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Students commonly think of a textbook as merely a tool to get prepared for exams.
This is not the right way of looking at it! A textbook is the fruit of long-term studies
and experience acquired by the author and reflects her or his personality. It embodies
priorities, knowledge, and I dare say even dreams and life attitudes. Compare the
difference in style and content in the now classic physics textbooks by Landau and
Feynman. Both Landau and Feynman were scientists whose minds were ready to
listen to the music of the heavens. But how very differently! Landau wrote with the
authority of a Zeus and his book sounds like the ultimate message from Heaven,
while Feynman’s style is more modest, and his curiosity and quest for truth could
hardly be matched by anyone. His famous textbook is like an invitation to travel
through the Disneyland of Nature, where he acts as a guide, but a guide who is also
learning during this journey. And there is a third example: the Chicago lecture notes
on quantum mechanics by another Nobel laureate — Enrico Fermi. At first sight, it
appears to be more student friendly, simple, and very much to the point, but what a
simplistic and, indeed, incorrect interpretation that would be! Fermi made a selection
of topics and then reduced the content to the absolute essence of what has to be
understood to get prepared for a journey into the quantum wonderland. He did it in
such a way that an average student had the impression he or she understood
everything, while a more demanding student would get a sense of much more: a
feeling that a miraculous quantum world was waiting for him behind invisible doors,
full of questions and surprises. Fermi did what Albert Einstein once said about
science in his peculiar English — do it simple, but not simpler.

I admire this textbook by Professor Razeghi as much as I respect her research
achievements, which she fulfilled in her personal journey through this demanding
life. She was born in Persia, but left her motherland forever to join her new country
France, the country that gave her the chance to continue the science she loved so
much. In doing so, she followed the footsteps of Marie Curie, who a century before
left oppressed Poland as a young math teacher by the name of Sklodowska.
Welcomed in France, Sklodowska completed her studies at the Sorbonne, got
married to a brilliant French physicist Pierre Curie, and then spent endless hours
working with him, processing tons of radioactive ores from Czechoslovakia.
Together they eventually extracted small grains of the miraculous polonium and
radium — two radioactive elements they discovered and named. This superb
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technological achievement, of which Marie definitely was the master and the spiritus
movens, opened new avenues for science and finally led her twice to Stockholm to be
awarded the Nobel medal.

Dr. Razeghi hopefully was not forced to work in a cold and primitive warehouse,
like the Curies had to. The wise management of the French electronic giant Thomson
spotted her unique talents and gave her proper resources to realize her visions and
dreams. In a short time she became the First Lady in solid-state physics and made
Thomson the leader in modern III-V compound semiconductor technology. Her
laboratory was a dream for most of us, well before the common excellence of today
in many places. But Razeghi became a technologist by choice. She was driven by the
vision of the ultimate device backed by a deep understanding of the science and full
of curiosity. This is what guided her. No wonder she became a very desired
collaborator for top labs and personalities in the semiconductor world. She soon
reached the peak of the Himalayas and could well have stopped there. But not for
Mme Razeghi. After many years of success, she left friendly Europe for the next
grand tour of her life, to the host of the most advanced materials science — the United
States — interestingly, not to another industrial super-organization like Thomson,
but to a university, where she could share her experiences and shape the next
generations. Her energy and visions attracted money, and the money helped to create
one of the most advanced university-based semiconductor labs in the world, visited
and applauded by most Nobel laureates in the field.

So, dear readers, make sure that you learn from this book, but not only science
and technology, which is presented with great clarity, skill, and care (there is even an
appendix on how to work with dangerous chemicals in the MOCVD lab!). Maybe
you will hear — just as I did — the whisper of the modestly hidden powerful message
from Professor Razeghi: the only thing to prevent you from performing miracles in
the tournament with Nature is yourself. To win and to have pleasure, learn first, then
practice in the lab, and work with your notebook. If you work hard enough and still
enjoy it, you may have the stuff for the ultimate destiny — real Himalayas — the
discourse with nature: understand her laws and limitations, but also her immense and
endless frontiers.

Thank you Manijeh for the guidance.

Professor in Physics, Institute of Physics Jerzy M. Langer
Polish Academy of Science, Warsaw, Poland

Fellow of the American Physical Society

Member of Academia Europaea



Learning from Nature: Structure of Matter - Atoms

Nature is the best innovator and teacher. Scientists know for a while now that all
matter consists of atoms. The atom is the smallest part of any material element. So
when we look around us and observe the material world, we know that these natural
colors we see are the light emitted by atoms. But atoms consist of nuclei surrounded
by clouds of electron and the light particles they emit are what we call the quanta of
light or photons. At the end of the last century, we learned from the great physicist
James Clerk Maxwell that light, and its individual quanta, the photons are electro-
magnetic waves emanating from atomic emission or more generally from oscillating
charges. Electrons undergo a transition from a higher to a lower orbit in an atom that
emits light and conversely can also absorb light. The detail of this transition
determines the energy or wavelength of the light. This includes the entire spectrum
of light from gamma rays to UV to visible and to the invisible infrared (IR) rays
down to the THz. Our eyes can see only a small part of the total photonic spectrum,
from 300 to 700 nm in wavelength. So it is understandable that one of the first and
primary aims of physicists was to try making instrumentation in order to see the rest
of the spectrum as well, using artificial eyes. These electronic eyes are made by
materials engineering. Indeed this has been achieved now to a great extent, and the
progress is so important that artificial eyes covering a much larger range of photonic
energies are being made and are constantly being improved. This progress was
acquired by first developing a deep understanding of the workings of atoms. In
fact one can say that the last century was the century of exploring the atom and
mastering the science of materials. The next century will be the century of genes and
biological cells.

Physicists have discovered that detecting and creating photons of different
wavelengths require first a profound understanding of the atom, and this has been
made possible by the science of quantum mechanics. The second step was to
investigate a very special type of materials called the semiconductors. The science
of semiconductors is central to all modern device physics, including the electronic
chip and computer. Unlike in metals, electrical charges in semiconductors are not
free to move under the action of a small electric field; they first have to be “excited,”

Vii
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Fig. 1 Basic elements used to make pure and compound semiconductors; each has its own
bandgap and, when combined into compounds, develops a new bandgap; layer-by-layer deposition
generates new class of semiconductor superlattices with designer bandgaps (bottom right)

for example, by light or heat, to cross the energy gap formed by the bonding
structure. This gap determines the sensitivity of the material to a particular wave-
length and varies according to semiconductor type, and indeed the gap can now
mostly be designed. To design and understand semiconductors, one has to realize
that semiconductors, like other materials, consist of different types of atoms bonded
together. Materials can be liquid, soft, or hard, and here we are in the first place
talking about hard solids. The most useful and well-known semiconductors are in the
category of silicon and germanium. What distinguishes them is that each atom has
four valence electrons which combine their orbits to point to four different directions
of space (tetrahedron) where they overlap and bond with four corresponding neigh-
bor orbitals. These form semiconductors of the group IV-IV elements.
Semiconductors can also be formed by combining group III and V elements such
a GaAs or InAs (see Fig. 1). Here we have three and five valence electrons in the
outer shells, respectively, and bonding comes about by first transferring an electron
from element five to three, making it possible to form as in silicon, four tetrahedral
bonds. There are many examples of III-V compounds, and they are extremely
important to technology. Similarly, one can combine semiconductors by combining
II-VI elements (CdTe, CdSe) where now two electrons are transferred from VI to II,
making it again 4-4 bonds. A particularly inspiring and special atom is the atom of
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Fig. 2 Evolution of the total number of transistors per computer chip and their corresponding
dimensions (in an inverted scale) as a function of year. For comparison, the number of human brain
cells is shown on the left scale. In addition, the physical dimension limit for conventional transistors
and the size of molecules are shown on the right scale

the element carbon. The four valence electrons of carbon can bond with one, two, or
three neighbors and in this way form organic molecules, polymer chains, or two- or
three-dimensional solids. A notable example is diamond which is bonded in three
dimensions and is a high bandgap semiconductor with the highest thermal conduc-
tivity and hardness. The next example is the two-dimensional graphene (G).
Graphene is causing a revolution in applied sciences. Carbon physics has already
led to the awarding of three Nobel prizes, one for buckyballs (fullerenes) and the
other two for graphene.

By now the reader should get a feeling of how exciting and useful solids and
semiconductors and their applications are. But before we get into the details of how
the solids work, what constitutes the important physics and engineering, and how we
can develop the necessary sensory tools (see Fig. 2), let us revisit our own natural
sensory systems and find out what challenge we are facing when we want to imitate
or surpass nature.

Nature has stimulated human thought and invention before recorded time. Con-
trolled fire, the wheel, and stone tools were all undoubtedly “invented” by humans,
who drew inspiration from some natural phenomena in our prehistory, such as a
wildfire created by a lightning strike, the rolling of round boulders down a steep hill,
and perhaps wounds caused by the sharp rocks of a river bottom. There are examples
during recorded times of other such ingenuity inspired by nature. Sir Isaac Newton
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wrote that seeing an apple fall from a tree outside his window provoked his initial
thoughts on the theory of gravitation. The Wright brothers and countless unsuccess-
ful aviators before them were stimulated by the flight of birds. Similarly, we can look
to nature to give us inspiration for new electronic devices.

Even a casual glance at the living world around us reveals the rich diversity and
complexity of life on Earth. For instance, we can choose virtually any organism and
demonstrate that it has the ability to sense and react to the surrounding world. Over
millions of years of evolution, almost all types of life have developed some type of
detection ability, seamlessly integrated into the other functions of the life form. More
specifically, we can examine the basic human senses of hearing, smell, taste, touch,
and sight to inspire us to understand more about the physical world.

Human hearing is based around the organ of Corti, which transduces pressure
waves created within the fluids of the cochlea. The 20,000 micron-sized hair cells not
only convert these waves into electrical impulses and transmit them to the brain via
the auditory nerve but allow audio spectral differentiation depending on their
position within the organ. Typical human frequency response ranges from 20 kHz
to 30 Hz with sensitivity up to 130 decibels. Drawing from this natural example,
today microphone manufacturers produce tiny transducers with dimensions of a few
hundred microns.

The human sense of smell is based around approximately twelve million receptor
cells in the nose. Each cell contains between 500 and 1000 receptor proteins that
detect different scents and relay the information to the olfactory bulb and onto the
brain. Today, researchers are developing “electronic noses” to mimic and improve
upon the human olfactory system. Important applications include the detection of
explosives as well as toxic chemicals and bio-warfare agents.

Gustatory receptors on the human tongue act as detectors for specific chemical
molecules and are the basis for the sense of taste. Between 30,000 and 50,000
individual taste receptors make up the taste buds that cover the tongue and are
capable of sensing bitter, sour, sweet, salty, and monosodium glutamate (MSG)-
based foods. “Artificial tongues” are being developed to similarly classify flavors
and also to perform specialized chemical analysis of a variety of substances. Aside
from the obvious commercial applications (such as active sampling of foods and
beverages in production), these devices may act in conjunction with “electronic
noses” to detect various chemical agents for security purposes.

The sense of touch in humans allows several detection mechanisms, including
specific receptors for heat, cold, pain, and pressure. These receptors are located in the
dermis and epidermis layers of the skin and include specialized neurons that transmit
electric impulses to the brain. Today, microswitches have been developed to detect
very small forces at the end of their arms much like the whiskers of a cat.
Thermocouples have been developed for sensitive temperature detection, and load
cells are used for quantitative pressure sensing.

The sense of sight is perhaps the most notable form of human ability. Micron-
sized rods and cones containing photosensitive pigments are located in the back of
the eye. When light within the visible spectrum strikes these cells, nerves are fired
and the impulses are transmitted through the optic nerve to the brain, with electrical
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signals of only 100 mV between intracellular membranes. With the proper time to
adapt to dark conditions, the human eye is capable of sensing at extremely low light
levels (virtually down to single-photon sensitivity). However, our vision is limited to
a spectral band of wavelengths between about 400 and 750 nanometers. In order to
extend our sensing capabilities into the infrared and ultraviolet, much research has
gone into exploring various material systems and methods to detect these
wavelengths.

In order to improve and stretch the limits of innate human capabilities, researchers
have mimicked nature with the development of quantum sensing techniques. Using
these electronic noses, tongues, pressure sensors, and “eyes,” scientists not only
achieve a better understanding of nature and the world around them but also can
improve the quality of life for humans. People directly benefit in a number of
different ways from these advances ranging from restoration of sight, reduction in
terrorist threats, and enhanced efficiency and speed of industrial processes.

Beyond human sensing capabilities, we can also look to the brain as an example
of a computing and processing system. It is responsible for the management of the
many sensory inputs as well as the interpretation of these data. Today’s computers
do a good job of processing numbers and are becoming indispensable in our daily
lives, but they still do not have the powerful capabilities of the human brain. For
example, state-of-the-art low power computer processors consume more power than
a human brain while having orders of magnitude fewer transistors than the number of
brain cells in a human brain (Fig. 1). Forecasts show that the current microelectron-
ics technology is not expected to reach similar levels because of its physical
limitations (Fig. 2).

By imitating nature, scientists have already developed a growing array of elec-
tronic sensors and computing systems. It is obvious that we must continue to take
cues from the world around us to identify the proper methods to enhance human
knowledge and capability. However, future advances in this direction will have to
reach closer to the structure of atoms, by engineering nanoscale electronics (Fig. 3).

Thanks to nanoelectronics, it will not be unforeseeable in the near future to create
artificial atoms, molecules, and integrated multifunctional nanoscale systems. For
example, as illustrated in Fig. 4, the structure of an atom can be likened to that of a
so-called quantum dot or Q-dot where the three-dimensional potential well of the
quantum dot replaces the nucleus of an atom. An artificial molecule can then be
made from artificial atoms. Such artificial molecules will have the potential to
revolutionize the performance of optoelectronics and electronics by achieving, for
example, orders of magnitude higher speed processors and denser memories. With
these artificial atoms/molecules as building blocks, artificial active structures such as
nanosensors, nanomachines, and smart materials will be made possible.

At the foundation of this endeavor is solid state engineering, which is a funda-
mental discipline that encompasses physics, chemistry, electrical engineering,
materials science, and mechanical engineering. Because it provides the means to
understand matter and to design and control its properties, solid state engineering is
key to comprehend Natural Science (Fig. 5).
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Fig. 3 The various ways a semiconductor is made as bulk (top left), with atomic beam deposition,
and the way it is patterned and processed for device application using photolithography with laser
beams to delimit regions

Molecule

(b)

Fig. 4 Schematic comparisons: (a) between a real atom and an artificial atom in the form of a
quantum dot and (b) between a real molecule and an artificial molecule

The twentieth century has witnessed the phenomenal rise of Natural Science and
Technology into all aspects of human life. Three major sciences have emerged and
marked that century, as shown in Fig. 3: Physical Science which has strived to
understand the structure of atoms through quantum mechanics, Life Science which
has attempted to understand the structure of cells and the mechanisms of life through
biology and genetics, and Information Science which has symbiotically developed
the communicative and computational means to advance Natural Science.
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“Mimicking™ Nature

Fig. 5 The electronic structure and thus properties of materials, such as the density of available
energy levels D(E), for example, changes with confinement size and dimensionality, and can be
controlled by the great progress made using atom-by-atom deposition technologies such as MBE
and MOCVD (molecular beam epitaxy and metalorganic chemical vapor deposition) areas in which
the present author is a world leader

The scientific and technological accomplishments of earlier centuries represent
the first stage in the development of Natural Science and Technology, that of
understanding (Figs. 6 and 7). As the twenty-first century rolls in, we are entering
the creation stage where promising opportunities lie ahead for creative minds to
enhance the quality of human life through the advancement of science and
technology.

Hopefully, by giving a rapid insight into the past and opening the doors to the
future of solid state engineering, this course will be able to provide some of the basis
necessary for this endeavor, inspire the creativity of the reader, and lead them to
further explorative study.

Since 1992 when I joined Northwestern University as a faculty member and
started to teach, I have established the Solid State Engineering (SSE) research group
in the Electrical Engineering and Computer Science Department and subsequently
created a series of related undergraduate and graduate courses. In the creative
process for these courses, I studied similar programs in many other institutions
such as Stanford University, the Massachusetts Institute of Technology, the Univer-
sity of Illinois at Urbana-Champaign, the California Institute of Technology, and the



xiv Preface

/ [ Physical Science] |Q—mechanics

* Semiconductors
* Superconductors
* Polymers

* Simulation
« Interconnection

Natural Information
Science Science

« Artificial
Neural Networks
* Fuzzy Logic

« Simulation
« Interconnection

K[ Life Science ]|Genetics

Fig. 6 Three branches of Natural Science and Technology have impacted all aspects of human life
in the twentieth century: Physical, Information, and Life Sciences C). For each one, a key
scientific discipline or technology has been developed: quantum mechanics, electronics, and
genetics (|:>). These have allowed to both better understand the building blocks of nature
(structures of atoms, genes, and cells) and develop the tools without which these scientific advances
would not have been possible (computer and Internet) (.) in a synergetic manner

™
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Fig. 7 The scientific and technological advances of the twentieth century can be regarded as the
understanding stage in the development of Natural Science and Technology. The twenty-first
century will be the creation stage in which novel opportunities will be discovered and carried out
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optoelectronic devices will be involved in all areas of a human'’s life, trying to improve
the functionality of its body and mind. Examplesof Quantum device applications
are given below.

EXPLORATION (Space & Underwater)
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Fig. 8 The slide is self-explanatory: the many areas of life where solid state engineering has a
direct impact

University of Michigan. I reviewed numerous textbooks and reference texts in order
to put together the teaching material students needed to learn nanotechnology and
semiconductor science and technology from the basics up to modern applications.
But I soon found it difficult to find a textbook which combined all the necessary
material in the same volume, and this prompted me to write the first edition of a
textbook on the Fundamentals of Solid State Engineering (Fig. 8).

The book was primarily aimed at the undergraduate level, but graduate students
and researchers in the field will also find useful material in it. After studying it, a
student will be well versed in a variety of fundamental scientific concepts essential to
solid state engineering, in addition to the latest technological advances and modern
applications in this area, and will be well prepared to meet more advanced courses in
this field.

In this fourth edition, I have taken into account the feedback and comments from
students who took the courses associated with this text and from numerous
colleagues in the field. The fourth edition is an updated, more complete text that
covers an increased number of solid state engineering concepts and goes in depth in
several of them. The chapters also include redesigned and larger problem sets.

This fourth edition is structured in two volumes. The first focuses on the basic
physics concepts which are at the heart of solid state matter in general and
semiconductors in particular. The text starts by providing an understanding of the
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structure of atoms and electrons and the structure of matter (Chap. 1); a new chapter
is devoted to the element carbon and its allotropes such as graphene, carbon
nanotubes, and fullerenes (Chap. 2) and then the real and reciprocal crystal lattices
(Chap. 3). An introduction to the basic concepts in quantum mechanics (Chap. 4)
and to the modeling of electrons and energy band structures in crystals is then given
in Chap. 5. Chapter 4 was extended in the fourth edition to include the Heisenberg
equation of motion, the hydrogen atom, and the harmonic oscillator and quite a bit
more. The new material now gives the student a reasonably complete description of
the quantum mechanics tools that he needs. In Chap. 6 the attention is focused on the
thermal and vibrational properties of crystals. The reader is introduced to the concept
of phonons to describe vibrations of atoms in crystals (Chap. 6), and then later in the
same chapter, he learns how to calculate the thermal properties of crystals. The
equilibrium and non-equilibrium electrical properties of semiconductors are
reviewed in Chaps. 7 and 8. First the statistics (Chap. 7) and then, later in Chap. 8,
the transport description are developed. This now includes the Boltzmann equation
approach. The problem of the generation and recombination properties of charge
carriers in semiconductors is also considered in detail in Chap. 8. With these
concepts one can now proceed to model semiconductor p-n and semiconductor-
metal junctions (Chap. 9) which constitute the building blocks of modern electron-
ics. The optical properties of semiconductors are described in Chap. 10. Solar,
thermal, and photothermal harvesting of energy have been added in this new edition
as Chaps. 11, 12, and 13. Screening and electron-electron interactions, on an
elementary level, are the subjects of the new Chap. 14. This is followed by a
discussion of semiconductor heterostructures and low-dimensional quantum
structures including quantum wells and superlattices, wires, and dots in Chap. 15.
The new Chap. 16 contains an introduction to the physics of quantum transport. A
brief description of the coupling between electrons and lattice vibrations (electron-
phonon interactions) then follows in the second part of Chap. 16. In the new and old
chapters, the derivation of the mathematical relations has been spelled out in some
detail, so that the reader can understand the limits of applicability of these
expressions and adapt them to his or her particular needs. The final three chapters
of the book focus on the growth and characterization of real semiconductor crystals.
Chapter 17 introduces modern epitaxial and bulk semiconductor crystal growth
techniques. This is followed by a discussion of semiconductor characterization
techniques and defects in Chaps. 18 and 19.

In each chapter, a section “References” lists the bibliographic sources which have
been referenced in the text. The interested reader is encouraged to read them in
addition to those given in the section “Further reading.”

Evanston, IL, USA Manijeh Razeghi
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1.1 Introduction

In this chapter the electronic structure of single atoms will be discussed. A few
quantum concepts will be introduced, as they are necessary for the understanding of
many aspects in solid-state physics and device applications.

In Chap. 1, we saw that matter was composed of atoms in the periodic table
shown in Fig. 1.2. Until 1911, atoms were considered the simplest constituents of
matter. In 1911, it was discovered that atoms had a structure of their own and
Rutherford proposed the nuclear model of the atom in which almost all the mass
of the atom is concentrated in a positively charged nucleus and a number of
negatively charged electrons are spread around the nucleus. It was later found that
the nucleus is itself made up of protons (positively charged) and neutrons (neutrally
charged). The number of protons is the atomic number (Z) while the total number of
protons and neutrons is the mass number of the element. Apart from the electrostatic
repulsion between nuclei, all of the major interactions between atoms in normal
chemical reactions (or in the structures of elemental and compound substances)
involve electrons. It is therefore necessary to understand the electronic structure of
atoms. The term electronic structure, (or configuration) when used with respect to an
atom, refers to the number and the distribution of electrons about the central nucleus.

The following discussion traces the steps of the scientific community toward a
description of the electronic structure of atoms. The reader should not be stopped by
the new concepts that arise from this discussion, because they will become clearer
after understanding the quantum mechanics presented in Chap. 4.

Much of the experimental work on the electronic structure of atoms done prior to
1913 involved measuring the frequencies of electromagnetic radiation (e.g., light)
that are absorbed or emitted by atoms. It was discovered that atoms absorbed or
emitted only certain, sharply defined frequencies of electromagnetic radiation. These
frequencies were also found to be characteristic of each particular element in the
periodic table. And the absorption or emission spectra, i.e., the ensemble of
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2 1 Electronic Structure of Atoms

frequencies, were more complex for heavier elements. Before being able to under-
stand the electronic structures of atoms, it was natural to start studying the simplest
atom of all, the hydrogen atom, which consists of one proton and one electron.

1.2  Spectroscopic Emission lines and Atomic Structure
of Hydrogen

It was experimentally observed that the frequencies of light emission from atomic
hydrogen could be classified into several series. Within each series, the frequencies
become increasingly closely spaced, until they converge to a limiting value. Rydberg
proposed a mathematical fit to the observed experimental frequencies, which was
later confirmed theoretically:

o 1 1 1
E:E:Ry<n_2_w> (1.1a)

withn=1,2,3,4,..and ' = (m + 1), (n + 2), (n + 3),...

In this expression, 4 is the wavelength of the light (in units of distance, and
typically cm in this expression), v is the frequency of the light emitted,
¢ (c=2.99792 x 10* m:s™' =2.99792 x 10'® cm-s™') is the velocity of light in
vacuum, and Ry is the fit constant, called the Rydberg constant, and was calculated to
be 109,678 cm™'. n is an integer, corresponding to each of the series mentioned
above. n’ is also an integer, larger than or equal to (n + 1), showing that the
frequencies become more closely spaced as n’ increases.

The energy of the electromagnetic radiation is related to its wavelength and
frequency by the following relation:

_hL‘_

A

where h (h = 6.62617 x 107* J-s) is Planck’s constant. The SI (Systeme Interna-
tional, or International System) unit for energy is the Joule (J). However, in solid-
state physics, it is common to use another unit: the electron volt (eV) which is equal
to 1.60218 x 10~ ' J. The reason for this new unit will become clear later in the text
and reflects the importance of the electron in solid-state physics.

The expression in Eq. (1.1a) shows that the emission of light from the hydrogen
atom occurs at specific discrete values of frequencies v, depending on the values of
integers n and n’. The Lyman series of spectral lines corresponds to n = 1 for which
the convergence limit is 109,678 cm ™!, The Balmer series corresponds to n = 2, and
the Paschen series to n = 3. These are illustrated in Fig. 1.1, where the energy of the
light emitted from the atom of hydrogen is plotted as arrows.

Although the absorption and emission lines for most of the elements were known
before the turn of the twentieth century, a suitable explanation was not available,
even for the simplest case of the hydrogen atom. Prior to 1913, the explanation for

E hv (1.1b)
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Fig. 1.1 Energies of the light E(eV)a
emitted from the hydrogen E_(0eV)
atom (shown by arrows). The
L . 4 E; (~0.54 V)
yman series corresponds to E, (-0.85 V) I
n = 1inEq. (1.1a), the Balmer E (151 eV) yv
series corresponds to n = 2, Paschen
and the Paschen Sﬁnes Ey(-3.40eV) VY series
corresponds to n = 3 Balmer
series
Lyman
E, (-136eV) series

this spectroscopic data was impossible because it contradicted the laws of nature
known at the time. Indeed, very well-established electrodynamics could not explain
two basic facts: that atoms could exist at all and that discrete frequencies of light
were emitted and absorbed by atoms. For example, it was known that an accelerating
charged particle had to emit electromagnetic radiation. Therefore, in the nuclear
model of an atom, an electron moving around the nucleus has acceleration and thus
has to emit light, lose energy, and fall down to the nucleus. This meant that the
stability of elements in the periodic table, which is obvious to us, contradicted
classical electrodynamics. A new approach had to be followed in order to resolve
this contradiction, which resulted in a new theory, known as quantum mechanics.
Quantum mechanics could also explain the spectroscopic data mentioned above and
adequately describe experiments in modern physics that involve electrons and atoms
and ultimately solid-state device physics.

Niels Bohr first explained the atomic absorption and emission spectra in 1913.
His reasoning was based on the following assumptions, which cannot be justified
within classical electrodynamics:

1. Stable orbits (states with energy E,) exist for an electron in an atom. While in one
of these orbits, an electron does not emit any electromagnetic radiation. An
individual electron can only exist in one of these orbits at a time and thus has
an energy E,.

2. The transition of an electron from an atomic orbit of energy state E, to that of
energy state E,y corresponds to the emission (E,, > E,) or absorption (E, < E,;) of

. . . E.~E
electromagnetic radiation with an energy |E, — E,/| or frequency v = |”h—’|
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Fig. 1.2 Schematic diagram
showing the electron orbit, the
attractive coulombic force
between the positively
charged nucleus and the
orbiting negatively charged
electron, and the velocity of
the electron which is always
tangential to its circular orbit

Electron (—q)

With Sommerfeld, Bohr implemented these postulates into a simple theory.
Assumption (1) of stable orbits meant that the values of angular momentum L and
thus the electron orbit radius 7 were quantized, i.e., integer multiples of a constant.
For the simple hydrogen atom with a circular electron orbit, the Bohr postulate
(1) can be expressed mathematically in the following manner:

Ln:myrn:ni, n=12,... (1.2a)
2n
where m is the mass of the electron, v is the linear electron velocity, and n is an
integer expressing the quantization and used to index the electron orbits. Since the
orbit is circular, the electron experiences a centripetal acceleration v/r,. The cou-
lombic force between the electron and nucleus provides this acceleration, as
illustrated in Fig. 1.2.
Therefore, according to Newton’s second law, equating Coulomb force with the
mass times the centripetal acceleration, we can write:

q2

2
4meor:

7711/2

= (1.2b)

'n

= ‘ Fcoulombic

where &y (¢p = 8.85418 x 107" F-m™!) is the permittivity of free space and
g (g = 1.60218 x 107" C) is the elementary charge.

Combining Egs. (1.2a and 1.2b), one obtains the discrete radius of an electron
orbit:

212
rnzeonhz (1.3)

mq

The total electron energy E,, in the various orbits is the sum of the kinetic and
(coulombic) potential energies of the electron in the particular orbit:

_ l qZ B q2 _ _l q2 (1 4)
" 2dgegr, Armeyry 8 weory, '
With Eq. (1.3) we finally have:
—mgq* 13.6
E, = ma in units of electron — volts (eV) (1.5)

8 (eon h)* n’
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This theory thus provided an explanation for each series of spectroscopic lines in
the emission spectrum from atomic hydrogen as shown in Fig. 1.1. An electron has
the lowest (i.e., most negative) energy when it is in the orbit n = 1. The radius of this
orbit can be calculated using Eq. (1.3) and is ap = 0.52917 A.If an electron is excited
to an orbit with higher energy (n > 2) and returns to the ground state (n = 1),

electromagnetic radiation with the frequency ¢ x Ry Kll,) — (n—}z)} is emitted, where

c is the velocity of light in vacuum and Ry the Rydberg constant. In this case, the
Lyman series of spectroscopic lines in Fig. 1.1 is observed. The other series arise
when the electron drops from higher levels to the levels with n = 2 (Balmer series)
and n = 3 (Paschen series), as shown in Fig. 1.1. Therefore, the Bohr-Sommerfeld
theory could accurately interpret the observed, discrete absorption/emission
frequencies in the hydrogen atom. Despite its success for the hydrogen atom, this
theory still had to be improved for a number of reasons. One major reason was that it
could not successfully interpret the spectroscopic data for atoms more complex than
hydrogen. However, the results of Bohr’s model can be extended to other structures
similar to the hydrogen atom, called hydrogenoid systems. For example, the energy
levels of several ionized atoms that have only a single electron (e.g., He™ or Li*™) can
be easily predicted by substituting the nuclear charge g of Bohr’s model with Zg
where Z is the atomic number.

The simple picture developed by Niels Bohr for electrons in atoms was among the
first attempts to explain experimental data with assumptions based on the discrete
(or quantum) nature of the electromagnetic field.

A typical example of the interaction between an electromagnetic field and matter
is a blackbody, which is an ideal radiator of electromagnetic radiation. Using
classical arguments, Rayleigh and Jeans tried to explain the observed blackbody
spectral irradiance, which is the power radiated per unit area per unit wavelength,
shown in Fig. 1.3. However, as can be seen in the figure, their theoretical predictions
could only fit the data at longer wavelengths. In addition, their results also indicated
that the total irradiated energy (integral of the irradiance over all the possible
wavelengths) should be infinite, a fact that was in clear contradiction with experi-
ment. In 1901, Max Planck provided a revolutionary explanation based on the
hypothesis that the interaction between atoms and the electromagnetic field could
only occur in discrete packets of energy, thus showing that the classical view that
always allows a continuum of energies was incorrect. Based on these ideas, a more
sophisticated and self-consistent theory was created in 1920 and is now called
quantum mechanics (see Chap. 4 for more details).

1.3 Atomic Orbitals

Bohr’s model solved the problem of the energy levels in the hydrogen atom but had
several drawbacks: it could neither explain some of the other properties of hydrogen
atoms nor correctly predict the energy levels of more complex atoms. In addition, a
few years later, new experiments pointed out that particles could behave as waves,
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Fig. 1.3 Spectral irradiance of a blackbody at different temperatures. When the temperature is at or
below room temperature, the radiation is mostly in the infrared spectral region, undetectable by the
human eye. When the temperature is raised, the emission power increases and its peak shifts toward
shorter wavelengths. One of the more successful interpretations, yet inaccurate because it was based
on classical mechanics, was conducted by Rayleigh and Jeans but could only fit the experimental
data at longer wavelengths

Fig. 1.4 (a) The precise spherical orbit of an electron in the first Bohr orbit, for which the radius is
ap = 0.52917 A, as calculated by Bohr’s model. (b) The electron probability density pattern for the
comparable atomic orbital using a quantum mechanical model. The darker areas indicate a higher
probability of finding the electron at that location. The center cutout shows the interior of the orbital.
The outer sphere delineates the region where the electron exists 90% of the time

and therefore their position could not be determined exactly. In Bohr’s model, the
radius of the first Bohr orbit in the hydrogen atom was calculated to be exactly
ap=0.52917 A (Angstrom, abbreviated as A, is equal to 10710 m). This distance is a
constant called the Bohr radius and is shown in Fig. 1.4a as a spherical surface with
radius a,,.
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Fig. 1.5 The electron radial
probability density function P
(rlay), which describes the
probability of finding an +
electron in a spherical surface
at a distance r from the 4
nucleus in the hydrogen atom
(for n = 1). This probability +
has a maximum value when
the electron is at a distance +
equal to the Bohr radius:
r = agp

P(r/ap)

F'/Cl()

A new approach was clearly needed in order to describe matter on the atomic
scale. This new approach was elaborated during the next decade and is now called
quantum mechanics. In quantum mechanics an electron cannot be visualized as a
point particle orbiting with a definite radius, but rather as a delocalized cloud with
inhomogeneous probability density around a nucleus as illustrated in Fig. 1.4b. The
probability density gives the probability of finding the electron at a particular point in
space. In this picture, the Bohr radius can be interpreted as the radius a, of the
spherical surface where the maximum in the electron probability distribution occurs
or, in other words, the spherical orbit where the electron is most likely to be found.
This can be further illustrated by Fig. 1.5 where the electron probability density
function P(r), which is the probability to find an electron at a distance r from the
nuclei, is plotted as a function of r (for the lowest energy state of hydrogen atom
n = 1). This function reaches its maximum at the value of Bohr’s first orbit a,.

We saw earlier that there were several stable orbits for an electron in the hydrogen
atom which are distinguished by the energy given in Eq. (1.5). The orbit or energy is
not enough to characterize the properties of an electron in an atom. The spatial shape
and direction of the orbit are also important, as it is not always spherical, and so the
term “orbital” is employed. Each orbital is assigned a unique set of quantum
numbers, which completely specifies the orbital’s properties. The orbital designation
and its corresponding set of three quantum numbers n, I, and m; are listed in
Table 1.1 along with the electron spin quantum number m.

The principal quantum number n may take integral values from 1 to oo, although
values larger than 7 are spectroscopically and chemically unimportant. It is the value
of this quantum number n that determines the size and energy of the principal
orbitals. Orbitals with the same n are often called “shells.”

For a given value of n, the angular momentum quantum number / may take
integer values within [0, 1, 2, 3, ..., (n—1)]. It is this quantum number that
determines the shape of the orbital. A letter designation is used for each orbital
shape: s for (I = 0), p for (I = 1), d for (I = 2), f for (I = 3), etc. followed
alphabetically by the letter designations g, &, and so on.
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Table 1.1 Quantum Orbital

b d - n l m my
numbers an atpmlc s | 0 0 T
orbital designations for
electrons in the four 2s 2 0 0 — 42
lowest values of 7. 2p 2 1 -1,0, +1 Vs, +Y5
When 7 increases, the 3s 3 0 0 Y, +%2
scheme cqntinues to 3p 3 1 -1,0, +1 VN
dev'elop with the same 3d 3 > 22.21.0. 41, 42 T+
basic rules

45 4 0 0 2, +Y2
4p 4 1 —1,0, +1 2, +Y2
4d 4 2 -2, —1,0, +1, +2 o, +%
af 4 3 —3,-2,—1,0, +1, +2, +3 —h, +%

Finally, for a given orbital shape (i.e., a given value of /), the magnetic quantum
number m; may take integral values from —/ to +/. This quantum number governs the
orientation of the orbital. Once an electron is placed into one specific orbital, its
values for the three quantum numbers n, [, and m; are known.

A fourth quantum number is needed to uniquely identify an electron in an orbital,
the spin quantum number. The spin quantum number is independent of the orbital
quantum numbers and can only have two opposite values: m; = :I:% (in units of %).
Electrons that differ only in their spin value can only be distinguished in the presence
of an external magnetic field.

1.4  Structures of Atoms with Many Electrons

In multi-electron atoms, the energy of an electron depends on the orbital principal
quantum number 7 and the orbital momentum quantum number /, i.e., whether the
electron is in an s, p, d, or f'state. The different m; quantum numbers for a fixed set of
n and [ are degenerate (they have the same energy). The electronic configurations of
such atoms are built up from the ground state energy, filling the lowest energy
orbitals first. Then, the filling of the orbitals occurs in a way such that no two
electrons may have the same set of quantum numbers. This rule governing electron
quantum numbers is called the Pauli exclusion principle. If two electrons occupy the
same orbital, they must have opposite spins: m; = +' for one electron and m, = —'
for the other electron. Because the spin quantum number m, can take only these two
values, an orbital with given (n, [, m) can be occupied by at most two electrons.

One more rule, called Hund’s rule, governs the electron configuration in multi-
electron atoms: for a given principal quantum number 7, the lowest energy electron
configuration has the greatest possible sum of spin values and greatest sum of orbital
momentum values.

Example

Q Hund’s rule says that the electrons occupy orbitals in such a way that, first, the
total spin number (3 m;) is maximized and then the total orbital momentum is
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maximized (3 /). Determine the electronic configuration, including the spin, of
the carbon atom, which has six electrons in its ground state.

A Carbon has six electrons and has the electronic configuration 1s*25*2p*. The
last two electrons in the p shell can have spins +% or —/4. To maximize the total
spin number, both electrons must have their spin up, so that > m, = 1, as shown
below.

00 00013 00 000111

1s? 252 2p? 1s>  2s? 2p?

Incorrect Correct

Both the Pauli exclusion principle and Hund’s rule govern the electron
configurations of atoms in the periodic table in their unexcited state, which is also
called the ground state. Other electronic configurations are possible when the atom is
in an excited state as a result of an external force such as an electric field.

Examples of the ground state electron configurations in a number of elements are
shown below. The sequence for Z = 1 to Z = 18 is built in a straightforward and
logical manner, by filling the allowed s, p, d... orbitals successively (i.e., in this
order). For Z = 19, the first deviation to this procedure occurs: the 4s orbitals are
filled with electrons before the 3d orbitals. Elements in the periodic table with
partially filled 3d orbitals are usually transition metals and the electrons in these
3d orbitals contribute to the magnetic properties of these elements. For example, the
electronic configuration of the Ga element can be read as follows: two s-electrons in
orbit 1, two s-electrons in orbit 2, six p-electrons in orbit 2, two s-electrons in orbit
3, six p-electrons in orbit 3, two s-electrons in orbit 4, ten d-electrons in orbit 3, and
one p-electron in orbit 4.

Z=3Li 1s%2s'
Z=4Be 1s%25°
Z=5B 1s25°2p'
Z=6C 1s%25°2p*
Z=1N 15°2s%2p°
Z=280 Is2s°2p*
Z=9F 1s%25°2p°
Z=10Ne 1s*25%2p°

Z=31Ga 1s*25%2p°3s*3p®4s?3d'%4p’
Example

Q Determine the electronic configuration for copper (element Cu, atomic number
Z = 29 in the ground state).

A There are 29 electrons in copper in its ground state. It has an inner Ar shell,
which has 18 electrons: [Ar] = 1522s22p63s23p6. The remaining 11 electrons
must be distributed inside the 3d and 4s orbitals. Suppose that the two
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possible configurations are [Ar]3alg4s2 and [Ar]3d104s1. According to Hund’s
rule, the lowest energy configuration, corresponding to the ground state, is
such that it presents the greatest possible spin value and greatest orbital
momentum. The two configurations above have the same spin but the second
one has greater orbital momentum. Since the orbital quantum number for the
s orbital is 0 and for d is 2, we can say that Cu exhibits the second electronic
configuration:

[Ar]3d'04s" or 15°25*2p°®35*3p°3d'4s" which is illustrated below:

2oCu [He] [ IE] (1[I [t [t [ 1 [t 0[]
1?2 2s2  2p° 32 3pS 3410 4s!

Quantum mechanics is able to predict the energy levels of the hydrogen atom,
but the calculations become too complex for atoms with two or more electrons.
In multi-electron atoms, the electric field experienced by the outer shell electrons
does not correspond to the electric field from the entire positive nuclear charge
because other electrons in inner shells screen this electric field from the nucleus.
This is why outer shell electrons do not experience a full nuclear charge
Z (the atomic number), but rather an effective charge Z* which is lower than Z.
Values of the effective nuclear charge Z* for the first ten elements are listed in
Table 1.2. Therefore, the energy levels of these outer shell electrons can be
estimated using the results from the hydrogen atom and substituting the full
nuclear charge Zg with Z*q.

Let us consider an example of electronic configuration in the multi-electron atom
of Si. As shown in Fig. 1.6, 10 of the 14 Si-atom electrons (2 in the 1s orbital, 2 in the
2s orbital, and 6 in the 2p orbital) occupy very low energy levels and are tightly
bound to the nucleus of the atom. The binding is so strong that these ten electrons
remain essentially unperturbed during most chemical reactions or atom-atom

Table 1.2 The full nuclear Element 7 7

charge Z and effective

nuc]gar charge Z" for the H ! 1.00

first ten elements He 2 1.65
Li 3 1.30
Be 4 1.95
B 5 2.60
C 6 3.25
N 7 3.90
(@) 8 4.55
F 9 5.20
Ne 10 5.85
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(n=3,1=1)
p orbital
6 allowed levels

(n=2,1=0)
s orbital
2 electrons

(n=2,1=1)

! /
6plorb1ta1 (n=1, 1=0) (n=3,1=0)
electrons s orbital s orbital
2 electrons 2 allowed levels

Fig. 1.6 Electron configuration for electrons in a Si atom. The ten electrons in the core orbitals, 1s
(m=1),2s(n=2,/=0),and 2p (n = 2, [ = 1) are tightly bound to the nucleus. The remaining four
electrons in the 3s (n = 3, / = 0) and 3p (n = 3, [ = 1) orbitals are weakly bound

interactions. The combination of the ten-electron-plus-nucleus is often being referred
to as the “core” of the atom. On the other hand, the remaining four Si-atom electrons
are rather weakly bound and are called the valence electrons because of their strong
participation in chemical reactions. Valence electrons are those in the outermost
occupied atomic orbital. As emphasized in Fig. 1.6, the four valence electrons
occupy four of the eight allowed states belonging to the 3s and 3p orbitals.

The electronic configuration in the 32-electron Ge-atom (germanium being the
next elemental semiconductor in column IV of the periodic table) is essentially
identical to the Si-atom configuration except that the Ge-core contains 28 electrons.
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1.5 Bonds in Solids
1.5.1 General Principles

When two atoms are brought very close together, the valence electrons interact with
each other and with the neighbor’s positively charged nucleus. As a result, a bond
between the two atoms forms, producing, for example, a molecule. The formation of
a stable bond means that the energy of the system of two atoms kept together must be
less than that of the system of two atoms kept apart, so that the formation of the pair
or the molecule is energetically favorable. Let us view the formation of a bond in
more detail.

As the two atoms approach each other, they are under attractive and repulsive
forces from each other as a result of mutual electrostatic interactions. At most
distances, the attractive force dominates over the repulsive force. However, when
the atoms are so close that the individual electron shells overlap, there is very strong
proton-to-proton shell repulsion, called core repulsion, that dominates. Figure 1.7
shows the interatomic interaction energy as a function of the distance between atoms
r. The system has zero energy when the atoms are infinitely far apart. A negative
value corresponds to an attractive interaction, while a positive value stands for a
repulsive one. The resulting interaction is the sum of the two and has a minimum at
an equilibrium distance, which is reached when the attractive force balances the
repulsive force. This equilibrium distance is called the equilibrium separation and is

Ulr) &

Net potential . .
repulsive potential

0

Cohesive energy I

Fo

attractive potential

Fig. 1.7 Potential energy versus interatomic separation r. The net potential is the sum of repulsive
and attractive components. The minimum of the net potential corresponds to the equilibrium
distance ry between the two atoms
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effectively the bond length. The energy required to separate the two atoms represents
the cohesive energy or bond formation energy or simply bond energy (also shown in
Fig. 1.7).

Similar arguments also apply to bonding between many more atoms, such as the
billions of atoms found in a typical macroscopic solid. Even in the presence of many
interacting atoms in a solid, we can still identify a general potential energy curve
U(r) per atom similar to the one shown in Fig. 1.7. Although the actual details will
change from material to material, the general concepts of bond energy U, per atom
and equilibrium interatomic separation will still be valid. These characteristics
determine many properties of solids such as the thermal expansion coefficient and
elastic modulus.

Example

Q For a face-centered cubic lattice, such as in an inert gas turned solid at low
temperature, the potential energy can be expressed as:

U=N[1213(5)" - 1445(2)°]
where r is the distance between nearest neighbors and o is a constant of the
crystal. Determine the lattice constant a of the lattice in terms of o.

A The equilibrium distance r is given by the minimum of the potential energy,
which can be calculated by taking the derivative of the function U with respect
to r and setting it equal to zero:

w_ [—145.56‘;%2 + 86.7‘;—3} ~0
which yields r = 1.09¢. Since we are considering a face-centered cubic lattice, the
nearest neighbor distance is such that r = ga. Therefore, the lattice constant is

a = 1.54c¢.

1.5.2 lonic Bonds

When one atom completely loses a valence electron so that the outer shell of a
neighboring atom becomes completely filled, a bond is formed which is called ionic
bond. The coulombic attraction between the now ionized atoms causes the ionic
bonding. NaCl salt is a classic (and familiar) example of a solid in which the atoms
are held together by ionic bonding. Ionic bonding is frequently found in materials
that normally have a metal and a nonmetal as the constituent elements. For example,
Fig. 1.8 illustrates the NaCl structure with valence electrons shifted from Na atoms
to Cl atoms forming negative C1~ ions and positive Na* ions. The physical structure
of the NaCl crystal is shown in Fig. 1.9.

Ionic bonds generally have bond energies on the order of a few eV. The energy
required to take solid NaCl apart into individual Na and Cl atoms is the cohesive
energy, which is 3.15 eV per atom. The attractive part of Fig. 1.7 can be estimated
from the sum of the coulombic potential energies between the ions (see Problem 11).
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Fig. 1.8 Schematic
illustration of the formation of

an ionic bond in NaCl,
showing the electron transfer \M
between the two elements and

their final electronic
configurations Na Cl

Nat Ccrr

Fig. 1.9 (a) A schematic illustration of a cross-section from solid NaCl. Solid NaCl is made from
C1™ and Na" ions arranged alternatively, so that the oppositely charged ions are closest to each other
and attract each other. There are also repulsive forces between the like-ions. In equilibrium, the net
force acting on any ion is zero. (b) 3D illustration of solid NaCl

Example

Q Calculate the total coulombic potential energy of a Cs* ion in a CsCl crystal by
only considering the nearest neighbors of Cs™.

A In the cubic unit cell shown in Fig. 1.9, one can see that one Cs* ion (at the
center of the cube) has eight nearest C1™ neighbors (at the corners of the cube).
Since the lattice constant for CsClisa =4.11 A, the distance between a Cs* and

one of its C1™ neighbors is r,,,, = @ a=3.56 A. The coulombic potential energy
is thus E = —8-L— = —32.36 eV.

Aegtu,
Many other solids consisting of metal-nonmetal elements also have ionic bonds.
They are called ionic crystals and, by virtue of their ionic bonding characteristics,
share many similar physical properties. For example, LiF, MgO (magnesia), CsCl,
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and ZnS are all ionic crystals; they are strong, brittle materials with high melting
temperatures compared to metals. Most are soluble in polar liquids such as water.
Since all the electrons are within the rigidly positioned ions, there are no free
electrons to move around in contrast to metals. Therefore, ionic solids are typically
electrical insulators. Compared to metals and covalently bonded solids, ionically
bonded solids also have poor thermal conductivity.

1.5.3 Covalent Bonds

Two atoms can form a bond with each other by sharing some or all of their valence
electrons and thereby reducing the overall energy. This is in contrast with an ionic
bond because the electrons are shared rather than completely transferred. This
concept is purely quantum mechanical and has no simple classical analogue. Never-
theless, it still results in the same basic principles as those shown in Fig. 1.7, i.e.,
there is a minimum in the total potential energy at the equilibrium position r = r.

Covalent bonds are very strong in solids. Figure 1.10 shows the formation of a
covalent bond between atoms in crystalline Si, which has the diamond structure with
eight atoms per cubic unit cell. Each Si shares its four valence electrons with its
neighbors as shown in Fig. 1.10. There is an electron cloud in the region between
atoms equivalent to two electrons with opposite spins.

In the structure of diamond, a C atom also shares electrons with other C atoms.
This leads to a three-dimensional network of a covalently bonded structure as shown
in Fig. 1.11. The coordination number (CN) is the number of nearest neighbors for a
given atom in the solid. As it is seen in Fig. 1.11, the coordination number for a
carbon atom in the diamond crystal structure is four, as discussed in Chap. 2.

In the tetrahedral systems such as C, Si, or Ge, for example, the covalent bonds
undergo a very interesting process called hybridization. What happens is that the
atom first promotes one of outer s-electrons (e.g., 2s shell in C and 3s shell in Si) into
the doubly occupied p-shell. This costs energy, but this energy is more than

es e ey
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Fig. 1.10 Schematic of covalent bonds in Si. Each Si atom contributes one of its four outer shell
electrons with each neighboring Si atom. This creates a pair of shared electrons between two Si
atoms, which constitutes the covalent bond. Because the two atoms are identical, the electrons have
the highest probability of being located at equal distances between the two atoms, as illustrated here
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Fig. 1.11 The diamond
crystal with covalent bonds.
The diamond crystal is most
often represented using a
cubic unit cell, as shown here.
Each atom in the structure is
covalently bonded to four
neighboring atoms

recovered because now the system can use the 2p,, 2p,, 2p, orbitals in C, for
example, to combine with the one left over in “s” to form four directed bonds:

1
5(2s +2p,+2p, +2p,)
1
E(Zs +2p, — Zpy — 2pz)

1
5(25 —2p.+2p, — 2pz)

1
E(Es —-2p, — Zpy + ZpZ)

pointing toward the four other atoms, where the same process has taken place, each
atom providing a bond partner which is pointing in the opposite direction and giving
maximum overlap.

Due to the strong Coulomb attraction between the shared electrons and the
positive nuclei, the covalent bond energy is the strongest of all bond types, leading
to very high melting temperatures and very hard solids: diamond is one of the hardest
known materials. Covalently bonded solids are also insoluble in nearly all solvents.
The directional nature and strength of the covalent bond also makes these materials
nonductile (or nonmalleable). Under a strong force, they exhibit brittle fracture.

1.5.4 Mixed Bonds

In many solids, the bonding between atoms is generally not just of one certain type
but rather is a mixture of bond types. We know that bonding in silicon is totally
covalent, because the shared electrons in the bonds are equally attracted by the
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Fig. 1.12 Polar bonds in a I[II-V intermetallic compound. Similar to the case of Si in Fig. 1.10, a
covalent bond is formed by the sharing of an electron from a Ga atom and one from a neighboring
As atom. However, because a Ga atom has only three electrons in its outer shell, while an As atom
has five, one of the four covalent bonds is formed by the As atom contributing two electrons, while
the Ga atom contributes none. In addition, because the atoms involved are not the same, the
electrons in the bonds are more attracted toward the atom with largest nucleus, as illustrated here

neighboring positive ion cores and are therefore equally shared. However, when
there is a covalent-type bond between two different atoms, the electrons are
unequally shared because the two neighboring ion cores are different and hence
have different electron-attracting abilities. The bond is no longer purely covalent but
has some ionic character, because the shared electrons are more shifted toward one
of the atoms. In this case a covalent bond has an ionic component and is generally
called a polar bond. Many technologically important semiconductor materials, such
as III-V compounds (e.g., GaAs, InSb, and so on), have polar covalent bonds. In
GaAs, for example, the electrons in a covalent bond are closer to (i.e., more probably
found near) the As ion core than the Ga ion core. This example is shown in Fig. 1.12.

