are approximated by

E
[
Y 2
i

] =
∑

n

fni = fi = N
(N − 1)(I − 1) − (m − 1)

N I
.

That is,

fi = (N − 1)(I − 1) − (m − 1)

I
. (23.12)
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Then the fit statistic is given by

Ti2 = log
(
Y 2
i / f

)
i√

V
(
Y 2
i / fi

) = fn
(
log Y 2

i − log fi
)

√
V

(
Y 2
i

) . (23.13)

As with the fit-residual for persons, if the value of Eq. (23.13) is large in magni-
tude and negative, then the response profile for the item is very Guttman-like. For
example, in the case of assessment of proficiency, the less able tend to answer the item
incorrectly and the more able correctly. In relation to the item characteristic curve, a
negative value which is large in magnitude implies that the observed proportions in
the class intervals will be steeper than the curve.

If the value of Eq. (23.13) is large in magnitude and positive, then the response
profile for the item is very non-Guttman-like. For example, in the case of assessment
of proficiency, it is not the case that the less able tend to answer the item incorrectly
and the more able correctly. In relation to the item characteristic curve, a positive
value which is large in magnitude implies that the observed proportions in the class
intervals will be less steep than the curve.
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Chapter 24
Violations of the Assumption
of Independence II—The Polytomous
Rasch Model

This chapter is a continuation of Chap. 14: Violations of the assumption of indepen-
dence I—Multidimensionality and response dependence. Most of themethods in this
chapter use the Polytomous Rasch Model (PRM) to diagnose dependence in either
dichotomous or polytomous items. One method used to detect multidimensionality
exploits the requirement of the Rasch model that the estimate of a person’s location
should be independent of the items that are conformable within a frame of reference.
In particular, we can take two sets of items within any analysis and compare the
estimates of each person on the two sets of items to check if they are significantly
different.

AModel that Accounts for Dependent Items

The parameterization described by Andrich (1985), and using the second principal
component of the thresholds, takes account of dependencies among items in subtests.
Items hypothesized to be dependent are combined into higher order polytomous items
and the data reanalysed using the PRM. This analysis is called a subtest analysis in
RUMM2030.

Suppose we assume equally spaced thresholds for an item. Then, the PRM is

Pr{Xni = x} = 1

γ
exp[x(m − x)λk + x(βn − δk)] (24.1)

where each subtest k has the location parameter δk and a dispersion parameter λk .
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Reparameterization of the Thresholds of the PRM—The
Spread Parameter

The parameter λk characterises the spread or dispersion of the responses in subtest
k. The greater the value of λk (distance between thresholds), the smaller the spread
of responses, that is, the greater the proportion of responses in the middle response
category. Complementary to this relationship, the smaller the value of λk , the greater
the spread of responses, that is, the greater the proportion of responses in the extreme
categories.

Because the dispersion of responses reflects dependence, the spread parameter λk

provides another way of detecting dependence in a data set. Dependence implies that
if one item in subtest k is answered a specifiedway, then there is increased probability,
over and above that accounted for by βn , of answering other items in the subtest in
the same way. Therefore, the greater the dependence, the greater the prevalence of
responses in the extreme categories and the smaller the value of λk . For the case of
no dependence, Andrich (1985) provides values for λk , below which there is likely
to be dependence in the data. These values are reproduced in Table 24.1. These are
based on the threshold values of the binomial distribution when the dichotomous
items are assumed equally difficult and independent. If λ̂k is less than the relevant
value, then dependence is present.

An example with simulated data is described below. Data set A had 10 dichoto-
mous items and data set B had 20 dichotomous items. Items 2 and 3 were simulated
to be dependent on item 1. Subtest 1 consisted of the summed responses of the
dependent items 1, 2, and 3. Subtests 2 and 3 were each created by combining three
non-dependent items drawn randomly from the remaining items. Table 24.2 shows
the estimated values of the spread parameter λk for k = 3 subtests for data sets A
and B, with their SEs. It also shows the estimated values of the location and slope
parameters and their SEs. Recall that the slope estimate is the slope of the expected
value curve for the subtest at the point on the curve where the expected value equals
the person location.

For data set A, the value of λ 1 was 0.00, well below the cut-off value of 0.55
suggested for subtests with a maximum score of 3 in Table 24.1. The values of λ 2

Table 24.1 Least upper
bound (LUB) for λk
indicating dependence

m LUB

2 0.69

3 0.55

4 0.41

5 0.35

6 0.29

7 0.25

8 0.22
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Table 24.2 Location, slope
and spread (λk) parameters
for the three subtests in data
sets A and B

Subtest Location SE Slope SE Spread
(λk)

SE

Data set A: 10 items, m = 3, LUB = 0.55

1 −0.61 0.04 1.25 0.03 0.00 0.035

2 −2.29 0.05 0.77 0.03 0.52 0.036

3 0.40 0.04 0.69 0.02 0.63 0.035

Data set B: 20 items

1 −0.40 0.03 1.31 0.03 −0.06 0.03

2 −3.00 0.06 0.67 0.03 0.66 0.04

3 0.24 0.04 0.74 0.03 0.56 0.03

and λ 3 were 0.52 and 0.63, respectively, close to the value of 0.55. For data set B,
the value of λ 1 was −0.06, again well below the cut-off value of 0.55. The values of
λ 2 and λ 3 were 0.66 and 0.56, respectively, much closer to 0.55.

Notice in Table 24.2 that the subtests with dependence have a greater slope than
those that are independent. This is indicated by both slope parameters, 1.25 and 1.31
compared to 0.77, 0.69, 0.67, and 0.74. Figure 24.1 shows graphically how subtest
1 of data set A has a greater slope than the other two subtests.

The spread parameter can be seen as corresponding to information.As dependence
increases, so does subtest slope, which traditionally implies greater information.
Paradoxically, when items are dependent, less information are available than when
they are independent. These conflicting results are reminiscent of the attenuation
paradox in Classical Test Theory (CTT). Andrich (2016) explains this paradox.

The spread parameter in a polytomous item formed from dichotomous items is
not only affected by their dependence, but also by their difficulty. In the case of
items with different difficulties, response in the extremes is less likely than if the
items were independent and of equal difficulty, the binomial distribution. In this
case, the spread parameter value is increased as there are a greater proportion of
responses in the middle category. Therefore, the effect of differences in difficulty has
the opposite effect of dependence. As indicated above, the spread values in Table 24.1
are calculated from the binomial distribution for a givenmaximum score for a subtest.
Therefore, given that items are likely to be of different difficulties, if the value of the
spread parameter is less than the values specified in Table 24.1, then there is certainly
dependence between the items in the subtest.
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Fig. 24.1 ICCs of subtests 1, 2, and 3 for data set A

Diagnosis of Multidimensionality

Subtest Analysis

In Violations of the assumption of independence I, the results from a principal com-
ponent analysis (PCA) of the residuals indicated that the simulated data set ismultidi-
mensional. Another way of detectingmultidimensionality is by comparing reliability
estimates from two separate analyses of the data (Andrich, 2016). The first estimate
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uses the original items and assumes all items are statistically independent. In the
second analysis, items hypothesized to be dependent are combined into higher order
polytomous items and the data reanalysed as polytomous items. This second analysis
is called a subtest analysis in RUMM2030. If the reliability estimate from the subtest
analysis is lower than the reliability estimate from the first analysis, the case for the
hypothesis of multidimensionality is strengthened.

Herewe combined items 1–15 into one subtest, and items 16–30 in another subtest.
Table 24.4 shows the RUMM2030 summary statistics for this subtest analysis. PSI
reliability decreased from 0.90 to 0.70.

Estimating the Magnitude of Multidimensionality

We still do not know the degree or magnitude of this multidimensionality. From
Violations of the assumption of independence I, we know that Marais and Andrich
(2008b) formalized multidimensionality in the following way. Consider a scale com-
posed of s = 1, 2, …, S subtests, and

βns = βn + csβ
′
ns (24.2)

where cs > 0, βn is the common trait for person n among subtests and is the same
variable as in Eq. (24.1), β ′

ns is the distinct trait characterized by subtest s and is
uncorrelated with βn . Therefore, βn is the value of the main, common, variable or
trait among subtests, andβ ′

ns is the variable or trait unique to each subtest. The value cs
characterizes themagnitude of the unique variable of subtest s relative to the common
variable among subtests. This unique variable for each subtest reduces the correlation
between items from the different subtests relative to the true or latent correlation
between itemswithin a subtest, which,without error, is 1. Let the correlation for items
between subtests s and t be ρst . Then for items within subtests s and t, ρss = ρt t = 1
and for items between subtests s and t, ρst < 1. Because of random error in a
probabilistic framework, the observed correlationbetween items evenwithin a subtest
is less than 1.

On the simplifying assumption, consistent with CTT, that the correlation between
the items from the different subtests are homogenous and therefore that cs = c, s =
1, 2, …, S, a way of estimating c and therefore ρst is shown in Andrich (2016). The
relationship between c and ρ is given by

ρst = 1

1 + c2
. (24.3)

Equation (24.3) is both the latent correlation between items from different subtests
and the latent correlation between the total scores of the subtests. Clearly, the greater
the value of c, the greater the effect of the unique variable of each subtest and therefore
the lower the correlation between subtests.
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Table 24.3 Values of coefficient α as a function of a subtest structure and values of c

Not taking account of
the subscale structure

Taking account of the
subscale structure

Effect on α

Standard case:
c = 0, ρst = 1

α = σ 2
t

σ 2
y
, σ 2

u = 0 α0 = σ 2
t

σ 2
y
, σ 2

u = 0 α = α0

c > 0, ρst < 1 αc =
σ 2
t +σ 2

u S(K−1)/(SK−1)
σ 2
y

αs = σ 2
t

σ 2
y
, σ 2

u > 0 αc > αs

σ 2
y = σ 2

t + σ 2
u + σ 2

e

K is the number of items in each of S the subscales

Table 24.4 Summary
statistics after performing a
subtest analysis in
RUMM2030

RUMM2030 Project: MD2 Analysis:
SUBTST

Title: SUBTST

Display: Summary test-of-fit statistics

Reliability Indices

run1 subtst c*c c r A

Per
sep
idx:

0.904 0.699 0.609 0.780 0.621 0.767

Coeff
alpha:

0.913 0.757 0.425 0.652 0.702 0.825

The equations from which α is calculated, taken from Andrich (2016), are shown
in Table 24.3. In this table, the estimates are based on CTT and coefficient α is
calculated under two conditions: first with the items taken as discrete items ignoring
the subtests and second, forming subtests and recalculating α. The values of c and
ρst can be obtained routinely from RUMM2030.

A simulated example was shown in Chap. 14 where 30 items were constructed
with sets of 15 items forming two related variables. In this data, the simulated values
were c= 0.8 andρst = 0.61. Table 24.4 shows the estimates, c= 0.78 andρst = 0.62,
which are very close to the simulated values. A further value, denoted A, is shown.
This is the ratio of the variance of the common variable among all items and therefore
among the subtests, σ 2

t , and the sum of this variance and the unique variance σ 2
u .

Further interpretation of the use of the subtest analysis is explained in Andrich
(2016).
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Testing the Equivalence of Person Estimates from Two Subsets
of Items

A key feature of the Rasch model is that it is based on the requirement of invariance.
That the comparison of person estimates is independent of the item estimates, within
the frame of reference, can be studied explicitly by taking two subsets of items,
estimating the person parameters based on each of these subsets, and then testing if
the estimate for each person from the two subtests is statistically equivalent.

For this test, we suggest no less than 15 score points in each subtest. For example,
a test with 30 dichotomous items may be usefully divided into two subtests with the
score range of 0–15 in each, but this would be the minimum number from which
these statistics are meaningful.

Consider a person n who has two estimates from two subsets of items: β̂n1, β̂n2.
With each estimate there is an estimated standard error: σ̂n1, σ̂n2. Then, because the
estimates are from independent subsets of items, a test of significance of difference
between the two estimates can be carried out using the standard t-test formula:

t(1,∞) = β̂n1 − β̂n2√
σ̂ 2
n1 + σ̂ 2

n2

(24.4)

Although the formula is for a t-test, we take it to have sufficient degrees of free-
dom in the denominator for it to approximate the standard normal distribution. This
calculation can be carried out for each person.

The output for this test can be obtained from the main display of RUMM2030
under the heading Equating tests/t-tests.When two sets of items have been selected
for equating, simply continue with the prompts to obtain the statistic on each person.

In addition to information for each person, there you will find a summary of the
number of persons whose difference in estimates exceeds the 5% and 1% levels of
significance. For the example above, the t-test indicated that the estimates from the
two subtests were significantly different for approximately 19.1% of the persons (at
p = 0.05) and 10.4% of the persons (at p = 0.01).

In addition to each person’s estimates, there is a group comparison of means.
However, because the two estimates are from each person, the estimate for the means
of the whole group from the two subtests requires a paired t-test. The comparison of
the two estimates for each person is not a paired t-test.

Aswith all tests ofmisfit, this test needs to be interpreted in context. First, although
the program can handle extreme scores, it is ideal if there are not extreme scores on
either test. Second, it is perhaps also ideal if the item and threshold locations in the
two subtests cover a similar range on the continuum. Otherwise, one or the other set
of items might not be aligned well enough to the person distribution to obtain sound
estimates of the locations of the persons.

In their assessment of the nursing self-efficacy scale (NSE), Hagquist, Bruce
and Gustavsson (2009) divided the NSE items into two subscales, one comprising
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the items with negative item residual correlations and one comprising the items
with positive item residual correlations. The t-test indicated that the estimates from
the two subscales were different for approximately 7% of the persons. Because it
only just exceeded the critical value of 5% it was considered a minor violation of
independence in the form of a violation of unidimensionality. In addition, because
the items to be placed in the subtests were based on the data themselves from a related
analysis, rather than on an independent, structural reason for forming subtests, the
test involves maximizing the possible difference between subtests. Thus forming
subtests in this way is a very conservative way of checking for the presence of two
dimensions. In the above example, the 2% beyond the 5% significance level is almost
certainly a chance effect.

Diagnosis of Response Dependence

A source of a form of local dependence is the so-called halo effect. This effect can
arise when there are multiple criteria to be assessed with respect to a performance
and when the overall impression of the performance affects the ratings on all cri-
teria. Although it can be expected that a very good performance (a written essay
for example) will be very good on the various criteria (organization, spelling and
so on), the halo effect produces a dependence among criteria which is greater than
can be expected from the general performance. In the above example, a halo effect
would arise if the rating on the criterion of organization affects the ratings on the
other criteria. The source of dependence, such as a halo effect, can only be decided
by reference to the context. The statistical analysis which shows that there is local
dependence does not identify the source of the dependence.

One symptom of halo, in which a criterion of assessment of a performance might
be locally dependent on another criterion, is when, by analogy to the dichotomous
case, the observed means of class intervals is steeper than the expected value curve.
Then the correlations among residuals can highlight the criteria which might be
dependent on each other. In addition, an examination of the structure or format of
the responses can suggest an explanation for this dependence. How this dependence
can be quantified in a more explicit way than just with a correlation is explained
in the section below. Although the example above highlighted halo as a source, the
statistical analysis is relevant for any two items that might be dependent.

Formalization of Response Dependence in the PRM

This section generalizes the estimation of dependence in terms of the effect on item
parameters from dichotomous to polytomous items.
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We saw in Chap. 14 that Marais and Andrich (2008a, b) formalized response
dependence of dichotomous item j on dichotomous item i as

Pr
{
Xnj = x j |Xni = xi

}

= [
exp

(
x j

(
βn − δ j − (1 − 2xi )d

))]
/
[
1 + exp

(
x j

(
βn − δ j − (1 − 2xi )d

))]
(24.5)

The value d characterizes themagnitude of response dependence. Although response
dependence in the dichotomous case can be interpreted as a change in relative diffi-
culty, the second interpretation, more readily generalized to the case of polytomous
responses, is to consider the effect a response on the independent item i has on the
range of the continuum for a response on the dependent item j.

Figure 24.2 shows the CCCs for dichotomous item j when it is, and when it is not,
dependent on item i, on the same scale. The dependence value d = 2 is the magnitude
of the decrease in the difficulty of item j, δ j − 2, which increases the probability of
the same responses x j = 1 on item j given that the response on item i is xi = 1. It
is evident that there is a shift in the range of the continuum for the responses as a
function of the item difficulty in the two cases. Thus, the part of the continuum in
which the response x j = 1 is more likely (1, ∞) shown in the left CCC of Fig. 24.2,
has been extended to (−1, ∞) shown in the right graph of the same figure.

Generalizing the above principle of an effect of a region of the continuum, if the
response to independent polytomous item i is Xni = xi , then in order to increase the
probability of a response Xnj = x j for dependent polytomous item j, the range of the
continuum inwhich the response Xnj = x j ismost likely is increased relative towhen
there is no dependence. Figure 24.3 shows such an example in which xni = 2 and in
which the region for xnj = 2 is increased relative to when there is no dependence.
Thus, with no dependence, the region of the continuum in which xnj = 2 is most
likely is (−0.25, 1.25), a range of 1.5 and is shown in the right graph of Fig. 24.3.
With dependence, the region of the continuum in which xnj = 2 is most likely is
increased symmetrically to (−0.5, 1.5), a range of 2 and is shown in the left graph
of the same figure.

Andrich, Humphry and Marais (2012) expressed this formulation of response
dependence between two polytomous items with the same maximum score(
mi = m j

)
as

Pr
{
Xnj = x j |Xni = xi , 0 < xi < mi ; x j = xi

}

=
⎡
⎣exp(−

( x j∑
k=1

(
δk j − d

)
)

−
m j∑

k=x j+1

(
δk j + d

) + x jβn

⎤
⎦/γnj ,

Pr
{
Xnj = x j |Xni = xi , xi = mi ; x j = xi

}

=
[
exp

(
−

m j∑
k=1

(
δk j − d

)
)

+ x jβn

]
/γnj ,
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Fig. 24.2 Response probability curves for item j with and without dependence of d = 2 on item
i where xni = 0 and xnj = 1

Pr
{
Xnj = x j |Xni = xi , xi = 0; x j = xi

}

=
[
exp

(
−

m j∑
k=1

(
δk j + d

)
)

+ x jβn

]
/γnj . (24.6)

In the case of extreme scores 0 and m j , all thresholds are shifted to the right or left,
respectively. In the case of 0 < x j < m j , all thresholds δk j , k < x are shifted to the
left and those δk j , k > x + 1 are shifted to the right.

Estimating the Degree of Response Dependence Between
Polytomous Items

Chapter 14 showed Andrich and Kreiner’s (2010) method for estimating the value of
d between two dichotomous items. Andrich et al. (2012) show how this method can
be generalized to estimate the magnitude of response dependence between two poly-
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Fig. 24.3 Response probability curves for item j with and without dependence of d = 0.25 on
item i where xni = 2 and xnj = 2

tomous items as a change in the location of thresholds separating adjacent categories
in the second item caused by the response dependence on the first item.

For the purposes of estimation, the data needs to be reconstructed in the following
way. First, the dependent item is resolved giving one new resolved item for each
category of the independent item. This resolution of an item on the response of
a previous item is analogous to the resolution of an item based on some group
factor such as gender. Second, because the resolved items are dependent on the
original items, both the original dependent and the independent items are deleted from
the matrix. Then if there is no dependence, the threshold estimates of the resolved
items for each response on the independent item would be statistically equivalent.
However, if there is dependence, then the threshold estimates of the resolved items are
different from each other and it is possible to obtain an estimate of the hypothesized,
common magnitude of the change from these estimates. Because the standard errors
of thresholds are available, the statistical significance of the dependence can also be
assessed. The details of this structure are shown in Table 24.5 and Eq. (24.7) shows
the estimate for d.
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Table 24.5 Estimates of the
thresholds for each resolved
item ji x

xi Item δ̂ j i1 δ̂ j i2 δ̂ j i3

0 ji0 δ̂ j1 + d δ̂ j2 + d δ̂ j3 + d

1 ji1 δ̂ j1 − d δ̂ j2 + d δ̂ j3 + d

2 ji2 δ̂ j1 − d δ̂ j2 − d δ̂ j3 + d

3 ji3 δ̂ j1 − d δ̂ j2 − d δ̂ j3 − d

d̂ j =
∑m j

k=1

[(
δ̂ j i(k=x)| xi − 1

)
−

(
δ̂ j i(k=x)| xi

)]
/2

m j
=

∑m j

k=1 d̂ jk

m j
. (24.7)

Standard Errors of the Magnitude of the Estimate of d

In general, the hypothesis is that d = 0. Because estimates of δ̂ j ik have standard
errors σ̂ j i(k=x)(xi ), which are provided routinely from maximum likelihood theory, it
is possible to test this hypothesis. We obtain an estimate σ̂d of the standard error of
d̂, by building it up from the standard error of each estimate d̂k . We have

d̂k =
[(

δ̂ j i(k=x)(xi−1) − δ̂ j i(k=x)(xi )

]
/2, (24.8)

where xi = 1, 2, 3, . . .mi , and because of the elimination of responses of both the
original items i and j, the estimates δ̂ j i(k=x)(xi−1) and δ̂ j i(k=x)(xi ) are independent.

Using the standard formulation of the variance of the mean difference between
two independent variables, from Eq. (24.8) the standard error σ̂k of d̂k is given by

σ̂k =
√(

σ̂ 2
j i(k=x)(xi−1) + σ̂ 2

j i(k=x)(xi )

)
/4, (24.9)

where xi = 1, 2, 3, . . .mi .
Table 24.6 shows all the variances of the errors of the estimates for the example

in Table 24.5.
Equation (24.10) is a generalization of the standard error of the estimate d̂ in the

case of dichotomous items, which was discussed in substantial detail in Andrich and
Kreiner (2010).

Withm j estimates of d̂k , we have taken themean of these estimates, d̂ = ∑m j

k=1
d̂ jk

m j
,

to obtain a single estimate d̂. To obtain a single estimate of the standard error σ̂d

of d̂, we suppose that the error variances of the estimates dk , k = 1, 2, …, m j are
homogeneous. In that case, to obtain a single estimate σ̂ 2

d we can pool these variances.
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Table 24.6 Estimated variance errors of each
(
δ̂ jk ± d̂

)
and of each dk , k = 1, 2, …, m j

xi δ̂ j i1|xi δ̂ j i2|xi δ̂ j i3|xi
0

(
δ̂ j1 + d̂

)
σ̂ 2
j i(1)(0)

1
(
δ̂ j1 − d̂

)
σ̂ 2
j i(1)(1)

(
δ̂ j2 + d̂

)
σ̂ 2
j i(2)(1)

2
(
δ̂ j2 − d̂

)
σ̂ 2
j i(2)(2)

(
δ̂ j3 + d̂

)
σ̂ 2
j i(3)(2)

3
(
δ̂ j3 − d̂

)
σ̂ 2
j i(3)(3)

σ̂ 2
j1 = σ̂ 2

j i(1)(0)+σ̂ 2
j i(1)(1)

4 σ̂ 2
j2 = σ̂ 2

j i(2)(1)+σ̂ 2
j i(2)(2)

4 σ̂ 2
j3 = σ̂ 2

j i(3)(2)+σ̂ 2
j i(3)(3)

4

Pooled σ̂ 2
j =

(
σ̂ 2
j i(1)(0)+σ̂ 2

j i(1)(1)

)
+

(
σ̂ 2
j i(2)(1)+σ̂ 2

j i(2)(2)

)
+

(
σ̂ 2
j i(3)(2)+σ̂ 2

j i(3)(3)

)

4+4+4

A single-pooled estimate σ̂ 2
dk
of the variance of each dk , k = 1, 2, …, m j in the case

of Table 24.6 is shown in its last row. In general,

Pooled σ̂ 2
dk =

∑m j

k=1

∑k
x=k−1 σ̂ 2

j i(k)(x)

4m j
(24.10)

Then the variance of the mean of the m j estimates of dk , k = 1, 2, …, m j , which
is our estimate of d, is given by dividing Eq. (24.10) by m j giving

σ̂ 2
d =

∑m j

k=1

∑k
x=k−1 σ̂ 2

j i(k)(x)

4m2
j

(24.11)

and σ̂d =
√∑m j

k=1

∑k
x=k−1 σ̂ 2

j i(k)(x)

2m j
(24.12)

Exercises

Exercise 2: Basic analysis of dichotomous and polytomous responses in
Appendix C.
Exercise 6: Analysis of data with dependence in Appendix C.
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Chapter 25
Derivation of Classical Test Theory
Equations and Coefficient α

Formalization and Derivation of CTT Eqs. (3.1)–(3.5)
in Chap. 3

In many traditional texts, the subscript for the person is taken for granted. However,
though quicker to write, it can contribute to confusion when it is not clear if the
summation is over persons or over items, or both. Therefore, in this book, we con-
tinue to use subscripts n and i for a person and an item, respectively. According to
Eq. (3.1),

yn = tn + en, (25.1)

where yn is the observed score on a test, that is, a person’s total score on a set of items,
and tn , en are, respectively, the person’s true and error scores. This is the fundamental
simple equation of CTT and note again that it has no item parameters.

Thus, we see that the observed score on the variable is the sum of two other
variables, the true and error scores. Both are unobserved and therefore latent scores.
In addition, they are real numbers, whereas yn is typically an integer.

If the error is not correlated with the actual true score, then fromwhat we have just
learned about the variance of the sum of two variables, it follows that the variance
of the observed scores is the sum of the variances of the true scores and the error
scores. That is

s2y = s2t + s2e (25.2)

This is the second most relevant equation in CTT.
The next important concept developed in CTT is the formalization of reliability.

It begins with the idea of two tests being administered to measure the same construct.
These tests are often termed parallel tests. In some situations, there really are two
tests, but we do not need them to develop a theory and then see what other ways we
can calculate the reliability.

© Springer Nature Singapore Pte Ltd. 2019
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Each test will have its error of measurement, but the true score for a person will
be the same. Here we have to use double subscripts briefly.

Let the score of person n on test 1 be yn1 and on test 2 be yn2.
That is,

yn1 = tn1 + en1 (25.3a)

and

yn2 = tn2 + en2. (25.3b)

Because we are interested in how consistent the observed scores are from the two
tests, we calculate the correlation between yn1 and yn2.Wewouldwant the correlation
to be high. We begin with the calculation of the covariance between y1 and y2.

Derivation of Covariance

Wehave not derived these relationships in full elsewhere, and therefore for complete-
ness include them here.We could use the random variable notation but for simplicity,
we use the chosen scores in the derivations. In calculating the covariance, we imme-
diately estimate the population value and therefore use N − 1 rather than N in the
devisor, where N is the number of persons in the sample.

c12 =
∑N

n=1 (yn1 − y1)(yn2 − y2)

N − 1

=
∑N

n=1 [(tn + en1) − (t + e1)][(tn + en2) − (t + e2)]
N − 1

=
∑N

n=1 [(tn + en1) − (t)][(tn + en2) − (t)]
N − 1

=
∑N

n=1 [t2n + tn en2 − tn t + en1tn + en1en2 − en1 t − t tn − ten2 + t t]
N − 1

=
∑N

n=1 t2n + ∑N
n=1 tn en2 − ∑N

n=1 tn t + ∑N
n=1 en1tn + ∑N

n=1 en1en2 − ∑N
n=1 en1 t − ∑N

n=1 t tn − ∑N
n=1 ten2 + ∑N

n=1 t
2

N − 1

Now because the error is assumed to be not correlated with the true score, nor with
itself across two different tests, the sum of the products of all terms which contain
an error term will be 0.

Therefore, the last term above simplifies to

c12 =
∑N

n=1 t
2
n − ∑N

n=1 tnt − ∑N
n=1 t tn + ∑N

n=1 t
2

N − 1

=
∑N

n=1 t
2
n − 2

∑N
n=1 tnt + Nt2

N − 1
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=
∑N

n=1 t
2
n − 2

∑N
n=1 tn

∑N
n=1

tn
N + N

(∑N
n=1 tn
N

)2

N − 1

=
∑N

n=1 t
2
n − 2

N

(∑N
n=1 tn

)(∑N
n=1 tn

)
+ N

N 2

(∑N
n=1 tn

)2

N − 1

=
∑N

n=1 t
2
n − 2

N

(∑N
n=1 tn

)2 + 1
N

(∑N
n=1 tn

)2

N − 1

=
∑N

n=1 t
2
n − 1

N

(∑N
n=1 tn

)2

N − 1

=
∑N

n=1 (tn − t)2

N − 1

= SSt
N − 1

= s2t

The second last step is proved as follows:
To show that

∑N
n=1 t

2
n − 1

N

(∑N
n=1 tn

)2

N − 1
=

∑N
n=1 (tn − t)2

N − 1
,

we work in reverse and just take the numerator for convenience, that is, we show that

N∑

n=1

(tn − t)2 =
N∑

n=1

t2n − 1

N

(
N∑

n=1

tn

)2

Proof

N∑

n=1

(tn − t)2 =
N∑

n=1

(t2n − 2t tn + (t)2)

=
N∑

n=1

t2n − 2t
N∑

n=1

tn +
N∑

n=1

(∑N
n=1 tn
N

)2

=
N∑

n=1

t2n − 2

∑N
n=1 tn
N

N∑

n=1

tn + N

(∑N
n=1 tn
N

)2

=
N∑

n=1

t2n − 2

N

(
N∑

n=1

tn

)2

+ N

N 2

(
N∑

n=1

tn

)2
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=
N∑

n=1

t2n − 2

N

(
N∑

n=1

tn

)2

+ 1

N

(
N∑

n=1

tn

)2

=
N∑

n=1

t2n − 1

N

(
N∑

n=1

tn

)2

In summary, the covariance between two parallel tests is simply the variance of the
true scores.

c12 = s2t . (25.4)

From this equation, we can derive another relevant relationship based on correlations.
In Statistics Review 4, it is shown that the covariance is standardized to a correla-

tion by dividing the covariance by the standard deviations.

r12 = c12
s1s2

. (25.5)

However, s21 = s2t + s2e and s22 = s2t + s2e .
Note that here we assume that the error variance on both tests is the same—of

course the true scores must be the same. Therefore, the variance of the observed
scores is the same. That is, if s2y is the variance of the observed scores y of any two
parallel tests 1 and 2, then these variances should be equal: s21 = s22 = s2y .

Therefore, Eq. (25.5) reduces to

ryy = s2t
sysy

= s2t
s2y

, (25.6)

where the correlation of a test with itself is denoted by ryy .
Equation (25.6) represents the proportion of the total variance that is true variance.

Thus the reliability ryy of the test is equivalent to the proportion of the total variance
that is true score variance.

Equation (25.6) can be further rearranged to give

ryy = s2t
s2t + s2e

(25.7)

and

ryy = s2y − s2e
s2y

. (25.8)

It is evident that because (i) s2e ≥ 0, (ii) s2t cannot be greater than s2y and (iii) s2t and
s2y are positive, that ryy has the range 0 to 1, that is
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0 ≤ ryy ≤ 1. (25.9)

Derivation of the Standard Error of Measurement

By rearranging Eq. (25.8) it is possible to write an equation of the error variance in
terms of the reliability.

s2e = s2y − ryy s
2
y

= s2y(1 − ryy). (25.10)

Now we need to appreciate what the error variance is; it is the variation of scores
from test to test for persons with the same true score or from the same person on
more than one occasion.

The standard deviation of these scores is given by

se = sy
√

(1 − ryy). (25.11)

Equation (25.11) is known as the standard error of measurement.
Notice that if the reliability is 1, that is, the scores on the two parallel tests are

perfect, then the standard error is 0; if the reliability is 0, then the standard error is
the standard deviation of the original scores which means that all of the variations is
error variance.

Derivation of the Equation for Predicting the True Score
from the Observed Score

From the observed score yn and the test’s reliability, it is possible to estimate the
true score tn and the standard error of this estimate. This estimate is made using the
equation for regression.

It will be recalled from Statistics Review 4 that variable Y for person n can be
predicted from variable X using the equation Ŷn = b0 + b1Xn . Note that we now
use the subscript n for the person rather than i to be consistent with the presentation
here. In this equation, b1 = cxy/s2x and b0 = Y − b1X .

Now in the case where the score y corresponds to the true score t, and y remains
as the observed score y, we obtain

tn = b0 + b1yn, (25.12)

where b1 = cyt/s2y and b0 = t − b1y.
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In this special case, the covariance cyt can be rearranged as follows. Again, you
do not need to know this proof, but it is provided for completeness.

cyt = 1

N − 1

N∑

n=1

(yn − y)(tn − t)

= 1

N − 1

N∑

n=1

(tn + en − (t + e))(tn − t)

= 1

N − 1

N∑

n=1

(tn + en − t − e)(tn − t)

= 1

N − 1

N∑

n=1

(t2n − tnT + entn − ent − t tn + t2 − etn + et)

= 1

N − 1

⎛

⎝
N∑

n=1

t2n −
N∑

n=1

tn t +
N∑

n=1

entn −
N∑

n=1

ent −
N∑

n=1

t tn +
N∑

n=1

t2 −
N∑

n=1

etn +
N∑

n=1

et

⎞

⎠

= 1

N − 1

⎛

⎝
N∑

n=1

t2n −
N∑

n=1

tn t −
N∑

n=1

t tn +
N∑

n=1

t2

⎞

⎠

= 1

N − 1

⎛

⎝
N∑

n=1

t2n − 2
N∑

n=1

tn t + Nt2

⎞

⎠

= 1

N − 1

⎛

⎝
N∑

n=1

t2n − 2t
N∑

n=1

tn + N

(∑N
n=1 tn
N

)2
⎞

⎠

= 1

N − 1

⎛

⎜
⎝

N∑

n=1

t2n − 2

∑N
n=1 tn
N

N∑

n=1

tn + 1

N

⎛

⎝
N∑

n=1

tn

⎞

⎠

2
⎞

⎟
⎠

= 1

N − 1

⎛

⎜
⎝

N∑

n=1

t2n − 2

N

⎛

⎝
N∑

n=1

tn

⎞

⎠

2

+ 1

N

⎛

⎝
N∑

n=1

tn

⎞

⎠

2
⎞

⎟
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= 1

N − 1

⎛

⎜
⎝

N∑

n=1

t2n − 1

N

⎛

⎝
N∑

n=1

tn

⎞

⎠

2
⎞

⎟
⎠

= 1

N − 1

N∑

n=1

(tn − t)2

= s2t

Therefore

b1 = cyt
s2y

= s2t
s2y

= ryy

b0 = t̄ − ryy ȳ
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Therefore

t̂n = t̄ − ryy ȳ + ryy yn
= t̄ + ryy(yn − ȳ)

In this equation, we apparently do not know the value of t̄ .
However, in the population E[ȳ] = t̄ . Therefore, we substitute ȳ as an estimate

of t̄ .
Therefore, finally we can write

t̂n = ȳ + ryy(yn − ȳ). (25.13)

Thus using Eq. (25.13) we can predict the true score from the observed score and
from Eq. (25.11) we can estimate the error in this prediction.

Derivation of Coefficient α

To derive the calculation of coefficient α, we need to involve the number of items.
Therefore, we begin with the relationships of the variances at the item level. From
Eq. (3.2) in Chap. 3,

s2i = s2t + s2e , (25.14)

where s2i is the variance of the observed scores of any item, s2t is the variance of true
scores and s2e is the error variance relative to an item.

Then

I∑

i=1

s2i =
I∑

i=1

(s2t + s2e )

I∑

i=1

s2i = I s2t + I s2e (25.15)

Therefore, subtracting Eq. (25.15) from Eq. (4.3) in Chap. 4 gives

s2y −
I∑

i=1

s2i = I 2s2t + I s2e − (I s2t + I s2e )

= I 2s2t − I s2t
= I (I − 1)s2t (25.16)
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Therefore, dividing Eq. (25.16) by Eq. (4.3) in Chap. 4 gives

s2y − ∑I
i=1 s

2
i

s2y
= I (I − 1)s2t

I 2s2t + I s2e

= I (I − 1)s2t
I 2(s2t + s2e /I )

= (I − 1)s2t
I (s2t + s2e /I )

(25.17)

from which

I

I − 1

(
s2y − ∑I

i=1 s
2
i

s2y

)

= I

(I − 1)
.

(I − 1)s2t
I (s2t + s2e /I )

= s2t
s2t + s2e /I

= ryy (25.18)

This is the expression for reliability in Eq. (4.5).
Thus to calculate an estimate of reliability according to coefficient α, we can write

α = I

I − 1

(
s2y − ∑I

i=1 s
2
i

s2y

)

. (25.19)

The variances of the total scores and the items, s2y and s
2
i , are calculated simply as

s2y = 1
N−1

∑N
n=1 (yn − ȳ)2 and s2i = 1

N−1

∑N
n=1 (xn − x̄)2, where N is the number

of persons involved.



Chapter 26
Analysis of More Than Two Facets
and Repeated Measures

In this chapter, we extend the application of the Rasch model from the standard
two-facet to a three-facet design. In this extension, the term facet is introduced. The
standard design of a person-by-item response matrix is said to have two facets, a
person and an item facet. The three-facet design has a structure on the items. The
three-facet analysis, implemented in RUMM2030 with the Rasch model, parallels
this design and can be used for analysing responses involving a judge or repeated
measurements. In the chapter, we also describe two other ways that repeated mea-
surement data can be analysed using the standard two-facet Rasch model analysis.

From a Two-Facet to a Three-Facet Rasch Model Analysis

In Chap. 1, we introduced the Rasch model as arising from the requirement of invari-
ant comparisons of persons and items within a frame of reference. In Chap. 19,
we gave the example that if two markers assessed student performances, we would
require that the assessments are invariant with respect to the marker. In this chapter,
we refer to graders, raters, markers and other terms for assessors, with the more
evaluative term judges. Further, whether the assessment in more than two ordered
categories is of the rating or partial credit kind, we refer to it simply as a rating.

In many assessment settings, a performance is rated by a judge on several criteria,
for example, in the assessment of writing the criteria may include organization,
grammar, spelling and so on. Research has shown that, even with training, judges
can vary in severity of rating (Myford&Wolfe, 2004). Therefore, instead of only two
facets, those of person proficiency and item difficulty, a third facet, judge severity, is
introduced. Severity can then be quantified on the same scale as the person proficiency
and item difficulty, and therefore taken into account.

In many performance assessment designs, a judge is required to assess a perfor-
mance on multiple criteria. The assessment of essays in educational assessments or
health outcomes by a clinician is of this kind. The structure of the design is shown

© Springer Nature Singapore Pte Ltd. 2019
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Table 26.1 Three-facet
design in which H judges rate
N persons on I criteria

Judge

1 2 … H

Criterion 1 2.. i.. I 1 2.. i.. I 1 2.. i.. I

Person 1 1 2.. 1.. 0 2 2.. 2.. 1 0 0.. 0.. 0

2 3 1.. 2.. 4 4 2.. 2.. 4 1 1.. 1.. 2

3 0 0.. 1.. 0 1 1.. 1.. 0 0 0.. 0.. 0

.

.

n

.

.

N 4 2.. 1.. 3 4 3.. 2.. 4 3 1.. 0.. 2

in Table 26.1 in which each of H judges rate N persons on I criteria. In this case,
the combination of a judge and a criterion is effectively an item in the two-facet
design. In tables such as Table 26.1, there is very likely to be structurally missing
data because it is necessary to have a limited number of judges rate each perfor-
mance, maybe sometimes only two. This is not a problem if the design includes links
in the sense that every performance is assessed by a combination of judges making it
impossible to form subsets of performances that are assessed by mutually exclusive
sets of judges.

In responses involving assessments in ordered categories, the standard two-facet
model structure of Eq. (21.1) from Chap. 21, which characterizes only persons and
items, is extended to a three-facet structure (Linacre, 1989; Linacre &Wright, 2002;
Lunz, Wright & Linacre, 1990). Specifically, Eq. (21.1) is expanded to the form

Pr{xnih = x} = exp

[
x(βn − δi − ωh) −

x∑
k=1

τk

]
/γni (26.1)

where ωh is the severity of judge h, h = 1, 2, …, H, and Pr{xnih = x} is the
probability that person n obtains a rating x on criterion i from judge h. Again, γnih
is the normalizing factor which is simply the sum of the possible numerators. The
parameters βn , δi and τk remain the person proficiency, criterion (item) difficulty and
threshold difficulty, respectively. In this structure, it is assumed that all judges are
consistently more or less severe irrespective of the criterion, and that the categories
across the criteria operate in the same way. These assumptions are reflected in the
simple additive structure βn − δi −ωh −∑x

k=1 τk . This is the simplest model with a
three-facet design and ordered response categories.

The second level of extension of the model’s structure is where the judges are
consistent across criteria, but when the criteria might have different numbers of
categories or the categories operate differently across criteria. Then the thresholds
take the subscript i to give τki and the structure of the model is x(βn − δi − ωh) −

https://doi.org/10.1007/978-981-13-7496-8_21
https://doi.org/10.1007/978-981-13-7496-8_21
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∑x
k=1 τki . The third level of complication is when the judges are not consistent

across the criteria with some judges more severe with some criteria than with others.
In that case, each judge-by-criterion combination needs to be considered as an item,
characterized by a single parameter, say ξih , giving x(βn − ξih) − ∑x

k=1 τki as the
structure of the model. If the judges are consistent across criteria, but consistently
more or less severe relative to each other, then ξih specializes to ξih = δi + ωh and
the simpler structure of Eq. (26.1).

RUMM2030 software implements the three facets with the third structure
described above, and then specializes it to Eq. (26.1). Thus, it is possible to study
whether or not there is an interaction between the judges and either the thresholds,
the criteria, or both. Ideally, the additive structure of Eq. (26.1) holds.

In all designs, the person parameter can be conditioned out and the criteria and
judge parameters estimated simultaneously but independently of the person param-
eters. Given the criteria and judge parameters, the person parameters can then be
estimated using maximum likelihood or weighted likelihood estimation. These esti-
mates take account of any variation in the severity of judges, which is particularly
important where not all judges assess all performances.

Table 26.2 shows item (δi ) and judge severity locations (ωh) and SEs, as well as
the test of fit details and threshold locations (τk), from a three-facet analysis where
ten judges rated persons on six criteria (Marais & Andrich, 2011). Because the data
were simulated to fit the structure of Eq. (26.1), there is no misfit evident in the fit-
residuals, either items or judges. As indicated elsewhere, however, these fit statistics
in real data are to be used in conjunction with other statistics that are concerned with
model fit.

The model of Eq. (26.1) takes judge severity into account, but several other judge
biases have been described (Myford &Wolfe, 2004). One of these is the halo effect,
which is the tendency by a judge to assign ratings more similar than justified on
different criteria. The halo effect is a violation of local independence. It can usually
be detected by the three-facet model and is revealed through judge misfit. However,
in Marais and Andrich (2011) a special case of the halo effect is described and it is
shown that this halo is not detected by the three-facet model. The paper shows that
halo can be diagnosed using the two-facet model, more specifically using a rack or
stack design. These analyses are used also to analyse repeated measurement data and
are described next.

Repeated Measures

Because total test scores are not necessarily in a constant unit, the measurement
of change over time has been a challenge. Using total scores and CTT presents the
problem that a small change in an individual’s raw scoremaymean different amounts
depending on whether the initial score is extreme or moderate. The same integer
change in scores suggests different amounts of change on the variable depending on
the location of the pretest score. When the pretest score is very low or very high, then
observed score changes are indicative of more change on the variable than when the
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pretest score is moderate. Using the Rasch model to convert raw scores non-linearly
to measurements helps to overcome this particular concern. There are different ways
one can apply the Rasch model to analyse repeated measurements at different time
points (e.g. Fischer, 1989; Embretson, 1991; Wright, 1996). These reflect different
challenges in measuring change (Marais, 2009).

The three-facet design can be used to analyse repeated measurements by adding
the time points as the third facet. If there were two time points, then ωtime 1 would
be the mean person location at time 1 and ωtime 2 the mean person location at time 2.
The difference would clearly reflect any change.

Data for the two time points can also be analysed in a standard two-facet Rasch
model analysis in two ways. First, by treating items used at time 1 and time 2 as
distinct (rack design), in which there is a single person parameter across the two
times and where the same items may have different parameter values. Second, by
treating persons at time 1 and time 2 as distinct with a different parameter value at
the two times (stack design). With the rack design, the change is revealed through the
item parameter estimates and with the stack design the change is revealed through
the person parameter estimates (Wright, 2003). Each design has advantages and
disadvantages in diagnosing features of the data, and they should both be used in
understanding a data set and in concluding which changes have taken place. For
example, the stack design permits studying differential item functioning over time
while, as discussed further in the next section, the rack design permits studying
response dependence.

Table 26.3 showsgraphically the setupof racked and stacked designs forN persons
who responded to eight items at two time points. For the rack design, change for the
persons is the difference in the mean item locations at time 1 and time 2 (δ̄time 2 −
δ̄time 1). For the stack design, time is included in the analysis as a person factor. Change
for the persons is the difference between the mean person locations at time 1 and
time 2 (β̄time 2 − β̄time 1).

Repeated Measurements and Response Dependence

Another challenge in measuring change when analysing responses from two time
points using the same set of items is that of response dependence. This can be a
problem with the data, and is not a problem because of any property of the Rasch
model. However, because the model explicitly implies no response dependence, the
model canbeused todiagnose and control responsedependence in assessments across
two or more time points. In repeated assessments, response dependence occurs when
factors other than the person and item parameters lead to a response to the same item
that is more similar at time 2 to time 1 than it would be if only the parameters of the
persons and items governed the responses at both times. In this sense, it is analogous
to the halo effect. Such dependence can arise because of some idiosyncratic effect of
the item which governs the response at both times (for example, a degree of misun-
derstanding of the item) or where some effect such as memory affects the response
the second time. In educational assessment, response dependence is generally con-
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Table 26.3 Data design for N persons racked and stacked

RACK STACK
Person Responses Person Time Responses

Time 1 Time 2 Time 1

1 24200000 41200000 1 1 24200000
2 44444201 44333431 2 1 44444201
3 00000000 01000000 3 1 00000000
4 44444102 44434224 . . .
5 42110000 44100110 . . .
6 44433243 44444432 N 1 44434331
7 43431010 44443113 Time 2
8 43334000 43342200 1 2 41200000
9 31100000 21110100 2 2 44333431
. . . 3 2 01000000
. . . . . .
. . . . . .

N 44434331 44444320 N 2 44444320

trolled empirically by having new items created which assess the same variable, and
having some common secure items used on the different occasions which act as links
between the times of assessment. Controlling for response dependence experimen-
tally can be more challenging with health outcomes assessment where the variables
are mostly of the composite form and where it is less easy to create alternative items
with specifically defined outcomes.

Being unaware of or failing to control for response dependence can lead to incor-
rect conclusions, which can be serious when evaluating the effect of a treatment.
Response dependence can, depending on initial measurements relative to the person
distribution, either reduce or inflate change (Marais, 2009). Olsbjerg and Christensen
(2015) and Andrich (2017) have provided a methodological solution for determin-
ing change in the presence of response dependence in repeated measurements. The
solution is based on the principle developed by Andrich and Kreiner (2010) of quan-
tifying the amount of response dependence between items and requires the data to be
racked. This principle was studied in Chap. 14. In a repeated measurement design,
the responses to an item at time 2 are resolved into separate items for each response
to the same item at time 1.

Exercises

Exercise 7: Analysis of more than two facets and repeated measurements in
Appendix C.

https://doi.org/10.1007/978-981-13-7496-8_14
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Chapter 27
Derivation of the Threshold Form
of the Polytomous Rasch Model

We viewed various formats for ordered response categories in Chap. 2, described the
threshold form of the Polytomous Rasch Model (PRM) and showed applications of
the model in Chaps. 20–22. In this chapter, we derive the model from first principles.
This derivation follows the original derivation of the threshold form of the PRM in
Andrich (1978)whichwas built onAndersen (1977),which in turnwas built onRasch
(1961). In doing so, we apply the concept of a response space that was described in
Statistics Review 5. The derivation begins with an analogy between instruments of
measurement and ordered response categories.

Measurement and Ordered Response Categories

In a prototype of measurement, an instrument is constructed in such a way that a
linear continuum is partitioned by equidistant thresholds into categories called units.
The thresholds are considered equally fine (same discrimination) and, relative to
the size of the property being measured, fine enough that their own width can be
ignored. Then the measurement is the count of the number of intervals, the units,
from the chosen origin that the property maps onto the continuum. A prototype of
measurement, the very familiar ruler partitioned into centimetres and millimetres,
is shown in Fig. 27.1. To develop the analogy with ordered response categories,
superimposed on the ruler are five ordered categories. We will see how the only
differences are that the latter in general do not have equidistant thresholds and that
floor and ceiling effects play a role, whereas in measurement they generally do not.

Tomake the development relatively concrete, Table 27.1 shows the scoring criteria
for the assessment of essay writing in four ordered categories with respect to the
criterion of setting or context (Harris, 1991). To simplify the notation, while retaining
the order, the successive categories have been labelled as grades of Fail (F), Pass (P),
Credit (C) and Distinction (D). The intended ordering of the proficiency of the four
categories with respect to the criterion is clear: Inadequate (F) < Discrete (P) <
Integrated (C) <Manipulated (D).
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Fig. 27.1 A continuum partitioned in the prototype of measurement with five ordered categories

Table 27.1 Scoring criteria for the assessment of essay writing with respect to the criterion of
setting (Harris, 1991)

0 (F) Inadequate setting: Insufficient or irrelevant information given for the story

1 (P) Discrete setting: Discrete setting as an introduction, with some details that show some
linkage and organization

2 (C) Integrated setting: There is a setting which, rather than being simply at the beginning,
is introduced throughout the story

3 (D) Manipulated setting: In addition to the setting being introduced throughout the story,
pertinent information is woven or integrated so that this integration contributes to the
story

Fig. 27.2 A continuum partitioned into four, non-equidistant, ordered categories for assessing
essays with respect to the criterion of setting

Figure 27.2 shows the continuum partitioned by three thresholds into four, non-
equidistant, ordered categories for the grade classifications inTable 27.1. The extreme
grades, F and D, are not bounded on the continuum and, as mentioned earlier, need
not be, and in this case are not equidistant.

Minimum Proficiencies and Threshold Difficulty Order
in the Full Space �

To derive the PRM in terms of the thresholds, their implied order is formalized. To
simplify the notation, we do not subscript the person and item parameters in this
derivation, emphasizing here that the response is with respect to a single person
responding to a single item.
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First, consider the minimum proficiency required to obtain the successive grades,
F, P, C, D. We take that the minimum proficiency βD to obtain a D is at the point
on the continuum where the probability of success is 0.5. Let this point on the
continuum be the threshold δD , giving in complete notation Pr{D;βD, δD} = 0.5.
Further, we take that this probability is characterized by the dichotomous Rasch
model, Pr{D;β, δD} = (eβ−δD )/γD where γD = 1 + eβ−δD is the usual nor-
malizing factor which ensures that Pr{D;β, δD} + Pr{not D;β, δD} = 1. At the
minimum proficiency, βD = δD , Pr{D; βD, δD} = 0.5. Likewise, we take that
the minimum proficiencies required to obtain C, P, respectively, are βC , βP and
that the thresholds δC , δP on the continuum are such that Pr{C; βC , δC} = 0.5,
Pr{P; βP , δP} = 0.5. Again, if the response probabilities are characterized by the
Rasch model, βC = δC and βP = δP . It is stressed that the thresholds δP , δC , δD
are defined by their relationship to minimum proficiencies βP , βC , βD . Therefore,
the minimum proficiency required to achieve P, C, D, respectively, can be referred to
as the proficiency at respective thresholds δP , δC , δD on the continuum. In achieve-
ment testing, they may be referred to as difficulties.

Second, we take it that the minimum proficiency required to achieve aD is greater
than that to achieve a C, which in turn is greater than the minimum proficiency to
achieve a P. These requirements reflect the intended order of degrees of proficiency,
with the implication that βD > βC > βP . The relationship here is a transitive one
reflecting the very powerful constraint of order implied by the levels of proficiency.
Now, given the relationships βD = δD , βC = δC , βP = δP , the implication is that
δD > δC > δP with the parallel transitive relationship on these thresholds. These
threshold locations are shown to conform to this order in Fig. 27.2. It is stressed
that this order is a requirement which will be reflected in some way in the model.
However, as we have seen in Chaps. 21 and 22, there is no guarantee that the data will
reflect this requirement. If data do not satisfy this requirement, then it is a property of
the data which will manifest itself by an incorrect ordering of the threshold estimates.

Before proceeding to derive the PRM, we note two related differences between
Figs. 27.1 and 27.2. First, we have already indicated that unlike the thresholds in
Fig. 27.1, those in Fig. 27.2 are not equidistant. Second, the thresholds in Fig. 27.1
are open ended in principle; those in Fig. 27.2 are finite in number. In the natural
sciences,when the size of the property appears too close to the extrememeasurements
provided by the instrument, then an instrument that has a wider or better aligned
range is sought and used. Specifically, if it is assumed that there are random errors
of measurement, in which case the errors follow the normal distribution, then it is
assumed, or required, that the instrument and property are so well aligned that the
probability of an extreme measurement is zero (Stigler, 1986, p. 110). Such a luxury
is not afforded in the case of a finite number of categories, and floor and ceiling
effects are evident in items such as those shown above with the assessment of essays.
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Specifying the Dichotomous Rasch Model for Responses
at the Thresholds

To specify the dichotomous Rasch model for success at the proficiencies δP , δC , δD ,
let y be the dichotomous variablewhich takes the values (0, 1), respectively, for failure
and success at eachminimumproficiency.This gives the responses yP , yC , yD . Then,
for example,

Pr{yP = 1;β, δP} = eβ−δP /γP ;Pr{yP = 0;β, δP} = 1/γP , (27.1)

for any person with proficiency β.
In the above specifications, any response at the threshold proficiency is assumed

to be independent of any other response at any other threshold. That is, it is as
if a decision at different thresholds is made by a different judge. We do not need
actual independent responses to proceed with the logic of the model’s development,
Eq. (27.1) being a definition of a probability. To show the effect of this implication
on the continuum, the structure of the continuum in Fig. 27.2 has been resolved in
Fig. 27.3 into three distinct continuums.

With independent responses assumed at each threshold, we set out the full set of
possible probabilities. For efficiency of exposition, denote Py = Pr{y = 1;β, δy}
and its complement Qy = Pr{y = 0;β, δy}. Further, because the derivation of
the model involves response spaces and subspaces, it is efficient to make clear the
response space—it is denoted �. The responses and the response space, which
has 23 = 8 elements, are set out in Table 27.2. To be specific, the space is
� ≡ {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}.
The last row of Table 27.2 provides the sum of the probabilities of the above set
of response elements, which as required is 1.

Fig. 27.3 A resolved structure for a decision at each threshold proficiency
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Table 27.2 The independent response space � and the Guttman subspace �G for the responses
from Fig. 27.3

The Response Subspace �G

In addition to the space �, Table 27.2 also shows another space, the subspace �G .
This subspace arises from the following reasoning.Consider a response in the original
ordered format structure ofTable 27.1 andFig. 27.2. In this example, there can be only
one response in one of four categories. Suppose first that the response is deemed a
D. This implies a success at threshold δD . However, because of the required ordering
of the thresholds, δD > δC > δP , this response necessarily implies a success
also at both thresholds δC , δP . That is, if a performance is deemed a success at a
Distinction, then it is also deemed, simultaneously, a success at both Credit and Pass.
This is analogous to implications of a measurement. For example, if an object is
deemed to be 5 cm in length, then it implies that it is deemed also to be greater than
4, 3, 2 and 1 cm in length.

In the example of classifying an essay as a D, the three implied independent,
dichotomous responses from Table 27.2 and Fig. 27.3 at the three successive thresh-
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olds are {yP , yC , yD} = {1, 1, 1}. We notice that the number of thresholds at which
there is a success is 3, which is simply the sum {yP + yC + yD} = {1+ 1+ 1} = 3.
Now suppose that the response from the format of Table 27.1 is C. This response
implies, not only a success at δC , but because of the order δD > δC > δP , it implies
a success at δP and a failure at δD . The three implied responses from Table 27.2 at
the three successive thresholds are {yP , yC , yD} = {1, 1, 0}. We note immediately
that the number of thresholds at which there is a success is 2, again simply the sum
{yP + yC + yD} = {1 + 1 + 0} = 2.

Suppose next that the response from the format of Table 27.1 is P. This response
implies, not only a success at δP , but because of the order δD > δC > δP , it
implies a failure at both δC and δD . The three implied responses from Table 27.2 at
the three successive thresholds are {yP , yC , yD} = {1, 0, 0}, where we again note
immediately that the number of thresholds at which there is a success is 1, simply the
sum {yP + yC + yD} = {1+ 0+ 0} = 1. Finally, suppose that the response from the
format of Table 27.1 is F. This response implies, not only a failure at δP , but because
of the order δD > δC > δP , it implies a failure at both δC and δD . The three implied
responses from Table 27.2 at the three successive thresholds are {yP , yC , yD} =
{0, 0, 0}, where we again note immediately that the number of thresholds at which
there is a success is 0, simply the sum {yP + yC + yD} = {0 + 0 + 0} = 0.

Taking these possible responses of successes and failures, we see that they are
from the subspace of responses in Table 27.2. We notate this subspace as �G ≡
{(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. Relative to the required order of the threshold
proficiencies, δP < δC < δD , this subspace is the set of Guttman patterns which we
studied in Chap. 5. As noted above, and studied in that chapter, the sum of the
responses within each set gives the total number of successes at the thresholds taken
in their order of proficiency. Let x = {yP + yC + yD} in �G , and let x = 0, 1, 2, 3
be this total score. The value x indicates, not only the total number of successes, but
the identity of the specific thresholds at which the implied response was a success.
It therefore also indicates the category of the response in Fig. 27.2, for example, x
= 2 implies a grade of C. Tables 27.2 and 27.3 show this count of successes and the
equivalent grade classification.

This count of the successes is analogous to the count of the number of units an
object exceeds from an origin in typical measurement considered above. However,
because they are estimated, the thresholds do not have to be equidistant as they are
in measurement.

The full space � has other response elements which we may notate �G̃ ≡
{(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}, where G̃ stands for the subspace not G.
These responses are incompatible with the required order. Thus, for example, the
response set {yP , yC , yD} = {0, 1, 0} implies simultaneously a success at C but
failure at P which is of lesser proficiency than C. Therefore, the responses in G̃ are
excluded from the possible set of implied dichotomous responses at the thresholds
and we focus on �G .
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Table 27.3 Probabilities of the Guttman subspace �G in the space �

Formalizing the Response Space ΩG

To construct the PRM, all that is required now is that the probabilities of the responses
in �G sum to 1. It is necessary to impose this constraint for two reasons. First, given
a response in one category, the sum of the probabilities of responses in all categories
must sum to 1. Second, because the sum of the probabilities of the responses in �

sums to 1, the probabilities of the responses of the subspace �G are less than 1 in
the full space �. Table 27.3 shows these probabilities in terms of the dichotomous
Rasch model with � the sum of the probabilities of the responses in �G .

We have that the total number of successes, x, at thresholds defines, not only each
Guttman pattern, but as shown in Table 27.3, the corresponding grade. To develop
the form of the PRM, Table 27.4 shows the probabilities Pr{x} from the full space �

in detail.
The terms in the last column in Table 27.4 can be written more generally as

Pr{x = 0;β, (δ)|�} = 1/γPγCγD;
Pr{x;β, (δ)|�} = exβ−∑x

k=1 δk/γPγCγD, x = 1, 2, 3. (27.2)

Table 27.4 Explicit expressions for probabilities of the subspace �G in the space �

Pr{x |�} = Pr{yP , yC , yD |�} = Pr{yP |�}Pr{yC |�}Pr{yD |�}
Pr{x = 0} = Pr{(0, 0, 0)} = 1.1.1/γPγCγD = e0β/γPγCγD

Pr{x = 1} = Pr{(1, 0, 0)} = eβ−δP .1.1/γPγCγD = e1β−δP /γPγCγD

Pr{x = 2} = Pr{(1, 1, 0)} = eβ−δP .eβ−δC .1/γPγCγD = e2β−δP−δC /γPγCγD

Pr{x = 3} = Pr{(1, 1, 1)} = eβ−δP .eβ−δC .eβ−δD /γPγCγD = e3β−δP−δC−δD /γPγCγD
∑

�G

Pr{(yP , yC , yD)|�} = ∑

�G

Pr{yP |�}Pr{yC |�}Pr{yD |�} = � < 1
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The sum of the terms in Eq. (27.2) can now be written as � = (1 +∑3
x=1 e

xβ−∑x
k=1 δk )/γPγCγD , x = 0, 1, 2, 3. To ensure that the probabilities in the

subspace �G sum to 1, each Pr{x;β, (δ)|�}, x = 0, 1, 2, 3 needs to be divided by
their sum �. Note that the denominator γPγCγD of each term Pr{x;β, (δ)|�} is
the same, and is also the same as the denominator of �. Therefore, in this division
γPγCγD cancels, leaving the numerators of the terms as Pr{x = 0;β, (δ)|�G} = 1,
Pr{x;β, (δ)|�G} = exβ−∑x

k=1 δk , x = 1, 2, 3, and their denominator as simply their
sum γ = 1 + ∑3

x=1 e
xβ−∑x

k=1 δk ; the sum γ has no threshold subscripts. The divi-
sion of each term in �G by their sum � ensures they sum to 1 and therefore form a
probability space.

Generalizing the Notation of Grade Classification

We now generalize the specific notation of δP , δC , δD to one indexed with successive
integers identifying the successive thresholds, δ1, δ2, δ3. For ease of notation, we also
define a threshold δ0 ≡ 0, giving the general expression of the PRM as

Pr{x;β, (δ)|�G} = exβ−∑x
k=0 δk/γ, x = 0, 1, 2, 3. (27.3)

For the remainder of the chapter, we also generalize the number of categories to
m + 1, with a maximum score of m, and reintroduce the person and item subscripts
to give

Pr{x;βn, (δi )|�G} = exβn−∑x
k=0 δik/γni , x = 0, 1, 2, 3, . . . ,mi . (27.4)

Equation (27.4) is a general form of the PRM. We encountered it as Eq. (21.6) in
Chap. 21.

A Fundamental Identity of the PRM

We are now in a position to revisit and expand on the understanding of the structure
of the PRM introduced in Chap. 21. This involves a fundamental identity in the full
space � and the Guttman subspace �G .
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The Full Space Ω

First, recall that the thresholds δP , δC , δD in the assessment of essays were defined
in terms of the minimum proficiencies βP , βC , βD required to succeed at each of
them, giving δP = βP , δC = βC , δD = βD . We then replaced the specific notation
of the three thresholds δP , δC , δD for the four categories of Fail, Pass, Credit and
Distinction to integer subscripts giving δ1, δ2, δ3. Then consistentwith this notation,
theminimum proficiencies may be notated β1, β2, β3, respectively. This notationwas
generalized to δi1, δi2, δi3, . . . , δi x , . . . , δim for an item i withmi +1 categories. The
minimum proficiency at δi x threshold is then βx .

Second,we defined the probability of success according to the dichotomousRasch
model. In the threshold notation with integer subscripts above, and retaining the
person and item subscripts, this implies that for any βn ,

Pr{ynix = 1;βn, δi x |�} = eβn−δi x /γni , y = 1, 2, . . .mi (27.5)

where to consolidate the meaning of this relationship, Eq. (27.5) includes the full
response space �.

At minimum proficiency, βx = δi x , Pr{ynix = 1|�} = 0.5. Equation (27.5)
emphasizes that the thresholds are defined in terms of probabilities that have no
constraints placed on them.

The Guttman Subspace ΩG

From Eq. (27.4), we now simplify the ratio of the probability of response in category
x relative to the response in adjacent categories x − 1 and x in the subspace �G :

Pr{x;βn, (δi )|�G}
Pr{x − 1;βn, (δi )|�G} + Pr{x;βn, (δi )|�G}
= exβn−∑x

k=0 δik/γni

e(x−1)βn−∑x−1
k=0 δik/γni + exβn−∑x

k=0 δik/γni

= exβn−∑x
k=0 δik

e(x−1)βn−∑x−1
k=0 δik + exβn−∑x

k=0 δik

= exβn−∑x−1
k=0 δik−δi x

exβn−βn−∑x−1
k=0 δik + exβn−∑x−1

k=0 δik−δi x

= exβn−∑x−1
k=0 δik e−δi x

exβn−∑x−1
k=0 δik e−βn + exβn−∑x−1

k=0 δik−δi x

= exβn−∑x−1
k=0 δik e−δi x

exβn−∑x−1
k=0 δik (e−βn + e−δi x )
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= e−δi x

e−βn + e−δi x

= eβn−δi x

1 + eβn−δi x
, x = 1, 2, 3, . . .mi .

The above ratio is derived from the probabilities within categories x – 1 and x within
the subspace �G . Therefore, we may define these adjacent pairs of categories as a
subspace within �G and notate it as �G

x−1,x . In summary, using this notation, the
derivation above gives

Pr{x;βn, (δi )|�G
x−1,x } = eβn−δi x

1 + eβn−δi x
= eβn−δi x /γnix , x = 1, 2, 3, . . . ,mi . (27.6)

Equation (27.6) is the conditional probability of success at threshold δi x as the prob-
ability of a response in category x relative to a response in the adjacent categories
x − 1 and x in the PRM. These are parameters δi x estimated in the application of the
PRM.

The Dichotomous Rasch Model Identity in Ω and ΩG
x−1,x

Equation (27.6) derived from the PRM is identical to Eq. (27.5), that is,

Pr{ynix = 1;βn, (δi )|�} ≡ Pr{x |�G
x−1,x } = eβn−δi x /γnix . (27.7)

The identity of the probability of a successful response in the two spaces � and
�G

x−1,x is fundamental to the interpretation of the PRM. The identity defines the
thresholds of the PRM in terms of the proficiency required to succeed at the thresholds
unconstrained by any subspace. Thus, the thresholds estimated by the PRM are the
minimum proficiencies βx required to succeed at the thresholds δi x giving βx = δi x .
And these require that βx+1 > βx , x = 1, 2, . . . ,mi . Therefore, it is required that
δi x+1 > δi x , x = 1, 2, . . . ,mi .

This relationship is made concrete in Andrich (2016). Responses were simulated
for two sets of two dichotomous items according to the Rasch model. Then, a subset
of responses which satisfied the Guttman structure according to the hypothesized
ordering of the thresholds was taken. The original full set of dichotomous responses
is the set � above, while the chosen subset of responses is �G above. The former
set was analysed with the dichotomous Rasch model and the latter with the PRM.
The dichotomous item parameter estimates, and the corresponding PRM threshold
estimates were within standard errors of estimates, reflecting that they are estimates
of identical parameters δi x , x = 1, 2, . . . ,mi from different sets of data.

It is possible to derive the PRM beginning from Eq. (27.6), that is, the conditional
probability of a response in category x given the response is in either category x − 1
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or x. Then, it is required to ensure that the sum of the probabilities is 1. If the implied
sample spaces are made explicit, then the Guttman subspace �G is shown to be
implied, and the independent response space� can be inferred as the space of which
�G is a subspace. This derivation is shown in detail in Andrich (2013).

As we saw in Chaps. 20–22, it is possible that thresholds estimates from responses
are not in this required order. In that case, there is some malfunctioning of the
operation of the ordering of the categories. However, because the reversals can result
from many different sources of malfunctioning, the reversed threshold estimates as
such do not tell the specific source. The source or sources must be identified with
further study of the format, the content, and so on, of the item.

Finally, the derivation of the PRM can begin with the conditional probabilities
in the subspace �G

x−1,x of Eq. (27.6) resulting in Eq. (27.4) of the PRM. Providing
the implied sample spaces are taken into account, the Guttman space of implied
successes at the thresholds is recovered (Andrich, 2013).

A general and a specific point regarding fit in relation to reversed threshold esti-
mates is stressed. First, fit to the Rasch model is understood to be a necessary con-
dition for invariance of comparisons and for measurement, not both a necessary and
sufficient condition. Thus, other statistical and empirical properties of measurement
are not revoked or bypassed by the Rasch model and fit to the Rasch model (Duncan,
1984). Second, and in any case, because reversed threshold estimates are used to
recover the data in the usual test of fit, the responses may fit the model even when
threshold estimates are reversed. Therefore, although fit is a necessary condition for
all the properties of the Rasch model to hold, fit in itself does not bear on evidence
of the malfunctioning of ordered categories of items. It is, however, possible for fit
and reversed threshold estimates to interact.

Exercises

Suppose the minimum proficiencies of βP , βC , βD for achieving Pass (P), Credit
(C) and Distinction (D), respectively, on an item i with four ordered categories are
−0.50,−0.10, 0.60.

(a) What are the threshold values δi P , δiC , δi D?
(b) Assume a person has a proficiency of βn = 0.0. Complete the probabilities

Pr{yni P |�},Pr{yniC |�} and Pr{yni D|�} of Table 27.2.
(c) Calculate the probabilities Pr{(yni P , yniC , yni D)|�} for the subset of Guttman

patterns of Table 27.4.
(d) Normalize the subset of probabilities calculated in (c) to give the probabilities

Pr{x;βn, (δi )|�G}, x = 0, 1, 2, 3 (that is, ensure their sum is 1).
(e) Calculate Pr{x;βn, (δi )|�G

x−1,x } for x = 1, 2, 3.
(f) Which of the probabilities you calculated in (e) above are, respectively, identical

to the probabilities you calculated in (b) above.
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Chapter 28
Non-Rasch Measurement Models
for Ordered Response Categories

This chapter summarizes the most common non-Rasch models considered for
analysing ordered response category items. These models fall into two distinct
classes. The models of the first class have a structure consistent with the PRM but
with a greater number of parameters. The models of the second class are struc-
turally different from the PRM but can have the same or more parameters than the
PRM. Models from both classes do not have the sufficient statistic properties of the
PRM. The application of these models arises from the Item Response Theory (IRT)
paradigm in which the main criterion for the choice of the model is that of statistical
fit of the responses to the model. These models are chosen to describe or summarize
the data, and do not arise from any fundamental principles that are independent of
the data. The full class of models, and their connection to the respective paradigms,
are summarized in Andrich (2011).

For efficiency of exposition, we begin with the class of models which specializes
to the PRM.

The Nominal Response Model

Bock (1972) presented the model he called the nominal response mode (NRM),
equivalent in form and notation to

Pr{x;β, (ψ), (ϕ)} = eψx+ϕxβ/γ, x = 0, 1, 2, . . . ,m. (28.1)

Again, because the response x; x = 0, 1, 2, . . . ,m is of a single person to a single
item, we do not subscript the person and item parameters β and δ, nor the two vectors
(κ), (ϕ) which characterize the categories of the item. Here, the response variable
x; x = 0, 1, 2, . . . ,m is simply the ordinal count of the category of the response,
beginning with the first category and γ is again the normalizing factor which is
the sum of the numerators of Eq. (28.1). In the development of the Rasch model,
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this same equation appeared earlier (Rasch, 1961), which was developed further by
Andersen (1977), and then interpreted in terms of thresholds and discrimination at
the thresholds in Andrich (1978). In these publications, κx , ϕx , x = 0, 1, 2, . . . ,m
are called, respectively, the category coefficient and the scoring function and we use
these terms in this chapter. In order to connect this model to the PRM, and better
understand it, we now summarize the original derivation of the PRM.

Relationship Between the PRM and the NRM

This section follows the derivation of the threshold form of the PRM shown in
Chap. 27. However, there is one important difference. Instead of specifying the
dichotomous Rasch model for the latent dichotomous responses at the thresholds in
the full space Ω , the 2PL model (Birnbaum, 1968) we encountered in Chap. 18 was
specified. This specification appeared in the original derivation of the threshold form
of the PRM in Andrich (1978).

Thus, instead of applying the dichotomous Rasch model of Eq. (27.1) of the
previous chapter as the probability of a dichotomous response at the thresholds,
x = 1, 2, 3, the equation applied was

Pr{yx = 1;β, δx |Ω} = eαx (β− δx )/γ, (28.2)

where αx is the discrimination at threshold x of item i . In the dichotomous Rasch
model, and in terms of Eq. (28.2), it will be recalled that αx = 1.

Table 28.1 reproduces the essential elements of Table 27.4 for responses within
the Guttman subspace ΩG , but with Eq. (28.2) as the latent response probability at
each threshold and again immediately notated by successive integers, x = 1, 2, 3.

Following the division of the probabilities in the last column of Table 28.1 by 
,
which ensures the probabilities sum to 1, the model takes the general form

Table 28.1 Probabilities of responses in theGuttman subspaceΩG when the dichotomous response
at threshold x is the 2PL model

Pr{y1, y2, y3} = Pr{y1|Ω}Pr{y2|Ω}Pr{y3|Ω}
Pr{x = 0} = 1.1.1/γ1γ2γ3 = e0β/γ1γ2γ3

Pr{x = 1} = eα1β−α1δ1 .1.1/γ1γ2γ3 = eα1β−α1δ1/γ1γ2γ3

Pr{x = 2} = eα1β−α1δ1eα2β−α2δ2 .1/γ1γ2γ3 = e(α1+α2)β−α1δ1−α2δ2/γ1γ2γ3

Pr{x = 3} =
eα1β−α1δ1eα2β−α2δ2eα3β−α3δ3/γ1γ2γ3

=
e(α1+α2+α3)β−α1δ1−α2δ2−α3δ3/γ1γ2γ3

∑

ΩG

Pr{(y1, y2, y3)|Ω = Pr{y1|Ω}Pr{y2|Ω}Pr{y3|Ω} = 
 < 1.}
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Pr
{
x;β, (α), (δ)|ΩG

} = e(α1+α2+...+αx )β−(α1δ1+α2 δ2+...+αx δx )/γ (28.3)

where x = 0, 1, 2, . . . ,m.
Now, define

ϕ0 = 0; ϕx = α1 + α2 + . . . αx ; x = 1, 2, . . . ,m, (28.4)

ψ0 = 0; ψx = −(α1δ1 + α2δ2 + . . . αxδx ); x = 1, 2, . . . ,m, (28.5)

to give the model

Pr(x;β, (ψ), (ϕ)) = eψx+ϕxβ/γ, x = 0, 1, 2, . . . ,m. (28.6)

where we now take for granted the subspace ΩG and drop its specification.
We see that Eq. (28.6) is the form of the NRM of Eq. (28.1).
With the constraints ϕ0 = 0; ψ0 = 0 on the categories of each item, the num-

ber of independent parameters for each item are effectively 2m. Although they are
not typically viewed in this way, the parameters embody a location (difficulty) and
discrimination at each threshold, a generalization of the 2PL. Where the model is
applied, the parameters ϕx , ψx are attempted to be estimated without considera-
tion of what these parameters might characterize. It is evident from Eqs. (28.4) and
(28.5) that ϕx is the sum of discriminations of all thresholds up to threshold x in the
required order, and that ψx is of the same cumulative structure but with the location
and discrimination parameters at the thresholds entangled. With only one response
in one of the m + 1 categories, this model is not easy to implement and is not used
routinely in major assessments.

To see the way the NRM is a generalization of the PRM, suppose, as in the
dichotomousRaschmodel, that the discriminationsαx are identical. Letαx = α, x =
1, 2, . . . ,m. Then, from Eq. (28.4),

ϕ0 = 0; ϕx = (α + α + . . . α) = xα; x = 1, 2, . . . ,m, (28.7)

and

ψ0 = 0; ψx = −α(δ1 + δ2 + . . . + δx ); x = 1, 2, . . . ,m. (28.8)

Then, defining δ0 = 0 for convenience, the NRM of Eq. (28.6) takes the form

Pr{x;β, (δ)} = e−α(δ0+δ1+δ2+...+δx )+xαβ/γ ; x = 0, 1, 2, . . . ,m. (28.9)

Absorbing the common discrimination α into β, (δ), or simply defining α = 1,
gives the PRM in the form

Pr{x;β, (δ)} = e−(δ0+δ1+δ2+...+δx )+xβ/γ ; x = 0, 1, 2, . . . ,m. (28.10)
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Thus, the PRM is an algebraic specialization of the NRM expressed in the form of
threshold locations and discriminations at these thresholds with the discriminations
at the thresholds all constant. The equal discriminations at the thresholds give the
integer scoring function.

However, the uniform discriminations at the thresholds go beyond simply the
discriminations at the thresholds within each item, they are uniform across all items.
Including now an item and a person subscript, Eq. (28.10) takes the form

Pr{x;βn, (δi )} = e−(δi0+δi1+δi2+...+δi x )+xβn/γni

= e
−

x∑

k=0
δik+xβn

/γni ; x = 0, 1, 2, . . . ,mi (28.11)

Equation (28.11) is the partial credit parameterization of the PRMwhich we encoun-
tered in Eq. (21.6) in Chap. 21. The equal discriminations at the thresholds among
all items give the total score of a person across all items, an integer, as the sufficient
statistic for the person parameter. With different discriminations at the thresholds,
the NRM does not have a sufficient statistic in the sense that the person and item
parameters can be separated in the estimation as in the PRM.

The Generalized Partial Credit Model

The generalized partial credit model is also a special case of the NRM, but not to
the degree that the PRM is specialized (Muraki, 1992; Muraki & Muraki, 2016).
Although it retains the condition that all thresholds within an item have the same
discrimination, it permits variable discrimination αi among the items. This gives the
model, with subscripts present,

Pr{x;βn, (δi ), (αi )} = eαi(−∑x
k=0 δik+xβn)/γni ; x = 0, 1, 2, . . . ,mi . (28.12)

The generalized partial credit model also does not have sufficient statistics of
the form of the PRM, but because it has a smaller number of parameters than the
NRM, it is more tractable than the NRM. As indicated earlier, it is applied from the
perspective of the IRT paradigm.

We now turn to the second class of models which is structurally different from
the PRM.

The Graded Response Model

The model now called the graded response model (GRM) for the analysis of ordered
response categories has its origins in thework ofThurstone. The possibility of collect-
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ing data in the form which implied the model was mentioned at the end of Thurstone
(1928) and then further developed in Edwards and Thurstone (1952). In modern psy-
chometric form, it is presented in Samejima (1969, 2016), and in a contingency table
context, where the dependent variable is in the form of ordered response categories,
it is presented in Bock (1975). The GRM was the standard model for the analysis of
ordered response categories before the advent of the PRM.

In the PRM, there is a distinct latent response process at each threshold which
is then constrained by the category order. In contrast, in the GRM there is only one
response process across the continuum and the outcome of this process is portioned
into categories.

To show the structure of the GRM, let

Px = Pr{x;β, (α), (δ)}, x = 0, 1, 2, . . . ,m, (28.13)

be the probability of a response in category x , using the same notation as in the
PRM. Again, we do not subscript the person parameter β and the vectors of item
parameters (α), (δ), the response being that of a single person responding to a single
item. Although using the same notation as in the PRM, the item parameters are
different in the two models.