In ceramic materials, the type of bonding may be covalent, ionic, or a mixture of
the two. For example, silicon nitride (Si3N4), magnesia (MgO), and alumina (Al,O3)
are all ceramics, but they have different types of bonding: Siz;N,4 has covalent, MgO
has ionic, and Al,O5; has a mixture of ionic and covalent bondings. All three are
brittle, have high melting temperatures, and are electrical insulators.

1.5.5 Metallic Bonds

Atoms in a metal have only a few valence electrons, which can be readily removed
from their shells and become collectively shared by all the resultant ions. The
valence electrons therefore become delocalized and form an electron gas, permeating
the space between the ions, as depicted in Fig. 1.13. The attraction between the
negative charge of this electron gas and the metal ions forms the bonding in a metal.
However, the presence of this electron cloud also adds a repulsive force to the
bonding. Nevertheless, overall, Fig. 1.7 is still valid except that the cohesive energy
is now lower in absolute value compared to ionic and covalent bonds, i.e., it is easier
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electron
gas

positive metal
ion cores

Fig. 1.13 Metallic bonding resulting from the attraction between the electron gas and the positive
metal ions. The electrons are delocalized inside the volume between the atoms in the crystal

in many cases to “pull apart” metal regions, which explains why metals are usually
malleable.

This metallic bond is nondirectional (isotropic). Consequently, metal ions try to
get as close as possible, which leads to close-packed crystal structures with high
coordination numbers, compared to covalently bonded solids. “Free” valence
electrons in the electron gas can respond readily to an applied electric field and
drift along the force of the field, which is the reason for the high electrical conduc-
tivity of metals. Furthermore, if there is a temperature gradient along a metal bar, the
free electrons can also contribute to heat transfer from the hot to the cold regions.
Metals therefore also have a good thermal conductivity.

1.5.6 Secondary Bonds

Since the atoms of inert elements (column VIII in the periodic table) have full shells
and therefore cannot accept any extra electrons nor share any electrons, one might
think that no bonding is possible between them. However, a solid form of argon does
exist at temperatures below —189 °C, which means that there must be some type of
bonding mechanism between the Ar atoms. However, the bond energy cannot be
high since the melting temperature is so low.

A particular type of weak attraction that exists between neutral atoms and
molecules involves the so-called dipolar and the van der Waals forces, which are
the result of the electrostatic interaction between permanent or temporary electric
dipoles in an atom or molecule. An electric dipole occurs whenever there is a
separation between a negative and a positive charge of equal magnitude Q, as
shown in Fig. 1.14a. A dipole moment is defined as a vector ;: Q x, where x is
a distance vector from the negative to the positive charge.

One might wonder how a neutral atom can have an electric dipole. We know that
electrons are constantly moving in orbitals around the nucleus. As a result of this
motion, the distribution of negative charges is never exactly centered on the nucleus,
thus yielding a tiny, transient electric dipole. A dipole moment can also be a
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Fig. 1.14 Electric dipole moment and its properties. (a) A dipole is formed when two electrical
charges with opposite signs and equal magnitude are separated by a distance. This creates a dipole
moment. (b, ¢) A dipole can rotate and be translated in the presence of an electric field. (d) A dipole
creates an electric field of its own, as a result of its two constituting electrical charges. (e) Dipoles
can interact with each other because one will feel the electric field produced by the other

permanent feature of a molecular structure or induced by an external electric field. In
the latter case, the atom or molecule in which a dipole moment appears is said to be
polarized by the external electric field.

When an electric dipole is placed in an external electric field E it will experience

both a torque 7 and a force F' (unless the external electric field is uniform in space) as
a result of the electrostatic forces exerted on each charge by the electric field, which
is depicted in Fig. 1.14b, c. In a uniform field, the torque = will simply try to rotate
the dipole to line up with the field, because the charges +Q and —Q experience similar
magnitude forces in opposite directions. In a nonuniform field, the net force



20 1 Electronic Structure of Atoms

F experienced by the dipole tries to move the dipole toward stronger field regions.
This force will depend on both the orientation of the dipole and the gradient of the
electric field. -

Moreover, a dipole moment creates an electric field E/ (7) of its own around it as
shown in Fig. 1.14d, just as a single charge does. Therefore, a dipole can interact
with another dipole as shown in Fig. 1.14e. This interaction is also at the origin of the
van der Waals force and the van der Waals bond. The van der Waals bond is the
result of the attraction caused by the instantaneous dipole of one atom inducing a
dipole in another atom. It occurs even when the atoms have no permanent (time
averaged) dipole moment. This bond is very weak and its magnitude drops rapidly
with distance R, namely, as 1/R°. Figure 1.7 is nevertheless still valid but with a
much smaller cohesive energy. The bond energy of this type is at least an order of
magnitude lower than that of a typical ionic, covalent, and metallic bonding. This is
why inert elements such as Ne and Ar solidify at temperatures below 25 K
(—248 °C) and 84 K (—189 °C), respectively.

In some solids, a van der Waals force may dominate in one direction, while an
ionic and/or covalent bond dominates in another. Several solids may therefore have
dominant cleavage planes perpendicular to the van der Waals force directions.
Moreover, many solids that we say are mostly ionic or covalent may still have a
very small percentage of van der Waals force present too. Graphite is a typical
example. It is made up of stacks of sheets of carbon. In one sheet the carbon atoms
are covalently bound. However, the sheets are held together only by van der Waals
forces, and as a result the sheets slide easily over each other making graphite easily
cleavable and very soft, properties put to good use in pencil lead.

There is a special class of bond called the hydrogen bond, in liquids and solids
where the attraction between atoms or molecules appears through a shared proton.
Figure 1.15 shows the hydrogen bond in the H,O molecule. Such a molecule has a
permanent dipole moment. Each proton in a molecule can form a bond with the
oxygen in two other molecules. This dipole-dipole interaction keeps water molecules
together in liquid water or solid ice.

The greater the energy of the bond is, the higher the melting temperature of the
solid is. Similarly, stronger bonds lead to greater elastic moduli and smaller expan-
sion coefficients.

1.6  Atomic Property Trends in the Periodic Table
1.6.1 The Periodic Table

As its name suggests, the periodic table of elements is organized based on the
periodicity of the electronic structure in atoms. In the periodic table, all the
elements in the same row make up a period (in this discussion “across a period”
will mean from left to right), and all the elements in a column are a group.
Elements in a group have the same valence shell configuration. The part of the
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Fig. 1.15 The origin of hydrogen bonding between water molecules. A H,O molecule has a net
permanent dipole moment as a result of its lack of central symmetry. The H,O molecules can
therefore interact with one another. Attractions between the various dipole moments in water give
rise to hydrogen bonding
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Fig. 1.16 Part of the periodic table with divisions indicating valence shells and a summary of
atomic property trends

periodic table shown in Fig. 1.16 can be divided into three sections that indicate
which orbitals (s, p, or d) are the valence shell. The f-orbital valence shell
elements are omitted for simplicity.

The electron configuration of an atom (especially that of its valence shell) is a
primary determinant of the atom’s properties. As a result, the variation of atomic
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properties across the table should reflect the “structure” of the periodic table. This
can be seen in many of the basic atomic properties. The discussion here will focus on
atomic and ionic radii, ionization energy, electron affinity, and electronegativity. The
variation trends of these properties across a period (from left to right) and down a
group are very good examples of the role of the interatomic electrical forces. The
properties discussed here are determined by the interplay between nuclear attraction
of electrons, electron-electron repulsions, and nuclear-charge screening.

1.6.2 Atomic and lonic Radii

Since electrons in an atom are delocalized in the orbitals, not only does the orbital
not have a well-defined boundary, but the whole atom also does not have a well-
defined size. Typically, the atomic radius (a spherical shape is generally assumed) is
instead defined by half the distance between the atoms in a chemical compound. This
definition is oversimplified since different atoms form different types of bonds, but
regardless, trends can still be observed.

The atomic radius decreases going across a “period” and increases going down a
group. Going across a period, protons and electrons are being incrementally added.
The dominant force originates from the increased nuclear charge attracting the
electron clouds more strongly. Going down a group, the atomic radius increases
because electrons are occupying larger orbitals corresponding to higher and higher
principal quantum numbers.

Another important size is that of an element’s ion compared to its neutral state. A
positively ionized atom has lost an electron from the outermost (largest) shell, which
reduces its size. Also, the loss of an electron reduces the electron-electron repulsions
in the orbitals that would otherwise cause them to spread out over a larger space. A
negative ion is larger than the neutral ion because the additional electron increases
electron-electron repulsions. The change in size for ions can be very large. For
example, the radius of Li changes from 1.52 A to 0.76 A when it loses an electron.

1.6.3 lonization Energy

Tonization energy is defined as the energy required to remove an electron from an
atom or ion, creating a more positive particle. In the ionization process, the highest
energy, or outermost, electron is removed. The energy required to remove an
electron from an atom in its ground state is called the first ionization energy. The
energy required to remove a second electron is called the second ionization energy
and so on. As the degree of ionization increases, so does the energy required. This is
because it is increasingly more difficult to remove a negative charge from an
increasingly positively charged ion. As the ion becomes more positive, it attracts
any electrons around it more strongly because the effective nuclear charge they
experience is larger. From the point of view of the orbital model, taking successive
electrons from an atom requires reaching deeper into the atom to remove an electron
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from the more tightly bound lower energy levels. The ionization energy always
jumps by a large amount once all the valence electrons have been removed, and
ionization from the full shell starts.

Going across a period, the first ionization energy increases due to increased
nuclear attraction. This is like the trend for atomic radius. Going down a group,
the first ionization energy decreases because the ionized electron is coming from
orbitals with a higher principal quantum number. In these higher orbitals, the
electron spends the majority of its time further from the nucleus and so the atom is
easier to ionize.

1.6.4 Electron Affinity

The electron affinity is the potential energy change of the atom when an electron is
added to a neutral, gaseous atom to form a negative ion. So the more negative the
electron affinity, the more favorable the electron addition process is. Not all elements
form stable negative ions, in which case the electron affinity is zero or even positive
(energy is required to add an electron).

Of the properties discussed, electron affinity is the least well behaved because it
has the most exceptions. It is also difficult to measure. There is a tendency toward
increased electron affinity going left to right across a period. The overall trend across
a period occurs because of increased nuclear attraction. The exceptions occur
because, for certain electron configurations, the electron-electron repulsion force
(not to be confused with screening) is stronger than the nuclear attraction. Exceptions
also occur because those elements that have completely filled valence shells are
particularly stable. Going down a group, the electron affinity should decrease since
the electron is being added increasingly further away from the atom (i.e., less tightly
bound and therefore closer in energy to a free electron). In reality, this trend is a very
weak one as the affinities do not change significantly down most groups.

1.6.5 Electronegativity

Electronegativity is a measure of the ability of an atom in a molecule to attract shared
bonding electrons. This property is different from the other ones presented here
because it is not relevant for an isolated atom since it deals with shared electrons. A
higher electronegativity means that the atom will attract bonded electrons to it more
strongly. Electronegativity increases across a period and decreases down a group.
The difference in electronegativity between bonding atoms determines whether the
bond is covalent, ionic, or in between (polar covalent). For atoms with similar
electronegativity, neither atom attracts the shared electron more strongly. This
equal sharing is characteristic of a purely covalent bond. As the electronegativity
difference increases, the shared electron will spend more time near the more electro-
negative atom. The unequal sharing results in a polar covalent bond, which in the
extreme case of complete electron transfer becomes an ionic bond.
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1.6.6 Summary of Trends

The different trends are summarized in Fig. 1.16. Appendix A.3 contains periodic
tables that give the atomic radius, ionization energy, electron affinity, and electro-
negativity for all the elements. Understanding these trends allows one to understand
properties not only of individual elements but also solid properties like lattice
constants and semiconductor bandgaps. It is important to keep in mind that the
trends discussed here are just generalizations, and exceptions do occur throughout
the table. A more detailed discussion of these properties and the exceptions can be
found in most general chemistry texts (see Further Reading section).

1.7  Introduction to Energy Bands

So far, we have considered the concepts associated with the formation of bonds
between two atoms. Although these concepts are important issues in semiconductor
materials, they cannot explain a number of semiconductor properties. It is necessary
to have more detailed information on the energies and the motion of electrons in a
crystal, as well as understand the electron collision events against imperfections of
different kinds. To do so, we must first introduce the concept of energy bands. The
formation of energy bands will be discussed in more detail in Chap. 5 using a
quantum mechanical formalism. However, for the moment, energy bands can be
conceptually understood by considering a simple example.

The electronic configuration in an isolated Si atom is such that 10 of its
14 electrons are tightly bound to the nucleus and play no significant role in the
interaction of the Si atom with its environment, under all familiar solid-state device
conditions. By contrast, the remaining four valence electrons are rather weakly
bound and occupy four of the eight allowed energy states immediately above the
last core level. For a group of N isolated Si atoms, i.e., far enough apart so that they
are not interacting with one another, the electronic energy states of their valence
electrons are all identical.

When these N atoms are brought into close proximity, to form crystalline Si, for
example, the energy levels for the outer electrons are modified as shown in
Fig. 1.17b. Exactly half of the allowed states become depressed in energy (bonding
states) and half increase in energy (antibonding states). Moreover, this perturbation
does not leave the energy levels sharply defined but spread them into bands instead.
Two bands of allowed electronic energy states are thus formed, as shown in
Fig. 1.17b, which are separated by an energy gap, i.e., an energy region forbidden
for electrons where there is no allowed electronic energy state.

At very low temperatures, the electrons fill the low-energy band first. The band
below the bandgap in energy is called the valence band. The band above the
bandgap, which is not completely filled and in most cases completely empty, is
called the conduction band. The energy gap between the highest energy level in the
valence band and the lowest energy level in the conduction band is called the
bandgap.
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Fig. 1.17 Illustration of the formation of energy bands in a Si crystal. A system of N isolated Si
atoms has discrete allowed energy levels, all located at the energies of the 3s and 3p orbitals of an
isolated Si atom. When the atoms come into close proximity, the energy levels are modified as
shown in the figure, as a result of the interaction between the atoms. The allowed energy levels start
to form energy bands

It should be noted that the band electrons in crystalline silicon are not tied to or
associated with any one particular atom. On average, one will typically find four
valence electrons being shared between any given Si atom and its four nearest
neighbors (as in the bonding model). However, the identity of the shared electrons
changes as a function of time, with the electrons moving around from point to point
in the crystal. In other words, the allowed electronic states or bands are no longer
atomic states but are associated with the crystal as a whole, independent of the point
examined in a perfect crystal. An electron sees the same energy states wherever it is
in the crystal.

We can therefore say that, for a perfect crystal under equilibrium conditions, a
plot of the allowed electron energies versus distance along any preselected crystal-
line direction (x) is as shown in Fig. 1.17a. This plot is the basic energy band model.
E¢ introduced in Fig. 1.17a is the lowest possible conduction band energy, Ey is the
highest possible valence band energy, and E, = Ec—Ey is the bandgap. A more
detailed consideration of the bands and electron states will be given in Chap. 5.

The energy band and the bandgap concepts are at the heart of semiconductor
physics. As the name implies, a semiconductor has an electrical conductivity in
between that of a metal and an insulator. Also, in a semiconductor the electrical
conductivity can be varied by changing the structural properties of the semiconduc-
tor, changing the temperature, or applying external fields. These properties are a
direct consequence of the energy band structure. Understanding and utilizing these
properties of semiconductors is the goal of this book.
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1.8 Summary

In this chapter, the electronic structure of atoms and its implications on the bonding
and the formation of energy bands in solids have been presented. Early experiments
conducted on even the simplest atom that of hydrogen showed that classical
mechanics was insufficient and that a new theory, called wave or quantum mechan-
ics, was necessary in order to understand the observed physical phenomena.

The notion of electron density function and the Bohr radius have been introduced.
The concepts of atomic orbitals and quantum numbers to identify the allowed
discrete energy levels for electrons in an atom have been discussed. The nature of
the bonding between atoms in a solid, be it ionic, covalent, mixed, metallic, or
secondary, has been described by taking into account the interaction of electrons in
the higher energy levels in the atoms in presence. Finally, the formation of energy
bands and the concept of conduction and valence bands have been introduced
through the interaction of multiple atoms.

Problems

1. The size of an atom is approximately 10~® cm. To locate an electron within the
atom, one should use electromagnetic radiation of wavelength not longer than
10~ cm. What is the energy of the photon with such a wavelength (in eV)?

2. Using the Rydberg formula, calculate the wavelength and energy of the photons
emitted in the Lyman series for electrons originally in the orbits n = 2, 3, and
4. Express your results in cm, eV, and J. In which region of the electromagnetic
spectrum are these emissions?

3. What are the radii of the orbits and the linear velocities of the electrons when
they are in the n = 1 and n = 2 orbits of the hydrogen atom?

4. Using Bohr’s model, deduce an analytical expression for the Rydberg constant
as a function of universal constants.

5. The He" ion is a one-electron system similar to hydrogen, except that it has two
protons. Calculate the wavelength of the longest wavelength line in each of the
first three spectroscopic series (n = 1, 2, 3).

6. The human eye is more sensitive to the yellow-green part of the visible spectrum
because this is where the irradiance of the sun is maximum. Since the sun can be
considered as a blackbody with a temperature of approximately 5800 K, use
Planck’s relation for the irradiance of a blackbody 7(1) = 2’;—@8 {ﬁ} to find

ebt —1
the wavelength of the maximum of the sun irradiance. You will come out with a
very simple relation between the peak of the irradiance (Acax) and 7, which is
called Wien’s relation. In Planck’s relation above, h, ¢, A, k,, and T are,
respectively, Planck’s constant, the velocity of light in vacuum, the wavelength,
Boltzmann’s constant, and the absolute temperature. You will need the
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10.

1.

12.

13.

14.
15.

following solution for the equation x = 5(1—e™), x = 4.965. Then use Wien’s
relation to estimate Ape, for a human body.

. Since an electron on a circular orbit around a proton has a centripetal acc-

eleration, it should radiate energy according to the Larmor relation dE/dt = —2/3
(q2/47reo) (az/cj ) where g, a, &, and c are, respectively, the electron charge, its
acceleration, the vacuum permittivity, and the velocity of light in vacuum.
Therefore, in classical mechanics, it should spiral and crash on the nucleus.
How long would this decay take, supposing that the size of the initial orbit is 10
~19m and the nucleus is a point charge (i.e., radius = 0)?

. What is Hund’s rule? Show how it is used to specify in detail the electron

configurations of the elements from Li to Ne.

. What is the full electronic configuration of Li? Since the ionization energy of Li

is 5.39 eV, how much is the effective nuclear charge? What can you say about
the screening of the other electrons?

Calculate the total coulombic potential energy of a Na* in a NaCl crystal by
considering only up to the fourth nearest neighbors of Na*. The coulombic
potential energy for two ions of opposite charges separated by a distance 7 is
given by:

q2
E(r)=— .
() =~ (g>0)

The interaction energy between Na* and C1™ ions in the NaCl crystal can be
written as

403 x 1072 N 6.97 x 107

r rd

E(r) =

where the energy is given in joules per ion pair and the interionic separation r is
in meters. The numerator unit of the first term is J-m and the second term is J-m®.
Calculate the binding energy and the equilibrium separation between the Na*
and CI" ions.

Consider the van der Waals bonding in solid argon. The potential energy as a
function of interatomic separation can generally be modeled by the Lennard-Jones
6-12 potential energy curve, that is, E(r) = —-Ar ® + Br '* where A and B are
constants. Given that A = 1.037 x 10" J-m® and B = 1.616 x 10~ '3 J~m12,
calculate the bond length and bond energy (in eV) for solid argon.

Which group of the periodic table would you expect to have the largest electron
affinities?

Which atom has the higher ionization energy, zinc or gallium? Explain.
Arrange the following groups of atoms in order of increasing size (without
resorting to the tables in the appendices).

a. Li, Na, K

b. P, S, Cl

c. In, Sn, Tl

d. Sb, S, CL F
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16. Based on the electronegativities given in Fig. A.1 in Appendix A.3, what groups
of elements would you expect to form ionic compounds? Is this consistent with
reality?

17. Why do none of the noble or inert gases (elements in the rightmost group) have
electron affinity values listed in Appendix A.3 Fig. A.?
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2.1 Introduction: The Carbon Atom

Carbon is the 15th most abundant element in the Earth’s crust and the fourth most
abundant element in the universe by mass after hydrogen, helium, and oxygen. It is
present in all known life forms. In the human body, carbon is the second most
abundant element by mass (about 18.5%) after oxygen. This abundance, together
with the unique diversity of organic compounds and their unusual polymer-forming
ability at the temperatures commonly encountered on Earth, makes this element the
chemical basis of all known life [Demarchi, Falkowski, Gruber]. More precisely, the
carbon atom forms a number of components comparable with the total addition of all
the other elements of the periodic table in combination with each other. In particular,
we know more than 1 million organic components formed with only carbon and
hydrogen.

As a member of group 14 in the periodic table (see Fig. 2.1), carbon is nonmetal-
lic and tetravalent — making four electrons available to form covalent chemical
bonds. This property is primordial to describe the resulting characteristics of carbon
components and explain why it is essential to life. Indeed, carbon forms strong single
bonds to itself that are strong enough to resist most of reactions at ambient conditions
giving the carbon the possibility to form long chains of atoms, which are essential for
many compounds in the living cell such as DNA.

2.1.1 Isotopes of Carbon Atom (Fig. 2.2)

There are in total 15 known isotopes of carbon, with varying atomic mass varying
from 8 to 22 (C to 2*C), which differ only in their number of neutrons. 2C and C
are the only stable isotopes, while the others are radioactive. The most stable
radioisotope is "*C decaying with a half-life of about 5730 years while all other
isotopes of carbon have half-lives less than 20 s. In this textbook, and unless
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Fig. 2.1 The periodic table, carbon is in group 14

bey carbon-12 carbon-13 carbon-14
electron (stable) (stable) (radioactive)

@ proton @6 @6 @6

@ neutron @6 @7 @8

Fig. 2.2 The three natural isotopes of carbon. The two left sketches are '>C and '*C, the only two
stable isotopes. '*C is the most stable radioisotope

mentioned, the properties given and calculations are assumed to be done for '*C

isotope, which is the most common isotope that can be found in the nature, since

measurements by mass spectroscopy show that about 99% of all carbon atoms are in

12C isotope. Note that '2C single atom’s weight is used in order to define the unified

atomic mass unit or Dalton. More precisely, this unit is defined as one twelfth of the

mass of an unbound atom of '*C and has a value of 1.660538921 x 1027 kg.
Comparison between isotopes of carbon is given in Table 2.1.

2.1.2 Electronic Configuration

The electronic configuration of carbon is [1s%] 2s* 2p®. This means the n = 1 shell is
full with two electrons and the n = 2 shell has two electrons in the s-state (full) and
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Table 2.1 Some fundamental properties of Carbon

Z N Mass (u) Half-life (y) Decay mode Nuclear spin
2c 6 6 12 Stable 0+
3¢ 6 7 13.003355 Stable Y
Hc 6 8 14.003242 5730 p— 0+

[Audi, De Laeter, Wieser]

Atomic mass: 6

Atomic weight: '*C *: 12.0107 £ 0.0008 u (1u = 1.66053892 x 102’ kilograms)
Van der Walls radius: 170 pm

Fig. 2.3 The energy level
structure of the carbon atom.

Hund’s rule (see [Razeghi] H T T
page 55) gives a triplet ground

state: when there is space in
the shell, electron/electron
repulsion favors the triplet
state

25 2px 2Py 2P,

ENERGY

two electrons in the p-state which can accommodate up to six electrons. A reminder
of how electronic configuration is obtained can be found in (Appendix 1 — Atomic
Orbital).

The surface shell or n shell of an atom determines its reactivity. For carbon atom,
this surface shell is # = 2 and its study explains the properties of bindings of the
atom. In order to optimize bonding with other carbon atoms and chemicals, one
electron from the 2s” orbital in the surface n = 2 shell can be promoted to become a
p orbital electron, so that now we have 2s2p’ instead of 2s® 2p>. As shown in
Fig. 2.3, the 2p orbital energies are higher than the energy of 2s orbital; thus this
promotion costs energy, which has to be recouped by the bond it forms.

In a three-dimensional bond like in diamond (see Fig. 2.4), the 2s electron
combines with the three 2p orbitals (Appendix 1 and Fig. 2.4) to form four
directed bonds in a tetrahedral arrangement which can now optimally overlap
with the similarly formed wavefunction of neighboring carbons a shown in
Fig. 2.4. This bonding optimizes the overlap of negative with positive charge
and is called sp°. It lowers the energy much more than the price paid to lift the s to
p from 2s% 2p? to 2s2p°.

But this is not all; carbon can also link in a planar arrangement forming only
three sp> bonds in a plane as in graphene and leaving on p orbital standing.
Finally, the sp> can also link in a linear configuration forming only two linear
bonds with two neighboring atoms, thus leaving 2p orbital standing, and this will
be shown later.
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Fig. 2.4 The carbon tetrahedral sp> bonds and the formation of the covalent three-dimensional sp*
covalent diamond lattice; see FSSE [Razeghi] Chap. 1

Table 2.2 Binding energy and other properties of bonds involving Carbon

Bond C-C |C=C |C=C C-Si |[C-Ge |[C-Sn |C-Pb |C-N |C=N |C=N
D(kJ/mol) | 346 602 835 318 238 192 130 305 615 887
R(pm) 154 134 120 185 195 206 230 147 129 116
C-pP cC-0 |[C=0 |[C=0 |C-B |C-S C=S C-F C-Cl |C-Br C-I
264 358 799 1072 356 272 573 485 327 285 213
184 143 120 113 182 160 135 177 194 214

[Reference Cottrell, Darwent]

In the sp° tetrahedral bond as in diamond Fig. 2.4, the bond length called the
covalent radius is only 77 pm. It is 73 pm in graphene and 69 pm in a linear polymer.
The first ionization energy of carbon, i.e., the energy required to remove an electron
from carbon atom in the gas phase, is first 1086.5 kJ mol .

2.1.3 Binding Energies

This table provides useful constants concerning covalent bindings involving the
carbon atoms: the bonding energy D, which can be interpreted as the energy
necessary to break the bond, and the bonding distance between the two atoms, R
(Table 2.2).

2.2 Covalent Bonding Between Carbon Atoms

In the carbon ground state, the p-shell is doubly occupied 25°2p? and can acquire an
electron from the filled s-shell below to form covalent bonds which lowers the
energy sufficiently to pay the price for the initial uplift “s to p.” This is similar to
what happens in other materials such as Si, 3s*3p?, and Ge, 4s°4p?, except that with
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carbon, the bonding need not be tetrahedral, i.e., to four neighbors involving four sp
directional covalent bonds as in Si, for example, or diamond. The carbon bonding
can involve three covalent bonds sp” planar with one extra p orbital perpendicular, or
indeed it can be an s-p bond and linear. We will investigate the consequences of the
different bonding arrangements as we develop the chapter.

A carbon-carbon bond is a covalent bond between two carbon atoms. The most
common form is the single bond: a bond composed of two electrons, one from each
of the two atoms. The carbon-carbon single bond is a sigma bond and is said to be
formed between one hybridized orbital from each of the carbon atoms. In ethane
C,Hg, the orbitals are sp” hybridized orbitals, but single bonds formed between
carbon atoms with other hybridizations do occur (e.g., sp” to sp?). In fact, the carbon
atoms in the single bond need not be of the same hybridization. Carbon atoms can
also form double bonds in compounds called alkenes (see Fig. 2.5). Alkenes are a
class of hydrocarbons that contain only carbon and hydrogens. They are unsaturated
compounds that contain at least one carbon-to-carbon double bond. Another term
that is often used to describe alkenes is olefins or triple bonds in compounds called
alkynes.

A double bond is formed with a sp? hybridized orbital and a p orbital that isn’t
involved in the hybridization. In alkynes a triple bond is formed with a sp hybridized
orbital and two p orbitals from each atom (see Fig. 2.6). The use of the p orbitals
forms a pi bond.

Carbon is one of the few elements that can form long chains of its own atoms, a
property called catenation. This coupled with the strength of the carbon-carbon bond
gives rise to an enormous number of molecular forms, many of which are important
structural elements of life, so carbon compounds have their own field of study:
organic chemistry.

Branching is also common in C-C skeletons. Different carbon atoms can be
identified with respect to the number of carbon neighbors.

* Primary carbon atom: one carbon neighbor

* Secondary carbon atom: two carbon neighbors
o Tertiary carbon atom: three carbon neighbors

* Quaternary carbon atom: four carbon neighbors

Fig. 2.5 Alkene flat, the R R” are any side groups that attach to C with a single bond and fit into
space

CHy—C=C—CH—CH,—CH,

Fig. 2.6 4-methyl-2-hexyne molecule, example of a triple carbon bond
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Fig. 2.7 Trimethylpentane quaternary
example of the versatile way

carbon can bond to itself and

other compounds \
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It is this versatility and flexibility shown in Fig. 2.7, its ability to bond in many
different configurations, which makes carbon such a special and unique material and
essential component to life.

In the next section, we will be looking at the structure of the most important
currently known carbon allotropes. This is also the main focus of this review. The
vast field of carbon chemistry and physics in conjunction with carbon compounds
cannot be covered by this review; however when a particular point of scientific
interest arises, it will be mentioned and the reference provided. The emphasis of later
chapters as we proceed is on pure carbon allotropes. We will discover their electronic
and optical properties and investigate what makes them special.

Already now if we ask the question what is the mystery of carbon? Maybe the
answer is it is the mystery of the carbon-carbon bond, sp, and sp® and sp® bond.

2.3 Carbon Allotropes

When an element of the periodic table exists in more than one crystalline forms,
those forms are called allotropes.

There are several allotropes of carbon of which the best known are the three
crystalline structures graphite, diamond, and lonsdaleite. The physical properties of
carbon vary dramatically with the allotropic form, which is why recent researches in
materials are mainly focusing in the study of these forms. For example, diamond is
highly transparent, while graphite is opaque and black. Diamond is the hardest
naturally occurring material known, while graphite is soft enough to form a streak
on paper. Diamond has a very low electrical conductivity, while graphite is a very
good conductor. Under normal conditions, diamond, carbon nanotubes, and
graphene have the highest thermal conductivities of all known materials. High
thermal conductivity is crucial in the field of power electronics and also in the area
of big machines for computational science and the trillion dollar personal computer
and laptop industries (Fig. 2.8).

Some Allotropes of Carbon

(a) Diamond, tetrahedral bonding sp3 (discussed in Chap. 3).
(b) Graphite, two-dimensional sp® bonding, and van der Waals bonded layered
structure (van der Waals bonding is a weak bonding via mutually induced
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Fig. 2.8 Eight of the allotropes (different molecular configurations) that pure carbon can take: (a)
diamond, (b) graphite, (c) lonsdaleite, (d) C60 (buckminsterfullerene), (e) C540 (see fullerene), (f)
C70 (see fullerene), (g) amorphous carbon, (h) single-walled carbon nanotube

dipole-dipole coupling). The two-dimensional layers can be peeled off to give
grapheme. Full discussion is in Chap. 4.

(¢) Lonsdaleite (named in honor of Kathleen Lonsdale), also called hexagonal
diamond in reference to the crystal structure, is an allotrope of carbon with a
hexagonal lattice. In nature, it forms when meteorites containing graphite strike
the Earth. It is translucent, brownish-yellow, and has an index of refraction of
2.40-2.41 and a specific gravity of 3.2-3.3.

(d—f) Fullerenes, C60 ball formed by bonding 60 atoms in a sphere C540, C70 (see
Chap. 4).
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Table 2.3 A comparison of graphite, diamond, and other forms of carbon

Allotrope
Graphite
Graphene

Diamond
Lonsdaleite
Fullerene
Nanotube

Amorphous
carbon

Hybridization | Structure Existence

sp* Crystal, 2D hexagonal stacked Natural

sp2 Crystal, hexagonal stacked Natural or synthetic

(monolayer)

sp Crystal, cubic Natural

sp3 Crystal, 3D hexagonal Natural

sp2 Cluster Synthetic

sp* With single, double, or multiple walls Synthetic

sp’—sp° No crystalline structure or aggregate of | Natural

crystals

Table 2.4 Comparison of graphite and diamond

Mechanical
hardness
Lubricant
properties
Electrical
conduction

Thermal
conduction

Optical
transparency
Lattice
structure

Graphite

Graphite is one of the softest materials
known

Graphite is very good lubricant
displaying super lubricity

Graphite is a conductor of electricity

Some forms of graphite are used for
thermal insulation but some other
forms are good thermal conductors

Graphite is opaque

Graphite crystallizes in the hexagonal
system

Diamond

Synthetic nanocrystalline diamond is
the hardest material known

Diamond is the ultimate abrasive

Diamond is an excellent electrical
insulator and has the highest
breakdown electric field of any known
material

Diamond is the best known naturally
occurring thermal conductor

Diamond is highly transparent

Diamond crystallizes in the cubic
system

(g) Amorphous carbon, dangling bonds can be saturated by hydrogen, for example.
(h) Carbon nanotube, tubelike bonding of pure carbon discussed in detail in Chap. 5.

This table compares some carbon allotropes and their electronic configuration and
structural properties (Tables 2.3 and 2.4):

This table which only compares some basic properties of graphite and diamond
gives us an idea of how the structural differences of a crystal composed of the same
atom can give rise to dramatic consequences of the crystal’s properties. The exact
reasons of some of these properties remain today unknown, and one may imagine
that newer crystalline structures and those yet to be discovered can give even more
astonishing results, example being graphene, which is today a subject of intensive
research. The following chapters of this textbook will try to analyze the difference of
these structures and properties.
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Table 2.5 Numerical values of physical properties in different allotropes of carbon

Electrical
Density Molar heat capacity | Thermal conductivity | Mohs resistivity
(g.em-3) | (J.mol-1.K-1) (W.m-1.K-1) hardness | (©2.m)
Graphite | 2.267 8.517 119-165 1-2 107*
Diamond | 3.515 6.155 900-2300 10 10"-10"®

The following Table 2.5 gives some numerical values of these properties,
showing the large range of values that can be expected from allotropes of carbon.

2.4 Carbon Fullerenes
2.4.1 Buckyballs

While the possibility of a stable closed-cage molecular structure for carbon was first
suggested in 1970, the existence of fullerenes was not verified experimentally until
15 years later [Kroto et al.]. Laser ablation of a graphite target was used to create
carbon clusters. Mass spectra of the resultant vapor revealed the synthesis of
molecules in two main groups — rings consisting of 10-30 atoms and larger
molecules with predominantly 60 and 70 member atoms. Researchers soon predicted
that these high-mass molecules possessed a closed-cage configuration. The name
“fullerene” was coined after R. Buckminster Fuller, an architect renowned for his
construction of geodesic domes resembling the structure of these molecules
(Fig. 2.10). The fullerene lattice is similar to the hexagonal graphite lattice in that
it consists of a two-dimensional surface. To create large curvature in a graphene
sheet, the substitution of pentagons for hexagons is required. Geometrically, there
are multiple arrangements that form a closed structure, but Euler’s theory for
polyhedra dictates that exactly 12 faces of the cage must be pentagonal, with any
additional number of hexagonal faces. Thus, the smallest possible fullerene (C20) is
composed solely of 12 pentagons. But the curvature induced by the pentagons comes
with a price in the form of strain energy (the sp2 bonds are bent out-of-plane,
resulting in significant sp3 character). This penalty is minimized by separating the
pentagons in the lattice as much as possible. The smallest fullerene in which no two
pentagons are adjacent is C60. The structural stability of C60 makes it the most
abundant product of any fullerene growth process, typically 3—-6 times more likely
than the next most abundant product, C70.

The C60 molecules (often referred to as “buckyballs”) are composed of 12 pen-
tagonal and 20 hexagonal faces in a soccer-ball arrangement. The carbon bonds
come in two varieties: single bonds along the 60 pentagonal edges, which measure
1.46 A in length, and 30 electron-rich double bonds between adjacent hexagons,
which are 1.40 A in length. The mean molecular diameter as measured with NMR is
7.10 A, consistent with the expected geometrical diameter of 7.09 A when consider-
ing the atoms as points.
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Fig. 2.9 Diagram of the wavefunction for the #;, (I = 5) molecular orbital calculated using first-
principle molecular dynamics method. Colors denote the sign of the wavefunction from Hornbaker,
Thesis Univ. of Illinois. This is the lowest unoccupied molecular orbital in Cg. Its odd parity and
threefold degeneracy make it very similar in character to atomic p orbitals

The electronic structure of C60 can be accurately approximated by considering its
icosahedral symmetry. Each carbon atom contributes four valence electrons to the
molecular structure. The c-bonded sp2 electrons can be safely neglected as core-
level molecular states, leaving 60 radially oriented pz orbital electrons to form the
valence states. The irreducible representations of the icosahedral point group are
used to determine the appropriate molecular orbital eigenfunctions. The spherical
shape of C60 suggests an approximation of these molecular orbitals based on
spherical harmonics Y_Im. Since each angular momentum state / can accommodate
2(21 +1) electrons, the first 50 electrons completely fill all states up to / = 4, leaving
10 electrons for the 22, [ = 5 states.

Relative energy splittings within each level can be determined using a variety of
computational methods. The lowest energy [ = 5 states belong to the fivefold
degenerate hu representation. These states account for the remaining ten electrons
and are the highest occupied molecular orbitals (HOMOs) in the ground state. The
lowest unoccupied molecular orbitals 5 (Fig. 2.9).

(LUMOs) are t1u states (Fig. 2.10), which are experimentally observed to reside
~1.9 eV above the hu levels in energy [Gunnarson]. The #/u molecular orbitals have
the character of atomic p orbitals in that they are threefold degenerate and transform
into one another under rotations about the [111] axis. In contrast, the su orbitals have
transformation properties resembling atomic d orbitals.
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In bulk, C60 forms a molecular solid with a face-centered cubic crystal structure
at room temperature held together by van der Waals attraction. The nearest-neighbor
distance is 10.02 A, with an intermolecular separation (2.92 A) similar to the spacing
between layers in graphite (3.35 A). Due to the relatively weak nature of van der
Waals interactions, the constituent molecules rotate freely at room temperature. As
the temperature is lowered below 260 K, rotations begin to freeze out and the
buckyballs orient themselves relative to one another, leading to a lowering of the
crystal symmetry to that of a simple cubic structure. The electronic structure of the
solid is composed of bands derived from the molecular orbitals of the individual
buckyballs. The undoped solid is a semiconductor with a 1.5 eV bandgap between
the hu-derived valence band and the t1u-derived conduction band, which possess
fairly narrow bandwidths of only ~0.4 V. Doping of C60 solids with alkali metal,
alkali earth, or other elements can significantly change the conduction properties and
in some cases even result in the onset of superconductivity.

The “spherical” symmetry leads to a high degree of level degeneracy which can
be seen in Fig. 2.10 with a bandgap of about 1.8 eV.

2.5 Graphene and Nanotubes

Going back to Fig. 2.8 in the previous section, the next task is to obtain the
one-dimensional band structure of an armchair nanotube (NT) (see Fig. 2.11)
using the two-dimensional band structure of graphene. The latter has to be
supplemented with periodic boundary conditions. The armchair NT is obtained by
cutting out a slice from the graphene sheet parallel to the x axis. The slice has a width
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Fig. 2.12 SWNT left and MWNT (multiwalled) right; see also multiwalled carbon nanotubes
(MWCNT): production, analysis, and application by AZoNano SouthWest NanoTechnologies
(SWeNT)

w which can be expressed as the length of the so-called wrapping vector w orientated
perpendicular to the tube axis. For an armchair NT, the wrapping vector is of the
formw= N (Zli + g) in general nya; + nya, where N is an integer. Usually this is also

denoted as an (N, N) tube because the wrapping vector is equal N times a; plus
N Times a,. Due to the periodic boundary condition along the y-direction, the
wavevector component ky is quantized (Fig. 2.12).

The band structure of CNT is shown in Fig. 2.16 in the next section. Graphene is
treated in more detail in Chap. 5.
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2.6 Definition of Bonding Energy and Energy Bands

When two atoms with single orbitals such as two hydrogen atoms are brought close
together, what happens? We have already touched on this question in the last
chapter. Let us consider it again here and then develop it in a more rigorous platform
in Chap. 5.

For each of the two hydrogen atoms, the lowest energy orbital is the 1s orbital and
the potential energy corresponding decays exponentially in space so that at large
separation almost no interaction between orbital takes place. Thus, the two atoms are
symmetric and the energy level of the bonded electron is the same. As the second
atom approaches to within the decay radius (1A"), the two orbitals start overlapping
and the electrons can hop on to the other atom and can return. This redistributes the
charge and gives rise to new energy levels. If the strength of this coupling energy is
denoted by ¢,,, a simple calculation gives us the new levels as the bonding states with
energy 2E-2 t;, where Ej is the energy of the s-orbital and antibonding state with
energy 2E; + 2 t15. The two electrons will enter the lower bonding level and form a
covalent bond. This simple picture is very powerful and is normally the way
chemists look at the coupling of atoms to each other in chemical complexes. The
picture can of course be generalized to different types of bonding orbital and
different types of structures. A chemical compound will then normally have the
highest occupied level called the HOMO level and lowest unoccupied level called
the LUMO level (Fig. 2.13).

Now, if we consider more than two atoms, the effect is similar for a crystalline
structure of hydrogen atoms composed of an array of numerous atoms. A general
coupling between close atomic orbitals will create new energy levels. The more
atoms in the crystalline structure, the more orbital may interact with each other,
causing a raise in the number of energy levels. At the limit, when the number of
atoms involved in the crystalline structure is high enough, the energy is no longer
composed of discrete levels, but forms a quasi-continuum called the energy band.
The subject is treated in detail in Chap. 5 .

Fig. 2.13 Change in energy E E
spectrum from single atoms to
a solid. Each of the discrete
energy levels in two isolated
atoms split into two separate

energy levels when the atoms isolated atoms
are bound in a solid. Razeghi
FSSE [Razeghi] T
!ﬁ_
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In an infinite 3D periodic system of atoms or crystal, the energy band dispersion E
(k) due to one orbital per atom for a cubic lattice can be calculated with the tight
binding method (see Appendix 2):

E(Z) = go — 2t|(coskya + coskyb + coskc) (2.1)
. a2
E(k) =80—6|t|(1 —T>Whenk—>0 (2.2)
1 1 dE 1 2t|d?
Whereﬁ = k. ) thatW =12 (2.3)

where a is the lattice spacing, ¢ is the banding energy, k is the Bloch momentum, m*
is the x-effective mass, and ¢ is the orbital level. Basically the energy levels of the
crystal are labeled by the k-vectors, and the reason why a solution is possible in this
neat way is the periodicity. The reader should consult Chap. 5 for a more rigorous
discussion. Here the emphasis is on the atomic orbital starting point.

As we can see in Eq. (2.1), the energy E(k) forms a continuum, meaning that for
an infinite periodic system, the separation between consecutive energy levels is
infinitesimally small. Without electronic correlations, such a solid with the same
orbital on every site, with one electron per orbital, would give rise to a metal,
because an electric field will easily push a charge away from its starting point
without having to surmount a large energy barrier. This is not so for an insulator
or semiconductor. A normal size applied field would not be able to move the charge
across the energy gap or bandgap. Another important concept is the effective mass
m* defined in Eq. 2.3; it is a measure of the efficiency with which an applied field
accelerates an electron if Newton’s law were to apply [see Chap. 5 Razeghi or
standard quality textbooks in solid-state physics listed below].

Different energy shells in atoms when they couple can be thought to generate
their own energy bands. But if in a system with only one orbital per atom, we can still
have bandgaps and energy bands. In this case the bandgap of a periodic system arises
usually when there is more than one atom per unit cell.

To illustrate this we consider a linear chain constituted of two different atoms
alternatively labeled A and B with only one orbital per atom and orbital energies E
and Eg. Assuming the transfer coupling is called ¢, then a simple tight binding energy
band structure calculation gives us now two energy bands instead of one and given
by (k = k,) (Fig. 2.14).

Fig. 2.14 Linear chain of
two different atoms @
A B A B
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1/2
2E(k) = (Ex + Ep) + |(Ex — Ep)* + 82(1 + cos 2ka) (2.4)

The lower band can be identified as emanating from the lower orbital energy, say
E,, the upper from B; electron staring in A has to transfer across the higher orbital B
to reach the next equivalent site. For the higher band, the result is similar. Assuming
one electron per A orbital, and initially none on B, with the Pauli principle, this
density fills the lower band completely and leaves the upper band empty at 7= 0 K.
Now we have a semiconductor with a bandgap of 2E, = [(E4 — EB)2 + 16771

The argument is easily extended to higher dimensions, and in general, in an
infinite lattice, in order to have a bandgap, one has to have more than one atom per
unit cell which periodically repeats itself. Thus silicon and germanium have identical
atoms, but the Bravais lattice structure implies two atoms per unit cell in an FCC
lattice and this gives a semiconductor [see Chap. 5]. If the structure were a simple
cubic with one atomic orbital per cell, then there would be no bandgap.

Band structures can be evaluated in a variety of ways depending on the degree of
accuracy required. The simplest methods are using the linear combination or atomic
orbitals or tight binding method (TBM) or using the free electron representation with
atoms acting as scattering centers (see references below) NFE. In complex materials
such as transition metals or layered compounds and oxides, one has to use more
accurate methods. In so-called ab initio methods, density functional and
pseudopotential methods, the objective is to assume as little as possible about the
system yet to arrive at accurate pictures of the electronic and phononic structures.
The Schrodinger equation SE of the electron (see Chap. 4) is solved in an array of
atomic scatterers defined by the lattice structure, whereby only the outermost valence
electrons are treated, and the scattering potential of the atom is represented by an
effective core due to the non-valence shells and ions. The core is given a radius and
spherical magnitude and form often fitted to experiment. The SE is solved using a
plane wave basis of say 500 plane waves, and the electron-electron interaction is
treated as a self-consistent averaged field using the Hartree or Hartree-Fock theory. It
is now more common to solve for the electron density rather than for the
wavefunction, using the so-called density functional method DFT (Dreizler 1985).

2.7 Band Structure of Fullerenes (Buckyballs) (Fig. 2.15)

2.8 Band Structure of Carbon Nanotubes (Fig. 2.16)
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Fig. 2.15 Solid Fcc fullerene
shows the band structure of
solid undoped fullerenes on an 2.0 1
Fcc lattice. This also
corresponds to the structure of
the superconducting K;Cgy.
See Gunnarsson (1997). 1.0 1
Subbands around the fermi
energy for solid Cg in the
Fm3 structure. The bands at
about —0.5 eV are the £, 0.0 H
bands which are occupied in
solid Cg, and the bands at
about 1.5 eV are the t,,, bands
which become populated in
A, Cgo. [From Gunnarsson
(1997); Erwin and Pederson
(1993)]
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29 Background Needed for Energy Levels and Band Structure
29.1 Tight Binding Method

Razeghi M, page 169, Fundamentals of solid state engineering [5]
Peyghambarian N, Koch S and Mysyrowicz A Introduction to semiconductor optics,
page 27

2.9.2 Free Electron Method

Razeghi M, Fundamentals of solid state engineering Chapter 4, or other quality
solid-state textbooks for more information are by Ashcroft and Mermin

Ziman J (1964) An introduction to Solid State Physics, Cambridge University Press
(1964)

Madelung O (1978) Introduction to Solid state theory, Springer Berlin Heidelberg,
New York

Ziman J (1964) An introduction to Solid State Physics, Cambridge University Press
(1964)
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Fig. 2.16 Band structure in pristine CNT (a) ACNT (10,10), (b) ZNT (9,0), (¢) ZNT (10,10), (d)
DOS. Porous CNT (e) ACNT (10,10), (f) ZCNT (9,0), (g) ZCNT (10,10), (h) DOS. The energy
scales for (b, ¢) and (f, g) cases are the same. The density of states is shown in the right curves (d, h).
From electronic structure of porous nanocarbons (Artem Baskin and P Kral, Scientific Reports

1:36 https://doi.org/10.1038/srep00036)

Dreizler M (1985) Density functional theory in Physics NATO ASI series vol. 123

*A more complete description of band structure is given in Chap. 5.

2.10 Summary

In this chapter we reviewed the basic properties of carbon as an atom and looked at
the various ways carbon bonds to form chemical complexes and allotropes. This is
an ever-evolving field and the material presented is by no means complete. In the
next few chapters, we will examine each one of these allotropes in turn and investi-
gate their band structure, electronic properties, and applications. The synthesis and
preparation method of each one of these forms is a specialized subject in its own
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right, and the interested reader should refer to the numerous and detailed literature on
the subject, best done by using Google. In Sect. 2.2 we briefly introduce the reader to
the concept of bonding in periodic systems. This gives the so-called Bloch energy
band structure E(k) and is very rich in new physical concepts. The Bloch bands also
lead us to the concept of holes in the valence bands and the effective mass of the
electrons and holes. In this way, we prepare the reader to understand the material to
come later in the book, but we expect him to follow up each one of these new
concepts in detail with the specialized literature.

2.11  Conclusion: The Future

Carbon atoms exhibit enormous flexibility in the way they bond and form material
complexes. Carbon has given rise to astonishing new structures and lead to great
dazzling discoveries. One of the greatest breakthroughs came with potassium K3Cgg
electron-doped fullerenes which exhibited superconductivity up to 40 K
[Gunnarsson]. This was an amazing achievement which went above all expectations
and which gave H Kroto the Nobel Prize [Kroto] even though the complete under-
standing of the mechanism has to our knowledge not yet been reached.