Now, define the cumulative probability πx for category x and above as follows:

πx = Px + Px+1 + Px+2 . . . . + Pm; π0 = 1, πm = Pm . (28.14)

By definition, the cumulative probabilities πx decrease with x . Figure 28.1 shows
the response process of the GRM as a cumulative probability. The categories are
bounded by adjacent thresholds δx , x = 1, 2, . . . ,m which are different from the
thresholds of the PRM.

The curve of Fig. 28.1 is defined in terms of the 2PL model (Birnbaum, 1968),
that is, for a fixed person location β

π = eα(β−δ)/γ, (28.15)

where again the γ is the normalizing factor.
Then, the specific response in category x or greater is given by

πx = eα(β−δx )/γ. (28.16)

The probability of a response in category x is then given by

Px = πx − πx+1 = eα(β−δx )/γ − eα(β−δx+1)/γ. (28.17)

It is possible to specialize the GRM so that the discriminations, α, are the same
across items. Then, the GRM and the PRM have the same number of parameters.
However, the scale of the GRM is different from PRM, though in any data set, the



324 28 Non-Rasch Measurement Models for Ordered …

Fig. 28.1 The cumulative response structure of the graded response model

estimates of the person parameters will be highly correlated—that is a property of
the data.

The structure of the GRM ensures that its thresholds, which are different from
the thresholds in the PRM, are necessarily in order. This results from the feature that
πx < πx−1. This means that those using the GRM tend not to focus on evidence that
categories might not be operating as intended. However, the points of intersection of
the adjacent categories in category characteristic curves of the GRM may still show
reversals—they will do so if an analysis with the PRM shows reversals. An example
of a data set with respective threshold estimates from the PRM and the GRM is
shown in Andrich (2011).

Estimation of Parameters in the Non-Rasch Models

We saw in Chap. 7 how the person parameter can be eliminated in the dichotomous
Rasch model and then the item parameters can be estimated independently of the
person parameters. This is because the Rasch model has sufficient statistics for its
parameters. Because the non-Rasch models do not have such sufficient statistics, it is
not possible to separate the estimation of the item and person parameters in the same
way. Therefore, some other assumptions or constraints are required. One approach is
to assume a distribution of the person parameters, such as normal, and impose it as a
constraint in the estimation. Another approach is to place a constraint on the observed
distribution of total scores. In any case, these methods involve first estimating a set
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of item parameters, then estimating a set of person parameters given the estimates
of the item parameters, and then returning to the estimates of the person parameters,
and so on, until the estimates converge. In many cases, all estimates do not converge
and some upper limit on an estimate of an item difficulty parameter or discrimination
parameter may be imposed.

These methods of estimation may also be used with the Rasch model and are
used in many Rasch model software packages. RUMM2030 uses a particular kind
of conditional estimation which does eliminate the person parameters in the process
of estimating the item parameters. In this method, the conditional responses to pairs
of items are essential elements of the estimation. The method is described in more
detail in Andrich and Luo (2003).

Exercises

Describe, in one paragraph each, two differences between the Rasch and non-Rasch
models used for analysing items with ordered categories.
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Chapter 29
Review of Principles of Test Analysis
Using Rasch Measurement Theory

The case for applying the Rasch model arises from the requirement of invariance of
comparisons within a specified frame of reference, of a particular property of objects
(individuals) relative to the stimuli (instruments) which manifest that property, and
vice versa. This requirement, and meeting it, can be said to lead to a Rasch Mea-
surement Theory (RMT). This theory might be compared and contrasted to Item
Response Theory (IRT) and to Classical Test Theory (CTT) in different ways. In
this book, RMT is presented as an elaboration of many of the principles, explicit or
implicit, in CTT, but also different in specific ways. It is also presented as different
from IRT which is based primarily on principles of modelling responses rather than
a priori requirements.

Following a brief review of the principles of RMT, this chapter summarizes the
approach within RMT to consideration of item and threshold locations and tests of
statistical fit between responses and the Rasch model. In doing so, we stress a point
made by Duncan (1984):

The Rasch model… does not revoke the criteria scientists normally cite in deciding whether
right variables have been measured. (pp. 398–399)

In parallel, in applying Rasch measurement theory, scientists must also not revoke
criteria they normally cite in applying statistical and empiricalmethods and principles
of measurement that must apply. In summary, the fit to the Rasch model is taken as
a necessary, but not sufficient, condition, to achieve measurement.

Invariance of Comparisons and RMT

An excerpt of Rasch’ specification of the requirement for invariant comparisons is
shown below:

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; …
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Symmetrically, a comparison between two individuals should be independent of which par-
ticular stimuli within the class considered were instrumental for comparison; …

(Rasch, 1961, p. 332)

Table 29.1 shows a frame of reference of a class of stimuli comprising an instrument
and a class of persons (individuals) to be compared using the instrument. In social
science assessment, the stimuli above are generally referred to as items.

In addition to a well-defined class of persons which is to respond to a well-
defined class of items that form an instrument, the frame of reference includes the
specifications of the relevant conditions for the administration of the items to the
persons, for example, the time available for responding to the instrument, and so on.

The well-defined class of items includes all the features that make the set of items
valid for assessing the intended variable. In the assessment of variables in education,
psychology and other social sciences, this means that the items are relatively homo-
geneous in content, but have meaningful differences in difficulty or intensity. Rasch
summarized this relationship as follows:

Altogether these experiences – limited as they are to intelligence tests and attainment tests
– suggests that once items have been constructed with an eye to uniformity of content, but
variance in difficulty – which may even cover complexity – then there is a fair chance that
they on the whole fit well into the model of simple conformity. (Rasch, 1960, p. 125)

Then, the comparisons referred to are with respect to a variable characterized by a
real number for persons and a vector of real numbers for items, with the number of
elements in the vector depending on the number of ordered categories for an item.
With dichotomous items, there is only one value for each item. The variable indicates
more or less of some property, also referred to as a latent trait or construct, and the
comparisons are with respect to this property. In Table 29.1, the value of an item,
which characterizes its relative difficulty, is designated δi and the value of a person,
which characterize his or her relative proficiency, is characterized by βn .

Table 29.1 A frame of reference

Response
Random variable

Stimulus Ai

Value δi

Xni = xni Xni A1 A2 A3 … Ai … AI

O1 x11 x12 x13 x1i x1I

O2 x21 x22 x23 x2i x2I

O3 x31 x32 x33 x3i x3I
.
.
.

Person On On xn1 xn2 xn3 xni xnI

Value βn

.

.

.

ON xN1 xN2 xN3 xNi xN I
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Rasch’s specificationof invariance as a requirement in a probabilisticmodel results
in the class of Rasch models, and only this class of models. These models are char-
acterized by sufficient statistics for the parameters. In the case of a unidimensional
model for responses in ordered categories (polytomous responses), the general form
of the model can be written as

Pnix = P{Xni = x;mi , βn, (δi )} = [exp(ψxi + xβn)]/γni , (29.1)

where x ∈ {0, 1, 2, . . . ,mi } is an integer variable for themi+1 successive categories,
βn is the location of person n, ψxi = −∑x

k=0 δik , (δi ) = δik, k = 0, 1, 2, . . . ,mi is
a vector of mi thresholds of item i where, for notational convenience, δi0 ≡ 0, and
γni = ∑mi

x=0 [exp(ψxi + xβn)] is the normalizing factor. It is simply the sum of the
numerators and ensures that the sum of the probabilities is 1.

The category coefficientsψxi can be reparameterized so that the threshold param-
eters are deviations from the location of the items giving

δik = δi + τik; τik = δik − δi , (29.2)

where
∑mi

k=0 τik = 0 and where for notational convenience again, τi0 ≡ 0.
Then, the model takes the form

Pnix = P{Xni = x;mi , βn, δi , (τi )} = exp[κxi + x(βn − δi )]/γni , (29.3)

where κxi = −∑x
k=0 τik and where in proficiency assessment, δi can be interpreted

as the overall difficulty of item i. In general terms, δi is referred to as the location of
the item on the variable or the continuum.

In the case of a dichotomous item, where mi = 1, there is only the one threshold
δi1 = δi and the model specializes to

Pnix = P{Xni = x;βn, δi } = exp[x(βn − δi )]/γni . (29.4)

We note that the integer scoring for the polytomous case does not arise from
equidistant successive thresholds. Instead, it arises from a common discrimination
at all thresholds.

Total Score as the Sufficient Statistic

A characteristic feature of the requirement of invariance is that the total score of a
person, on the items that the person has responded to, is the sufficient statistic for
the estimate of the person parameter. Sufficiency has two implications. First, that the
person estimate can be characterized by a single parameter, the estimate of which,
β, is a linearization of the total score. It also means that if the items conform to the
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model, that is, they conform to a probabilistic Guttman structure reviewed below, and
there is no information in the pattern of responses. Second, it implies that the item
parameters can be estimated independently of the person parameters, and therefore
independently of any person distribution. For example, unlike the estimation with
many other models, there is no need to assume the person distribution is normal. Of
course, as indicated below, for other properties of the theory and for inferences that
can be made, in any data set analysed the locations of the persons and items need to
be reasonably well aligned. Achieving such an alignment is part of the specification
and articulation of the frame of reference, and part of applying usual criteria for
statistical, empirical and measurement principles.

Dichotomous Items: The Probabilistic Guttman Structure

In the earlier chapters,we considered in somedetail theGuttman structure onmanifest
responses in which the relative difficulties of items and persons define the structure.
It will be recalled that in the Guttman structure, if person n has a greater score than a
second person l, then person nwill have positive responses on all the items on which
person l has positive responses, and in addition, positive responses to the next most
difficult items up to n’s total score. This structure, which is deterministic, leads into
the implication of relative difficulty of items in the Rasch models.

One of the consequences of theRaschmodel is that, when the items have a range of
difficulties, the responses form a probabilistic, rather than a deterministic, Guttman
structure. In the case of dichotomous items, let person n with location βn have a
probability pni of providing a positive response to item i with location δi . Then, the
probabilistic Guttman structure has the following implications:

(i) If for a second item j, δ j < δi , then pnj > pni . That is, the same personwill have
a greater probability of a positive response to the item with the lower location.

(ii) If for a second person l, βl < βn, then pli < pni . That is, the person with the
lower location will have a smaller probability of a positive response to the same
item.

We return to the further implication of this structure for the relationship among
items.

Reasons for Multiple Items in Instruments

Most instruments in the social sciences are composed of multiple items. Responding
to multiple items provides a kind of replication of responses of each person, and
replications contribute to both precision of person estimates and to the validity of
the instrument in assessing the required variable (e.g. proficiency or attitude).
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In principle, the effect of multiple items applied to each individual is equivalent
statistically to estimating the parameter of each individual frommultiple replications
of responses to a single item. Of course, it would be pointless substantively and
statistically to ask a person to respond to the same item on multiple occasions, and
therefore different items assessing the same variable are used. However, in terms of
precision, the effect of having more than one item is equivalent to having that many
replications. By analogy, the precision of the estimate of the mean of a distribution
increases with the number of independent replications, commonly referred to as
the sample size. Precision can also be understood as being potentially enhanced
because with more items, there are more potential score points. For example, with
just one dichotomous item, persons can be placed into just two categories; and with
10 dichotomous items, persons can be placed potentially into 11 categories. It needs
to be appreciated that the precision is increased only if the items are operating as
required, in particular, that they are operating independently. For example, if two
dichotomous items have identical responses for all persons, then the persons would
be placed into just two categories and either one of the items would be redundant
relative to the other.

Validity is also enhanced with an increase in the number of items because each
item assesses a somewhat different aspect of the same variable, or assesses the same
variable in a slightly different though still relevant way, or some of both. Assessment
restricted to only one way with one item may provide information that is too narrow
for the kinds of decisions that need to be made from the assessments. Of course,
there are situations where one response to one item can be decisive, and situations
where multiple items do not enhance the validity of the assessment.

Evidence from the Location and Thresholds of Items

Construction of Items

The construction of items, both in content and in response format, needs to be carried
out carefully in relation to the variable to be assessed in the frame of reference.
Here, we note the quote from Duncan (1984) above as particularly relevant. Poorly
constructed items cannot be saved by a statistical analysis using the Rasch model.
Indeed, the model will just expose the problems with the items. In the construction
of these items, understanding the features that make different items more or less
difficult and constructing items accordingly is a central element.

However, the starting point for many analyses of instruments according to the
Rasch model is an existing instrument which was refined on the basis of CTT. One
rationale for doing so is that in both CTT and RMT, the total score characterizes a
person—in CTT by definition and in RMT as a consequence of the model.

Although many instruments constructed with CTT analyses are likely to show
general fit to the Rasch model, potentially they can also show deviations of one kind
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or another. One of the reasons for both possibilities (fit andmisfit) is that the locations
of items and thresholds, central to the Rasch model, do not exist in the basic true
score equation of CTT.

In addition to the role of the total score, another common condition between CTT
and RMT is that items and thresholds discriminate equivalently. The location of a
dichotomous item can be considered its threshold. Then, the discrimination in RMT
is characterized by the slope of the item characteristic curve (ICC) in dichotomous
items and the latent threshold characteristic curves (TCC) with ordered category
items, which is a kind of average discrimination at all the thresholds among all the
items. It is not formalized in this way in CTT, but the assumption that the items have
a common latent correlation is equivalent to having the same discrimination.

Therefore, generally, and especially with dichotomous items, if items of an instru-
ment are selected based onCTT, inwhich itemswith low discrimination aremodified
or eliminated, then they are likely to fit the Rasch model. However, because items
are selected based on having a discrimination which is greater than some minimum,
some itemsmay have a very high discrimination compared to themajority of retained
items. In this case, these highly discriminating items are likely to show misfit in a
Rasch model analysis by over-discriminating relative to the average discrimination
of the remaining items. These over-discriminating items in turn might induce some
of those with minimum discrimination to under-discriminate relative to the average
discrimination. Essentially, the RMT criterion is somewhat tighter, and symmetrical,
compared to the CTT criterion which is asymmetrical in studying the discrimination
of items.

Implications of Item Locations—Dichotomous Items

One of the specific implications of the probabilistic Guttman structure of the Rasch
model, and an advantage of RMT over CTT, is the relationship among the loca-
tions of the items. Statistically, the relative locations of the items are a function of
the number of persons who score positively on the items. Wherever possible, this
relationship needs to be more than merely a reflection of the relative frequency of
positive responses. That is, the relative frequency should reflect a substantive rela-
tionship among items in which different items have an inherently and theoretically
greater demand of the variable than other items.

In awell-designed test, the itemswith different locations, difficulties in proficiency
assessment, should be generatedwith a hypothesis regarding at least the rank ordering
of the locations. Although item locations are not part of CTT, experienced item
writers in proficiency assessment nevertheless construct instruments with a range of
item difficulties. Not only do these relative difficulties reflect an inherent hierarchy
of proficiencies, but having a range of difficulties is sound assessment practice, with
the easy items being presented earlier in the test.

An example might be helpful. Figure 29.1 shows an example of three items from a
test administered by the State Department of Education in Western Australia as part
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Fig. 29.1 Three arithmetic items of different difficulties with an inherent hierarchy of proficiency

of its Monitoring Standards Program in government schools in 2005.1 The reason
that the probabilistic Guttman structure would be present with these three items is
that there is an order of proficiency, with success on either of items 36 or 32 implying
having achieved the proficiency inherent in item 30. Thus, item 36, which requires
proficiency in division, implies having already understood the concept of subtrac-
tion which is taught earlier, and item 32 which requires proficiency in subtraction
implies having already understood the concept of addition tested in item 30 which is
taught earlier again. Ideally, as indicated above, items with different locations (diffi-
culties) would be generated deliberately based on the understanding of the variable
of assessment. In the case of proficiency assessment in schools, this understanding
would include the curriculum and relevant syllabuses. Such an examination of the
order of the item difficulties can also be conducted post hoc rather than the order
hypothesized in advance. A post hoc examination is better than no examination at
all. If the ordering of the items is very different from that predicted or explained post

1Reproducedwith permission from the School Curriculum and Standards Authority for assessments
originally developed for the Department of Education, Western Australia.
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hoc, then some substantive explanation based on a qualitative analysis is required
for the unexpected results.

Ordered Category Items and Implications of Threshold Order

Ordered category items have an average difficulty of their thresholds, δi in Eq. (29.3),
and these may be ordered in the same way that dichotomous items are ordered.
Sometimes, however, in the context in which they are used, they are not ordered and
there is not a substantive basis for the ordering. Often in Likert-style questionnaires
this is the case. However, the hypothesis of the order of the location of thresholds
within items with ordered categories is built into the format of the items and into the
structure of the Rasch model.

An example in the application of a proficiency assessment, this time in health
outcomes, is illustrated below. The example is the assessment of muscle tone shown
in Andrich (2011) where the items are different functions of different limbs. In the
illustrated example, assessments were eight ratings (items) of the parts of the lower
limbs (hip adduction, knee extension, knee flexion and foot plantar flexion) for each
side. The total score was taken as a summary of the muscle tone of the lower limbs
for each person.

The assessment design was in ordered categories with the format shown in
Table 29.2. In this example, it might not be expected that the average difficulties
of the thresholds will be different. This indeed proved to be the case. However, there
is an expected ordering of the threshold estimates. Importantly, from the point of
view of understanding what it means to have more muscle tone, the hypothesis of
threshold order was not confirmed between thresholds 3 and 4. Figure 29.2 shows
the small reversal for item 5. That there is an anomaly between these two thresholds
was confirmed by all items showing the same small reversal. It is evident that the
proficiencies of catch and of normal tone were not distinguished in the assessments.
In this case, all aspects of the assessment, from the definitions of catch and normal
tone to the interpretation and implementation by the assessors (clinicians), need to
be examined.

In developing items which have ordered categories, the structure of the ordering
of the categories and the check on the empirical ordering needs to be as rigorous as
that of the content of the items. Clearly, the ordering in the example is based on a
presumed understanding of different levels of muscle tone and muscle rigidity. The

Table 29.2 Format of the assessment of muscle tone
Limb rigid
(minimal
movement)

Increased tone
(restricting
movement)

Increased tone
(easily flexed) Catch Normal tone

0 1 2 3 4

δ1 δ2 δ3 δ4 Thresholds
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Fig. 29.2 The category characteristic curves in the assessment of muscle tone

ordered categories are intended to reflect what it means to have more of the property
(in this case muscle tone), and if the categories are not working as intended, then it
is a reflection on a lack of some aspect of this understanding.

To be more explicit, when there are disordered thresholds, as in the example,
a qualitative explanation regarding the operation of the format needs to be sought
and hypothesized, and ideally tested empirically. Although how the thresholds are
disordered can give a clue as to the possible explanation, why the threshold estimates
are disordered cannot be explained solely from the statistical analysis. It must be
recognized that the probability of a response in any category is a function of all
thresholds, and therefore the responses in all categories affects all threshold estimates.

Onewayof overcomingdisordered threshold estimates inmanycases is to collapse
adjacent categories, that is, score two adjacent categories the sameway and reduce the
maximum score of the item accordingly. However, simply collapsing categories to
overcome the disordered thresholds may not replicate in another sample. Therefore,
collapsing categories, and thereby obtaining ordered threshold estimates, should be
taken as generating a hypothesis regarding a clarification and possible redefinition of
the category. The hypotheses generated might then lead to (i) better distinguishing
in the definition of the categories or (ii) if it is considered that there may be too many
categories, to redefining the categories into a smaller number of categories. This new
category system then needs to be checked empirically. The evidence regarding the
ordering of thresholds within ordered category items is based on an a priori structure.
This evidence is different from the evidence that comes from the statistical tests of
fit.
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Assessing the Fit Between Responses and the Rasch Model

The statistical evidence of fit is directed at checking if the responses are consistent
with each other as summarized by the Rasch model.

Meaning of Fit to the Rasch Model

The property of invariance and sufficiency of the total score only holds for the data
if the observed responses fit the model. We stress that the criterion of invariance, a
criterion that provides measurements, comes before any data are collected—we take
it as a requirement of the responses.

Constructing items for a frame of reference that fit the Rasch model is not an
end in itself—it results from the intention to have invariance of comparisons and
indirectly, to have the total score characterize each person. In addition, fitting the
Rasch model is not sufficient to establish the validity of an instrument. As indicated
above, the items need to be substantively valid, and in the case of items with ordered
categories, the threshold estimates need to take on their natural order.

To say that responses fit the Rasch model is shorthand for two implications about
the responses. First, it is shorthand for saying that the responses provide invariant
comparisons and that their total scores characterize the persons. Second, it also
implies that the items work together and reinforce the evidence from each other. No
item can fit the Rasch model on its own. An item fits the model to the degree it is
working consistently with the other items analysed in the data set.

Thus, fit the Rasch model is shorthand for responses of the items were consistent
with each other as expressed by the Rasch model to provide invariant comparisons
which ensure that total scores characterize the persons.

However, even this expanded statement needs to be qualified to indicate that fit
to the model is at a particular level of precision. The precision in this case refers
primarily to the number of persons and the spread of the persons. However, it is
also affected by the number of items, the number of categories and the alignment of
persons to the thresholds. Thus, (i) the greater the number of persons, (ii) the greater
the number of items, (iii) the greater the number of categories and (iv) the better the
alignment between the persons and items, the greater the potential precision. Then,
the greater the precision of estimates, the greater the power of the test of fit, that is,
the more likely it is that deviations from the model will be identified.

With respect to the sample size, with a very small sample any set of data will fit
statistically; on the other, because no model can describe a particular data set to an
infinitely high level of precision, a large enough sample can always be found to show
that the data do not fit the model.

Because of this effect of the sample size on the power of the test of fit, if the
sample is very large it might be useful, for this general check of fit, to reduce the
sample size. Perhaps a sample size of approximately a factor of 10–20 persons for
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each threshold for the set of items will suffice. Thus, with 15 items each with 3
categories (2 thresholds each), and therefore a total of 30 thresholds, a sample of the
order of 15 * 30= 450 persons can be used. However, the full sample should be used
to establish the parameter estimates.

It is necessary to have a reasonable spread of persons relative to the thresholds of
the items to achieve power in the test of fit. This ensures that there are opportunities
for improbable responses to occur. If all persons had a similar location, and thesewere
well aligned to the items, then responses do not have a range of probabilities. The
extreme case of similar probabilities of responses is when persons are all similar in
value and well aligned to the difficulty of a dichotomous item. Then, the probabilities
of both responses are close to 0.5, and it is impossible to decide if a response is
unlikely, and therefore misfits in some sense.

With respect to the spread of the persons and the test of fit, the important index
is that of person separation. In the case that the person distribution is well aligned
to the threshold distribution, it is analogous in construction to the CTT index of
reliability. In the case that its assumptions are met, traditional true score reliability
of CTT is well estimated by coefficient alpha, and if the persons are well aligned to
the thresholds of the items, then the person separation index from the Rasch model
as defined in this book is similar in value to the value of coefficient alpha. When they
are not aligned and there are floor and ceiling effects rendering a violation of the
assumptions of CTT, then these reliability indices diverge. These indices increase
systematically with the number of thresholds within an item as well as with an
increase in the number of items, providing the items and thresholds are functioning
as required. With well-aligned thresholds and persons including a spread of items
that covers the range of the person locations, it is possible to obtain a value greater
than 0.80 for these reliability indices with 20 or so thresholds (e.g. 20 dichotomously
scored items or 5 items with 5 ordered categories and 4 thresholds each). A value of
the order of 0.80 for this index gives excellent power for the test of fit. A value of
the order of 0.5 gives very weak power in detecting misfit.

As indicated above, no item can fit the Rasch model on its own. Even two items
cannot be assessed for fit. It is necessary to have at least three items to test the fit.

Therefore, items fit the Rasch model is also shorthand for the items’ responses
operate consistently with each other in reflecting a single variable as summarized
by the Rasch model.

Complementary-wise, this item does not fit the Rasch model is shorthand for this
item’s responses do not operate consistently with the responses of the other items in
reflecting a single variable as summarized by the Rasch model nor invariantly across
the continuum.

Identifying Misfitting Items

It is expected that in carrying out an analysis with the Rasch model, there are the-
oretically and empirically hypothesized reasons as to why these items are placed in
an instrument and why they should be operating together to assess a single variable.
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Then, the purpose of analysing a set of data with the Rasch model is to check if the
items do fit the model, recognizing that fitting the model is shorthand for checking
for the invariance of comparisons, the sufficiency of the total score and for items
operating with each other as summarized by the Rasch model. If the data do fit the
model, and there is other evidence of the validity of the instrument’s assessment of
the intended variable, then all the benefits of measurement follow. For example, the
Rasch estimates are linear, subsets of items will estimate the same parameter for each
person and so on.

The decision that an item does not fit well and that it needs further consideration
needs to bemade on the basis ofmultiple pieces of evidence, statistical and graphical,
and not merely on the basis of one statistic. Because there should be substantive and
theoretical reasons for the inclusion of every item in an instrument, two consequences
follow. First, it should be expected that only a few items will not fit the model, that
is, do not operate consistently with the majority, perhaps something of the order of
10–15%. If many more items than this proportion misfit, it suggests an immediate
examination of the construction, theory and administration of the items, taking into
account which of the items do not fit, and the clues that the fit statistics give to
the sources of the misfit. All features of the assessment need to be considered in
deciding the sources of the problems, and these sources are outside the statistics
themselves. For example, evidence of multidimensionality, response dependence,
discrimination and so on, which can be statistical manifestations of poor instructions,
poorly constructed items, inconsistent items, unclear marking keys and so on, needs
to be examined from the perspective of the intended and required assessment.

Second, if only a few items misfit, then an attempt needs to be made to explain
qualitatively the reasons for misfit of each of these misfitting items. The Raschmodel
analysis simply indicates that an item is not working consistently with the majority
of other items, but the statistics cannot reveal the substantive reason why the item
misfits. Much can be learned from items that operate differently from the original
expectation that they will fit.

Dealing with Misfitting Items

As indicated above, every item deemed to misfit relative to the operation of the
majority does so for one or more reasons, and these need to be identified. Sometimes
this might be challenging; and if it cannot be used in the particular context, there may
be no option but to simply discard the item. For example, in a linking design where
two groups of persons are administered different items with some common items, it
is important that the common items do not show differential item functioning (DIF)
among the groups of persons, which is a form of misfit. If one of these common
items does show misfit in a particular data set, the item may need to be eliminated
from the particular application.

However, the source of the DIF or other misfit should be studied and understood
and the understanding used to ensure that such sources of DIF are controlled in
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future test designs. The attempted explanation of misfit should be a hypothesis for
future empirical testing. Dealing with misfit statistically is no match to anticipating
problems and removing them in the design of the items and their administration.

In contrast to understanding, the source of the misfit, deleting items routinely and
justifying the deletion of items only on the grounds of statistical misfit, is not con-
sistent with either RMT or with sound instrument design and measurement practice.

Deleting many items, for example, 20% of the items or more lends itself to two
inferential problems. First, it capitalizes on chance, and second it can distort the
assessment so that the intended variable is not assessed. First, because of capitalizing
on chance, the same item parameter estimates are unlikely to be found in another
sample of responses and it is unlikely that the responses will fit themodel. Second, by
deleting many items from the large pool of items, which means retaining just a small
subset of items that do operate consistently with each other, it is likely that many
aspects of the variable intended to be assessed will not be assessed, thus distorting
the original, intended variable of assessment.

Although the Rasch model can be used as a criterion to which data should fit to
provide invariant comparisons, the responses must nevertheless subscribe to other
substantive and methodological principles of scientific research, in particular, prin-
ciples of statistical inference and reference to the substantive variable to be assessed.
Not capitalizing on chance and not distorting the original substantive variable are
two of these principles. Here again, the quote from Duncan (1984) at the beginning
of the chapter is particularly apt.

Rasch (1960) set the precedent for careful analysis and test construction following
his first two applications of the dichotomous model of Eq. (29.4). He derived the
model from his analysis of reading tests, and then applied it to two sets of data he
had at hand. One was from the Raven’s test of progressive matrices, a well-known
non-verbal intelligence test; the second was from a general test of intelligence. The
former fitted the model to a very satisfactory degree of precision, but the latter did
not. However, in this second case, rather than discarding items, or complicating the
model, Rasch discerned from a study of the items that they appeared to fall into four
different classes. When he showed these results, and their implications for not using
a single summary score, to the original users of the test, they decided to reconstruct
the original test into four new tests with each test having only one kind of the original
kinds of items,whichwere intended to fit the dichotomousRaschmodel. In particular,
the total score on each new test would retain all the information in characterizing a
person on that test. Thus, with all four tests, each person would be characterized by
four proficiencies, not just one. Of course, within each test, the multiple items assess
their own, finer aspect relative to the original test. No doubt, the performances on
the four tests were correlated, but that is a different matter.

This reconstruction of the original test meant that all four aspects of that test
continued to be assessed, but each aspect was assessed by its own test. Had Rasch
proceeded to delete many items based on fit statistics alone, he is not only likely to
have finished with a subset of items that might not have shown invariant properties
in another sample, but also to have ended up with only one of the four original
aspects being assessed. This outcome is most likely to have been the case had one
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of the aspects had more items than each of the other aspects. In such a situation,
this majority of items would define the most common variable and the items from
the other three aspects would have shown misfit relative to this majority. Clearly, a
selection of the majority that fit is likely to be from one aspect, which would have
violated the substantive validity of the intended assessment.

Thus, fit statistics, which need to be considered in conjunctionwith each other, can
only point to where there is an internal inconsistency with respect to the assessment
of a single variable. They cannot explain the substantive reason for that internal
inconsistency. Sometimes this inconsistency might be statistically significant but the
item may be retained because the information it provides outweighs the effect of
the statistical misfit. However, in each case that an item is deemed to misfit (taking
account of the sample size, anymisalignmentwith persons, and the like), a substantive
explanation needs to be at least hypothesized as to why it misfits. Then, whether it
is modified, retained or discarded, a substantive justification, outside the statistical
analysis, needs to be provided. To the degree that the item misfits, to that degree it
detracts from invariance of comparisons and from the total score being a sufficient
statistic for the person estimate.

Separating the Scale Construction and Person Measurement
Stages

The separation of the person parameters from the item parameters in estimation in
the Rasch model is an important mathematical and statistical property that provides
the property of invariance of comparisons. However, it can be, and even needs to be,
seen also as an empirical and experimental characteristic. In principle, the instrument
construction stage should be conceptually, and often empirically, separated from
the person measurement stage. The construction itself may require more than one
iteration. Often, and often unfortunately, they are carried out from the same set of
data.

Sampling of persons to help construct an instrument may be different from the
sampling of persons who are to be assessed. To provide the evidence to check the
operation of items, it is necessary to have persons whose responses contribute to
relevant information. Thus, in the study of items in a test of proficiency, it is important
to have more and less proficient persons so that the persons in this sample contribute
the same information across the relevant range of the difficulties of the items. Thus,
ideally, onewould try to obtain persons across thewhole required range of proficiency
and as close as possible to being uniformly spread. Unless deliberately selected this
way, samples are more likely to have a unimodal rather than a uniform distribution.
If they have a unimodal distribution, such as the normal, they provide much more
information about items in around the mean of the persons than at the tails of the
distribution.
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When the range of the proficiencies of the variable to be assessed is relatively large,
another challenge, but one which can also be exploited, presents itself. Because it is
pointless to administer items that are very easy to students who are very proficient,
and items that are difficult to students who are not very proficient, some kind of
tailored or adaptive testing and linking design needs to be constructed. Then, the less
proficient persons are administered the less difficult items, the moderately proficient
the moderately difficult ones with some overlap, and the highly proficient the most
difficult items, again with some overlap. Then, the common items must be checked
for DIF among the proficiency groups. This was the original challenge that Raschmet
and which led to his studies reported in Rasch (1960). With modern computerized
administration of tests, this becomes a very viable approach.

In addition, if one needs to check for DIF with respect to some grouping criterion,
say language background, then for the stage of scale construction there should be a
similar number of persons in the sample in each group. This similarity of numbers is
required because the information is in the sample, and in principle, the persons who
might have smaller numbers in the population should not contribute less information
to the checking of DIF. Then, for the person measurement stage, the item values can
be anchored to those estimated from similar sample sizes, and the responses of all
persons assessed.

Summary

In summary, because the Rasch model arises from a requirement that is independent
of any particular data set, and in particular, it is not applied simply tomodel a data set,
misfit of the data to the model implies that the data do not meet the requirement. This
requirement is that the responses to the items, within a defined frame of reference,
provide a particular kind of invariance. The responses will provide the invariance
only if the data fit the model.

The challenge in social measurement is to construct items of instruments which
do fit the model. However, fitting the model is not a sufficient condition to ensure
that the instrument assesses the intended variable. Therefore, any statistical misfit
needs to be considered in conjunction with the substantive variable intended to be
assessed. Because every item is chosen for the reason that it assesses the relevant
variable, every item deemed to misfit needs to be treated as an anomaly that needs
to be explained in terms of the construction or administration, or some other feature
of the item, perhaps in relation to the other items such as local dependence.

In ordered category items, the empirical ordering of the categories is assessed by
the ordering of threshold estimates, and not by any statistical test of fit. However,
once again, if the empirical ordering is not consistent with the intended ordering, it
is an anomaly that needs to be explained.

Finally, the statistical evidence of misfit using probabilities such as those asso-
ciated with the chi-square statistic needs to be understood as providing evidence to
consider in assessing an instrument, not for mechanistic interpretation. For example,
a chi-square probability of 0.01 for an item might imply different considerations in
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different circumstances. Thus, if all the other items which have a greater probabil-
ity than 0.01 jump to have values greater than 0.11, then this item and the other
items which have a lower probability might be studied more closely. On the other
hand, if the probabilities of the other items which have a greater probability than
0.01 increase smoothly, and the greatest jump to the next lowest probability for a
chi-square for an item is say 0.005, then that item might receive less consideration
as showing misfit. In every case, where some concerns with misfit are identified, the
structure, format and content of the item relative to the other items and the persons
to whom the instrument was administered, should be considered and the item not
deleted simply, and mechanistically, on statistical grounds.

Gigerenzer (1993) laments the mechanistic application of significance testing in
which some hybrid logic of Neyman–Pearson and Fisher, with which neither would
have agreed, is prevalent in the social sciences.

Statistical reasoning is an art and so demands both mathematical knowledge and informed
judgment. When it is mechanized, as with the institutionalized hybrid logic, it becomes
ritual, not reasoning. (Gigerenzer, 1993, p. 335).

Thus, use all the evidence and do not use significance tests or any other criterion of
fit in a mechanistic way.

Exercises

Exercise 8: Writing up a Rasch model analysis in Appendix C.
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Appendix A
Test Items for Chapter 3 and Solutions

Ray School, Chicago, 1986

Name ______________________________________ Date _____________

Science Exam

Please answer the following statements with a ’T’ if it is true or an

‘F’ if it is false

1. ______ All living things are made of protoplasm.

2. ______ Cells make more of themselves through cell division.

3. ______ There are 40 pairs of chromosomes in the common cell.

4. ______ Plants and plant cells are not alive.

5. ______ Groups of the same types of cells form together to make ssue.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6. List four characteris cs that living things have that make them living.

1. _____________________________

2. _____________________________

3. _____________________________

4. _____________________________

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Please circle the best answer to each of the following ques ons.

7. Chromosomes are found

A. In the cytoplasm

B. In the nucleus

C. In the plasma membrane.
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8. A er cell division, each of the cells is

A. 1/4 the size of the original cell.

B. Twice the size of the original cell.

C. 1/2 the size of the original cell.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9. Please select and label the three major parts of a cell from the words listed

Nucleus cytoplasm plasma membrane protoplasm

10. Extra credit

Draw and label cell division taking place. Iden fy: chromosomes, asters, spindle, nuclei.
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Name ______________________________________ Date _____________

Science Exam Solutions

Please answer the following statements with a ’T’ if it is true or an

‘F’ if it is false

1. ___T___ All living things are made of protoplasm.

2. ___T___ Cells make more of themselves through cell division.

3. ___F___ There are 40 pairs of chromosomes in the common cell.

4. ___F___ Plants and plant cells are not alive.

5. ___T___ Groups of the same types of cells form together to make tissue.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6. List four characteristics that living things have that make them living.

1. _____They breathe_____________

2. _____Respond to stimuli_________

3. _____Eat______________________

4. _____Give off waste_____________

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Please circle the best answer to each of the following questions.

7. Chromosomes are found

A. In the cytoplasm

B. In the nucleus

C. In the plasma membrane.

Appendix A: Test Items for Chapter 3 and Solutions 345



8. After cell division, each of the cells is

A. 1/4 the size of the original cell.

B. Twice the size of the original cell.

C. 1/2 the size of the original cell.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9. Please select and label the three major parts of a cell from the words listed

Nucleus cytoplasm plasma membrane protoplasm

10. Extra credit

cytoplasm

nucleus
plasma membrane

Draw and label cell division taking place. Identify: chromosomes, asters, spindle, nuclei.

nuclei

asters

spindle

chromosomes

346 Appendix A: Test Items for Chapter 3 and Solutions



Appendix B
Chapter Exercises Solutions

B.1 Chapter Exercises Solutions

Chapter 1

a. Ratio,
b. Nominal,
c. Ordinal,
d. Ordinal,
e. Interval.

Chapter 3

1. Item 7: facility = 38, discrimination = 0.72
Item 8: facility = 26, discrimination = 0.35
Item 8 is more difficult and Item 7 discriminates more,

2. 11.24,
3. Mean = 6.68, SD = 4.06, SE = 1.82,
4. 8.26–14.23,
5. 13.18.

Chapter 4

1.

s21 s22 s23 s24 s25 s26 s27 s28 s2x
0.11 0.26 0.19 0.24 0.24 0.58 0.61 3.84 16.48
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2. 0.72.
3. Highly acceptable for a teacher-made test. If a student’s score is interpreted with

other information about the student, then it might be very useful.
4. For example, a Year 12 external examination in mathematics used for university

entry in Australia. This examination is based on a very tightly controlled syl-
labus understood by teachers, and therefore would show excellent content va-
lidity. It should have reasonable predictive validity because students would need
to have the knowledge of the content to proceed to studies in the same area at
university level. If item level data are used to calculate coefficient a, the
expected reliability would be at least 0.8.

Chapter 5

1.

Items 1 3 4 5 2 6 7 8 R F CF

Person Maximum
score

1 1 1 1 1 2 2 6

7 0 0 0 0 0 0 0 0 0 2 2 Lower group 9

18 0 0 0 0 0 0 0 0 0

15 1 0 0 0 0 1 0 0 2 3 5

19 1 0 0 1 0 0 0 0 2

23 1 1 0 0 0 0 0 0 2

8 1 1 0 0 1 0 0 0 3 1 6

2 1 0 0 0 1 0 0 2 4 3 9

14 1 1 1 1 0 0 0 0 4

20 1 1 0 1 0 1 0 0 4

11 1 1 1 1 0 1 1 0 6 4 13 Middle group
712 0 1 0 0 1 1 1 2 6

24 1 1 1 1 0 1 0 1 6

25 1 1 1 1 0 1 0 1 6

5 1 1 1 1 0 1 1 1 7 1 14

1 1 1 1 1 1 1 1 1 8 2 16

17 1 1 1 0 1 2 2 0 8

9 1 1 1 1 1 2 2 0 9 3 19 Upper group 9

10 1 1 1 1 1 1 2 1 9

21 1 1 1 1 1 1 1 2 9

6 1 0 1 1 0 1 1 5 10 1 20

4 1 1 1 1 0 2 1 4 11 2 22

22 1 1 1 1 1 2 1 3 11

13 1 1 1 0 1 2 1 5 12 1 23

3 1 1 1 1 1 2 2 5 14 2 25

16 1 1 1 1 0 2 2 6 14

Total Score 22 19 16 16 11 25 19 39

Items 1 3 4 5 2 6 7 8

% maximum 88 76 64 64 44 50 38 26
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Score

Frequency Distribu on

3.

Items 1 3 4 5 6 2 7 8 R R*

Person Maximum score 1 1 1 1 2 1 2 6

7 0 0 0 0 0.00 0 0.00 0.00 0.00 0.00 Lower group 9

18 0 0 0 0 0.00 0 0.00 0.00 0.00 0.00

15 1 0 0 0 0.50 0 0.00 0.00 2.00 1.50

19 1 0 0 1 0.00 0 0.00 0.00 2.00 2.00

23 1 1 0 0 0.00 0 0.00 0.00 2.00 2.00

2 1 0 0 0 0.00 1 0.00 0.33 4.00 2.33

8 1 1 0 0 0.00 1 0.00 0.00 3.00 3.00

12 0 1 0 0 0.50 1 0.50 0.33 6.00 3.33

20 1 1 0 1 0.50 0 0.00 0.00 4.00 3.50

14 1 1 1 1 0.00 0 0.00 0.00 4.00 4.00 Middle group 7

24 1 1 1 1 0.50 0 0.00 0.17 6.00 4.67

25 1 1 1 1 0.50 0 0.00 0.17 6.00 4.67

6 1 0 1 1 0.50 0 0.50 0.83 10.00 4.83

11 1 1 1 1 0.50 0 0.50 0.00 6.00 5.00

5 1 1 1 1 0.50 0 0.50 0.17 7.00 5.17

17 1 1 1 0 1.00 1 1.00 0.00 8.00 6.00

1 1 1 1 1 0.50 1 0.50 0.17 8.00 6.17 Upper group 9

4 1 1 1 1 1.00 0 0.50 0.67 11.00 6.17

13 1 1 1 0 1.00 1 0.50 0.83 12.00 6.33

21 1 1 1 1 0.50 1 0.50 0.33 9.00 6.33

10 1 1 1 1 0.50 1 1.00 0.17 9.00 6.67

9 1 1 1 1 1.00 1 1.00 0.00 9.00 7.00

16 1 1 1 1 1.00 0 1.00 1.00 14.00 7.00

22 1 1 1 1 1.00 1 0.50 0.50 11.00 7.00

3 1 1 1 1 1.00 1 1.00 0.83 14.00 7.83

Total Score 22 19 16 16 12.50 11 9.50 6.50

Items 1 3 4 5 6 2 7 8

% maximum 88 76 64 64 50 44 38 26
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4. DI (Item 2) = 0.45, DI (Item 5) = 0.67, DI (Item 7) = 0.66.
5.

6. Item 7 is the best discriminating item.
Item 5 exhibits a ceiling effect, which means the item does not discriminate well
between the middle and upper groups.
Item 2 is the worst discriminating item. The middle group has the lowest pro-
portion correct score out of the three proficiency groups, a pattern which is very
inconsistent with expectations.

Chapter 6

1. (a) True score (Tv)
(b) The person parameter is the value on a continuum that governs whether or

not the person responds positively or negatively to an item. Therefore, it
explains the performance on the item which assesses a particular variable.
The greater the proficiency relative to the item’s difficulty, the greater the
probability of success.

(c) (i) Only the proficiency of persons, and no other person characteristics,
affects their position on the latent trait.
(ii) Only the difficulty of the items, and no other item characteristics,
affects their position on the latent trait.
(iii) Persons are ordered according to proficiency and items are ordered
according to difficulty on the same, single continuum.

2. (a) Prfxn1 ¼ 1g ¼ 0:90; Prfxn2 ¼ 1g ¼ 0:50; Prfxn3 ¼ 1g ¼ 0:31
(b) This ‘probability’ is a theoretical proportion of the number of times that a

person with a fixed proficiency would answer correctly many items of
exactly the same difficulty.
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3. (a)
Prfx1i ¼ 1g ¼ 0:10; Prfx2i ¼ 1g ¼ 0:23; Prfx3i ¼ 1g ¼ 0:45; Prfx4i ¼ 1g ¼ 0:69;
Prfx5i ¼ 1g ¼ 0:86:

(b)

Chapter 7

1. Item 2,
2. Prfxn1 ¼ 1g ¼ 0:62; Prfxn2 ¼ 1g ¼ 0:38;
3. 0.73,
4. 0.73,
5. The probability is the same. It is independent of the person’s proficiency and

depends only on the relative difficulties of the items.

Chapter 8

The Rasch model formalizes explicitly that the total score is a sufficient statistic for
the person parameter, but only if the responses fit the model. If the responses
deviate from the pattern required by the model beyond the error implied by the
model, then that is evidence that the response pattern cannot really be summarized
by the total score and that the pattern of responses should possibly be examined for
some systematic, that is, non-random effects.

Chapter 9

1. Item 1 = −1.24, Item 2 = 1.24,
2. Item 1 = −2.48, Item 2 = 2.48,
3. Item 1 = 7.52, Item 2 = 12.48.
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Chapter 10

1. (a) 5.92, greater than 0.45,
(b) 6.08, less than 0.55,
(c) 6.00, 0.50 is the best estimate.

2. 0.79.

Chapter 19

1. A paradigm involves the taken-for-granted assumptions in carrying out research
or applications of some area of the field. These assumptions are generally not
made explicit unless they are challenged in some way.

2. The usually unstated assumption in the IRT paradigm is that the model chosen
should fit the data. Therefore, if a simple model does not fit the data, a more
complex model with more parameters is tried.
The assumption in the RMT paradigm is that the Rasch model provides a
criterion for invariance and therefore measurement. In this paradigm, the data
should not only be valid on all other relevant characteristics, but in addition, it
should fit the Rasch model. If the data do not fit the relevant model, then the task
is not to find a model with more parameters that fit the data, but to investigate
the data and improve the instrument.

Chapter 27

(a) −0.50, −0.10, 0.60,
(b)
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(c)

x = 0 Pr{(0, 0, 0)} 0.116

x = 1 Pr{(1, 0, 0)} 0.191

x = 2 Pr{(1, 1, 0)} 0.211

x = 3 Pr{(1, 1, 1)} 0.116

(d)

x = 0 0.183

x = 1 0.301

x = 2 0.333

x = 3 0.183

(e)

x = 1 0.622

x = 2 0.525

x = 3 0.354

(f) yniP ¼ 1, yniC ¼ 1, yniD ¼ 1.

Chapter 28

Sufficient statistic for item and person parameters—PRM has sufficient statistics,
non-Rasch models do not.

Partitioning in forming categories—GRM partitions the frequency distribution
of responses to generate adjacent categories, PRM partitions the latent continuum to
create adjacent categories.
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Appendix C
RUMM2030 Exercises and Solutions

Data sets A, B, C, D, E, F and G can be located at the book’s webpage
[https://doi.org/10.1007/978-981-13-7496-8]

Exercise 1: Interpretation of RUMM2030 Printout

This exercise essentially involves being able to interpret the results from
RUMM2030. The example analysed according to the program is the one that you
analysed by hand in earlier exercises (starting in Chap. 3), so the example is
familiar to you. The test items are in Appendix A.

The exercise involves three distinct tasks given below:

Part A: identifying the relevant statistical information displayed in the computer
printout and reporting this information. This is essentially a descriptive task.
Part B: carrying out some calculations based on the information available from
the computer printout. The task should consolidate some of the key aspects of
Rasch measurement theory.
Part C: interpreting the statistics that are presented in the analysis.

_________________________________________________
RUMM2030 analysis is a very general program and it has features that have not
been included in the output here. This output is edited to include only the material
which has been covered. Nevertheless, you are advised to look through the whole
output which follows.

© Springer Nature Singapore Pte Ltd. 2019
D. Andrich and I. Marais, A Course in Rasch Measurement Theory,
Springer Texts in Education, https://doi.org/10.1007/978-981-13-7496-8
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Part A: Identifying the relevant statistical information displayed in the com-
puter printout.

Summary of the computer output is as follows:

1. Items

1:1 Number of items ________,
1:2 Number of categories per item ______,

2. Sample persons

2:1 Number of persons entered in the data analysis __________,
2:2 Number of persons eliminated for various reasons __________,
2:3 Number of persons retained for analysis __________,

3. Item and proficiency parameter estimates.

Complete the following table for items and proficiencies:

4. Person parameters estimates including fit statistics

Complete the following table for the persons indicated below.
To report the observed response pattern, reorder the items by their difficulty.
Note, we are referring to the ID, the original number allocated to the person, and
be careful to note this. When persons have been eliminated, the original ID
number can be different from the PERSON NUMBER.

Person
ID

Total
score

Proficiency
estimate

Fit
statistic

*Observed response pattern (order
items by difficulty)

3 , , , , , , ,

12 , , , , , , ,

19 , , , , , , ,

*To complete this, you will need to look at the ‘Guttman Pattern’ section in the computer output.

Items Person Scores

Item

Number

Difficulty

îδ

Standard

Error ˆiσ

Raw

Score

Proficiency

Estimate

Estimated

Standard Error

1 2

4 7

8 13
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5. Item parameter estimates including fit statistics.

Complete the following table for selected items:

Item number Location estimate d̂i Fit chi-square Probability

1

4

7

6. Item characteristic curves

6:1 Complete the following table for item 1:

Item 1
Location d̂i =_______

Class interval
1 2 3

Mean proficiency

Observed mean (OM)

Estimated mean or expected value (EV)

6:2 Complete the following table for item 4:

Item 4
Location d̂i =_______

Class interval
1 2 3

Mean proficiency

Observed mean (OM)

Estimated mean or expected value (EV)

6:3 Complete the following table for item 7:

Item 7
Location d̂i =_______

Class interval
1 2 3

Mean proficiency

Observed mean (OM)

Estimated mean or expected value (EV)
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7. Traditional reliability and separation indices

7:1 Report the traditional coefficient a reliability together with the relevant
components for calculating this reliability.
Coefficient a _________
Variance (total score) _________
Variance (items) _________

7:2 Report the index of person separation rb together with the relevant com-
ponents for calculating this index.
Index rb _________

Variance of b̂ _________
Average error variance _________

Part B: Calculations based on the information available from the computer
printout.

8. Item characteristic curves

8:1 Form axes for plotting item characteristic curves for dichotomous items.
The horizontal axis refers to proficiency, the vertical to the probability that
any item will be answered correctly.

8:2 On these axes, plot the item characteristic curve for items 1 and 4.
Use information in questions 6.1 and 6.2 to plot the expected values
(probabilities) as a function of the proficiency for each of the three class
intervals, and then join these points by a smooth curve.
Use different symbols for items 1 and 4, say a small circle for item 1 and a
small square for item 4.

8:3 On the same graph, plot the observed means in the class intervals for each
item. Again use different symbols. Say a ‘+’ sign for item 1 and a small
filled circle for item 4.

8:4 Form axes for plotting item characteristic curves for an item with three
categories, that is, possible scores of 0, 1 and 2. The horizontal axis refers
to proficiency and the vertical to the expected value according to the
model.

8:5 On these axes, plot the item characteristic curve for item 7.
Use information in question 6.3 to plot the expected values as a function
of the proficiency for each of the three class intervals, and then join these
points by a smooth curve.

8:6 On the same graph, plot the observed means in the class intervals for item
7 using a ‘+’ sign.
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9. Display of person proficiencies

9:1 Form axes for plotting the relationship between a total score and the
proficiency estimate. The horizontal axis should be the proficiency axis
and the vertical axis the raw score.

9:2 On these axes, plot the actual proficiency estimates against the raw scores.

10. Calculation of reliability indices
In question 7 above you reported the values of coefficient a and of the sepa-
ration index rb.

10:1 Verify the value of coefficient a by showing how it is calculated from the
relevant information in question 7.1.

10:2 Verify the value of the separation index rb by showing how it is cal-
culated from the relevant information in question 7.2.

Part C: Interpreting the analysis

11. Two persons are eliminated from the analysis. Why were these persons elim-
inated? (Look at the ‘Individual Person fit’ section and note the two persons
marked ‘Extm’).

12. One of the curves in your graph of question 8.2 is to the right of the other,

12:1 What relative property of two items puts one to the right of the other?
12:2 What information in the raw data reflects this relative property for these

two items?

13. Your graph of question 8.2 shows observed as well as theoretical values,

13:1 Which of the two items in your graph of question 8.2 shows the worse
actual discrimination?

13:2 Why do you come to this conclusion?

14. In question 5 you also reported the statistical index of fit for item 7, and in
question 8.5 you plotted the expected and observed values in three class
intervals for this item.

14:1 From the graphical display, does the item discriminate more than
expected, worse than expected, or about as expected? Explain your
answer.

14:2 Is the difference between the theoretical discrimination and the actual
discrimination statistically significant at the 5% level? Explain your
answer.
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15. In your graph of question 9, you had proficiency estimates for scores ranging
from 1 to 14, even though the maximum possible score was 15, and the
minimum was 0.

15:1 What is the theoretical estimate of proficiency for someone with a score
of 15?
_______

15:2 What is the theoretical estimate of proficiency for someone with a score
of 0?
_______

16. In question 4 you listed information about persons with ID number 3, 12 and
19.

16:1 According to the fit index, which of these people has a response pattern
that is closest to that expected from the model and the furthest from that
expected from the model?
Closest:_________ Furthest ___________

16:2 What aspect of the response pattern that you recorded in question 4 is
consistent with your conclusion from the statistical information in 16.1?

17. Overall summary statements

17:1 You reported the traditional reliability indices for this test. Comment as
to whether these values are reasonably good, bad or moderate consid-
ering the length of the test.

17:2 On the computer printout (Individual Person-fit), the fit-residual for
every person is shown. This statistic is theoretically a standard normal
deviate, that is, with a mean of 0.0 and a standard deviation of 1.0.
Explain why the values obtained suggest either that on the whole the
responses of the persons are consistent with the model, or why they are
not?

17:3 On the computer printout (Summary Test-of-fit Statistics), there is an
overall test of fit statistic for the items (Total Item Chi-Square). Explain
why the values of this statistic suggest that on the whole the responses
across items are consistent with the model, or why they are not?
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ANALYSIS  TITLE  RUN1

** SPECIAL  COMMENTS 
          1. Derived from the Default Project Settings 

** TEST  STRUCTURE 
Analysis Type Polytomous/Extended Response Category test format 
No. of Items 8
No. of Categories Different across Items  
Score Range [All Items] 14
Some Items Anchored No
Subtests created No

** CALIBRATING  SAMPLE 
No. of Persons: 
  * entered Project 25
  * invalid records 0
 * extreme scores  2

  * valid scores 23 [available for analysis] 
Missing data detected None

SUMMARY TEST-OF-FIT STATISTICS 

                        ITEM-PERSON INTERACTION 
==================================================================== 
                         ITEMS                        PERSONS 
                 Location  Fit Residual      Location  Fit Residual 
-------------------------------------------------------------------- 
Mean               0.000      0.057            0.353     -0.191 
SD                 1.372      0.792            1.730      0.786 
Skewness                      0.269                       0.836 
Kurtosis                     -1.091                      -0.101 
Correlation                  -0.021                      -0.017 

Complete data DF =            0.810 
-------------------------------------------------------------------- 

==================================================================== 
        ITEM-TRAIT INTERACTION            RELIABILITY INDICES 
-------------------------------------------------------------------- 
Total Item Chi Squ           20.118     Separation Index  0.865 
Total Deg of Freedom         16.000     Cronbach Alpha    0.722 
Total Chi Squ Prob         0.214958 
-------------------------------------------------------------------- 

==================================================================== 
        LIKELIHOOD-RATIO TEST             POWER OF TEST-OF-FIT
-------------------------------------------------------------------- 
Chi Squ                                 Power is EXCELLENT 
Degrees of Freedom                      [Based on SepIndex of 0.865] 
Probability 
-------------------------------------------------------------------- 

Cronbachs alpha = 0.722  (Variance[X] = 16.477, Variance Items = 6.067) 
Separation index = 0.865 (Variance Beta = 2.99, Av Error Variance = 0.405)
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GUTTMAN DISTRIBUTION 
-------------------------------------------------- 
Serial  PerLocn  1  3  4  5  6  2  7  8   ID 
-------------------------------------------------- 
     1   1.116  1  1  1  1  1  1  1  1      1      
     2  -0.335   1  0  0  0  0  1  0  2      2      
     3   3.122   1  1  1  1  2  1  2  5      3      
     4   1.675   1  1  1  1  2  0  1  4      4      
     5   0.914   1  1  1  1  1  0  1  1      5      
     6   1.471   1  0  1  1  1  0  1  5      6      
     7  -3.551   0  0  0  0  0  0  0  0      7      
     8  -0.917   1  1  0  0  0  1  0  0      8      
     9   1.292   1  1  1  1  2  1  2  0      9      
    10   1.292   1  1  1  1  1  1  2  1     10      
    11  0.640   1  1  1  1  1  0  1  0     11      
    12   0.640   0  1  0  0  1  1  1  2     12      
    13   1.956   1  1  1  0  2  1  1  5     13      
    14  -0.335   1  1  1  1  0  0  0  0     14      
    15  -1.582   1  0  0  0  1  0  0  0     15      
    16   3.122   1  1  1  1  2  0  2  6     16      
    17   1.116   1  1  1  0  2  1  2  0     17      
    18  -3.551   0  0  0  0  0  0  0  0     18      
    19  -1.582   1  0  0  1  0  0  0  0     19      
    20  -0.335   1  1  0  1  1  0  0  0     20      
    21   1.292   1  1  1  1  1  1  1  2     21      
    22   1.675   1  1  1  1  2  1  1  3     22      
    23  -1.582   1  1  0  0  0  0  0  0     23      
    24   0.640   1  1  1  1  1  0  0  1     24      
    25   0.640   1  1  1  1  1  0  0  1     25     
-------------------------------------------------- 

COMPLETE DATA ESTIMATES 
---------------------------------------------------------------- 
   TotSc   Frequency   CumFreq   CumPerCent  Estimate   StdErr 
---------------------------------------------------------------- 
      0          2         2         8.0      -3.551     1.434
      1          0         2         8.0      -2.442     1.064
      2          3         5        20.0      -1.583     0.882
      3          1         6        24.0      -0.917     0.792
      4          3         9        36.0      -0.336     0.731
      5          0         9        36.0       0.207     0.659 
      6          4        13        52.0       0.639     0.568 
      7          1        14        56.0       0.914     0.508
      8          2        16        64.0       1.116     0.480 
      9          3        19        76.0       1.296     0.472 
     10          1        20        80.0       1.470     0.484 
     11          2        22        88.0       1.677     0.516
     12          1        23        92.0       1.956     0.588 
     13          0        23        92.0       2.415     0.723 
     14          2        25       100.0       3.122     0.941 
     15          0        25       100.0       4.213     1.294
---------------------------------------------------------------- 
Separation Index =   0.865            Mean =  0.693 

   Cronbach Alpha =   0.722         Std Dev =  1.327 
================================================================ 
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INDIVIDUAL PERSON-FIT - Serial Order 

------------------------------------------------------------------------------
  ID  Total Max  Miss Extrm   Locn    SE   Residual  DegFree   Data Pts
 personid  
------------------------------------------------------------------------------
   1    8   15    8            1.116  0.48   -1.119     6.50       8        1 
   2    4   15    8           -0.335  0.73    1.511     6.50       8        2 
   3   14   15    8            3.122  0.94   -0.499     6.50       8        3 
   4   11   15    8            1.675  0.52   -0.285     6.50       8        4 
   5    7   15    8            0.914  0.51   -1.053     6.50       8        5 
   6   10   15    8            1.471  0.48    0.828     6.50       8        6 
   7    0   15    8   extm    -3.551  1.43                                  7 
   8    3   15    8           -0.917  0.79    0.339     6.50       8        8 
   9    9   15    8            1.292  0.47    0.133     6.50       8        9 
  10    9   15    8            1.292  0.47   -0.256     6.50       8       10 
  11    6   15    8            0.640  0.57   -0.939     6.50       8       11 
  12    6   15    8            0.640  0.57    1.686     6.50       8       12 
  13   12   15    8            1.956  0.59    0.231     6.50       8       13 
  14    4   15    8           -0.335  0.73   -0.235     6.50       8       14 
  15    2   15    8           -1.582  0.88   -0.560     6.50       8       15 
  16   14   15    8            3.122  0.94    0.204     6.50       8       16 
  17    8   15    8            1.116  0.48    0.467     6.50       8       17 
  18    0   15    8   extm    -3.551  1.43                                 18 
  19    2   15    8           -1.582  0.88    0.021     6.50       8       19 
  20    4   15    8           -0.335  0.73   -0.637     6.50       8       20 
  21    9   15    8            1.292  0.47   -1.237     6.50       8       21 
  22   11   15    8            1.675  0.52   -0.706     6.50       8       22 
  23    2   15    8           -1.582  0.88   -0.713     6.50       8       23 
  24    6   15    8            0.640  0.57   -0.782     6.50       8       24 
  25    6   15    8            0.640  0.57   -0.782     6.50       8       25 
--------------------------------------------------------------------------------
                     Mean:     0.353         -0.191 
                      SD :     1.730          0.786 
--------------------------------------------------------------------------------
      Key:    extm : location value is an extrapolation based on actual estimates 
      # : fit residual value exceeds limit set for test-of-fit 

   Cronbach Alpha   = 0.722       Mean Err Var =   0.405 
   Separation Index = 0.865       Est True Var =   2.589 
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INDIVIDUAL ITEM-FIT - Serial Order 

----------------------------------------------------------------------------
Seq  Item   Type   Location   SE    Residual   DF      ChiSq  DF    Prob
----------------------------------------------------------------------------
1    I0001  Poly    -2.484   0.840    0.160   18.63    4.172   2  0.124179
2    I0002  Poly     0.744   0.481    1.466   18.63    1.148   2  0.563217
3    I0003  Poly    -1.289   0.612    0.263   18.63    1.673   2  0.433129
4    I0004  Poly    -0.337   0.523   -1.080   18.63    3.123   2  0.209872
5    I0005  Poly    -0.108   0.509    0.622   18.63    0.514   2  0.773259
6    I0006  Poly     0.513   0.382   -0.478   18.63    3.570   2  0.167772
7    I0007  Poly     1.392   0.364   -0.611   18.63    3.965   2  0.137714
8    I0008  Poly     1.569   0.167    0.114   18.63    1.952   2  0.376823
----------------------------------------------------------------------------

INDIVIDUAL ITEM-FIT - Location Order 

----------------------------------------------------------------------------
Seq  Item   Type   Location   SE    Residual   DF      ChiSq  DF    Prob
----------------------------------------------------------------------------
1    I0001  Poly    -2.484   0.840    0.160   18.63    4.172   2  0.124179
3    I0003  Poly    -1.289   0.612    0.263   18.63    1.673   2  0.433129
4    I0004  Poly    -0.337   0.523   -1.080   18.63    3.123   2  0.209872
5    I0005  Poly    -0.108   0.509    0.622   18.63    0.514   2  0.773259
6    I0006  Poly     0.513   0.382   -0.478   18.63    3.570   2  0.167772
2    I0002  Poly     0.744   0.481    1.466   18.63    1.148   2  0.563217
7    I0007  Poly     1.392   0.364   -0.611   18.63    3.965   2  0.137714
8    I0008  Poly     1.569   0.167    0.114   18.63    1.952   2  0.376823
----------------------------------------------------------------------------

INDIVIDUAL ITEM-FIT - Item-Person Fit Residual Order 

----------------------------------------------------------------------------
Seq  Item   Type   Location   SE    Residual   DF      ChiSq  DF    Prob
----------------------------------------------------------------------------
4    I0004  Poly    -0.337   0.523   -1.080   18.63    3.123   2  0.209872
7    I0007  Poly     1.392   0.364   -0.611   18.63    3.965   2  0.137714
6    I0006  Poly     0.513   0.382   -0.478   18.63    3.570   2  0.167772
8    I0008  Poly     1.569   0.167    0.114   18.63    1.952   2  0.376823
1    I0001  Poly    -2.484   0.840    0.160   18.63    4.172   2  0.124179
3    I0003  Poly    -1.289   0.612    0.263   18.63    1.673   2  0.433129
5    I0005  Poly    -0.108   0.509    0.622   18.63    0.514   2  0.773259
2    I0002  Poly     0.744   0.481    1.466   18.63    1.148   2  0.563217
----------------------------------------------------------------------------
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INDIVIDUAL CHI SQUARE TEST-of-FIT 

Descriptor for Item 1     [I0001]:  Locn = -2.484
____________________________________________________________________________
   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu           0      1 
____________________________________________________________________________
 1      7     -.335    -.953        1.326         1.759  OBS.P    .00   1.00 
                                                         EST.P    .18    .82 
 [OM = 1.00  EV =  .81  OM-EV =  .19  ES =   .50]        OBS.T          1.00 

 2      7     1.116     .815       -1.508         2.275  OBS.P    .14    .86 
                                                         EST.P    .04    .96 
 [OM =  .86  EV =  .96  OM-EV = -.11  ES =  -.57]        OBS.T           .86 

 3      9     3.122    1.877         .372          .138  OBS.P    .00   1.00 
                                                         EST.P    .01    .99 
 [OM = 1.00  EV =  .98  OM-EV =  .02  ES =   .12]        OBS.T          1.00 

 Whole sample expected value =    .96 
____________________________________________________________________________

                          ITEM: ChiSqu =   4.172 on  2.00 df [prob =.124179] 
____________________________________________________________________________

Descriptor for Item 2     [I0002]:  Locn =  0.744
____________________________________________________________________________

   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu           0      1 
____________________________________________________________________________

 1      7     -.335    -.953         .836          .698  OBS.P    .71    .29 
                                                         EST.P    .85    .15 
 [OM =  .29  EV =  .17  OM-EV =  .12  ES =   .32]        OBS.T           .29 

 2      7     1.116     .815        -.474          .224  OBS.P    .57    .43 
                                                         EST.P    .48    .52 
 [OM =  .43  EV =  .52  OM-EV = -.09  ES =  -.18]        OBS.T           .43 

 3      9     3.122    1.877        -.475          .226  OBS.P    .33    .67 
                                                         EST.P    .24    .76 
 [OM =  .67  EV =  .73  OM-EV = -.07  ES =  -.16]        OBS.T           .67 

 Whole sample expected value =    .48 
____________________________________________________________________________
                          ITEM: ChiSqu =   1.148 on  2.00 df [prob =.563217] 
____________________________________________________________________________
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Descriptor for Item 3     [I0003]:  Locn = -1.289
____________________________________________________________________________

   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu           0      1 
____________________________________________________________________________
 1      7     -.335    -.953        -.031          .001  OBS.P    .43    .57 
                                                         EST.P    .42    .58 
 [OM =  .57  EV =  .58  OM-EV = -.01  ES =  -.01]        OBS.T           .57 

 2      7     1.116     .815         .934          .872  OBS.P    .00   1.00 
                                                         EST.P    .11    .89 
 [OM = 1.00  EV =  .89  OM-EV =  .11  ES =   .35]        OBS.T          1.00 

 3      9     3.122    1.877        -.895          .801  OBS.P    .11    .89 
                                                         EST.P    .04    .96 
 [OM =  .89  EV =  .95  OM-EV = -.06  ES =  -.30]        OBS.T           .89 

 Whole sample expected value =    .83 
____________________________________________________________________________
                          ITEM: ChiSqu =   1.673 on  2.00 df [prob =.433129] 
____________________________________________________________________________

Descriptor for Item 4     [I0004]:  Locn = -0.337
____________________________________________________________________________
   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu           0      1 
____________________________________________________________________________

 1      7     -.335    -.953       -1.250         1.561  OBS.P    .86    .14 
                                                         EST.P    .65    .35 
 [OM =  .14  EV =  .36  OM-EV = -.22  ES =  -.47]        OBS.T           .14 

 2      7     1.116     .815         .616          .380  OBS.P    .14    .86 
                                                         EST.P    .24    .76 
 [OM =  .86  EV =  .76  OM-EV =  .10  ES =   .23]        OBS.T           .86 

 3      9     3.122    1.877        1.087         1.182  OBS.P    .00   1.00 
                                                         EST.P    .10    .90 
 [OM = 1.00  EV =  .89  OM-EV =  .11  ES =   .36]        OBS.T          1.00 

 Whole sample expected value =    .70 
____________________________________________________________________________
                          ITEM: ChiSqu =   3.123 on  2.00 df [prob =.209872] 
____________________________________________________________________________
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Descriptor for Item 5     [I0005]:  Locn = -0.108
____________________________________________________________________________
   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu           0      1 
____________________________________________________________________________

 1      7     -.335    -.953         .677          .458  OBS.P    .57    .43 
                                                         EST.P    .70    .30 
 [OM =  .43  EV =  .31  OM-EV =  .11  ES =   .26]        OBS.T           .43 

 2      7     1.116     .815         .004          .000  OBS.P    .29    .71 
                                                         EST.P    .28    .72 
 [OM =  .71  EV =  .71  OM-EV =  .00  ES =   .00]        OBS.T           .71 

 3      9     3.122    1.877         .237          .056  OBS.P    .11    .89 
                                                         EST.P    .12    .88 
 [OM =  .89  EV =  .86  OM-EV =  .03  ES =   .08]        OBS.T           .89 

 Whole sample expected value =    .70 
____________________________________________________________________________
                          ITEM: ChiSqu =   0.514 on  2.00 df [prob =.773259] 
____________________________________________________________________________

Descriptor for Item 6     [I0006]:  Locn =  0.513  Sprd =  1.444
____________________________________________________________________________

   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu        0     1    2 
____________________________________________________________________________
 1      7     -.335    -.953       -1.272      1.617  OBS.P    .71   .29 .00 
                                                      EST.P    .49   .48 .03 
 [OM =  .29  EV =  .54  OM-EV = -.26  ES =  -.48]     OBS.T          .29 .00 

 2      7     1.116     .815         .214       .046  OBS.P    .00   .86 .14
         EST.P    .12   .67 .21 
 [OM = 1.14  EV = 1.10  OM-EV =  .05  ES =   .08]     OBS.T      1.00  .14 

 3      9     3.122    1.877        1.381      1.907  OBS.P    .00   .33 .67 
                                                      EST.P    .03   .50 .47 
 [OM = 1.67  EV = 1.42  OM-EV =  .25  ES =   .46]     OBS.T         1.00 .67 

 Whole sample expected value =   1.09 
____________________________________________________________________________
                          ITEM: ChiSqu =   3.570 on  2.00 df [prob =.167772] 
____________________________________________________________________________
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Descriptor for Item 7     [I0007]:  Locn =  1.392  Sprd =  1.038
____________________________________________________________________________
   GROUP         LOCATION             COMPONENT                  Category 
Responses
 No.  Size     Max     Mean       Residual        ChiSqu         0    1    2 
____________________________________________________________________________

 1      7     -.335    -.953       -1.478      2.183  OBS.P   1.00   .00 .00 
                                                      EST.P    .78   .21 .01 
 [OM =  .00  EV =  .25  OM-EV = -.25  ES =  -.56]     OBS.T          .00 *** 

 2      7     1.116     .815         .387       .150  OBS.P    .29   .57 .14 
                                                      EST.P    .34   .55 .11 
 [OM =  .86  EV =  .77  OM-EV =  .09  ES =   .15]     OBS.T          .67 .20 

 3      9     3.122    1.877        1.278      1.632  OBS.P    .00   .56 .44 
                                                      EST.P    .12   .56 .32 
 [OM = 1.44  EV = 1.18  OM-EV =  .26  ES =   .43]     OBS.T         1.00 .44 

 Whole sample expected value =    .83 
____________________________________________________________________________
                         ITEM: ChiSqu =   3.965 on  2.00 df [prob = .137714] 
____________________________________________________________________________

Descriptor for Item 8     [I0008]:  Locn =  1.569  Sprd =  0.113  Skew =
0.024 Kurt =  0.003
____________________________________________________________________________

   GROUP         LOCATION             COMPONENT                  Category 
Responses
No. Size  Max  Mean   Residual  ChiSqu       0    1    2    3    4    5    6 
____________________________________________________________________________

 1   7  -.335  -.953   .914     .835  OBS.P .86  .00  .14  .00  .00  .00 .00 
                                      EST.P .90  .09  .01  .00  .00  .0  .00 
 [OM =  .29  EV =  .14  OM-EV =  .14  ES =   .35] 

     OBS.T .00  1.00 .00   ****   **** **** 

2   7   1.116  .815    -.905    .819  OBS.P .29  .57  .14  .00  .00  .00 .00 
                                      EST.P .41  .25  .14  .10  .07  .03 .00 
 [OM =  .86  EV = 1.35  OM-EV = -.49  ES =  -.34] 

     OBS.T .67  .20  .00   ****   **** **** 

3   9   3.122  1.877   -.546    .298  OBS.P .11  .11  .11  .11  .11  .3  .11 
                                      EST.P .02  .04  .07  .13  .26  .34 .14 
 [OM = 3.44  EV = 3.72  OM-EV = -.27  ES =  -.18] 

     OBS.T .50  .50  .50  .50  .75  .25 

 Whole sample expected value =   1.70 
____________________________________________________________________________

                          ITEM: ChiSqu =   1.952 on  2.00 df [prob =.376823] 
____________________________________________________________________________
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Exercise 2: Basic Analysis of Dichotomous and Polytomous Responses

Use simulated Data Set A which contains the responses of 400 persons to 15 items.
Ten items are multiple-choice items and are scored as dichotomous items (0, 1)
and five are polytomous with three ordered categories (0, 1, 2). You will be required
to run the data using RUMM2030 and write a report on your analysis completing
the tasks below. Two groups, boys and girls, need to be identified.

1. Identify the three best fitting dichotomous items statistically and confirm this fit
graphically.

2. Identify the three most misfitting dichotomous items statistically and explain in
which way they misfit.

3. Identify the three best fitting polytomous items statistically and confirm this fit
graphically.

4. Identify the three most misfitting polytomous items statistically and explain in
which way they misfit.

5. Identify the three best fitting persons statistically and explain why their patterns
fit so well to the Rasch model.

6. Identify the three most misfitting persons and explain in which way they misfit.
7. Report on the distribution of the persons in relation to the targeting of the items

and comment on the traditional reliability of the responses.
8. Report on the operation of the response categories for items and explain which

categories in which items are not working as intended.

CATEGORY RESPONSE PROPORTIONS 

----------------------------------------------------------------------------
Seq     Item Label                   0      1      2      3      4      5  6 
----------------------------------------------------------------------------
1     I0001 Descriptor for Item 1  .04    .96
2     I0002 Descriptor for Item 2  .52    .48
3     I0003 Descriptor for Item 3  .17    .83
4     I0004 Descriptor for Item 4  .30    .70
5     I0005 Descriptor for Item 5  .30    .70
6     I0006 Descriptor for Item 6  .22    .48    .30
7     I0007 Descriptor for Item 7  .39    .39    .22
8     I0008 Descriptor for Item 8  .39    .22    .13    .04    .04    .13.04 
----------------------------------------------------------------------------

ITEM SPECIFICATIONS 

--------------------------------------------------
 Code  Seq No.  Test    Key   Categ  Thresh  Param 
--------------------------------------------------
I0001      1    Poly             2      1      1 
I0002      2    Poly             2      1      1 
I0003      3    Poly             2      1      1 
I0004      4    Poly             2      1      1 
I0005      5    Poly             2      1      1 
I0006      6    Poly             3      2      2 
I0007      7    Poly             3      2      2 
I0008      8    Poly             7      6      4 
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9. Suppose that you were considering making two test forms, one containing only
the multiple-choice items (dichotomous) and one containing only the polyto-
mous items. Report on the raw score equivalence between the two forms—that
is, what are equivalent total scores on the polytomous items for each of the
scores 1 to 9 on the 10 multiple-choice items.

10. Investigate whether any items show DIF for gender.
11. Compare the overall performance of the two groups: boys and girls.

Exercise 3: Advanced Analysis of Dichotomous Responses

Description of Data Set B—dichotomous responses

The data set contains responses of 1000 year 6 and 1000 year 7 students to a
multiple-choice test. The year 6 students’ test consisted of items 1–36, and the
year 7 students’ test consisted of items 31–66. Items 31–36 were link items and
both year groups responded to these items. These data have been simulated to fit the
Rasch model, but with some deviation. Apart from the student ID, a student’s year
group is also indicated. You are to run these data using RUMM2030, and you may
use the template files provided when creating the project. After considering the
graphical and statistical evidence together, answer the following questions.

Part A

First analyse only the year 6 data. Delete all the year 7 data by choosing the Delete
sample—person factor option.

1. Summary test of fit statistics—provide the summary table.

(a) How do the values for the item fit-residual mean and SD deviate from the
expected? What does that mean?

(b) How does the value for the item–trait interaction chi-square statistic deviate
from the expected? What does that mean?

2. Item tests of fit—year 6

(a) Which items misfit according to the fit-residual or chi-square fit statistics or
the ICC or a combination of these criteria? Provide both graphical and
statistical evidence. State which items over-discriminate and which items
under-discriminate.

(b) Which items misfit when the Bonferroni correction is used? (1 mark) Use
the probability of 0.05.

(c) Which items misfit according to the ANOVA fit statistic (with and without
the Bonferroni correction)? Justify your answer with the relevant statistics.
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3. Power of tests of fit—sample size, etc.

(a) Use the Delete sample—random select option in RUMM2030 to reduce the
sample size to 400. How does that change the pattern of misfit?

(b) Is the power to detect misfit greater for item 35 (close to person locations) or
item 20 (further from person locations)? Is the error of measurement greater
for item 35 (close to person locations) or item 20 (further from person
locations)?

(c) Return to using the original sample size of 1000. What is the number of
persons in class interval 10 of item 20? Change the number of class intervals
to 5—does that change the fit/misfit? If so, how? (e.g. is the value of the
fit-residual or chi-square smaller or larger than before the change? Has it
changed the significance of the chi-square test?)

Now analyse only the year 7 data. Delete all the year 6 data by choosing the
Delete sample—person factor option as before.

4. Item tests of fit—year 7

(a) Which items misfit according to the fit-residual, in conjunction with the
chi-square fit statistics and the ICC? Provide both graphical and statistical
evidence. State which items over-discriminate and which items under-
discriminate. Which items misfit when the Bonferroni correction is used?

(b) Which items misfit according to the ANOVA fit statistic (with and without
the Bonferroni correction)?

Part B

Analysis of guessing in Data Set B

Analyse the year 6 and 7 data together.

1. Which items under-discriminate? Provide fit-residual, chi-square and graphical
evidence. Use the Bonferroni correction.

2. Do the ICCs suggest guessing played a role in these items? Why or why not?
3. Analyse the data with a tailored analysis choosing a cut-off of 0.25. In order to

compare the original with the tailored item estimates, anchor the original data set
on the mean of the 10 easiest item estimates from the tailored analysis [for
instructions on how to run an Anchor analysis, see Chap. 2 of the ‘Extending the
RUMM2030 Analysis’ manual (maRmExtend.pdf) which was automatically
installed into the RUMM directory when you installed RUMM]. Draw a graph
plotting the item estimates from the tailored analysis against the item estimates
from the anchored analysis. According to the graph did any items change
location? Were they easier or more difficult in the tailored analysis?
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Exercise 4: Advanced Analysis of Polytomous Responses

Description of Data Set C—Polytomous responses

The data set contains responses of 250 males and 250 females to a 10 item ques-
tionnaire. All items have 5 response categories. These data have been simulated to
fit the Rasch model, but with some deviation. Apart from an ID for each person, an
M or F indicates whether the person is male or female.

Part A

You are to run these data on RUMM2030, with the option of using the template
files provided when creating the project. After considering the graphical and sta-
tistical evidence together, answer the following questions:

1. Report and interpret the summary statistics, including the item and person
fit-residual means and SDs, the overall item–trait chi-square and the person
separation index.