Another major success was scored earlier by the work of the Santa Barbara
Group under Alan Heeger [Heeger]. They showed that polyacetylene (PA) could
be considered to be a quasi one-dimensional polymer and that the material (and
many others of this type) could be n and p doped. Su Schrieffer and Heeger
[Su et al. 1979] predicted that theoretically, undoped PA should constitute a
Peierls semiconductor. In other words a semiconductor where the energy gap
forms is a result of a collective relaxation of the backbone into an alternating
“short-long” (or long-short) carbon bond structure. Doping then causes a semicon-
ducting to metal transition which is not just purely an electronic transition, but a
structural transition as well. Here the alternating bond length changes partially
back into the “normally to be expected” (disregarding lattice relaxation) same
bond length structure. This novel and collective interplay between lattice and
electronic structure also gives rise to very exciting new types of elementary
excitations known as “polarons and solitons” [Su et al]. The work on conjugated
polymers and applications then eventually gave A Heeger the nobel Prize in the
year 2000. The most recent and perhaps one of the most promising discoveries
from the point of view of material engineering and applications is the isolation
(exfoliation) of graphene sheets from graphite. This truly amazing discovery has
made it possible to make 2D pristine monolayer “metallic” materials which have
great unprecedented structural stability and therefore technical value. It gave the
discoverers Geim and Novoselov the Nobel Prize in 2010 [Geim]. Graphene also
exists in stable suspended form and exhibits high mobility (100,000 cm?/Vs).
Graphene has given device technology a new class of field-effect transistors and
sensors. It has a zero bandgap not at k = 0 (I" point) but at the so-called Dirac
points. Here the zero gap makes linear dispersions, and if one insists on pushing
the mass concept to its extreme, we have zero effective mass particles and a square
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root magnetic field dependence of magnetic level splittings. Graphene can be made
into nanoscale ribbons which introduces lateral quantum confinement and brings
back an energy gap which can be adjusted by design. The search for new
applications using graphene and related complexes is by far not over. Many
groups, including the original discoverers, now in Manchester, are looking for
more new science and technical applications. In particular the focus is now on
effects related to interlayer electron-electron coupling. Here one is trying to make
or observe charge polarization and the drag of the polarization induced in the
neighboring layers to form new electronic polarons and bipolarons. There is also
still hope that some topology can be found which will eventually yield very high-
temperature superconductivity, higher than K3Cgq. Organic high-temperature fer-
romagnetism is still a very sought after target. One of the mysteries of the solid-
state physics of carbon is how far one can go with single particle mean field
theories. A material with the topology of graphene, for example, would seem to
really necessitate a many-body treatment of electronic structures, but apparently
this is not the case, and one-body methods work quite well. Whereas in conjugated
polymers and molecular structures, electron-phonon and lattice relaxation have
been shown to play a serious role in determining energies and structure, the same
is not true for electron-electron coupling. Though we know that Coulomb
correlations are present and non-negligible, the scope, importance, and deep
understanding of correlations are still missing in carbon-based materials. In most
current theoretical treatments, correlations can be incorporated into the redefinition
of one-body parameters. So a lot more needs to be done in order to come to
understand the full potential of “carbon” and related materials. Thus in K3Cgg
[Gunnarsson], most scientists have been more busy trying to explain away the
electron-electron on-site correlation called Hubbard U. This coupling would, for
example, act on the fullerene balls and is ~1.5 eV [Gunnarsson]. If correlations
could be proven to be instrumental in producing superconductors, as is the case for
magnetism, it would open new avenues for materials research. The research could
focus, it seems, on looking for more exotic topologies, such as nanocrystalline
assemblies quantum dots and crystals and even porous forms. Some of the new
imaginative molecular material designs, which chemists are capable of producing,
may well eventually give the sought after exciting properties such as high-
temperature superconductivity and lightweight magnetism, including both ferro-
and diamagnetism. Luminescent carbon nanodots have already been delivered
[Baker], thanks to the discovery regarding the effect of passivation. This field
still has a lot of potential since the complete mechanisms are still not understood,
and wavelength control may be possible. The search is on and is exciting. But
electronic structure is only one aspect, and carbon allotropes, because of this
unusual structural mechanical strength, are proving extremely valuable in fields
such as civil engineering, aircraft, and car manufacturing. Not all facets and
combinations of properties (e.g., solar cells, thermal and sound conductivity, and
insulation) have been investigated, the potential is enormous, and the development
of these fields is of great value to the manufacturing building and automotive and
transport industries.
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References for Conclusions
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Problems

QI. Tlustrate the various bonding configurations that carbon can adopt and give
examples of materials for each case. Where do you think organic carbon
technology can become superior to inorganic technology?

Q2. Explain how sp® and sp® hybridizations work? How does hybridization work in
Si, Ge and in III-V compounds? In an ab initio band structure calculation, the
concept of hybridization does not arise; explain the difference.

Q3. Explain how can we calculate the bonding energy between different atoms
given the atomic orbital energies of each orbitals.

Q4. What is Hund’s rule coupling?

Q5. Calculate the dispersion equation in Appendix 2 example for a 3 dimensional
crystal. This equation is used in this chapter in (2.4).
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3.1 Introduction

This chapter gives a brief introduction to crystallography, which is the science that
studies the structure and properties of the crystalline state of matter. We will first
discuss the arrangements of atoms in various solids, distinguishing between single
crystals and other forms of solids. We will then describe the properties that result
from the periodicity in crystal lattices. A few important crystallography terms most
often found in solid state devices will be defined and illustrated in crystals having
basic structures. These definitions will then allow us to refer to certain planes and
directions within a lattice of arbitrary structure.

Investigations of the crystalline state have a long history. Johannes Kepler (Strena
Seu de Nive Sexangula, 1611) speculated on the question as to why snowflakes
always have six corners, never five or seven (Fig. 3.1). It was the first treatise on
geometrical crystallography. He showed how the close-packing of spheres gave rise
to a six-corner pattern. Next, Robert Hooke (Micrographia, 1665) and Rene Just
Haiiy (Essai d’une théorie sur la structure des cristaux, 1784) used close-packing
arguments in order to explain the shapes of a number of crystals. These works laid
the foundation of the mathematical theory of crystal structure. It is only recently,
thanks to x-ray and electron diffraction techniques, that it has been realized that most
materials, including biological objects, are crystalline or partly so (Fig. 3.2).

All elements from the periodic table and their compounds, be they gas, liquid, or
solid, are composed of atoms, ions, or molecules. Matter is discontinuous. However,
since the sizes of the atoms, ions, and molecules lie in the 1 A (10710 mor107% m)
region, matter appears continuous to us. The different states of matter may be
distinguished by their tendency to retain a characteristic volume and shape. A gas
adopts both the volume and shape of its container, a liquid has a constant volume but
adopts the shape of its container, while a solid retains both its shape and volume
independently of its container. This is illustrated in Fig. 3.3. The natural forms of
each element in the periodic table are given in Fig. Al in Appendix A.3.

© Springer International Publishing AG, part of Springer Nature 2019 51
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Fig. 3.1 (a) Snowflake a b
crystal and (b) the close-
packing of spheres which
gives rise to a six-corner
pattern. The close-packing of
spheres can be thought as the
way to most efficiently stack
identical spheres

Gases Molecules or atoms in a gas move rapidly through space and thus have a high
kinetic energy. The attractive forces between molecules are comparatively weak and
the energy of attraction is negligible in comparison to the kinetic energy.

Liquids As the temperature of a gas is lowered, the kinetic energies of the molecules
or atoms decrease. When the boiling point (Fig. A.3 in Appendix A.3) is reached, the
kinetic energy will be equal to the energy of attraction among the molecules or
atoms. Further cooling thus converts the gas into a liquid. The attractive forces cause
the molecules to “touch” one another. They do not, however, maintain fixed
positions. The molecules change positions continuously. Small regions of order
may indeed be found (local ordering), but if a large enough volume is considered,
it will also be seen that liquids give a statistically homogeneous arrangement of
molecules and therefore also have isotropic physical properties, i.e., equivalent in all
directions. Some special types of liquids that consist of long molecules may reveal
anisotropic properties (e.g., liquid crystals).

Solids When the temperature falls below the freezing point, the kinetic energy
becomes so small that the molecules become permanently attached to one another.
A three-dimensional framework of net attractive interaction forms among the
molecules and the array becomes solid. The movement of molecules or atoms in
the solid now consists only of vibrations about some fixed positions. A result of these
permanent interactions is that the molecules or atoms have become ordered to some
extent. The distribution of molecules is no longer statistical but is almost or fully
periodically homogeneous, and periodic distribution in three dimensions may be
formed.

The distribution of molecules or atoms, when a liquid or a gas cools to the solid
state, determines the type of solid. Depending on how the solid is formed, a
compound can exist in any of the three forms in Fig. 3.3. The ordered crystalline
phase is the stable state with the lowest internal energy (absolute thermal equilib-
rium). The solid in this state is called the single crystal form. It has an exact periodic
arrangement of its building blocks (atoms or molecules).

Sometimes the external conditions at a time of solidification (temperature, pres-
sure, cooling rate) are such that the resulting materials have a periodic arrangement
of atoms which is interrupted randomly along two-dimensional sections that can
intersect, thus dividing a given volume of a solid into a number of smaller single
crystalline regions or grains. The size of these grains can be as small as several
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a b

% oy

Fig. 3.3 Illustration of the physical states of water: (a) gas also known as water vapor, (b) liquid or
common water, (c¢) solid also known as snow or ice

a b c
Fig. 3.4 Arrangement of atoms: (a) a single crystalline, (b) a polycrystalline, and (¢) an amorphous
material

atomic spacings. Materials in this state do not have the lowest possible internal
energy but are stable, being in so-named local thermal equilibrium. These are
polycrystalline materials.

There exist, however, solid materials which never reach their equilibrium condi-
tion, e.g., glasses or amorphous materials. Molten glass is very viscous and its
constituent atoms cannot come into a periodic order (reach equilibrium condition)
rapidly enough as the mass cools. Glasses have a higher energy content than the
corresponding crystals and can be considered as a frozen, viscous liquid. There is no
periodicity in the arrangement of atoms (the periodicity is of the same size as the
atomic spacing) in the amorphous material. Amorphous solids or glass have the
same properties in all directions (they are isotropic), like gases and liquids.

Therefore, the elements and their compounds in a solid state, including silicon,
can be classified as single crystalline, polycrystalline, or amorphous materials. The
differences among these classes of solids are shown schematically for a
two-dimensional arrangement of atoms in Fig. 3.4.

3.2  Crystal Lattices and the Seven Crystal Systems

Now we are going to focus our discussion on crystals and their structures. A crystal
can be defined as a solid consisting of a pattern that repeats itself periodically in all
three dimensions. This pattern can consist of a single atom, group of atoms, or other
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b

a

Fig. 3.5 Example of (a) two-dimensional lattice, (b) pattern, and (c¢) two-dimensional crystal
illustrating a pattern associated with each lattice point

Fig. 3.6 Example of a three-
dimensional lattice, with / /

translation vectors and the
angles between two vectors.

any lattice point can be

By taking the origin at one /
lattice point, the position of ¢ M
determined by a vector which B oo b /

is the sum of integer numbers - /
of translation vectors a /4 /

compounds. The periodic arrangement of such patterns in a crystal is represented by
a lattice. A lattice is a mathematical object which consists of a periodic arrangement
of points in all directions of space. One pattern is located at each lattice point. An
example of a two-dimensional lattice is shown in Fig 3.5a. With the pattern shown in
Fig. 3.5b, one can obtain the two-dimensional crystal in Fig. 3.5¢ which shows that a
pattern is associated with each lattice point.

A lattice can be represented by a set of translation vectors as shown in the

two-dimensional (vectors a , b) and three-dimensional lattices (vectors a , b, ?)
in Fig. 3.6a, c, respectively. The lattice is invariant after translations through any of
these vectors or any sum of an integer number of these vectors. When an origin point
is chosen at a lattice point, the position of all the lattice points can be determined by a
vector which is the sum of integer numbers of translation vectors. In other words,

any lattice point can generally be represented by a vector R such that:

R=n1;+n2b+n3?, (3_1)
ni 2,3 ZO, :|:1, :5:2,

where a , b, ¢ are the chosen translation vectors and the numerical coefficients are
integers.

All possible lattices can be grouped in the seven crystal systems shown in
Table 3.1, depending on the orientations and lengths of the translation vectors. No
crystal may have a structure other than one of those in the seven classes shown in
Table 3.1.
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Table 3.1 The seven crystal systems

Crystal

systems Axial lengths and angles

Cubic Three equal axes at right anglesa =b =c,a = =y =90°

Tetragonal Three axes at right angles, twoequala =b # c,a = =y = 90°

Orthorhombic | Three unequal axes at right angles a # b # ¢, a = f =y = 90°

Trigonal Three equal axes, equally inclineda =b=c,a=f =y =90°

Hexagonal Two equal coplanar axes at 120°, third axis at right angles a = b # c,
a=pF=90°y=120°

Monoclinic Three unequal axes, one pair not at right angles a # b # ¢, a =y = 90°#

Triclinic Three unequal axes, unequally inclined and none at right angles a # b # ¢,
a#pFy#90°

Fig. 3.7 Three examples of
possible unit cells for a
two-dimensional lattice The
unit cells are delimited in solid
lines. The same principle can
be applied for the choice of a
unit cell in three dimensions

A few examples of cubic crystals include Al, Cu, Pb, Fe, NaCl, CsCl, C (diamond
form), Si, and GaAs; tetragonal crystals include In, Sn, and TiO,; orthorhombic
crystals include S, I, and U; monoclinic crystals include Se and P; triclinic crystals
include KCrO,; trigonal crystals include As, B, and Bi; and hexagonal crystals
include Cd, Mg, Zn, and C (graphite form) (Fig. 3.6).

3.3 The Unit Cell Concept

A lattice can be regarded as a periodic arrangement of identical cells offset by the
translation vectors mentioned in the previous section. These cells fill the entire space
with no void. Such a cell is called a unit cell.

Since there are many different ways of choosing the translation vectors, the
choice of a unit cell is not unique and all the unit cells do not have to have the
same volume (area). Figure 3.7 shows several examples of unit cells for a
two-dimensional lattice. The same principle can be applied when choosing a unit
cell for a three-dimensional lattice.

The unit cell which has the smallest volume is called the primitive unit cell. A
primitive unit cell is such that every lattice point of the lattice, without exception, can
be represented by a vector such as the one in Fig. 3.7. An example of primitive unit
cell in a three-dimensional lattice is shown in Fig. 3.6. The vectors defining the unit

cell, a , b, ?, are basis lattice vectors of the primitive unit cell.
The choice of a primitive unit cell is not unique either, but all possible primitive
unit cells are identical in their properties: they have the same volume, and each
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Fig. 3.8 Three-dimensional
lattice and a corresponding
primitive unit cell defined by
the three basis vectors

— —

a, b, c

Simple cubic Body-centered cubic  Face-centered cubic

Fig. 3.9 Three-dimensional unit cells: simple cubic (left), body-centered cubic (bcc) (middle), and
face-centered cubic (fcc) (right)

contains only one lattice point. The volume of a primitive unit cell is found from
vector algebra:

(3.2)

The number of primitive unit cells in a crystal, N, is equal to the number of atoms
of a particular type, with a particular position in the crystal, and is independent of the
choice of the primitive unit cell:

Crystal volume
N

Primitive unit cell volume =

A primitive unit cell is in many cases characterized by non-orthogonal lattice
vectors (as in Fig. 3.8). As one likes to visualize the geometry in orthogonal
coordinates, a conventional unit cell (but not necessarily a primitive unit cell) is
often used. In most semiconductor crystals, such a unit cell is chosen to be a cube,
whereas the primitive cell is a parallelepiped and is more convenient to use due to its
more simple geometrical shape.

A conventional unit cell may contain more than one lattice point. To illustrate
how to count the number of lattice points in a given unit cell, we will use Fig. 3.9
which depicts different cubic unit cells.

In our notations 7, is the number of points in the interior, nyis the number of points
on faces (each nyis shared by two cells), and 7, is the number of points on corners
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Fig. 3.10 Two-dimensional Wigner-Seitz cell and its construction method: select a lattice point,
draw lines from a given lattice point to all nearby points, bisect these lines with orthogonal planes,
and construct the smallest polyhedron that contains the first selected lattice

(each n, point is shared by eight corners). For example, the number of atoms per unit
cell in the fec lattice (Fig. 3.9¢) (n; = 0, ny= 6, and n, = 8) is:

n, =n; + % + % = 4 atoms/unit cell (3.3)

3.4 The Wigner-Seitz Cell

The primitive unit cell that exhibits the full symmetry of the lattice is called Wigner-
Seitz cell. As it is shown in Fig. 3.10, the Wigner-Seitz cell is formed by (1) drawing
lines from a given Bravais lattice point to all nearby lattice points, (2) bisecting these
lines with orthogonal planes, and (3) constructing the smallest polyhedron that
contains the selected point. This construction has been conveniently shown in two
dimensions but can be continued in the same way in three dimensions. Because of
the method of construction, the Wigner-Seitz cell translated by all the lattice vectors
will exactly cover the entire lattice.

3.5 Bravais Lattices

Because a three-dimensional lattice is constituted of unit cells which are translated
from one another in all directions to fill up the entire space, there exist only
14 different such lattices. They are illustrated in Fig. 3.11 and each is called a
Bravais lattice after the name of Bravais (1848).

In the same manner, as no crystal may have a structure other than one of those in
the seven classes shown in Fig. 3.11, no crystal can have a lattice other than one of
those 14 Bravais lattices.

3.6 Point Groups
Because of their periodic nature, crystal structures are brought into self- coincidence

under a number of symmetry operations. The simplest and most obvious symmetry
operation is translation. Such an operation does not leave any point of the lattice
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Simple cubic Body-centered cubic ~ Face-centered cubic

Simple tetragonal Body-centered tetragonal

il

Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
Simple Base-centered Triclinic
monoclinic monoclinic
c
Trigonal
a
Hexagonal

Fig. 3.11 The 14 Bravais lattices, illustrating all the possible three-dimensional crystal lattices
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invariant. There exists another type of symmetry operation, called point symmetry,
which leaves a point in the structure invariant. All the point symmetry operations can
be classified into mathematical groups called point groups, which will be reviewed in
this section.

The interested reader is referred to mathematics texts on group theory for a
complete understanding of the properties of mathematical groups. For the scope of
the discussion here, one should simply know that a mathematical group is a
collection of elements which can be combined with one another and such that the
result of any such combination is also an element of the group. A group contains a
neutral element such that any group element combined with it remains unchanged.
For each element of a group, there also exists an inverse element in the group such
that their combination is the neutral element.

3.6.1 C, Group (Plane Reflection)

A plane reflection acts such that each point in the crystal is mirrored on the other side
of the plane as shown in Fig. 3.12. The plane of reflection is usually denoted by o.
When applying the plane reflection twice, i.e., 6%, we obtain the identity which
means that no symmetry operation is performed. The reflection and the identity form
the point group which is denoted C, and which contains only these two symmetry
operations (Fig. 3.13).

Fig. 3.12 Illustration of a j
plane reflection. The
triangular object and its +

reflected image are mirror
images of each other j/

Fig. 3.13 [Illustration of
rotation symmetry. The
triangular object and its image
are separated by an angle
equal to 6
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3.6.2 C, Groups (Rotation)

A rotation about an axis and through an angle  (n is an integer) is such that any point
and its image are located in a plane perpendicular to the rotation axis and the in-plane
angle that they form is equal to €, as shown in Fig. 3.14. In crystallography, the angle

of rotation cannot be arbitrary but can only take the following fractions of 2z: 0 = 21—”,
2z 2z 27 2zm

2°3° 46"

It is thus common to denote as C,, a rotation through an angle 27” where n is an
integer equal to 1, 2, 3, 4, or 6. The identity or unit element corresponds to n = 1,
i.e., C;. For a given axis of rotation and integer n, a rotation operation can be
repeated, and this actually leads to n rotation operations about the same axis,
corresponding to the n allowed angles of rotation: 1 x 2,—1” 2 X 27” cen (n—=1) % 27”
andn X % These n rotation operations, which include the identity, form a group also
denoted C,,.

One says that the C,, group consists of n-fold symmetry rotations, where n can
be equal to 1, 2, 3, 4, or 6. Figure 3.14 depicts the perspective view of the crystal
bodies with symmetries C;, C,, C;, C4, Cg. The rotations are done so that the
elbow pattern coincides with itself. It is also common to represent these symmetry
groups with the rotation axis perpendicular to the plane of the figure, as shown in
Fig. 3.15.

C G, G Cy Cs

Fig. 3.14 Crystal bodies with symmetries Cy, C», C3, Cy4, and C¢. The elbow patterns are brought
into self-coincidence after a rotation around the axis shown and through an angle equal to 27/n
wheren=1,2,3,4,0r6

NN AN N AN
NV ARVAV

G & &}

Fig. 3.15 Crystal bodies with symmetries Cy, C,, C3, Cy4, and Cg with the rotation axes perpendic-
ular to the plane of the figure
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Fig.3.16 Crystal bodies with symmetries (a) Cy;, where the reflection plane is perpendicular to the
rotation axis and (b) C,, where the reflection plane passes through the rotation axis

3.6.3 C,, and C,, Groups

When combining a rotation of the C, group and a reflection plane o, the axis of
rotation is usually chosen vertical. The reflection plane can either be perpendicular to
the axis and then be denoted o), (horizontal) or pass through this axis and then be
denoted o, (vertical). All the possible combinations of such symmetry operations
give rise to two types of point groups: the C,;, and the C,, groups.

The C,;, groups contain an n-fold rotation axis C,, and a plane o, perpendicular to
it. (a) Shows the bodies with a symmetry Cy;,. The number of elements in a C,,;, group
is 2n.

The C,,, groups contain an n-fold axis C, and a plane o, passing through the
rotation axis. Figure 3.16b shows the bodies with a symmetry Cj,. The number of
elements is 2n too.

3.6.4 D, Groups

When combining a rotation of the C,, group and a C, rotation with an axis perpen-
dicular to the first rotation axis, this gives rise to a total of n C, rotation axes. All the
possible combinations of such symmetry operations give rise to the point groups
denoted D,. The number of elements in this point group is 2n. For example, the
symmetry operations in D, are illustrated in Fig. 3.17.

3.6.5 D,,and D, Groups

When combining an element of the C,,;, group and a C, rotation which has an axis
perpendicular to the C, axis, this gives also rise to a total of n C, rotation axes. All
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Fig. 3.17 Crystal bodies D, .
with symmetry D,. In addition
to the C, axis, there are four e —

C, axes of rotation
perpendicular to the C,, axis

(a) (b)

Fig. 3.18 Bodies with symmetries (a) Dy, and (b) Dy,

the possible combinations of such symmetry operations lead to the point group
denoted D,,;,. This point group can also be viewed as the result of combining an
element of the D,, group and a ¢, (horizontal) reflection plane. This group can also be
viewed as the result of combining an element of the D, group and n o, (vertical)
reflection planes which pass through both the C, and the n C, axes.

The number of elements in the D,, point group is 4n, as it includes the 2n
elements of the D,, group, and all these 2n elements combined with a plane reflection
oy,. For example, the symmetry operations in D, are illustrated in Fig. 3.18a.
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A’ O
A
B’

Fig. 3.19 Illustration of inversion symmetry. Any point of the triangular object and its image are
such that the inversion center is at the middle of these two points

Now, when combining an element of the C,,, group and a C, rotation which has
an axis perpendicular to the C,, axis and which is such that the o, (vertical) reflection
planes bisect two adjacent C, axes, this leads to the point group denoted D,,;. This
point group can also be viewed as the result of combining an element of the D,, group
and n o, (vertical) reflection planes which bisect the C, axes.

The number of elements in the D, point group is 4n as well. For example, the
symmetry operations in D, are illustrated in 3.18b.

3.6.6 C; Group

An inversion symmetry operation involves a center of symmetry (e.g., O) which is at
the middle of a segment formed by any point (e.g., A) and its image through
inversion symmetry (e.g., A"), as shown in Fig. 3.19.

When applying an inversion symmetry twice, we obtain the identity which means
that no symmetry operation is performed. The inversion and the identity form the
point group which is denoted C; and which contains only these two symmetry
operations.

3.6.7 Gs;and S, Groups

When combining an element of the C,, group and an inversion center located on the
axis of rotation, the symmetry operations get more complicated. If we consider the
C, group (identity), we obtain the inversion symmetry group C;. In the case of C,
group, we get the plane reflection group C;. And if we consider the Cg group, we
actually obtain the C5, point group.

When we combine independently elements from the C, group and the inversion
center, we get the Cy4;, point group. However, there is a subgroup of the Cg4;, point
group which can be constructed by considering a new symmetry operation, the roto-
inversion, which consists of a C, rotation immediately followed by an inversion
through a center on the rotation axis. It is important to realize that the roto-inversion
is a single symmetry operation, i.e., the rotation is not independent of the inversion.
The subgroup is made by combining roto-inversion operation, is denoted Sy, and is
illustrated in Fig. 3.20. Its number of elements is 4.
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Fig. 3.20 Bodies with S, ®
symmetry Sy

O
Fig. 3.21 Axes of rotation
for the T group, including four z
C5 and three C, axes. The Cs G

orientation of the tetrahedron
with respect to the cubic

coordinate axes is shown on
the right 20 —

v

A similar point group is obtained when considering roto-inversions from the C;
group. The new point group is denoted Cs;.

3.6.8 T Group

The tetrahedron axes group T is illustrated in Fig. 3.21. It contains some of the
symmetry operations which bring a regular tetrahedron into self-coincidence. The
tetrahedron and its orientation with respect to the cubic coordinate axes are also
shown.
The number of elements is 12, which includes:
* Rotations through an angle ZT” or 43—”, about the four C; axes which are the body
diagonals of a cube (yielding at total of eight elements)
* Rotations through an angle z, about the three C, axes (;5,2) passing through the

centers of opposite faces (three elements)
¢ The identity (one element)
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Fig. 3.22 Axes of rotation

for T, group, including four C; IZ
Cj, three C, axes passing G2, 84
through the center of opposite
faces, three S, axes, and six C, (),
axes passing through the ~ \

centers of diagonally opposite \
sides

D
<

v

3.6.9 T,Group

The T, point group contains all the symmetry elements of a regular tetrahedron.
Basically, it includes all the symmetry operations of the 7 group in addition to an
inversion center at the center of the tetrahedron (Fig. 3.22).

The number of elements is 24, which includes:

* Rotations through an angle 27” or 43—”, about the four C3 axes which are the body
diagonals of a cube (yielding at total of eight elements)

* Rotations through an angle z, about the three C, axes (X.y.2) passing through the
centers of opposite faces (three elements)

* Rotations through an angle 7 or 37” (S4), about the three axes (},;,?) passing
through the centers of opposite faces, followed by an inversion through the center
point O of a cube, (six elements)

* Rotations through an angle 7, about the six C, axes passing through the centers of
diagonally opposite sides (in diagonal planes of a cube), followed by an inversion
through the center point O (six elements)

* Finally, the identity (one element)

3.6.10 O Group

The cubic axes group O consists of rotations about all the symmetry axes of a cube.
The number of elements is 24, which includes:

* Rotations through the angles %T”, % or %”, about the three C, axes passing through

the centers of opposite faces (yielding a total of nine elements)

* Rotations through the angles 23—” or 43—”, about the four C3 axes passing through the
opposite vertices (eight elements)

* Rotations through an angle 7, about the six C; axes passing through the midpoints
of opposite edges (six elements)

* Finally, the identity (one element)
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3.6.11 O, Group

The O, group includes the full symmetry of a cube in addition to an inversion
symmetry. The number of elements is 48, which includes:

e All the symmetry operations of the O group (24 elements)
* And all the symmetry operations of the O group combined with an inversion
through the body-centered point of a cube (24 elements).

3.6.12 List of Crystallographic Point Groups

The point groups previously reviewed are constructed by considering all the possible
combinations of basic symmetry operations (plane reflections and rotations)
discussed in subsections 3.6.1 to 3.6.11. By doing so, one would find that there
exist only 32 crystallographic point groups. Crystallographers normally use two
kinds of notations for these point symmetry groups. Table 3.2 shows the correspon-
dence between two widely used notations.

3.7 Space Groups

The other type of symmetry in crystal structures, (translation symmetry), reflects the
self-coincidence of the structure after the displacements through arbitrary lattice

vectors (R).

These symmetry operations are independent of the point symmetry operations as
they do not leave a point invariant (except for the identity). The combination of
translation symmetry and point symmetry elements gives rise to new symmetry
operations which also bring the crystal structure into self-coincidence. An example
of such new operation is a glide plane by which the structure is reflected through a
reflection plane and then translated by a vector parallel to the plane.

With these new symmetry operations, a larger symmetry operation group is
formed, called space group. There are only 230 possible three-dimensional crystal-
lographic space groups which are conventionally labeled with a number from
No. 1 to No. 230.

3.8 Directions and Planes in Crystals: Miller Indices

In order to establish the proper mathematical description of a lattice, we have to
identify the directions and planes in a lattice. This is done in a crystal using Miller
indices (hkl). We introduce Miller indices by considering the example shown in
Fig. 3.23.
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Table 3.2 List of

. Schoenflies Hermann-Mauguin
the 32 crystallographic Crystal system symbol symbol
point groups Triclinic c 1

G i
Monoclinic C, 2
Cy m
Coy, 2/m
Orthorhombic D, 222
Gy mm2
Dy, mmm
Tetragonal Cy 4
Sa 4
Cun 4/m
D, 422
Cyy 4 mm
Doy 42m
Dy, 4/mmm
Cubic T 23
T, m3
o 432
T, 43m
O, m3m
Trigonal Cs 3
& 3
D3 32
Cs, 3m
Dsq4 3m
Hexagonal Ce 6
Ca 6
Cen 6/m
Dg 622
Ce, 6 mm
Dy, 6
D), 6/mmm

Figure 3.23 shows a crystal plane which passes through lattice points and

intersects the axes: 2a, 3b, 2c¢, where a , b, ¢ are basic lattice vectors. To
obtain Miller indices, we form the ratio J : 1 : 1 and put the fractions on the smallest
common denominator. The Miller indices are the corresponding numerators. Thus
we obtain the Miller indices for the plane: (hkl) = (323).

It also follows that a lattice plane with Miller indices (hkl) will be intersected by

Na Nb Ne

— - — .
theaxisa , b, c atdistances ]

where N is an integer. The Miller indices for
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c-axis

a-axis

Fig. 3.23 Example of a plane which passes through lattice points. Its Miller indices are
(hkl) = (323) and are used to identify this plane in the crystal. These indices are obtained as
follows: note where the plane intersects the coordinate axes, it is either an integer multiple or an
irreducible fraction of the axis unit length; invert the intercept values; using the appropriate
multiplier, convert these inverted values into integer numbers; and enclose the integer numbers in
parenthesis

Table 3.3 Conventions

e Notation Designation
used to label directions and
. (hkl) Plane

planes in crystallography
{hkl} Equivalent plane
[uvw] Direction
<uvw> Equivalent direction
(hkil) Plane in hexagonal systems
[uviw] Direction in hexagonal systems

a few planes in a cubic lattice are shown in Fig. 3.23. These Miller indices are
obtained as described above and by using 1, -, L = 1:0:0 = (100).

For a crystal plane that intersects the origin, one typically has to determine the
Miller indices for an equivalent plane which is obtained by translating the initial
plane by any lattice vector. The conventions used to label directions and planes in
crystallographic systems are summarized in Table 3.3.

The notation for the direction of a straight line passing through the origin is [uvw],
where u, v, and w are the three smallest integers whose ratio u:v:w is equal to the ratio
of the lengths (in units of a, b, and c) of the components of a vector directed along the
straight line. For example, the symbol for the a-axis in Fig. 3.23, which coincides
with vector a, is [100].

For the indices of both plane and directions, a negative value of the index is
written with a bar sign above the index, such as (hkl) or [uvw].
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(100) (110) (111)
0 .
y y y
x x ‘V x

Fig. 3.24 Miller indices of the three principal planes in the cubic structure. If a plane is parallel to
an axis, we consider that it “intersects” this axis at infinity and we get the Miller indices: 1,00,00
=> 1/1:1/0c0:1/00=1:0:0 = > (100)

Example

Q Determine the direction index for the lattice vector shown below.

Q)

A

A We can decompose the vector E as: E: 1d+2b +2¢. This corresponds to
u=1,v=2,w=2, and the direction is thus [122].

In cubic systems, such as simple cubic, body-centered cubic, and face-centered
cubic lattices, the axes of Fig. 3.24 are chosen to be orthonormal, i.e., the unit vectors
are chosen orthogonal and of the same length equal to the side of the cubic unit cell.
The axes are then conventionally denoted x, y, and z instead of a, b, and c, as shown
in Fig. 3.24.

In addition, for cubic systems, the Miller indices for directions and planes have
the following particular and important properties:

* The direction denoted [/kl] is perpendicular to plane denoted (hkl).
* The interplanar spacing is given by the following expression and is shown in the
example in Fig. 3.25:

dwi = jprae (3.4)

* The angle 0 between two directions [hk;/;] and [h,k,1,] is given by the relation:

cos (9) _ (hlh2+k1k2+l]lz)/ (3'5)

202402 2202
(hl+k1+l])(lxz+kz+12)
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Fig. 3.25 Illustration of the

interplanar spacing in a cubic

lattice between two adjacent

(233) planes Adjacent
(233) planes

GRS

Fig. 3.26 Coordinate axes
used to determine Miller
indices for hexagonal systems

Example
Q Determine the angle between the two planes shown below (PSR) and (PQR),

in a cubic lattice.
zZ

\\\

A The Miller indices for the (PSR) plane are (111), while they are (212) for the
(PQR) plane. The angle @ between these two planes is given by the following
1x241x1+1x2 _5V3

\/(12+]2+12)(22+]2+22) 9

The angle between the two planes is therefore 15.8 deg.

cosine function: cos (0) =

In hexagonal systems, the a- and b-axes of Fig. 3.26 are chosen in the plane
formed by the base of the hexagonal unit cell and form a 120 degree angle. They are
denoted ? and g and their length is equal to the side of the hexagonal base. The unit
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primary flat
—[011]

secondary flat l [o1i]

Fig. 3.27 Illustration of the use of primary and secondary flats on a (100) oriented silicon crystal
wafer to indicate the in-plane crystallographic orientation of the wafer

vector perpendicular to the base is still denoted c. In addition, it is also conventional
to introduce a (redundant) fourth unit vector denoted é in the base plane and equal to

— (_cli + ?2[), as shown in Fig. 3.26. It is then customary to use a four-index system for

planes and directions: (kkil) and [uviw], respectively, as shown in Fig. 3.26. The

additional index that is introduced for hexagonal systems is such that i = — (h + k)
and r = — (u + v), which is a direct consequence of the choice of the fourth unit
vector a.

3

In modern microelectronics, it is often important to know the in-plane crystallo-
graphic directions of a wafer and this can be accomplished using Miller indices.
During the manufacturing of the circular wafer disk, it is common to introduce a
“flat” to indicate a specific crystal direction. To illustrate this, let us consider the
(100) oriented silicon wafer shown in Fig. 3.27. A primary flat is such that it is
perpendicular to the [011] direction, while a smaller secondary flat is perpendicular
to the [011] direction.

3.9  Real Crystal Structures

Most semiconductor solids crystallize into a few types of structures which are
discussed in this section. They include the diamond, zinc blende, sodium chloride,
cesium chloride, hexagonal close-packed, and wurtzite structures.

3.9.1 Diamond Structure

Elements from the column [V in the periodic table, such as carbon (the diamond
form), germanium, silicon, and gray tin, crystallize in the diamond structure. The
Bravais lattice of diamond is face-centered cubic. The basis has two identical atoms
located at (0,0,0) and (%4,%4,"4) in the cubic unit cell, for each point of the fcc lattice.
The point group of diamond is O,,. The lattice constants are a = 3.56, 5.43, 6.65, and
6.46 A for the four crystals mentioned previously in the same order. The conven-
tional cubic unit cell thus contains eight atoms. There is no way to choose a primitive
unit cell such that the basis of diamond contains only one atom.
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The atoms which are at least partially in the conventional cubic unit cell are
located at the following coordinates: (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
0,1,1), (1,1,1), (*4,'%,0), (0,'2,%), (12,0,%2), (V4,%,1), (1,%,%), (5,1,%), (Va,Ya,V4),
(%4,%,Y4), (¥4,Y4,%), and (Y4,%4,%4).

The tetrahedral bonding characteristic of the diamond structure is shown in
Fig. 3.28a. Each atom has 4 nearest neighbors and 12 s nearest neighbors. For
example, the atom located at (%4,%4,"4) at the center of the cube in Fig. 3.28b has four

Q

Fig. 3.28 (a) Diamond lattice. The Bravais lattice is face-centered cubic with a basis consisting of
two identical atoms displaced from each other by a quarter of the cubic body diagonal. The atoms
are connected by covalent bonds. The cube outlined by the dashed lines shows one tetrahedral unit.
(b) Tetrahedral unit of the diamond lattice
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nearest neighbors also shown in Fig. 3.28b which are located at (0,0,0), (¥2,%2,0),
(0,%,'), and (}4,0,%).

The number of atoms/unit cell for the diamond lattice is found from n; = 4, n;=6,
and n. = 8 where n;, ns, and n, are the numbers of points in the interior, on faces, and
on corners of the cubic unit cell shown in Fig. 3.28a, respectively. Note that each of
the n; points is shared between two cells and each of the n, points is shared between
eight cells. Therefore: n, = 4 + g + % = 8 atoms/unit cell. The atomic density or the
number of atoms per cm>, n, is given by n = ~« atoms/unit cell. For example, for
silicon, we have a = 5.43 A, and n = 8/(0.543 x 1077)* = 5 x 10** atoms/cm’.

3.9.2 Zinc Blende Structure

The most common crystal structure for III-V compound semiconductors, including
GaAs, GaSb, InAs, and InSb, is the sphalerite or zinc blende structure shown in
Fig. 3.29. The point group of the zinc blende structure is 7.

The zinc blende structure has two different atoms. Each type of atom forms a face-
centered cubic lattice. Each atom is bounded to four atoms of the other type. The
sphalerite structure as a whole is treated as a face-centered cubic Bravais lattice with a
basis of two atoms displaced from each other by (a/4)(x + y + 2), i.e., one fourth of the
length of a body diagonal of the cubic lattice unit cell. Some important properties of
this crystal result from the fact that the structure does not appear the same when viewed
along a body diagonal from one direction and then the other. Because of this, the
sphalerite structure is said to lack inversion symmetry. The crystal is therefore polar in
its <111> directions, i.e., the [111] and the [111] directions are not equivalent. When
both atoms are the same, the sphalerite structure has the diamond structure, which has
an inversion symmetry and was discussed previously.

In the case of GaAs, for example, the solid spheres in Fig. 3.29 represent Ga
atoms and the open spheres represent As atoms. Their positions are:

Ga: (0,0,0), (2,%2,0), (0,%2,%2), (12,0,%2), (V2,1,%2), (V2,%2,1), (1,%2,%2)
As: (Y4,7,Ya), (Va,7%a,4), (Va,Y4,74), (V3,74,74)

Fig. 3.29 Cubic unit cell for
the zinc blende structure. The
Bravais lattice is face-centered
cubic with a basis of two
different atoms represented by
the open and solid spheres and
separated by a quarter of the
cubic body diagonal. The
crystal does not appear the
same when viewed along a
body diagonal from one
direction or the other
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Fig. 3.30 Sodium chloride

crystal. The Bravais lattice is
face-centered cubic with a Pad
basis of two ions: one Cl~ ion

e
Q

at (0,0,0) and one Na™ ion at /. D
(%,',%2), separated by one Ve
half of the cubic body Na* 4 /./ LN
diagonal. The figure shows C)/ ./
one cubic unit cell D /'

CI”

Fig. 3.31 The cesium
chloride crystal structure. The
Bravais lattice is cubic with a
basis of two ions: one Cl~ ion
at (0,0,0) and one Cs™ ion at
(%,',"2), separated by one
half the cubic body diagonal

3.9.3 Sodium Chloride Structure

The structure of sodium chloride, NaCl, is shown in Fig. 3.30. The Bravais lattice is
face-centered cubic and the basis consists of one Na atom and one CI atom separated
by one half the body diagonal of the cubic unit cell. The point group of the sodium
chloride structure is O;,.

There are four units of NaCl in each cubic unit cell, with atoms in the positions:

Cl: (0,0,0), (*2,%2,0), (2,0, %2), (0, %2,%2)
Na: (2,%2,%), (0,0, %2), (0, %2,0), (*2,0,0)

3.9.4 Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 3.31. The Bravais lattice is simple
cubic and the basis consists of two atoms located at the corner (0,0,0) and center
positions (¥2,Y,'%) of the cubic unit cell. Each atom may be viewed as at the center of
a cube of atoms of the opposite kind, so that the number of nearest neighbors or
coordination number is eight. The point group of the cesium chloride structure is 7.



76 3 Crystalline Properties of Solids

Fig. 3.32 The closed-packed array of spheres. Note the three different possible positions, A, B,
and C for the successive layers. The most space-efficient way to arrange identical spheres or atoms
in a plane is to first place each sphere in contact with six others in that plane (positions A). The most
stable way to stack a second layer of such spheres is by placing each one of them in contact with
three spheres of the bottom layer (positions B). The third stable layer can then either be such that the
spheres occupy positions above A or C

Fig. 3.33 The hexagonal
close-packed (hcp) structure.
This Bravais lattice of this
structure is hexagonal, with a
basis of two identical atoms.
It is constructed by stacking
layers in the ABABAB. ..
sequence. The lattice
parameters a and c are
indicated

3.9.5 Hexagonal Close-Packed Structure

The simplest way to stack layers of spheres is to place centers of spheres (atoms)
directly above one another. The resulting structure is called a simple hexagonal
structure. There is, in fact, no example of crystals with this structure because it is
unstable. However, spheres can be arranged in a single hexagonal close-packed layer
A (Fig. 3.32) by placing each sphere in contact with six others. A second similar
layer B may be added by placing each sphere of B in contact with three spheres of the
bottom layer, at positions B in Fig. 3.32. This arrangement has the lowest energy and
is therefore stable. A third layer may be added in two different ways. We obtain the
cubic structure if the spheres of the third layer C are added over the holes in the first
layer A that are not occupied by B, as in Fig. 3.32. We obtain the hexagonal close-
packed structure (Fig. 3.33) when the spheres in the third layer are placed directly
over the centers of the spheres in the first layer, thus replicating layer A. The Bravais
lattice is hexagonal. The point group of the hexagonal close-packed structure is Dgy,.
The fraction of the total volume occupied by the spheres is 0.74 for both structures
(see Problems).
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Table 3.4 c/a parameter

for various hexagonal Crystal ol

crystals 8 Be 1.581
Mg 1.623
Ti 1.586
Zn 1.861
Cd 1.886
Co 1.622
Y 1.570
Zr 1.594
Gd 1.592

Fig. 3.34 The wurtzite
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Zinc, magnesium, and low-temperature form of titanium have the hcp structure.
The ratio c/a for ideal hexagonal close-packed structure in Fig. 3.33 is 3.633. The
number of nearest-neighbor atoms is 12 for hcp structures. Table 3.4 shows the c¢/a
parameter for different hexagonal crystals.

3.9.6 Wurtzite Structure

A few III-V and several II-VI semiconductor compounds have the wurtzite structure
shown in Fig. 3.34.

This structure consists of two interpenetrating hexagonal close-packed lattices,
each with different atoms, ideally displaced from each other by 3/8¢ along the z-axis.
There is no inversion symmetry in this crystal, and polarity effects are observed
along the z-axis. The Bravais lattice is hexagonal with a basis of four atoms, two of
each kind. The point group of the wurtzite structure is Cg,.
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3.9.7 Packing Factor

The packing factor is the maximum proportion of the available volume in a unit cell
that can be filled with hard spheres. Let us illustrate this concept with a few
examples.

For a simple cubic lattice, the center-to-center distance between the nearest atoms
is a. So the maximum radius of the atom is %. Since ttlere is only one atom point per
=6 _ 0.5,

The following two examples illustrate the determination of the packing factor for
the other two cubic lattices.

cubic unit cell in this case, the packing factor is

Example

Q Determine the packing factor for a body-centered cubic lattice.
A Let us consider the bcc lattice shown in the figure below and an atom located
at one corner of the cubic unit cell. Its nearest neighbor is an atom which is

located at the center of the cubic unit cell and which is at a distance of ?a
where a is the side of the cube. The maximum radius r for the atoms is such that

these two atoms touch and therefore 2r = @a. There are two atoms in a bcc

3
cubic unit cell, so the maximum volume filled by the spheres is 2 x %” (@a) .

The packing factor is calculated by taking the ratio of the total sphere volume to

4z (V3

3
N R
that of the unit cell and yields M = %5 =0.68.

a3
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Example

Q Determine the packing factor for a face-centered cubic lattice.

A Letus consider the fcc lattice shown in the figure below and an atom located at
one corner of the cubic unit cell. Its nearest neighbor is an atom which is located
at the center of an adjacent face of the cubic unit cell and which is at a distance

of ‘/TEa where a is the side of the cube. The maximum radius 7 for the atoms is

such that these two atoms touch and therefore 2r = ?a. There are four atoms
in a fcc cubic unit cell, so the maximum volume filled by the spheres is

3
4 x %” (‘/Tia> . The packing factor is calculated by taking the ratio of the total

4. (2
sphere volume to that of the unit cell and yields: w = 0.7405.

The diamond structure has the face-centered cubic structure with a basis of two
identical atoms. The packing factor of diamond structure is only 46 percent of that in
the fcc structure, so diamond structure is relatively empty (see Problems).

3.10 The Reciprocal Lattice

When we have a periodic system, one lattice point is equivalent to another lattice
point, so we expect a simple relation to exist between physical quantities at these
respective lattice points. Consider, for example, the local density of charge p (7) . We
should expect this quantity to have the same periodicity as the lattice. But it is
mathematically known that any periodic function can be expanded into a Fourier
series. In a crystal lattice, all physical quantities have the periodicity of the lattice, in
all directions. Let us consider the above physical quantity p (7) From now, we will
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use a three-dimensional formalism. This function is periodic and can be expanded
into a Fourier series:

ZP exp zKr) (3.6)

where the vector K is used to index the summation and the Fourier coefficients P (K )

This vector K has the dimension of an inverse distance and, for a periodic function,
can take on discrete values in a three-dimensional sum. Let us now express that the
function p(?) is periodic by calculating its value after displacement by a lattice

vector R:

p(F) =p(r + R) = > P(K)exp[i K (¥ + R)] (3.7)

K
which becomes

ZP exp( zK ) ZP([?)exp{i K (? + E)} (3.8)

—

K

has to be satisfied for any given function which is periodic with the periodicity of the
lattice. This can be satisfied if and only if

—

exp[il_(> (7 —l—l?)} :exp(iK~7)

or

exp(i?( : E) =1 (3.9)

for any lattice vector Eq. (3.9) is the major relation which allows us to introduce the

so-called reciprocal lattice which is spanned by the vectors 7( . What follows next is a
pure mathematical consequence of Eq. (3.9) which is equivalent to

K - R=2mm (3.10)

where m = 0, =1, £2,. .. is an integer. Using the expression for } from Eq. (3.1) of
Chap. 3, we obtain

—

(K- @)ni+ (K- b)ny + (K - ¢)ny = 2zm (3.11)
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where ny, n,, and n; are arbitrary integers which come from the choice of the vector
e

R. Because the sum of three terms is an integer if and only if each term itself is
integer leads us to

K - a=2ah
K - b 2mhy, With hip3=0;£1;£2, ... (3.12)
K- ¢=2xh

Here, h; . 3 is not related to Planck’s constant.

Let us now define three basis vectors (A , E , O)in order to expressf( in the same
way as we did it for real lattice vectors in Eq. (3.12) of Chap. 3. These basis vectors

define what we call the reciprocal lattice. Any reciprocal lattice vector K can thus be
represented as

K=hi A +hy B +h; C; (3.13)

From (3.12) and (3.11), we have

(A - @)+ (B @)+ (C- a)hs =21y
(A b)hi+ (B - b)hy+ (C - b)hy = 2zhy (3.14)
(X ?)h] + (E ?)hz + (E ?)hg = 27[/’13
Equation (3.14) can be satisfied only when
A-a=B b=C-c=2x
ind*} —
A-b=A- =0 (3.15)
Bd=Bc=0
C-b=C-a=0

Equatlon (3.15) defines the relation between the direct (a , b, c) and recnprocal

A, B, C) basis lattice vectors and gives the means to construct (A B C) from (

—

a,Z, c):
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These relations are a natural consequence of vector algebra in three dimensions.
The volumes that these basis vectors define in the real and reciprocal lattices satisfy
the relation (see Problems):

oo 3
A(BxC) =" (3.17)

a-(bx7)

We note that the vectors of reciprocal space have the same dimensions as the
wavenumbers and momenta of electromagnetic waves. We also note the direct lattice
is the reciprocal of its own reciprocal lattice. The concept of reciprocal or momentum
space turns out to be extremely important for the classification of electron states in a
crystal in quantum theory.

3.11 The Brillouin Zone

In the reciprocal lattice, we can construct unit cells as we did for the real lattice
earlier in this chapter. The construction of the Wigner-Seitz cell in the reciprocal
lattice follows the same rules as in the real lattice and gives the smallest unit cell in .-
space called the “first Brillouin zone” and shown in Fig. 3.10. Draw the perpendicu-
lar bisector planes of the translation vectors from the chosen center to the nearest
equivalent sites in the reciprocal lattice, and you have formed the first Brillouin zone.

3.12 Summary

In this chapter, the structure of crystals has been described. The concepts of Bravais
lattice, crystal systems, unit cell, point groups, space groups, Miller indices, and
packing factor have been introduced. The symmetry properties of crystals have been
discussed. The most common crystal structures for semiconductors have been
described. We have also introduced the concept of the reciprocal lattice. We have

shown that for every periodic lattice in real space R, it is possible to construct a
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periodic reciprocal lattice in K space. The reciprocal lattice is the lattice in so-called
momentum space. The Wigner Seitz cell of the reciprocal lattice is called the first
Brillouin zone.

Problems

. Figure 3.6 illustrates the definition of the angles and unit cell dimensions of the

crystalline material. If a unit cell has a characteristic of a = b = ¢ and

a = f =y =90° it forms a cubic crystal system, which is the case of Si and

GaAs.

(a) How many Bravais lattices are classified in the cubic system?

(b) Draw simple three-dimensional unit cells for each Bravais lattice in the
cubic system.

(c) How many lattice points are contained in the unit cell for each Bravais
lattice in the cubic system?

. Draw the four Bravais lattices in orthorhombic lattice system.
. Show that the Cs group is not a crystal point group. In other words, show that, in

crystallography, a rotation about an axis and through an angle § = 2?”cannot be a
crystal symmetry operation.

. Determine if the plane (111) is parallel to the following directions:

[100], [211], and [110].

. For cesium chloride, take the fundamental lattice vectors to be a=a ;, b=a ;,

and ¢= a(; + ; + Z) Describe the parallelepiped unit cell and find the cell
volume.

. GaAs is a typical semiconductor compound that has the zinc blende structure.

(a) Draw a cubic unit cell for the zinc blende structure showing the positions of
Ga and As atoms.

(b) Make a drawing showing the in-plane crystallographic directions and the
positions of the atoms for the (111) lattice plane.

(¢) Repeat for the (100) plane.

(d) Calculate the surface density of atoms in (100) plane.

. (a) What are the interplanar spacings d for the (100), (110), and (111) planes of

Al (a = 4.05 A)?
(b) What are the Miller indices of a plane that intercepts the x-axis at a, the y-axis
at 2a, and the z-axis at 2a?

. Show that the ¢/a ratio for an ideal hexagonal close-packed structure is (8/3)"*

= 1.633. If ¢/a is significantly larger than this value, the crystal structure may be
thought of as composed of planes of closely packed atoms, the planes being
loosely stacked.

. Show that the packing factor in a hexagonal close-packed structure is 0.74.
. Show that the packing factor for the diamond structure is 46% of that in the fcc

structure.



84 3 Crystalline Properties of Solids

11. Let (E , b, ?) be a basis lattice vectors for a direct lattice and (A , E s Z‘) be
the basis lattice vectors for the reciprocal lattice defined by Eq. (3.16). Prove that
8°

—

the volume defined by these vectors is given by A (E X Z’) -
a -(b X c)
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4.1 The Quantum Concepts

In Chapter 1 we saw that classical mechanics was incapable of explaining the optical
spectra emitted by atoms or even the existence of atoms. Bohr developed a model for
the atom of hydrogen by assuming the quantization of the angular momentum, which
was an introduction to wave or quantum mechanics. Quantum mechanics is a more
precise approach to describe nearly all physical phenomena which reduces to
classical mechanics in the limit where the masses and energies of the particles are
large or macroscopic.