2. Are any items misfitting according to the chi-square and fit-residual fit statistics
(provide the values of the statistics and use the Bonferroni correction)?

3. Are there any items with disordered thresholds? Provide either the threshold
values or the threshold map as evidence.

4. Show the category probability curves including observed categories for any
item(s) identified in question 3. Describe how these graphs show that the
response categories are not working as intended.

5. Show the threshold probability curves including observed thresholds for any
item(s) identified in question 3. Describe how these graphs show that the
response categories are not working as intended.

6. Is there sufficient evidence to combine response categories for any of the item(s)
identified in question 3? If so, rescore the item(s) and compare the individual
item fit before and after rescoring. Is the fit improved?

7. In future administrations of the questionnaire would you change the response
format for any of the questions? State the reason(s) why or why not, as well as
how you would change it if you responded yes

Part B

The default setting in RUMM2030 is the partial credit parameterization of the
model. This was the setting you used to analyse the data in part A of the exercise.
The rating scale parameterization can be selected by creating a new analysis, then
selecting Edit analysis specifications on the Analysis Control form. Then Choose
Rating instead of Unrestricted model structure (Items are not grouped into rating
subsets). Also note the other options on the Edit analysis specifications screen.
Converge limits and Number of loops can be specified for both item and person
estimations. If the estimation does not converge using the default settings you can
change these, for example, the converge limits can be made less stringent or the
number of loops can be increased.
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1. Use the rating scale parameterization of the model to analyse the data again.

(a) Compare the fit of the data to the two different parameterizations of the
model (report the overall item trait chi-square as well as any individual
items that misfit according to the chi-square fit statistic) (Display specifi-
cations screen—Summary Statistics and Individual Item fit).

(b) Compare the threshold parameters from the two different parameterizations
(Display specifications screen—Item details—Thresholds).

(c) Compare the spread component for the items for the two different
parameterizations of the model (Display specifications screen—Item details
—Guttmann Principal components).

2. Consider the partial credit and rating scale parameterizations of the model.

(a) In your own words describe the difference between the partial credit and
rating scale parameterizations of the model.

(b) Give an example of where each might be an advantage.

3. What is the source of difference between the graded response model and
polytomous Rasch model? More specifically, what is partitioned in forming
contiguous categories?

Exercise 5: Analysis of Data with Differential Item Functioning

In this exercise you do DIF analysis on Data Set B.

1. What is the difference in the person location means for the two year groups? Is
the difference statistically significant?

2. DIF analysis:

(a) Are any items showing DIF for year group? Provide graphical evidence.
Also provide statistical evidence (DIF summary results with Bonferroni
correction)—show the relevant table.

(b) Which item would you split first, if any? Splitting the item would mean that
the item is no longer a link item. Proceed with splitting the item and provide
statistical evidence (DIF summary results with Bonferroni correction) after
splitting. Redo (a) and (b) until no items show statistically significant DIF.

3. What is the difference in the person location means for the two year groups after
you have split the items, that is, when no items show statistically significant
DIF? Is this difference statistically significant? Compare the means with the
means before any items were split (question 1).

4. Explain which item(s) showed real DIF and which item(s) showed artificial
DIF?
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Exercise 6: Analysis of Data with Dependence

1. Interpreting tests of fit

(a) If all items fitted the model does that confirm the unidimensionality of
the construct measured? Why or why not?

(b) How do the residual and chi-square item fit statistics relate to the infit and
outfit statistics reported by some other Rasch analysis software packages?

(c) There is an option in RUMM2030 to specify an effective sample size for
the calculation of the chi-square fit statistic (Amend sample size and
Create adjusted chi-square on the Display Control form). Use these
options in RUMM2030 to specify an effective sample size of 200 for
Data Set B. Does that change the results of fit according to the chi-square
statistic? If so, how?

Description of Data Set D—Polytomous responses and Multidimensionality

The data set contains responses of 400 persons to a 10 item questionnaire. All items
have 5 response categories. These data have been simulated to fit the Rasch model,
but with some deviation. Analyse this data set using RUMM2030 and answer
questions 2, 3 and 4 below:

2. Analysis of residuals

(a) Provide the matrix of correlations between item residuals. Highlight cor-
relations above 0.3. Is there any evidence of violations of the assumption of
independence?

(b) Do a principal components analysis (PCA) of the residuals. Provide the PC
Loadings with items sorted according to their loadings on PC1. Is there any
evidence of multidimensionality?

(c) Provide the principal component summary. What percentage of the total
variance is accounted for by the first component? What conclusion can you
reach regarding the dimensionality of this instrument?

3. Using the factor loadings from the PCA divide the items into two subscales. Use
the paired t-test option in RUMM2030 to test whether person estimates derived
from the two subscales are significantly different from each other.

4. Divide the items into two subscales using evidence from the PCA and t-test.
Perform a subtest analysis and report the following results from the summary
statistics. What can you conclude regarding the amount of multidimensionality
in these data?

RELIABILITY INDICES 
----------------------------------------------------------------------------------

run1 subtest c*c c r A
Per Sep Idx:    
Coef Alpha :    
----------------------------------------------------------------------------------
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5. Using Data Set B (year 6 only) answer the following questions:

a. Provide the item residual correlation matrix. Is there any evidence of
response dependence?

b. Use the procedure described in the Andrich and Kreiner (2010) paper (Item
split on item dependence option in RUMM2030) to estimate the amount of
response dependence.

Exercise 7: Analysis of More than Two Facets and Repeated
Measurements

Part A

Description of Data Set E—Responses to the same instrument at two time
points

The data set contains responses of persons to a questionnaire at two time points.
Analyse this data set using RUMM2030 and answer the questions given below:

1. With the data racked what is the mean item location at time 1 and time 2?
2. With the data stacked what is the mean person location at time 1 and time 2?

Part B

Description of Data Set F—Ratings of raters judging persons

The data set contains ratings of raters grading persons on 6 criteria. Analyse this
data set using a three-facet analysis in RUMM2030 and answer the questions given
below:

1. Provide the rater locations and fit statistics. Do any raters misfit?
2. Provide the criteria locations and fit statistics. Is there any evidence of misfit?

Exercise 8: Writing Up a Rasch Model Analysis

Read:
Tennant, A. & Conaghan, G. (2007). The Rasch Measurement Model in
Rheumatology: What is it? Why use it? When should it be applied and what should
one look for in a Rasch paper? Arthritis & Rheumatism, 57(8), 1358–1362.

Analyse your own data set. Write up the results in the form of a short paper
following the guidelines in the paper above. You should have the following

Appendix C: RUMM2030 Exercises and Solutions 375



sections: introduction including a brief literature review, a statement of aims and
hypotheses, method, results and brief discussion (even if using a simulated data
set).

The preferred option for this exercise is for you to use your own data set. If you
do not have access to a data set you can use simulated Data Set G. If you are using a
simulated data set please state that at the start of your write-up. Create a context of
your own for the data set, e.g. educational test with two groups of students (two
countries, male/female, private school/public school, etc.). Write the introduction
(including a brief literature review) and the discussion with this context in mind.

The world limit is 3000 words (excluding Abstract, References, Tables and
Figures). Consistent with preparing a publishable manuscript, please ensure that
you follow APA guidelines and minimize the number of tables and figures (e.g.
only present one or two example Item characteristic curves, rather than all of them).

Remember to address in the analysis the following aspects, if relevant to the
data:

• Description of the instrument and its purpose, and aims of analysis.
• Which parameterization of the Rasch Model used, why?
• Targeting, reliability and sample size.
• Model fit, including the approach to model fit and the application of multiple

criteria.
• Working of response categories.
• Differential item functioning (DIF): real and artificial DIF. In real data, the

analysis of DIF may follow some item reconstruction or elimination. For the
purpose of this exercise, carry out the DIF analysis on the original set of items.

• Violations of the assumption of local independence: multidimensionality and
response dependence—detection and estimation of magnitude.

• Guessing, if relevant.
• Conclusions about the operation and appropriateness of the instrument.

RUMM2030 Exercises Solutions

Exercise 1

Part A:

1. 1:1 8
1:2 Different across items.

2. 2:1 25
2:2 2
2:3 23
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3.

Items Person Scores

Item
number

Difficulty
d̂i

Standard
error r̂i

Raw
score

Proficiency
estimate

Estimated
standard error

1 −2.484 0.840 2 −1.583 0.882

4 −0.337 0.523 7 0.914 0.508

8 1.569 0.167 13 2.415 0.723

4.

Person
ID

Total
score

Proficiency
estimate

Fit
statistic

Observed response pattern (order
items by difficulty)

3 14 3.122 −0.499 1, 1, 1, 1, 2, 1, 2, 5

12 6 0.640 1.686 0, 1, 0, 0, 1, 1, 1, 2

19 2 −1.582 0.021 1, 0, 0, 1, 0, 0, 0, 0

5.

Item number Location estimate d̂i Fit chi-square Probability

1 −2.484 0.160 0.124

4 −0.337 −1.080 0.210

7 1.392 −0.611 0.138

6.

6:1

Item 1 Class interval

Location d̂i ¼ �2:484 1 2 3

Mean proficiency −0.953 0.815 1.877

Observed mean (OM) 1.00 0.86 1.00

Estimated mean or expected value (EV) 0.81 0.96 0.98

6:2

Item 4 Class interval

Location d̂i ¼ �0:337 1 2 3

Mean proficiency −0.953 0.815 1.877

Observed mean (OM) 0.14 0.86 1.00

Estimated mean or expected value (EV) 0.36 0.76 0.89
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6:3

Item 7 Class interval

Location d̂i ¼ 1:392 1 2 3

Mean proficiency −0.953 0.815 1.877

Observed mean (OM) 0.00 0.86 1.44

Estimated mean or expected value (EV) 0.25 0.77 1.18

7.

7:1

Coefficient a 0.722
Variance (total score) 16.477
Variance (items) 6.067

7:2

Index rb 0.865

Variance of β̂ 2.99

Average error variance 0.405

Part B:

8. 8.1, 8.2, 8.3
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8.4 8.5 8.6.
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9. 9.1 9.2.

0

5

10

15

-4 -3 -2 -1 0 1 2 3 4

Ra
w

 S
co

re

Person Loca on (logits)

10.

10:1 8/7 * (16.477 − 6.067)/16.477 = 0.722
10:2 (2.99 − 0.405)/2.99 = 0.865.
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Part C:

11. They answered all items incorrectly; therefore, no relative item information can
be obtained from their responses.

12.

12:1 Difficulty,
12:2 Percentage correct on an item.

13.

13:1 Item 1
13:2 The slope of the observed means in Item 1 is flatter than its expected curve

(does not discriminate well), while the slope of Item 4 is steeper than
expected (highly discriminative).

14.

14:1 More than expected, the slope of observed means is steeper than its
expected curve.

14:2 No, the probability of the chi-square test (0.138) is greater than 0.05.

15.

15:1 4.213
15:2 −3.551

16.

16:1 Closest: 19 Furthest: 12
16:2 Person 19 scored their two points on items of relatively low difficulty.

Person 12 scored five of their six points on items of relatively high dif-
ficulty, yet answered easier items wrongly (not a Guttman structure).

17.

17:1 Moderately good.
17:2 Consistent because the person fit-residual mean (−0.191) and SD (0.786)

are close to the theoretical ones.
17:3 Consistent because the total item chi-square probability (0.215) is greater

than 0.05.

Exercise 2

1. Items 8, 9 and 10 have fit-residuals closest to zero, non-significant chi-square
statistics and ICCs showing almost perfect fit.

2. Items 4, 5 and 6 have fit-residuals furthest from zero. Item 4 has the worst fit
and its ICC indicates under-discrimination. Items 5 and 6 show less extreme
misfit with non-significant chi-square statistics and some under-discrimination
and over-discrimination, respectively.
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3. Items 11, 12 and 15 are sufficiently close to zero that the chi-square test does
not indicate misfit. The ICCs show the observed means are very close to the
expected values.

4. Items 12, 13 and 14 have fit-residuals furthest from zero. Item 14 has a sig-
nificant chi-square statistic, it does not fit the Rasch model. Items 12 and 13
show non-significant misfit.

5. Persons 313, 115 and 339 answered the easier items correctly and made mis-
takes answering the more difficult items (close to Guttman pattern).

6. Person 277 and 331 had high negative fit-residuals and a Guttman pattern that
may be too good to be true. Person 394 had a high positive fit-residual and a
response pattern which is very different from a Guttman pattern (answered
some easier items wrong and some more difficult items correct).

7. Items are relatively well targeted as there is a spread of item difficulties with
most items clustered where the majority of persons are located on the scale. The
test is of moderate difficulty and captures most proficiency levels. However,
some respondents are below and above the range of measurement covered by
the items, indicating floor and ceiling effects.

8. Item 12 has disordered thresholds. With increasing proficiency, it is not more
likely for persons to score highly. There is also no person proficiency level for
which a score of 1 is most likely. All the other graded response items work
reasonably well.

9.

Item location MC test (dichotomous items) Graded response items

−3.279 1.0 0.0

−2.393 2.0 0.7

−1.577 3.0 1.7

−0.770 4.0 3.4

0.017 5.0 5.1

0.807 6.0 6.6

1.584 7.0 8.1

2.347 8.0 9.2

3.200 9.0 9.9

10. Items 5 and 6 show uniform DIF for gender. Boys have a higher probability of
success on item 5 and girls on item 6. The ANOVA found significant uniform
DIF on these items and non-uniform DIF on item 6.

11. There are more boys in the low-proficiency group and fewer in the middle to
high-proficiency groups. The boys form a flat, almost bimodal distribution of
proficiency levels and girls form an almost normal distribution. The ANOVA
found a significant difference with girls performing better than boys.
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Exercise 3

Part A

1.

(a) The observed mean (−0.399) and SD (1.250) deviate, but not substantially,
from the theoretical. The pattern of responses is consistent with the model
(very slight over-fit).

(b) The significant item–trait interaction chi-square statistic (435.139,
p = 0.000) suggests that overall the responses are not consistent with the
model (contradicting part a). The hierarchical ordering of the items varies
across the trait. However, it is noted that the chi-square statistic is affected
by the sample size and the sample size in each interval.

2.

(a) Items 21, 28 and 29 over-discriminate. They have large negative
fit-residuals, significant chi-square fit statistics and their observed means are
steeper than the theoretical curve.
Item 15 under-discriminates. It has a positive fit-residual (quite large but
within the acceptable range), significant chi-square fit statistic and the
observed proportions are flatter than the theoretical curve.

(b) Item 21.
(c) Items 16, 21, 28 and 29 show misfit without the Bonferroni correction

(significant F statistic at the 0.01 level). Only items 29 and 21 show misfit
with the Bonferroni correction.

3.

(a) Item 29 shows misfit according to the fit-residual, chi-square, ANOVA fit
statistics and the ICC. With the Bonferroni correction, only the ANOVA fit
statistic is significant. Items 21 and 28 have acceptable fit-residuals, but
chi-square and ANOVA fit statistics show poor fit.

(b) Item 20. The greater the distance of a person from an item, the greater the
power to detect misfit and the greater the error of measurement.

(c) 180
It does not change considerably, the fit-residual remains the same while the
chi-square and ANOVA fit statistics improve slightly since their degrees of
freedom are reduced.

4.

(a) Item 63 has a large positive fit-residual, significant chi-square fit statistic
with Bonferroni correction and the observed proportions are flatter than the
ICC (under-discriminates).

(b) Item 63 misfits according to the ANOVA fit statistic without the Bonferroni
correction. With the Bonferroni adjustment, none of the items misfit.
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Part B

1. Item 63 under-discriminates, it has a large positive fit-residual, significant
chi-square statistic and the observed proportions are flatter than the theoretical
curve.

2. Item 63 could be prone to guessing from lower proficiency students. With 5
class intervals, the observed mean in the least proficient group is greater than
expected and in the more proficient groups are lower than expected (ICC is
located further to the left because item appears easier).

3. The items were slightly harder in the tailored compared to the anchored analysis,
but the estimates are very similar (R-squared = 0.998). The deviation from the
regression line (y = 1.011x) is mainly a function of the relative difficulty of the
items (the harder the item, the more likely that guessing could have played a role).

Exercise 4

1. The observed item fit-residual mean (−0.052) and SD (1.261) are very close to
the theoretical values. The pattern of responses is consistent with the model.
The observed person fit-residual mean (-0.198) and SD (0.810) deviate, but not
substantially, from the expected values. The response profiles across persons are
as expected (slight over-fit).
The item–trait interaction chi-square statistic (100.169, p = 0.217) could have
occurred by chance. The responses fit the model and the hierarchical ordering of
items is consistent across all levels of the underlying trait.
The person separation index (0.93) is very high (over 0.7 is acceptable), indi-
cating good internal consistency and that persons can be reliably differentiated.

2. No items misfit according to both fit statistics. Item 5 has a large positive
fit-residual (2.812) but its chi-square statistic is not significant with the
Bonferroni correction.

3. Item 5 shows disordered thresholds. The thresholds for items 1, 6, 7, 8 and 10
are not equally spaced and some are located very close to each other (poor
discrimination between categories).

4. The thresholds for item 5 are not correctly ordered, the third threshold is lower
than the second threshold and there is no region where a score of 2 is most likely.
The thresholds for items 1, 6, 7, 8 and 10 are correctly ordered, but a score of 3
(for items 1 and 6), 1 (item 7) and 2 (items 8 and 10) is almost never most likely.

5. The second and third thresholds of item 5 are reversed and the observed pro-
portions deviate substantially from the theoretical at the third threshold.
The other items have thresholds which lie very close to each other showing very
little discrimination between pairs.

6. Item 5 misfits according to its fit-residual and reversed thresholds, and therefore
it is reasonable to collapse categories 2 and 3 for an exploratory analysis. This
resulted in properly ordered categories and considerably improved fit.
Items 1, 6, 7, 8 and 10 have thresholds that are almost overlapping, and
therefore it would be worth collapsing categories. Items 7 and 8 improved in fit.
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For the remaining items, the trend towards over-fit evident in the initial analysis
becomes even more apparent.

7. Ambiguous response category labels and/or too many response options would
make it difficult to distinguish between options, resulting in disordered thresh-
olds and a lack of discrimination. Successive categories might not necessarily
imply successively more of a property and reducing the number of categories in
a revised instrument might solve the problem.

Part B

1.

(a) The significant item–trait chi-square suggests that the responses are not
consistent with the rating scale model (in contrast to the partial credit model)
and the hierarchical ordering of items varies across the trait. Items 3, 6, 7
and 8 show misfit according to their chi-square fit statistics with the
Bonferroni correction. None of the items misfit using the partial credit
model. The fit-residual statistics are all within the acceptable range.

(b) None of the items had disordered thresholds when the rating scale model
was employed, but item 5 had reversed thresholds with the partial credit
model. The threshold locations differ between the rating scale (same for all
items) and the partial credit (different across items) parameterisations.

(c) The spread parameter differs for items and on average is large with the
partial credit model, indicating that the majority of responses appear in the
middle categories (narrower spread). The spread parameter is the same for
all items and smaller with the rating scale model, indicating that the majority
of responses are in the extreme categories (wider spread).

2.

(a) The rating scale model assumes that the distance between thresholds across
all items are the same because they share a common response format
(number of categories and descriptors). Therefore, both the centralized
thresholds and the spread are the same for all items.
In the partial credit model, the numbers of categories differs across items
because each has its own response structure. The thresholds differ across
items, so additional parameters have to be estimated, resulting in a more
complex model.

(b) Partial credit is useful in educational testing situations where some responses are
given partial credit (scoring rubric) and each item has its own response format.
The rating scale model is useful in attitudinal surveys where all items share the
same number of categories with identical descriptors (Likert-type items).

3. The graded response model partitions the frequency distribution of the responses
while the polytomous Rasch model partitions the underlying continuum.
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Exercise 5

1. Year 6 = 0.40, Year 7 = 0.38. The difference of 0.02 is not statistically sig-
nificant (p = 0.70).

2.

(a) Items 33, 34 and 35 have statistically significant F statistics (p = 0.000) and
their ICCs show uniform DIF for year group.

(b) Item 35 is split first because it has the highest Mean Square. Item 34 is split
next because it continues to show DIF. Then, no DIF remains.

3. Year 6 = 0.21, Year 7 = 0.53. The difference of 0.32 is statistically significant
(p = 0.00). The mean of the year 6s decreased and the year 7s increased after
splitting two items.

4. Items 34 and 35 show real DIF and Item 33 shows artificial DIF.

Exercise 6

1.

(a) If all items fitted the Rasch model, there would be strong evidence for
unidimensionality of the construct measured, but not confirmation.

(b) Outfit = fit-residual, Infit = weighted.
(c) The chi-square statistic is no longer statistically significant.

2.

(a)

Item I0001 I0002 I0003 I0004 I0005 I0006 I0007 I0008 I0009 I0010

I0001 1

I0002 −0.314 1

I0003 0.2 −0.344 1

I0004 −0.285 0.314 −0.417 1

I0005 0.131 −0.399 0.152 −0.411 1

I0006 −0.326 0.195 −0.315 0.176 −0.426 1

I0007 0.201 −0.293 0.151 −0.356 0.23 −0.442 1

I0008 −0.281 0.203 −0.306 0.195 −0.381 0.305 −0.413 1

I0009 0.126 −0.372 0.259 −0.364 0.266 −0.357 0.329 −0.39 1

I0010 −0.279 0.157 −0.327 0.19 −0.286 0.175 −0.249 0.075 −0.26 1

There are a number of relatively high correlations (pairs of items have
something in common in addition to what all the items have in common).

(b)

Item PC1

I0009 0.639

I0005 0.631

I0007 0.626
(continued)
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Item PC1

I0003 0.577

I0001 0.504

I0010 −0.473

I0008 −0.605

I0002 −0.608

I0004 −0.632

I0006 −0.635

Half the items load positively and half load negatively on the first principle
component.

(c)

PC Eigen Percent (%) CPercent (%) StdErr

PC001 3.547 35.47 35.47 0.491

PC002 1.068 10.68 35.47 0.144

PC003 0.941 9.41 55.56 0.125

PC004 0.849 8.49 64.05 0.108

PC005 0.826 8.26 72.31 0.106

PC006 0.744 7.44 79.75 0.103

PC007 0.705 7.05 86.80 0.096

PC008 0.665 6.65 93.44 0.089

PC009 0.585 5.85 99.29 0.088

PC0010 0.071 0.71 100.00 0.06

35.47% suggesting the instrument is multidimensional.
3. The two subscales are significantly different. Independent t-tests for each person

showed that 26% of the values exceed the 5% level and 10% exceed the 1%
level.

4.

-------------------------------------------------------------------------------- 

run1 subtest  c*c c r A 

Per Sep Idx:  0.872 0.554 1.291 1.136 0.437 0.635

Coef Alpha: 0.871 0.607 0.980 0.990 0.505 0.697

-------------------------------------------------------------------------------- 

Reliability estimates (PSI and Coefficient Alpha) decrease, c is large and the
correlation is small, which all suggest multidimensionality.

(continued)
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5.

(a) Item 28 and item 29 show response dependence (r = 0.876).
(b) d = 3.047
Students that scored 0 on item 28 found item 29 more difficult by 3 logits than it
would otherwise be, and those who scored 1 found it easier by 3 logits.

Exercise 7

Part A

1. Time 1 = 0.097, Time 2 = −0.097.
2. Time 1 = −0.744, Time 2 = −0.559.

Part B

1.

Rater Location Fit residual

1 0.228 1.008

2 0.025 0.834

3 −0.253 −1.318

None of the raters misfit.
2.

Criteria Location Fit residual

1 −0.53 0.252

2 −0.28 −0.022

3 −0.095 0.654

4 0.158 0.838

5 0.261 −0.145

6 0.486 −0.253

No evidence of misfit.
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Appendix D
Statistics Reviews, Exercises and Solutions

Statistics Review 1: Sigma Notation, Mean and
Variance

Key words: Symbols Xi, N, X, s
2, s, Greek letter sigma

P
, Mean, Median,

Mode, Range, Interquartile range, Variance, Standard deviation (SD)

Key points: The distribution of a set of N scores can be characterized by
measures of central tendency (e.g. mean) and variability [e.g. variance. stan-
dard deviation (SD)]. The symbol Xi is often used to refer to individual scores
and the Greek letter sigma

P
as the sum of the scores. The mean is then

indicated by X , the variance by s2and the SD by s.

If a set of scores has been obtained by giving a test to a group of students, it is often
helpful to be able to speak about the pattern or distribution of all the scores rather
than to have to give the whole set. The two characteristics of this distribution in
which we are usually most interested are the position of its ‘middle’ and the amount
of ‘spread’ in the scores within it.

To illustrate this, we can take the scores obtained by six students (that’s a good
student–staff ratio) on a test of ten items scored simply correct (1) and incorrect (0).
Their scores were 6, 4, 7, 10, 7 and 2.

If we want to refer to this set of numbers without actually writing down any one
of them, we can use the symbol X instead of the number, with the subscript
i indicating it is the i th number, Xi. The first number can be referred to as X1, the
second as X2, etc.
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1. Measures of central tendency

A number of measures have been developed to show where the ‘middle’ of a distri-
bution is. These are often referred to as ‘measures of central tendency’. They are

Median The score above which half the group scored and below which the other
group scores.

Mode The score obtained by the largest number of people. (This is useful only
where a lot of people are involved and where large numbers of people
obtain the available scores around the middle.)

Mean The arithmetic average, that is, the sum of the scores divided by the
number of scores. This can be represented as

Mean ¼ RX
N

;

where the greek letter sigma Rð Þ is used to indicate ‘sum of’. Actually, to be
precise, we could say Xi is the score for student i (in our class of 6) and represent
the sum of the six scores by

X6
i¼1

Xi ¼ X1 þX2 þX3 þX4 þX5 þX6:

Later in this Statistics Review we set out some rules for calculations with the
sigma notation.

A notation frequently used to indicate a mean is a bar over the symbol for the
score. The mean score in our case could be written as �X:, with the dot replacing the i
because the mean represents an average taken over all N (in our case, 6) people. We
can best write all this as

�X: ¼
PN

i¼1 Xi

N
¼ 6þ 4þ 7þ 10þ 7þ 2

6

¼ 36
6

¼ 6:0:

Of these measures, the median is appropriate in cases where the scale of mea-
surement used is only ordinal (see Chap. 1) or where, even if the scale is interval (or
ratio), there are a few very extreme cases which will distort the mean. To see this
last point, check that, for this set of scores (2, 5, 7, 8, 10, 11, 40) the median is 8 but
the mean is 11.9 (i.e. higher than every score but the top one). The salaries earned
by Australians provide a good example of a distribution in which the mean is pulled
up above the median by a relatively small number of very high salaries.
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For all of the statistics we will be using in this book, the mean is the measure of
central tendency we will need.

2. Measures of variability

A number of measures of variability have also been developed. These include the
following:

Range The difference between the highest and the lowest scores. In
our original case, this would be 10 − 2 = 8.

Inter quartile Range The difference between the score which was exceeded by
75% of the students and the score which was exceeded by
25% of them (notice how this pinpoints either side of the
median and indicates the degree of variability in terms of the
distance between them).

Average Deviation The average deviation of scores from the mean. If we
calculate the deviation of student i as Xi � �X:ð Þ it will be
positive if the student scores above the mean and negative if
he scores below the mean. If we then average all the
deviations calculated like this the average will be zero
(of course!). Take an example and convince yourself of that.
Instead of taking this value for the deviation we take its
absolute value. That is, we consider all the deviations to be
positive since we are interested in their average size. To
indicate that we want the absolute value we write Xi � �X:j j.
The sum of these for all the N students (6 in our example),
we would show as

XN
i¼1

Xi � �X:j j:

See that you can get this to be 12 for our example.
This then gives us an average deviation of 2.0.

Variance The average of the square of the deviations of the scores
from the mean. For student i, the square deviation will be

Xi � �X:ð Þ2. For all N students, the sum of squares (SS) will
be represented by

XN
i¼1

Xi � �X:ð Þ2:

To take our earlier set of data again and to make this
explicit, we could set out the information as
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Xi Xi � �X:ð Þ Xi � �X:ð Þ2
6 0 0

4 −2 4

7 1 1

10 4 16

7 1 1

2 −4 16

Sum = 36 0 38

Since the sum of squares is 38, the average square deviation
is (38/6) = 6.33.
Actually, for small samples we have to divide, not by N (6
in our case), but by N − 1 (i.e. 5), so the variance is 38/5 =
7.6. The reason we divide by (N − 1) is that we are usually
not so much trying to work out what the variance is in a
particular sample of students, but to estimate what it really is
for the population of students which they represent.
Dividing by N − 1 gives a better estimate than dividing
by N (check that out in one of the books if you want to
follow it up). In the meantime, note that the formula for
calculating the variance of a set of N scores is

Variance ¼ s2 ¼
PN

i¼1 Xi � �X:ð Þ2
N � 1

;

where the symbol s2 stands for variance.
The calculation can be performed in a slightly simpler way.
The sum of squared deviations can be calculated differently
because the following relationship holds:

XN
i¼1

xi � �Xð Þ2 ¼
XN
i¼1

X2
i �

PN
i¼1 Xi

� �2
N

:

Check this out using our example. Square each of the scores
and add the squares. That will give you the following:

XN
i¼1

X2
i ¼ 254:
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You already know that the sum of the numbers is 36, so the
formula becomesXN

i¼1

Xi � �Xð Þ2 ¼ 254� ð36Þ2
6

¼ 254� 216

¼ 38;

which is what we got by actually calculating the deviations,
squaring them, and adding the squares. In our case, it
doesn’t matter much which way you do it. If the mean were
not a whole number, however, it becomes a bit messy to
compute deviations and square them. In such cases the
alternate formula just given is easier to use. Try out some
examples.

Standard deviation is the square root of the variance. So, where we used the
symbol s2 for variance, we use the symbol s for standard
deviation. To return again to our case, where the variance
was 7.6, the standard deviation we can see to be the square
root of this, which is 2.76.

Of these measures of variability, the one on which we will most depend in this
book on measurement is variance. Since the standard deviation is simply the square
root of variance we will also be able to use it.

To increase your ‘feel’ for the sort of calculations we have talked about so far,
try adding a constant (say 5) to every student’s score and then seeing what the mean
and variance will now be compared with the 6.0 and 7.6 we originally obtained
(Answer: mean = �X = 11.0; variance = s2 = 7.6).

Try again, this time doubling each score and showing that the mean is now twice
as high, viz 12.0, but that the variance is four times as large, viz 30.4.

3. Calculation with the sigma notation

We saw earlier that the greek letter sigma Rð Þ is used to indicate ‘sum of’.
Following are a set of rules for calculations with the sigma notation. These are
necessary, for example, when you calculate indices of reliability, fit statistics, etc.

Consider a set of six scores as before:

X6
i¼1

Xi ¼ X1 þX2 þX3 þX4 þX5 þX6:
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Rule 1: If c is any constant number then

cX1 þ cX2 þ � � � þ cXn ¼
Xn
i¼1

cXi ¼ c
Xn
i¼1

Xi:

Rule 2: Also,

ðX1 þ cÞþ ðX2 þ cÞþ � � � þ ðXn þ cÞ ¼
Xn
i¼1

ðXi þ cÞ

¼ X1 þX2 þ � � �XnÞþ ðcþ cþ � � � þ cÞ

¼
Xn
i¼1

Xi þ
Xn
i¼1

c ¼
Xn
i¼1

Xi þ nc:

Rule 3: Similarly,

ðX1 � X1Þþ ðX2 � X2Þþ � � � þ ðXn � XnÞ ¼ X2
1 þX2

2 þ � � �X2
n ¼

Xn
i¼1

X2
i :

Rule 4: And

Xn
i¼1

Xi

 ! Xn
i¼1

Xi

 !
¼

Xn
i¼1

Xi

 !2

:

Rule 5: Also,

Xn
i¼1

ðXi þ cÞ2 ¼ ðX1 þ cÞ2 þðX2 þ cÞ2 þ . . .ðXn þ cÞ2:

But ðXi þ cÞ2 can be written as X2
i þ 2cXi þ c2; so

Xn
i¼1

ðXi þ cÞ2 ¼
Xn
i¼1

ðX2
i þ 2cXi þ c2Þ ¼

Xn
i¼1

X2
i þ 2c

Xn
i¼1

Xi þ nc2Þ:
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Exercises

1. Let X1 ¼ 2, X2 ¼ 2, X3 ¼ 3, X4 ¼ 3, X5 ¼ 4. Calculate each of the following:

a.
P5
i¼1

Xi;

b.
P4
i¼2

Xi;

c.
P5
i¼1

Xi �
P5
i¼3

Xi:

2. Write out the following expressions:

a.
P3
i¼2

Xi;

b. ðP4
i¼1

XiÞ2;

c.
P5
i¼1

X2
i :

3. Change the following expressions into R notation:

a. 5X1 þ 5X2 þ 5X3 þ 5X4;

b. ðX1 þX2 þX3 þX4Þ2:

Statistics Review 2: The Normal Distribution

Key words: Normal curve, Standard normal curve, Skewness, Kurtosis,
Standard score z

Key points: The normal curve is bell shaped and symmetrical. The standard
normal curve has a mean of 0 and SD of 1. Original scores, x, in a normal
distribution can be converted to standard z-scores. The area under the normal
curve has been calculated and is both meaningful and useful. In comparing a
distribution to the symmetrical normal distribution two terms are sometimes
used. Skewness refers to the degree to which the data is distributed either to
the left or right of the mean. Kurtosis refers to the ‘peakedness’ of the data.

The normal curve arises theoretically as the shape when many components, each with an
error, are added together. There are many chapters written in statistics texts on the normal
distribution, and it is the most important distribution in statistics. The chapter by Roscoe
listed under Further Reading gives a sound summary of its use. The frequency dis-
tributions of many events found in nature closely approximate the normal distribution.
Psychological test scores often, but not always, approximate the normal distribution.

Appendix D: Statistics Reviews, Exercises and Solutions 395



Roscoe summarizes the properties of the normal curve as follows:

• A normal curve is a graph of a particular mathematical function—a model for
events whose outcome is left to chance.

• There is an infinite number of normal curves, each determined by the values of
the mean and SD. The standard normal curve has a mean of 0 and an SD of 1.

• A normal curve is symmetrical and bell shaped with its maximum height at the mean.
• A normal curve is continuous.
• The value of Y is positive for all values of X.
• The curve approaches but never touches the X-axis.
• The inflection points of the curve occur 1 SD on either side of the mean.
• The total area between the curve and score scale is 1 and areas under portions of

the curve may be treated as relative frequencies.

Converting an original score xi to a standard score zi of the standard normal
distribution can be done by

zi ¼ xi � �x
sx

;

where �x and sx are the mean and SD of the original distribution.
The area under the normal curve has been calculated and tabled. Table 1 at the end
of this review provides the proportion of the total area under a normal curve
between the mean and any score expressed as a standard score zi. So given a
standard score zi the percentage of scores between this score and the mean can be
determined, or the percentage of scores to the right or left of this score or the
percentile rank of the score. The reverse can also be done: given the percentage of
scores or a percentile a standard score can be determined.

Figure 1 shows two normal curves, differing in their SDs, with the area under
them.

The areas under the normal curve can also be found using the Microsoft Excel
function normdist(). The function returns the probability of an x-score for a normal
distribution. For example, what percentage of scores fall below 65 when �x ¼ 50
and sx ¼ 10? = normdist(65, 50, 10, true) will return the value 0.933. So 93.3% of
scores fall below a score of 65. The z-score doesn’t have to be calculated when
using this function—the z-score is (65 − 50)/10=1.5. So 93.3% of scores fall below
a z-score of 1.5. 6.7% of scores fals above a z-score of 1.5. Because the total area
under the curve is 1, we need to subtract the area to the left from 1 to get 1 − 0.933
= 0.067. Figure 2 shows the area under the curve graphically.

It is also very important to be able to use the normal curve to establish confi-
dence intervals for the range of observed scores. For example, suppose we know
that scores have a mean of 50 and a standard deviation of 10, then we can determine
the percentage of scores within any interval, and the interval within which we can
confidently say any percentage of scores will fall.
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Table 1 Areas under the standard normal distribution between the mean and the z-score

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0 0.004 0.008 0.012 0.016 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.091 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.148 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.17 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.195 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.219 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.258 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.291 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.334 0.3365 0.3389

1 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.377 0.379 0.381 0.383

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.398 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.437 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.475 0.4756 0.4761 0.4767

2 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.483 0.4834 0.4838 0.4842 0.4846 0.485 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.489

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.492 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.494 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.496 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.497 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.498 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.499 0.499
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Fig. 1 Two normal curves with the area under them, the curve at the top having a bigger SD
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Example 1. For the case above of the variable where �x ¼ 50; sx ¼ 10; what per-
centage of scores falls within the range of 35–65? To be able to look this percentage
up from the table, we convert xi ¼ 35 and xi ¼ 65 to standard scores according to

zi ¼ xi��x
sx

zi ¼ xi��x
sx

¼ 35�50
10 ¼ 65�50

10

¼ �15
10 ¼ 15

10

¼ �1:5 ¼ 1:5:

From the table for zi ¼ 1:5, the area is 0.4332. Therefore, 43.32% of cases are
between the mean and xi ¼ 65, and likewise between the mean and xi ¼ 35.
Therefore, the percentage of scores is 43.32 + 43.32 = 86.64.

Example 2. For the case above of the variable where �x ¼ 50; sx ¼ 10, find the
interval within which 90% of the scores fall if the distribution is normal.

We first compute a standardized z-score so that we can refer to the table.
To form 90%, 45% = 0.45 cases are on either side of the mean. For an area of

0.4495 zi ¼ 1:64, for an area of 0.4505 zi ¼ 1:65.
Therefore, we can approximate 1.645 for an area of 0.45. A value of zi ¼

�1:645 would take in the other 0.45 (45%) cases.
We now convert zi to xi from

Fig. 2 Areas under the standard normal curve
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zi ¼ xi � x
sx

zi ¼ xi � 50
10

xi � 50 ¼ 10zi
xi ¼ 50þ 10zi

For zi ¼ 1:645 xi ¼ 50þ 10ð1:645Þ
¼ 50þ 16:45

¼ 66:45

For zi ¼ �1:645 xi ¼ 50� 10ð1:645Þ
¼ 50� 16:45

¼ 34:55:

Therefore, the 90% confidence interval is 34.55–66.45.
In comparing a distribution to the symmetrical normal distribution two terms are

sometimes used: skewness and kurtosis. Skewness refers to the degree to which the
data is distributed either to the left or right of the mean. Kurtosis refers to the
‘peakedness’ of the data.

Further Reading

Roscoe, J. T. (1975) Fundamental Research Statistics for the Behavioural Sciences,
(2nd ed.), New York: Holt, Reinhart and Winston.

Exercises

1. Given a score point located 1.54 SD above the mean in a normal distribution,
determine the following:

a. The area between the mean and the score.
b. The total area to the left of the score.
c. The total area to the right of the score.
d. The percentile rank of the score.

2. Given a percentile rank of 20 in a normal distribution, determine the
corresponding z-score.

3. Given a percentile rank of 95 in a normal distribution, determine the corre-
sponding z-score.

Statistics Review 3: Covariance and the Variance
of a Sum of Two Variables

Key words: Covariance, Deviation from the mean, Correlated variables,
Uncorrelated variables
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Key points: Covariance gives an indication of how the variations in a set of scores
relate to variations in another set of scores. When variables are correlated, the
variance of the sum of two variables is the sum of the variances of the variables
and twice the covariance. When variables are not correlated, the variance of the
sum of two variables is only the sum of the variances of the variables.

In Statistics Review 1 you learnt about measures of variability, for example,
variance. In this Statistics Review, we take the concept of variance further.

1. Measure of covariability

In many instances, we are not interested as much in how scores on one test vary as
we are in how the variations in scores on that test relate to variations in scores on
another test. For example, do the students who get a high score on one test get a
high score on the other test too? That is, how do scores on the two tests covary?

When we had scores on one test, we used the square of the deviation from the
mean as the basis for our calculation of variance. If we now consider a case where
we have two test results, for example, a small 10-item test on arithmetic (that’s the
one we’ve been using all along) and a small 5-item test on algebra. Suppose the
scores obtained by the six students in the class were

Arithmetic test Algebra test

Xi Yi
6 2

4 0

7 2

10 4

7 3

2 1

To calculate the variance on the arithmetic test we need, for person i, the square

deviation Xi � �X:ð Þ2 . Similarly, for the algebra test, we need Yi � �Y:ð Þ2. Notice that
the mean on the algebra test �Y:ð Þ is equal to 2.0. To calculate covariance we need,
not the square of either one, but their product, i.e. Xi � �X:ð Þ Yi � �Y:ð Þ.

We can set out the necessary calculations using the following table:

Xi Xi � �X:ð Þ Xi � �X:ð Þ2 Yi Yi � �Y:ð Þ Yi � �Y:ð Þ2 Xi � X:ð Þ Yi � �Y:ð Þ
6 0 0 2 0 0 0

4 −2 4 0 −2 4 4

7 1 1 2 0 0 0

10 4 16 4 2 4 8

7 1 1 3 1 1 1

2 −4 16 1 −1 1 4

Sum 36 0 38 12 0 10 17
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From these you will remember we calculated the variance of X as follows:

s2x ¼
PN

i¼1 Xi � �X�ð Þ2
N � 1

¼ 38
5

¼ 7:6:

We can also calculate the variance for the algebra test (Y) as follows:

s2y ¼
PN

i¼1 Yi � �Y�ð Þ2
N � 1

¼ 10
5

¼ 2:0:

The covariance between the two tests, X and Y, will be

Cxy ¼
PN

i¼1 Xi � �X:ð Þ Yi � �Y:ð Þ
N � 1

¼ 17
5

¼ 3:4:

Remember the easier calculation procedure for variance? Well, there is a corre-
sponding one for covariance. Instead of actually calculating the deviations from the
means and then computing the sum of products of the deviations, you can use the
following relationship:

XN
i¼1

Xi � �X:ð Þ Yi � �Y:ð Þ ¼
XN
i¼1

XiYi �
PN

i¼1 Xi

� � PN
i¼1 Yi

� �
N

¼ 89� 36ð Þ 12ð Þ
6

¼ 17:

Check to see that you can get this last result yourself, that is, to make sure that you
know what each of the symbols means.

The results which we now have can be summarized in a table form called a
variance–covariance matrix. It would be set out as
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You can read from this matrix that the variance of X (or, if you like, the
covariance of X with X) is 7.6, the variance of Y is 2.0, the covariance of X with Y
(top right-hand corner) is 3.4 and the covariance of Y with X (bottom left-hand
corner) is 3.4 (of course).

2. Variance of a sum of two variables

We are sometimes interested in adding together scores obtained on two different
tests. It is important to see what happens to the variance when this is done. We can
take our two tests, X and Y, to see this [note that the mean of the new variable,
(X + Y), is 8.0].

Xi Yi Xi þ Yið Þ Xi þ Yið Þ � ð�X: þ �Y:Þf g Xi þ Yið Þ � ð�X: þ �Y:Þf g2
6 2 8 0 0

4 0 4 −4 16

7 2 9 1 1

10 4 14 6 36

7 3 10 2 4

2 1 3 −5 25

Sum 36 12 48 0 82

The variance of this variable (X + Y) will therefore be

S2xþ y ¼
PN

i¼1 f Xi þ Yið Þ � ð�X: þ �Y:Þg2
N � 1

¼ 82
5

¼ 16:4:

The important question is, how is this related to the variance of X and the
variance of Y. We will tell you first and then, for those who are interested in
following it, we will prove it. The relationship is

s2xþ y ¼ s2x þ s2y þ 2cxy

¼ 7:6 þ 2:0 þ 2 � 3:4ð Þ
¼ 7:6 þ 2:0 þ 6:8

¼ 16:4:
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The proof that this relationship always holds is simple enough. If we leave out
the (N − 1), by which we divide to convert the sum of squares to the variance, we
can develop the algebra for the sum of squares (SS) as follows:

SSxþ y ¼
XN
i¼1

Xi þ Yið Þ � ð�X: þ �Y:Þ½ �2

¼
XN
i¼1

Xi � �X:ð Þþ Yi � �Y:ð Þ½ �2

¼
XN
i¼1

xi � �X:ð Þ2 þ Yi � �Y:ð Þ2 þ 2 Xi � �X:ð Þ Yi � �Y:ð Þ
h i

¼
XN
i¼1

Xi � �X:ð Þ2 þ
XN
i¼1

Yi � �Y:ð Þ2 þ 2
XN
i¼1

Xi � �X:ð Þ Yi � �Y:ð Þ

¼ SSx þ SSy þ 2SPxy:

In this last expression, SPxy represents the sum of products of deviations for
X- and Y-scores about their respective means. If we now divide each item by
N − 1, we get the variances from the sums of squares and the covariance from the
sum of products and so we have

s2xþ y ¼ s2x þ s2y þ 2cxy:

From this it should be clear that the variance of a set of scores obtained by
summing scores is not equal to the sum of the variances of the original sets of
scores unless, of course, their covariance is zero (More of that, in fact much more of
that, in the next section!).

3. Variance of the sum of uncorrelated variables

To understand this section you need to understand the concept of correlation,
explained in Statistics Review 4 Regression and Correlation. Therefore, the con-
cepts in Statistics Reviews 3 and 4 should be reviewed simultaneously. We begin
this section by making tangible the variance of the sum of two uncorrelated vari-
ables. It is essential to understand this effect because in TTT we imagine that an
observed score is the sum of two variables, the true score and the error, where these
two variables are not correlated.

At the end of the previous section, the following result is derived:

s2xþ y ¼ s2x þ s2y þ 2cxy;

where cxy is the covariance between two variables.
The covariance is large when the scores on the X variable are related to scores on the Y
variable. In particular, if when a score on the X variable is above the mean, the
corresponding score on the Y variable is likely to be above the mean, and when a score
on the X variable is below the mean, the corresponding score on the Y variable is also
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likely to be below the mean, then the covariance will be large and positive. If the scores
on the two variables go in the opposite directions, that is, when a score on the X
variable is above the mean, the corresponding score on the Y variable is likely to be
below the mean, and when a score on the X variable is below the mean, the corre-
sponding score on the Y variable is also likely to be above the mean, then the
covariance will be large and negative.

When one cannot tell which direction the value of the second variable will take
from the value of the first variable, then the covariance will be close to 0: cxy ¼ 0.
To consolidate this point, Table 2 shows an example of two variables that are
uncorrelated.

From section 1 where you learned the definition of covariance, you can see from
the above table that

cxy ¼
Pn

i¼1 Xi � �Xð Þ Yi � �Yð Þ
N � 1

¼ 0: rxy ¼ cxy
sxsy

¼ 0
sxsy

¼ 0:

Of course, the correlation rxy is also 0 as shown.
In this case, from the equation the variance for the sum of two variables, which

you learned in the previous section to be given by

s2xþ y ¼ s2x þ s2y þ 2cxy reduces to

s2xþ y ¼ s2x þ s2y Cxy ¼ 0
� �

:

This is a very important result: when variables are not correlated, the variance
of the sum of two variables is the sum of the variances of the variables.

This can be checked readily in the above example.
Let Z be a new variable which is the sum of the original variables X and Y:Z =

X + Y. Table 3 shows the variable Z as well as the squares about the mean for each
of the variables from which the variances are calculated.

Table 2 Example of uncorrelated variables

Xi Yi Xi � �Xð Þ Yi � �Yð Þ Xi � �Xð Þ Yi � �Yð Þ
10 6 5 1 5

8 4 3 −1 −3

3 7 −2 2 −4

4 4 −1 −1 1

1 5 −4 0 0

4 4 −1 −1 1
�X ¼ 5 �Y ¼ 5

P6
i¼1 Xi � �Xð Þ ¼ 0

P6
i¼1 Yi � �Yð Þ ¼ 0

P6
i¼1 Xi � �Xð Þ Yi � �Yð Þ ¼ 0
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It is evident that from Z = X + Y, when X and Y are not correlated that 64 = 56 +
8, that is,

X6
i¼1

Zi � �Zð Þ2 ¼
X6
i¼1

Xi � �Xð Þ2 þ
X6
i¼1

Yi � �Yð Þ2;

i.e. SSz¼xþ y ¼ SSx þ SSy;

i.e. SSz¼xþ y

5 ¼ SSx
5 þ SSy

5 ;

i.e. s2z¼xþ y ¼ s2x þ s2y :

Exercises

1. Suppose the variables of height and ability on a non-verbal test of intelligence
are uncorrelated in an adult population.

(a) If the standard deviation of height is 10 cm and the standard deviation on the
non-verbal test of intelligence is 15 units, what would be the variance of the
sum of height and the variable on non-verbal intelligence in this population?

(b) Would adding these two variables to form the sum make any sense?
Explain your answer in one sentence.

2. Suppose the variables of height and ability on the same non-verbal test of
intelligence is correlated in a school-age population (during compulsory years of
schooling age approximately 5–15 years).

(a) If the correlation is 0.5, the standard deviation of heights is 12 and the
standard deviation on the non-verbal test of intelligence is 18 units, what
would be the variance of the sum of height and the variable on non-verbal
intelligence in this population?

(b) Would adding these two variables to form the sum make any sense?
Explain your answer in no more than one sentence.

(c) Why do you think that there is a correlation between height and non-verbal
intelligence in the school-age population and not in the adult population?

Table 3 Sum of two uncorrelated variables

Zi ¼ Xi þYi Zi � �Z Zi � �Zð Þ2 Xi � �Xð Þ2 Yi � �Yð Þ2

16 6 36 25 1

12 2 4 9 1

10 0 0 4 4

8 −2 4 1 1

6 −4 16 16 0

8 −2 4 1 1

�Z ¼ 10
P6

i¼1 Zi � �Zð Þ ¼ 0
P6

i¼1 Zi � �Zð Þ2 ¼ 64
P6

i¼1 Xi � �Xð Þ2 ¼ 56
P6

i¼1 Yi � �Yð Þ2 ¼ 8

406 Appendix D: Statistics Reviews, Exercises and Solutions



Statistics Review 4: Regression and Correlation

Key words: Relationship between variables, Linear relationship, Regression,
regression coefficients, Prediction, Error of prediction, Correlation, Proportion
of variance accounted for, Strength of relationship

Key points: Regression and correlation give an indication of the relationship
between variables. If there is a linear relationship between two variables a
score on one variable can be predicted based on a score on the other variable
through regression. Correlation gives an index of the strength between two
variables. Correlation also gives an indication of the proportion variance in
one variable that can be accounted for by the other variable. Correlation is the
standardized covariance between two variables.

Relationship between two variables: In educational (or any social or behavioural)
research, one of the things we often want to do is to make predictions. For example,
if we want to allocate places in a tertiary institution among a large number of
applicants, we will usually want to allocate places to those students for whom we
predict the greatest likelihood of success in tertiary study. We can check out the
accuracy of our predictions by getting a measure of tertiary success and seeing how
well it does actually relate to our basis of prediction.

1. A simple linear model

To illustrate this, let’s stick with our simple data for our six students on the
arithmetic and algebra test (used in Statistics Review 1) and let’s imagine that we
are interested in seeing what predictions of algebra performance we can make from
arithmetic performance.

At first sight, it might seem worthwhile aiming for a deterministic model such as
those developed in the physical sciences. Newton’s law, for example, declares that a
force, F, where exerted on a body of mass, M, moves it with acceleration, a, where
the relationship between these is F = Ma. This is a statement of a precise
relationship.

We could try an equation of this form for our prediction, say

Y ¼ b0 þ b1X ð1Þ

but the problem with such a model is that it suggests that, for a particular value
of X, we can predict precisely the value of Y. If we graph our data from the
arithmetic and algebra test we can see the problem (Fig. 3).

If Eq. (1) were to apply, it would be possible to draw a line on which all of the
points would lie. The best we can do is to draw a line which fits the points as well as
possible, and then to use this line for making our predictions. That is, for student i,
with an arithmetic score of Xi (a score of 10 for student 4) we could predict an
algebra score Ŷi (with the ˆ indicating that we are speaking of a prediction, or an
estimate) using the following equation:
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Ŷi ¼ b0 þ b1Xi: ð2Þ

Jumping ahead a bit, let us tell you that the prediction we will get for student 4,
based on his score of 10 on the arithmetic test, will be 3.79 whereas that student’s
algebra score was actually 4. So our prediction would be out a bit, by an error of
prediction of 0.21. We can say this more formally as

Yi � Ŷi ¼ ei: ð3Þ

Fig. 3 Distribution of sample scores on arithmetic and algebra tests

Fig. 4 Regression line for predicting algebra tests scores from arithmetic tests scores
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For the case of student 4, this Eq. (3) would be

Y4 � Ŷ4 ¼ 4:00� 3:79

¼ 0:21

¼ e4:

The sort of prediction we are actually making is one in which we freely admit
that there will be errors of prediction. We can make that clear by writing Eq. (1), not
as a deterministic model, but as a probabilistic model, with the error of prediction
included

Y ¼ b0 þ b1Xþ e: ð4Þ

The question we haven’t considered yet is how the values of b0 and b1 are
determined. The full details of that are given in the statistics texts, to which you
should refer if you want to follow the derivation. Let us just say here that the values
we use are the best ones—best in the sense that when we use them we keep our
errors of prediction as small as possible. Actually, what we keep as small as

possible is the sum of squares of our errors, i.e.
P

e2i or R Yi � Ŷi
� �2

.
All you really need to know is how to calculate these best values of b0 and b1.

They will only be estimates of the values for the whole population of students,
because we derive them from the sample of data available (and our sample is small
enough, containing only six students). We could write b̂0 and b̂1 to make it clear we
are working with estimates of the population values but a simpler convention is to
use the Roman letter b which corresponds to the Greek letter b.

The estimates, then, are

b1 ¼ cxy
s2x

ð5Þ

and

b0 ¼ �Y: � b1�X:: ð6Þ

For our sample, then,

b1 ¼ 3:4
7:6

¼ 0:447

and

b0 ¼ 2:0� ð0:447� 6:0Þ ¼ �0:68:
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If we draw the line Ŷ ¼ �0:68þ 0:447X on the graph, the graph is Fig. 4.
We could read the errors of prediction from the graph, if we wanted to do it

carefully, or we can calculate them directly. They are given in the following table,
in which Ŷi has been calculated from

Ŷi ¼ �0:68þ 0:447Xi: ð7Þ

Xi Ŷi Yi Yi � Ŷi
� �

Yi � Ŷi
� �2

6 2.00 2 0.00 0.00

4 1.10 0 −1.10 1.22

7 2.45 2 −0.45 0.20

10 3.79 4 0.21 0.04

7 2.45 3 0.55 0.31

2 0.21 1 0.79 0.62

The errors of prediction Yi � Ŷi
� �

shown in this table correspond with the dotted
lines shown in the graph to indicate the distance a particular point is from the
prediction line. For example, for a score of 7 on the arithmetic test, we would
predict a score of 2.45 on the algebra test. One student with 7 on the arithmetic test
actually got 3 on the algebra test so we would have under-estimated his score (error
of prediction 0.55). The other student with 7 on the arithmetic test got 2 on the
algebra test, so we would have over-estimated his score (error of prediction −0.45).

1:1. Error variance in prediction

If you look back to the last table, you will see that the right-hand column gives the
square of the deviation of each score from the regression line, i.e. the square of the
error of prediction. The sum of these squares is

X6
i¼1

Yi � Ŷi
� �2 ¼ 2:39:

To save the separate calculation of a predicted score, and error of prediction, for
each student, the following formula can be used:

XN
i¼1

Yi � Ŷi
� �2 ¼ SSy �

SP2
xy

SSx
: ð8Þ

You can find the proof of this in a statistics text if you would like to see it.
Referring back to Statistics Review 1, you will find that SSy ¼ 10, SSx ¼ 38, and

SPxy ¼ 17. Substituting these in Eq. (8) we get
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SSy �
SPxy
� �2
SSx

¼ 10� ð17Þ2
38

¼ 10� 7:61

¼ 2:39

;

which is exactly what we got from the full calculation of the sum of squares.
A useful notation for this sum of squared errors of prediction is SSy:x. Whereas

SSy indicated the sum of squared deviations of individual Yi scores around �Y:, the
symbol SSy:x indicates the sum of squared deviations of individual Yi scores that
could have been expected on the basis of the individual’s Xi score.

If we now talk in terms of variance and covariance rather than sums of squares
and products, we can express a similar relationship to (8) as

s2y:x ¼ s2y �
c2xy
s2x

ð9Þ

in which s2y:x is the variance error of prediction of Y from X. From the sum of
squares SSy ¼ 2:39

� �
we can, by dividing by N − 1 (i.e. 5), obtain

s2y:x ¼ 0:48:

We could also get this value by substituting directly into Eq. (9).

1:2. A curvilinear relationship

If the regression weight b1 is zero, it means that, using our simple linear model,
there can be no useful prediction of Y-scores from the X-scores. It may mean that
there is, in fact, no relationship between the two variables at all. On the other hand,
it is always possible that there is a curvilinear relationship of a type which shows no
linear relationship. In Fig. 5 such a relationship is shown. The linear regression line
is horizontal b1 ¼ 0ð Þ and suggests no relationship on which to base predictions.
A more complex model would be needed to deal with this case.

This type of example illustrates the value of inspecting data carefully and not just
pumping it through statistical analyses.

2. Correlation

2:1. Proportion of variance accounted for

When we are studying the relationship between two variables, it is often helpful to
have an index of the strength of the relationship between the two variables.
Obviously, s2y:x gives us a very good indication of how strong the relationship is
because it is a direct measure of variance of those components of each person score
on one variable (Y) which cannot be predicted from (i.e. explained by) the other
variable (X).
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If the relationship between the two variables were perfect, every person’s point
on a graph such as the one in Fig. 4 would lie on the line. A person’s Y-score could
be predicted precisely from his X-score in such a case so there would be no error of
prediction. In such a case, s2y:x ¼ 0.

We are very unlikely to find s2y:x ¼ 0, so we really need to have some idea how to

judge the values we actually obtain. The important thing is to compare s2y:x with s2y .
This sort of comparison is provided, for our continuing example of arithmetic and
algebra scores, in Fig. 6.

Fig. 5 Data revealing a curvilinear relationship

(a) Ŷ = Y•

= 2.0
(b) Ŷ =  b0 +  b1X

=  - 0.68 +  0.447X

Fig. 6 Variance accounted for by correlation

412 Appendix D: Statistics Reviews, Exercises and Solutions



In graph (a) in Fig. 6, the variability of each student’s Y-score from the mean
Y-score �Y ¼ 2:0ð Þ is shown. We know, from our calculation in Statistics Review 1,
that the variance of these scores is

s2y ¼ 2:0:

In graph (b) in Fig. 6, the variability of each student’s Y-score from the score
which could have been predicted for him (i.e. Yi � Ŷi) is shown. We know from our
earlier calculation in this Statistics Review that the variance of these deviations
from the regression line is

s2y:x ¼ 0:48:

The proportion of error variance to total variance is

s2y:x
s2y

¼ 0:48
2:00

¼ 0:24:

This is unexplained variance. The proportion of explained variance is then
given by

r2 ¼ 1� s2y:x
s2y

you will see why r2 is used next page
� �

: ð10Þ

For our example, this is

r2 ¼ 1� 0:48
2:00

¼ 0:76:

This tells us that 0.76 of all the variance in the algebra scores (Y) can be explained
by the arithmetic scores (X). The proportion of the variance unexplained is

s2y:x
s2y

¼ 0:24:

If the relationship between the two variables were perfect, s2y:x ¼ 0 and r2 ¼ 1. In
this case, the proportion of the variance in Y accounted for by X would be 1.0.

If there were absolutely no (linear) relationship between the two variables, s2y:x ¼
s2y and the proportion of variance in Y accounted for by X would be 0.0.
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2:2. Index of strength of relationship

The coefficient of correlation between two variables has been developed as an index of
the strength of the relationship between the variables. The most commonly used coef-
ficient is the Pearson product moment correlation coefficient, for which the formula is

r ¼ cxy
sxsy

: ð11Þ

From Statistics Review 3 you will remember that cxy is a measure of the
co-variation of two variables. The difficulty in interpreting it is that we have no
rules for judging its size. If variable X or Y is measured on a large scale (say one
with 100 points) the covariance could be large, but so would the variance be. What
the formula (11) does is to standardize the covariance so that the effects of the scale
size are removed. You will notice that the covariance is divided by the product of
the standard deviations of the two variables.

To return to our example, again, we find the correlation to be

r ¼ 3:4
ð2:76Þð1:41Þ

¼ 0:87:

If two variables are perfectly related, then r = 1.0 (or −1.0 if high scores on one
match low scores on the other and vice versa). If there is no relationship between
the variables, cxy ¼ 0 and so r = 0.

Note that r2 calculated from above is r2 ¼ 0:872 ¼ 0:7569 ’ 0:76. This is
identical to r2 in the previous section.

Exercises

The data in the table below represent the scores of a small group of students on a
selection text (X) and a subsequent criterion test (Y).

Student number Selection test X Criterion test Y

1 45 69

2 33 55

3 31 46

4 27 35

5 48 58

6 40 60

7 51 72

8 37 53

9 42 64

10 36 48
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1. Calculate the covariance and the correlation of the scores on the two tests.
2. Calculate the best estimates for the regression coefficients for the prediction of

the criterion test scores from the selection test scores.
3. What would be the variance of the errors of prediction made with the regression

equation in the answer to 3?
4. What would be the error of prediction for Student 5?

Statistics Review 5: Probability

Key words: Set, Members, Sample space, Event, Compound events, Probability
of compound events, Probability, Probability of a compound event, Odds

Key points: A sample space is the set of all possible outcomes. An event is a set
of outcomes which is a subset of the sample space. A probability of an outcome
is the theoretical proportion of times that we would expect that outcome to
occur on a very large number of replications. The probability of an event
occurring is the ratio of the number of occurrences of the event and the total
number of equally likely occurrences. The probabilities of compound events,
such as the union of two sets or the intersection of two sets, can be determined.
Odds and probabilities are analogous to proportions and ratios.

Reviews 5 and 8 deal with probability, a topic which is best handled using set theory
so Statistics Review 5 commences with an introduction to the language of set theory.

1. Set Theory

1:1. Definition of Set and Members

Any well-defined collection (or list) of things can be called a set. The ‘things’ in the
set are its elements or members. A set can be defined by listing its elements or
stating its properties. So,

A ¼ f2; 4; 6; 8g

and A = {x: x is a positive even number, x < 10}
both define the same set. We can note that 4 is a member of this set but that 7 is

not. These observations can be expressed with the nomenclature

4 2 A and 7 62 A:

If all the elements of A also belong to some other set B, then A will be a subset
of B. This can be expressed as

A � B:

Of course A may actually equal B in this case in which it would also be true to
say B � A:
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1:2. Set Operations

Union: The union of two sets A and B is the set of all elements which belong to A or B
or both A and B. It is denoted A[B and can be illustrated by the following Venn
diagram:

Intersection: The intersection of two sets A and B is the set of all elements which
belong to both A and B. It is denoted A\B and can be illustrated by the following
Venn diagram:

Under these operations, various algebraic laws hold. They are
Associative laws:

ðA[BÞ [C ¼ A[ ðB[CÞ ðA\BÞ \C ¼ A\ ðB\CÞ: ð12Þ

Commutative laws:

A[B ¼ B[A A\B ¼ B\A: ð13Þ
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Distributive laws:

A[ ðB\CÞ ¼ ðA[BÞ \ ðA[CÞ A\ ðB[CÞ ¼ ðA\BÞ [ ðA\CÞ: ð14Þ

Draw Venn diagrams to illustrate each of these laws to make sure that you see
the point of each one of them.

2. Probability

2:1. Notion of Probability

Probability involves the study of random events and began as the study of games of
chance. A probability of an outcome is the theoretical proportion of times that we
would expect that outcome to occur on a very large number of replications.

The probability of some event A occurring was defined in terms of the total
number of equally likely occurrences (n) and the total number of them (a) which
would be considered occurrences of A. The probability of event A thenwas defined as

PfAg ¼ a
n
:

For example, if a six-sided die was tossed, there would be six equally likely
occurrences (provided the die was not loaded). Any one of the numbers 1–6 could
come up. Thus, n = 6.

If we were interested in the throw of an odd number, such an event (A) could
occur as the throw of 1, 3 or 5. Thus, a = 3 and so the probability of throwing an
odd number would be

PfAg ¼ 3
6
¼ 1

2
:

If we were interested in the throw of a number greater than 4, such an event
(B) could occur as the throw of 5 or 6. Thus, b = 2 so the probability of throwing a
number greater than 4 would be

PfBg ¼ 2
6
¼ 1

3
:

[NOTE: There is a circularity in these classical definitions of probability. The
probability of throwing an odd number is said to be 1

2 because it can occur in any
one of 3 ways out of 6 ‘equally likely’ ways. But equally likely events are events
with equal probability of occurrence, and hence the circularity. In modern proba-
bility theory, the development is axiomatic. Probabilities of certain events must
satisfy certain axioms. Within this framework, classical probability theory covers
just the special cases for which all individual events are equiprobable.]
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2:2. Sample Spaces and Events

The sample space is the set S of all possible outcomes. It is sometimes called an
outcome space. An event A is a set of outcomes which is a subset of the sample
space. That is, A � S .

Two events are mutually exclusive if they are disjoint, i.e. if their intersection is
the empty set Ø. A\B ¼ ; indicates that A and B are mutually exclusive.

If we were interested in the probability of throwing an odd number with a
six-sided die, we can define

S ¼ f1; 2; 3; 4; 5; 6g
A ¼ f1; 3; 5g:

Since all occurrences are equiprobable we need only the number of occurrences
in A and S to calculate the probability of event A occurring. That is,

PfAg ¼ number of elements in A
number of elements in S

¼ n Af g
n Sf g

¼ 3
6

¼ 1
2
:

ð15Þ

2:3. Probability of Compound Events

In the discussion of set theory, you encountered two types of compound events, viz.
the union of two sets and the intersection of two sets. We now consider the
probabilities of such compound events.

Probability of A\B

If you were selecting cards from a deck of 52 cards, for sample space S would be the
whole deck of 52 cards. That is, n{s} = 52. You may be interested in two particular
events, viz.

A ¼ fcard is a spadeg

for which n{A} = 13. This is because there are 13 spades in the deck, and

B ¼ fcard is a face card; i:e: jack; queen or kingg

for which n{B} = 12. This is because there are three face cards in each of the
four suits.
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The probability of selecting a spade would be

PfAg ¼ nfAg
nfSg ¼ 13

52
¼ 1

4
:

The probability of selecting a face card would be

PfBg ¼ nfAg
nfSg ¼ 12

52
¼ 3

13
:

The intersection of these two events, A\B, is the set containing all elements
which belong in both A and B. This is the set containing the jack, queen and king of
spades. The fact that there are 3 occurrences in this set can be declared as

nfA\Bg ¼ 3:

The probability of this compound event is

PfA\Bg ¼ nfA\Bg
nfSg

¼ 3
52

:

ð16Þ

Probability of A[B

The union of the two events A and B is the set containing all 13 spades plus the 9
face cards from the other three suits.

That there are 22 occurrences in this union of the two events could be repre-
sented as

nfA[Bg ¼ 22:

Notice that the number of occurrences is not 13 + 12 = 25 because that would
count the three spade face cards twice.

The probability of this compound event is

PfA[Bg ¼ nfA[Bg
nfSg

¼ 22
52

¼ 11
26

:

ð17Þ

A second example, which can readily be diagrammed, may reinforce the points
made in the last example.

If you were throwing two dice, one red and one blue, what would be the
probability of the total score on the two dice being 3 or 6? We could call event C a

Appendix D: Statistics Reviews, Exercises and Solutions 419



score of 3 and event D a score of 6. The relevant score combinations for both events
are marked on the diagram below, an ‘#’ for event C and a ‘*’ for event D.

The diagram makes it clear that the sample space S contains 36 possible com-
binations of scores on the two dice, i.e. n{S} = 36. The event C is

C ¼ fð1; 2Þ; ð2; 1Þg;

which is the set containing the two ways in which a score of 3 can be thrown.
That is n{C} = 2 so the probability of throwing a score of 3 is

PfCg ¼ 2
36

:

Event D is the set of outcomes giving a total score of 6. These are shown in the
diagram with asterisks (*). Event D thus is the set:

D ¼ fð1; 5Þ; ð2; 4Þ; ð3; 3Þ; ð4; 2Þ; ð5; 1Þg:

For this event n{D} = 5, so the probability of throwing a total score of 6 is

PfDg ¼ 5
36

:

The union of these two events, C[D, will be the set of all 7 occurrences marked
on the diagram. That is, nfC[Dg ¼ 7. So the probability of a score of 3 or 6 being
thrown will be

PfC[DÞ ¼ 7
36

¼ 2
36

þ 5
36

:
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In this case, since no occurrences are common to both events, the simple rule
which applies is

PfC[Dg ¼ PfCgþ PfDg: ð18Þ

Events C and D are mutually exclusive. In the earlier case of selecting a spade or
a face card, the two events were not mutually exclusive since there were occurrences
common to both events. Indeed, we have seen that

PfA\BÞ ¼ 3
52

:

In fact, we could have obtained the probability of the union of the two events A
and B as

PfA[Bg ¼ PfAgþ PfBg � PfA\BÞ
¼ 13

52
þ 12

52
� 3
52

¼ 22
52

:

ð19Þ

In the case with the red and blue dice, throwing 3 or 6 was mutually exclusive
events so P C\Df g ¼ 0 which allowed us to assert that PfC[Dg ¼ PfCgþ PfDg:
Exercises

1. If A = {1, 2, 3, 4}, B = {2, 4, 5, 8} and C = {3, 4, 5, 6}, what are

(a) A[B,
(b) B\C,
(c) A[ ðB\CÞ,
(d) ðA[BÞ \C.

2. If a coin and a die are tossed, the sample space would consist of 12 elements

S ¼ ðH1;H2;H3;H4;H5;H6;T1;T2;T3;T4;T5;T6Þ:

(a) How would you represent the following events, including ‘1’ as a prime
number so that prime numbers are {1, 2, 3, 5}?

A = (a prime number appears on the die),
B = (heads and an odd number appear),
C = (tails and an even number appear),

(b) What is the probability that A or B will occur?
(c) Are any of the events, A, B or C, mutually exclusive?
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3. If three coins are tossed

(a) How many possible outcomes are there, assuming no coin stands on its
edge?

(b) What is the probability of

(i) three tails,
(ii) two tails,
(iii) at least two tails,

(c) Why is the answer to (b)(iii) the sum of the answers to (b)(i) and (b)(ii)?

Statistics Review 6: Indices

Key words: Index, Raise to the power, Base number, Base number e,
Exponential power series

Key points: Numbers can be expressed a powers of a base. An index indicates
the power to which a number has been raised. One non-integer base of special
interest is e. Its value is approximately 2.71828. The exponential power series
y ¼ ex is useful in describing numerous natural processes. If two numbers are
expressed as powers of the same base, their multiplication can be achieved by
addition of indices. If two numbers are expressed as powers of the same base,
their division can be achieved by subtraction of indices.

The material in this Statistics Review is straightforward. It should serve simply to
remind you of some relationships which are used in logarithms.

1. Expressing Numbers as Powers of a Base

The simplest cases of indices are those which are whole numbers (integers). For
example, if we square 4 and obtain 16, we can represent this as

42 ¼ 16

where 2 is the index indicating the power to which 4 is raised.
The series of integer indices with 4 as the base is

41 ¼ 4; 42 ¼ 16; 43 ¼ 64; 44 ¼ 256; etc:

With 10 as the base, the series is

101 = 10

102 = 100

103 = 1000

104 = 10,000

etc

Any base can be raised to powers other than integers, though we don’t have easy
ways to work out the answers except perhaps by graphing the function. Taking 2 as
the base, we could draw a graph using the following series:
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21 ¼ 2; 22 ¼ 4; 23 ¼ 8; 24 ¼ 16; 25 ¼ 32; etc:

Such a graph is shown in Fig. 7.
If we wanted to know the value of 23:4, we could use this graph to read it off.

Following the line drawn vertically from 3.4 on the x-axis we see that it strikes the
curve at about 10.5 or 10.6 on the y-axis. In fact, there are calculators from which
this could be obtained exactly as

23:4 ¼ 10:556:

The point of this illustration is to show that a base can be raised to a power
which is not an integer. We have seen it for the base 2, but we could also express
other bases to non-integer powers. For example,

102 = 100

102.1 = 125.89

102.2 = 158.49

102.3 = 199.53

102.4 = 251.19

102.5 = 316.23

102.6 = 398.11

etc

Fig. 7 Graph of powers of two
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2. Multiplying Numbers or Adding Indices

If two numbers are expressed as powers of the same base, their multiplication can
be achieved by addition of indices. For example,

4� 16 ¼ 64;

which could instead be represented as

22 � 24 ¼ 2ð2þ 4Þ

¼ 26

¼ 64:

It is not immediately obvious why one might want to add indices rather than to
multiply the numbers, but there are advantages in aspects of latent trait test theory.

3. Dividing Numbers or Subtracting Indices

For division, we reverse the process of multiplication and, with indices, subtract.
Using the example above, we have

64
16

¼ 4;

which could be represented instead as

26

24
¼ 2ð6�4Þ

¼ 22

¼ 4:

By considering examples of division, we can arrive at straight forward defini-
tions of the power of zero and negative powers. We know that, from our rules for
division

64
64

¼ 1:

From our rules of subtraction of indices, we would express this as

2ð6�6Þ ¼ 20 ¼ 1:

This would happen whatever base we used. That is, 100 ¼ 1 and 40 ¼ 1 and so
on. More generally, x0 ¼ 1 where x is any number except zero.
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From our rules of division, we would also write

16
64

¼ 1
4
¼ 1

22
:

From our rules of subtraction of indices, we would represent this as

2ð4�6Þ ¼ 2�2:

Since the two are equivalent we can say, by definition, that

2�2 ¼ 1
22

:

With these definitions of negative and zero powers, we could extend the graph in
Fig. 7. The curve would extend to the left, flattening out and reaching y = 0 when x
= –∞. The value of y will never be negative.

4. Using the Base e

In the examples so far we have used indices which are not integers, but the base has
always been an integer. It need not be. For example, we could write relationships
such as the following:

23 ¼ 8 2:13 ¼ 9:261 2:3263 ¼ 12:584

23:4 ¼ 10:556 2:13:4 ¼ 12:461 2:3263:4 ¼ 17:639

24 ¼ 16 2:14 ¼ 19:448 2:3264 ¼ 29:271

These illustrations were selected arbitrarily to reveal the pattern. They were
obtained with a calculator.

There is one non-integer base which is of special interest. It is 2.71828 (approx.)
and is represented by e. The exponential power series

y ¼ ex

is useful in describing numerous natural processes, including rates of radioactive
decay. Taking just some powers, the values are

e0 1

e1 2.718

e2 7.389

e3 20.086

e4 54.598

=

=

=

=

=
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Exercises

Express the following terms in their simplest form:

(a) 3x � 32x,
(b) ðaÞ4

� �2
,

(c) 4a � 2a,
(d) 102n � 25n � 20n,

(e) 2ðnþ 3Þ�6ð2�nÞ
15ð�n�1Þ�5ðnþ 1Þ.

Statistics Review 7: Logarithms

Key words: Index, Logarithm, Natural logarithm, Logarithmic scale, Ratio,
interval

Key points: A logarithm is an index. Logarithms to base e are referred to as
natural logarithms. Instead of loge, the abbreviation ln is often used.
A logarithmic scale expresses equal ratios on the original scale with equal
intervals on the logarithmic scale. Indices and logarithms are added when
multiplication is required and indices and logarithms are subtracted when
division is required.

1. Definition of Logarithm

A logarithm is an index. For example, since

42 ¼ 16;

we can say either that the power to which the base 4 must be raised to become 16
is 2 or that the logarithm of 16 to the base 4 is 2. We would write it as

log4 16 ¼ 2:

Similarly, we could write

log4 64 3 because 43 64

log4 256 4 because 44 256

and log4 1024 5 because 45 1024

=

=

=

=

=

=

2. Logarithms to Different Bases

Just as we can use different bases raised to various powers, so we can in reverse
express numbers in terms of the powers to which various bases must be raised to
produce them. For example,
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100 43.322 so log4 100 3.322

100 e4.605 so loge 100 4.605

and 100 26.644 so log2 100 6.644

=

=

=

=

=

=

(We presume you can see why log2 100 ¼ 2 log4 100). Unless you have a fairly
sophisticated calculator, and know one extra trick, you couldn’t obtain all of these
yourself.

3. Multiplication Using Logarithms

In Statistics Review 6, we used addition of indices to a common base as an
alternative to multiplication of the numbers themselves. Our example there was

4� 16 ¼ 64:

Taking logarithms to base 2, we get

log2 4þ log2 16 ¼ 2þ 4

¼ 6

¼ log2 64:

If we were to take logarithms, say to base 10, we could note that

log10 4þ log10 16 ¼ log10 64

0:602þ 1:204 ¼ 1:806:

Having got the answer 1.806 we could take its antilogarithm, i.e. find out what
number is equal to 10 raised to the power 1.806. It is, of course, 64. We could get
the same answer using logarithms to base e, that is,

loge 4þ loge 16 ¼ loge 64

1:386þ 2:773 ¼ 4:159:

The antilogarithm to base e of 4.159 is, of course, 64.

4. Division Using Logarithms

Just as we add indices and logarithms when multiplication is required, so we
subtract indices and logarithms when division is required. For example,

85
6

¼ 14:167

could be solved using
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log10 85� log10 6 ¼ 1:92942� 0:77815

¼ 1:15127:

The antilogarithm to base 10 of 1.15127 is 14.167.
The same result would have been obtained using logarithms to the base e, since

loge 85� loge 6 ¼ 4:44265 � 1:79176

¼ 2:65089

and the antilogarithm to base e of 2.65089 is 14.167.
Just to make again the connection with indices as presented in Statistics Review
7, these two examples could be written as

85
6

¼ 10ð1:92942�0:77815Þ

¼ 101:15127

¼ 14:167

and
85
6

¼ eð4:44265�1:79176Þ

¼ e2:65089

¼ 14:167:

5. Natural Logarithms

Logarithms to base e are referred to as ‘natural logarithms’. As a shorthand, instead
of loge, the abbreviation ln is often used. Thus,

ln 85 ¼ 4:44265

with no need to indicate in the symbol that e is the base.

6. The Logarithmic Scale

A special feature of logarithms is that equal differences on a logarithmic scale
reflect a constant ratio in the corresponding numbers of which the logarithms are
taken. Since logarithms are simply ratios, this property of the logarithmic scale is a
property of an index scale. This property can be seen in Table 4.