In this section, we will illustrate the success of quantum mechanics through the
historically important examples of blackbody radiation, wave-particle duality, the
photoelectric effect, and the Davisson and Germer experiment.

4.1.1 Blackbody Radiation

As introduced in Chap. 1, a blackbody is an ideal source of electromagnetic radia-
tion, and the radiated power dependence was depicted as a function of wavelength in
Fig. 1.3 for several temperatures of the blackbody.

When the temperature of the body is at or below room temperature, the radiation
is mostly in the infrared spectral region, i.e., not detectable by the human eye. When
the temperature is raised, the emission power increases, and its peak shifts toward
shorter wavelengths as shown in Fig. 1.3. Several attempts to explain this observed
blackbody spectrum were made using classical mechanics in the latter half of the
nineteenth century, and one of the most successful ones was proposed by Rayleigh
and Jeans.

In their classical model, a solid at thermal equilibrium is seen as consisting of
vibrating atoms which are considered harmonic electric oscillators which generate
standing waves, or modes, through reflections within the cavity. A continuous

© Springer International Publishing AG, part of Springer Nature 2019 85
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75708-7_4&domain=pdf

86 4 Introduction to Quantum Mechanics

spectrum of vibrational mode frequencies v = w/2x = c/A where ¢ denotes the
velocity of light and A the wavelength of the oscillations. These atomic vibrations
cause the emission of electromagnetic radiation in a continuous frequency range too.
To determine the power radiated, one has to first determine the energy distribution
for each frequency. According to the classical law of equipartition of energy, the
average energy per degree of freedom for a blackbody in equilibrium is equal to k7,
where k, is the Boltzmann constant (k, = 8.614 x 107> eV-K!) and 7 the absolute
temperature in degrees K. The number of modes per unit volume is the number of
degrees of freedom for an electromagnetic radiation.

To calculate this number, a simple model can be used which involves propagating
waves in a rectangular box. Only certain frequencies of waves are allowed as a result
of boundary conditions at the limits of the box. In addition, there are two possible
polarization directions for the waves, corresponding to what are called “TE” and
“TM” propagation modes. The total number of modes per unit volume and per unit

frequency interval is 8’552. Therefore, the distribution of energy radiated by a

blackbody per unit volume and per unit frequency interval is u(v,T) = 8’;—52ka.
Considering that this energy is radiated at the speed of light, and by expressing this
distribution in terms of wavelength, we get the distribution of power radiated per unit
area and per unit wavelength interval as w(4, T) = % k,T. Both expressions u(v, T)
and w(4, T) are called the Rayleigh-Jeans law. This law is illustrated by a dashed line
in Fig. 1.3 for 7= 2000 K. It shows that this classical theory was in reasonably good
agreement with experimental observations at longer wavelengths. However, over the
short-wavelength portion of the spectrum, there was significant divergence between
experiment and theory. This is because we assumed the classical law of equipartition
of energy was valid at all wavelengths. This discrepancy came to be known as the
“ultraviolet catastrophe” because the integration of the Rayleigh-Jeans law over all
frequencies or wavelengths would theoretically lead to an infinite amount of radiated
power.

These experimental observations could therefore not be explained until 1901,
when Max Planck provided a detailed theoretical explanation of the observed
blackbody spectrum by introducing the hypothesis that the atoms vibrating at a
frequency v in a material could only radiate or absorb energy in discrete or quantized
packages proportional to the frequency:

E, = nhv = nfiw n=0,1,2,... (4.1)

where 7 is an integer used to express the quantization, / is Planck’s constant, and
h = h/2x is the reduced Planck’s constant, obtained by matching theory to experi-
ment and is called Planck’s constant. This also means that the energy associated
with each mode of the radiated electromagnetic field at a frequency v did not vary
continuously (with an average value kT) but was an integral multiple of sv. Planck
then made use of the Boltzmann probability distribution to calculate the average
energy associated with each frequency mode. This Boltzmann distribution states
that the probability for a system in equilibrium at temperature 7 to have an energy
E is proportional to e “*" and can be expressed as:
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e—En/loT

P = s~ e
E

(4.2a)

and is normalized because the total probability after summation over all possible
values of E has to be unity. Taking into account the quantization condition in
Eq. (4.1), the average energy <E> associated with each frequency mode v can thus
be written as:

00
Z (nhl/)efnhu/ka
n=0
(E) = ZEHP(En) = 50
E, Z efnhu/k;,T
n=0

- hv
- ehu/kT —1 :

(4.2b)

Therefore, after multiplying by the number of modes per unit volume and
frequency 8’6’52, we obtain the distribution of energy radiated by a blackbody at
frequency of v in this model:

872 hv

uv,T) = 3 ikl _ |

(4.2¢)

This expression is found to be in good agreement with experimental observations.
Actually, there is apparently no other physical law which fits experiments with a
higher degree of precision. In the limit of small frequencies, or long wavelengths,
this relation simplifies into the Rayleigh-Jeans law because we can make the
approximation:

ST T

We can thus see that the classical equipartition law is no longer valid whenever
the frequency is not small compared with k,7/h. Moreover, this expression shows
that high-frequency modes have very small average energy.

This example of the blackbody radiation already shows that, for atomic dimen-
sion systems, the classical view which always allows a continuum of energies is
incorrect. Discrete steps in energy, or energy quantization, must occur and is a
central feature of the quantum approach to real-life phenomena.

4.1.2 The Photoelectric Effect

In 1902, Philipp Lenard studied the emission of electrons from a metal under
illumination. And, in particular, he studied how their energy varied with the intensity
and the frequency of the light.

A simplified setup of his experiment is schematically depicted in Fig. 4.1. It
involved a chamber under vacuum, two parallel metal plates on which a voltage was
applied. Light was shone onto a metal plate. The electrons in it were then excited by
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ammeter

vacuum

v
= Light

Metal
plates

Fig. 4.1 Simplified experimental setup used by Lenard. A chamber in vacuum contains two
parallel metal plates on which a voltage is applied. Light shining onto a metal plate gives enough
energy to the electrons of the plate to make them leave the plate and be accelerated by the electric
field

Fig. 4.2 The work function free electrons
of a metal, denoted ®,,,, is the
minimum amount of energy
that an electron needs to
acquire to leave the metal

@, =metal work
function

this incident light and could gain enough energy to leave the metal surface into the
vacuum. This was called the photoelectric effect. These electrons can then be
accelerated by the electric field between the metal plate and reach the opposite
plate, thus leading to an electrical current that can be measured using a sensitive
ammeter.

It was known at the time that there existed a minimum energy, called the metal
work function and denoted by ®,,,, which was required to have an electron break free
from a given metal, as illustrated in Fig. 4.2. One had to give an energy E > ®,, to an
electron in order to enable it to escape the attraction of the metal ions.

Example

Q: In the photoelectric effect, the stopping potential V;, which is the potential
required to bring the emitted photoelectrons to rest, can be experimentally
determined. This potential is related to the work function ®,, through
qVy = % — @, where 1 is the wavelength of the incident photon. For a photon
with a wavelength of 2263 A, incident on the surface of lithium, we experi-
mentally find V; = 3.00 V. Determine the work function of Li.

A: Using the above formula, we get:



4.1 The Quantum Concepts 89

D, ZT_CIVO
62617 x 107%)(2.99792 x 108
_ (6628 ><2223 x)io_gf, 2x10) (1.60218 x 1077) (3)

=3.97x 1077
=2.48eV

As his light source, Lenard used a carbon-arc lamp emitting a broad range of
frequencies and was able to increase its total intensity a thousandfold. With such a
powerful arc lamp, it was then possible to obtain monochromatic light at various
arbitrary frequencies and each with reasonable power. Lenard could then investigate
the photoelectric effect when the frequency of the incident light was varied. To his
surprise, he found that below a certain frequency (i.e., certain color), no current
could be measured, suggesting that the electrons could not leave the metal any more
even when he increased the intensity of light by several orders of magnitude.

In 1905, Albert Einstein successfully interpreted Lenard’s results by simply
assuming that the incident light was composed of indivisible quanta or packets of
energy, each with an energy equal to hv where & is Planck’s constant and v is a
frequency. He called each quantum a photon. The electrons in the metal could then
receive an energy E equal to that of a quantum of light or a photon, i.e., E = hv.
Therefore, if the frequency v was too low, such that £ = hv was smaller than ®,,, the
electrons would not have enough energy to escape the metal plate, independently of
how high the intensity of light was, as shown in Fig. 4.3. However, if the frequency
was high enough, such that E = hv was higher than ®,,, electrons could escape the
metal. Albert Einstein won the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.

It is interesting to know that an American experimental physicist, Robert
Millikan, who did not accept Einstein’s theory, worked for 10 years to show its
failure. In spite of all his efforts, he found a rather disappointing result as he
ironically confirmed Einstein’s theory by measuring Planck’s constant to within
0.5%. One consolation was that he did get awarded the Nobel Prize in Physics in
1923 for his experiments!

Metal work hv
function () JITTIN W N

E=hv<®,, metal plate

Fig. 4.3 Schematic diagram of the escape mechanism of an electron in the metal plate receiving a
photon with energy hv. If the photon energy is lower than the work function, the electron does not
escape. If the photon energy is higher than the work function, the electron receives enough energy to
reach the vacuum level and leave the metal
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4.1.3 Wave-Particle Duality

The previous discussions on the Bohr atom in Chap. 1, the blackbody radiation and
the photoelectric effect, led to the conclusion that the electromagnetic radiation has a
quantum nature because it exhibits particle-like properties.

In 1925, Louis de Broglie conjectured that, since the electromagnetic radiation
had particle-like properties, particles (e.g., electrons) should have wave-like
properties as well. This was called the wave-particle duality. He postulated that a
particle with a momentum p can be viewed as a wave with a wavelength given by:

A » (4.3)

This relation establishes the relationship between a particle and a wave in nature.

This concept, as well as the others introduced in the previous examples, clearly

proves that classical mechanics was limited and that a new theory was required

which would take into account the quantum structure of matter, electromagnetic

fields, and the wave-particle duality. In 1927 such a theory was created and called
wave or quantum mechanics (Liboff 1998; Davydov 1965).

4.1.4 The Davisson-Germer Experiment

The first complete and convincing evidence of de Broglie’s hypothesis came from an
experiment that Clinton Davisson and Lester Germer did at the Bell Laboratories in
1926. Using an electron gun, they directed beams of electrons onto a nickel crystal
plate from where they were then reflected, as schematically depicted in Fig. 4.4.
A sensitive screen, such as a photographic film, was put above the nickel target to get
information on the directions in which the electrons reflected most. On it, they
observed concentric circular rings, showing that the electrons were more likely to
appear at certain angles than others. This was similar to a diffraction pattern and
confirmed that these electrons had a wave-like behavior.

Sensitive screen—,

Nickel Plate —»

Fig. 4.4 Schematic of the experimental setup in the Davisson-Germer experiment. A beam of
electrons is directed on a nickel plate from which the electrons are reflected. They then hit a
sensitive screen and create a ring pattern



4.2 Elements of Quantum Mechanics 91

Fig. 4.5 (a) Constructive diffraction and (b) destructive diffraction condition for the waves
reflected from a crystal surface. In the constructive diffraction situation, 2d sin (8) = nd, where d
is the distance between two planes, 4, 6 are wavelength and angle to the normal, respectively, n is an
integer, the waves are in phase, whereas in the destructive diffraction configuration, the waves have
opposite phases

Analyzing the resulting pattern and the geometry of the experiment, in particular
the angles of incidence and reflection, they found that the positions of the rings
corresponded to angles such that two waves reflected from different atomic layers in
the crystal were in phase, i.e., had their phases different by an integer multiple of
360°, as shown in Fig. 4.5a. The darkest areas corresponded to the situations when
the reflected waves were out of phase, i.e., their phases were different by an odd
integer multiple of 180°, thus canceling each other, as shown in Fig. 4.5b. By
quantifying the positions of the rings, Davisson and Germer were able to confirm
the de Broglie relation given in Eq. (4.3).

4.2 Elements of Quantum Mechanics

In this section, the essential quantum mechanics formalism and postulates and their
mathematical treatment will be introduced. Their purpose will be to provide a
general understanding of the behavior of electrons and energy band structures in
solids and semiconductors, as discussed in subsequent sections.

4.2.1 Basic Formalism

The contradictions encountered when applying classical mechanics and electrody-
namics to atomic processes, €.g., processes involving particles of small masses and
at small separation from other particles, could only be resolved through a fundamen-
tal modification of basic physical concepts. The formalism which enabled the
combining of the particle-like and wave-like properties of matter was created in
1920s by Heisenberg and Schrodinger and was called quantum mechanics, whose
basic formalism and postulates we will now review.



92 4 Introduction to Quantum Mechanics

1. The state of a system can be described by a definite (in general complex)
mathematical function ¥(x, y, z, f), called the wavefunction of the system, which
depends on the set of coordinates (x, y, z) of the quantum system and time ¢.

2. The wavefunction is a solution of the time-dependent Schrodinger equation (SE):

oY t
ih% = HY¥(x,y,2,1) (4.4a)
where the operator H is called the “Hamiltonian” of the system and represents the
total energy of the system in the form of mathematical operators. The sum of the
kinetic and potential energy operator which make up the Hamiltonian are given by:

h2
H=—V?>+U t 4.4b
o T (x,y,2,1) (4.4b)

Note that the first term represents the kinetic energy of the particle and is a differen-
tial operator which acts on the wavefunction. The second term, the potential
energy, keeps its classical form. One can think of the action of H on the
wavefunction to be one of “measurement” of the total energy of the system.

3. The kinetic energy term is written in terms of the operator V> which is called the
Laplacian and is defined in orthonormal coordinates in three dimensions by:

MW (x,y,2) N 0¥ (x,y,2) N 0°¥(x,y,2)

2 _
v ly(xmyv Z) - axz ayz azz

(4.4¢)

U(x,y,z,t) is the potential energy of the system considered, 7 is Planck’s constant, and
i is the complex number such that > = — 1.

The next principle of quantum (SE). Having solved the SE and found the
wavefunctions, we have the following properties:

4. The probability that a physical measurement will result in values of the system
coordinates in a volume dxdydz around (x, y, z) at a time ¢ is given by I¥(x, y, z, t)I2
dxdydz.

5. The sum of the probabilities of all possible values of spatial coordinates of the
system must be, by definition, equal to unity:

/ ¥ (x,, 2. 1) Pdxdydz = 1 (4.5)

This equation is the normalization condition for the wavefunction.
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4.2.2 General Properties of Wavefunctions and the Schrodinger
Equation

The wavefunctions solution of the Schrodinger equation must satisfy a few
properties, most of which are direct consequences of the mathematical formalism
from which such functions are constructed.

The main property which will be used in the rest of the text is that the
wavefunction and its first derivative must be finite, continuous, and single-valued
in all space even if the system under consideration contains a surface or interface
where the potential U(x,y, z) has a finite discontinuity. But, in the case when the
potential becomes infinite beyond this surface, the continuity of the derivative of the
wavefunction does not hold anymore. This means that a particle cannot penetrate
into a region where an infinite potential exists and therefore that its wavefunction
becomes zero there.

Note In classical physics the state of a system of particles is known when at any
given time “t” we know all the spatial coordinates of the particles {ryt)} and all their
momenta {p(t)}. We can predict completely what is going to happen next when we
know all the forces acting on the particles because we know the particles must obey
Newton’s laws. In principle we can therefore, with the knowledge of an initial state
at time t = 0, compute and predict the exact trajectories that the particles will follow
in space and know the momenta at each time. Now consider the difference to
quantum, mechanics. In quantum mechanics, all we can possibly know about the
system is its wavefunction ¥Y(x, y, z, t) which is obtainable by solving the Schridinger
equation (SE) given by Eq. (4.4a). Solving the SE means solving a differential
equation with a given initial condition and only allowing the solutions which satisfy
the differentiability and continuity conditions mentioned above. Now let us consider
the next set of principles.

Physical Observables and Measurement Introduction

The next principal of quantum mechanics is that for any physical variable, for
example, position, momentum energy, etc., one can associate an operator f which
“acts” on a wavefunction, i.e., differentiates, integrates, or simply multiplies it with
another function. This operator represents a physical observable. It is like an act of
measurement on the system. The mathematical operator in quantum mechanics
which represents a physical observable is known and has been extracted by using
a procedure which we do not need to discuss at this stage. The most important ones
are listed in Table 4.1.

Table 4.1 Examples of common physical quantities and their associated operators

Physical quantity Operator Expectation value

X, y, z (coordinates) X, )2 <> = [ WxWdxdydz
hd hd hd _ [y*ho¥

Px» pya Pz (momentum) TIEC’ 72%, 72/% < Dy >= j ¥ YFdXdde

E (energy) ind < E >= [Y*ihd¢ dxdydz
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Note In order to proceed further, we are first going to consider situations in which
the Hamiltonian of the system does not depend on time. This is the most common
situation encountered in practice. It is the situation where we have a closed system
and the total energy is conserved. Here we will learn how to extract further
information from the solution of the Schrodinger equation and then proceed to
some practical examples. At a later stage in Chap. 10, we will also consider time-
dependent perturbations and return to consider the solutions of the time-dependent
Schrodinger equation.

4.2.3 The Time-Independent Schrodinger Equation

A particular and important situation for the Schrodinger equation is that for a closed
system in a time-independent external field. Then, the right-hand side of Eq. (4.4a)
does not contain time explicitly. In this case, the states of the system which are
described by the wavefunction W(x, y, z, f) are called stationary states, and the total
energy of the system is conserved (in time).

Let us now operate on the wavefunction with the energy operator expressed in
terms of the time derivative. The action of ih% on the wavefunction is like asking the
question what is the energy of the system? Since we are assuming that energy is a
constant, we find that the following relation must be satisfied:

oY t

P ACA)
ot

But mathematically this means that the wavefunction ¥(x,y,z,f) must be a

product of a function ¢(x,y,z) which solely depends on coordinates and an expo-
nential function which depends only on time, such that:

=E¥(x,y,2,1) (4.6)

¥(x,y,2,t) = @(x,y,2)exp <—%Et) (4.7)

This relation follows also directly from the theory of differential equations when

the operator H is independent of time. So inserting this expression into the
Schrddinger equation in Eq. (4.4a) and eliminating the exponential term on both
sides of the equation, we obtain:

h2
7% VZQO()C, Y, Z) + U('x7 Y, Z)(p(xa Y, Z) = E¢()C7y, Z) (48)

which can be rewritten more concisely as:

H b, =Eud, (4.9)

This last expression is called the time-independent Schrodinger equation. The
label “n” denotes the fact that the differential equation can have a spectrum of
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solutions each corresponding to an allowed energy state of the system E,, with its
corresponding wavefunction ¢,,. When we know all the wavefunctions ¢,,, we also
know all the possible allowed energy levels of the system. Now we can say that
when we measure the energy of the system, we must find the system in one of these
eigenstates. We note that when the system is in a stationary state, the time depen-
dence is only a phase factor that means it does not have any effect of the probability
distribution. The spatial density is not changing or evolving in time; this is what one
would expect.

In the time-independent picture, the total energy operator is H which is also called
the Hamiltonian of the system. Even though the total energy of the system does not
change with time, the system can be in many different stationary energy states, called

eigenstates ¢,,. Each eigenstate has its own eigenvalue or energy E,,. The action of H
is again like an act of measurement of the energy state of the system which can
produce, or one also sometimes say forces, the system to adopt an allowed energy
state. Once the system has been prepared in an eigenstate ¢, with eigenvalue E,, it
will stay there forever unless it is disturbed by a perturbation which changes its total
energy. So in quantum mechanics, and this is indeed fascinating, time may elapse,
but the system stays in its eigenstate unless during this elapsing time, it also gets
disturbed. So in quantum mechanics, one can say that when one considers a closed
system in an eigenstate, time does not elapse for that eigenstate; it does not age,
unless something happens which can change the state of the system.

We shall come back to this again later when we consider the “Heisenberg
uncertainty principle.”

Physical Observables and Measurement

What we did with the energy operator, we can now do with other physical
observables. We first recall the following: for any physical variable, for example,
position, momentum energy, etc., one can associate an operator f which “acts” on a
wavefunction, i.e., differentiates, integrates, or simply multiplies it with another
function. Like H the Hamiltonian for the total energy, this operator represents a
physical observable. The most important ones are listed in Table 4.1. Every physical
observable, or what is now operator, has a set of eigenfunctions and corresponding

eigenvalues. Thus the operator f, for example (hat denotes that it is an operator),
acting on the allowed wavefunction produces a number f; or “eigenvalue.” The
eigenvalue corresponds to a possible value of the observable, when the wavefunction
on which it operates is an “eigenstate” or also called “eigenfunction” of this operator,
in other words if it satisfies the so-called eigenvalue equation:

f¢f :ff¢f (4~10)

We say ¢y is an eigenfunction of f and f; the corresponding eigenvalue.
Eigenfunctions belonging to different eigenvalues are orthogonal; this means that
their inner product is equal to 1 when the wavefunctions belong to the same
eigenvalue, and O otherwise, or mathematically expressed:
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/dXdydqu;kl (xay7 Z)¢f2(x7y7 Z) = 5flf2 (411)

Another property is that eigenfunctions of physical observables form a complete
set. This means that they can be regarded as an infinite set of vectors which span the
so-called Hilbert space such that any function y can be represented as a linear
combination of these eigenfunctions:

)((x,y,z)ZZaf(ﬁf(x,y,z) (4123')
f

Operators which are physical observables must have the property that the expec-
tation value of the operator is a real number. Such operators are called Hermitian
operators. For Hermitian operators it follows that the so-called matrix element of an
operator f taken between two different eigenstates:

fi= /d T OFfO; (4.12b)

satisfies the relation f; = (f;)™.

What we said about physical observables includes of course also the total energy
operator H. The eigenstates of energy ¢, form a complete set and are orthogonal.
Operators can have simultaneous eigenstates but not always. For example a free
particle moving unhindered in space has eigenstates of momentum and energy which
are the same functions. A particle moving in a box has energy eigenstates, but not
momentum eigenstates. We shall see this later more clearly when we solve these
problems explicitly.

Admixture of States

Let us imagine we have prepared the system in a stationary state or eigenstate. Then
at some time later, it is disturbed by a perturbation which constitutes necessarily a
time-dependent change, for example, a light pulse. The system no longer stays in its
eigenstate but now goes into an admixture of eigenstates such as:

Y(x,y,z,t) = Z an®,(x,y,2).eXp <—%Ent> (4.13)

6. The system need not be in a pure state anymore or eigenstate of an observable; it
can be in a superposition of such states. In which case if one undertook a
measurement, one would find it in any one of the combination of such states as
in Eq. (4.13). This leads us to the next definition.

7. The mean value or expectation value of a physical quantity represented by an

operator fis what is measured experimentally, is denoted <f >, and is given by:
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<j?>: /‘I‘(x,y7 2,0)*f¥(x,y,z,t)dxdydz (4.14)

where W(x,y, z, f) is the wavefunction of the system considered and (. . )" stands for
complex conjugate. Thus if:

‘P()@y’ Z, t) = Cfllel(xvya Z, t) + sz‘Pf2(xay7 2, t) (415)

the expectation value <f> is given by:

<]/;>: |Cf] {zfl + |Cf2}2f2 (416)

Examples of physical quantities, their associated operators, and expectation
values are given in Table 4.1.

Thus one can interpret Icﬂlz, Icle2 as the probability of finding the particle in the
state f and f,, respectively, and indeed we must also have Icﬂl2 + Icﬂl2 = 1.

The problem one is confronted with after the system has been disturbed is to find
the coefficients a,, of admixtures in the sum given by Eq. (4.13). This is done by
solving the time-dependent Schrodinger equation in the presence of the disturbance
and with given initial conditions as shown in Chap. 10.

4.2.4 The Heisenberg Uncertainty Principle

This very important principle says that one of the consequences of quantum
mechanics is that one cannot have absolute knowledge of time and energy simulta-
neously and that this is not a theoretical abstraction but an experimental fact which is
verified every day. One of the Heisenberg uncertainty principles (HUP) is therefore:

AEAt ~ (4.17)

In other words if one knows the energy E to great accuracy, then one has a large
uncertainty At, in time ¢ and vice versa. Let us immediately apply this to a stationary
state in energy, where clearly by definition, we know the energy level of the particle
with absolute accuracy. The meaning of Eq. (4.17) is that in this case, we can say
nothing about the time. Indeed the time dependence of the wavefunction as shown
by Eq. (4.7) is only a phase, which has no consequence on the probability distribu-
tion, for example. Indeed, as we pointed out before, when in an eigenstate of energy,
the particle does not evolve in time. It stays in that same energy level until it is
disturbed by some perturbation. The perturbation makes the Hamiltonian change in
time, and this allows the particle to admix with other eigenstates of different energy,
which is the same thing as saying that the system can now evolve in time. The HUP
also applies to momentum and space. If one knows the absolute position of a particle
in space, then one cannot say anything about its momentum and vice versa, so we
also have:
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Ap,Ar, ~h (4.18)

where p,; r, are x,y,z components of momentum space, respectively. We shall see
later in more detail that one of the consequences of this rule is that a particle which is
confined to a finite size box cannot have zero average momentum or kinetic energy.

4.2.5 The Dirac Notation

A convenient way of writing eigenstates and matrix elements or wavefunction
overlap integrals was invented by Dirac. Here are some examples of the Dirac
notation from which one can deduce the structure:

—

‘P,,(r) — |n)
T,,,k(?) — |l’l,k>

o0
/d7 PEAY,, = <n

—00

(4.19)

Alm)

In Eq. (4.19), the right-hand side Im) is called the “Ket vector.” The left-hand side
(nl is called the “Bra vector.” When one considers the expectation value of the
product of two operators, one can expand over a complete set of eigenstates and
write (m,/ are arbitrary indices):

(i) s o

> lm)(m| =1 (4.21)

n> (4.20)

The operator P,, = |m)(m| is called a projection operator because it projects a
wavefunction onto a “part” or component of that wavefunction, i.e., it tells us how
much of the state ¢,, is in the wavefunction ¥:

P, = (m||¥)|m) = ¢,,(7) /d F 4 (4.22)

Assuming, as must be generally true, that the wavefunction must be in a linear
combination of a complete set of basis states or eigenvectors:

Y= all) = ag (4.23)
! !
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Then it follows by substituting Eq. (4.23) into Eq. (4.22) using the orthogonality of
the ¢,,, and taking the sum, that the total projection reproduces the wavefunction
again:

S P =Y [ ®)m) =3 4, (7) / ATV By = iy =¥ (424)

4.2.6 The Heisenberg Equation of Motion

There is a way of describing the relationship between operators and the time
dynamics in quantum mechanics which is very elegant and most useful and called
the equation of motion approach. To get there we first recall that the time-dependent
Schrddinger equation can be written as:

. 0¥(x,y,2,1)

ih— =H ¥(x,y,z,1) (4.25)

And that the expectation value of an operator Alis by definition:
<A>= /‘I‘(x,y7 z,1)* X‘P(x,y, z,1)dxdydz (4.26)

Now consider how this expectation value changes with time, i.e., its time
derivative:

d -~ 0 ~
— <A>= / a—‘{‘(_x7y’ <y t)* A lP(X,y, 2y t)dXdde
dt t > (4.27)
+ [®(x,y,2,0)* A adxdydz
The right-hand side is also in Dirac notation:
d <X > i S~~~
=—(¥|HA — AH |¥ 4.28
= = ) (4.28)
[H,A] =HA — AH (4.29)
where the last line is, by definition, the commutator and written as:
d<A |~
d<a~>_1 [H,A] (4.30)

dt fi

which is called the equation of motion of the operator A and is equivalent to the
statement that if the operator commutes with the Hamiltonian, then it is a constant of
the motion, which means it does not depend on time. The statement is that the
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eigenstates of H are also eigenstates of A. One interesting and very important result
is, also, that one can define the time derivative of an operator by using the commu-
tator with the Hamiltonian. For example, the velocity operator is indeed:
dx i -
E:%[H,x] (4.31)
For a free particle Hamiltonian, one can check that the right-hand side of
Eq. (4.31) is indeed fih%%. Equation (4.31) is of great significance in theoretical
physics and has no direct analogy in classical physics; it only has a formal analogue
called the Poisson Bracket. In quantum mechanics, Eq. (4.31) is, in particular, a
statement that the velocity operator depends on the structure of the Hamiltonian and
is not always just given (x-direction) by the operator—ih% %. For example, when
there are spin-orbit forces or magnetic fields involved, then the velocity operator
involves also spin-dependent or magnetic field-dependent terms (we shall see this
later in Chap. 5 and also again in Chap. 12). This has no simple analogue in classical

physics. Processes or terms contained in H which act on the position of the particle,
and therefore do not commute with it, do not just give new energy levels but also
give rise to new contributions to the definition of the velocity operator itself. Note
that using Eq. (4.31), we can also define acceleration operators, for example, a,
where a, = £[H,v,]. Equation (4.31) is the right and generally valid way of
identifying the velocity operator in quantum mechanics. We shall see later that in
magnetic field, the velocity operator is different from the free particle form given in
Table 4.1; it has an extra term which depends on the field.

4.3 Discussion

As a first summary we note that whereas in classical mechanics one can in principle
know energy, position, momentum, and time of a system simultaneously and with
absolute accuracy, the same is not true in quantum mechanics. In quantum mechan-
ics one can only at best know the wavefunctions which are the solutions of the
Schrodinger equation (SE). Everything that can be known about the system must be
deduced from the wavefunctions. This includes the probability distribution in space
and the expectation value of the physical observables. Thus in quantum mechanics,
the totality of solutions of the SE as we have seen form a complete set; in other
words, the system can under all circumstances be found in a linear superposition of
this complete set of eigenfunctions, each one belonging to an eigenvalue of energy.

Similarly the thermal average of a physical observable Ais given by the generalized
Z e*E,,/k;,TAnn

n

W which involves the
67 n b
n

form of the Boltzmann distribution <A>=

expectation values of the operator “A” A, over all the eigenstates of energy labeled
by n. Unlike in classical mechanics where physical variables are defined irrespective
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of the fact that they can be measured or not, in quantum mechanics, only measurable
parameters are meaningful. These are the physical observables, and each one has its
own operator representation. Measuring the value of a physical observable means
calculating the expectation value of the operator, given that one has the
wavefunction of the system. If the system is in a pure state, in other words in an
eigenstate, then the outcome of this operation, or act of measurement, is the
corresponding eigenvalue. In general, however, the system is in a superposition of
eigenstates, and the outcome of the measurement is the weighted superposition as
given by Eq. (4.13).

Note The notion that in quantum mechanics, and thus in natural sciences, only
measurable parameters are meaningful is also of deep philosophical significance,
and the student should think about it carefully.

4.4 Simple Quantum Mechanical Systems
4.4.1 Free Particle

The simplest example of solution of the Schrodinger equation is for a free particle of
mass m and energy E, without external field and thus with a constant potential energy
which can then be chosen to be zero U(x,y,z) = 0. For further simplicity, we can
restrict the mathematical treatment to the one-dimensional time-independent
Schrodinger equation. Eq. (4.8) can then be simplified to:

7 d*¥(x)
2m  dx®

+E¥(x) =0 (4.32)

The solution of Eq. (4.32) which happens to be an eigenstate of both energy and
momentum is:

¥(x) = Ae™ (4.33)

where A is a constant and k = 2/1—” is the wavenumber. By applying the x-momentum
operator on the right-hand side of Eq. (4.33), one can see that this state corresponds
to a free particle state moving in the positive x-direction with momentum 7#k.
Replacing the expression of the wavefunctions into Eq. (4.32), one obtains:

nk?
— =, V) + E¥(x) =0 (4.34)
which has a nonzero solution for W(x) only if:
ek
~2m 8a'm

(4.35)

or conversely:
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Fig. 4.6 The energy- E
momentum relationship for a
free particle has a parabolic
shape

k=) (4.36)

and is plotted in Fig. 4.6. The particle momentum, as defined also by the expectation
value, can be expressed in quantum mechanics as:

(p) = hk (4.37)
The energy of the free particle depends therefore on its momentum as E = %,

which is analogous to the case in classical mechanics. We can think of the system as
very large and of size 2 L {—L, L), as L becomes infinite, so that the normalization

constant A is given by A = \/%

4.4.2 Degeneracy

The eigenstates with + and —k have the same energy; one says that the level k is
twofold degenerate. Whenever an energy eigenstate has more than one quantum
number which gives the same energy, one says that the level is degenerate.

4.4.3 Particle in a 1-D Box

Another simple and important illustration of quantum mechanics concepts can be
obtained by considering a particle whose motion is confined in space. For simplicity,
the analysis will be conducted in one dimension. It involves a particle of mass m and
an energy E which evolves in a potential U(x), shown in Fig. 4.7.

This potential can be mathematically expressed such that:
{U(x) =00 forx < Oandx > a (4.38)
Ux)=0 for0<x<a

In such a potential, the properties of the wavefunctions and Schrédinger equation
lead us to:
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Fig. 4.7 Potential energy E
corresponding to the 1-D box 00 °
X
0 a
Y(x)=0
7 2W(x) forx < Oandx > a (4.39)
— +E¥Y(x)=0 for0<x<a
2m  dx*

which means that the solution W(x) inside the box has the same expression as for the
free particle in Eq. (4.33) and can be rewritten as the sum of sin and cos functions for
simplification:

W(x) = Asin (kx) + Bcos (kx) (4.40)
but with the boundary conditions:
Y(0)=¥(a) =0 (4.41)

. .. . . . 27[.
Expressing these conditions using Eq. (4.40), we get, with k = =&

B=0
{ Asin (ka) =0 (442)

Since the wavefunction cannot be identically zero in the entire space, the follow-
ing condition must be satisfied:

sin(ka) =0 or k=k, = ng wherenis an integer equal to + 1, £2, ...

Consequently, in contrast to the free particle case, not all values of the
wavenumber k are allowed, but only discrete values are allowed. n can also be
viewed as a quantum number of the system. Using Eq. (4.42), we can see that the
energy of a particle in a 1-D box is also quantized:

22
, hm

E,=n
" 2ma?

(4.43)

One can see that when @ — o0, the spacing between the quantized energy levels
tends toward zero and a quasi-continuous energy spectrum is achieved, as for a free
particle. Nevertheless, the energy levels remain strictly discrete (this is why we talk
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about a “quasi”-continuous energy spectrum). Combining Eq. (4.40) and Eq. (4.42),
we can write the wavefunction as:

¥, (x) = Asin (@) (4.44)
a

The value of A can be computed by substituting this expression into the normali-
zation condition expressed in Eq. (4.5). One easily finds that:

2
A=1/- 4.45
- (4.45)
so that the complete analytical expression of the wavefunction solution of the infinite
potential well problem is:

W, (x) = {/sin (@) (4.46)

These functions consist of standing waves as depicted in Fig. 4.8b. One can think
of the particle in a 1-D box as bouncing on the walls of the box and the probability of
finding a particle at x in the box is shown in Fig. 4.8c.

* Unlike the free particle case, the eigenstates of energy are no longer eigenstates
of momentum. Operating with —ih% on Eq. (4.46) does not give back the same
function. Classically the particle is bouncing from the sides of the box and keeps on
changing its momentum. The expectation value of the momentum can be evaluated
as usual from Eq. (4.26) and can be verified to be zero.

Example
Q: Find the energy levels of an infinite quantum well that has a width of a = 25 A.

2 W2
2mgya®’

Al The energy levels are given by the expression E, = n where my is the

free electron rest mass. This gives numerically:

(1.05458 x 1034)° 2
2(0.91095 x 1073) (25 x 10710)?
=9.63n> x 1072']
=0.060n> eV

E, =n?

4.4.4 Particle in a Finite Potential Well

The infinite-potential analysis conducted previously corresponds to an unrealistic
situation, and a finite potential well is more appropriate. Under these conditions, the
potential in the Schrodinger equation is shown in Fig. 4.9 and mathematically
expressed as:
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Fig. 4.8 (a) Energy levels, (b) wavefunctions ¥(x), and (c) I‘I’(x)l2 which is proportional to the
probability of finding a particle at a position x in a 1-D quantum box, for the first four allowed levels

Fig. 4.9 Potential energy in a E
finite potential well
Uo
X
0 a
U(x)=Uy>0 forx < Oandx > a (4.47)
Ux)=0 for0 <x<a '

In such a potential, the properties of the wavefunctions and Schrédinger equation
lead us to:
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W d*Y
= gx) + (E—Up)¥(x) =0 forx < Oandx > a
2m  dx
o (4.48)
> dxgx) +E¥(x) =0 forO0<x<a

We see that two distinct cases must be considered when solving this system of
equations. The first one is when 0 < E < U, and the other is when U, < E.
In the case of 0 < E < Uy, Eq. (4.48) can be rewritten as:

d*y
Tgx) —a*¥(x) =0 forx < Oandx > a
dZ;‘ (4.49)
—gx)+k2'11(x) =0 for0<x<a
dx
by defining:
2m(Up — E
o= [PU=B
4.
2mE (4.50)
VT
The general solution to Eq. (4.49) is then:
PY_(x) =A_e™ +B_e ™ forx <0
Wo(x) = Ag sin (kx) + By cos (kx) for0 <x <a (4.51)
¥, (x) =A e +Be ™ forx > a

The boundary conditions include the finite nature of ¥(x) for x — oo and x —

—00, the continuity of W(x), and its first derivative %(x) at points x = 0 and x = a,

which can all be mathematically summarized as:

¥Y_(—o0) =0 ¥y (+00) =0

Y_(0) = ¥, (0) Po(a) = ¥+ (a) (4.52)
d¥_ d¥, d¥ d¥,
w0 O @@

Utilizing Eq. (4.52), we obtain:
A+ - B_ = 0
A_ =By Ag sin (ka) + By cos (ka) = Bye ™ (4.53)
aA_ = kAo kAo cos (ka) — kB sin (ka) = —aB e ™



44 Simple Quantum Mechanical Systems 107

From these equations, we see that B, can be easily expressed in terms of A, and
we thus obtain two equations involving only B,:

Ag [sin (ka) + gcos (ka)} —Bile™] =0
(4.54)
Ag [k ( cos (ka) — Esin (ka))} + Bi[ae ™| =0

a

A nonzero solution for Ay and B,, and thus a nonzero wavefunction, is possible
only if:

(K — o) sin (ka) — 2ak cos (ka) = 0 (4.55)

This condition can be rewritten into:

2ak
By introducing the constants:
2mU
ap — h2
E (4.57)
=— 0 1
= 0<g<1)
we can first rewrite Eq. (4.50) as:
a=ayp/1—-¢
{ k = ap/T (4.58)

and therefore:

-1

tan (aao\/z) = 27”2?1_4’) (4.59)

The only variable in Eq. (4.58) is £, and any value that satisfies leads to a value of
E, k, and  and thus a wavefunction ¥(x) solution of the Schrodinger equation for the
finite potential well problem in the case 0 < E < U,

Eq. (4.58) is easiest solved graphically. For example, Fig. 4.10 shows a plot of the
two functions on either side of Eq. (4.58). The intersection points correspond to
values of { which satisfy Eq. (4.58), and the number of intersection points is the
number of bound states (i.e., wavefunction and energy level) in the finite potential
well. In the example depicted in Fig. 4.10, there are two solutions. As the well
potential U, increases, @, increases as defined by Eq. (4.57), and thus, a higher
number of tangent function branches can be fitted for { between 0 and 1 (left-hand
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Fig. 4.10 Graphical representations of the functions on the left-hand side (LHS) and right-hand
side (RHS) of Eq. (4.59), shown in dashed and solid lines. The intersections between these curves

yield the solutions of the finite potential well problem

Fig. 4.11 Quantized energy
levels in a finite potential well
(solid lines) as a function of
potential well depth. For
comparison, the energy levels
of the infinite well case are
shown in dashed lines for the
quantum well on the left

—

side of Eq. (4.59)). Consequently, the number of intersections solutions for {
increases too, which means that there are more bound states in the well. This is
schematically shown in Fig. 4.11. This can be understood intuitively because one
can “fit” more bound states as the depth of the well increases.

Because there is only a discrete number of values for £, there is also a discrete
number of energy values E, i.e., the energy levels are quantized similar to the infinite
well potential case. In addition, the quantized values of energy here are found to be
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E
—lv, —
¥.(x)=0
L N ./
_ N,
0 a

Fig. 4.12 Illustration of the tunneling effect in a finite potential well. The wavefunction is
nonzero outside the potential well. This means that there exists a nonzero probability of presence
for an electron outside the potential well is even when its energy E is lower than the potential barrier
height U,

lower than those in the infinite well potential case, as shown with the dashed lines in
Fig. 4.11.

In addition to the quantization of energy levels, there is another important
quantum concept illustrated by the finite potential well: the phenomenon of
tunneling. Indeed, a nonzero wavefunction exists in the regions x < 0 and x > a,
which means that the probability of finding a particle there is nonzero. In other
words, even if a particle has an energy E lower than the potential barrier U, it has a
nonzero probability of being found beyond the barrier. This is schematically shown
in Fig. 4.12.

In the case of E > U, the solution of Eq. (4.49) can again as before be written as a
sum of a cosine and sine term, for each of the regions defined by Eq. (4.51). Another
more elegant way to represent the solution is as a sum of two plane waves, one going
to the left and the other to the right. The two plane waves have different wavenumber
k. The boundary conditions include the continuity of the wavefunction ¥(x) and its
first derivative%)(f) at points x = 0 and x = a. Along with the normalization condition
expressed in Eq. (4.11), one can analytically determine the wavefunction. This
analysis would lead to the same result as for a free particle, that is, there is a
continuum of energy states E > Uy allowed.

4.5 Discussion

In this chapter, we have shown the limitations of classical mechanics and the success
of quantum mechanics. The basic concepts and formalism of quantum mechanics
have been exposed, including the quantized nature of the electromagnetic field, the
wave-particle duality, the probability of presence of a particle, the wavefunction, and
the Schrodinger equation. Simple quantum mechanical systems have been analyzed
to understand these novel major aspects associated with quantum mechanics have
been discussed, including the quantization of energy levels and momenta and
tunneling effects.
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4.6 The Harmonic Oscillator

Recall from classical mechanics the motion of a particle moving in a
one-dimensional force field which is linear in the displacement x with force constant

K. Newton’s law gives:
dz
= —Kx (4.60)
"ar

We solve this differential equation by noting that the solution is a simple sine
function where:

x(t) = Asinwot (4.61)
K
wpy = — (4.62)
The total energy is:
E=tmi2slge (4.63)
=5mi” +5Kx .

and constitutes the classical Hamiltonian of the Harmonic oscillator problem. In
quantum mechanics we can rewrite the Hamiltonian by making use of the definition
of the momentum operator and keeping the potential energy as it is, to obtain:

o’ K
H=——+—-x 4.64
2m Ox2 + 2 (4.64)
In order to obtain the energy levels and eigenfunctions of the harmonic oscillator,

we have to solve the Schrodinger equation:

”ot K
HY, — {_2m5 55 }lp —E,%, (4.65)

For the mathematician this is a well-known differential equation which was
solved long before the ideas of quantum mechanics were developed. We shall
therefore here also treat it as a mathematical problem. More detailed developments

can be found in specialized textbooks. The solution of Eq. (4.65) can be written with

¢ =/

W, = AH,(cexp [—"'—} (4.66)
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Table 4.2 The first few n E, ¥,
e e 0w e o)
problem 1 3hiwo/2 A2¢ exp [—¢/2]
2 Shar2 Ay (4% — 2) exp [~¢/2]
3 Thwol2 A3(82% — 12¢) exp [—¢*/2]
4 iwe/2 Ay(16¢* — 48¢% + 12) exp [—c/2]
5 11hwy/2 As(32¢° — 1608 + 120¢) exp [—c/2]

A, = (2'nly/m)

E, = hwo(n + 1/2) (4.67)

where n is an integer which starts at n = 0 and A,, is a normalization constant defined
by the requirement:

/ AP, = | (4.68)
—00

and where the H,, are the so-called Hermite polynomials which are tabulated. The
new variable is related to the spatial variable x by:

c= 1/%x (4.69)

The first few Hermite polynomials are given in Table 4.2 and plotted in Fig. 4.13.
It is interesting to note that in the lowest energy, the ground state is not zero but a
finite number given by #iwy/2. This is called “the zero point vibrational energy.” It is
also a consequence of the Heisenberg uncertainty principle, because it is a manifes-
tation of the fact that when a particle is confined in space by a potential, then its
momentum and thus its energy can never be zero. This is one of the truly exciting
features of quantum mechanics. The exact solution of the harmonic oscillator
problem can be extended to the three-dimensional case without difficulty, provided
the potential V(x,y,z) is separable and a sum of the potentials in the three spatial
directions:

1
V(xy,2) =5 {Kx + K,y + K2} (4.70)

4.7 The Hydrogen Atom

As another most important example of the exact solution of a physical problem in
quantum mechanics is the solution of the hydrogen atom problem, let us write down
the total Hamiltonian of the electron and the proton nucleus with masses m; and m,,
respectively:



112 4 Introduction to Quantum Mechanics

¥, ()
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0.6 +
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Fig. 4.13 The first few normalized wavefunctions of the harmonic oscillator with n = 0, n = 1,
n=2,andn=23

2 2 2
I T

H
2m1 2]"’E2

(4.71)
471'80 7 — ?
1 2

ry and r, and p; and p, are the spatial and momentum coordinates of electron and
proton, respectively. The proton mass is 1000 times heavier, and in any case it is
useful to work in the relative coordinate system. Using the quantum mechanics
operators, Eq. (4.71) becomes:

2
H= h_vflp_

h2 qz
B 2m1

— Viy ¥ = EY. 4.72
2 (4.72)

4dreg

— —
r —r
1 2

where E is the total energy of the system. Now let us define the new center of mass
variables:
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- mlr_; erz?z
R=|X,Y Z|=—"—"=
XY, 2] my + my (4.73)
=i

Now we can write for the partial derivatives:

Vi=V 4=V (4.74)
my
Vo= -V 4=V (4.75)
mi
0 0 0
0 0 0
__mm (4.78)
my + mo

Substituting back in terms of the new coordinates into the original Schrodinger
equation, we have:

h2
" vy

2 2
h V2yp _ q
Z(ml + mz)

 2m drmeo|r|

¥ = £V (4.79)

Now in this form, we see that the differential equation is separable in terms of the
relative electron-nucleus, and center of mass motion of the atom, so that the total
wavefunction can be written mathematically as a product:

W(R,7) = ®(R)y(7) (4.80)

Substitute back into Eq. (4.79) and rewrite the total equation in terms of two
separate ones:

hZ

-— = V? R) = E.®(R .
2(my +my) k®(R) = EO(R) (4.81)
P s -\ -
72(m)v w(r) - 4ﬂ€€0rT(r) = Ea(r) (4.82)
E—E,+E,

The center mass motion is free and can therefore be solved immediately:
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®(R) = Cexp [(i/h) P E} (4.83)

where P is the center of mass momentum, C the normalization constant, and the
magnitude of P is related to the center of mass energy by the equation:

7| = Valm +mE. (4.84)

Now let us consider the relative motion of the electron around the nucleus. It is
convenient to work in atomic energy units in which the energy is measured in
multiples of the ionization energy of hydrogen which is the Rydberg unit

4

R = W and we measure the coordinates, i.e., lengths, in units of the Bohr
0

radius ag = %;’f"). When working in terms of these units, we can put 7 = 1; q2 =2;

m = /12 in Eq. (4.82) to find the dimensionless form (we have dropped the index r on
the energy for convenience):

Vi (r) + <E + %}‘P(?) =0 (4.85)

Equation (4.85) has the special feature that it is now an equation involving a
particle moving in a spherically symmetric potential. We can now solve it as a
mathematical problem by exploiting the spherical symmetry of the problem. In
doing so we will naturally encounter the concept of angular momentum.

4.7.1 Motion in a Spherically Symmetric Potential

Given the symmetry of the problem, it is convenient to work with spherical polar
coordinates. The differential Eq. (4.85) can be rewritten using:

x =rsinfcos ¢

y = rsin@sin ¢ (4.86)
z=rcosf

and thus Eq. (4.85) becomes:
10 [/ ,0y 1 1 0( . Oy 1 %y
rzar(’ E) +r_2{ sineaa<5m9%> T Sin?0047

+(£-2) wrop =0

(4.87)

Again, this equation has a separable structure, in which the angular part and the
radial part can be considered to vary independently so that:
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v = R(Y(0,¢) (4.88)

Substituting Eq. (4.88) back into Eq. (4.87) allows us to rearrange the equation
into the form:

(2R g Dol o L L o ,ory, 1 &%
R\ |dr\" 3r PV T Ty singde\ """ 00) T sin20 047

(4.89)

The left-hand side (LHS) of this equation only depends on r, the right-hand side
(RHS), only on the angles. The equation can be satisfied if each side of it is equal to
the same constant Cy, so that:

1d [ ,dR 2 Gol,
12 oY 1 v
in—— — V= _CyY 4.91
{smeae(sm ae> *in20 a¢2} 0 (491)
The angular equation for Y can be further separated by writing:
Y(60,9) = P(O)0(¢) (4.92)
and thus by substituting into Eq. (4.90) and Eq. (4.91), we have:
1 d dpP 1 o
5 {sin 9d€< sin edaﬂ + Cysin?0 = Xy m? (4.93)

In anticipation of the mathematical structure, we have introduced a separation
constant which we have called mz, and this allows us to rewrite the right-hand side of
Eq. (4.93) as:

@
— +m®=0 (4.94)
de

which has a simple solution of the form (normalization will be handled later):

® = exp|Limd)] (4.95)

The LHS of Eq. (4.93) can be conveniently written in terms of a new variable
u = cos 6 giving us:
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N R I

This equation is well known to mathematicians, and, indeed, it is one of those
fortunate facts that they had looked at this type of equation long before they were of
relevance to quantum mechanics and studied them in detail. The scientific commu-
nity would be very much worse off if these solutions had not be found before, and we
had to compute the results numerically. In any case, as it happens, this equation is
known as Legendre’s equation, and it was discovered that it only had bounded and
differentiable solutions if the constant:

Co=1(1+1) (4.97)

where [/ is a positive integer and the values of m are also restricted to the range {—1, —
I+1,.....0,1+1}. Combining Eq. (4.97) and Eq. (4.96), we can now write down the
complete solution of the angular part of the Schrodinger equation as:

Y0, ¢) = A"e™ P/ (cos 0) (4.98)

The P," are called the Legendre polynomials, they are tabulated as special functions,
and A;" are normalization constants which we will now give as the final form:

Y6, ¢) = (—)" /214—;1 % ™ P"(cos 6) (4.99)

In order to complete the solution of the hydrogen atom, we still need the solution
to the radial part R(r). But before doing that, let us first understand the significance of
the angular part.

4.7.2 Angular Momentum

When a system is rotationally invariant, we expect on grounds of symmetry theory,
and classical physics, that the particle moving in such a spherically symmetric field
should have a well-defined angular momentum. So we ask: What is the angular
momentum of an electron moving in the orbital of a hydrogen atom? In order to

answer this question, we first have to find the angular momentum operator L in
quantum mechanics. We do this as with other operators, we use the classical
correspondence principle which says that if:

—~

—

L=r Xxp=—pXxr (4.100)

is the classical angular momentum, then the quantum mechanical operator is simply
given by replacing the r and p by the corresponding values based on quantum
mechanics. Thus, for example:
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no ho
L = APy — YDy = x(l—ay> - y(EC) (4.101)

Then we note that the angular momentum operators in all three directions
commute with the Hamiltonian of the hydrogen atom, i.e., the operators satisfy:

[H,L])=[H,L,] =[H,L]=0 (4.102)

Equation (4.102) implies that eigenfunctions of H are simultaneous eigen-
functions of L. An electron which is in an eigenstate of the Hydrogen atom is also
in an eigenstate of angular momentum. In other words, the particle has both a well-
defined energy and angular momentum. So we ask the question what is the angular
momentum of the electron in the state Y;"(cos#) since we know this to be an
eigenfunction? To answer this question, we make a measurement or apply the
operator L on the wavefunction. It is convenient and easier to work with the square

of the angular momentum rather than the angular momentum itself. So we consider
the operator:

D=L +L+1L (4.103)
and note that:
[*,L] = [L*.L)] = [I*,L;] =0 (4.104)
Also we have that:
[H,L’] =0 (4.105)

It now follows that the energy eigenstates are simultaneous eigenstates of both L,
and Lz, but from vector algebra, it follows also that:

2
LY = 12 [178<sin98—5”> T o (4.106)

sinf#06 00 sin26 060

and this is exactly the same differential form as Eq. (4.91). So from Eq. (4.91) and
Eq. (4.99), it follows that a measurement of the squared angular momentum on the
state ¥;" must give the output 7?I(1 + 1) or in other words:

1 0 oy 1 o%yr
L’y = h2[ (sin6 L > + L ] =1+ D)RPY"  (4.107)

sinf06 06 sin26 00

with the amplitude ‘Z) = h+/I(I+1). Also a measurement of the z-component

gives:
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ho o,

LY[' =555

= mhY[" (4.108)
so that a measurement of the projection of the angular momentum in the z-direction
of the state(Y]") gives an eigenvalue mh.

Now we understand the physical significance of the solutions that we derived in
Sect. 4.7.1, and we also note the generality of the result. The eigenfunctions of
angular momentum are the functions (Y [") and this is true in general. It happens to be
true for the hydrogen atom too because the potential is spherically symmetric. So in
any state with spherical symmetry, angular momentum is well defined, and the (Yl’”)
constitutes the angular part of the wavefunction.

In this section we have tackled the solution of the hydrogen atom problem in
quantum mechanics. We showed that the wavefunction can be written as a product of
an angular and radial part. Now we can turn to studying the radial part R(r) for this
particular Coulomb potential.

4.7.3 The Radial Wavefunction of the Hydrogen Atom

Returning to face the solution of the radial part, we first note that a more convenient
way of writing this equation is to transform:

u(r) = rR(r) (4.109)

72

d;r(zr)Jr [E+%_M]u(r) ~0 (4.110)

Now we note that differential equations involve the angular momentum integers /,
so it follows that the eigenstates u(r) must also have the label /, u = u;, but there is
also an energy variable E. So what happens to the energy E? Are all values allowed?
It turns out not surprisingly that the answer is no! Again the mathematicians saw
that long before the physicist used these solutions for the hydrogen atom.
Mathematicians found that in order to have bounded and differentiable solutions,
only discrete values of E were allowed. These carry the label n, and we have E, as
eigenvalues of energy and thus u,,(r), as eigenstates. The solution of this class of
differential equation is a nontrivial exercise in mathematics, so we will only give the
final answer here. The normalized solutions can be written as:

2r 2r
wl = A=A (= 4.111
Un,i n3 n—I—1 n ( )

so that the complete solution is:
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1
W tm =—tn1Y["(cosO) (4.112)
r
with energy eigenvalues:
4
2n*(4meo) h

The functions A are related to the so-called Laguerre functions where with the
variable t = 2r/n, we have:

AX(t) = {F(a +1) (Z + “)] 71/2e"2/2t"/2L,§’(t) (4.114)

where now L is a solution of Laguerre’s differential equation:

21 a a

d dL
t dt; +(a+1—1) dtk +kLE =0 (4.115)

where a is a constant and /" is the Gauss gamma-function with:

k+a)_ Tlk+atl) (4.116)
k I'k+ D (a+1) '
The first few radial functions in atomic units are given by:
uy = 2re " (4117)
Upo = Le*’/zr(z —r) (4.118)
NG
Uy = L rp (4.119)
V24
2 —r/3 2
Uz = e"Pr(27 — 18r +21%) (4.120)

813

3/2
In real units the ground-state radial part is R(r),, = uio/r = \/L-g (2) e’/

ap

where ap is the Bohr radius. The first few angular functions are (Fig. 4.14):

Y)=—— (4.121)
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Fig- 4.14 Il.luSFrateS the | 1s i 2p I 3D l AF l
particle density in the first few :
levels of the hydrogen atom.

These are the 2S (I = 0), 2P

(I =1) and 3D(/ = 2) and 4F

(I = 3) orbitals to the with the

m, projections along the z-axis
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Y = ,/icose (4.122)
4
YQ::,/—§—(3cos29-1) (4.123)
16z
1 3 . .
Y =— 3, Sin Oexpigp (4.124)
T

15
Yy =—/ gsin 6 cos fexplig] (4.125)

4.7.4 The Unbound States

The above solutions encompass the region E < 0, i.e., where the electron is bound to
the nucleus. One can also solve for the wavefunctions and energies of eigenstates
which are free particle-like (only energies) in the region E > 0. The reader is referred
to the book by L. Chuang in the references for a complete analytical description.

4.7.5 The Two-Dimensional Hydrogen Atom

Another interesting limit is the two-dimensional hydrogen atom which, even though
it strictly speaking does not exist, is almost realizable using quantum well
technology (see Chap. 15). One can, with atom-by-atom deposition techniques,
molecular beam epitaxy (MBE), for example, place a hydrogenic atom in a thin
atomic layer sandwiched between barrier layers so that the electronic motion is free
in the plane and highly confined in the direction perpendicular to the plane. The
analytical solution for the two-dimensional hydrogen atom problem is known
mathematically, and the bound states are given by (Chuang 1995):

R
":_m;nzl,z,s.... (4.126)
mq4

Comparing with the 3D solution Eq. (4.113), it is interesting to note that the
binding energy is stronger in 2D than in 3D, a factor of 4 for the ground state. The
wavefunctions only depend on one angle and have the simpler structure:
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eim(p
V2r
Again we refer the reader to the book by L. Chuang in the references for the

complete analytical formulae of the radial part and a discussion of the unbound
solutions.

—

4.7.6 The Electron Spin

It was pointed out at the beginning of this chapter that in order to explain the
structure of the atom, very early on after the discovery of quantum physics,
W. Pauli introduced the concept of the electron spin. He observed that if he assumed
that an electron had an extra quantum number which he called spin and if he assumed
that the spin is like an angular momentum and can have two values “up or down”
with values :l:%h and, further, assumed that two electrons cannot be in exactly the
same eigenstate, then he could account for the so-called Aufbau principle i.e.,
explain the structure of the atoms with quantum mechanics.

So we have learned already that the electron must have a quantum number called
spin, which is like an angular momentum and can have two values of its projection in
the z-direction S, = =+ 1/2. In other words if we make a measurement of the electron
spin in a given direction which we call z, then we will find the values S, = 4 1/2 with
equal probability. Once the electron has been prepared in a given spin state, it will stay
in it unless disturbed. The electron spin is like an angular momentum in the sense that
it carries also a magnetic moment as a classical rotating charge would do in principle.
The magnitude of the magnetic moment was postulated and then measured by Stern
and Gerlach to be ugz = ZTIZ (my is the rest mass) which is called the Bohr magneton.
The projection along the z-axis is m, = =+ 1/2up.

Now the next question that arises is: where does the spin come from? Is it really
due to a kind of zero point rotation of the electron in space, a rotating charge as one
would think classically? Zero point meaning that according to Heisenberg’s uncer-
tainty principle, and as shown explicitly for the harmonic oscillator, when a degree
of freedom is allowed, it has to have a “minimum value” associated with
it. Otherwise one would know the position of a point on the surface with certainty.
However classical rotation, it turns out, cannot be the reason for the electron spin and
magnetic moment, because if one calculates the speed at which the charge would
have to rotate to give this value of magnetic moment, one would find that the speed
of rotation would be greater than the speed of light and therefore contrary to the rules
of special relativity.
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4.8 Relativity and Quantum Mechanics

The explanation for the electron spin came much later and was given by Paul A. M.
Dirac in 1927. Dirac set himself the task of including special relativity into quantum
mechanics and used the classical correspondence principle. Using FEinstein’s
formula, gives the energy of the particle as:

E = c\/p? + m}c? (4.129)

where my is the rest mass and c the velocity of light. In this form, substituting in the
Schrédinger momentum, operators would lead to a Hamiltonian which depends on
the square root of differential operators. This is awkward to handle and is not
evidently Lorentz invariant. Invariance under a Lorentz transformation is essential
for special relativity to be satisfied. Of course one can develop the square root using
the Taylor expansion assuming that the kinetic energy is small compared to the rest
mass. The first two terms then together give back the usual result with a constant rest
mass as first term. One can also write down the entire series, as an expansion in p*:

2 1 P4

P
H=myc* + 53— — =
¢ +2m0 8 mjc?

(4.130)

Then using the quantum mechanical operators, assume that the eigenfunctions are
plane waves as free particles and then every term in the series is a simple number
with p> — (fik)*. Resuming the series then gives the energy levels:

1/2
E, = c[(hk)2 + mﬁcz} (4.131)
with a group velocity:
1 0E; (hk)c
-k _ 4.132
V=2 (4.132)

{mgcz + (hk)z} 2

which saturates at the speed of light when the momentum becomes infinite. But this
solution is not complete, and in order to ensure Lorentz invariance, Klein-Gordon
and Dirac noted that one should consider the square of the operator and then replace
the momentum and energy using the corresponding Schrodinger operators to find:

2 2
{v2 - %}W - <";°—f>lp (4.133)

This equation is known as the Klein-Gordon equation. It is second order in the
time derivative as is Maxwell’s equation (ME) and indeed is a wave equation as ME,
when the particle has zero rest mass. The important observation is that this equation
as is ME is relativistically invariant, i.e., it satisfies the Lorentz transformation
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symmetry. This by the way also shows that special relativity is naturally true for
electromagnetism and is thus an experimental law. Going back to Eq. (4.133), we
note that we had to take the square or complex conjugate to arrive at Eq. (4.133), and
therefore it will have more solutions than we may need. However it will certainly
have all the solutions that we need. The energy operator is now as one can see
quadratic in structure and no longer linear as in the nonrelativistic Schrodinger
theory. The Klein-Gordon equation for free particles will also have the plane wave
solutions discussed in the square expansion form, with the same energy-momentum
relations, as can be easily verified by substituting:

w(7 1) :Aexp{i K7 —iEt/h) (4.134)

Dirac’s brilliant observation, which is the starting point of all modern quantum
field theories and elementary particle descriptions until today, was to note that
maybe one could go back to a linear form in terms of time and write this equation
as the product of two linear differential equations. Let us write (Dirac PAM 1967):

2
vz—ia—: (Aa +Ba +ca + Da><Aa +Ba +ca + Da>

c2 0r? 0 Jy 0z ¢ Ot Ox Oy 0z ¢ Ot
(4.135)
In order for this differential operator relation to be satisfied, we need:
AB+BA =0
AC+CA=0
AD+DA =0
BC+CB=0 (4.136)
BD+DB=0
CD+DC=0
AA=B=C*=D"=1 (4.137)

Dirac observed that this decomposition is possible provided that we do not look at
these {A,B,C,D} quantities as simple numbers but as matrices. He then solved the
matrix problem to find:

(A,B,C) = ifoy (4.138)

D=p (4.139)

B = ((I)”O_I> (4.140)
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= (O"”‘> (4.141)

Gk,O

0,1\ (0, —i\ (1,0
gk_(l,()),(i,o ),(0’1) (4.142)

where I is the unit matrix. Note that A, B, and C are 4 x 4 matrices. With the above
matrix form, the Klein-Gordon equation can be rewritten:

AE—FBE—FCE—FEDE AE—I—BE—&-CE—I—EDE _@]—0
ox Oy 0z «c Ot ox Oy 0z c¢ 0Ot n”o

(4.143)
The linearized form is thus:
0 0 0 i 0 moc

One can also rewrite these equations as the Dirac equation pair:

mcz,cg-; ¢+ _~E ¢+
(c%-ﬁ,—m0c2>(¢)_lhat(qb-)' (4.145)

Note that these are two distinct coupled 2 x 2 differential equations. One has
positive, the other negative energy solutions. Each component is itself a 2 x 2
matrix. The @+ component is connected to the ¢— component by a relativistic
coupling. In the nonrelativistic limit, the two are not coupled anymore, but the
2 x 2 matrix structure of each remains. The 2 x 2 matrix form implies that the
particle, apart from its usual spatial degrees of freedom, must also have acquired an
additional two-valued degree of freedom. This new degree of freedom is exactly the
spin which had been earlier postulated by Pauli to also have exactly this matrix
representation. What it means is that the wavefunction of a particle which satisfies
the linear Dirac equation has two components, a component with an internal degree
of freedom which can be called spin up and the other one spin down. This internal
degree of freedom turns out to have the same properties as an angular momentum
with the two possible values :i:%h as discussed earlier.

This is a remarkable achievement indeed and shows that the symmetry associated
with special relativity in quantum mechanics has important consequences on the
structure of the basis states of space, on the “fabric of space time,” (Wilczek 2006)
making the wavefunction 4 component with an extra two-valued degree of freedom.
In relativity, space and time are connected, but the time derivative still measures the
energy. So to be in an eigenstate of energy, has implications for the spatial
coordinates. But this is not all; Dirac’s equation implies that along with positive
energy solutions, there are also negative energy solutions which at first seems absurd
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and artificial until further examination shows that the negative energy solutions can
be interpreted as “antiparticles.” So Dirac’s discovery also leads to the discovery of
antiparticles. A further consequence is that the vacuum is not empty but that for short
times, when, according to Heisenberg, energy does not have to be conserved, there
can be fluctuations in which particles and antiparticles spontaneously emerge out of
the vacuum and recombine again. The “pair production” can become long lived and
real when a photon of sufficient energy, a gamma ray, decomposes into an electron-
positron pair. This is indeed observed experimentally. The photon energy needed
twice the rest mass energies and the kinetic energies of decomposition. So the logic
seems to make sense: Maxwell’s equations satisfy the relativity principle by them-
selves, without further assumptions, but light can break up into matter and form
particle-antiparticle pairs; this is also an experimental observation. But these
particles must therefore necessarily also obey the relativity principle, which means
they must obey the Dirac equation, when they have spin V5.

So what does this have to do with spin? It means that as the particle moves, it can
for short times follow paths which are different to the normal space trajectories that
we are used to. The particle can merge into an antiparticle which was spontaneously
created as a quantum fluctuation and reappear as the particle component of that pair
in another location. Indeed it has to do that, since for short enough time intervals, the
particle still exists, but the vacuum it moves through has structure fluctuates, breaks
up into matter and antimatter and reforms. Thus new pathways or “points” or space-
time realizations are created and can and indeed must be passed through. For very
short time intervals, the particle can visit antimatter points and form closed loops,
i.e., come back again to where it was having visited antimatter points. The new
“vacuum paths” look as if they are orbits and have spin angular momentum. The
solutions of the Dirac equation are called fermions and have spin 'z as we have seen.
The remarkable property is that even though energy corrections can disappear in the
nonrelativistic limit, the spin remains, which shows that the matter-antimatter
property of the vacuum still has an effect on the electron which it cannot escape.
This new fabric of space time discovered by Dirac exists whether the particle has a
low- or high-average velocity. In the short enough time evolution, the new space-
time configurations can and are always visited. Dirac showed that the velocity of the
particle is actually indeterminate; the instantaneous velocity of the particle is actually
the speed of light! Then he found the reason for this strange and novel behavior by
calculating the time dependence of the velocity. He discovered that the particle is
undergoing an ultrafast, order of speed of light, trembling like motion with fre-
quency >2moc’/h, which is more than twice the rest mass frequency, and with spatial
amplitude of order A/mgc ~10~"> cm. We tentatively interpret these trembling
motions as precisely the visits and returns into and from antiparticle space.

The solution of the Klein-Gordon equation in the simple form has apparently no
spin. But it turns out that they can, and indeed, and must also have spin. They too
move in a vacuum which, as Dirac showed, is not just empty space. In particular they
have solutions of integer spin, the so-called bosons, for which there is no Pauli
principle, but the proof which has to do with “quantum field theory” is not the
subject of this book spin as an internal fabric of space time was just the beginning
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elementary particle physics. Other symmetries, combined with special relativity,
some intuitive others not, turn out to have similar consequences in quantum
mechanics. Particles now have spin, color, charm, etc. This is the subject of the
modern field of quantum chromodynamics and string theory which strive to explain
the origin of mass and of gravitation in terms of the vibrational excitations of zero
mass vacuum entities and then the coupling of these excitations in vacuum.

The positive energy free particle solutions to Dirac’s equation are given by:

1
= o
Y = exp(—iEt/h+ip - r) cp (4.146)
E + moc?
0
0
I
Y =exp(—iEt/h+ip-r)]| o (4.147)
cp
E + myc?
— — 1/2
E={mc+p p} (4.148)

Note that the Pauli spin matrix form survives the nonrelativistic limit. Note also
the fascinating fact that despite the time linearization, the time oscillations of the
velocity, the overall wavefunction time is again only a phase! The particle once in an
eigenstate stays there until disturbed. The density is again as in the nonrelativistic
Schrodinger equation time independent. The connection to antiparticle space is
reduced to just another angular momentum like quantum number the “spin.”

4.8.1 The Electron Spin Operator

Now we know where the spin of the electron comes from, we can proceed to
formulate the Pauli Dirac spin operators. The wavefunction of a fermion, i.e., a
particle which obeys the Dirac equation, can be treated as a vector in a
two-dimensional space so that in addition to its spatial component it also has a
spin component, so that:

w0 =00,

(4.149)

w010,

Top one has spin up, and lower one has spin down. The operator which measures
the z-component of the spin is:
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h(1,0
sZ_E(O,—l)' (4.150)
The x and y components are:
o1
Sx—§<1,0) (4.151)
h(o, —i
S—V2<i,0 > (4.152)

The quantities in the matrix bracket are called the Pauli spin matrices.

Experimentally it was discovered that an electron also has a spin magnetic
moment. The Dirac equation knows nothing about charge, so it cannot give a
magnetic moment. But if we include the charge and let it move in an electromagnetic
field, then one also obtains the spin magnetic moment, so that a measurement of
magnetic moment corresponds to the operator:

m,=Ls, (4.153)
mg
giving the values m, = i% in MKS units. The energy of a spin in magnetic field
B is the spin Zeeman coupling and is described by the term:
Hy = —m. B (4.154)

where:

m, =t =y, (4.155)

The quantity up is, as mentioned already, called the Bohr magneton.

49 The Addition of Angular Momentum

Consider an electron, in, for example, a state of angular momentum /, in an atomic
orbit n > 1. The spin also has an effective angular momentum, so the electron now
has a total angular momentum J where we can write:

J=L+s (4.156)

In order to see how to add angular momentum, let us consider the addition of the
angular momentum of two particles with magnitudes /; and l,. We write [ = [, + L,:
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L=L+L
L2 (4.157)
L-L=L*—hl(l+1)
The allowed values of total angular momentum are given by:
I=h+bh,|h+hL-1],....|hL — kL] (4.158)

So, for example, with /; = 1 and [, = 2, the allowed values are | =3,/=2,and / = 1.
Each total angular momentum state has (2 / + 1) projections along the z-axis. Thus
the combination / = 3 has the projections:

[,=3,2,1,0,-1, -2, -3 (4.159)

The same rule applies to the spin, with / = 1 and s = 1/2; the possible states of
total angular momentum are J = 3/2, 1/2 with projections, Jz= 3/2,1/2,—1/2,-3/
2 and J = 1/2 which gives Jz = 1/2,—1/2.

The addition of spins follows a similar rule. For example, two electron spins s
and s, can combine to form S = s, + s, with possible total spin states S = 1 and
S = 0. The former is called the triplet combination and the latter the singlet. The
triplet has three projections along the z-axis with Sz = (1,0,—1).

4.10 The Pauli Principle Applied to Many-Electron Systems:
The Slater Determinant

We have seen what the Pauli principle implies in terms of filling the energy levels of
many-electron atoms and solids, but now let us consider the formal mathematical
representation. The Pauli principle requires that whenever two electrons occupy the
same spatial and spin eigenvalues, then the wavefunction cannot exist, i.e., it must
vanish. In order to implement this rule, and in all cases where the many-electron
system is not interacting, and thus wavefunctions of many electrons can be written as
products of single-particle states, there is a simple and elegant representation that
satisfies this condition. This representation is called the Slater determinant. The
Slater determinant representation ensures that the wavefunction is antisymmetric
under exchange of electron coordinates, and this in turn ensures that it vanishes when
two electrons are in the same eigenstate. So let an eigenstate, for example, for the
free particle system, be written as ¢(r,)a(n) for particle r, with spin up (a) and
¢i(r,)p(n) particle r,, with spin down (). Then a pair in k; and &, can be represented
by the linear combination of eigenstates: (i) both particles have the same spin:

SN 1
‘Pl,l(Ta §> = NG {br,(r))p,(r2) — b, (r1) by, (r2) }a(1)a(2). (4.160)
As one can see, the wavefunction has total spin = 1, i.e., is in a triplet state with

S, = 1 and vanishes if the spatial quantum numbers are identical. A similar state
exists with both spins down corresponding to S, = —1.
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When the spins are opposite, we have two possible antisymmetric combinations:
the state with S =1, S, = 0 is:

lPl,o(71 ) 72) = \/LE {¢k1 (rl)¢k2(r2) - ¢k2(rl)¢k1 (r2)[a(1)p(2) + a(1)p(2)]

(4.161)
and the state with S =0, S, = 0 is:
‘Po,o(71, 72) = % {¢k, (rl)¢k2(r2) + ¢k2(rl)¢k| (rz)[a(l)ﬂ(2) - a(l)ﬂ(Z)]
(4.162)

All these four combinations are antisymmetric under exchange of coordinates.
We can extend this rule for any number of electrons, and if we combine the spin (y)
and spatial quantum number k,, for particle r,, into one, and call it g,, = (k,, y), we can
write for an N-particle system the determinant:

1 ¢1@,),¢2(§,) ........... en)
e ¢1(42) - (4.163)
D)oo, on(ay)

When we use Slater determinants instead of simple product of wavefunctions, we
include the fact that even though the electrons are to this order strictly speaking not
interacting, there is an implicit correlation in their spatial distribution which is
caused by the Pauli principle. For example, same-spin electrons cannot penetrate
each other; opposite spins can. This spatial correlation, in conjunction with
perturbations on the system, gives rise to the so-called exchange corrections.

4.11 Summary

This completes the chapter on the principles of quantum mechanics. We have visited
some of the most important and practical application of the Schrodinger equation
(SE) to real physical systems. We have shown how to solve the SE for the hydrogen
atom which forms the basis for the understanding the structure of all atoms. It is an
amazingly powerful result even though it involves a one-electron theory. It turns out
that one can use these solutions for many electrons as well, provided one allows for
the screening of the nuclear charge by the presence of the other charges in some
averaged way. This is the so-called mean field or self-consistent field approach, and
one can and must include the antisymmetric nature of the many-electron
wavefunction as expressed by the Slater determinant of Eq. (4.163). We saw how
spherical symmetry gives rise to the conservation of angular momentum and how
this evolves naturally out of the hydrogen atom solutions. We discussed the origin of
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the electron spin and showed how that is an internal coordinate which results from
the requirement of special relativity when applied to quantum mechanics. The spin
quantum number brilliantly follows from the Dirac equation or what is the linearized
form of the Klein-Gordon equation, a manifestation of the fact that the “empty
vacuum” is only a time averaged concept. That the vacuum can, for short times,
spontaneously break up into matter and antimatter and thus allow nonintuitive
quantum or quantized pathways of propagation through four-dimensional space
time. The “nonintuitive” pathways, symmetries, and quantum numbers are far
more numerous today in modern elementary particle physics.

4,12 The Electron in a Magnetic Field

Consider what happens to the motion of an electron in a magnetic field. We will only
consider the orbital motion because in the absence of spin-orbit coupling, spin and
orbit motion can be treated independently. Classically the charge is subject to the
electric (E) and the Lorentz force as given below, which makes the electron follow a
curved path in an electric and magnetic field (B):

F=—q(E + v xB) (4.164)

where v is the velocity. Quantum mechanically we first have to derive the new
Hamiltonian. We make the following observation. A classical charged particle in an
electromagnetic field obeys the Hamiltonian:
1 - =2
H=— A 4.165
5 (P +a4) (4.165)

where A is the vector potential. For a magnetic field B, the vector potential is:

B=V x A (4.166)
and
A= (—yB,0,0) (4.167)
Giving a field in z-direction:
B= (0,0, B). (4.168)

In quantum mechanics we generate the correct Hamiltonian simply by using the
corresponding momentum operators to obtain:
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H=1"t(p+ B)2+p—§+p§ ¥ = B (4.169)
“\om T 2m  2m | '

The momenta in x- and z-direction are not coupled, so they have plane wave
solutions which allow us to simplify the Schrédinger equation to the form:

W, (ke ko) = (k) (y) (4.170)
where:
~1* °¢,(v) | ((gB)’ 2 12k
5 3 - = (E-—5 4.171
TRl = 0) ¢ ( 2m>¢n (4.171)
Tk,
=—— 4.172
Yo 4B ( )
We call:
eB
we =" ( )

the cyclotron frequency and note that Eq. (4.171) is an equation describing a
one-dimensional harmonic oscillator with the origin shifted by y, and for which
the eigenvalues and wavefunctions are known from Sect. 4.6. The energy levels of
the electron in a magnetic field are:

k>
m

The magnetic levels classified under the quantum number # are called the Landau
levels. The corresponding eigenstates are:

mw, 1 /mw, .
ol k) = Aoy |52 0 = ) exp | [ 0 = 30 i+ k)

(4.175)

where the H,, as before in Sect. 4.6 are the Hermite polynomials and the A,, the
normalization factors. Consider now the question of the degeneracy of each Landau
level.

* Note that if we defined the new velocity operator in the presence of a magnetic
field via the Heisenberg equation of motion and with the Hamiltonian Eq. (4.169),
which is the right way to define the new operator, then we would get the result:
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., 0 ., 0
Dy = —zha — —zha + gBy (4.176)
which shows that the correct velocity operator is now B-field dependent. This has no
classical analogue. The acceleration operator can similarly be obtained by applying
the Heisenberg equation of motion with the velocity operator instead of the position
operator.

4.12.1 Degeneracy of the Landau Levels

We note that the energies Eq. (4.174) do not depend on the value of k,. This implies
that to every Landau level, there are many values of k, momentum eigenstates which
give the same energy. How many are there? In order to count the degeneracy, it is
convenient to assume that the system is in a cubic box of size L, with periodic
boundary conditions such that W(x + L,y + L,z + L) = ¥(x, y, 7). This condition gives
rise to the momenta kwhich are quantized according to the rule
k, = ”’%,nx =0, £1, £2,..... Going back to Eq. (4.171), we note that the
coordinate y, is now also limited to be in the range [0, L]. This in turn implies that
the range of values:

hky R
MMy (4.177)
gB, ¢BL

Yo

so that the number of values of k, with the same energy or degeneracy of the Landau
level is g;:

gB

— 12
8L 7

(4.178)

In a two-dimensional x, y system with B in z-direction, we will see that for B, = 0,
the density of states is a constant (see Chap. 14). The crossover from the
two-dimensional B, = 0 spectrum to the discrete and g; fold degenerate Landau
spectrum is shown in Fig. 4.15.

Fig. 4.15 Shows the level E

structure of a two-dimensional

free electron system in a

magnetic field. The constant a b
density of states becomes

discrete Landau levels. As the Es
B-field increases, the E,
degeneracy of the levels
increases, and the Fermi level Es
for a fixed electron number
moves down E,
- K
Interval: ho, E,
v _

B=0 B>0
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4.13 Discussion

In the above sections, we have considered situations where the Schrédinger equation
(SE) is exactly solvable. We solved the SE in a magnetic field for spinless electrons.
Let us now consider examples where an exact solution is not easily derivable
analytically and where one has to resort to approximation methods. We start by
formulating the very powerful Wentzel Kramer Brillouin (WKB) method.

4.14 The Wentzel Kramer Brillouin Approximation

Consider the situation where the electron moves over an arbitrary potential form V(x)
in the x-direction, but the motion in z and y is nearly free electron like. The
wavefunction will be as:

W (x,y,2) = Ad(x)exp[i(kyy + k.2)] (4.179)

where A is the normalization constant and ¢ satisfies the one-dimensional
Schrédinger equation:

a 2
ji(zx) + h—'f [E—V(x)]p=0 (4.180)
d2 2
igx)+%¢:o (4.181)

p=+/2m(E —V(x)) (4.182)

where the general solution is of the form:

X

¢(x) = s(x)exp :I:%/dx/p<x/)

= s(x)exp ii\/;f_m /dx/\/E —V(x) (4.183)

s(x) = Kp~'/?> — K = const. — normalisation (4.184)

The above is called the Wentzel Kramer Brillouin (WKB) approximation and is
valid when:
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el (4185)

p=+/2mlE —V(x)] (4.186)

In other words, when the variation of p(x) or V(x) is slow enough to satisfy the
above condition (which is true for most situations of interest in engineering
applications). In order to construct the entire solution, one considers the solution
piecewise over regions of space. The most general solution in each region is of the
form:

X X

I AN i VN
#(x) = A exp +£/p(x)dx B e —%/p(x)dx (4.187)

The singular behavior at turning points when p(E,x) = 0 is of no serious
consequence because the singularity is integrable so the wavefunction is normaliz-
able in a finite interval.

Now one looks at a particular interval and notes that in regions where the energy
E of the particle is E > V(x), the function p(x) is real, and the solution is a linear
combination of two oscillatory waves, one going to the right and the other to the left.
In regions where E < V(x), p(x) is complex, and the wavefunction is exponentially
decaying in space in the direction against the potential barrier. The wavefunctions
are multiplied by arbitrary constants A, B which have to be determined by the
boundary conditions. In order to get the full solutions, one connects the different
regions defined above by requiring the continuity of the wavefunction and its
derivative. Consider, for example, the potential V(x) in Fig. 4.16; the energy E is
shown by the solid line. In region II, the energy of the particle is smaller than
the potential barrier, so the wavefunction must decay exponentially as a function of
(x—x;) and behave as:

X2

1 1 , )
¢(x):A2WeXP +%/\p(x>|dx } (4.188)

X1

In region I, between 0 and x,, the energy E is larger than V(x), so p(x) is real, the
phase oscillatory, and the wavefunction is of the form Eq. (4.187). In the region III,
for x > x,, here E > V(x), and the wave has again an oscillatory structure as in
Eq. (4.187):
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Fig. 4.16 illustrates the AV(x)
example treated in the text.
Region II is the quantum
mechanical tunneling region

N .
7~
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X1 X2

X X

1 i ! ! 1 i ! !
D) =4 rexp +£/p<x)dx B e 7£/p(x)dx (4.189)

X2 X2

The constants A, B, A,, can be determined by using the boundary conditions as
explained above. One can in principle also determine the eigenvalues using the
Wentzel Kramer Brillouin (WKB) method which is also a piecewise solution of the
one-dimensional Schrédinger equation. The approximate eigenvalues can be
generated by using the Bohr Sommerfeld condition which requires that the integral
of p(x) over the classical domain where p(x, E) is real and satisfies the quantization

condition:
/ dxy/2m(E — V(x) = (n + %) h (4.190)

p(x)>0

Though useful for finding the approximate eigenvalues of electrons confined
between barriers higher than their energies, with unusual potential wells, for exam-
ple, this is not the main application of WKB. The main application is when one
knows the energy and one wants to know how the particle behaves in a given
potential region. For example, consider the tunnel barrier as in Fig. 4.17, which is
a rectangular barrier lowered by an applied field. The particle is assumed to have
energy E; the question is what is the amplitude lowering when the particle has
tunneled to the right to the point p = 0, after which it becomes an oscillatory function
again. The potential in the tunnel region is {V(x) = Vy—gFx}, so we have:

¢( ) A 1 (2m*>1/2j[v F/ E]l/zd/
x) = Az exps — | —— 0o —qFx — X
\Vo — gFx — E|'/? n*

X2

(4.191)
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Fig. 4.17 (illustrates the constant barrier in the presence of an electric field: the Fowler-Nordheim
limit

The upper limit of the integral is set by the condition E = V,, — gFx, so that the
decay in amplitude from the starting point of the barrier at the point x to the critical
turning point is:

W\ 2y )R
|¢<xc>|2~|¢<x=o>|2exp{—§(2 ) (Vo — E) } (4.192)

W qF

This then also gives us a measure of the transmission coefficient into the free carrier
region beyond the critical point x, = (Vo — E)/gF:

*\ 1/ 2
T(E) = Toexp{—g(zfn; )1 2(V°q; £)" } (4.193)

This is called the Fowler-Nordheim tunneling structure and is encountered
whenever a constant barrier is lowered by an applied electric field.

4.15 Quantum Mechanical Perturbation Theory
4.15.1 Time-Independent Perturbation

One of the most powerful results and methods of quantum mechanics is Perturbation
theory. Very often one is confronted with a situation where a system is subject to an
interaction or several interactions for which the complete Hamiltonian has no
analytic solutions. Very frequently these interactions are also small compared to
the main effect which determines the system properties. Consider, for example,
a hydrogen atom in an electric field. An applied electric field of even as high as 107
V-.cm ™! represents a tiny effect when compared to the electric field of the proton
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nucleus. It is therefore very important to be able to include the effect of such new
interactions, at least to some degree, and study what they do to the wavefunctions and
energy levels of the system.

The procedure is as follows. We consider a starting Hamiltonian H, of which we
assume we have the normalized eigenfunctions @, and energy levels E,. Now
consider the full Hamiltonian in the presence of a perturbation V, givenby H=Hy+ V,
and we generate the solutions of this new Hamiltonian as a power series expansion,
both for the energies and the wavefunctions. The expansion of energy levels and
wavefunctions can be usually stopped in second order, giving us a powerful way of
estimating changes in energies and wavefunctions and of course of all the relevant
physical properties.

4.15.2 Nondegenerate Perturbation Theory

We first consider the situation where no two energies of the unperturbed system have
the same value. Or in this particular application, we assume that the ground state is
nondegenerate. In many situations of interest such as, for example, treating the effect
of static electric fields on the electronic system, we can work with the time-
independent Schrodinger equation and perturbation theory. The time-dependent
perturbation expansion is considered in Chap. 10. We write for the new ground-
state wavefunction energy the perturbation expansion:

- N0 1 2
D, = D) + D, + DY sy
E,=ES+EY +EQ

The admixtures are as before linear combinations of the unperturbed eigenstates,
in this case excited states, so that:

o) =3 "al? (4.195)
I#g

and where the time-independent Schrodinger equation with perturbation V is
given by:

(Ho+ V)@, = E,®, (4.196)

Substituting Eq. (4.194) in Eq. (4.196), and comparing coefficients of the same
order, then gives to the zeroth order the obvious result:

Hy®, = E)D, (4.197)

First order we have:
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Ho®, + VO) = E,®, + E,®) (4.198)
In second order we have:
2 1 _ ;052 11 (2) @0
Hy@) + Vo, = B0l + Ej0! + EP ) (4.199)

In order to obtain the zeroth order solution, we substitute the expansion
Eq. (4.195) into the first-order equation Eq. (4.198), multiply the left hand on both

side by (@2) * and integrate over all space, and use the orthogonality condition:

/ dr ©*,@p = S (4.200)
to find:
1 _ (@0 aPN(
E! = /d F(@f) v (r)el (4.201)
We carry on the procedure to calculate the first-order change in the wavefunction

by multiplying Eq. (4.199) this time on both sides with (CD?) * and integrating while
using the orthogonality again and the relation:

Ho®? = E) 0" (4.202)
to find the coefficient:
Vv
ay = =& (4.203)
E, —E,

and after multiplying and integrating again with ((Dg)* on the second-order
Eq. (4.199) and some algebra, we find the second-order energy shift:

VaV
EP =% T < 2‘{ (4.204)
I#g 8 !

With the wavefunction given to first order by:
o, = @0 + Zﬁqf’ (4.205)
whereas before the matrix element of the potential is defined by:

Vi = / o’V (r)®)d r (4.206)
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Knowing the unperturbed wavefunctions and energy levels allows us to compute
the perturbed ones. Equation (4.201), Eq. (4.204), and Eq. (4.205) are, though
simple, some of the most useful results of quantum mechanics.

If, for example, we consider the particle in the one-dimensional box problem of
Sect. 4.4.3, with confinement in z-direction, and we apply a perturbation which is
due to an applied electric field in the z-direction, then V = —qzE§, and we can
compute the energy’s shift to a good approximation with the box wavefunctions
given by Eq. (4.46). If the origin is chosen as z = L/2 so that the box extends in the
range [—L/2 <z < L/2], it follows by symmetry that the first-order shift V,, = 0, and
we have only the second-order term given by:

2
@) _ 2 |Zgl|
EP) = ; (gEq.) E - E (4.207)

If on the other hand we choose the origin to be at z = 0 so that the range is
[0 < z < L], then the expansion to second order is:

L
J dzgsin (%) (—4Eqz) sin ()

2 . ,(72 0
dzz Sin (f) (—qzE§) + %; E_E

o
I
oL
+
Tt~

(4.208)

In summary, we have shown that to second order, the new perturbed energy levels
for general perturbation V is given as:

| 2

_ 0 Bk |Vgl
Eg—Eg+/dr¢>gV(I)g+ZEg_
I#g

4.2
= (4209

where V, is defined by Eq. (4.206). It is interesting to note that the second-order term
is for the ground-state energy, always an energy lowering term irrespective of the
nature of the perturbation.

4.15.3 Degenerate-State Perturbation Theory to Second Order

When two or more energies states of the unperturbed system can have the same
value, we may bypass the difficulty by using the renormalized or so-called Brillouin
Wigner expansion, which to second order is the same as Eq. (4.204) except that the
energy denominator contains the exact final energy and not the unperturbed ground
state:
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_ 50 Z HF | gl|
Eg_Eg+/dr<I>gV<D ZE -~ (4.210)
I#g
If the dominant term is due to coupling with the degenerate level Egl = Eg then to

second order, the sum can be separated into the degenerate term with / = gy, and the
rest can stay un-renormalized to second order to give:

Eg = E) 4 Vo + 581 ’ wl > 70 ]ng| (4.211)
81 l#g,gl

where Vg, = / dr CIJ;,k V®, and we have a simple quadratic equation to solve.

Putting Eg = Eg by definition of degeneracy:

1

0\? 0 2
(Bo—ED) = v, (Ec—E) = [Veo [ =0 (4212)

’Vgl{

=Vt D

I#g, g]

(4.213)

The quadratic has two distinct roots, and the degeneracy of the ground state is
now lifted by the perturbation. The two roots are:

1 1/2
E, = E +§{Vt £ [vi+avy, | } (4.214)
Ve, = /d OV (r)d,, (4.215)
Vo = / dr®’V (r)®, (4.216)

The result is very simple if we can neglect the admixture to the nondegenerate
excited level or V,; = 0; [ # g, g1.

The time-dependent perturbation method is treated in Chap. 10, in the context of
optical properties, but the method presented in Chap. 10 is quite general and can be
used for any time-dependent perturbation.
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4.16 Final Summary

In the first part of this chapter, we introduced the principles of quantum mechanics.
Then we applied the method to a number of exactly solvable problems of great
physical significance: the particle in the box, the harmonic oscillator, and the
hydrogen atom. We encountered angular momentum and spin. In the final parts of
the chapter, we considered simple Hamiltonians which are not exactly solvable
analytically and which need approximate treatments. We introduced the so-called
Wentzel Kramer Brillouin (WKB) method which is a powerful method by which one
can estimate the wavefunction in quasi-one-dimensional irregular potentials. We
applied it to a simple but very important example with many applications: the
constant potential barrier in an electric field.

In the last part of this chapter, we demonstrated how one can calculate the effect
of small perturbations on quantum mechanical systems. The energy corrections were
evaluated up to second order in powers of the disturbance Hamiltonian for the
energy, and the corrections to the wavefunction were developed up to first order.
The method was formulated for the case when the ground state is nondegenerate, and
it was shown how to extend it to the case when the ground state is degenerate.

Problems

1. According to the quantum mechanics, electromagnetic radiation of frequency v
can be regarded as consisting of photons of energy iv where h = 6.626 x 10~
J-s is the Planck’s constant.

(a) What is the frequency range of visible photons (400 nm to 700 nm)? What
is the energy range of visible photons (both in J and in eV)?

(b) How many photons per second does a low power (1 mW) He-Ne laser
(336 = A nm) emit? A cell phone that emits 0.4 W of 850 MHz radiation? A
microwave oven operating at 2.45 GHz generating a microwave power of
750 W? How many photons of the latter frequency have to be absorbed to
heat up a glass of water (0.2 L, heat capacity of water 4.18 kJ- kg '-K™') by
10 °C?

At a given power of an electromagnetic wave, do you expect a classical
wave description to work better for radio frequencies or X-rays? Why? At
what He-Ne laser power do you expect quantum effects to become
important?

2. An adapted human eye (person that has spent 30 min in the dark) can see 1 ms
flashes of power 4 x 10~'* W at 510 nm with 60% reliability. Assuming that
10% of the incident power reaches the retina, how many photons at the receptors
generate the signal that the test person recognizes as flash of light?

3. (a) The thermal energy scale is k,7, where k, = 1.38 X 1072* J/K is the
Boltzmann constant and 7 is the absolute temperature. What energy does
room temperature correspond to? What would be the frequency and wavelength
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of the corresponding photons? Is it reasonable that a hot body starts to glow
around 1000 °C?

(b) What is the photon flux (rate of arriving photons per unit area) at 1 m distance
from a 60 W light bulb, if you assume that the bulb conversion efficiency
(electrical power to light bulb) is 10% and take the photon wavelength as
500 nm?

(c) A photodiode measures light power by converting incident photons into
electron-hole pairs, such that the electron current is proportional to the incident
light power. The quantum efficiency is defined as the probability that an incident
photon generates an electron. If a typical photodiode has a responsivity of 0.5
A/W for infrared light at 850 nm, what is the quantum efficiency of the device?
If the quantum efficiency is independent of frequency, what responsivity do you
expect for blue light at 400 nm?

Student can find a simulation of black body radiation and related topics
(Planck’s law, Wien’s law) at http://csep10.phys.utk.edu/guidry/java/planck/
planck.html.

4. From the expression of the distribution of energy radiated by a blackbody,
Eq. (4.2¢) shows that the product 4,,T is a constant, where 4,, is the wavelength
of the peak of distribution at the temperature T (see Fig. 1.3).

5. Ultraviolet light of wavelength 350 nm falls on a potassium surface. The
maximum energy of the photoelectrons is 1.6 eV. What is the work function
of potassium? Above what wavelength will no photoemission be observed?

6. What is the deBroglie wavelength of an automobile (2000 kg) traveling at
25 miles per hour? A dust of radius 1 pm and density 200 kg-m > being jostled
by air molecules at room temperature (7'= 300 K)? An 87Rb atom that has been
laser cooled to a temperature of 7 = 100 pK? An electron and a proton
accelerated to 100 eV?

Assume that the kinetic energy of the particle is given by (3/2)k,T.

7. Reflection high-energy electron diffraction (RHEED) has become a common-
place technique for probing the atomic surface structures of materials. Under
vacuum conditions an electron beam is made to strike the surface of the sample
under test at a glancing angle (6 < 10°). The beam reflects off the surface of the
material and subsequently strikes a phosphorescent screen. Because of the
wave-like nature of the electrons, a diffraction pattern characteristic of the first
few atomic layers is observed on the screen if the surface is flat and the material
is crystalline. With a distance between atomic planes of d = 5 A, a glancing
angle of 1°, and an operating de Broglie wavelength for the electrons of 2dsin8,
compute the electron energy employed in the technique.

8. (a) Confirm, as pointed out in the text, that <p, > = 0 for all energy states of a
particle in a 1-D box.

(b) Verify that the normalization factor for wavefunctions describing a particle
inal-Dbox is A, = (2/a)">.

9. A particle with mass 6.65 x 1027 kg is confined to an infinite square well of
width L. The energy of the third level is 2.00 x 10~2*J. Calculate the value of L.


http://csep10.phys.utk.edu/guidry/java/planck/planck.html
http://csep10.phys.utk.edu/guidry/java/planck/planck.html
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10. A particle of mass m is prepared in the ground state of an infinite-potential box
of size a extending from x = 0 to x = a. Suddenly, the wall at x = a is moved to
x = 2a within a time At doubling the box size. You may assume that the
wavefunction is the same immediately after the change, if the change happens
fast enough.

(a) How fast is fast enough?

(b) What is the probability that the particle is in the second (n = 2) state of the
new well, immediately after the change? Note that the wavelength within
the well, and hence the energy, for this state is the same as for the
initial state in the old well. Make sure that you properly normalized
wavefunctions for your calculations.

(c) What is the probability that the particle would be found in the ground state
of the sudden expansion?

(d) What is the expectation value of the energy of the particle before and after
the sudden expansion?

11. An electron is confined to a 1 micron layer of silicon. Assuming that the
semiconductor can be adequately described by a one-dimensional quantum
well with infinite walls, calculate the lowest possible energy within the material
in units of electron volt. If the energy is interpreted as the kinetic energy of the
electron, what is the corresponding electron velocity? The effective mass of
electrons in silicon is 0.26 mg, where mg = 9.11 x 103! kg is the free electron
rest mass.

12. In examining the finite potential well solution, suppose we restrict our interest to
energies where { = E/U, < 0.01 and permit “a” to become very large such that in
Eq. (3.61), aoaé’maxl/’ > > 7. Present an argument which concludes that the
energy states of interest will be very closely approximated by those of the
infinitely deep potential well.

13. In this exercise, we will apply the material in Sect. 4.4.4 (pagel144) to calculate
the factor of confinement of a particle in a finite well. For convenience we
consider symmetric case, we will translate the x-axis so that the potential equals
to 0 in the region: —a/2 < x < a/2.

(a) Rewrite the Eq. (4.57) in this new coordinate system. Use the boundary
condition to eliminate some trivial constants. By symmetry, we search for
solutions in two families of functions: even and odd function. Show that the
even solutions satisfy two equations:

tan k—a = g
2 )k
2mU
2 0
k 2 7

while the odd solutions satisfy:
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How can you resolve these equations graphically?

(b) The particle is in the ground state, which is even, of energy E. Find the
probability for the particle to stay in the well. This quantity is defined as the
confinement factor (or coefficient of confinement).

Student can find a simulation of this problem at http://www.sgi.com/fun/
java/john/wave-sim.html.
14. Consider a particle of mass m moving in the potential:

Ha? 1

Vi) == “m cosh? (ax)

(a) Show that this potential has a bound eigenstate described by the
wavefunction:

A

wol¥) = cosh(ax)

and find the corresponding eigenenergy. Normalize y and sketch it. This
turns out to be the only bound state for this potential.
(b) Show that the wavefunction is:

v = B e

where ik = /2mE, solves the Schrodinger equation for any positive energy E and
near +oo the asymptotic of y(x) has the plane wave form. Determine the transmis-
sion coefficient if it is defined as the square of the ratio between the amplitude of the
coming wave (at —oo) and that of the going out wave (at +co). What physical
situation does y; represents?

Student can find a simulation of this problem at http://www.kfunigraz.ac.at/
imawww/thaller/visualization/vis.html.

15. Using the Heisenberg equation of motion Eq. (4.30) and the Hamiltonian of a
free particle in a magnetic field given by Eq. (4.171), evaluate the velocity
operators vx, vy, and vz. Note how the magnetic field has modified one of the
velocities. How does the presence of an electric field, if at all, modify the
velocity operators?

As a consequence of relativity, the spin magnetic moment of an electron is
coupled to its own orbit via the interaction:


http://www.sgi.com/fun/java/john/wave-sim.html
http://www.sgi.com/fun/java/john/wave-sim.html
http://www.kfunigraz.ac.at/imawww/thaller/visualization/vis.html
http://www.kfunigraz.ac.at/imawww/thaller/visualization/vis.html
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oo o o] -
Hy, = P [V V(r)x p]- s
where V (7) is the total potential seen by the electron and s is the spin operator. What
is the effect of the spin-orbit interaction on the quantum mechanical definition of the
velocity operator (use the Heisenberg equation of motion Eq. (4.30)). What is the
dependence of the spin-orbit coupling on the orbital angular momentum L, if V (7) is
the Coulomb potential of the hydrogen atom?

16. A particle of energy E traveling from the left hits a barrier of height U > E and
thickness L. Calculate the transmission coefficient.
U(x)
i

incident wave

reflected wave

Student can find a simulation of this problem at http://www kfunigraz.ac.at/
imawww/thaller/visualization/vis.html http://www .sgi.com/fun/java/john/
wave-sim.html.

17. The one-dimensional harmonic oscillator Eq. (4.62) is subject to an electric field
F which produces an extra term gFx in the Hamiltonian. Calculate the new
wavefunctions and energy levels using the zero field solutions. How does the
field affect the symmetry of the charge distribution in the ground state?

18. Explain the Wentzel Kramer Brillouin (WKB) approximation. Why is it impor-
tant and when would you use it? Using Eq.(4.183) verify the estimate of Eq.
(4.185).

19. We have seen that in a magnetic field, the magnetic moment of an electron
couples to an external magnetic field B to give the so-called Zeeman term
H; = — gup. B.s, where for free electrons the factor g we have introduced is
called the g-value and is given without quantum field corrections by g = —2 and
with corrections by g = —2.0023. In a medium the spin-orbit coupling can
change the effective value of g called also the Lande’s g-value. In an electron
spin resonance experiment (ESR), the spins of electrons in a magnetic field can


http://www.kfunigraz.ac.at/imawww/thaller/visualization/vis.html
http://www.kfunigraz.ac.at/imawww/thaller/visualization/vis.html
http://www.sgi.com/fun/java/john/wave-sim.html
http://www.sgi.com/fun/java/john/wave-sim.html
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be flipped by photon absorption. Calculate the energy of a photon needed to
change the spin direction of an electron from down to up in a magnetic field of
0.3 T and a g-value of 2.35.

20. Calculate the first-order correction to the energy of an electron in electron
volts eV, in the ground state of hydrogen due to the gravitational potential of
the nucleus given by Vg = where m; and m, are electron and
proton masses, respectively, and G is the gravitational constant given by
G = 6.672.10 "'"N-m* kg 2.

_ mmG
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5.1 Introduction

In Chap. 4, we introduced quantum mechanics as the proper alternative to classical
mechanics to describe physical phenomena, especially when the dimensions of the
systems considered approach the atomic scale. The concepts we learned will now be
applied to describe the physical properties of electrons in a crystal. During this
process, we will make use of the simple quantum mechanical systems which were
mathematically treated in the previous chapter. This will lead us to the description of
a very important concept in solid-state physics, namely, that of the “energy band
structures.”