Consider the base 10 logarithmic transformation first. On the original scale the
score 10 is 5 times the score 2 and they are 10 − 2 = 8 points apart on the scale. The
score 100 is 5 times the score 20 and they are 100 − 20 = 80 points apart on the
scale. On the base 10 logarithmic scale, the difference between log10 10 and log10 2
is (1.000 – 0.301) = 0.699. Similarly, for other numbers in the same original ratio of
5:1 such as 30 and 6 the difference on the log10 scale is also 0.699 since log10 30 =
1.477 and log10 6 = 0.778. Notice that log10 5 = 0.699.
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Table 4 Comparison of original and logarithmic scales

Original scale log10 loge
1 0.000 0.000

2 0.301 0.694

5 0.699 1.609

10 1.000 2.303

20 1.301 2.997

50 1.699 3.912

100 2.000 4.606

200 2.301 5.300

500 2.699 6.215

1000 3.000 6.909

The same pattern is evident with the loge scale. Pairs of numbers in the ratio 5:1
have loge values differing by loge 5 = 1.609. Pairs in the ratio 10:1 have loge values
differing by 2.303 and so on.

Because a logarithmic scale expresses with equal intervals, equal ratios on the
original scale, it compresses the original scale, which is clear from Table 4.

Exercises

Write the following in the form of a single log expression (i.e. log A):

1. log 5 + log 3,
2. log 18 − log 9,
3. 4 log 2,
4. 2 + log103.

Statistics Review 8: Conditional Probability

Key words: Conditional probability

Key points: The conditional probability of an event is the probability of the
event under the condition that another event occurs.

1. Conditional Probability

In Statistics Review 5, we used a diagram to display the sample space for throws of
a red and a blue die and highlighted the occurrences of certain events. Event D = {a
total score of six appears} was shown as

D ¼ fð1; 5Þ; ð2; 4Þ; ð3; 3Þ; ð4; 2Þ; ð5; 1Þg:

If we now asked, what is the probability that one of the dice is a 2, given that their
total is 6, we could see that there are only two occurrences matching this requirement,
i.e. {(2, 4), (4, 2)}. The event that one die is a 2, given that the total on both dice is 6, is
simply the intersection of E = {one die is 2} and D = {total is 6}. That is,
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E\D ¼ fð2; 4Þ; ð4; 2Þg:

The probability of this event can be stated as a conditional probability. The
probability that one die is a 2, given that (under the condition that) both dice total 6
will be

PfEjDÞ ¼ nfE\Dj
nfDg

¼ 2
5
:

ð20Þ

The separate probabilities are

PfE\Dg ¼ 2
36

PfDg ¼ 5
36

:

So, the conditional probability could be written as

PfEjDÞ ¼ PfE\Dg
PfDg

¼ 2=36
5=36

¼ 2
5
:

ð21Þ

The term P{E | D) is read as the ‘probability of E given D’ or ‘the probability
that E occurs given that D occurs’.

A rearrangement of the terms in Eq. (21) produces the multiplication theorem for
conditional probability. The equation becomes

PfE\Dg ¼ PfDgPfEjDÞ: ð22Þ

2. Example: conditional probabilities with two coins

Before proceeding, let us remind ourselves what we mean by a probability:
a probability of an outcome is the theoretical proportion of times that we would
expect that outcome to occur on a very large number of replications.

Suppose that a person tosses two coins and that both coins are somewhat biased,
with one being substantially biased1: let the probability of Coin 1 coming up Heads

1No real coin is perfectly unbiased. In developing statistical theory, and in making it concrete with
examples of coins (and dice), it is usually assumed that the coins (and dice) are unbiased. These are
theoretical coins and dice. Real ones cannot be expected to be perfectly unbiased, though it might
be assumed that they are not very biased and that if one coin is biased one way, then another coin
might be biased a bit the other way.
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(H1) be 0.60. Then its probability of coming up Tails (T1) is 1 − 0.60 = 0.40. Let the
probability of Coin 2 coming up Heads (H2) be 0.45. Then its probability of coming
up Tails (T2) is 1 − 0.45 = 0.55. The probabilities of each pair of outcomes, on the
assumption that the outcome of one toss does not affect the outcome of any other
toss of the same coin or of the other coin, can be summarized in Table 5.

The Joint Probabilities of the pair of outcomes are shown in the last column of
Table 5, and these probabilities sum to 1.00.

Now a convenient way to compare the relative outcomes of the two coins is to
consider only those outcomes in which one coin is a Head and the other is a Tail. If
both are heads or both are tails, there is no distinction in outcomes and therefore in
information about them. If only one of the coins comes up Head and the other Tail,
then we would expect that the one which is biased towards Heads would come up
Heads more often. In the theoretical case above, let us calculate what proportion of
the time we would expect the first to be Heads and the second to be Tails when only
one of them is Heads.

Considering only one of them to be Heads and the other Tails involves a con-
ditional probability: the condition that only one of the Coins is a Head. This means
that we do not consider when both are Heads or both are Tails, which in turn means
that we consider only the subset of outcomes shown in Table 6.

We can see from Table 6 that the probability of one of the coins being Heads
and the other Tails, irrespective of which one is Head or Tails, is 0.51.

Given that only one coin is a Head, what is the probability that it is the second
one: that is, relative to this probability (of 0.51), we require the probability that the
event T1 and H2 occurs: since (T1 and H2) occurs with probability 0.18 in the whole
set, the conditional probability of (T1 and H2), given (T1 and H2) OR (H1 and T2),
is given by the ratio

Prob T1 andH2ð Þj T1 and H2ð ÞOR H1 and T2ð Þf g ¼ 0:18
0:51

¼ 0:353:

Table 5 Probabilities of outcomes of two coins

Coin 1 (Prob) Coin 2 (Prob) Joint outcomes (Prob)

H1 (0.60) H2 (0.45) (0.60)(0.45) = 0.27

T1 (0.40) H2 (0.45) (0.40)(0.45) = 0.18

H1 (0.60) T2 (0.55) (0.60)(0.55) = 0.33

T1 (0.40) T2 (0.55) (0.40)(0.55) = 0.22

Total = 1.00

Table 6 Probabilities of outcomes of one head and one tail

Coin 1 (Prob) Coin 2 (Prob) Joint outcomes (Prob)

T1 (0.40) H2 (0.45) (0.40)(0.45) = 0.18

H1 (0.60) T2 (0.55) (0.60)(0.55) = 0.33

Total = 0.51
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Thus, the probability of the second being a Head, when only one of them is a
Head and the other is a Tail, is 0.353—less than 0.50 which would be unbiased.
This is as expected since the second coin is biased to being a Tail and the first is
biased to being a Head.

The probability of the first being a Head and the second a Tail is the complement
of this

Prob H1 and T2ð Þj T1 and H2ð ÞOR H1 and T2ð Þf g ¼ 1:00� 0:353 ¼ 0:647:

This probability can also be calculated from first principles as given below:

Prob H1 and T2ð Þj T1 andH2ð ÞOR H1 and T2ð Þf g ¼ 0:33
0:51

¼ 0:647:

Thus, the probability of the first being a Head, when only one is a Head and the
other is a Tail, is even greater than 0.60 which is the probability of the first being a
Head on its own.

If we did not know the bias of one coin relative to the other, we could toss the
coins as a pair 200 times say, and in every case that we have a Head or a Tail, note
which one it is. Then suppose one comes up Heads and the other Tails on 110
occasions, we would note which is Heads and which is Tails. If Coin 1 appears 60
times and Coin 2 50 times, then the estimated probability of Coin 1 coming up
Heads when the other is Tails in the future would be as follows:

Estimated Prob H1 and T2ð Þj T1 and H2ð ÞOR H1 and T2ð Þf g ¼ 60
110

¼ 0:545:

Perhaps you could try this argument with 50 tosses of a pair of coins. It does not
take long to toss two coins 50 times. Is one coin more likely to come up Heads than
Tails, and how likely? Make sure that you mark the coins so that you know which
coin is which in the outcomes.

Exercises

1. Suppose one tosses two coins C1 and C2, and that the respective probabilities of
coming up Heads is

Pr C1 ¼ Hf g ¼ 0:55; Pr C2 ¼ Hf g ¼ 0:45:

1. What is the probability that C1 = T and what is the probability that C2 = T?
2. What is the probability that C2 = H (and C1 = T) if only one of the coins comes

up H?
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Statistics Review 9: Independence

Key words: Independence

Key points: An event A is said to be independent of event B if the probability of
A occurring is not influenced by whether B occurs or not.

An event A is said to be independent of event B if the probability of A occurring is
not influenced by whether B occurs or not. That is,

PfAg ¼ PfAjBg: ð23Þ

Now, we know from (3) that

PfA\Bg ¼ PfBgPfAjBg

so we can substitute P{A} for P{A | B} and to assert as a formal definition of
independence that

Events A and B are independent, ð24Þ

if PfA\Bg ¼ PfAgPfBg:

As an example consider the situation when a coin is tossed three times. The
sample space will be

S ¼ HHH; HHT; HTH; HTT; THH; THT; TTH; TTTf g:

We can now examine the following events:

A ¼ ffirst toss is headsÞ
¼ fHHH; HHT; HTH; HTT�;

B ¼ second toss is headsf g
¼ HHH; HHT; THH; THT½ �;

C ¼ exactly two heads are tossed in a rowf g
¼ HHT; THHf g:

The probabilities of these events are

PfAg ¼ 4
8
¼ 1

2
;
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PfBg ¼ 4
8
¼ 1

2
;

PfCg ¼ 2
8
¼ 1

4
:

Independence of A and B?

The intersection of A and B is A\B ¼ fHHH;HHTg and its probability is

PfA\Bg ¼ 2
8
¼ 1

4
¼ PfAgPfBg

so A and B are independent.

Independence of A and C?

The intersection of A and C is A\C ¼ HHT and its probability is

PfA\Cg ¼ 1
8

¼ PfAgPfCg

so A and C are independent.

Independence of B and C?

The intersection of B and C is B\C ¼ HHT;THH and its probability is

PfB\Cg ¼ 2
8
¼ 1

4
6¼ PfBgPfCg

so B and C are not independent.
For our final comment refer back to Eq. (8) in Statistics Review 3. There we

noted that, with two events A and B, the probability of one or the other occurring is

PfA[Bg ¼ PfAgþ PfBg � PfA\Bg: ð25Þ

We noted in that Statistics Review that if A and B are mutually exclusive

PfA[Bg ¼ PfAgþ PfBg: ð26Þ

We can now note that if A and B are independent
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PfA[Bg ¼ PfAgþ PfBg � PfAgPfBg: ð27Þ

As an illustration of the use of Eq. (8), we can take a case with two events we know to
be independent. Suppose two friends A and B were about to play separate singles tennis
matches against another pair they had often played before. On the basis of past per-
formance A could be judged to have a probability of success of 0.5 against her opponent
and B a probability of 0.7 against hers. The probability that at least one will win is

PfA[Bg ¼ 0:5þ 0:7� ð0:5Þð0:7Þ
¼ 0:85:

Exercises

Let A be the event that a family has children of both sexes and let B be the event
that a family has at most one boy. This is a relatively difficult problem so do not
spend too much time on it.

1. Show that A and B are independent events if a family has three children.
2. Show that A and B are dependent events if a family has two children.

Statistics Review 10: Bernoulli and Binomial Random
Variables

Key words: Random variable, Bernoulli variable, Binomial experiment,
Binomial variable, Average or Observed proportion, Theoretical proportion,
Probability

Key points: A variable which takes on different values with certain proba-
bilities in an equation or model, and not with certainty, is called a random
variable. A random variable which has only two outcomes (0 and 1) is known
as a Bernoulli random variable. Repeated independent trials of a Bernoulli
variable denote a Binomial experiment. The Binomial variable X can then be
defined as the number of 1s in n trials. The observed proportion of times a value
of a Bernoulli random variable occurs in a Binomial experiment, i.e. the av-
erage is an estimate of the probability (theoretical proportion) of the value.

A variable which takes on different values with certain probabilities in an equation
or model, and not with certainty, is called a random variable. It is random because
its outcome is not determined even if all of the values in the model are known.

A random variable which can take on only the two values 0 and 1 is known as a
Bernoulli random variable. It is a variable with only two outcomes, usually defined
as ‘success’ and ‘failure’. Two outcome situations are common, for example,
Heads/Tails, Male/Female, Win/Loss, Correct/Incorrect, etc.
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Repeated independent trials of a Bernoulli variable denote a Binomial experi-
ment. The Binomial variable X can then be defined as the number of ‘successes’, or
1s, in n trials. So the Binomial variable is the sum of the Bernoulli variables. The
trials are independent in the sense that the probability of a success or failure remains
constant from trial to trial.

The average of a Bernoulli random variable can be found very easily. The
Binomial random variable is the replication of these dichotomous values when the
parameters are the same. For example, we would have to imagine that the same
person is given the same item on repeated occasions and that the person does not
remember the previous outcome. This of course is not possible, but we use the idea.

1. An example where the probability of each Bernoulli response is the same on
replications (Binomial experiment)

A better example to continue the development of a Bernoulli random variable is to
imagine tossing the same coin and assigning 1 for a Head and 0 for a Tail. If the
same coin is tossed, we can assume that the probability of a Head (and therefore a
Tail) remains the same from toss to toss.

Now suppose that the coin is tossed 10 times and that the outcome is 6 Heads
(1s) and 4 Tails (0s). The list of numbers in order in which they may appear is
shown in Table 7.

What is the average of these scores? This is simply �X ¼
P10

i¼1
Xi

10 ¼ 6
10 ¼ 0:6.

However, this average is also the proportion of times that a 1 appears. Thus, the
average is the proportion of times a positive response (scored 1) appears.

Now suppose that we thought of this proportion, not as an observed proportion,
but as a theoretical proportion. As a theoretical proportion it becomes a probability.
If we denote this probability as P, then in this case P ¼ �X. We use whichever is
convenient. It is often convenient to think of probabilities rather than averages,
although in this case they are the same.

Thus, in the case of a Bernoulli random variable, where the only two possible
values are 0 or 1, we can think of the probability as a theoretical proportion of times
that the response would be a 1. If we consider that the responses are to be used to
estimate the theoretical proportion (probability) from the observed proportion, the
number 0.6 above would be our best estimate of the probability that an outcome
would be a ‘1’.

Although this is our best estimate of the probability, we might have hypothe-
sized in advance of any tosses being made that the coin is not biased and that the
probability of a Head is 0.5. Then, we could carry out a statistical test to determine
if this number of Heads is significantly different from a probability being 0.5. In the
case of 10 tosses, it would not be significant. However, that is a different matter

Table 7 A set of outcomes for 10 tosses of a coin

Random variable X X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
P10

i¼1 Xi

Value Xi 1 1 1 0 1 1 0 0 1 0 6
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which involves having some a priori hypothesis about what the probability might
be. On the other hand, if in 100 tosses there were 60 heads, then we would have to
conclude that it is very unlikely that the probability of a Head is 0.5. If we had no a
priori idea, then 0.6 would be our best estimate.

Using the ‘hat’ notation for an estimate, we can write P̂ ¼ 0:6.
With this theoretical average or probability, we can arrange the information in a

different way that is important conceptually. Each of the replications of the toss of
the coin can be thought of as having a probability of coming up Heads, and this is
the average of the times that it would do so. Augmenting the table above with this
set of numbers gives Table 8.

Note that now we think of each toss as having an average although in this case it
is the same for each toss. We subscript each toss accordingly as Pi. Note further that
the probabilities in this case also add up to 6. This is an important idea which will
be used in Chap. 10 in the case of responses of persons to items. Table 8 reflects
this idea.

2. An example where the probability of each response is different from one
Bernoulli response to the next

This is the situation when we have the response of one person to, say, 10 items,
where each item has a different difficulty. Let the random variable be Xni for each
person and each item. If we wanted to be careful, or pedantic, we might represent
the specific values in each case as a lower case variable xni 2 f0; 1g, where the
symbol ‘2’ indicates that the response belongs to the set of possible values 0; 1f g.

The table below shows the same responses, but now the symbols have been
changed.

Random
variables

Xn1 Xn2 Xn3 Xn4 Xn5 Xn6 Xn7 Xn8 Xn9 Xn10 Total score
rn

Value xni 1 1 1 0 1 1 0 0 1 0 6

In this case, although we have the same person, we do not have the same item.
Because the items have different difficulties, the probability of success of the person
on each item will vary according to the difficulties of the item.

Suppose we knew the person’s proficiency and the item’s difficulty. We would
then know the probability that the person has for getting each item right. We might
have something like the table below.

Table 8 Estimated probabilities of each toss being a Head

Random variable X X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
P10

i¼1 Xi

Value Xi 1 1 1 0 1 1 0 0 1 0 6

Pi 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 P10
i¼1 Pi ¼ 6
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However, we usually do not know both of these. Suppose we know the item
difficulties from an analysis of data, and now wish to estimate the person’s proficiency.

To estimate the person’s proficiency, it is necessary to find the value that could
be entered into the Rasch model equation so that the sum of the probabilities is 6.
Then, we would end up with a table as below.

Random
variable

Xn1 Xn2 Xn3 Xn4 Xn5 Xn6 Xn7 Xn8 Xn9 Xn10 Total
score rn

Observed
value xni

1 1 1 0 1 1 0 0 1 0 6

Average �Xn 0.95 0.92 0.88 0.81 0.73 0.50 0.38 0.37 0.27 0.19 6.0

Probability
P̂ni

0.95 0.92 0.88 0.81 0.73 0.50 0.38 0.37 0.27 0.19 6.0

The average and the probability, which are the same, are now an abstraction—it
is a conceptualization of the proportion of success in a series of infinite replications
of the person with the same proficiency completing each item. Clearly, if it really
were the same person and the same item, the person would give the same response.
So we can imagine that it is an infinite number of people of exactly the same
proficiency, responding to each item.

If we knew the proficiency of the person and the difficulty of each item from
some other information, then it is most unlikely that the sum of the probabilities
would be 6. However, in estimating the person’s proficiency, the constraint is that
the sum of the probabilities is 6.

Statistics Review 11: The Chi-Square Distribution
and Test

Key words: v2 (chi-square) distribution, v2 (chi-square) test, Degrees of
freedom

Key points: The distribution of the sum of squares of n random normal
deviates is given by summing squaring and summing n random normal
deviates. This is called the v2 distribution on n degrees of freedom. The v2 test is
used to test how well the frequency distribution of observed data, for which
each observation may fall into one of several categories, matches the theo-
retical v2 distribution. The probability of obtaining another chi-square value
greater than an obtained chi-square value is the area under the v2 distribution
curve to the right of the obtained value.
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1. The v2 (chi-square) distribution

Suppose that we have a random normal distribution X. It may have come from the
sampling distribution of means, or it might be a hypothetical distribution. In gen-
eral, by similar reasoning to that of the sampling distribution of means, random
errors are taken to be normally distributed. Depending on the precision, some will
have a greater variance than the others.

The standard normal distribution denoted generally Z is obtained by con-
structing its values as follows:

zi ¼ xi�E½X�ffiffiffiffiffiffiffi
V ½X�

p or in terms of the random variable Z, Z ¼ X�E½X�ffiffiffiffiffiffiffi
V ½X�

p . The curve below is

the shape of a normal distribution:

1:1. The expected value and variance of a standard random normal deviate.

You do NOT have to follow the proofs below, which use properties of the operator
notation, but you have to know the results.

The variable Z is called a random normal deviate. Then its expected value
(theoretical mean) is given by

E½Z� ¼ E½X � E½X�ffiffiffiffiffiffiffiffiffiffi
V ½X�p � ¼ E½X � E½X��ffiffiffiffiffiffiffiffiffiffi

V ½X�p ¼ E½X� � E½E½X��ffiffiffiffiffiffiffiffiffiffi
V ½X�p

¼ E½X� � E½X�ffiffiffiffiffiffiffiffiffiffi
V ½X�p

¼ 0:

Essentially, if you subtract the mean from a set of numbers, then the mean of the
new numbers must be zero.
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E Z½ � ¼ 0:

The variance is given by

V ½Z� ¼ V ½X � E½X�ffiffiffiffiffiffiffiffiffiffi
V ½X�p � ¼ V ½X � E½X��

V ½X� ¼ E½ðX � ½E½X�Þ2�
V ½X�

¼ V ½X�
V ½X�

¼ 1:

Essentially, if you divide the standard deviation into a set of deviates from the
mean of a set of numbers, then the variance of the new numbers must be one.

V Z½ � ¼ 1:

Furthermore, its square root, the standard deviation, will also be 1.
The standard normal deviate is used as a reference point to check if some

number is significantly different from the value that might be expected under only
random variation. Thus, if one computes a prediction of some number, then in
probabilistic models it is not expected that the prediction will be perfect.

Suppose we have an observed value Yi and we know the theoretical mean lY and
variance r2Y of this value (We come to how we might know these values). Then, we
can compute the standard normal deviate

Zi ¼ Yi � lY
rY

:

Then to check if the value Yi is a good prediction of lY , we can compare the
value of Zi with might arise from random normal variation. You have learned that if
the value is between −1.96 and 1.96, then that means it is in the range where 95%
of cases under random normal variation would fall. In that case, we might consider
it a good prediction.

1:2. The v2 distribution on 1 degree of freedom

The v2 distribution arises from the need to consider more than one prediction
simultaneously. We begin by considering just one prediction, and in some sense it
is redundant with the random normal deviate. However, it lends itself to general-
ization when there is more than one simultaneous prediction involved.

When we have one prediction, we consider as a frame of reference one standard
normal deviate, and square it: Z2

i . We now imagine taking many, many such
deviates from a standard normal distribution and squaring them.

The distribution of the squares of these random normal deviate is a v2 distri-
bution on 1 degree of freedom notated v21.
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Then to check our prediction, we could square the calculated standard normal
deviate and check if it falls between the value of 0 and 1:962 ¼ 3:8416.

1:3. The v2 distribution on 2 degree of freedom

If we have two simultaneous predictions, we can imagine using as the frame of
reference to check its accuracy two simultaneous random normal deviates.
However, we should combine these somehow to give a single summary value. This
is done by imagining taking many standard random normal deviates, squaring them,
and summing them. This is the v2 distribution on 2 degrees of freedom:

v22 ¼ Z2
1 þ Z2

2 :

1:4. The v2 distribution on n degree of freedom.

The distribution of the sum of squares of n random normal deviates is v2 on
n degrees of freedom is given by summing squaring and summing n random normal
deviates as

v2n ¼ Z2
1 þ Z2

2 þ Z2
3 þ Z2

4 þ � � � þ Z2
n :

2. The v2(chi-square) test

The v2(chi-square) test is used to test how well the frequency distribution of
observed data, for which each observation may fall into one of several categories,
matches the theoretical chi-square probability distribution. The chi-square statistic
is calculated for each category first, and then summed across all categories. The
chi-square test always tests the null hypothesis, which states that there is no
significant difference between the expected and observed result.

The formula for calculating the chi-square statistic for a category is

v2 ¼ ðo� eÞ2
e

;

where o is the observed number of observations in that category and e the
expected number of observations in that category. That is, chi-square is the squares
of the difference between the observed and expected value divided by the expected
value.

Then the final chi-square statistic is the sum of the chi-squares of all possible
categories k.
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v2k ¼
Xk
j¼1

v2j :

A chi-square test is really any statistical hypothesis test in which the sampling
distribution of the test statistic is a chi-square distribution when the null hypothesis
is true, or any in which this is asymptotically true.

Degrees of freedom

Degrees of freedom are used to then determine whether a particular null hypothesis
can be rejected based on the number of parameters to be estimated and size of the
sample. We start with as many degrees of freedom as there are observations in a
data set, n. Then we subtract 1 for each parameter being estimated. So, in general, if
two parameters need to be estimated the degrees of freedom are n – 2.

For a chi-square test, we said earlier that each observation may fall into one of
several categories. So for this test we start with the number of categories k. One
parameter, the total chi-square v2k , is estimated. So the degrees of freedom are k – 1.

Probability

The area under the curve for the chi-square distribution is set to one unit so that it is
a probability distribution. Then the probability of obtaining a value of chi-square
between two values is the area under the curve between the values. The probability
of obtaining another chi-square value greater than an obtained chi-square value is
the area under the curve to the right of the obtained value.

In hypothesis testing, if the probability of obtaining another chi-square value
greater than an obtained chi-square value is less than 0.05 (or sometimes 0.01) then
we accept the null hypothesis, that is, there is no significant difference between the
expected and observed results and the observed difference is due to chance.

Statistics Review 12: Analysis of Variance (ANOVA)

Key words: Sampling distribution of means, Within-groups variance,
Between-group variance, F-ratio, Standard error of the mean

Key points: Analysis of Variance (ANOVA) is used to test whether differences
among sample group means are statistically significant. To do that the popu-
lation variance is analysed, as estimated from the samples. The F-ratio is the
ratio of between-group variance and within-groups variance. The larger the
F-ratio the greater the likelihood that the differences between the means of two
samples are due to something other than chance alone, namely, real effects.
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Make sure you are familiar with the sampling distribution of means and the Central
Limit Theorem as summarized in section 1. This will help you understand the
explanation of analysis of variance in section 2.

1. The sampling distribution of the means

Consider the population of scores X below with population mean = l and standard
deviation = r. We can take many samples of size n and calculate the mean for each
one of them as the diagram below illustrates:

We can create a distribution of the sample means. This distribution is called the
sampling distribution of means. It has a mean of l and a standard deviation of rffiffi

n
p .

The diagram below shows an example of a distribution of X-scores as well as the
sampling distribution of the means.
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The Central Limit Theorem states that if a population is normally distributed
with a mean of l and a standard deviation of r then the distribution of sample
means of size n is normally distributed with mean l and standard deviation of rffiffi

n
p .

For large n (20 or so), the sampling distribution of the mean tends to the normal
irrespective of whether or not the population itself is normally distributed. The
standard deviation of the sampling distribution of the sample means is also called
the standard error of the mean:

rX ¼ rffiffiffi
n

p :

2. Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is used to test differences among groups, more
specifically whether differences among group means are statistically significant. To
do that variance is analysed, as the name analysis of variance suggests. So to decide
whether group means are different we analyse the population variance, as we can
best estimate it with the information we get from samples of the population. We
make two estimates of the population variance. If the groups are from the same
population, the two estimates should be close to each other in value. So, if the
ANOVA results in two estimates close in value, we conclude that the groups are
from the same population and the difference in the means is due to chance or error
and hence not significant. If the groups are from different populations, the two
estimates will differ significantly. So, if the ANOVA results in two very different
estimates, we conclude that the groups are from different populations and hence the
means differ significantly. The two estimates of the population variance that are
calculated are

(1) The variability of subjects within each group and
(2) The variability between the different groups.

Variance was earlier defined as simply the sum of squared deviations from the

mean
PN

i¼1 Xi � �Xð Þ2
� �

divided by n − 1 (page 10).

s2 ¼
PN

i¼1 Xi � �Xð Þ2
N � 1

:

The variability of subjects within each group is the variability of scores about
their subgroup sample means. This will be reflected by the deviation X � X (as in
the formula above), where X is the mean of the subgroups that contains X. To
estimate the population variance, we calculate the average of the group variances.

The variability between the different groups is the variability of subgroup sample
means about the grand mean of all scores. This will be reflected by the deviation X

− X. Notice here that we are dealing with the sampling distribution of the means
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and our estimate of population variance is the variance of the sampling distribution
of the means multiplied by n (explained in more detail later).

The diagrams below illustrate two cases: (1) where three samples are taken from
the same population and (2) where three samples are taken, two from the same
population and one from a different population. Diagrams 1b and 2b show the
sampling distribution of the means in each case. Note that the sampling distribution
2b has a bigger variance than the sampling distribution 1b, resulting in a bigger
between-groups variance for the case where the samples are not from the same
population.

Suppose we have three samples of size 3. They are given three different
treatments and the results are shown in Table 9 [Note: We would usually have a
much larger sample size].

Table 9 X-scores for 3 groups

Group 1 Group 2 Group 3

4 5 6

3 3 4

2 4 5
�X1 ¼ 3 �X2 ¼ 4 �X3 ¼ 5
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The means for the three groups are different: 3, 4 and 5, respectively. To find out
whether they differ significantly, we follow the following procedure:

Step 1: Calculate the first estimate of population variance: the variability of
subjects within each group

If each sample is from the same population, then each can have its variance as an
estimate of the population variance. We therefore estimate the population variance
from each group. Since each of the sample variances may be considered an inde-
pendent estimate of the parameter r, finding the mean of the variances provides a
method of combining the separate estimates of r into a single value (Table 10).

(i) From group 1 s21 ¼
PN

1¼1
Xi��X;ð Þ2

N�1 ¼ 2
2 ¼ 1.

(ii) From group 2 s22 ¼
PN

i¼1
Xi��Xð Þ2

N�1 ¼ 2
2 ¼ 1.

(iii) From group 3 s23 ¼
PN

i¼1
Xi��X�ð Þ2

N�1 ¼ 2
2 ¼ 1.

Thus, the average estimate is r2 ¼ 1þ 1þ 1
3 ¼ 1.

The number of degrees of freedom here is n1 � 1þ n2 � 1þ n3 � 1 ¼
3� 1þ 3� 1þ 3� 1 ¼ 6.

An assumption here is that the treatment population variances, from which each
sample is a random sample, and are homogenous; otherwise, pooling the estimates
could not be justified.

Step 2: Calculate the second estimate of population variance: the variability of
subjects between the different groups

In deriving the second estimate of the population variance the logic is slightly less
straightforward and employs both the concept of the sampling distribution and the
Central Limit Theorem. The relationship expressed in the Central Limit
Theorem may now be used to obtain an estimate of r2.

rX ¼ rffiffiffi
n

p

r2
X
¼ r2

n

Table 10 Calculations for the variance of each group

Group 1 Group 2 Group 3

X X � X1 ðX � X1Þ2 X X � X2 ðX � X2Þ2 X X � X3 ðX � X3Þ2
4 1 1 5 1 1 6 1 1

3 0 0 3 −1 1 4 −1 1

2 −1 1 4 0 0 5 0 0PðX � X1Þ2 ¼ 2
PðX � X2Þ2 ¼ 2

PðX � X3Þ2 ¼ 2

446 Appendix D: Statistics Reviews, Exercises and Solutions



n � r2
X
¼ r2:

Thus, the variance of the population may be found by multiplying the standard

error of the mean squared r2
X

� �
by the size of each sample (n). In our example, r2

X

is given by calculating the variance of the three sample means. (If they are from the
same population we will have an estimate of the population variance.) The grand

mean of all scores is X ¼ 4. Let the number of groups be c (here c = 3) (Table 11).
Estimated population variance of means:

r2
X
¼
X ðX � XÞ2

c� 1
¼ 2

2
¼ 1:

The estimate is r2 ¼ n est r2�X
� �

¼ 3ð1Þ
¼ 3:

This formula is satisfactory here only because all sample sizes are the same.
Otherwise, the formula needs to be adjusted. The principle, however, is the same.
The number of degrees of freedom in this estimate is c – 1 = 2.

Step 3: Form the F-ratio and test the null hypothesis

We need to decide whether at least one mean differs from any other. The null
hypothesis is that no mean differs significantly from any other.

H0 : Between-groups variance – within-groups variance = 0,
H1 : Between-groups variance > within-groups variance.
The within-groups estimate of the population variance is based on the

assumption that all treatments have the same effect on the variances, even if the
effect on the means is not the same. This is usually zero. Therefore, this variance is
thought of as variance one could expect anyway even if the treatments were not
applied and is generally known as an estimate of error variance. The

Table 11 Calculations for the variance of sample means

X X � X ðX � XÞ2
X1 3 −1 1

X2 4 0 0

X3 5 1 1P
X � X
� �2

¼ 2
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between-groups estimate of the population variance is an appropriate estimate if the
treatments had no effect on the means. The differences in the sample means will be
due to chance and will therefore be error variance. But if the treatments have an
effect, then the between-groups variance will not only contain error variance, but
variance due to differences between sample means due to treatment effects.

A new statistic called the F-ratio is computed by dividing the between-groups
variance by within-groups variance.

F ¼ Between-groups variance
Within-groups variance

:

The F-ratio can be thought of as a measure of how different the means are
relative to the variability within each sample. The larger this value, the greater the
likelihood that the differences between the means are due to something other than
chance alone, namely, real effects.

F ¼ Error Variance + Treatment Variance
Error Variance

:

If F < 1, then we consider that treatment variance = 0 and that the error variance
estimated from between groups is less than the error variance estimated from within
groups simply by chance. Thus, if F < 1 we accept H0. If H0 is rejected H1 is
accepted, i.e. Error variance + Treatment Variance > Error Variance so treatment
variance > 0. If the difference between the means is only due to error variance then
the expected value of the F-ratio would be very close to 1 because both the
numerator and the denominator of the F-ratio are estimates of the same parameter,
r2. However, because the numerator and the denominator are estimates rather than
exact values the F-ratio will seldom be exactly 1.

In our example,
F ¼ 3

1
¼ 3 df: 2, 6ð Þ:

Consult a table of the F-distribution, a theoretical probability distribution char-
acterized by two parameters: degrees of freedom 1(for the numerator in the F-ratio)
and degrees of freedom 2 (for the denominator in the F-ratio). For different values
of df1 and df2, the tables provides F-ratios, which is also called F(critical) values.

In our example, F(critical) at 5% level for degrees of freedom (2, 6) = 5.1 Since F
(observed) < F(critical) we accept H0. So the difference in the sample means is not
significant.

Assumptions for ANOVA

1. All sample groups were originally drawn at random from the same population
[After administration of the treatments each group is then regarded as a random
sample from a different treatment population.].

2. The variance of measures of the treatment populations is the same, i.e.
homogenous.
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3. The distribution of measures of the treatment is normal.
4. There is no difference in the means of the measures between the treatment

populations. This is the null hypothesis and if assumptions 1, 2 and 3 are
satisfied we may accept or reject this condition on the basis of the obtained F
value.

Statistics Review 13: Distribution Theory

1. Theoretical distributions

Here, we abstract the idea of a theoretical distribution from an observed or empirical
distribution of numbers. With this abstraction, we introduce the operator notation
used in summarizing properties of a distribution. The idea is not difficult, but it is
very important in understanding and carrying out tests of fit.

Consider observations belonging to the set of numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10} These might be possible scores on a 10 item test where each item is scored 0 or
1. The number of possible scores is 11.

Suppose the actual observations in some sample were Xi; i ¼ 1; 2; . . .; 10: {6, 6,
7, 8, 9, 5, 10, 4, 1, 4}. Then the mean is given by

�X ¼ X1 þX2 þ � � �Xi � � � þXnð Þ=n;

which in the particular data we have is given by

�X ¼ 6þ 6þ 7þ 8þ 9þ 5þ 10þ 4þ 1þ 4
10

¼ 60
10

¼ 6:

The responses are shown in a table on the next page.

2. Formulae for the mean and variance of the observed responses

Each of the possible responses is represented by the variable Y . The variable can
take on the values 0 to 10, and so there are 11 possible values: Yi; i ¼ 1; 2; . . .:; 11.
These are shown in Table 12. Please study this table and understand it.

Table 12 Frequency distribution of responses

i Yi fi fiYi pi piYi ðYi � �YÞ2 piðYi � �YÞ2
1 0 0 0 0.0 0.0 ð�6Þ2 0.0(36) = 0.0

2 1 1 1 0.1 0.1 ð�5Þ2 0.1(25) = 2.5

3 2 0 0 0.0 0.0 ð�4Þ2 0.0(16) = 0.0

4 3 0 0 0.0 0.0 ð�3Þ2 0.0(9) = 0.0

5 4 2 8 0.2 0.8 ð�2Þ2 0.2(4) = 0.8

(continued)
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Then the mean and variances of the values of Y can be calculated as follows:

�Y ¼
P

i fiYiP
i fi

¼
P

i fiYi
N

¼
X
i

fi
N

� �
Yi ¼

X
i

piYi ¼ 6:0

S2y ¼
P

i fi Yi � �Yð Þ2
Rfi

¼ R
fi
N

� �
Yi � �Yð Þ2¼

X
pi Yi � �Yð Þ2¼ 6:4:

The key feature of this calculation is that we have brought into it the proportion
of persons pi who have obtained each possible score Yi.

Now suppose that we know the possible scores for some set of responses, but
that we have from outside the data, a theoretical basis for knowing or computing the
proportion of times each score would occur. This theoretical proportion we call a
probability.

3. Frequency distribution of the responses

Complete the cells that are missing from the set of numbers above and check the
‘sum’ row.

pi ¼ fi
N

¼ fi
10

4. Formulae and operator notation for the mean and variance of a variable

To calculate the theoretical mean and variance, we simply substitute for the
observed proportion of cases we had in the above formula the theoretical propor-
tion. To distinguish the observed proportion from a theoretical proportion we use
the Greek letter p. The theoretical mean is notated E½Y � and is read as ‘Expected
Value of Y’. Notice that in this expression, the subscript i which identifies actual
observations is not present. This is called the operator notation and variable rules
follow from using it.

i Yi fi fiYi pi piYi ðYi � �YÞ2 piðYi � �YÞ2
6 5 1 5 0.1 0.5 ð�1Þ2 0.1(1) = 0.1

7 6 2 12 0.2 1.2 ð0Þ2 0.2(0) = 0.0

8 7 ð1Þ2
9 8 1 8 0.1 0.8 ð2Þ2 0.1(4) = 0.4

10 9 1 9 0.1 0.9 ð3Þ2 0.1(9) = 0.9

11 10 1 10 0.1 1.0 ð4Þ2 0.1(16) = 1.6

Sum 10 60 1.0 6.0 ¼ 6.4
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Likewise the variance is notated V ½Y � and read the ‘variance of Y’.

Theoretical mean:E½Y � ¼
X
i

piYi ¼ lY

Theoretical variance:V ½Y � ¼
X
i

pi Yi � lYð Þ2 ¼ r2Y :

The term in the middle of the three terms in each equation gives the instruction
as to how to calculate the theoretical mean or theoretical variance, while the last
part gives the value of the theoretical mean or theoretical variance. These three
terms are interchangeable, and each is used when, in the context, it is most con-
venient. It is important to appreciate that just because we say ‘Expected Value’ does
not mean we expect that value as the most likely to occur or any such thing. In fact,
mostly it is not going to appear.

5. Some Examples with Theoretical Probabilities

We will now do some exercises where the theoretical proportion, or probability,
comes from outside any particular data set.

(i) Consider tossing a coin.
Probability of a Heads is given by p1, probability of Tails by p2. We assume the

coin is unbiased, and so each has a probability of 0.5 of occurring.

Eventor Outcome Random Variable Probabilities
Yi pi

H
T

	 

1
0

	 

0:5
0:5

	 
 ;

E½Y � ¼
X2
i¼1

piYi ¼ p1Y1 þ p2Y2 ¼ ð0:5Þð1Þþ ð0:5Þð0Þ

¼ 0:5 ð¼ p1in the dichotomous caseÞ:

NB (i) Do not ‘expect’ to get 0.5.
(ii) Y is the ‘Random Variable’. Specific values are Yi.
(ii) What if the coin were biased?

E½Y � ¼
X
k

pkYk ¼ 3
4

� �
ð1Þþ 1

4

� �
ð0Þ ¼ 3

4
¼ p1in the dichotomous caseð Þ:

Event Value pk
H 1 3

4

T 0 1
4
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(iii) Tossing a die (please complete the table).

E½Y � ¼
X
k

pkYk ¼ 21
6

¼ 3:5

V ½Y � ¼ 1
6

� �
ð6:25Þþ 1

6
ð2:25Þþ 1

6
ð:25Þþ � � � ð6:25Þ

¼ 2:92:

(iv) Exercises where different outcomes are assigned the same numerical value.