5.2  Electrons in a Crystal

So far, we have discussed the energy spectrum of an electron in an atom, and more
generally in a one-dimensional potential well. Modeling an electron in a solid is
much more complicated because it experiences the combined electrostatic potential
of all lattice ions and all other electrons. Nevertheless, the total potential acting on
the electrons in a solid shares the symmetry of the lattice and thus reflects the
periodicity of the lattice in the case of a crystal. This simplifies the mathematical
treatment of the problem and allows us to understand how the energy spectrum,
wavefunctions, and other dynamic characteristics (e.g., mass) of electrons in a solid
are modified from the free particle case.

5.2.1 Bloch Theorem

The Bloch theorem provides a powerful mathematical simplification for the
wavefunctions of particles evolving in a periodic potential. The solutions of the
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Schrodinger equation in such a potential are not pure plane waves as they were in the
case of a free particle (Eq. (4.33)) but are waves which are modulated by a function
having the periodicity of the potential or lattice. Such functions are then called Bloch
wavefunctions and can be expressed as:

— —

W(k,7) =exp (i k. 7)u(k,7) (5.1)

.
where k is the wavenumber vector (in three dimensions) or wavevector of the

particle, T its position, and u(k , 7) a space-dependent amplitude function which
reflects the periodicity of the lattice:

u(k, 7+ R) =u(k, 7) (5.2)

The expression in Eq. (5.1) means that the Bloch wavefunction is a plane wave,
given by the exponential term in Eq. (5.1), which is modulated by a function which
has the periodicity of the crystal lattice. An illustration of this is shown in Fig. 5.1 in
the one-dimensional case.

Combining Egs. (5.1) and (5.2) leads us to the form:

- -

W(k, 7+ R) =exp (i k . R)¥(k, F) (5.3)

for any lattice vector R. In a one-dimensional case, d being the period of the potential
or lattice, this can be written as:

Fig. 5.1 One-dimensional

illustration of a Bloch /
wavefunction (bottom) as a

plane wave (top) modulated exp(ikx)
by a periodic function which

has the period of the lattice

(middle) -

u(k,x) /\

(k) J\

= exp(ikx)u(k,x) \/
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W(k,x + d) = exp (ikd)¥(k, x) (5.4)

This shows that the wavefunction is the same for two values of k which differ by
integral multiples of %7”. We can therefore restrict the range of allowed values of k to
the interval < k < z

Another important limit of the Bloch theorem is for non-infinite crystals. In this
case, it is common to use the periodic boundary conditions for the Bloch
wavefunction, i.e., the wavefunction is the same at opposite extremities of the
crystal. Assuming a linear periodic chain of N atoms (period d), the periodic
boundary condition can be written as:

Y(k,x) = P(k,x + Nd) = exp (ikNd)¥(k, x) (5.5)
which means that:
exp (ikNd) = 1 (5.6)
or:
2nn
k=—— 5.7
~d (5.7)

where 7 is an integer. Since we restricted the range of k between —Zand Z, n can only
take integer values between —% and % There are thus only N distinct values for n and
thus £.

5.2.2 One-Dimensional Kronig-Penney Model

In addition to the Bloch theorem, which simplified the wavefunction of a particle,
there is a further simplification of the periodic potential, which is often used and is
referred to as the Kronig-Penney model. We will continue with the one-dimensional
formalism started in the previous section. In the Kronig-Penney model, the crystal is
assumed to be infinite. In this model, the real crystal potential experienced by an
electron is shown in Fig. 5.2a and is approximated by the one depicted in Fig. 5.2b.

The solution of the Kronig-Penney model partially utilizes the results from the
finite potential well problem discussed in Sect. 4.4.4, and the same notations have
therefore been used in Fig. 5.2b. The mathematical analysis will first be conducted
locally, in the region —b < x < a, where the potential can be approximated by
Eq. (4.48) except that there is a new limit for the variable x.

The wavefunction solution of the Schrodinger equation thus has two distinct
components, ¥;(x) and ¥,(x), in different regions of space which must satisfy:
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Fig. 5.2 (a) Real crystal
potential experienced by

a
electrons in a crystal and (b) Utx)
simplified crystal potential
used in the Kronig-Penney
model

d=a+b
~—

] ]
I |
-b 0

Q —

Utx)

AUUT DU

d*¥
12(16) + ¥ (x) =0 for —b<x<0
dzix (5.8)
22()‘) + W (x) =0 for 0<x<a
dx
by defining:
2m(Uy — E
io_,witha_ = m(h—oz) when 0 < E < Uy
a =
2m(E - U
a,,witha, = \/w when Uy < E (5.9)
2mE
PV

The general solution to Eq. (5.8) can be expressed as:

{lpl (x) = Aj sin (ax) + By cos (ax) (5.10)

¥, (x) = Az sin (fx) + B, cos (fx)

with the understanding that sin(ax) and cos(ax) become -isinh(a_x) and cosh(a_x),
respectively, when the quantity @ = i is imaginary.

The boundary conditions imply the continuity of W(x) and its first derivative dlzs‘)
at point x = 0 and include the periodicity condition of the wavefunction expressed
through the Bloch theorem in Eq. (5.4) between points x = a and x = —b:
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lP1(O) = ‘1‘2(0)

d¥, ¥y,
L0 =22(0)
dx dx (5.11)
eik(a+b)\111(_b) =¥, (a) ’
) d¥ d¥
lk(u+b)_1 _ _ «er2
e o (b)) =—~(a)
Utilizing Eq. (5.10), we obtain:
B =B
aA; = PA
| =P (5.12)

e*Matb)[_A| sin (ab) 4 By cos (ab)] = A, sin (fa) + B, cos (Ba)
e*a@tb)[gA | cos (ab) + aB) sin (ab)] = A, cos (Ba) — B, sin (fa)

which can be simplified by expressing A, and B, in terms of A; and By:
Ay |*@D) sin (ab) +%sin (Ba) | + By [ cos (Ba) — e*@+?) cos (ab)] = 0

Ay [ae®@th) cos (ab) — acos (fa)] + By [Bsin (Ba) + ae@?) sin (ab)] = 0
(5.13)

This system of two equations with two unknowns has a nonzero solution (i.e., A;
and B not both zero) if the determinant of the system is zero (for more details on the
mathematics, the reader is referred to any introductory book on linear algebra). This
means that the product of the first bracket in the top equation by the second bracket in
the bottom equation minus the product of the second bracket in the top equation by
the first bracket in the bottom equation is zero:

¢H@D) sin (ab) + %sm (pa)| [Bsin (Ba) + ae* ") sin (ab)]

(5.14)
—[cos (Ba) — e*@*?) cos (ab)] [ae* (@) cos (ab) — acos (Ba)] = 0
or after simplification:
a2 +ﬂ2
cosk(a+b) = — 2ap sin (ab) sin (fa) + cos (ab) cos (Ba) (5.15)
a

Using the same constants as in Eq. (4.57), we can rewrite Eq. (5.9) as:
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ay,witha, =ap/{ — 1 whenUy < E (5.16)
B=a/C
Therefore, Eq. (5.15) can be simplified into:

cosk(a+b) = 1o sin (aoaf) ) sinh <aob\/r>

{ia_,witha_ = agy/T = C when0 < E < Uy
a =

2¢/¢(1=2¢)

+ cos (apay/C)cosh (aghy/T =)
forO0< <1 (5.17)
cosk(a+b) = 2\/7 sin (amf) sin (aob\/éj - 1)

+ cos (agar/Z) cos (aphy/ — 1)
forl <¢

In these equations, the only variable in the right-hand side functions is the energy
E, while the only variable in the left-hand side is the wavenumber k. Similar to the
finite potential well case, a solution in { of Eq. (5.17) allows us to determine the
values of the energy as well as the wavefunctions (after normalization).

5.2.3 Energy Bands

In the Kronig-Penney model, the crystal is assumed to be infinite. Therefore, the
periodic boundary condition of the Bloch wavefunction is unnecessary, and the
wavenumber k can take a continuous range of values and is real (i.e., not complex).
Equation (5.17) is most easily solved graphically. The shape of the right-hand side
function of Eq. (5.17), which we will call i), can be visualized in Fig. 5.3.

Because of the cosine on the LHS of Eq. (5.17), only values of fi{) that are
between —1 and +1 lead to allowed (real) values for k. The areas where this occurs
are shaded in Fig. 5.3. Because k is determined through a cosine function, two
opposite values of k are possible for the same value for f{{). In these shaded areas,
there is a continuous range of values for { (or E), corresponding to allowed energy
bands. Some values of {, however, occur in non-shaded areas in Fig. 5.3 and are thus
“forbidden,” meaning that there is no possible state corresponding to these values of
energy. Such regions are called regions of forbidden energy, or energy gaps. An
illustration of these energy bands is given in Fig. 5.4.

Furthermore, as we can see from Fig. 5.3, for every given value of k between —;
i several values of ¢ (thus E) are possible. An actual plot of the E-k
relationship is given in Fig. 5.5 and is called the energy spectrum, the band diagram,
or band structure. This type of diagram is very important in determining the

and
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3+

Fig. 5.3 Plot of the right-hand side of Eq. (5.17), showing the graphical determination of the E—k
relationship. There exists a solution to Eq. (5.17) only when the right-hand side of the equation is
between —1 and +1, which correspond to the shaded areas

E

Ux)

A
band 4
band 3
band 2

AR

Fig. 5.4 Illustration of the concept of energy bands in the crystal

properties of an electron in a crystal. A noteworthy feature, which is true for real
crystals and which can easily be seen in this diagram, is that the slope of the energy
band, i.e. fi—f, is equal to zero at the center (k = 0) and extremities (k = £_7;). This

diagram, in which the value of k is restricted in the interval between — %7 and 77, is
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Fig. 5.5 One-dimensional E
E—k relationship in the A
reduced-zone representation .
in the Kronig-Penney model !
1
1
:
1
Band 4 !
1
1
1
1
1
1
1
1
|
1
Band 3 !
1
1
1
|
1
Band 2 /
1
1
:
1
Band 1 :\
: > i
U 0 T
a+b a+b

often referred to as the reduced-zone representation of the energy versus k dispersion
relation, as opposed to the extended-zone representation which we will now briefly
discuss.

Because the energy is a periodic function of k, the reduced-zone scheme is the
right way to think about the band structure of the system. All the information about
the allowed energy bands is contained in the first Brillouin zone. Going outside the
Brillouin zone simply repeats the same information; it does not add anything new to
our knowledge. In the extended-zone representation, one can lift the previous
restriction on the k-values and instead of being restricted to the values in the interval
—pand %, kis allowed to have any (larger) values. This however does not change
the wavefunction because of the Bloch theorem: the k-values outside the first
Brillouin zone can be reduced to ones inside the first Brillouin zone by “subtracting”

areciprocal; lattice vector K. One can if one wishes unfold the band diagram into the
diagram shown in Fig. 5.6, but the larger values of k can be reduced to equivalent
values of k inside the first zone. Unlike for free particles, in a crystal subject to
Bloch’s theorem the higher values of k do not signify a higher value of momentum.
Indeed, values of momentum differing from each other exactly by a reciprocal lattice

vector are indistinguishable. This does not mean that k has nothing to do with
momentum, it is related to the particle momentum, but it is defined and conserved

only up to a reciprocal lattice vector: If one adds a reciprocal lattice vector to k, the
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Fig. 5.6 One-dimensional E—k relationship in the extended-zone representation in the Kronig-
Penney model. The parabolic relation for the free particle is shown in dotted lines for comparison.
The deviation from a parabolic shape occurs mainly at the Brillouin zone boundaries

energy in the same band remains the same. The expression %k, which corresponded
to the particle momentum in the free particle case ((p) = k), is now referred to as the
quasi-momentum of the electron or the crystal momentum because it includes the
interaction of the electron with the crystal. This explains why one can add integral
multiples of azﬁ to the wavenumber without changing the band structure of the
crystal, while this would be meaningless if it was a particle momentum. The reason
why this quasi-momentum is not absolutely conserved in a lattice, and only
conserved up to a reciprocal lattice vector, is ultimately connected to the fact that
the Hamiltonian in a lattice is not translationally invariant over any arbitrary
displacement as it would be in a space with no external forces, but it is only invariant
when displaced by a lattice vector.

5.2.4 Nearly Free Electron Approximation

The Kronig-Penney model discussed previously is not the only method to determine
the band structure in crystals, but it is the simplest and leads to a complete analytic
solution. Many other methods have been developed which can be methodologically
divided into two groups: one that uses the nearly free electron method and the other
the tight-binding method (to be discussed below). Nevertheless, they all lead to
similar results as they are merely different descriptions of the same phenomena. Here
we have approximately described the band structure using the Kronig-Penney
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Fig. 5.7 Electron energy in a ) JE
lattice (solid curve) and :

energy spectrum of free
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deviation from the parabolic
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zone boundaries
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model. In this subsection, we will briefly discuss the principle of the nearly free
approximation (see Appendix A.7 for the pseudopotential approach).

This method is based on the assumption that the periodic potential introduces a
small perturbation to the free electron state, i.e., a perturbation term is added to the
potential energy in the Schrodinger equation, wavefunctions, and energy of the free
particle to reflect this effect. Although these perturbations are small, the mathemati-
cal computation results in significant changes in the energy spectrum of a free
electron. The reason is that the periodic potential scatters the electrons, and
only the constructive interference of the waves survives and can propagate in the
lattice as a Bloch function. The resulting band diagram in the extended-zone
representation is depicted in Fig. 5.7 (solid line) and compared with that of a free
electron (dashed lines).

The discontinuous curve results from the “reflections” that the electron waves
with momenta of £7K/2 experience at atomic lattice planes, where K is a reciprocal
lattice vector (see Chap. 3 for reciprocal lattice). In the simple cubic lattice, |K| = %”
where d is the lattice constant. These locations correspond to the boundaries of the
Brillouin zones defined in the previous subsection.

The energy difference between branches at points A; and B; (A, and B,) is the
energy gap that appears as a result of the periodic potential in the lattice. The value of
the energy gap depends on the amplitude of the periodic potential. When the periodic
potential reduces to be zero, the energy gaps close, and the spectrum becomes that of
a free particle as shown in Fig. 4.5.

The band diagram can also be plotted in the reduced-zone representation where
the energy spectrum is reduced to the smallest first Brillouin zone of range [—%, +§}
as shown in Fig. 5.8.
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Fig. 5.8 Electron energy in E
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5.2.5 Tight-Binding Approximation

The other method commonly used to determine the band structure in a crystal, the
tight-binding approximation, employs atomic wavefunctions as the basis set for the
construction of the real wavefunction of an electron.

When initially isolated atoms with discrete electron energy levels are brought
together and arranged in a lattice with small interatomic distances (typically ~
3-6 A), the potential of each atom will be distorted due to the influence of other
atoms. At the same time, the wavefunctions of electrons from different atoms will
overlap, i.e., the probability of the presence of electrons from different atoms will be
nonzero in the same position in space. These result in a nonzero probability for an
electron to escape from one atom to the nearest neighbor. This causes a broadening
of the initially discrete energy spectrum and creates energy bands of finite width
instead. In other words, an electron does not live at a certain atomic energy level for
an infinite time but travels from site to site which is equivalent to the movement of
electrons in an energy band. Expressed mathematically, the Bloch superposition of
localized orbitals gives us the tight-binding wavefunction:

- —

W (r) =3 80;(F —R)exp(i k R) (5.18)

Jsn
where f; are the admixture coefficients of the jth orbital and ®; (7 fR) is the jth
n

orbital itself on the atom located at ﬁ, respectively. Substituting Eq. (5.18) into the
time-independent Schrédinger equation allows us to calculate the energy bands. One
does this to a good approximation by noting that the atomic problem (kinetic energy
plus the potential of a given atom) is solved by the given orbital function, and the
energy is known, i.e., using:

i i i

h2 — - — — _ —
{%vz +V(r R)}Cl)a(r ~R) = E,®,(7 —R)
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where E, is the energy of the atomic level and then multiplying both sides of
the Schrodinger equation with a complex conjugate orbital state and then
assuming the orthogonality of the orbitals centered on different sites. Normally,
it is sufficient to keep only the nearest neighbor overlap terms

i = Jd 7 O* (7 —EIH)V(? —El)(D(? —7?,). This quantity is the so-called

two-center integral, and this simplification makes the tight-binding method a good
starting point for an approximate band structure calculation.

For the outer valence electrons which are usually of interest to us, the overlapping
of wavefunctions is large, so the width of the energy band reaches several eV, i.e., is
of the order of and even exceeds the spacing between the successive energy levels of
an isolated atom. For electrons of the inner atomic shell, the level broadening is
smaller, so the energy levels remain essentially sharp. The level broadening, which
can be estimated to be zt where z is the number of nearest neighbors, and we take
t;~t, is illustrated in Figs. 5.9 and 5.10.
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Bringing atoms together and modifying their energy levels is the methodology of
the “tight-binding approximation” because we start from tightly bound electrons in
the atoms. This is in contrast with the previous nearly free electron approximation
approach where we began with the free electron model and progressed by adding a
periodic potential as a perturbation. With the tight-binding model, one arrives to a
qualitatively similar band picture as that obtained from the nearly free electron
model.

5.2.6 Dynamics of Electrons in a Crystal

The dynamics of electrons in a crystal can now be analyzed by considering an
electron as a wavepacket. We will continue with the one-dimensional formalism of
previous subsections.

Assuming that a wavepacket is centered on a frequency @ and a wavenumber &,
the electron can be considered to be moving at a velocity v,, called group velocity,
which characterizes the speed of propagation of the energy that it transports. This
velocity is defined by classical wave theory to be:

_da)

= (5.19)

Ve

In quantum mechanics, this would correspond to the velocity of the electron.
From the wave-particle duality, the frequency of the wave is related to the energy of
the particle by E = fiw and Eq. (5.19) thus becomes:

ldE

Ve
When an external force F acts on the wavepacket or electron so that a mechanical
work is induced, it changes the energy E by the amount:

dE = Fdx = Fvydt (5.21)

where dx is the distance over which the force is exerted during the interval of time dt.
The force F can then be successively expressed as:

1dE 1dEdk
Fi —

= _ =T 5.22
ve dt vy dk dt ( )
or:
dk  d(hk)
F=h—=2"-"" 5.23
dt dt ( )

after using Eq. (5.20). On the other hand, differentiating Eq. (5.20) with respect to
time leads to:
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dvg_ld

dE\ 1 d°Edk
dt  hdt

dk)  hodk® dt
or:

dvy 1 d°E d(hk)

e TV 5.24
dt  n*dk* dr (5.24)
Eliminating “?%) in Egs. (5.23) and (5.24), we find:
1 \dv,
n? dk?
This expression resembles Newton’s law of motion when rewritten as:
dv
F=m*=*% 5.26
m'— (5.26)
where we have defined m* as:
h2
* (5.27)

2
“E /
k2

m* is called the electron effective mass and has a very significant meaning in solid-
state physics. Equation (5.26) shows that, in quantum mechanics, when external
forces are exerted on the electron, the classical laws of dynamics can still be used if
the mass is changed in the mathematical expressions for the effective mass of the
electron.

Unlike the classical definition of mass, the effective mass is not a constant but
depends on the band structure of the electron. The effective mass expresses a
relationship between the band structure found in previous subsections and the
dynamics of an electron in a solid. This shows us how important it is to determine
the band structure in the first place and that an electron in a solid is very unlike an
electron in vacuum.

For example, in the case of a free electron, the energy spectrum is parabolic
(Eq. (4.35)):

NES

T 2m

E(k)

where m is the mass of the electron. Using Eq. (5.27), the effective mass can be
found to be m™ = m, which means that the effective mass of a free electron is equal
to its classically defined mass.

However, when the energy spectrum is not parabolic with respect to the
wavenumber k anymore, as, for example, depicted in Fig. 5.7, the effective mass
differs from the classical mass. We thus see that the presence of a periodic potential
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results in a value of effective mass different from the classical mass. The effective
mass reflects the inverse of the curvature of the energy bands in k-space (i.e., ‘575).

Where the bands have a high curvature, m* is small, while for bands with a small
curvature (i.e., almost flat bands) m* is large.

It is also worth noticing that since ‘57‘25 can be negative, m* can also be negative,
although it is not interpreted so, as we will see later by considering holes (Sect.
5.3.3). A negative effective mass means that the acceleration of the electron is in the
direction opposite to the external force exerted on it, as shown in Eq. (5.26). This
phenomenon is possible because of the wave-particle duality: an electron has wave-
like properties and can therefore be reflected from the lattice planes when its
wavevector satisfies the Bragg condition. Experimentally, if the momentum given
to an electron from an external force is less than the momentum in the opposite
direction given from the lattice (reflection), a negative electron effective mass will be
observed.

Finally, it should also be noted that experiments conducted to measure the mass
of an electron only lead to an estimate of its effective mass, or at least “components”
of it.

Example

Q Assuming that the energy dispersion of a band in a semiconductor can be
expressed as E = AK?, where A = 84.67 A%.eV, calculate the electron effective
mass in this band, in units of free electron rest mass .

2 .
L_ = dzl(Mz) =2 In units of free

A We make use of the formula: m* = -
2 dk

oy
Iy

ol

T
)

dk?
electron mass, we get:

m* h2

mo - ZAWZ()

(1.05458 x 10734)?

T2 x (84.67 x 102 x 1.60218 x 10~") (0.91095 x 10-)
=0.045

5.2.7 Fermi Energy

We have seen so far that the electron energy spectrum in a solid consists of bands.
These bands correspond to the allowed electron energy states. Since there are many
electrons in a solid, it is not enough to know the energy spectrum for a single
electron, but the distribution of electrons in these bands must also be known to
understand the physical properties of a solid. Similar to the way the electrons fill the
atomic orbitals with lower energies first (Chap. 1), the electrons in a crystal fill the
lower energy bands first while satisfying the Pauli exclusion principle.
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Let us consider a solid where there are m energy levels and n electrons, at
equilibrium. Usually these numbers are extremely large, and the number m of
allowed energy levels (taking into account the spin degeneracy) in a solid is much
larger than the number n of electrons (m >> n): for instance, an iron metal with a
volume of 1 cm’® will have approximately 10** atoms and 10°* electrons. At
equilibrium, when no electron is in an excited state (e.g., at the absolute zero
temperature, 0 K), the lowest n energy levels will be occupied by electrons, and
the next remaining m-n energy levels remain empty.

If the highest occupied state is inside a band, the energy of this state is called the
Fermi level and is denoted by Eg. That band is therefore only partially filled. This
situation usually occurs for metals and is depicted in Fig. 5.11b. In the case of
semiconductors, at 7= 0 K, all bands are either full or empty. The Fermi level thus
lies between the highest energy fully filled band (called valence band) and the lowest
energy empty band (called conduction band), as shown in Fig. 5.11a. The energy gap
between the valence band and the conduction band is called the bandgap and is
denoted E,.

The location of the Fermi level relative to the allowed energy bands is crucial in
determining the electrical properties of a solid. Metals have a partially filled free
electron band, since the Fermi level lies inside this band, which makes metals good
electrical conductors because an applied electric field can push electrons easily into
empty closely lying higher energy levels and in this way make them move in space
and contribute to electrical conduction. By contrast, at 0 K, most semiconductors
have completely filled or completely empty electron bands, which means that the
Fermi energy lies inside a forbidden energy gap, and consequently the electric field
cannot displace them from where they are in energy and therefore also not in space.
Intrinsic semiconductors are poor electrical conductors at low temperatures. They
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only conduct when carriers are thermally excited across the bandgap. The same can
be said about insulators. Insulators differ from semiconductors in that their energy
gap is much larger than k,T, where ky(k, = 1.38066 x 10~2* J.K~' = 0.08625
meV-K™') is the Boltzmann constant and T is the temperature in degrees K.

5.2.8 Electron Distribution Function

When the temperature is above the absolute zero, at thermal equilibrium, the
electrons do not simply fill the lowest energy states first. We need to consider
what is called the Fermi-Dirac statistics which gives the distribution of probability
of an electron to have an energy E at temperature 7:

_ 1
fe(E) = exp(

S (5.28)
Ekb?“r‘) + 1

where EF. is the Fermi energy and k, is the Boltzmann constant. This distribution is
called the Fermi-Dirac distribution and is plotted in Fig. 5.12 for various values of
temperatures. This distribution function is obtained from statistical physics. In this
description, the interaction between electrons is neglected, which is why we often
talk of an electron gas.

In fact, a more general formulation of the Fermi-Dirac statistics involves a
chemical potential y instead of the Fermi energy Eg. This chemical potential depends
on the temperature and any applied electrical potential. But in most cases of
semiconductors, the difference between y and Ef is very small at the temperatures
usually considered.

At T = 0 K, the Fermi-Dirac distribution in Eq. (5.28) is equal to unity for E < Ef
and zero for E > Eg. This means that all the electrons in the crystal have their energy
below Eg. At a temperature 7 > 0 K, the transition from unity to zero is less sharp.
Nevertheless, for all temperatures, f.(E) = %2 when E = Ef.

Fig. 5.12 Fermi-Dirac fAE)
distribution function at 1
different temperatures:

T3> Ty > T Ty = 0 K. At the T;
absolute zero temperature, the
probability of an electron to
have an energy below the
Fermi energy Ef is equal to

1, whereas its probability to
have a higher energy is zero

Ty
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To determine the Fermi energy, we must first introduce the concept of density of
states. So far, we have somewhat indexed energy states individually, each having a
certain energy. It is often more convenient to index these states according to their
energy and determine the number of states which have the same energy.

5.3  Density of States (3D)

The concept of density of electronic states, or simply density of states, corresponds
to the number of allowed electron energy states (taking into account spin degener-
acy) per unit energy interval around an energy E. Most properties of crystals and
especially semiconductors, including their optical, thermodynamic and transport
properties, are determined by their density of states. In addition, one of the main
motivations for considering low-dimensional quantum structures is the ability to
engineer their density of states. In this section, we will present the calculation of the
density of states in a bulk three-dimensional crystal, which will serve as the basis for
that of low-dimensional quantum structures.

An ideal crystal has a periodic structure, which means that it has to be infinite
since a surface would violate its periodicity. However, real crystals have a finite
volume. We saw in Sect. 5.2 that one way to reconcile these two apparently
paradoxical features in crystals was to exclude surfaces from consideration by
using periodic boundary conditions (Born-von Karman). This allows us to just
consider a sample of finite volume which is periodically repeated in all three
orthogonal directions. A very important consequence of this was the quantization
of the wavenumber k of the electron states in a crystal, as expressed through
Eq. (5.7).

The analysis in Sect. 5.2 was primarily conducted in one spatial dimension (x) for
the sake of simplicity. Here, it will be more appropriate to consider all three
dimensions, i.e., to use r= (x,¥,2).

5.3.1 Direct Calculation

Let us assume that the shape of the crystal is a rectangular parallelepiped of linear
dimensions L,, L,, and L, and volume V = L,L,L.. The periodic boundary conditions,
similar to Eq. (5.5), require the electron quantum states to be the same at opposite
surfaces of the sample:

W(x+Ly,y,2) =¥Y(x,y+ Ly,2) = ¥(x,y,2+ L) = ¥(x,,2) (5.29)
Using the Bloch theorem, these conditions mean that:
exp (ik,L,) = exp (ikyLy) = exp (ik.L;) = 1 (5.30)

or:
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2
k, ——ﬂnx
L,
2
2
kz :Enz

where n,, n,, n, =0, = 1...are integers, while k,, k,, and k, are the wavenumbers
in the three orthogonal directions. These are in fact the coordinates of the electron

wavenumber vector or wavevector k= (kx, ky, kz). Therefore, the main result of the

periodic boundary conditions is that the wavevector k of an electron in a crystal is
not a continuous variable but is discrete. Equation (5.31) actually defines a lattice for

the wavevector k, and the space in which this lattice exists is in fact the k-space or

reciprocal space.
(@n} _ (n)’
LLL= Vv From
Chap. 3, we know that there is exactly one lattice point in each such volume, which
P v
(2n)°

The volume of the smallest unit cell in this lattice is then

means that the density of allowed k is uniform and equal to in k-space.

Moreover, from Chap. 3, we recall that the wavevector k was used to index electron
wavefunctions and therefore allowed electron states. The density of electron states
per unit k-space volume is therefore equal to:
- Vv
glk)=2—— 5.32
( ) (271_)3 ( )

where the extra factor of 2 arises from the spin degeneracy of electrons.

Example

Q Calculate the density of states in k-space for a cubic crystal with a side of only
1 mm. Is the density of state in k-space too low?

- \%4

A The density of states in k-space is given by: g(k)= ZW =
n

2 X 'é“;f = 8.063 x 10~ mm?>. This number may look small, but if we com-

pare with the volume of the first Brillouin zone, we will find that this density of
states is actually very high. For example, for a face-centered cubic lattice with a
lattice constant of ¢ = 5.65325 A (e.g., GaAs), the volume of its first Brillouin

zone in k-space is given by: V; = 32(2)3 =5.492 A3, Therefore, the total
number of possible states in this first Brillouin zone is:

—

N =Vig(k) = (5492 x 10*'mm3)(8.063 x 10~*mm?)
~4.43 x 10"
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The density of states g(E) as defined earlier is therefore related to its counterpart
in k-space, g(k), by:

- —

g(E)dE = g(k)d k (5.33)

where dE and d k are unit interval of energy and the unit volume in k-space,

—

respectively. In order to obtain g(E), one must first know the E (k) relationship,
which is equivalent to the E—k relationship in one dimension and which gives the

number of wavevectors k associated with a given energy E. This is a critical step
because the differences in the density of states of a bulk semiconductor crystal, a
quantum well, a quantum wire, and a quantum dot arise from it.

For a bulk semiconductor crystal, the electron density of states is calculated near
the bottom of the conduction band because this is where the electrons which give rise
to the most important physical properties are located. Furthermore, we choose the
origin of the energy at the bottom of this band, i.e., Ec = 0. Extrapolating from the

—

results of Sect. 5.2, the shape of the E (k) relationship near the bottom of the
conduction band can generally be considered parabolic:

N h2k2
E(k) =5 (5.34)

where k is the norm or length of the wavevector k, and m* is the electron effective
mass as defined in Sect. 5.2.6. Using this expression, we can express successively:

hZ

dE =
2m*

(2k)dk (5.35)

When considering orthogonal coordinates, the unit volume in k-space is defined
given by:

d k= dkydk,dk. (5.36)

which is equal, when using spherical coordinates, to:
- 4r 4 2
dk=d ?k = 4xk-dk (5.37)
Therefore, by replacing into Eq. (5.35), we get:

= (g% (5.38)
= 2m \ 2k '

Using Eq. (5.34) to express k in terms of E, and replacing into Eq. (5.38):
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Fig. 5.13 Energy
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o1 | =
dE = —A—=|d k
2m* \ 2z \| 2m*E
(5.39)
RN -
= — —d k
2+ (aw) 7
Now, by replacing into Eq. (5.33), we obtain successively:
3
2m* /2 —
g(E) = 27:(?) \/Eg(k)
Finally, using Eq. (5.32), we get:
VvV (2m* /s
gp(E) = ) <—h2 ) VE (5.40)

where a “3D” subscript has been added to indicate that this density of states
corresponding to the conduction band of a bulk three-dimensional semiconductor
crystal. This density of states is shown in Fig. 5.13.

Note that, if the origin of the energies has not been chosen to be the bottom of the
band (i.e., E. # 0), then VE would be replaced by E — E..

Example

Q: Calculate the number of states from the bottom of the conduction band to 1 eV
above it, for a 1 mm® GaAs crystal. Assume the electron effective mass is
m* = 0.067mg in GaAs.

A:  The number of states from 0 to 1 eV above the bottom of the conduction band
is obtained by integrating the three-dimensional density of states gzp(E):
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leV
N :J gip(E)dE. Since the expression for gs;p(E) is given by:
0

)3/2\/5

gp(E) = 55 (2;:’; , we obtain:

N= J;V g0 (E)E = =2 <2’"*)3/2 JW VEdE

T2\ 2 0

T3 7

% (Zm* x 1eV)3/2

3
~(107)” (2(0.067%0.91095 x 107) x (1.60218 x 10”7 /s
372 (1.05458 x 10734)*

~ 7.88 x 10'°

5.3.2 Other Approach

A more elegant approach, but more mathematically challenging way, to calculate the
density of states is presented here. This method will prove easier when calculating
the density of states of low-dimensional quantum structures. The density of states g
(E) as defined earlier can be conceptually written as the sum: g(E) = 2 x (number of

—

states which have an energy FE (k) equal to E) which can be mathematically
expressed as:

g(E) = 225{15(?) E} (5.41)
k

where the summation is performed over all values of wavevector k, since it is used to
index the allowed electron states. §(x) is a special even function, called the Dirac
delta function, and is defined as:

8(x)=0 for x #£0

J S(x)dx =1 (5.42)

—00

Some of the most important properties of the Dirac delta function include:
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(5.43)

+o00

J 5(x — xo) Y (x)dx = ¥ (xo)

—00

In addition, in crystals of macroscopic sizes, the differences between nearest
—

values of k are small, as they are proportional to LL_; Liy, or Li Therefore, in practice, the

discrete variable k can be considered as quasi-continuous. For this reason, the
summation of a function Y(k) over all allowed states represented by a wavevector k

in k-space can be replaced by an integration over a continuously variable k such that:

ZY = V)3 J”Y(Z)d V3

8%8

oo 0
J JY k Ky k dkxdkydkz

(5.44)

The factor

( 2‘;)3 is the volume occupied by a reciprocal lattice point in k-space.
Eq. (5.41) can therefore be rewritten into:

T

—

k

—

) - E}d k (5.45)

=1

Now, we need to use the expression of d {E(k)} as a function of d k found in

Eq. (5.39):

d[E(;)} = % (25*)3/2 L g% (5.46)

Equation (5.45) therefore becomes:

o(E) = i’g(#)/zja{E(Z)_E} E(E)d[E(Z)] (5.47)

0

and after the change of variable E (k) — X



172 5 Electrons and Energy Band Structures in Crystals

3 oo
vV [(2m* /2
§(E) = 5 (?> J 5(x — E)y/wdx (5.48)
0
Using Eq. (5.43), and because E > 0:
v (2m*\
3(E) =2 (?’12) VE (5.49)

which is the same expression as Eq. (5.40) for g;p(E).

Therefore, the knowledge of the Fermi-Dirac distribution, which gives us the
probability of the presence of an electron with energy E, and the density of states,
which tells how many electrons are allowed with an energy E, together permit the
determination of the distribution of electrons in the energy bands. The total number
of electrons in the solid, nyy, is therefore obtained by summing the product of the
Fermi-Dirac distribution and the density of states over all values of energy:

(o0
o = | BBV (550)
Because Ep is embedded into the function f.(E), this equation shows us how the
Fermi energy can be calculated.

One important parameter for semiconductor devices is the concentration or
density of electrons 7 in the conduction band. The following discussion provides a
simplified overview of the formalism commonly used for this parameter and
illustrates well the use of the Fermi-Dirac distribution. A more detailed analysis
will be provided in Chap. 7 in which we will discuss the equilibrium electronic
properties of semiconductors. Here, the density of electrons n, with effective mass
m,, in the conduction band is given by:

ey jm S(EVf(E)E (5:51)

where the integration starts from Ec which is the energy at the bottom of the
conduction band. In a bulk semiconductor, the density of states g(E) in the conduc-
tion band is, as derived above, given by:

N |
oB) = 5 () @~ E)" (5.52)

22\

Combining this expression with Eq. (5.28), the density of electrons becomes:
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3
1 [2m, /2 oo i 1
=— E—E 2 dE 5.53
n 2”2 ( hz ) JEC ( C) o E— EF 1 ( )
Pk T
or:
Ex — Ec
where:
2rkyTme 3/2

is the effective density of states in the conduction band, and:

oo

_ 2 [y
A _\/EJHGXp(yx)

1/2
dy (5.56)

is the Fermi-Dirac integral. A more detailed discussion on the effective density of
states and the Fermi-Dirac integral will be given in Chap. 7.

5.3.3 Electrons and Holes

We have seen that when the curvature of the E—k energy spectrum is positive, such as
near point O in the bottom band in Fig. 5.8, the electron effective mass is positive.

However, when the curvature is negative, such as near point A; in this same band,
the effective mass of the electron as calculated in Sect. 5.2.6 would be negative. In
this case, it is more convenient to introduce the concept of holes. A hole can be
viewed as an allowed energy state that is non-occupied by an electron in an almost
filled band. Figures 5.14a, b are equivalent descriptions of the same physical
phenomenon. In Fig. 5.14a, we are showing the energy states occupied by electrons.
In Fig. 5.14b, we are showing the energy states in the valence band which are
occupied by holes, i.e., vacated by electrons.

Electrons can move in such a band only through an electron filling this
non-occupied state and thus leaving a new non-occupied state behind. By doing
so, it is as if the vacated space or hole had also moved, but in the opposite direction,
which means that the effective mass of the hole is therefore opposite that of the
electron that would be at that same position, in other words, the effective mass of the
hole is positive near point A; in Fig. 5.8 and is computed as:
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Fig. 5.14 Electron energy states in the reduced-zone scheme. In (a), the solid circles show the
states occupied by electrons. In (b), the closed circles show the states in the conduction band which
are occupied by electrons, and the open circles the states in the valence band occupied by holes

hZ
*
S (5.57)

A hole can be viewed as a positively charged particle (energy state vacated by an
electron). Holes participate in the electrical charge transfer (electrical current) and
energy transfer (thermal conductivity).

Let us consider the concept of holes in more details. The probability of the state

k to be occupied by an electron is f.(k). The probability of the state not to be occupied
is the probability to find hole in the state k£ and can be written as:

k) =1—f(k) (5.58)
The electrical current from the electrons in the band is:
j==20) fo(k)n (5.59)
k

where vy is the electron velocity at state k, g is the electron charge (¢ > 0) and the
summation is performed over all states with wavenumber k in the first Brillouin
zone. This can be rewritten as:

J==24) felle= =2 [1 —fu(k)]n
k k
=—2¢) w+2q)_fulkw
k k

We can now use the fact that the electron energy spectrum is always symmetrical,
i.e., E(k) = E(—k); hence vy = — v, from Eq. (5.20), and the sum of velocities over
the entire first Brillouin zone is zero. The first sum in Eq. (5.60) is thus equal to zero
and we obtain:

(5.60)
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j=+20) fillow (5.61)
k

Therefore, the electrical current in a band incompletely filled with electrons
moving at speed vy is equivalent to the current of positively charged holes moving
at speed vi. We thus see that in a band incompletely filled with electrons, the
electrical current can be represented by flow of positively charged particles-holes.

54 Band Structures in Real Semiconductors

In three-dimensional crystals with three-dimensional reciprocal lattices, the use of a
reduced-zone representation is no longer merely a convenience. It is essential;
otherwise, the representation of the electronic states becomes too complex. How
then can we display the band structure information from a three-dimensional crystal,
which needs of course four dimensions (E, k,, k,, and k,) to describe it? The answer is
to make representations of certain important symmetry directions in the three-
dimensional Brillouin zone as one-dimensional E versus k plots. Only by doing so
can we get all the important information onto a two-dimensional page. Therefore,
when looking at an E—k diagram, one is looking at different sections cut out of the k-
space. In addition, to simplify the diagram, we consider that k varies continuously.
Indeed, the difference between two values of k is Ak = [%7’;, where the lattice
parameter a is around several angstroms and the order of magnitude of N is 10%,
And the length of the side of the Brillouin zone is
2~ 62810 m™! > 22~ 6.28%10'° m~'. As aresult, at the scale of the recip-

rocal lattice, the wavenumber can be considered to vary continuously.

5.4.1 First Brillouin Zone of an fcc Lattice

The first Brillouin zone of an fcc lattice is shown in Fig. 5.15. Certain symmetry
points of the Brillouin zone are marked. Roman letters are mostly used for symmetry
points and Greek letters for symmetry directions, specifically the I', X, W, K, and L
points and the directions A, A, and X. The following is a summary of the standard
symbols and their locations in k-space, with a the side of the conventional cubic unit
cell:

2w
r 22(,0,0
”(0,0,0)
X 27t(0,0,1)

a
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Fig. 5.15 First Brillouin
zone of an fcc lattice

2
W Z4,0,1)
a

2
K ;“(%,%,0)

Note that there may be several equivalent positions for each of these points. For
example, there are six equivalent X symmetry points, located at coordinates 2(1—”
(0,0,£1), 27"(0, +1,0), and za—”(:l:l,0,0).

Using Miller indices, the symmetry directions can be denoted as:

A: T — X (parallel to < 100 >)
A: T — L (parallel to < 111 >)
¥: TI' — K (parallel to < 110 >).

These notations come from the crystal group theory where they are used to label
the symmetry operation groups at those particular high-symmetry points and

directions. For example, I is the symmetry group at the zone center (k= (0,0, 0))
and is isomorphic to the lattice point group.

Example

Q: Determine the coordinates of the L point in the first Brillouin zone of a face-
centered cubic lattice.

A: The first Brillouin zone of a face-centered cubic lattice with side a is
body-centered cubic with a side equal to “a—” in the k,, k,, and k, directions, as
shown in the figure below. Let us take the I' point at the center of the first
Brillouin zone. The L point is exactly at the bisection point of I" and the lattice

TAT

point at (32221 Tts coordinates are thus: (ZZZ).
a’a’a a’a’a



5.4 Band Structures in Real Semiconductors 177

5.4.2 First Brillouin Zone of a bcc Lattice

Similarly, the first Brillouin zone of a bcc lattice can be described in terms of its
principal symmetry directions as it is shown in Fig. 5.16.

The symmetry points are conventionally represented as I', H, P, and N, and the
symmetry directions as A, A, D, X, and G. The various symmetry points are:

2n

r —(0,0,0
~(0,0,0)
2

H —(0,0,1
Z(0,0,1)

2TC 1 1 1
P (4%1)

2
N (s, ,0).
a

Fig. 5.16 First Brillouin
zone of a bcec lattice
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Using Miller indices for the directions:

I' — H (parallel to < 100 >

' — P (parallel to < 111 >

I' — N (parallel to < 110 >

Q M o > b

)
)
N — P (parallel to < 100 >)
)

(
N — H (parallel to

5.4.3 First Brillouin Zones of a Few Semiconductors

As discussed in Chap. 3, many semiconductors have the diamond or zinc blende
lattice structures. In these cases, the extrema in the E—k relations occur at the zone
center or lie, for example, along the high-symmetry A (or <100>) and A (or <111>)
directions. The important physical properties involving electrons in a crystal can thus
be derived from plots of the allowed energy E versus the magnitude of k along these
high-symmetry directions.

Figure 5.17 depicts the E—k diagrams characterizing the band structures in Ge
(Fig. 5.17a), Si (Fig. 5.17b), and GaAs (Fig. 5.17¢). The lines shown here represent
bands in the semiconductor. The three lower sets of lines correspond to the valence
band, while the upper bands correspond to the conduction bands. Note that the
energy scale in these diagrams is referenced to the energy at the top of the valence
band, Ey is the maximum valence band energy, Ec the minimum conduction-band
energy, andE, = Ec—Ey the bandgap. This is only a conventional choice, and the
origin of energy can be chosen elsewhere.

The plots in Fig. 5.17 are two-direction composite diagrams. The <111> direction
is toward point L, and the <100> direction is toward point X. Because of crystal

symmetry, the — k portions of the diagrams are just the mirror images of the

corresponding + k portions. It is therefore standard practice to delete the negative
portions of the diagrams. The left-hand portions(I" — L) of the diagrams are shorter
than the right-hand portions (I' — X) as expected from the geometry of
Brillouin zone.

Valence Band

In all cases, the valence band maximum occurs at the zone center, at k = 0. The
valence band in each of the materials is actually composed of three subbands. Two of
the bands are degenerate (have the same energy) at k = 0, while the third band is split
from the other two. In Si, the upper two bands are almost indistinguishable in
Fig. 5.17b and the maximum of the third band is only 0.044 eV below Ey at k = 0.
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Fig. 5.17 E—k diagram of a few semiconductor crystals: (a) Ge, (b) Si, and (¢) GaAs. The
structures of the conduction and valence bands are plotted. The origin of the energy is chosen to
be at the top of the valence band. (Reprinted figure with permission from Chelikowsky and Cohen
(1976). Copyright 1976 by the American Physical Society)

The degenerate band with the smaller curvature about k = 0 is called the heavy-
hole band, and the other with larger curvature is called the light-hole band. The band
maximizing at a slightly reduced energy is called the spin-orbit split-off band (see
the Kane effective mass method in Sect. 5.6).

Conduction Band

There are a number of subbands in each of the conduction bands shown in Fig. 5.17.
These subbands exhibit several local minima at various positions in the Brillouin
zone. However — and this is very significant — the position of the conduction band
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absolute minimum in k-space, which is the lowest minimum among all these
subbands and which is where the electrons tend to accumulate, varies from material
to material.

In Ge the conduction band (absolute) minimum occurs right at point L, the zone
boundary along the A or <111> direction in Fig. 5.17a. Actually, there are eight
equivalent conduction band minima since there are eight equivalent <I11>
directions. However, each minimum is equally shared with the neighboring zone,
and there is therefore only a fourfold degeneracy or a multiplicity of four. The other
local minima in the conduction band occurring at higher energies are less populated
and are therefore less important.

The Si conduction band absolute minimum occurs at k ~ 0.8(2z/a) from the zone
center along the A or <100> direction. The sixfold symmetry of the <100> directions
gives rise to six equivalent conduction band minima within the Brillouin zone. The
other local minima in the Si conduction band occur at considerably higher energies
and are typically not important as they would only have a negligible electron
population unless some very strong force could activate carriers to these higher
extrema or if the temperature is much higher.

Among the materials considered in Fig. 5.17, GaAs is unique in that the conduc-
tion band minimum occurs at the zone center directly over the valence band
maximum. Moreover, the L-valley minimum at the zone boundary along the
<111> directions lies only 0.29 eV above the absolute conduction band minimum
at I'. Even in thermal equilibrium at room temperature, the L-valley contains a
non-negligible electron population. The transfer of electrons from the I'-valley to
the L-valley can, for example, happen at high electric fields when electrons are
heated up to high velocity. The transfer keeps the high energy but gives them a high
effective mass which slows them down in space. When they slow down, they force
the new electrons coming in to slow down too, until they, the transferred valley
charge has exited. This results in a self-oscillating current state and is an essential
feature for some device operations such as in charge-transferred electron devices
(e.g., Gunn diodes, etc.).

Having discussed the properties of the conduction and valence bands separately,
we must point out that the relative positions of the band extreme points in k-space are
in itself an important material property. When the conduction band minimum and the
valence band maximum occur at the same value of &, the material is said to be direct-
gap type. Conversely, when the conduction band minimum and the valence band
maximum occur at different values of &, the material is called indirect-gap type.

Of the three semiconductors considered, GaAs is an example of a direct-gap
material, while Ge and Si are indirect-gap materials. The direct or indirect nature of a
semiconductor has a very significant effect on the properties exhibited by the
material, particularly its optical properties. The direct nature of GaAs, for example,
makes it ideally suited for use in semiconductor lasers and infrared light-emitting
diodes.
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5.5 Two-Dimensional Semiconductors and Transition Metal
Dichalcogenides “TMDC”

5.5.1 Examples: Graphene (G) and TMDC

One of the great discoveries of recent times is the exfoliation of the material which
has been named graphene (G) [ Geim, Castro, Avouris]. It was fabricated initially by
exfoliation from graphite and consists ideally of a single carbon sheet. The good
news is that this monolayer of carbon is strong enough to survive experimental
manipulation and temperature, even in suspension, and can therefore be used in
making devices. Graphene turned out to be so interesting that the discoverers
Novoselov and Geim were awarded the Noble prize. The literature on graphene is
now huge, and we will here only focus on a few noteworthy aspects which have
enriched semiconductor science. The interested reader is strongly urged to consult
the vast literature.

The structure of G is hexagonal two-dimensional carbon and shown in Fig. 5.18.

5.5.2 Graphene Band Structure: Nearest Neighbor Tight Binding

The simplest and most popular way of deriving the graphene band structure is to use
the tight-binding method described in our Appendix 2 in Chap. 2. Using A and B to
denote the two types of atoms which form the hexagonal lattice (see Fig. 5.18), we
can assign a valence orbital to every carbon atom and allow these orbitals to couple
to generate the graphene energy bands. Consider the t-b (tight-binding) Hamiltonian
for this lattice and drop the Coulomb interaction between the electrons, steps which
can be justified later. Using second quantization, and the creation c;; and annihilation
ci» operators for electrons at atomic orbitals at a given site “i”” [Da Sarma et al, Castro
et al] [see Chap. 16 electron phonon interaction for second quantization]:

Fig. 5.18 Hexagonal lattice
of a 2D material
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H, Z €isCi Cis + Z tiiCi Cjo (5.62)

i#j, 0

€, are the atomic orbital energies with spin index o, and “¢” is the tight-binding
coupling matrix element linking two neighboring orbital orbitals.

Now let us set up the Heisenberg equation of motion [see FSSE Chap. 4] for the
amplitude of the wavefunction at atomic sites or corresponding operator with atom
of type “a,” for example, E = energy:

— &) Z tych, (5.63)

The sum j goes over the n.n and we note that the neighboring atoms a, b are not
equivalent by translational symmetry, though apparently physically completely
equivalent, so that the Bloch periodicity argument cannot be used straight away.
In order to recover an equivalent atom and solve the equations by symmetry, we
have to go one step further and set up a similar relation for the b-sites as we did for
the a-sites with Eq. 5.63, thus we have:

— &) Z tic, (5.64)

Now, we substitute Eq. (5.64) in Eq. (5.63) and relate two equivalent a or b atoms at
distance R by the Bloch’s phase factor exp(ik.R) in the usual way we can solve the
problem. The unusual linear dispersion at the points in k space K and K’ as shown in
Fig. 5.19 now called Dirac points, where the gap is zero, is due to the fact that the
two sets of lattice points “a and b’ are completely equivalent apart from the fact that
they are mirror symmetrical not translationally symmetrical. This topological restric-
tion, analogous to the restriction of having to move below light speed at all times,
then gives rise to space splitting and a new pseudo spin-like quantum number. One
can see that this notion can be generalized to an infinity of topologies, which could
have this, and indeed far more complex chiral symmetries. Energies can be degener-
ate, but one level can be “hole like” and the other “particle like.”

Another way to derive the band structure is to use the real spatial wavefunction y
and then the Wallace expectation value and optimization process [P R Wallace Phys
Rev. 71, 622, (1947)]:

= exp(ik-Ra)X(r—Ra) + 1) _exp(ik - Rg)X(r — Rg),  (5.65)

r is the particle coordinate, R, and Ry are position of the two types of atoms (see
Fig. 4.7), and k is the Bloch wavevector:
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conduction
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ENERGY

Ky
Electrons

Fig. 5.19 From Phaedon Avouris. “Graphene electronic and photonic properties and devices”
Nanoletters vol 10, p. 4285, (2010)

= IX* (l‘ — RA)HX(I' — RB’i)dl‘,

(5.66)

Ek = E() + (—lk . pi) 5

A=1lor—1

Band structure of graphene plotted in 3D to exhibit the zero gap or Dirac points
KXK'

Analytic tight-binding band structure is:
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Fig. 5.20 Near the K K’s a
points, shown above, now
called Dirac points, the

dispersion (energy @
momentum relation) is linear 4 @
implying a zero effective mass .

Graphene lattice and 15t BZ Dirac equation

E(k) = iyo\/l + 4 cos (%kxa) cos (?kﬂ) +4cos? (gkya), (5.67)

where v is the banding energy ¢ (atom to atom overlap) (Fig. 5.20).

The honeycomb structure can be thought of as a triangular lattice with a basis of
two atoms per unit cell with 2D lattice vectors Ay = (a/2)(3, v/3) and By = (a/2)(3, -
\/5), where a = 0.142 nm is the carbon-carbon distance, and K = (2ﬂ/(3a),2n/(3\/§
a)) and K' = (22/(3a), —2ﬂ/(3\/§) a) as the inequivalent corners of the BZ and are
called “Dirac points.” The Dirac points play a role similar to the role of I" points in
direct bandgap semiconductors.

Relative to the Dirac point, the dispersion is:

Ei(q) = thvpqg + O(q/k)* (5.68)

The dispersion depends on the Fermi velocity vg. In tight binding vg can be
expressed in terms of the nearest neighbor hopping integral ¢ so that:

fvg === (5.69)
a=0.14 nm, =25 eV, vg=10® cm/s

The linear dispersion is like the dispersion of light or photons with:

E = chq (5.70)

where c is the velocity of light. But there are here two sublattices A, B in the structure
of G which allows us to write the Hamiltonian on the two sides of the bandgap as a
relativistic Dirac-like Hamiltonian:

H =vgoehq (5.71)

where o is a spinor-like wavefunction, vg is the Fermi velocity of G, and q is the
wavevector of the electron. Linear dispersion can be thought of as zero effective
mass. The spinor nature of the wavefunction is not a consequence of electron spin as
in the Dirac equation, but rather from the fact that there are two atoms per unit cell A,
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B, and the electron can be thought of as jumping between the components A, B
which is then analogous to having a pseudo spin coordinate (in the Dirac equation,
the electron can be thought of as hopping into its antiparticle and back again on the
time scale short enough that it is allowed by Heisenberg uncertainty principle).
Whereas in the latter case, the energy to be overcome is the energy to create a
particle-hole pair (2mc?) in empty space, the great new effect here is that the bandgap
is zero, so that the particle and hole can be created with zero energy cost. This
exciting property implies that one can think of the electron as moving not into empty
space but into the “graphene vacuum” of virtual electron-hole pairs and thus
oscillating back and forth into the hole component of these virtual pairs created
around as the particle moves. This is very much like a photon which moves by
alternatively going from electric field (A) to magnetic field excitation (B) . The
analogy with relativistic quantum mechanics now also follows by noting that in
relativity, the energy of a particle is given by ( p-momentum):

E=[(me) + (pc)z] v (5.72)

so that the linear dispersion follows in the limit of zero mass.

Remember from Chap. 4 that in the Dirac equation, the spin does not disappear in
the nonrelativistic limit but remains a fundamental property of quantum particles in a
four-dimensional quantum space time. In other words, even when the mean particle
velocity is slow, the short-time (light speed) visits into the antiparticle space which is
the origin of the spin, are always allowed by Heisenberg’s uncertainty principle.
Now one can understand why the zero gap nature of semiconductors, graphene being
an example, can be so exciting. The visits into hyperspace are now zero energy visits
into the valence holes and back (A, B sublattices) and giving rise to a new pseudo
spin quantum number. If we now generate a gap, then this can change the quantum
dynamics and properties drastically. This is in principle relatively straightforward to
produce by external means (gate, multilayer, doping, etc.). Finally, we note that
whereas parabolic electrons have constant density of state in 2D, graphene electrons
will have linearly increasing density of states with energy (Fig. 5.21).

The short section here does not do justice to the enormously interesting field. The
reader is advised to consult the excellent reviews in the literature and in particular
see, for example, the excellent review by Phaedon Avouris “Graphene Electronic
and Photonic Properties and Devices” Nanoletters vol 10, p4285, (2010).

5.5.3 Two-Dimensional Metal-Dichalcogenide TMDC: Electronic
Structures

Introduction

After Graphene, researchers tried to find new types of graphene like 2D layered
materials in order may be to discover some of the exciting photonic like electron
band structures. Various groups around the world have found out how to make
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Fig. 5.21 From 8K
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freestanding barrier layers like h-BN, and then finally more recently, they discovered
how to exfoliate 2D layers of the transition metal dichalcogenides TMDs [Manish
Chewola] . Artificial multilayer fabrication technology is now a very active and
popular field of science and technology. Notable discoveries are the ultrathin film
transparent high ratio field-effect transistors TFT which exhibit a high degree of
plasticity and are promising for tattoo electronics and many other highly commercial
applications. Examples of TMD are given in Table 5.1 (Fig. 5.22).

Making nanosheets: description
The TMD sheets have so far been made in several ways described in the work of
Chhowalla et al.

1. Scotch tape exfoliation

2. Liquid exfoliation with selected surfactant with right surface energy penetrating
the layers and dissolving them

3. Chemical vapor deposition CVD (Figs. 5.23 and 5.24)

5.5.4 Example: Fabrication of Flexible Transistors

Ten atomic thick high-mobility transparent TFTs with ambipolar device
characteristics fabricated on both conventional silicon platform and on a flexible
substrate have been demonstrated by Saptarshi Das et al. Nano Letters Vol. 14,
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Table 5.1 Electronic character of different layered TMDs>

Group |M X Properties
4 Ti, Hf, Zr S, Se, Te | Semiconducting (E, = 0.2 ~ 2 eV). Diamagnetic
5 V, Nb, Ta S, Se, Te | Narrow band metals (p ~ 1074 Q.cm) or semimetals.

Superconducting. Charge density wave (CDW).
Paramagnetic, antiferromagnetic, or diamagnetic

6 Mo, W S, Se, Te | Sulfides and selenides are semlconductmg (Ey ~ 1eV).
Tellurides are semimetallic (p ~ 107> Q cm). Diamagnetic

7 Tc, Re S, Se, Te | Small-gap semiconductors. Diamagnetic

10 Pd, Pt S, Se, Te | Sulfides and selenides are semiconducting (E, = 0.4 eV)

and diamagnetic. Tellurides are metallic and paramagnetic.
PdTe, is superconducting

p, in-plane electrical resistivity
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Fig.5.22 Structure of monolayered TMD. About 40 different layered TMD compounds exist. The
transition metals and three chalcogen elements predominantly crystallize in those layered structures.

From Chhowalla et al. (2013) [9]

Fig. 5.23 Tllustration of the
quality achievable for
heterostructures MoS, on
graphene
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Fig. 5.24 Qualitative schematic illustration showing the progressive filling of d-orbitals that are
located within the bandgap of bonding and antibonding in groups 4,5,6,7, and 10 TMDs. The D5,
and D34 refer to the point groups associated with the trigonal prismatic and the octahedral coordi-
nation of the transition metal oxides. (From Chhowalla et al. (2013))

p. 2861, (2014). Monolayer graphene was used as gate electrode and 3—4 atomic
layers thick h-BN was used as the gate dielectric, and finally bilayers of WSe, were
used as the semiconducting channel material for the TFT. The active device stack
was found to be 88% transparent over the entire visible spectrum. On to off ratios of
107 were observed in all the two-dimensional TFTs.

5.5.5 Summary: Discussion

The atomically thin 2D nanosheets of TMD derived from layered materials exhibit
excellent electronic properties, exceptional mechanical flexibility, and partial optical
transparency. Beyond the typical semiconducting properties, the various 2D layered
materials can also exhibit superconductivity (NbSe,) magnetic (CrSe,) insulating
(InN) and thermoelectric (Bi,Tes). The 2D sheets can be grown on top of each other
to build superlattices with van der Waals bonded layers with exciting new prospects;
see the excellent review by Xidong Duan et al.

Xidong Duan et al. review Chem Soc Rev. Vol. 44 p. 8859 (2015): “Two-
dimensional transition metal dichalcogenides as atomically thin semiconductors:
opportunities and challenges.”

Previously in this chapter, we investigated the new “wonder material” called
graphene. We described its band structure and explained why this two-dimensional
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perfect semimetal with high electron mobility is expected to, and indeed shows, new
physical properties which can have serious technical applications. There is by now a
massive literature on this subject; indeed, both G and TMD sheets and the interested
reader are encouraged to consult some of this material.

5.6 Band Structures in Metals

Although this chapter was primarily devoted to the band structures of
semiconductors, which is of great importance in solid-state devices, it would not
be complete without a few words on the band structures of metals. Figures 5.25 and
5.26 are examples of electron band structures of two such metals, aluminum and
copper.

As mentioned earlier in this chapter, very different behaviors can be seen between
the band structures of metals and semiconductors. First of all, there is no forbidden
energy region (bandgap) in metals. All the energy range drawn in these diagrams is
allowed in metals, which is the most critical difference between metals and
semiconductors. Even at a temperature of zero K, a metal has a band which is
partially filled with electrons and its Fermi level thus lies within this band. There is
no such distinction as valence and conduction bands as encountered in a
semiconductor.
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Fig. 5.25 Electron band structure diagram of aluminum. The energy is expressed in units of
Rydberg. The dashed lines show the energy bands for a free electron (Reprinted figure with
permission from Segall B The Physical Review, vol. 124, p. 1801, Fig. 3, Copyright 1961 by the
American Physical Society)
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Fig. 5.26 Electron band structure diagram of copper. The energy is expressed in units of Rydberg.
There are a few narrow bands located just below the Fermi energy, corresponding to the 4d orbitals
in copper (Reprinted figure with permission from Segall B The Physical Review, vol. 125, p. 113,
Fig. 5, Copyright 1962 by the American Physical Society)

The band structures in the '=X, I'=K, and '—L directions are nearly parabolic
and are therefore similar to the free electron case. Electrons in aluminum thus behave
almost like free electrons.

The dashed lines in Figs. 5.25 and 5.26 are the E—k relation for a free electron.
One can see that the band structure in aluminum is very close to that of free electrons.
The energy spectrum of copper has less resemblance to the free electron E—k
parabolic relation. The major difference between copper and aluminum is the
presence of a number of narrow bands below Ef in copper. These narrow bands
are attributed to the 4d-orbitals of copper atoms. The presence of these d-orbital-
originated bands is a common feature of most transition metals (such as iron and
nickel) and noble metals (such as copper, gold, and silver). These provide a degree of
screening effect for electrons. The absence or presence of these d-band electrons is
also at the origin of the gray and red color appearance of aluminum and copper,
respectively. Indeed, when there is a d-band, as in copper, not all the photons
reaching the metal surface are reflected, but those photons with sufficient energy
can be absorbed by the d-electrons (see Chapter 0). As a result of this “deficiency” of
photons with certain energies, the copper appears red. A similar explanation is valid
for the yellow color of gold.



5.7 The Kane Effective Mass Method 191

There are always many nearly free electrons in metals that contribute to the
electrical and thermal conduction. On the contrary, semiconductors do not have
many free electrons when they are intrinsic (i.e., without impurities), and carriers
must be provided by a process called doping. The controllability of the doping level
in semiconductors is one of the most important reasons why semiconductors are
useful in making electronic and optoelectronic devices and will be discussed later in
this textbook.

5.7 The Kane Effective Mass Method

In the chapter on band structure, we made the observation, and indeed used this later
also throughout the book, that the band dispersion in the majority of semiconductors
near k = 0 could be approximated as a parabola in k but with an effective mass which
is determined by rigorous band structure computation. One finds in practice that the
scheme works very well and that the true effective masses can be very different from
the free electron masses. From the “exact results” shown in this chapter, one cannot
easily understand why the effective mass behaves in the way it does, and one cannot
see how it would correlate with the other features of the material, such as its band
gap, for example. Also it would be nice to have a scheme which could predict the
effective mass, was versatile, and could be applied to confined and multilayer
structures as well. Some years ago, Evan O. Kane discovered that it was possible,
with rather simple mathematical methods, to shed light on this question. He worked
out a scheme with which it is possible to obtain a good approximation to the effective
mass near the k = 0 points in semiconductors, and a correlation between the effective
mass and the band gap.

Kane’s method is a brilliant example on how one “piece of information,” nor-
mally obtained by experiment, can be used to derive another piece of information
using the logical structure of a theory. The Kane argument goes as follows.

Consider the full Hamiltonian and Schrodinger equation (SE) of the electron in
the periodic potential V(?) of the lattice. Now assume that the wavefunction is a
Bloch wave and must mathematically have the structure:

v (F)=u (F)etr (5.62)

—

with energy E, (k) we know that this must be true, so we substitute it in the SE

P’ - - =
V() =) (56

differentiate, collect the terms, and find
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P I - - n” o, -
{Term_ok'HV(r)}un?(r): [Ea——k]una(r) (5.64)
This is now an equation for the unknown modulating part of the wavefunction
u - (7) The known part has been incorporated and has given an energy shift and a

new term in the Hamiltonian. We can rewrite Eq. (5.64) as:
hz I — hz 2 —
ot kb |up () = [ () 669
and taking the limit k = 0, we have the eigenvalue equation:

Houp (7) = [En(0)]un (7) (5.66)

for the k = 0 envelope. So now one can ask what is the gain in all this, since we are
back at the usual Schrodinger equation for the band? There are two observations to
be made: the wavefunctions u, (7) only have band indices n, there are as many of
them as we have energy bands in the semiconductors. In particular, there are valence
band functions and conduction band functions. There is a finite energy difference
between each band. We could use these functions even though we do not know
them, as basis functions, and expand the k-dependent term of the Hamiltonian
Eq. (5.65) as a perturbation near k = 0. In this way, we derive the additional k-
dependence of the energy and the k-dependence of the core wavefunction u - (7) In

this way, we also automatically get an expression for the effective mass in terms of
the matrix elements of these basis functions and the energy difference. Thus apply-
ing second-order perturbation theory from Chap. 4 to the k-dependent term in
Eq. (5.65), we have for the energy and wavefunction:

. h2k2 h- h2 ’; .Enn’
E,l(k):E,,(0)+2—m+m—0k.£l+m—%;1E7n(o)_En,(o) (5.67)
n kep
u (1) =mo(r) + > | e ey | () 568

Remember that the complete wavefunction is of the form of Eq. (5.62). Now, we

see that progress has indeed been made. When we look at Eq. (5.67), then indeed
2,2

. nk
Eq. (5.67) with EnZ ~ E,(0) + py

tells us that the effective mass near k = 0 is given by (i, j denote the x,y.z
components)):

and the observation that by symmetry 13 =0
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1 1 piopl +plopi
— ) =—35; PrnPrin 7 Fnn''n 5.69
(m*) i Mo Al ,;, E,(0) — Ex(0) ( )

The inverse of the effective mass is a sum of the free electron mass and term
which depends on the momentum matrix elements of the k = 0 envelope but is also
dependent on the energy difference between the bands. If for simplicity, we now
consider just two bands, namely, the conduction and valence band, then to a good
approximation, we see that the inverse effective mass scales as the inverse of the
energy gap of the semiconductor. In other words, we have the result that
semiconductors with smaller band gaps should have the lower effective mass. If
this statement turns out to be generally true, then it helps to establish an important
principle and correlation between band gap and effective mass (see the data in
Appendix A4).

At this stage, the most important unknown is the momentum matrix element. The
next step is therefore to establish empirically that the momentum matrix elements are
not strongly dependent on the band gap and to include the other bands when
necessary. Here one also uses the fact that the exact wavefunctions are s-like near
the bottom of the conduction band and p-like near the top of the valence band. This is
known from first principle and tight-binding band structure theories. This interplay
between theory and experiment then gives us useful and simple empirical rules and
numbers for the above matrix element in Eq. (5.69). For example, one finds that the

Kane parameter Ep = %Pz where P =—p? is roughly 20-25 eV for most
h mg

semiconductors of interest, where the subscripts ¢ and v denote the conduction and
valence band, respectively. The Kane method of expanding around the k = 0
envelope states can be extended to treat also the spin-orbit interaction. The spin-
orbit coupling is of the form:

Vio = et © -(vv(r)x p) (5.70)

where o is the electron spin operator and V(?) is the total potential experienced by
the electrons. The spin-orbit interaction is a small but non-negligible effect in
semiconductors. It is ideally treated using the Kane model because the energy shifts
up to second order in perturbation theory and involved the same type of matrix
elements of the momentum as before. Indeed, one can say that the Kane method
provides a very natural way to treat the spin-orbit interaction. The method can be
extended to also treat confined systems. The results can at the end be expressed as
functions of E, and P. The first of which, E,, is known, and the second of which, P,
can be estimated to good accuracy.

Kane theory tells us that the effective mass is related to the structure of the
envelope momentum matrix elements. These as it happens do not change all that
much from one system to another system. The band gap which also enters the
formula, however, changes quite a lot. If for some reason, such as strain or
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confinement, the band gap changes, even locally, then we can expect the effective
mass also to change locally. The changes in P or wavefunction shapes are of lower
order than the band gap changes, and this is why the Kane method is so useful. The
Kane method is therefore a very practical way of handling strain effects in semicon-
ductor interfaces. This happens when there is lattice mismatch forcing the top grown
lattice to adopt the lattice parameters of the substrate. The mismatch can force the top
layer bonds to be stretched or compressed. Compression or dilation affects both
Kane parameters E, and P locally. But the gap is more sensitive than P to first order.
In quantum dots strain, one also has strain which can vary locally and give rise to
local effective mass. The reader is referred to the book by L Chuang for a detailed
treatment of the Kane model and its applications.

5.7.1 The Effect of the Spin-Orbit Coupling

Let us now consider the effect of the spin-orbit coupling explicitly. Let us go back to
Eq. (5.63) and include the spin-orbit interaction:

2 hoo— L 5 =
B VO qgald Vel =) a7

Substituting the Bloch function then gives:

2 - — —
{”+hk V() [T v p)

2mog My 4m3c?
P - > -
aalv v K7 nz(r)} - {En; _27710](2} u ()
(5.72)
Following the book by L. Chuang (see references list), we will define:
E =E— zz—nlj (5.73)

The last term in Eq. (5.72) depends on the Bloch wavevector k and is much
smaller than the term which involves the momentum operator. The reason is that the
momentum around the nucleus is much larger than the band momentum k so that we
can neglect the last term to obtain

{iﬂ_zz_ﬂv(j . ’1 a[¥ V). ]}un;(7)} = [E]u_(7)
(5.74)

In order to solve this equation in the k-p approach, we assume as before that the
wavefunction can be written as a superposition of the k = 0 subbands:
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i = 2ol (575
n

The uyg (7) are chosen to roughly correspond to what one knows about the
system from first principle band structure techniques, namely, that for the eigenstate
near the conduction band edge, the wavefunctions have S symmetry. Those near the
top of the valence band have p-symmetry so that

Conduction bands|S 1), |S |)
Valence bands|X 1),|Y 1),1Z 1), X 1), |Y 1),|Z |)

Also these wavefunctions satisfy the conditions HolST) = EglST) without a
magnetic field, and the two spin states have the same energy, and HolXT) = E,|
X1), HolYT) = E,IYT), and HylZ1) = E,|ZT). For practical purposes, it is convenient
to choose the basis states for spin and angular momentum raising and lowering
operators:

1 . 1 .
1 . 1 .
|su—7gx+mu>ZTx7§X—ﬂu>

The valence band basis states can be selected from the eigenstates of angular
momentum L in Chap.4. So a p-state corresponds to / = 1 and we have:

_1 .
Yl,il = +ﬁ |X + lY> and Y]() = |Z> (577)

Now we can generate the matrix representation of the Hamiltonian Eq. (5.74)
using this basis set to find an 8§ X 8 matrix which as a result of spin degeneracy
reduces to a 4 x 4 matrix:

E, 0 kP 0
A V2
0 E,—— —/—A 0
N 5.78
w YR g (578)
3
A
0 0 0 E,+—=
3
where the Kane parameter is defined as:
Jh
P = —i(Spl2)
 4mic? ox Py Jy Px



196 5 Electrons and Energy Band Structures in Crystals

Let us measure the eigenvalues of this system such that the conduction band Ej is at
E, and the top of the valence band is at 0. The solutions are the roots of the equation:

E (E - Eg> (E + A) —i2p? <E n %A) —0 (5.80)

which we can solve analytically if we expand to first order in k*. The result, for the
energy and effective mass in the conduction band, is:

R P (3E, +24)

E.(k)=E — =t -
(k) £ oy T3 Ey(Eg + A)

(5.81)

2 (3E, + 2
1, (3B, +24) (5.82)
mE  my  3h* Eg(Eg + A)

For the heavy-hole valence states, we have:

WK

Em (k) = — 5.83
k) =5, (5.83)
1 1
—=— (5.84)
mhh my
For the light hole:
Wk> 2K°P2 1
Ep(k) = — — — 5.85
n(k) 2my 3 E, (5-:85)
1 1 4P* 1
= - (5.86)

my mg 30 E,
For the spin orbit shifted band:

P kP
Epk) = A+ -———— 5.87
® T om 3 (Eg+A) (3-87)

11 2P (5.58)
mé  my 31 (Eg+ A) '

To zero order in k2, the conduction band wavefunctions are unchanged at IST) and
IS]). The valence light-hole states have a spin-orbit shift even to this order. So we
have for the heavy hole the two states:
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'—\}E(X—i—iY) T> = ;z> (5.89)
'é(x-w) l>~ = % —;> (5.90)

and the light holes:

‘\/La(x— i) T>. + \@z 1. = % —%> (5.91)
—‘%(X—HY) 1>.+\@|Z 1. = %%> (5.92)

The k-p perturbation result can be generated as in Eqs. (5.67) and (5.68). The
272

exact result can be obtained by solving for the eigenvalues E:l =E, — T as done
mo

above, then substituting back to solve the linear equations. The matrix is effectively
3 x 3 so that:

E,—E, 0 kP

2A V2 ay
0O -z -E 5 by | =0 (5.93)

kP @ A E Cn

3 3
with
1/2

{lanf® +16aF + Jeaf 7 = 1 (5.94)

Note that the present approach neglects the remote band effects, and it does not
reproduce the correct heavy-hole mass. In order to do that, one has to go further and
consider the Luttinger-Kohn model which is similar in spirit but takes into account
remote energy bands and will not be considered here.

The k-dependence of the wavefunctions has not been studied here. They can be of
great interest in doped magnetic semiconductors and magnetic metals where in the
presence of a finite spin polarization, they can give rise to the so-called anomalous
Hall effect and spin Hall effect (see Jungwirth et al. 2006). But again here, one would
go further and use the Luttinger-Kohn model which includes the remote band effects.
The magnetism can then be treated as an effective uniform self-consistent Curie field
which acts on the spin system (see Jungwirth et al. reference).
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5.7.2 Summary

In this chapter, using simple quantum mechanical concepts and methods, we have
described the energy states of electrons in a periodic potential. We have modeled the
crystal using the Kronig-Penney model. Nearly free electron and the tight-binding
approximations were briefly introduced. We familiarized the reader with the notion
of band structure, band gap, Bloch wavefunction, effective mass, Fermi energy, and
Fermi-Dirac distribution and holes. The band structures for the common
semiconductors, including Si, Ge, and GaAs, have been illustrated after first describ-
ing the conventionally used high-symmetry points and orientations. The main
features in these band structures have been outlined. The band structures of a few
metals, including aluminum and copper, have also been presented, and the main
features were described and compared to those of semiconductors. We have shown
how one can evaluate the Bloch wavefunctions and effective masses of
semiconductors near k = 0 using a scheme called the k-p method. The method is
simple and very powerful. It was applied to derive the effective mass including the
spin-orbit coupling.

Problems

1. Equations of motion of an electron in the presence of an electric field.

2
Assuming a dispersion relation : & = ec +—— [l — cos (ka)]
ma

(a) Calculate the velocity of the electron at k = z/a.

(b) If the electric field E is applied in the —x direction, derive the time
dependence of k for an electron initially at k = z/a and position x = 0.

(c) Derive the time dependence of the electron velocity, v(f), and the time
dependence of the electron position, x(f).

(d For a =5 nm, E = 104 V-em™!, and m = 0.2 mg, what are the
maximum and minimum values of x that the electron will reach?

() What is the period of the oscillation?

(f) For the parameter of part (e), derive an expression for the effective mass
as a function of k. Sketch the function.

2. The period of the Bloch oscillations.

Consider an electron that is subjected to an electric field. The electric field
exerts a force F' = —qFE on the electron. Assume that the electron is initially not
in motion, i.e., k = 0. Upon application of the electric field, the k value of the
electron increases from O to z/a. At this value of k, Bragg reflection occurs, and
the electron assumes a k value of —z/a. Then, the electron is again accelerated to
k = n/a. At this point, the electron again undergoes Bragg reflection, and the
cycle starts from the beginning. The process described above is called the Bloch
oscillation of the electron in an energy band of the solid-state crystal.
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2zh
qEa®

where a is the periodicity of a one-dimensional atomic chain.

(b) Calculate the period of the Bloch oscillations for a = 4 Aand E = 1250
V-cm™~'. Compare the period of the Bloch oscillations with a typical
inelastic scattering times. What conclusions do you draw from the
comparison? Are the Bragg reflections important scattering events for
the movement of electrons in a crystal? Typical inelastic scattering
times are 10~"'" s for low fields and 10~'? s for high fields.

3. Idealized electron dynamics.
A single electron is placed at k = 0 in an otherwise empty band of a bce solid.
The energy versus k relation of the band is given by:

(a) Show that the period of the Bloch oscillation is given by 7 =

6(;) = —a — 8ycos (l%)

At t = 0, a uniform electric field E is applied in the x-axis direction. Describe
the motion of the electron in k-space. Use a reduced-zone picture. Discuss the
motion of the electron in real space assuming that the particle starts its journey at
the origin at t = 0. Using the reduced-zone picture, describe the movement of the
electron in k-space. Discuss the motion of the electron in real space assuming
that the particle starts its movement at the origin at t = 0.

4. Effective mass.
For some materials, the band structure of the conduction band around k = 0
i i , @y
can be represented by £(k) = S—A (kx 2ﬂ2kx> .

What is the effective mass of a free electron under these conditions?

On the figure, name the different bands and point out which one of the two in
the lower band has the higher effective mass.

1

5. Calculate the coordinates of the high-symmetry point U in Fig. 5.15.
6. Origin of electronic bands in materials.
Explain how electronic energy bands arise in materials.
The periodic potential in a one-dimensional lattice of spacing a can be
approximated by a square wave which has the value Uy = —2 eV at each
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11.
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atom and which changes to zero at a distance of 0.1a on either side of each atom.
Describe how you would estimate the width of the first energy gap in the
electron energy spectrum.

. Position of the Fermi level in intrinsic semiconductors.

Assume that the density of states is the same in the conduction band (Nc¢) and
in the valence band (Ny). Then, the probability p that a state is filled at the
conduction band edge (Ec) is equal to the probability p that a state is empty in
the valence band edge (Evy). Where is the Fermi level located?

. Plot of the Fermi distribution function at two different temperatures.

Calculate the Fermi function at 6.5 eV if Ex = 6.25 eV and T = 300 K. Repeat
for 7= 950 K assuming that the Fermi energy does not change. Plot the energy
dependence of the electron distribution function at 7= 300 K and at T = 950 K
assuming Eg = 6.25 eV.

. Numerical evaluation of the effective densities of states of Ge, Si, and GaAs.

Calculate the effective densities of states in the conduction and valence bands
of germanium, silicon and gallium arsenide at 300 K. Note in analogy to

3/2
Eq. (5.55) we have Ny = 2(%)

Density of states of a piece of Si.

Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece
of silicon (m* = 1.08 mg) 100 meV above the conduction band edge. Write the
results in units of eV ",

Number of conduction electrons in a Fermi sphere of known radius.

In a simple cubic quasi-free electron metal, the spherical Fermi surface just
touches the first Brillouin zone. Calculate the number of conduction electrons
per atom in this metal as a function of the Fermi-Dirac integral. Consider the
energy at the bottom of the conduction band to be Ec = 0 eV.
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6.1 Phonons and Thermal Properties
6.1.1 Introduction

In the previous chapters, we have considered the electrons in a crystal that consisted
of a rigid lattice of atoms. This represented a good approximation because the mass
of an atom is more than 2000 of the mass of an electron. However, such assumptions
founder when considering specific heat, thermal expansion, the temperature depen-
dence of electron relaxation time, and thermal conductivity. In order to interpret
these phenomena involving electrons and atoms, a more refined model needs to be
considered, in which the atoms are allowed to move and vibrate around their
equilibrium positions in the lattice. In this chapter, we will present a simple yet
relatively accurate mathematical model to describe the mechanical vibrations of
atoms in a crystal. We will first cover one-dimensional monatomic and diatomic
crystals followed by three-dimensional crystals. We will then consider the collective
movement or excitations of the atoms in a crystal, the so-called phonons, and
conclude with a section on the velocity of sound in a medium.

6.1.2 Interaction of Atoms in Crystals: Origin and Formalism

We saw in Sect. 1.5, when discussing the formation of bonds in solids, that these
equilibrium positions were achieved by balancing attractive and repulsive forces
between individual atoms. We assumed that the attractive and repulsive forces
always canceled each other and that the masses were infinite. The resulting potential
U(R) curve for an atom as a function of its distance R from a neighboring atom is
shown in Fig. 6.1. This figure shows a minimum energy for a specific atomic
separation, which we understood was true at all time.
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Fig. 6.1 Potential energy of two neighboring atoms in a crystal as a function of the interatomic
spacing. When the two atoms are very far away from each other, they do not interact, and the
interaction potential energy is near zero. When they get closer to one another, they are attracted to
each other to form a bond, which leads to a lowering of the potential energy. However, when they
are very close, the electrostatic repulsion from the nuclear charge of each atom leads to a repulsive
interaction and an increase in the potential energy

The origin of these forces lies in the electrostatic interaction between the electrical
charges (nuclei and electron clouds) in the two neighboring atoms. Classically, the
electrons are constantly moving in an atom, in a non-deterministic manner (thus the
name “cloud”). One can easily understand that the attractive and repulsive forces do
not balance each other at all times but rather the attractive force would be stronger
than the repulsive force at a certain time and then weaker shortly afterward. On
average, a balance of forces is still achieved. We therefore realize that the positions
of atoms in a lattice are not fixed in time but that small deviations do occur around
the equilibrium positions. Such vibrations are also more intense at higher
temperatures. Note that this is a fully classical analysis of why these lattice vibrations
exist. The quantum mechanical description is quite different. In quantum mechanics,
the electrons do not move about the lattice in a cloud but occupy energy levels inside
allowed energy bands. The lattice atoms have kinetic and potential energy, and the
wavefunction for lattice vibrations must also obey Schrodinger equation. The
solutions to Schrodinger equation give one the eigenfunctions and allowed energy
levels of the lattice vibrations. These allowed energy levels of lattice vibrations are
called phonons. In the quantum mechanical description, the lattice is never at rest,
even at 0 K. The atoms always move, or oscillate, because the Heisenberg uncer-
tainty principle does not allow the atoms to have a definite position in space. If the
atoms were stationary, then their momentum would be indeterminate. The quantum
compromise for this scenario is called the zero-point energy which naturally derives
from Schrodinger equation and gives the lattice vibrational modes a minimum
amount of spatial uncertainty called the zero-point motion. To this zero-point
motion, there is a zero-point energy. This observation is already true for the simple
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diatomic molecule, for which the vibrational modes are the solutions of the harmonic
oscillator problem in quantum mechanics. Instead of solving Schrodinger equation
for lattice vibrations, it is much easier and more convenient to first study the allowed
classical modes of vibration. It turns out that the classical treatment survives the
quantum treatment. The classical bands change into the true quantum lattice energy
bands through a simple transformation. We will therefore continue with the more
intuitive classical description knowing that the classical results can be taken over in
the quantum limit.

Let us now develop a simple mathematical model for such atomic vibrations and
introduce the formalism that will be used in the rest of the text. We start by
considering the two neighboring atoms, one at the origin (R = 0) and the other at
a distance R, while its equilibrium position is at R = R,. A one-dimensional analysis
will be considered at this time. The potential energy U(R) in Fig. 6.1 of the second
atom can be conveniently expressed with respect to the equilibrium values at R,
through what is called the Taylor expansion (see Appendix A.5):

U(R) = U(Ry) + (g_g) (R Ry)
2 3

where (%) R’ <‘5le]) . (‘57[3]) & are the first, second, and third derivatives of U(r),

respectively, evaluated at r = Ry. (R—Ry) is called the displacement. The first

derivative (%) Ro is in fact equal to zero, because it is calculated at the equilibrium

position r = R, which is where the potential U(r) reaches a minimum. Therefore,
only the displacement terms (R—R)" with an exponent 7 larger than or equal to 2 are
left. The usefulness of the Taylor expansion resides in the fact that at small
deviations from equilibrium, i.e., (R—R,) << Ry, it is reasonable to approximate U
(R) with only the first few terms of the expansion in Eq. (6.1).

By denoting Uy = — U(Ry) and x = R — R, the displacement, Eq. (6.1) can be
rewritten as:

1
Ux) + U = Eclx2 +Cox 4 ... (6.2)

where C| = (‘57’{) & and C, = % (‘%{) & are constants of the model, determined by
the nature of the atoms considered. The first term in the right-hand side of Eq. (6.2),
%C 1x%, is in fact the potential energy associated with an elastic force equal to
F=—4(1C\x*) = —Cyx, where C; is the elastic force constant. The negative
sign means that F acts as a restoring force, i.e., in the direction opposite to the
displacement u of the atom.

In the following sections, we will limit the analysis to the first term in the
expansion in Eq. (6.2) and denote C = Cy:
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Fig. 6.2 Model for the interaction of identical atoms in a harmonic crystal. The relative movement
of the atoms is modeled by a spring such that atoms displaced from their equilibrium positions
are forced back by the neighboring atoms. The displacement can travel like a wave throughout
the lattice

1
Ux)+ Uy~ Esz (6.3)

Because the atomic vibrations described by this potential only involve second-order
displacements, such a solid is generally referred as a harmonic crystal in which the
interactions between atoms can be modeled by a spring. This formalism is valid in
solids up to all reasonable temperatures. We will apply this formalism to two cases of
one-dimensional lattice, extend it to a three-dimensional lattice, and derive a few
macroscopic physical properties of crystals.

6.1.3 One-Dimensional Monatomic Harmonic Crystal

In this simple model, we consider a one-dimensional (linear) lattice with a period
a and with identical atoms of mass M, vibrating around each lattice point, as depicted
in Fig. 6.2. Each atom is indexed by an integer n, and its displacement from its
equilibrium position is denoted u,,. The atoms are taken to oscillate in the same
direction as the lattice (i.e., longitudinal vibration). All the results obtained for this
artificial one-dimensional model prove to be true for three-dimensional lattices as
well.

Traveling Wave Formalism

In this one-dimensional case, we will take into account only the interaction between
nearest neighbors, an assumption that has little effect on the final results. When
considering two neighboring atoms, the forces that are exerted on each one can be
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modeled as resulting from a spring which links the interacting atoms, as the one
shown in Fig. 6.2. In other words, the force acted on the n™ atom:

+ By the (n-1)™ atomis F,, , - 1 = — Clu, — u, _ 1)
« Bythe (n+ )™atomis F, ,, 1= — Clity — tty 4 1)

where C is the quasi-elastic force constant, a characteristic of the spring. Although
this spring formalism is obviously crude, it nevertheless describes the interaction
between atoms rather well. This is because the elastic force constant C arises from
Eq. (6.3) and corresponds to the first level of approximation for the interactions
between atoms. The resultant force acting on the n™ atom is therefore:

F,= Fn,nfl + Fn,n+1 = _C(zun —Up-1 — Mn+l) (64)

The equation of motion for the n™

mechanics like Newton’s law:

atom is then expressed using classical

d’u,
ar*
d’u,
ar
number of coupled differential equations, where the unknown functions are the
displacements u,(f). We seek solutions to the Eq. (6.5) in the form of traveling

waves such as:

=F,=—CQuy — tp—1 — Upt1) (6.5)

where M is the mass and ©-% s the acceleration of the n™ atom. We thus obtain a large

u, (1) = Aexpli(kan — wt)] (6.6)

where A is the amplitude of the displacement, & is the wavenumber of the wave, and
o its angular frequency. This expression is typical of a traveling wave because it
satisfies the relation:

uni1(1) = Aexpli(ka(n + 1) — o1)] = Aexp {i (kan B w<t - k_“))] (6.7)

(%)
=u,(t——
w

which shows that the value of the displacement u,, . {(¢) at the (n + 1)‘h atom at a time
tis the same as the displacement u,(f) at the n™ atom at an earlier time (# — ). This
means that the magnitude of the displacement is like a wave that is traveling a
distance a in space during a time ’“}‘. The velocity at which the wave is traveling is

@
therefore equal to:
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The wavelength 4 and frequency v of the traveling wave are related to the
wavenumber or angular frequency through the defined relations:

1=
_g (6.9)
"

Boundary Conditions
Before solving the equation of motion in Eq. (6.5), we must introduce the boundary
condition that the linear array of atoms is finite and consists of N atoms with the first
and last atoms being equivalent, i.e., u,, , p(¢) = u,(f). This is the periodic or Born-
von Karman boundary conditions which we have already encountered in Sect. 5.3.
This is a reasonable assumption because macroscopic crystal specimens consist of a
very large number of atoms. And since the interaction forces are significant only
between neighboring atoms, the motion of boundary atoms on the “surface” of the
specimen does not affect the motion of all other atoms inside the sample.

Because of the general exponential expression of u,(f) (Eq. (6.6)), these
conditions lead to the discretization of the wavenumber k, similar to what was
obtained in Chap. 5:

k= ky =220
a N

(6.10)
where m = 0, = 1... is an integer. In fact, only N different values of wavenumber
k are necessary. Indeed, if two wavenumbers k and k’ differ from each other by an
integer times% (e.g., k =k+ 27”), which is equivalent to say that their corresponding
integers m and m’ differ by an integer times N (e.g., m’ = m + N), then they lead to the
same function u,,(f) as seen through the simple calculation:

u, (t) = Aexp [i(k/an — wt)] (6.11)
= Aexp[i2zn + i(kan — wt)] = u,(¢) '
which is valid for any point (na) and any time (z). This means that k and k' are
physically indistinguishable. In other words, the basic interval of variation of k can

be chosen as:
1 2w 1/ 2x
| —— ) <k< = — 12
2( a>_ _2<a> (6.12)

And all the physical properties of our one-dimensional crystal that depends on the
wavenumber k must be periodic with a period Za—” Again, we arrive at the concept of
the first Brillouin zone introduced in Chap. 5 and Sect. 5.4.1 for electronic states.
And the quantity zu—” is a reciprocal lattice period. Of course, we can (and must) always
choose the number of atoms N so large that the variation of k could be considered as
quasi-continuous.
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Phonon Dispersion Relation
Now we can solve the equation of motion in Eq. (6.5), by substitutingEq. (6.6) into
it:

—Ma’Aexpli(kan — wt)] = —C(2 — ¢ ™ — ™) Aexpli(kan — w1)]

which successively becomes, after simplification of the exponential and the constant
A:

_sz — _C(2 _ e*ika _ eika)
or.

2C 4C ki
= ﬁ(l — coska) = i sinzg (6.13)

where we have made use of the trigonometric relation: 1 — cosx = 2 sin 2%. This last
expression can also be rewritten as:

ka

in— .14
sin— (6.14)

@ = Wmax

where @wpa.x = \/%. This relation is called the phonon dispersion relation and is

plotted in Fig. 6.3.

We see that the solutions of Eq. (6.5) of the traveling wave type exist only if the
relation in Eq. (6.14) is satisfied by the wavenumber k and the angular frequency w
of the traveling wave. The frequency and wavenumber of the traveling wave

max

w/®

0 .
—mt/a 0 k T/a 21/a

Fig. 6.3 Phonon dispersion relation in a one-dimensional monatomic harmonic crystal, expressed
through the dependence of the angular frequency as a function of the wavenumber k
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characterizing the lattice vibrations are not specific to one particular atom but are
rather a property of the entire lattice. As such, the term phonon is used to designate
lattice vibrations, and a frequency and a wavenumber are associated with each
phonon. A more detailed discussion on phonons can be found in Sect. 6.1.6.

For a small wavenumber (k — 0), i.e., in the long wave limit, Eq. (6.14) becomes:

W= a)maxgk (6.15)
where we have used the approximation for the sine function, sin(x) = x, for x — 0,
which is in fact the Taylor expansion of the sine function near zero (see Eq. (6.1)).
Equation (6.15) means that the angular frequency @ is proportional to the
wavenumber k in the long wave limit. Neighboring atoms have similar
displacements in this region.

In the short wavelength limit, as k increases, the slope of w decreases and
becomes flat at the zone boundaries k = +n/a. At this point, the atoms in adjacent
cells are vibrating with opposite phase. In other words, alternate springs are com-
pressed and stretched, giving rise to maximum atomic displacement and frequencies
of vibration.

6.1.4 One-Dimensional Diatomic Harmonic Crystal

Formalism

In the previous sections, we have discussed the motion of atoms in a
one-dimensional monatomic crystal where all the atoms are identical, with a mass
M, and their equilibrium positions are equally spaced (spacing a). In crystallography
terms, we considered a basis of one atom per unit cell. A more general description of
atomic motion in a crystal involves a basis with more than one atom.

In this section, we will consider a one-dimensional diatomic harmonic crystal.
Ionic crystals such as NaCl and CsCl, atomic crystals such as Si and Ge, and binaries
such as GaAs and InP are examples of lattices whose unit cells contain two atoms
each. The following parameters need to be introduced for a complete diatomic
model. The masses of the two different atoms (labeled 1 and 2) in a unit cell will
be denoted M; and M,, respectively, with M; > M,. The equilibrium distance
between the two atoms in a unit cell is generally arbitrary, but we will choose it to
be half the primitive unit cell length for simplicity, i.e., a/2. In addition, the elastic
force constant C, as defined inEq. (6.2), should be different depending on if an atom
interacts with its front or its back neighbor. But for simplicity, we will consider only
one force constant C. In spite of these simplifications, the discussion and the results
will not lose their generality, even if the mathematical steps will be significantly
simpler.

Each diatomic basis will be indexed by an integer n. The displacement of atom
1 from its equilibrium position will be denoted u,,(f), while the displacement of atom
2 will be denoted v,(7). The atoms are taken to oscillate in the same direction as the
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Fig. 6.4 One-dimensional model for the interaction of atoms in a diatomic harmonic crystal
structure with atom masses M and M,. It is assumed here that all the springs have the same constant

lattice (i.e., longitudinal vibration). All these parameters and their simplifications are
summarized in Fig. 6.4.

Two coupled sets of equations of motion, similar to Eq. (6.5), need to be
considered; one for the displacement of the n™™ atom 1 and one for the displacement
of the n'™ atom 2:

d’uy,
M, b; =—CQuy — vy—1 — W)
d‘f (6.16)
Vn
2? = _C(Zvn — Uy — un+l)

Here again, we seek solutions to the set of Eq. (6.16) in the form of traveling
waves with the same wavenumber k and angular frequency w:

{ un (1) = Aexpli(kan — wt)] (6.17)

vu(t) = Bexpli(ka(n + 1) — wt)]
where A and B are the amplitude of the displacements.

Phonon Dispersion Relation

Substituting these traveling wave expressions into Eq. (6.16), we obtain:
—Mw?Aexpli(kan — wt))
= —C(2Aexpli(kan — wt)] — B expli(ka(n — ') — wt)] — B expli(ka(n + /) — wt)])
—M,w*Bexpli(ka(n + ') — wt)]
= —C(2Bexpli(ka(n +'/,) — wt)] — A expli(kan — wr)] — A expli(ka(n + 1) — wt)])
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Dividing by expl[i(kan — wr)] the first expression and expli(ka(n + 1) — wt)] the
second expression, we get:

ik ik
Myw®A = —C (ZA — Bexp (%) — Bexp (+%>)

ik ik
oo ) ()

After rearranging the terms with A and those with B:

k ik
A[2C — M@ — BC|exp (—%) +exp (+%)} —0

ik ik
—AC {exp (%) + exp (+%)} +B2C — Mya*] =0

Expressing the sum of exponentials with trigonometric functions, we get:

A2C —M0* — B |:2CCOS (k_“ﬂ —0
afaceos ()] + e RO 615)

This system of equation has a nonzero solution, i.e., A and B not both equal to
zero, if and only if the determinant of the system is zero:

[2C — M10?][2C — Mao®] — [2c cos <%“H {ZC cos (%“ﬂ =0 (6.19)

which, after developing the products, becomes:

k
M Myw* —2C(M + My)0” + 4C? — 4C? cos? <7“) =0

or:

k
M Myw* —2C(M; + My)w* + 4C? sin* <7") =0 (6.20)

This equation is of the form aw* — 2fw” + y = 0, with @, #, and y > 0, and has two
solutions for w?, denoted wi, and @* such that:

2
o —PEVP Zar Vf—"” (6.21)

Therefore, the solutions of Eq. (6.20) are:
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C(My +My) £ 1/ C(M + M) — 4C°M M sin> (4)
MM,

3 (k) =
which can be simplified into:
M, +M M, +M,\*> 4sin2(k
Wl =C 1+ M +C 1+ Ma\" §3)
MM, MM, MM,

Using the trigonometric identity cos(2x) = 1 — 2sin2(x), this equation becomes:

s M+ M, T ’
w (k) = C(7M1M2 ) 1+ \/1 —(M1 L) (1 = cos (k ))| (6.22)

which constitutes the phonon dispersion relation in the model considered, similar to
that obtained in Eq. (6.14). This expression always has a meaning since the argument
of the square root is always positive because we have, for any value of masses M,
and M, and value of wavenumber &:

0<(1— cos(ka)) <2
and therefore:

2M\M aM M
<2 (1 - cos (ka)) < ————5 <1
(M] Jer) (M] Jer)

There are thus two possible dispersion relations, denoted w,(k) and w_(k),
relating the angular frequency to the wavenumber. Both are plotted in the first
Brillouin zone in Fig. 6.5. These plots represent the so-called phonon spectrum of
a one-dimensional diatomic harmonic crystal.

The values for w, (k) and w_(k) at k = 0 and k = +Z can be easily calculated from
Eq. (6.22) (note that we have chosen M > M,). The top curve in Fig. 6.5 corresponds
to w, (k) and is called the optical phonon branch or simply optical phonon, while the
bottom branch corresponds to w_(k) and is called the acoustic phonon branch or
simply acoustic phonon.

Now, for small values of wavenumber (k — 0), an approximate expression can be
derived from Eq. (6.22). To do so, we start by using an approximate expression for
the cosine function in the Eq. (6.22):

1
cos (ka) ~ 1 — E(ka)2

This approximation is in fact the Taylor expansion of the cosine function near
zero (see Eq. (6.1)). We therefore obtain successively:
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Fig. 6.5 Optical and acoustic branches in the dispersion relation

(ka)?

N —

1 — cos (ka) ~

\/1 —(Zl‘li(l — cos (ka)) ~ \/1 —(Mliz(ka)2

My +Ms)* My + M)
2M M MM
and , /1 f%(l — cos (ka)) ~ 1 flizz(ka)2
(M + M>) 2(M, + M3)

by using the approximation v1 —x~ 1 — %x for x — 0 (again this comes from the
Taylor expansion of v/1 — x for small values of x). Equation (6.22) can then be
approximated by the following expression:

MM, 2
1+ (1 RETITRSTAE (ka) )] (6.23)

Consequently, in the long wave limit, the angular frequency of the acoustic
phonon branch can be written as:

M +M
o’ (k) = C <g>

MM,

M, +M2) MM,
2(

o (k) ~ C( M, YNTAL (ka)zl
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Ca®

w_(k) =~k 72(M1 )

(6.24)

which means that the angular frequency w_(k) in the acoustic phonon branch is
proportional to the wavenumber k, similar to the result obtained in Eq. (6.15). The
shape of the acoustic branch is similar, but the increased mass lowers the frequency.
For the acoustic branch in the long wave limit, the traveling wave is equivalent to the
elastic wave of a one-dimensional atomic chain regarded as a continuous media. The
nature of the vibrations in this region is just like sound waves. The two atoms in the
unit cell move in the same direction, and over a small region, it seems as if the entire
crystal has been compresses or stretched. This is why the @w_ (k) branch is called the
acoustic branch.

In the same limit (k — 0), the angular frequency of the optical phonon branch can
be expressed from Eq. (6.23):

M, + M, M, +M,

which shows that the angular frequency w,(k) in the optical phonon branch is
constant in the long wave limit. The nature of the vibrations in this region is that
the two atoms in the unit cell move in opposite directions. This is similar to the top of
the band in the monatomic case, where there is maximum distortion and frequency of
vibration. The angular frequency in the limit (k — z/a) for the optical and acoustic
branches is left as an exercise at the end of the chapter.

Furthermore, the ratio of the displacement amplitudes A and B defined in
Eq. (6.17) can be taken for two different values, depending on the branch chosen,
calculated from either one of Eq. (6.18):

B 2C — M o?
(B) -2t 626)
A).  2Ccos (%)

Again, in the long wave limit (k — 0) and for the acoustic phonon branch, we
have w_(k) — 0 as seen from Eq. (6.24) and cos (%) — 1 so that:

(7). 6

which demonstrates that, in this case, the vibrations of the two atoms in one primitive
unit cell have exactly the same amplitude and phase (i.e., direction), as shown in
Fig. 6.6.

In the long wave limit (k — 0) for the optical phonon branch, we have w.

— ( 2¢ ) from Eq. (6.25), and therefore, by substituting into Eq. (6.):
MMy

My +My
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Fig. 6.6 Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding to the
acoustic phonon branch. In this configuration, the two atoms forming the unit cell move in the same
direction at the same time

X

>

Fig. 6.7 Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding to the
optical phonon branch. In this configuration, the two atoms forming the unit cell move in opposite
directions at the same time

<§>+ - 2C A (6.28)

which shows that, in the long wave limit of the optical branch, the vibrations of the
two atoms in one primitive unit cell have a specific amplitude ratio and opposite
phases (i.e., directions), as shown in Fig. 6.7. Thus, optical phonons are described by
the oscillations of two atoms about a center of mass, while acoustic phonons are
described by the movement of the two atoms center of mass. The amplitude ratio in
the limit (k — #/a) is left as an exercise at the end of the chapter.

Actually, the ratio of the amplitudes is such that the vibrations of the two atoms in
a primitive unit cell leave the position of their center of gravity unchanged. There-
fore, if the two atoms are ions of opposite charges, such as in the case of GaAs or
NaCl, these oscillations result in a periodic oscillation of the amplitude of the dipole
moment formed by these two charged ions, as discussed in Sect. 1.5.6. Such
oscillations of the dipole moment are frequently optically active, i.e., are involved
in the absorption or emission of electromagnetic (infrared mostly) radiation. This
explains the use of the term “optical” for the w, (k) branch of lattice vibrations.

One can use the dispersion relation for phonons and photons to examine the
conservation of energy and momentum that applies to the interaction of phonons and
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Fig. 6.8 The dispersion photon dispersion
curves for a photon and an
acoustic and optical phonon.
The optical branch crosses
with the photon branch,
allowing for energy and
momentum conservation

optical branch, @,

acoustic branch, @_

0 T/a

photons. Figure 6.8 shows the crossing of the dispersion relation for both acoustic
and optical phonons with a photon. Because the photon and optical phonon curves
cross, energy and momentum can be exchanged. An optical phonon can be created
or annihilated with a photon. Since the acoustic mode never crosses the photon
dispersion, they cannot interact. For example, in NaCl, its optical mode is excited by
light because an electric field can displace the two oppositely charged ions in
different directions. In a Ge crystal, the two atoms in the unit cell have similar
charges and cannot be excited by an electric field.