Outcomes iY kπ k kYπ ( )iY μ− 2( )Y μ−

a  1 1/6 (1/6)(1) = 1/6 -2.5 6.25

b 2 1/6 (1/6)(2) = 2/6 -1.5 2.25

c  3 1/6 = 3/6 -0.5 0.25

d 4 1/6 = 4/6 0.5 0.25

e  5 1/6 = 5/6 1.5 2.25

f 6 1/6 (1/6)(6) = 6/6 2.5 6.25
21/6 17.50

→

→

→

→

→

→

Events iX Xπ ( )X μ− 2( )X μ−
a 1 1/6 -8/6 64/36

b, c 2 2/6 -2/6 4/36
d, e, f 3 3/6 4/6 16/36

Outcome Y kπ
Event a      1 1/6
Event b 2 1/6

. c      2 1/6

. d 3 1/6

. e      3 1/6
Event f 3 1/6

→

→

→

→

→

→

Now, we refer to the variable with possible values as X.

E½X� ¼
X3
x¼1

xpx ¼ ð1=6Þð1Þþ ð2=6Þð2Þþ ð3=6Þð3Þ

¼ 1=6þ 4=6þ 9=6

¼ 14=6 ¼ 7=3;
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V X½ � ¼
X3
x¼1

ðX� lÞ2px ¼ 1
6

� �
64
36

� �
þ 2
6

4
36

� �
þ 3

6

� �
16
36

� �

¼ 64þ 8þ 48
ð6Þð36Þ ¼ 120

ð6Þð36Þ
¼ 5

9
:

(v) Tossing Two Dice—consider all possible combinations (please complete the table).

D2

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,6)

2 (2,1) (2,2)

D1 3

4

5

6 (6,1) (6,6)

Say take D1 + D2 (please complete the table).

From Table 13 you should be able to write the expected value, E[X], and the
variance, V[X], of the sum, X ¼ D1 þD2, of two dies.

6. Sampling distributions

Statistics involves sampling. If one takes samples of given sizes from a population,
and one calculates their mean and variance, what can one expect their distributions
to look like? One way to try to begin to answer this question is to actually examine
the samples from a small population.

Consider a population of just 4 scores: {2, 2, 3, 5}.
Let Y1 = 2, Y2 = 2, Y3 = 3, Y4 = 5.

Then l ¼
P4

v¼1
Yv

4 ¼ 2þ 2þ 3þ 5
4 ¼ 12

4 ¼ 3 and

D2

X= D1 + D2 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 8

D1 3 4 5 6 9

4 5 6 8 9 10

5 6 11

6 7 8 9 10 11 12
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r2 ¼
P4
v¼1

Yv � lð Þ2

4
¼ ð2� 3Þ2 þð2� 3Þ2 þð3� 3Þ2 þð5� 3Þ2

4
¼ 6

4
¼ 3=2:

Note that because we have a population of scores that we divide the sum of
squares by n = 4 and not n = 4 − 1 = 3. This part of the lecture explains why we use
n − 1, which you would have seen, in samples.

Now suppose that we take random samples of size 2 (with replacement).
Table 14 shows all the possible samples of size 2. There are 16 of them. Then the

Table 13 (Please complete the table, including the sums in the last row of the table)

Possible scores x px pxx x� l x� lð Þ2 px x� lð Þ2
2 1/36 2/36 −5 25 25/36

3 2/36 6/36 −4 16 32/36

4 3/36 12/36 −3 9 27/36

5 4/36 20/36 −2 4 16/36

6 5/36 −1 1

7 6/36 42/36 0 0 0/36

8 5/36 40/36 1 1 5/36

9 4/36 36/36 2 4 16/36

10 3/36 30/36 3 9 27/36

11 2/36 22/36 4 16 32/36

12 1/36 12/36 5 25 25/36

Sum 1 252/36 = 7 210/36

Table 14 All possible samples of size 2, their means and three different calculations of variance

j Sample j (n = 2) pj Yj �Yj S2j s2j r̂2j

1 (2, 2) 1/16 4 2 0 0 1.0

2 (2, 2) 1/16 4 2 0 0 1.0

3 (2, 3) 1/16 5 2.5 0.25 0.5 0.5

4 (2, 5) 1/16 7 3.5 2.25 4.5 2.5

5 (2, 2) 1/16 4 2 0 0 1.0

6 (2, 2) 1/16 4 2 0 0 1.0

7 (2, 3) 1/16 5 2.5 0.25 0.5 0.5

8 (2, 5) 1/16 7 3.5 2.25 4.5 2.5

9 (3, 2) 1/16 5 2.5 0.25 0.5 0.5

10 (3, 2) 1/16 5 2.5 0.25 0.5 0.5

11 (3, 3) 1/16 6 3 0 0 0

12 (3, 5) 1/16 8 4 1.0 2.0 2.0

13 (5, 2) 1/16 7 3.5 2.25 4.5 2.5

14 (5, 2) 1/16 7 4 2.25 4.5 2.5

15 (5, 3) 1/16 8 4 1.0 2.0 2.0

16 (5, 5) 1/16 10 5 0 0 4.0
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probability, that is, the theoretical proportion of each sample j being chosen is equal
to pj ¼ 1=16. Let Yi ¼

P2
v¼1 Yv the sum of each sample.

Then �Yi ¼
P2

v¼1 Yv
� �

=2 is the mean of each sample.

We can estimate the variance from each sample in three ways as given below:

(i) S2j ¼
P2

v¼1
Yjv��Yjð Þ2
2 ;

For example, for j ¼ 1

Y11 ¼ 2; Y12 ¼ 2;

(ii) s2j ¼
P2

v¼1
Yjv�Yjð Þ2

2�1 ; �Yj ¼ ð2þ 2Þ=2 ¼ 2;

(iii) r̂2j ¼
P2

v¼1
Yjv�lð Þ2
2 ;

S2j ¼ ð2� 2Þ2 þð2� 2Þ2
h i

=2

¼ ½0þ 0�=2 ¼ 0:

(In general, instead of the sample size being 2, it would be denoted by n.)
For each of the samples, these values are also shown in Table 14.
It is evident that the same sample mean appears from different samples. The

distribution of the means can be summarized as in Table 15. The probability
(theoretical proportion) of times each mean appears is also shown in Table 15.

7. Using the operator notation to get the expected value and variance of
sample means of the means

The expected value of the mean.

The mean of this theoretical distribution of sample means is given by

E½�X� ¼
X6
i¼1

pi�Xi

¼ 4
16

ð2Þþ 4
16

ð2:5Þþ 1
16

ð3Þþ 4
16

ð3:5Þþ 2
16

ð4Þþ 1
16

ð5Þ
¼ 3 ¼ l:

In general, E½�X� ¼ l. Thus, we have one sample mean, �X ¼ l̂, which is an
unbiased estimate of l.

That is, the theoretical mean of the sample means is the population mean.

The variance of the means of all the possible samples.

Table 15 Distribution of means

i �Xi pi

1 2.0 4/16 There are only six different values for the sample means. Those with the same
value are combined and probabilities added to give the probability of each
value of the mean Xi.

2 2.5 4/16

3 3.0 1/16

4 3.5 4/16

5 4.0 2/16

6 5.0 1/16

Sum = 1
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The variance of the sample means is given by

V ½�X� ¼ E ð�X � E½�X�Þ2
h i

¼
X6
i¼1

pi �Xi � lð Þ2

¼
X6
i¼1

pi �Xi � 3ð Þ2

¼ 4
16

ð2� 3Þ2 þ 4
16

ð2:5� 3Þ2þ 1
16

ð3� 3Þ2þ 4
16

ð3:5� 3Þ2 þ 2
16

ð4� 3Þ2 þ 1
16

ð5� 3Þ2

¼ 3
4
¼ 3=2

2
¼ r2

2
:

In general, V ½�X� ¼ r2
n ; where n is the sample size. That is, the theoretical vari-

ance of the means is the population variance divided by the sample size.

8. Expected value of the sample variances

We now examine the estimate imagining we just have one sample. The charac-
teristic of the variance of a set of numbers is that it is an index of the dispersion or
spread of the numbers. It involves subtracting the mean from each number, and then
to avoid summing the resultant numbers whose sum will always be zero, each of
these numbers is squared—this makes them all positive. The numbers resulting
from subtracting a number from the mean is called a deviate or sometimes to stress
the point, mean deviate. Then so that the index is not greater simply because there
are more numbers, the mean or average of the sum of these squares is taken.
However, an interesting thing happens if we simply take the mean.

No doubt you have come across the idea of dividing the sum of squares of
numbers subtracted from their mean by n� 1 rather n where n is the sample size.
Here, we will review this effect in order to consolidate the idea of (i) the degrees of
freedom and (ii) bias in estimates. Already in Table 15, where all possible samples
of size 2 were listed, the variance of each sample was calculated in three ways.

Can you tell in advance what the differences are in calculating them?
We will calculate the expected value, that is, the theoretical mean across the

samples of the first two estimates of the variance. You will do the same for the last
one as an exercise.

To consolidate the point of this exercise, we

• consider each possible sample,
• calculate the mean of each sample,
• calculate the sum of squares of the deviates within each sample,
• divide the number of deviates by either 2 nð Þ or 1 n� 1ð Þ; where n ¼ 2ð Þ.

The last value is an estimate of the variance of all numbers from the sample. In
general, we have only one sample, but by considering this theoretical example we
can consider what would happen if we did have all the samples. From this
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consideration, we can decide which is the better of these two ways of calculating
the estimate of the variance of the whole set of numbers from just one sample.

The criterion is that if we could take many samples, then the calculation that
gives the best value in the long run is the one to be taken. The best value is ideally
the one whose expected value is the actual variance. We do not expect that every
sample can give exactly the correct variance, but it would be helpful if in the long
run, and on the average, we would get that value. For this purpose, we obtain the
theoretical mean of the variances of the samples, that is, the expected value of the
variances.

Table 16 shows the distribution of the first two estimates of the variance. In each
case, there are only four different values.

The expected value of the first of these distributions is given by

E S2
� � ¼X4

i¼1

piS
2
i S2j involves the sample mean �Xj

h i
ðdividing by nÞ

¼ 6
16

ð0Þþ 4
16

ð0:25Þþ 2
16

ð1:0Þþ 4
16

ð2:25Þ

¼ 3
4
¼ 3=2

2
6¼ r2 ¼ 3=2:

Thus, the theoretical average of these sample variances, ¾, is not the variance of
the population, which is 3/2. This would suggest that the variance calculated for
each sample, from which we want to infer the variance of the original set of
numbers, is not a good estimate of the variance.

The expected value of the second distribution is given by

E s2
� � ¼X4

i¼1

pis2i This also involves the mean �Xj
� �ðdividing by n� 1Þ

¼ 6
16

ð0Þþ 4
16

ð0:5Þþ 2
16

ð2:0Þþ 4
16

ð4:5Þ ¼ 3
2
¼ r2:

In this case, the theoretical means of the sample variances, 3/2, is the variance of
the population of numbers. This would suggest that this is a good estimate of the
variance of the population. We will use this example to review why we use n� 1ð Þ

Table 16 Two estimates of the variance

i pi S2i s2i piS2i pis2i
1 6/16 0.0 0.0 0 0

2 4/16 0.25 0.5 1/16 2/16

3 2/16 1.0 2.0 2/16 4/16

4 4/16 2.25 4.5 9/16 18/16P
i piS

2
i ¼ 3

4

P
i pis

2
i ¼ 3

2
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to divide into the sum of squares to estimate the variance and to review the idea of
‘degree of freedom’.

Indeed this is the general case. If the sum of squares is divided by n, the sample
size, then this estimate of the variance is said to be biased. If it is divided by
n� 1ð Þ, then it is not biased. As the sample size increases, this effect of bias
becomes smaller.

The reason for the bias is that each sample has its own mean, and this can vary
from sample to sample.

You will calculate the theoretical mean of r̂2 as an exercise [r̂2 involves the
population mean l].

9. The sampling distribution of the mean of a set of numbers

Return to the case of the example in Table 15, that is, V ½�X� ¼ r2
2 , from which in

general, we have that V ½�X� ¼ r2
n ; where n is the sample size.

Then the standard deviation of the sampling distribution of the mean is simply

given by r�X ¼
ffiffiffiffiffiffiffiffiffiffi
V ½�X�

p
¼

ffiffiffiffi
r2
n

q
¼ rffiffi

n
p ; where r is the population standard deviation.

This is also known as the standard error of the mean.
The above results are a consequence of the central limit theorem, which in words

states that

(a) The theoretical mean of the distribution of all sample means of samples of size
n is the population mean l.

(b) The standard deviation of the sample means of all samples of size n is rffiffi
n

p ;

where r is the population standard deviation.
(c) As n gets larger and larger, then, irrespective of the shape of the distribution of

the original numbers, the distribution of means becomes more and more
normal with mean l and variance r2

n .

An inspection of the distributions and graphs on the following pages should
convince you of the reasonableness of this theorem.

In each case, the mean of the sample means is the same as the population mean.
The distribution of the sample means is positively skewed for small sample

sizes, which reflects the shape of the population, but as the sample size increases,
the shape becomes more and more normal. Note that for finite samples, the dis-
tribution is still discrete.

The approximation to normality can be checked by examining the proportion of
means which is within 1 standard error of the mean away from the mean (in both
directions). In the normal distribution, this should be approximately 68%. For the
case of n = 15 above, approximately 65% of the distribution is within one standard
error of the mean.

458 Appendix D: Statistics Reviews, Exercises and Solutions



Sampling Means: Samples of size 3 (Pop: {2,2,3,5}) 

  -------------------------------------------------------- 
     Sum        Mean       Freq       Prop        Cum.Prop 
  -------------------------------------------------------- 
     6.000     2.000      8.000      0.12500      0.12500
     7.000     2.333     12.000      0.18750      0.31250
     8.000     2.667      6.000      0.09375      0.40625
     9.000     3.000     13.000      0.20313      0.60938
    10.000     3.333     12.000      0.18750      0.79688
    11.000     3.667      3.000      0.04688      0.84375
    12.000     4.000      6.000      0.09375      0.93750
    13.000     4.333      3.000      0.04688      0.98438
    15.000     5.000      1.000      0.01563      1.00000
  -------------------------------------------------------- 

Number of Patterns=64
Number of Sample Means=9
Mean of Sample Means=3.00000
Variance of Sample Means=0.50000
Population Mean=3.00000
Population variance=1.50000

Sampling Means:  Samples of size 5 (Pop: {2,2,3,5})
  -------------------------------------------------------- 
     Sum        Mean       Freq       Prop        Cum.Prop 
  -------------------------------------------------------- 
    10.000     2.000     32.000      0.03125      0.03125
    11.000     2.200     80.000      0.07813      0.10938
    12.000     2.400     80.000      0.07813      0.18750
    13.000     2.600    120.000      0.11719      0.30469
    14.000     2.800    170.000      0.16602      0.47070
    15.000     3.000    121.000      0.11816      0.58887
    16.000     3.200    120.000      0.11719      0.70605
    17.000     3.400    125.000      0.12207      0.82813
    18.000     3.600     60.000      0.05859      0.88672
    19.000     3.800     50.000      0.04883      0.93555
    20.000     4.000     40.000      0.03906      0.97461
    21.000     4.200     10.000      0.00977      0.98438
    22.000     4.400     10.000      0.00977      0.99414
    23.000     4.600      5.000      0.00488      0.99902
    25.000     5.000      1.000      0.00098      1.00000
  -------------------------------------------------------- 

Number of Patterns=1024
Number of Sample Means=15
Mean of Sample Means=3.00000
Variance of Sample Means=0.30000
Population Mean=3.00000
Population variance=1.50000
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Sampling Means: Samples of size 10 (Pop: {2,2,3,5})
  -------------------------------------------------------- 
     Sum        Mean       Freq       Prop        Cum.Prop 
  -------------------------------------------------------- 
    20.000     2.000   1024.000      0.00098      0.00098
    21.000     2.100   5120.000      0.00488      0.00586
    22.000     2.200  11520.000      0.01099      0.01685
    23.000     2.300  20480.000      0.01953      0.03638
    24.000     2.400  36480.000      0.03479      0.07117
    25.000     2.500  54144.000      0.05164      0.12280
    26.000     2.600  68640.000      0.06546      0.18826
    27.000     2.700  87360.000      0.08331      0.27158
    28.000     2.800 100980.000      0.09630      0.36788
    29.000     2.900 102740.000      0.09798      0.46586
    30.000     3.000 105601.000      0.10071      0.56657
    31.000     3.100 100980.000      0.09630      0.66287
    32.000     3.200  85690.000      0.08172      0.74459
    33.000     3.300  74640.000      0.07118      0.81577
    34.000     3.400  60525.000      0.05772      0.87349
    35.000     3.500  43344.000      0.04134      0.91483
    36.000     3.600  32880.000      0.03136      0.94619
    37.000     3.700  22680.000      0.02163      0.96782
    38.000     3.800  13650.000      0.01302      0.98083
    39.000     3.900   9240.000      0.00881      0.98965
    40.000     4.000   5292.000      0.00505      0.99469
    41.000     4.100   2640.000      0.00252      0.99721
    42.000     4.200   1650.000      0.00157      0.99878
    43.000     4.300    720.000      0.00069      0.99947
    44.000     4.400    300.000      0.00029      0.99976
    45.000     4.500    180.000      0.00017      0.99993
    46.000     4.600     45.000      0.00004      0.99997
    47.000     4.700     20.000      0.00002      0.99999
    48.000     4.800     10.000      0.00001      1.00000
    50.000     5.000      1.000      0.00000      1.00000
  -------------------------------------------------------- 

Number of Patterns=1048576
Number of Sample Means=30
Mean of Sample Means=3.00000
Variance of Sample Means=0.15000
Population Mean=3.00000
Population variance=1.50000
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Distribution of Sampling Means: Samples of size 3 (Pop: {2,2,3,5})

Distribution of Sampling Means: Samples of size 5 (Pop: {2,2,3,5})
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10. Sampling Distribution of the Difference Between Two Means

If testing hypotheses about the difference between two means, it is necessary to
know how the differences between two means are distributed, i.e. we need the
sampling distribution of the difference between two means.

Consider the situation where samples of size n = 2 are drawn independently and
at random from the two populations, P1 and P2. P1 is the same population as we
used above.

Pl: ð2; 2; 3; 5Þ and P2: ð1; 2; 3Þ:

The population parameters are easily calculated to be

l1 ¼ 3 l2 ¼ 2

r21 ¼ 1:5 r22 ¼ 2=3:

The details of the sampling distribution of means and samples of size 2 for P1 are
shown in Table 15. We will subscript the statistics of population 1 by 1 everywhere
(e.g. �X1) and of population 2 by 2 (e.g. �X2).

E �X1½ � ¼ l1 ¼ 3;

V �X1½ � ¼ r21
n

¼ 3=2
2

¼ 1:50
2

¼ 0:75:

Distribution of Sampling Means: Samples of size 10 (Pop: {2,2,3,5})
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For P2, listing the various samples gives

i �X2i pi

1 1 1=9 Using this (collapsed) distribution, you can easily find:
E �X2½ � ¼ l2 ¼ 2

V �X2½ � ¼ r22
n ¼ 1=3

2 1.5 2=9

3 2 3=9

4 2.5 2=9

5 3 1=9

Since there are 16 different samples of size 2 that can be drawn from P1 and 9
different samples of size 2 that can be drawn from P2, there are 9 � 16 = 144
different pairs of samples that can be drawn from P1 and P2.

In examining the distribution of their differences, we shall consider �x1 � �x2 for
each possible pair of samples. The collapsed distribution of these differences
between means can be obtained from Table 17.

This distribution can be collapsed by inspection as in Table 18.

Table 17 (X1� X2, frequency occurrences (out of 144) of this pair of values �x1;�x2)

�X1 � �X2; f12ð Þ 1 1.5 2 2.5 3

2 (1, 4) (0.5, 8) (0, 12) (−0.5, 8) (−1, 4)

2.5 (1.5, 4) (1, 8) (0.5, 12) (0, 8) (−0.5, 4)

3 (2, 1) (1.5, 2) (1, 3) (0.5, 2) (0, 1)

3.5 (2.5, 4) (2, 8) (1.5, 12) (1, 8) (0.5, 4)

4 (3, 2) (2.5, 4) (2, 6) (1.5, 4) (1, 2)

5 (4, 1) (3.5, 2) (3, 3) (2.5, 2) (2, 1)

Table 18 Distribution of the difference between means

i X1 � X2
� �

i
pi

1 4 1/144

2 3.5 2/144

3 3 5/144

4 2.5 10/144

5 2 16/144

6 1.5 22/144

7 1 25/144

8 0.5 26/144

9 0 21/144

10 −0.5 12/144

11 −1 4/144
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The mean of this (theoretical) distribution is

E �X1 � �X2½ � ¼
X11
i¼1

pið�X1 � �X2Þi

¼ 1
144

4ð Þþ 2
144

ð3:5Þþ � � � þ 4
144

�1ð Þ
¼ 144=144 ¼ 1 ¼ 3� 2 ¼ l1 � l2:

In general,

E �X1 � �X2½ � ¼ l1 � l2:

The variance is

V �X1 � �X2½ � ¼ E �X1 � �X2ð Þ � E �X1 � �X2½ �½ �2

¼ E �X1 � �X2ð Þ � 1½ �2

¼
X11
i¼1

pi �X1 � �X2ð Þi�1
� �2

¼ 1
144

4� 1ð Þ2 þ 2
144

ð3:5� 1Þ2 þ � � � þ 4
144

�1� 1ð Þ2

¼ 156=144

¼ 1 1=12 ¼ 3=4þ 1=3 ¼ r2�x1 þ r2�x2 :

In general,

V �X1 � �X2½ � ¼ r2�x1 þ r2�x2

or

r2�x1��x2 ¼
r21
n

þ r22
n
:
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Graphically, we have

The above results hold as n becomes larger. In fact, the distribution of the
differences between the means is normal, for samples of a reasonably large (greater
than about 30) size.

i.e. �x1 � �x2 	 N l�x1��x2 ; r
2
�x1��x2

� �
:

If the samples are of equal size (n1 and n2) and drawn independently and at
random from their respective populations, then

l�x1��x2 ¼ l1 � l2;

r2�x1��x2 ¼
r21
n1

þ r22
n2

;

r�x1��x2 is referred to as the standard error of the difference between the two means.

Exercises

Part A

Below is a detailed example involving the mean value operator notation. Suppose a
cube (six-sided object like a die) has the letters a, b, c, d, e, f on the respective sides.
Suppose the die is tossed in a way that ensures that each face has equal probability
of being on top. Assign numbers to the face according to the following procedure:

a ! 0; b ! 1; c ! 1; d ! 2; e ! 2; f ! 2:

Then the expected value and variance of the appropriate random variable can be
calculated as follows. Let X be the random variable representing the numerical out-
come. Then for events or outcomes, we have the probabilities shown in Table 19.

0

0.05

0.1

0.15

0.2

0.25

0.3

-2 -1 0 1 2 3 4 5

Probability
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Table 19 Outcomes, random variable values and their probabilities

Table 20 Values, probabilities, deviations and sum of squares

Outcome

a

b

c

d

e

f

X

0

1

1

2

2

2

Probability

1/6

1/6

1/6

1/6

1/6

1/6

iX iπ i XX μ− 2( )i XX μ−

1X = 0 1π /6 -4/3 16/9

2X = 1 2π /6 -1/3 1/9

3X = 2 3π

= 1

= 2

= 3/6 2/3 4/9

3

1
i

i
π

=
∑ =1

For the values of the random variable X, the probabilities (relative proportions) are
shown in Table 20. Also shown in Table 20 are the deviation scores and their
squares after the mean lX (expected value) is calculated.

Suppose a second die of the same kind is thrown but that the association of
numbers with the outcomes is as follows:

a ¼ 0; b ¼ 0; c ¼ 0; d ¼ 0; e ¼ 1; f ¼ 2:

1. Define a random variable Y to take these numerical values and set these out as in
Tables 19 and 20.

2. Calculate the Expected Value E[Y] and the Variance V[Y].
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3. Suppose the two random variables, X from the first part and Y above, are
independently thrown and that the outcomes are summed to form a new vari-
able. Calculate the Expected Value and the Variance of this new variable. That
is, calculate E[W] and V[W].

Hint. Let W = X + Y be the new variable. Since X and Y are independent, every
value of the X may be paired and summed with every value of the Y. The probability
of a pair of outcomes is then the product of the individual probabilities. By setting up
the following table, the values of the sum and their probabilities may be calculated.

Values 

Y W = X+Y 

0 1 2 0 1 2

0 (0,0) (0,1) (0,2) 0 0 1 2

X 1 (1,0) (1,1) (1,2) X 1 1 2

2 (2,0) (2,1) (2,2) 2

4. Is E[X] + E[Y] = E[W]?
5. What do you notice about the relationship between V[W] and V[X] + V[Y]?

Can you explain this relationship?

Part B

The estimates of the variance r2i from each possible sample of size 2 have been
shown in Table 14.

Construct the frequency distribution of these samples from first principles, that
is, find their expected value E½r̂2�.

What do you notice about this value? Is it the same as r2, and what were the
sums of squares within each sample divided by, n or n − 1? (5 marks)
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Statistics Review 14: Basic Distributions for Tests of It

In this review, we review the Bernoulli and Binomial random variables and the
chi-square ðv2Þdistribution.
1. Expectation and variance of a Dichotomous Random Variable

A dichotomous random variable Xwhich takes on only the values x ¼ 0; x ¼ 1 is
called a Bernoulli variable. The table below shows these values and their general
probabilities p0; p1. Clearly, p0 þ p1 ¼ 1. It also shows the calculation of the
expected value (theoretical mean) and variance.

Because the two values of the probability are complementary, it is common to
simply write p1 ¼ p, and it is then understood that p0 ¼ 1� p.

Suppose there are n dichotomous independent replications to give n Bernoulli
variables and these are summed to give a new variable Y= [X1 + X2 + … Xn].

then

E Y½ � ¼ E X1 þX2 þ � � � ;Xn½ � ¼ E X1½ � þE X2½ � þ � � �E Xn½ �
¼ E X½ � þE X½ � þ � � �E X½ �
¼ nE X½ � ¼ np:

The second step above holds because the variables X1, X2,…, Xn have subscripts
to distinguish them, but because they are replicates of the same variable, they have
the same expected value E[X].

Likewise, the variance of this sum is given by
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V Y½ � ¼ V X1 þX2 þ � � �Xn½
¼ V X1½ � þV X2½ � þ � � �V Xn½ �
¼ nV ½X� ¼ npð1� pÞ:

The second step above holds because the variables are independent.

2. The binomial distribution

When n Bernoulli variables are summed, the new variable is called a binomial
distribution. For example, suppose two Bernoulli variables are summed. Then the
possible scores are

Y1 ¼ 0; Y2 ¼ 1; Y3 ¼ 2:

If p is the probability of X1 ¼ 1; X2 ¼ 1, then the table below shows the con-
struction of and probabilities of Y.

The probabilities may be summarized as below:

Y PrfYg PrfYg PrfYg
0 0 (1 − p)(1 − p) ð1� pÞ2 p0ð1� pÞ2
1 pð Þ 1� pð Þþ 1� pð Þ pð Þ 2 pð Þ 1� pð Þ½ � 2 p1ð1� pÞ2�1

h i
2 pð Þ pð Þ p2 p2ð1� pÞ0

The last column is written in symmetric form. It can be readily generalized in the
case of n replications to the equation

PrfY ¼ yg ¼ n

y

 !
pyð1� pÞn�y;
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3. The v2 (chi-square distribution)

Suppose that we have a random normal distribution X. It may have come from the
sampling distribution of means or it might be a hypothetical distribution. In general,
by similar reasoning to that of the sampling distribution of means, random errors are
taken to be normally distributed. Depending on the precision, some will have a
greater variance than the others.

The standard normal distribution denoted generally as Z is obtained by con-
structing its values as follows:

zi ¼ xi�E½X�ffiffiffiffiffiffiffi
V ½X�

p or in terms of the random variable Z, Z ¼ X�E½X�ffiffiffiffiffiffiffi
V ½X�

p . The curve below is

the shape of a normal distribution.

3:1. The expected value and variance of a standard random normal deviate.

You do NOT have to follow the proofs below, which use properties of the operator
notation, but you have to know the results.

The variable Z is called a random normal deviate. Then its expected value
(theoretical mean) is given by

E½Z� ¼ E½X � E½X�ffiffiffiffiffiffiffiffiffiffi
V ½X�p � ¼ E½X � E½X��ffiffiffiffiffiffiffiffiffiffi

V ½X�p ¼ E½X� � E½E½X��ffiffiffiffiffiffiffiffiffiffi
V ½X�p

¼ E½X� � E½X�ffiffiffiffiffiffiffiffiffiffi
V ½X�p

¼ 0:

Essentially, if you subtract the mean from a set of numbers, then the mean of the
new numbers must be zero.
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E Z½ � ¼ 0:

The variance is given by

V ½Z� ¼ V
X � E½X�ffiffiffiffiffiffiffiffiffiffi

V ½X�p
" #

¼ V ½X � E½X��
V ½X� ¼ E½ðX � ½E½X�Þ2�

V ½X�

¼ V ½X�
V ½X�

¼ 1:

Essentially, if you divide the standard deviation into a set of deviates from the
mean of a set of numbers, then the variance of the new numbers must be one.

V Z½ � ¼ 1:

Furthermore, its square root, the standard deviation, will also be 1.
The standard normal deviate is used as a reference point to check if some

number is significantly different from the value that might be expected under only
random variation. Thus, if one computes a prediction of some number, then in
probabilistic models it is not expected that the prediction will be perfect.

Suppose we have an observed value Yi and we know the theoretical mean lY and
variance r2Y of this value (we come to how we might know these values). Then we
can compute the standard normal deviate as follows:

Zi ¼ Yi � lY
rY

:

Then to check if the value Yiis a good prediction of lY , we can compare the
value of Zi with might arise from random normal variation. You have learned that if
the value is between −1.96 and 1.96, then that means it is in the range where 95%
of cases under random normal variation would fall. In that case, we might consider
it a good prediction.

3:2. The v2 distribution on 1 degree of freedom

The v2 distribution arises from the need to consider more than one prediction
simultaneously. We begin by considering just one prediction, and in some sense it
is redundant with the random normal deviate. However, it lends itself to general-
ization when there is more than one simultaneous prediction involved.

When we have one prediction, we consider as a frame of reference one standard
normal deviate, and square it: Z2

i . We now imagine taking many such deviates from
a standard normal distribution and squaring them.
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The distribution of the squares of these random normal deviate is a v2 distri-
bution on 1 degree of freedom notated v21.

Then to check our prediction, we could square the calculated standard normal
deviate and check if it falls between the value of 0 and 1:962 ¼ 3:8416.

3:3. The v2 distribution on 2 degree of freedom

If we have two simultaneous predictions, we can imagine using as the frame of
reference to check its accuracy two simultaneous random normal deviates.
However, we should combine these somehow to give a single summary value. This
is done by imagining taking many standard random normal deviates, squaring them
and summing them. This the v2 distribution on two degrees of freedom:

v22 ¼ Z2
1 þ Z2

2 :

3:4. The v2 distribution on n degree of freedom

The distribution of the sum of squares of n random normal deviates is v2 on
n degrees of freedom is given by summing squaring and summing n random normal
deviates as

v2n ¼ Z2
1 þ Z2

2 þ Z2
3 þ Z2

4 þ � � � þ Z2
n .

Pages 228–232 are excerpts from Glass, G. V and Stanley, J. C.
(1970) Statistical Methods in Education and Psychology. New Jersey: Prentice
Hall.

Statistics Review 15: Odds and Ratios

Key words: Odds, Probability, Multiplicative and logarithmic metrics,
Multiplicative parameters B and D, Logarithmic parameters b and d

Key points: Odds and probabilities are analogous to ratios and proportions.
The Rasch model for dichotomous responses can be expressed in terms of the
odds of a correct response or the probability of a correct response. In the
former, it is in terms of multiplicative parameters B and D on the multi-
plicative metric. In the latter, it is in terms of logarithmic parameters b and d
on the logarithmic metric.

1. Odds and probabilities and the relationship between the responses and the
model

Odds

‘Odds’ is a term which is simply a ratio, which is generally used in a context where
there is a likely element involved. Thus, it is an abstraction, not something as
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concrete as six units of some kind of wine blended with four units of another kind
of wine. For example, bookmakers offer odds of horses winning races.

e.g. 6:4; 7:1; 1:10; 2:5; or 6=4; 7=1; 1=10; 2=5:

In the case of book makers, odds of 6:4 means that if you put $4 that the horse
will win, you will receive $10, your $4 plus $6.

Probabilities (Recall probabilities are theoretical proportions)

A probability of one or the other response is relative to the total number of
responses, and thus the probabilities in the above cases of the first response are

e.g.
6

4þ 6
;

7
1þ 7

;
1

10þ 1
;

2
5þ 2

:

Converting odds to probabilities

If in each case above we divide the numerator and the numerator by the other term
of the total, we obtain

6=4
1þ 6=4

;
7=1

1þ 7=1
;

1=10
1þ 1=10

;
2=5

1þ 2=5
;

which are expressions in terms of the odds themselves, e.g. in both the
numerator there are the odds of 6/4 in the first example.

In general,

P ¼ O
1þO

where P is a probability and O is the related odds:

2. The Rasch model in terms of the odds of the correct response

Pni ¼ Oni

1þOni
where Oni ¼ Bn

Di
:

Here, we use the Latin letters with B the proficiency of the person and D the
difficulty of an item, and we start with the multiplicative metric. We later change to
the familiar logarithmic metric.

The above expression, Pni, is the probability of the correct response. Thus, as the
proficiency B increases the odds of answering an item correctly increases.

As the item difficulty increases, the odds of answering an item correctly
decreases.

The odds are always some positive number, but can be infinitely large or small.
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In terms of these parameters, the Rasch model for dichotomous responses is
simply given as

Pni ¼ Oni

1þOni
¼ Bn=Di

1þBn=Di
:

Because there are only two responses, and the sum of the probabilities of the
correct and incorrect responses has to be 1, we can write that the probability of an
incorrect response is given by 1� Pni. Generally, because the incorrect response is
complementary to the correct response, in the case of dichotomous responses we
only consider the probability of the correct response. However, for completeness
we can denote

Pni1 ¼ correct response;Pni0 ¼ incorrect response:

Then Pni1 ¼ Oni

1þOni
,

Pni0 ¼ 1� Oni

1þOni

¼ 1þOni � Oni

1þOni

¼ 1
1þOni

:

We see that the denominator is the same term in both responses. Often the
denominator is presented as a single term, e.g. Gni, where Gni ¼ 1þOni. Then

Pni ¼ Pni1 ¼ Oni

Gni
¼ Bn=Di

Gni
:

In the metric of the natural logarithms, Bn ¼ ebn ; Di ¼ e�di and cni ¼ 1þ ebn�di

giving

Pni ¼ Pni1 ¼ ebn�di

cni
:

Thus, written out in full, the estimation equation for the case of a person who has
scored 6 on the short test of 10 dichotomous items is

X10
i¼1

Pni ¼
X10
i¼1

ebn�di

cni
¼ 6::
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3. Multiplicative and logarithmic metrics

When we make use of the log metric, then

bn ¼ logBn or Bn ¼ ebn
di ¼ logDi or Di ¼ edi :

In the log metric, the odds of person t getting item i right is ebn�di

but ebn�di ¼ Bn
Di

(log metric) (multiplicative metric)

or bn � di ¼ log ðBnÞ
Di

¼ logBn � logDi:

Therefore, the probability of person n getting item i right in the log metric is

given by eðbn�diÞ
1þ eðbn�diÞ.

Statistics Reviews Exercises Solutions

Statistics Review 1

1.

(a) 14,
(b) 8,
(c) 4.

2.

(a) X2 þX3

(b)
ðX1 þX2 þX3 þX4Þ2
¼ X2

1 þX2
2 þX2

3 þX2
4 þ 2X1X2 þ 2X1X3 þ 2X1X4 þ 2X2X3 þ 2X2X4 þ 2X3X4

(c) X2
1 þX2

2 þX2
3 þX2

4 þX2
5

3.

(a) 5
P4
i¼1

Xi

(b)
P4
i¼1

Xi

� �2

Statistics Review 2

1.

(a) 43.82%,
(b) 93.82%,
(c) 6.18%,
(d) 94.
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2. −0.84.
3. 1.645.

Statistics Review 3

1.

(a) 325,
(b) No, the meaning of the variable is not obvious. A high score can be obtained

by a tall person with not so high non-verbal intelligence as well as a short
person with high non-verbal intelligence.

2.

(a) 684
(b) Yes, the added variable may be some sort of ‘development’. A higher score

tends to be obtained by a tall person with a high non-verbal intelligence
level, and a lower score tends to be obtained by a shorter person with a
lower non-verbal intelligence level.

(c) In the school-age population, the physical development and the intellectual
development tend to go together in terms of ‘growing’. Non-verbal tests of
intelligence (encoding and decoding ability) is related to mathematical ability
that increase as children grow. In developing countries, a good nutritious
environment tends to bring about (i) better physical development and
(ii) better intellectual development, and thus these two variables are correlated.

Statistics Review 4

1. cxy = 76, r = 0.89,
2. Ŷi ¼ 5:48þ 1:30Xi;
3. 26.43,
4. −9.66.

Statistics Review 5

1.

(a) {1, 2, 3, 4, 5, 8},
(b) {4, 5},
(c) {1, 2, 3, 4, 5},
(d) {3, 4, 5}.

2.

(a) A = {H1, H2, H3, H5, T1, T2, T3, T5}
B = {H1, H3, H5}
C = {T2, T4, T6},

(b) 0.667,
(c) B and C because P BUCf g ¼ P Bf gþP Cf g:

476 Appendix D: Statistics Reviews, Exercises and Solutions



3.

(a) S = {(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H,T), (T, T,
H), (T, T, T)},

(b)

(i) 0.125,
(ii) 0.375,
(iii) 0.5.

(c) Mutually exclusive.

Statistics Review 6

1. 33x,
2. (a)8,
3. 2a,
4. 125n,
5. 864.

Statistics Review 7

1. log 15,
2. log 2,
3. log 16,
4. log10 300.

Statistics Review 8

1. Pr{C1 = T} = 0.45, Pr{C2 = T} = 0.55.
2. 0.40.

Statistics Review 9

1. PfA\Bg ¼ P Að ÞxP Bð Þ 0:375 ¼ 0:75 x 0:5;
2. PfA\Bg 6¼ P Að ÞxP Bð Þ 0:5 6¼ 0:5 x 0:75:

Statistics Review 13

Part A

1.

Outcome Y Probability

a 0 1/6

b 0 1/6

c 0 1/6

d 0 1/6

e 1 1/6

f 2 1/6
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Yi pi Yi � lY ðYi � lY Þ2
Y1 = 0 p1 ¼ 4=6 −1/2 1/4

Y2 = 1 p2 ¼ 1=6 1/2 1/4

Y3 = 2 p3 ¼ 1=6 3/2 9/4P3
i¼1 pi ¼ 1

2. E[Y] = 0.5, V[Y] = 0.584,
3. E[W] = 1.833, V[W] = 1.139,
4. Yes, 1.333 + 0.5 = 1.833,
5. Variables X and Y are independent

V[W] = V[X] + V[Y]
0.555 + 0.584 = 1.139.

Part B

i pi r̂2i pir̂2i
1 1/16 0.0 0

2 4/16 0.5 2/16

3 4/16 1.0 4/16

4 2/16 2.0 4/16

5 4/16 2.5 10/16

6 1/16 4.0 4/16

Sum 3/2

E½r̂2� ¼ 3=2 ¼ r2 is the population variance. Divided by n-1.
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