6.1.5 Extension to Three-Dimensional Case

Formalism

So far, we have only considered a one-dimensional atomic crystal. A real crystal
expands in all three dimensions of space, and lattice vibrations are more compli-
cated. For example, the vibrations can occur in all three directions, regardless of the
equilibrium position alignment of the atoms, and need to be expressed using a

displacement vector u% (). Moreover, a wavevector k must be used, similarly to
the way it was done in Chap. 5 for three-dimensional electronic band structures. This

wavevector k also indicates the direction of propagation of the traveling wave. The
expression of the displacement, given for the one-dimensional case in Eq. (6.6),
becomes in the three-dimensional case now:
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Fig. 6.9 Typical phonon EA
dispersion spectrum for a
three-dimensional diatomic
lattice (s = 2) LO
TO
TO
LA
TA
TA
»k/kmax
0 1
u (1) =A exp [i(k R —wt)} (6.29)

where X is the amplitude vector of the displacement and ; - I_é is the dot product

between the wavevector and the equilibrium position R of the atom considered.

In spite of this increased complexity, all the features obtained in the present
simplified study remain valid. In particular, there still exist two types of phonons, as
shown in the example of dispersion spectrum in Fig. 6.9: acoustic phonons, for

which the vibration frequency goes to zero in the long wave limit (’ k‘ — 0), and

optical phonons, for which the frequency goes to a nonzero finite value in the long
wave limit. Each type of phonons is further divided into two main categories:
transversal and longitudinal phonons. The terms “transversal” and “longitudinal”
refer to the direction of atomic displacements u () with respect to direction of

propagation k: perpendicular for transversal and parallel for longitudinal. There are
generally two transverse and one longitudinal branch for each optical and acoustic
phonons. Furthermore, the dispersion relations are not always isotropic, meaning
that the phonon dispersion relations are different for different symmetry directions
within the crystal.

For example, in Fig. 6.9, the transversal acoustic (TA), longitudinal acoustic
(LA), transversal optical (TO), and longitudinal optical (LO) phonon branches are
shown. Notice that the longitudinal branches are higher in energy than the transverse
branches. In general, for a three-dimensional crystal with s atoms per unit cell, there
are always three acoustic branches, two transversal and one longitudinal. There are
also 3s—3 optical branches. Figure 6.9 shows a typical example for s = 2. A
monatomic Bravais lattice (s = 1) can only have acoustic phonon branches.
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Fig. 6.10 The propagation of the four different phonon modes through a lattice: (a) transverse
optic, (b) longitudinal optic, (c¢) transverse acoustic, and (d) longitudinal acoustic

Figure 6.10 shows the movement of (a) transverse optic (TO), (b) longitudinal
optic (LO), (c) transverse acoustic (TA), and (d) longitudinal acoustic (LA) phonons
in a lattice. The black circles represent the atoms with smaller mass, such as the
gallium atoms in gallium arsenide. The white circles represent the heavier atoms,
such as the arsenic atoms in gallium arsenide.

TO phonons propagate by the lighter atoms (black) being displaced perpendicular
to the direction of the wave traveling. The heavier atoms (white) remain somewhat
stationary within the lattice. For LO phonons, the heavier atoms remain somewhat
stationary within the lattice, while the lighter atoms move parallel to the propagation
of the traveling wave. As you can see, both optic modes produce a change in dipole
movement, or the movement of the atoms about their center of mass. The heavier
atoms remain fixed in the lattice, while the lighter atoms move and carry the wave
through the medium. TA modes propagate similar to a pulse moving along a string
after it has been jerked. The wave propagates through the movement of both the
heavier and lighter atoms. Lastly, LA phonons propagate through the movement of a
pair of atoms toward and away from another pair of atoms. Both acoustic modes
correspond to the movement of the center of mass of two atoms. The distance
between a heavier and lighter atoms remains fixed, while the pair as a whole is
displaced relative to other atom pairs.
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Fig. 6.11 Phonon dispersion relation for silicon in three crystal directions. Solid lines are
calculated. Data points: open circles represent transverse (T) modes, open triangles longitudinal
(L) modes, and solid points undetermined polarization modes (Reprinted with permission from
Dolling 1963, Fig. 1. Copyright 1963, International Atomic Energy Association)

Silicon

Silicon crystals only have two identical atoms in their unit cell and bonds in the
diamond structure. This results in the LO and TO energies being degenerate at the
zone center. Since both atoms are identical, the bonds do not carry any electronega-
tivity, and there is no restoring force like that in GaAs (Fig. 6.11).

Gallium Arsenide

In GaAs, the LO phonons have higher energy than the TO phonons near the zone
center. This results from the ionic nature of the bonding in zinc-blende crystals. In
GaAs, the arsenic atoms contribute five electrons to the bonds compared to gallium
atoms, which contribute three. Consequently, the electrons spend on average more
time near the arsenic atoms resulting the arsenic atoms to be slightly more negative,
while the gallium atoms are slightly positive. This difference in electronegativity
produces a restoring force for a propagating LO mode but not a TO mode. This
increase in energy gives the LO modes a higher frequency (Fig. 6.12).

6.1.6 Phonons

In Chap. 5, the treatment of the electrons in a crystal led to energy levels and
momenta that do not correspond to those of individual atoms but are properties of
the lattice as a whole. Earlier in this chapter, we have hinted that the characteristics of
the traveling waves arising from lattice vibrations are not specific to one particular
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Fig. 6.12 Phonon dispersion relation for gallium arsenide in three crystal directions. Dotted and
solid lines denote calculated values. Solid points denote undetermined polarization modes
(Reprinted figure with permission from Waugh and Dolling 1963, Fig. 1. Copyright 1963 by the
American Physical Society)

atom but are rather a property of the entire lattice too. We thus have to consider the
collective excitation of the crystal as a whole and talk about a lattice wave. Each type

of vibration is called a vibrational mode and is characterized by a wavevector k and a
frequency (k).

The previous sections of this chapter dealt with a classical analysis of lattice
vibrations. In a quantum mechanical treatment, especially when lattice waves inter-
act with other objects (e.g., electrons, electromagnetic waves, or photons), it is

convenient to regard a lattice wave as a quasiparticle or phonon with a momentum
and a (quantized) energy such that:

p=hk (6.30)
E = ha)(k)

This is analogous to the quantization of the electromagnetic field discussed in
Chap. 4. The energy in Eq. (6.30) is the quantum unit of vibrational energy at that
frequency. Because phonons involve vibrational energy stored in the crystal,
phonons can interact with other waves or particles such as electrons, photons, and
phonons. These types of interactions lead to the experimentally observable physical
properties of crystals.
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The velocity of a phonon is given by the group velocity of the corresponding
traveling wave, defined as the gradient of the frequency with respect to the
wavevector:

Ve = dok) _ V() (6.31)
0k

In Cartesian coordinates with unit vectors (;, ;, ?), this relation can be written
as:

— 0w (ky, ky, k) — N Ow(ky,ky,k;) — O (ky, ky, k:) - (6.32)
Vg = X y Z .
¢ Ok, Ok, Ok,

In this quantum picture, the propagation of harmonic lattice waves, i.e., up to the
second-order term in Eq. (6.2), is equivalent to the free movement of non-interacting
phonon quasiparticles, also called “phonon gas,” and their description is similar to
that of photons.

In particular, any number of identical phonons may be present simultaneously in

the lattice, in any of the phonon mode characterized by a wavevector kfor a given
temperature. A phonon gas thus obeys the Bose-Einstein statistics which says that

the average number of phonons in a given mode (k) is then determined by:

S (6.33)

o)

where k,is the Boltzmann constant and 7 is the absolute temperature. At high

N

temperatures, i.e., kpT >> hw(k), the exponential in Eq. (6.33) can be
approximated by:

ho(K)\ _ ho(k)

~1
P\ T T

(6.34)

where we have used the approximation exp(x) =~ 1 + x for x — 0 (again this comes
from the Taylor expansion of exp(x) ~ 1 + x for small values of x). Therefore,

N- =~ %, which expresses that the average number of phonons in a given mode
hw ( k )
is proportional to the temperature, at high temperatures.
As mentioned earlier, phonons can interact with other phonons. Such interaction
would correspond to anharmonic vibrations in the classical wave picture, which arise

from cubic and higher order terms in Egs. (6.1 and 6.2).

X
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Example

Q Estimate the average number of phonons in a given mode at low temperatures.
A The average number of phonons N(E) with an energy E is given by:

N(E) = (1 At low temperatures, we have exp (k%) >> 1, and the
exp| g, T) 1

expression for N(E) can be simplified into: N(E) ~ exp(—kb%).

6.1.7 Sound Velocity

It is known that a solid can transmit sound. This is in fact accomplished through the
vibrations of atoms similar to the ones discussed in earlier sections. The sound
velocity is the speed at which sound propagates and is related to velocity of a
traveling wave as discussed below.

In Sect. 6.1.3, we have already hinted that the velocity of the traveling wave was
given by the ratio of the angular frequency to the wavenumber in Eq. (6.8):

)
Vph = E (635)
Using Egs. (6.13 and 6.14), we obtain:
v — 4C|sin ()| _ [C|sin ()] |sin(“%) (636)
M| k M| .
where:
C
Vo = a\/% (6.37)
Therefore:
1 ka
o = o /2)‘ (6.38)
2

This quantity is called the phase velocity because it represents the velocity of the
phase of the wave or, in other words, the speed at which the peak of the wave travels
in space. The phase velocity is plotted in Fig. 6.13, and we see that it never reaches
zero.

There is another quantity of interest which is the group velocity of a traveling
wave which represents the velocity of a wave packet and therefore of the wave
energy and is defined as:
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Fig. 6.13 Phase and group 1
velocities versus
wavenumber k
£
>§" Vph
kel
= I A Vg
S K
:eq s
0 y . .
—mt/a 0 T/a
dw
= |— 6.39
Vg ’dk' ( )
Using Eqgs. (6.13 and 6.14), we obtain:
4C C
Ve = ,/ﬁg cos (“4)] = ay /| cos () (6.40)
and therefore:
Vg = Vo cos (%) (6.41)

The group velocity is also plotted in Fig. 6.6. We see that this quantity drops to
zero when k — 7, i.e., at boundary of the first Brillouin zone.

Example

Q Estimate the order of magnitude for the elastic constant C of silicon, given that
the sound velocity in silicon is 2.2 x 10° cm-s™'.

A Starting from the expression for the sound velocity, vop = a %, where a = 5.43

Aand M = 28M,, are the lattice constant and mass of a silicon atom, respec-

tively. We thus have:

2 3)2
C = M0 — (28 x 1.67264 x 10777) x (2.2><—10)2
a (543 x 10717)

~0.77N.m™!



6.1 Phonons and Thermal Properties 225

From Eq. (6.37), we see that the speed of sound in a medium is proportional to the
inverse square root of M, the atomic mass, and the square root of C, the elastic
constant of the material. A generalized form for the speed of sound in a medium is:

vs = — 6.42
p (6.42)

where B is the bulk modulus of the material and p is the density, given by its mass
divided by its volume.

The bulk modulus is the property that determines the extent to which a medium
changes its volume in response to an applied pressure. A generalized expression for
the bulk modulus of a material is given by:

Ap
T AV
1%

B= (6.43)

where p is an applied pressure and V is the medium’s volume. AV/V is the percent
change in volume produced by a change in pressure Ap. The minus sign is included
because whenever we increase the pressure, the volume decreases and vice versa.
The minus sign allows what is under the radical in Eq. (6.42) to be positive.

Just as phonon modes can be anisotropic in a crystal, the bulk modulus is also
directional within a crystal, and the velocity of sound is dependent upon what
direction the sound is traveling in a material. A medium’s bulk modulus generally
takes on a tensor form and can be significantly different in the I', X, and L directions.
This results from the crystal structure (e.g., cubic, tetragonal, orthorhombic, etc.)
having different bonding lengths on different sides of each atom.

6.1.8 Summary

In this chapter, we have described the basic formalism for treating the interaction
between atoms in a crystal, through the simple examples of one-dimensional mon-
atomic and diatomic harmonic lattices. Several important concepts have been
introduced such as the lattice vibrational modes, traveling waves, dispersion
relations, acoustic and optical branches, longitudinal and transversal branches, and
sound velocity. We realized that these lattice vibrations could be quantized in the
same manner as the electromagnetic field and can thus be considered as
quasiparticles, or phonons, with a momentum and energy and which obey Bose-
Einstein statistics.
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6.2 Thermal Properties of Crystals
6.2.1 Introduction

In Chap. 6 Part 1, we built simple mathematical models to describe the vibrations of
atoms, first in a one-dimensional system and then extended to a three-dimensional
harmonic crystal. These models, in the quantum description, led us to introduce a
quasiparticle called the phonon, with an associated momentum and energy spectrum.
Many of the phenomena measured in crystals can be traced back to phonons.

In this chapter, we will employ the results of the phonon formalism used in
Chap. 6 to interpret the thermal properties of crystals, in particular their heat
capacity, thermal expansion, and thermal conductivity.

6.2.2 Phonon Density of States (Debye Model)

Debye Model

The Debye model was developed in the early stages of the quantum theory of lattice
vibration in an effort to describe the observed heat capacity of solids (Sect. 6.1.3).
The model relies on a simplification of the phonon dispersion relation (see, e.g.,
Eq. (6.22), Fig. 6.5, or Fig. 6.8). In the Debye model, all the phonon branches are
replaced with three acoustic branches, one longitudinal (/) and two transversal (?),
with corresponding phonon spectra:

—

wn(k) =,

= vk (6.44)

where n (= [ or £) is an index, k is the norm or length of the wavevector k, and v, and
v; are the longitudinal and transversal sound velocities, respectively. This model
corresponds to a linearization of the phonon spectrum as shown in Fig. 6.4. But this
linearization implies that the phonon frequencies depend solely on the norm of the
wavevector. Some boundary conditions therefore need to be changed in this model
(Fig. 6.14).

Indeed, we remember that the range for the wavevector was restricted to the first
Brillouin zone in the real phonon dispersion relation. The Born-von Karman bound-

ary conditions of Sect. 5.3 limited the total number of allowed values for ; to the

number N of atoms in the crystal of volume V considered. We saw in Sect. 5.3 that
(2n)*

the volume occupied by each wavevector was “5;~. The volume of the first Brillouin

. 3 4 .
zone is then M and must be equal to ?k% where kp, is the Debye wavenumber

such that the relation (7.1) is valid in the range 0 < k < kp. We thus obtain:
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Fig. 6.14 lllustration of the Debye approximation
Debye model in the phonon

dispersion curve. In the Debye (k)

model, all the phonon A

branches are replaced with
three acoustic branches. This
corresponds to a
simplification of the phonon
dispersion spectrum, through
a linearization of the phonon
branches. A sphere is defined
in momentum space with
radius kp, the Debye
wavevector, such that the total
number of modes inside the

real phonon

Debye sphere now matches spectirum

the total number of modes in i

the real system ! -
0 T/a kp 21/a

67°N
Ky = 6.45
D % ( )
This wavenumber corresponds to a Debye frequency wj, defined by:
ha)D = hl/okD (646)

where v is the sound velocity in the material. The Debye frequency is characteristic
of a particular solid material and is approximately equal to the maximum frequency
of lattice vibrations. It is also useful to define the Debye temperature @, such that:

k/,@D = th = hl/()kD (647)

The significance of @, will become clear in the following discussion. However, it
follows that every solid will have its own characteristic phonon spectrum and
therefore its own Debye temperature. The Debye temperatures for a few solids are
listed in Table 6.1.

Example

Q Calculate the Debye wavelength for GaAs, given that the density of GaAs is
d =532 x 10’ kgm™.

67°N
A We make use of the expression giving the Debye wavenumber k3, = o

V 9
s
which is related to the Debye wavelength through 1p = ,%—Z =2z (@) ,

where N is the number of atoms in the volume V. By definition of the density,



228 6 Phonons and Thermal Properties

Table 6.1 Debye . Material 6, (K)

tempergtures of a ff.:V.V solids b 105

(Grigoriev and Meilikhov
Ag 227
NaCl 275
GaAs 345
Cu 347
Ge 373
w 383
Al 433
Fe 477
Si 650
BN 1900
C (diamond) 2250

we have d = %,% (Mgq + Mys), where M and M are the masses of a Ga and
an As atom, respectively. The factor 2 arfses from the fact that half of the atoms

in the volume are Ga atoms and the other half are As atoms.

Therefore, we can write:

Ap = 21 (67:2 %) B

(MGa+Mas

%
_ 2 2x5.32x10% ’
=2r(6x
(69.7+74.9)x 1.67264x10~%

or Ap = 4.57A.

Phonon Density of States
The phonon density of states g(w) is the number of phonon modes k per unit

frequency interval which have a frequency w(k) equal to a given value w. It can be
calculated in a way similar to that used for the electron density of states in Sect.
6.1.3:

o) = Y o|on(6) - o) (6.43)

=
kyn

where the summation is performed over all phonon modes k and phonon branches
labeled n. Because the crystal has macroscopic sizes, the strictly discrete wavevector

k can be considered quasi-continuous, as was done in Chap. 6 Eq. 6.44, and the
discrete summation can be replaced by an integral:
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o0 o0 o0

ZY } Y(K)d k= JJJY(kX,ky,kz)dkxdkydkz (6.49)

(r)

—0C-0G-00

where V is the volume of the crystal considered. The summation here is actually

performed over all values of k in the first Brillouin zone. Equation (6.48) then
becomes:

g(®) (2; > ” Mwn@) - de? (6.50)

We now make use of Eq. (5.37):
- 4
dk= d(?ﬂk3> = 4nk>dk

where k is the norm or length of the wavevector k. Therefore, Eq. (6.50) becomes:

kp

il J 5 {w,, (k) — w} K2dk (6.51)
0

8@) =y 2

where the integration is now from O to the Debye wavenumber kp, in agreement with
the Debye model described earlier. Substituting (6.46), we get successively:

ZZJ [vnk — w)k>dk (6.52)
2w

or:

kp
o(0) = 2—‘;2 3 J Sl — s dn (6.53)
n 0 n

after the change of variable x = v,k (and thus dx = v, dk). There is a nonzero solution
only if there is a wavenumber k between 0 and kp, such that x = v,k = o, and:

()—lzw—2 for0 < @ <
S\ = om Ly TR =@ =en (6.54)
glw)=0 forop < @

Remembering that the Debye model takes into account one longitudinal (/) and
two transversal () modes, we obtain:
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174 0)2 2
gl®) =5 2( ] ) for0< w < wp (6.55)
g(w) =0 forop <

which can also be rewritten as:

3Vo?
8(@) =5y for0se<en (6.56)
g(w) = forop < @
where:
1 1/1 2
= =4z 6.57
33() 037

is the inverse average sound velocity. This phonon density of states is illustrated in
Fig. 6.15 where we have a parabolic relation. Although the Debye model is a simple
approximation, the choice of kp ensures that the area under the curve of g(w) is the
same as for the real curve for the density of states. Moreover, this expression is
precise enough to determine the lattice contribution to the heat capacity both at high
and low temperatures.

a b
4 8(® )
a@
0 0
Op

Fig. 6.15 (a) Illustration of the phonon density of states in the Debye model, where the relation-
ship is parabolic until the Debye frequency is reached, after which the density of states is equal to
zero. (b) Illustration of a typical phonon spectrum of a real crystal with discontinuities due to
singularities in the spectrum. The singularities are due to zeroes in the group velocity
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Heat Capacity

Lattice Contribution to the Heat Capacity (Debye Model)

When heat is transferred to a solid, its temperature increases. Heat has a mechanical
equivalent which is an energy and is generally expressed in units of calorie with
1 calorie corresponding to 4.184 joules. Different substances need different amounts
of heat energy to raise their temperature by a set amount. For example, it takes
1 calorie to raise 1 g of water by 1 degree K. The same amount of energy, however,
raises 1 g of copper by about 11 K.

The heat capacity, C, of a material is a measure of the ability with which a
substance can store this heat energy and is described by the ratio of the energy dE
transferred to a substance to raise its temperature by an amount d7. The greater a
given material’s heat capacity, the more energy must be added to change its
temperature. The heat capacity is characteristic of a given substance, and its units
are cal-K~' or J-K™'. The heat capacity is defined as:

c, = (%)v (6.58)

subscripts denoting which variable (volume or pressure) is held constant.

The specific heat capacity, often known simply as the specific heat and denoted
by a lowercase c, of a material is the heat capacity per unit the mass. The specific heat
of a given substance has units or cal-g~"-K " or J.kg "K' and is thus specific to a
particular material and independent of the quantity of material. A few values of
specific heat for elements in the periodic table are given in Fig. A. in Appendix A.3.

Both heat capacity and specific heat phenomena are closely related to phonons
because, when a solid is heated, the atomic vibrations become more intense and
more phonons or vibrational modes are accessible. A measure of the heat energy
received by a solid is therefore the change in the total energy carried by the lattice
vibrations. This total energy E can be easily expressed using the following integral,
knowing the average number of phonons N(w)) (Eq. 6.33), the phonon density of
states g(w), and that a phonon with frequency w has an energy fiw (Eq. 6.30):

E— JN(a))g(a))ha)da) (6.59)
0

In the Debye model, we can use Eq. (6.56) for g(w) and rewrite Eq. (6.59) as:

T 1 Va2
W

E = J . 72 3hwdw
) exp(kb—“;) — 147"V

or:
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wh [ o

E =
223J ho
”VOOGkaTT—l

Note that the previous integral is performed only up to the Debye frequency, as
the phonon density of states is equal to zero beyond that point. Using the change of
variable x = IZ—"; (and thus dx = k,dew), this equation becomes:

do (6.60)

hop

kT
3Vh (kT\* [
E=""_ (2% d 6.61

2n2v3(h) Jex—lx (6.61)

0

Let us now make use of the Debye temperature @, defined in Eq. (6.46) and the
Debye wavenumber kp, in Eq. (6.47) to express:

L _1 (k) _V (kY
(®D)3 - k% hvy 672N fivg
Using Eq. (6.46) for the boundary of the integral, Eq. (6.61) can then be rewritten
as:

E = 9Nk,

p
.

T J Y (6.62)
0

For high temperatures, where k,T >> hwp or simply T > ®p, the integral in
Eq. (6.62) is evaluated close to zero, i.e., 0 < x < % << 1. The function in the
integral can thus be approximated as follows:

3 3
x X 2

-1 (I+x-1 "

where we have used the approximation exp(x) ~ 1 + x for x — 0. As a result,
Eq. (6.62) becomes successively:

and finally:
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E ~ 3Nk, T (6.63)

The heat capacity is thus obtained after differentiating this expression with
respect to the temperature as in Eq. (6.63):

dE
C, = (d—T> = 3Nk, (6.64)

This relation shows that, for high temperatures, i.e., T >>0®p, the heat capacity is
independent of temperature. In fact, this could have been easily calculated using
classical theory. Indeed, in classical statistical thermodynamics, each mode of
vibration is associated with a thermal energy equal to k,T. Therefore, for a solid
with N atoms, each having three vibrational degrees of freedom, we get 3 N modes;
the total thermal energy is then 3Nk, T, as derived in Eq. (6.63); and the heat capacity
is found to be equal to Eq. (6.64). This is known as the law of Dulong and Petit,
which is based on classical theory. The molar heat capacity, that is, the value of the
heat capacity for 1 mole of atoms, is calculated for N equal to the Avogadro number
N, = 6.02204 x 10* mol ! and is C, = 3N 4k, = 24.95 J-mol 'K~ ! = 5.96
cal-mol 'K\,

This shows that, at high temperatures 7 > ©p, the Debye model fits the classical
model. For low temperatures, however, where k,T < hiwp or simply 7 < ®p, the
heat capacity is not constant with temperature anymore. This is where the quantum
theory of phonons is needed and where the accuracy of the Debye model is best
appreciated. In this case, the integral in Eq. (6.61) can be extended up to infinity
without much error. Moreover, the exponential fraction in the integral can be

expressed as:
/1 1
— 1 e/ U —e

0 0 (6.65)
- —Z = =2
n=0 n=1 n=1
because x > 0 and ¢ ™ < 1. Therefore, the integral in Eq. (6.61) becomes:
o
T oo
3 3

Je"— Tl Je’c— i
0 0
= J <2x3 e"") dx

o \n=1 (6.66)

M

Il
—_

n

00
(Jx3 e dx
0

n

1

3
Il
_
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where the integral /,, can be simplified after the following successive integration by
parts:

o0
I, = Jx3e_”dx
0

I 37
= [ 3en ]0 + J3x2—dx = O+7sze " dx
n
0 0
3 e o8 300 —nx 6OO
= —[x ] +—J2x dx = 0+—2sz6 "dx
n nl, n n n
0 0
6 ™™ 6 [e™ 6 [
= —2[—)66 + —2J dx =0+ —3J-ef'”‘dx
n nl, n*] n n
0 0
B 6 efnx 0
E n |,
6
Tt

Thus, Eq. (6.66) can be rewritten as:

©p

(S <1

Jex_ ldxzézﬁ (6.67)
0

The sum in this expression corresponds to {(4), which is called the Riemann zeta
function evaluated at 4, and is equal to:

<1 =
((4) = Zn_4 =% (6.68)
n=1
And Eq. (6.62) becomes:
1 4
E = Nk 7497
(6p)" 90
or:
4 4
E= 3% Nkh(@T 5 (6.69)
D

To determine the heat capacity, we must differentiate this expression with respect
to the temperature as in Eq. (6.69):



6.2 Thermal Properties of Crystals 235
dE d (3z* T
= () _ 43y, T
dr), dT \ 5 (®p)

1274 T\
C, = —Nk,| — 6.70
- (Q) (6.10)

or:

where N is the number of atoms in the crystal. This relation shows that, for low
temperatures, i.e., T < < ©p, the heat capacity is proportional to 7°. The experimen-
tally measured molar heat capacity is shown in Fig. 6.16 for a few solids as a
function of temperature.

The figure shows that the Debye model is in good agreement with experimental
observations, both in the high-temperature and the low-temperature regions.

Example

Q Calculate the Debye temperature for InP, given that the v, = 4.594x 10° m-s™',

v, = 3.085x10° m-s™', and the mass density of InP is d = 4.81x 10> kg-m™.

__ hwD

A We make use of the expression giving the Debye temperature, @p = s where

1 1/1 2
the Debye frequency wp = vokp is calculated knowing — = — (—3 + —3) and

v 3\v, v
6_ ______________
Pb
Cy
( Cal ) Cu

mol-K
1 Al
| Carbon

I I I I I

0 100 200 300 400 500 (K)

T

Fig. 6.16 Temperature dependence of the molar heat capacity C, of some materials. At low
temperatures, the heat capacity follows a 7° relation (Hummel 1993, Fig. 19.1. © 1985, 1993 by
Springer-Verlag Berlin Heidelberg. With kind permission of Springer Science and Business Media)
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2d
k3D == = 67> (m> similarly to the previous example. Numeri-

cally, we successively obtain:
T -1 | | ) s
=3l5+5 = |z or:
Yo [3 (Vf + V?ﬂ {3 <(4.594x103)3 + (3.085x103)3>:|

vo=337%x10°m-s7 "

In addition, we have:

) (6 2( 2 x 4.81 x 10° ))‘“m
= | 6r
P (114.8 + 31) x 1.67264 x 102

kp =133 x10"%m™!

which leads to:

wp = 4.47 x 10> Hzand

(1.05458 x 107*) (4.47 x 107 )
D =

=341.5K
1.38066 x 1073

Throughout this discussion, we realized that the Debye temperature @, played a
significant role in the heat capacity of a material. It indicates the separation between
the high-temperature region where classical theory is valid and the low-temperature
region where quantum theory is needed. The Debye temperature can be measured by
fitting the experimental data of Fig. 6.16 to Eq. (6.70).

Electronic Contribution to the Heat Capacity

The previous discussion has considered the contribution of lattice vibrations or
phonons to the heat capacity. This is valid for dielectric, i.e., insulating, materials.
But, unlike dielectric materials, metals have a large number of free electrons, Ng,
which can also absorb thermal energy, thus increasing the overall heat capacity of
the metal. The contribution of electrons to the total heat capacity, denoted Cf’, can be
found as:

72 N k>
cd="_"t0r 6.71
v T3 R, (6.71)
Cé =yT

where Nyis the total number of free electrons in the crystal, Er is the Fermi energy, k;,
the Boltzmann constant, and T the absolute temperature. The mathematical steps
involved in the calculation of Cf’ are quite challenging and are beyond the scope of
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this textbook. Only a few defining equations will be listed here. The heat capacity Cfl
is defined by:

dE
4= (= 72
c: QJW (6.72)

where E is the energy of all the electrons in the crystal and is given by:

E:J%m@e@w (6.73)
0

where f,(¢) is the Fermi-Dirac distribution defined in Eq. (5.28) and g3p(¢) is the
three-dimensional electronic density of states of free electrons given by:

b
0le) = 5z () V@ (6.74
with m* being the electron effective mass. The temperature dependence of E is
included in the Fermi-Dirac distribution function.

We can see from Eq. (6.71) that the electronic contribution Cfl to the heat capacity
depends linearly on temperature and thus can be discriminated from the 7° depen-
dence of the lattice or phonon contribution denoted Cf,’h (Eq. 6.70) at low
temperatures. It is interesting to consider the ratio of C fl to CP h

el 2N 3
cr o 7 Er 5 Nyk, © (6.75)
ph 3 2 2 :
CV 125ﬂ4Nkb (@_7;) 2477 N EF T

where @p, is the Debye temperature. By introducing the Fermi temperature T such
that:

Er =k, Tr (6.76)
And Eq. (6.75) becomes:

ce! 5 Ny ©)
CP" " 24n> N T°Tp

(6.77)

The ratio % expresses the average number of free electrons that each atom
contributes to the crystal. Equation (6.77) shows that, as the temperature is increased,
the contribution of the lattice to the heat capacity exceeds that of electrons. This

occurs at a temperature Ty such that C¢ = C?" or:
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_ |5 NsOp
o=\ N 7, (6.78)

Numerically, one can find that this temperature is only a few percent of the Debye
temperature, i.e., a few degrees K (Table 6.1). This means that the contribution of
electrons to the heat capacity can only be observed at very low temperatures.

Example

Q Calculate the ratio of ¢ / o7 oat 4.2, 30, 77, and 296 K for Cu (assume
Op=340K and Er = 7 eV).
A cd 5 Nyk, &
We start from the expression for the above ratio: — - = ——f—b—g. Since
cp 2472 N Er T
Cu has two free electrons per atom, we can write % = 2. This leads to:
ce 5 5 1:38066 x 1072 340° 20.43

= —F X X =
CcPh 24n? 7 x 1.60218 x 10712 712 T2

which gives:

el

C
o = 1116 (4.2K),0.023 (30K), 0.034 (77K), 0.00023 (296K).

v

6.2.3 Thermal Expansion

Beside a few notable exceptions, it is commonly known that the volume of a heated
solid increases. This phenomenon is called thermal expansion.

If a material of length L is heated through a small temperature change AT, the
change in length AL is proportional to the original length and to the change in
temperature. The coefficient of linear expansion «; is called the thermal expansion
coefficient and is defined by the following relationship:

AL

The linear expansion coefficients of a few solids are shown in Table 6.2.

As Eq. (6.79) describes, an isotropic material exhibits equal thermal expansion in
all directions. Some cases in the real world, however, can be more complex than
implied by Eq. (6.79). The coefficient @ | can vary with temperature, so that the
amount of expansion not only depends upon the temperature change but also upon
the absolute temperature of the material.

Some materials are not isotropic and have a different value for the coefficient of
linear expansion dependent upon the axis along which the expansion is measured.
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Table §.2 Thgm.lal ‘ Solid a, (x10°KY)
expansion coefficients of a

few solids (Chemical NaCl 3.96
Rubber Company 1997; Pb 2.89
Grigoriev and Meilikhov Al 231
1997) Ag 1.89
Cu 1.65
Au 1.42
Fe 1.18
C (diamond) 1.18
Ordinary glass 0.90
Ge 0.582
GaAs 0.54
InSb 0.47
Si 0.468
AlAs 0.35
Si3Ny 0.27
Pyrex glass 0.32
Invar 0.07
Quartz glass 0.05

For instance, with increasing temperature, calcite (CaCO;) crystals expand along
one crystal axis and contract (o, < 0) along another axis.

Engineers in the semiconductor field are often extremely concerned about the
thermal expansion rate of a material when designing a device or system that must
operate over a range of temperatures. Improperly packaging a semiconductor device
without giving careful consideration to the thermal expansion properties of the
materials can result in reliability problems and reduced lifetime of the device. As a
result, most companies perform thermal cycling tests of their devices to determine
whether or not thermal expansion is a possible failure mechanism.

The problems associated with thermal expansion are most severe when two
materials of different thermal expansion coefficients are permanently bonded
together, such as in integrated circuits. For example, if the thermal expansion
properties of a metal heat sink are not properly matched to the thermal expansion
properties of the semiconductor material, the brittle semiconductor can crack as the
device is heated and cooled. In fact, copper and other metals exhibit thermal
expansion properties that are an order of magnitude greater than that of
semiconductors such as Si and GaAs, making it very problematic to attach these
materials directly. In order to address this issue, many semiconductor devices are
packaged using intermediate die attachment materials as well as advanced solder
alloys and optimized package materials as illustrated in Fig. 6.17. Some examples of
advanced packaging processes that rely on optimizing the coefficient of thermal
expansion are high-power RF-electronics and lasers (Fig. 6.17).



240

Fig. 6.17 Cutaway
illustration of an advanced
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Glass Epoxy/
Polyimide Layers

semiconductor device
package. To avoid cracking
and stresses and for devices
where alignment is critical,
packaging materials must be
chosen with compatible
thermal expansion coefficients

(Au) Bonding Wire Mold Resin

Internal Plating (Au)

Lead J ' External
Frame Plating
(solder)

Die Attachment Material

Example

Q A semiconductor laser is affixed to a copper heat sink and sealed into a package
inside of a factory clean room environment where the ambient temperature is
20 °C. The lasers are then installed in scientific equipment monitoring gas
emissions from a volcano in Hawaii.

laser die

fixed lens

The package also contains a collimating lens that is fixed in place and aligned
with the central axis of the laser beam. If the ambient temperature in Hawaii is48 °C,
how far off axis will the laser be when the device is in operation? (Assume that
thermal expansion has a negligible effect on the in-plane expansion of the heat sink.
Also assume that the heat sink is 3 mm long on each side and 1 mm tall).

A Equation (6.79) describes the linear expansion of a material: % = o AT. Cu
has a coefficient of linear expansion, a;, equal to 1.67 x 107 K'l, The heat sink
is originally Imm tall (L), and the temperature difference, AT, is equal to
48 °C-20°C=28°C=28K.

Thus, the change in length of the heat sink is equal to:AL = (1.67 x 107°K™ ")
(28K)(1 mm) = 4.68 x 10 *mm
or 0.468 pm.

Thermal expansion means that the average distance between atoms increases
when the temperature goes up and is therefore related to atomic vibrations or
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phonons in a solid. It can be easily understood that at a higher temperature, the
atomic vibrations will be more intense, the distances between atoms will be higher,
and therefore the overall solid volume will be larger. The mathematical treatment of
this relationship is beyond the scope of the discussion. We will merely give a brief
and simple description of the phenomenon.

We saw in Sect. 6.1.2 that the equilibrium interatomic distance r = Ry is
determined by the minimum of the atomic interaction potential energy U(r).
In thermodynamics, for such a system at thermal equilibrium at a temperature 7,
the average interatomic distance is denoted <R> and is given by the Maxwell-
Boltzmann distribution:

00 _U®)
| Re %7dR

| e ®TdR
—00

By introducing the displacement x = R — R, and expressing U(R) as a function of
x as was done in Sect. 6.1.2 (Eq. 6.2), we can rewrite this equation as:

« _uw® L) 0o _u
| (Ro+ (R—Rp))e % dR [ e ®TdR | xe ®Tdx
—00 —00 —00
<R> = o0 7@ = RO o0 7@ + oo 7@
| e ®TdR [ e ®TdR | e ®Tdx
—0 —00 —00

or:

o )

j xe ®Tdx
<R>:R0+7_§ N

f e ®Tdx

—00

(6.80b)

For low temperatures and thus small vibrational amplitudes (x < <R;), one can
approximate the potential energy U(x) with terms up to the second order in x (i.e., x°)

as was done in Eq. (6.3). This is the harmonic approximation. In this case, the
U@ . _U» .

exponentiale %7 is an even function of x,xe %7 is an odd function of x, and therefore

(o)

Uy . . .
J xe ®Tdx =0 and (R) = Ry. This means that, in the harmonic case, the average
—00
interatomic distance <R> is exactly Ry, the distance corresponding to the potential
energy minimum.
At higher temperatures, the atomic displacement x is large enough so that higher

order terms in Eq. (6.2) need to be included (e.g., x*), causing anharmonic effects. In
UL .
this case, the exponential e *7 is not an even or odd function of x anymore, and the

integral fraction in Eq. (6.38) is strictly positive. As a result, (R) > Ry which means
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that the average interatomic distance becomes larger than Ry, i.e., there is thermal
expansion. We see that thermal expansion is a direct result of anharmonic effects in
the atomic interaction potential.

6.2.4 Thermal Conductivity

In the previous few sections, we saw that a lattice could receive and store thermal
energy, heat through lattice vibrations, i.e., by creating more phonons, or through
free electrons in a metal by gaining more kinetic energy. The lattice vibrations
generate waves that can propagate, while free electrons can move in a metal. The
thermal energy can thus be transported from one end of the solid to another. This
characteristic is called thermal conductivity and is also an important parameter when
designing a device or system.

Depending on the thermal conductivity of the materials used, heat may build up
from the operation of the device and lead to failure of the device or system. Removal
of excess heat has become a very critical issue in semiconductor design in recent
years, especially in the design of modern high-density computer chips and high-
power optoelectronic semiconductors. In the semiconductor industry, Moore’s law
has predicted that the number of transistors on a chip doubles every 18 months. This
has led to both a reduction of the size of transistors and an increase in the packing
density. The increase in transistor density has also lead to a significant increase in the
power density (heat) in the same area that needs to be removed from the chip.

The thermal conductivity of a solid is quantified through a positive parameter
called the thermal conductivity coefficient K (read “kappa”) which is defined as:

dT

J T — —K dx (681)
where J7 is the thermal current density, i.e., the thermal energy transported across a
unit area per unit time. This is expressed in units of J-cm*-s™' or W-cm™~. % is the
temperature gradient, which is the rate at which the temperature changes from one
region of the solid to another. The thermal conductivity coefficient thus has the units
of W-em "K' (or W-m "K™"). Values of the thermal conductivity of a few

materials are given below in Table 6.3 and Fig. A. in Appendix A.3.
Equation (6.81) expresses that there is a flux of thermal energy within the solid as
a result of a difference of temperature between two regions. The minus sign means
that the thermal energy flows from the higher-temperature region to the lower-
temperature region. This relation is analogous to the electrical current which
originates from a difference in electrical potential. In Eq. (6.39), we assumed that
the thermal current and the temperature gradient occurred along one direction. In a
three-dimensional case, the current and the gradient would be simply replaced by
vectors. The simplification here does not reduce the generality of the physical
concepts which will be derived. Moreover, in this section, we will only be interested
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Table 63 ‘Ther?nal Solid K (W-m LK)

cor}ductlvmes. of a few Pyrex glass 1

solids (Chemical Rubber

Company 1997; Adachi NaCl 64

2004) Pb 35
GaAs 56
Ge 64
GaP 77
Fe 80
AIN 82
InP 68
Si 124
BeO 210
Al 237
Au 317
Cu 401
Ag 429

C (diamond) 1000

in the qualitative properties of the thermal conductivity. An exhaustive mathematical
treatment can therefore be avoided.

Copper has become the material of choice for most heat-spreading applications in
microelectronics because it is a material with one of the highest thermal
conductivities and affordable costs. In some cutting edge devices, however, even
copper is falling short of adequately removing heat from semiconductor devices, and
the engineers and materials scientists have had to think of alternative approaches.
One such approach has been to use diamond because it has a thermal conductivity
several times larger than that of copper. Commercial manufacturing of diamond
heat-spreading materials through the use of chemical vapor deposition (CVD) has
reduced the material’s cost and improved availability and made diamond heat
spreaders a viable solution for high-heat load applications, such as power laser
diodes.

Thermal conductivity can be viewed as the result of phonons (quasiparticle)
moving from a hotter to a colder region and undergoing collisions with one another
or against material imperfections (defects, boundaries) so that their energy can be
transferred in space. These collisions are also often referred to by using the more
general term scattering. The mathematical model commonly followed makes use of
the kinetic theory of gases, in which (i) each quasiparticle is modeled as a free
moving particle in space with a momentum and an energy, (ii) each quasiparticle is
subject to instantaneous collision events with other particles, (iii) the probability for
a collision to occur during an interval of time dt is proportional to dt, and (iv) the
particles reach thermal equilibrium only through these collisions.

Similar to the heat capacity, there are two contributions to the thermal conductiv-
ity: a lattice contribution (phonons) denoted «x,, and an electronic contribution
(electrons) denoted k,.



244 6 Phonons and Thermal Properties

The lattice contribution «,, can be regarded as the thermal conductivity of a
phonon gas. Using the kinetic theory of gases, the following expression can be
derived for the lattice contribution:

1/cr
Kph = 5( ‘; )V()A (682)
v

ph
where (V) is the heat capacity per unit volume of the solid considered and v, is

the average phonon velocity. The parameter A is the mean free path of a phonon
between two consecutive collisions and is central to the thermal conductivity
process.

There are two types of phonon-phonon interactions in crystals. The first one
involves what is called normal processes which conserve the overall phonon

— — —

momentum, k; + ky + k3 = 0, but not phonon number (phonons are bosons and

are not subject to particle number conservation) where k1 , k2 , and k3 are the
momenta of three mteractmg phonons The second type is called umklapp processes

—

and is such that k1 + ko + k3 =n K where n = 1, 2, 3. .. is an integer and K is a
reciprocal lattice vector. We recall from Chaps. 4 and 5 that electron and lattice
momentum in a crystal is only conserved give or take a reciprocal lattice vector.
Equation (6.40) was first applied by Debye to describe thermal conductivity in
dielectric (insulating) solids.

At very low temperatures, i.e., T < ®p, the average number of phonons given in
Eq. (6.33) tends toward zero. The phonon-phonon scattering becomes negligible,
and the mean free path A is determined by the scattering of phonons against the solid
imperfections or even the solid boundaries. A thus increases until it is equal to the
geometrical size of the sample. Then, the thermal conductivity behaves as the heat
capacity C7 " and has a T° dependence (Eq. (6.80)). In particular, kpn — 0 when T—0.
These are shown in Fig. 6.18a for A and Fig. 6.18b for k.

For higher temperatures, i.e., 7 >> ©p, we saw in Sect. 6.1.6 that the average
number of phonons is proportional to 7. Thus, phonon-phonon interactions become
increasingly dominant as the temperature increases. Since the collision frequency
should be proportional to the number of phonons with which a phonon can collide, A
ends up being proportional to 1/T at higher temperatures, as shown in Fig. 6.18a. At
the same time, we saw that in the heat capacity C’ " saturates at high temperatures
(Eq. 6.71). The thermal conductivity «,;, therefore has a I/T dependence in this
regime, as shown in Fig. 6.18b.

Another contribution to the thermal conductivity arises from electrons and mainly
concerns metals which have a large concentration of free electrons. Here, again, the
kinetic theory of gases leads to an expression of the electronic contribution «;
similar to Eq. (6.82):
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Thermal Conductivity &, (Logarithmic)
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Fig. 6.18 Variation of (a) phonon mean free path and (b) lattice thermal conductivity as a
function of temperature. At low temperatures, as the phonon-phonon interaction and scattering
decrease, the phonon mean free path is determined by crystal imperfections which are independent
of temperature, and the thermal conductivity follows a 7° dependence. At high temperatures,
phonon-phonon scattering increases, and both the phonon mean free path and the thermal conduc-
tivity decrease as T~

1 Cel
Ko = 3 (;) Ve, (6.83a)

el
where ( ‘; ) is the electronic contribution to the heat capacity per unit volume of the

solid considered and v, is the average electron velocity. The parameter A, is the
mean free path of an electron and describes how far an electron can travel on average
between two consecutive collisions. We will not in this chapter discuss the various
scattering mechanisms for an electron because of their large number and complexity.
Electronic transport and relaxation times will be discussed in more details in Chap. 8.
An interesting relationship can be derived linking the thermal conductivity and
electrical conductivity (o,;) of the free electron gas using Eqs. 6.71 and 6.83. This
is known as the Wiedemann-Franz law and can be written as:

2,2
7wk

= ?qZTUgZ (683b)

Kel

The electrical conductivity o, has not yet been discussed and is treated in detail in
Chap. 8, Sect. 8.2. It is measured in units of siemens/m or S/m.

We will conclude by providing a numerical estimate of this contribution and
compare it to the lattice contribution. At room temperature, on the one hand, a
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typical phonon has a mean free path of 3 x 107® cm, a velocity of 10° cm-s™",

and a heat capacity of 25 J-K~'-mol ™', yielding a thermal conductivity of Kpp22.5
W-cm K~!. On the other hand, for a pure (perfect) metal, an electron has a
mean free path of 107> cm, a velocity of 10® cm-s™', and a heat capacity of 0.5
J- K "mol ™!, yielding a thermal conductivity of Kpn = 250 W-cm™K™'. This
clearly shows that the electrons in a pure metal are responsible for almost all the
heat transfer. However, if the metal has many defects, the phonon contribution
may be comparable with the electron contribution.

6.2.5 Summary

In this chapter, we have shown that phonons in solids are responsible for important
contributions to the thermal properties of crystals. This includes heat capacity,
thermal expansion, and thermal conductivity. The Debye model of phonons was
presented, and it was shown that, despite the considerable simplifications made to
the spectrum, the model still accurately describes the temperature dependence of the
heat capacity and the thermal conductivity coefficients as measured experimentally
in crystals. The subject of thermal conductivity has acquired more importance
recently in view of the work on thermoelectricity and heat energy harvesting.
Thermal transport and how to control it are treated in detail in Chap. 12 of this book.

Problems for Phonons and Thermal Properties

1. Explain why there is no optical phonon in the dispersion curve for the
one-dimensional monatomic chain of atoms.

2. Explain why there is a forbidden range of vibration energies between the optical
and acoustic phonon branches. Solve Eq. (6.22) for the case when k = n/a.

3. The one-dimensional monatomic harmonic crystal (Sect. 6.1.3) is in fact a
particular case of the diatomic model described in Sect. 6.1.4, for which the
two atoms are identical. To prove this, show that the expression for the diatomic
harmonic crystal can be transformed into an expression similar to the mon-
atomic crystal. Solve Eq. (6.22) in the limit M; = M, = M. What considerations
do you have to take into account to do this?

4. In the chapter, the phonon frequencies at the center of the zone k = 0 were
determined for the diatomic molecule. Calculate the phonon frequencies at the
zone boundary k = w/a.

5. Plot the shapes of the optical and acoustic branches in the dispersion relation for
four different ratios of masses: %—2 =10, 5, 2, and 1. Show that, in the case of two
identical atoms, there is actually only one acoustic branch and no optical branch
for the dispersion relation.

6. In Sect. 6.1.4, we calculated the ratio of the displacement amplitudes A and B for
the long wave limit (k — 0) for both the optical and acoustic phonon branches
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10.

11.

. Plot the average number of phonons N (@) = ———~—
exp (

and then determined the displacement of the atoms with respect to each other.
Calculate Eq. (6.26), the ratio of the displacement amplitudes, in the short wave
limit (k — w/a), and draw the displacement of the atoms with respect to each
other.

. Suppose that a light wave of wavelength 3 pm is absorbed by a one-dimensional

diatomic harmonic chain with atoms of mass 4 x 1072° kg and 5 x 1072° kg
and atomic spacing of 4.5 A. What is the force constant in MKS units?

. From the figures for the phonon dispersion curves for Si and GaAs plus the

equations for optical and acoustic phonons, explain why the energy for the Si
curves is higher in energy than the curves for GaAs? Assume that the elastic
constant is about the same for both materials. Also, why do the optical and
acoustic phonon branches cross at the zone boundary for Si but not for GaAs?
1 for at least five values of
T to show its evolution with increasing temperatures. For each one, plot the
function F(w) = % and show that it is a good approximation for N(w) for high
temperatures, i.e., k, T > > ho.
Let us model a rigid bar as a linear monatomic chain of atoms, as in Sect. 6.1.3
with the same notations. We further assume that the equilibrium interatomic
separation is a and that its cross section is a°. Its Young’s modulus Ey is defined
as the ratio of the stress applied in one direction divided by the relative
elongation in this same direction. The stress is the ratio of the interatomic
force (F,,,—) divided by the cross-sectional area (a®) on which this force is
applied. The relative elongation is the interatomic displacement divided by the
equilibrium separation. The Young’s modulus has the dimension of a pressure
and is expressed in Pa (Pascal). The solid density My is the ratio of the mass of
the solid to its volume. Here, we assume that the mass of an atom is M and that

there is only one atom in a volume of a°.
Show that the sound velocity, defined in Sect. 6.1.7, is equal to the ratio: /1\%'

From the speed of sound equation, v = (B/p)”, calculate the speed of sound in
silicon and compare with the speed of sound in gallium arsenide. Assuming that
the largest effect on the velocity comes from the density, why is this result
expected?

Problems for Thermal Properties of Crystals

1.
2.

3.

In your own words, describe the meaning of the phonon density of states.

In your own words, describe the meaning of the Debye frequency and the Debye
temperature. Develop a simple equation relating the Debye frequency, Debye
temperature, and Debye wavelength.

Determine the Debye temperature ®p,, Debye wavelength, and the Debye
frequency wp for diamond given that the lattice constant for this material is
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3.56 A, the density of diamond is 3.52 x 10° kg-m >, and the speed of sound in
diamond is 12,000 m-s~".

4. In your own words, describe the meaning of heat capacity. How is heat capacity
related to specific heat?

5. Starting from the expression of the total energy carried by the lattice vibrations

in Eq. (6.60), show that the heat capacity C, = (4)  can be written as:

e

7(6"“ - 1)2 dx

o%ﬂhﬁ?

T 3
C, = 9Nk, | —
’ (GD)

6. It takes 450 cal to raise the temperature of a metallic sample from 20 to 35 °C.
What is the heat capacity of the metal sample? If the sample has a mass of 78 g,
what is the specific heat of the sample?

7. The specific heat of metals is dominated by the electronic contribution at low
temperatures and by phonons at high temperatures. At what temperature are the
two contributions equal in rubidium? Note that y = 2.41 mJ/(mole K?) for
rubidium. Briefly describe your thinking.

8. The figure below illustrates measurements of the specific heat (plotted as C/T
versus 7°) for a crystalline element. Use what you know about the origins and
temperature dependence of the specific heat capacity to determine whether the
element is Na or Si. Discuss both possibilities.

x10~4
7.0 T T T T

6.5 8
6.0
5.5 -
5.0 4
4.5+
4.0 |
3.5 -

3.0 T T T
0.0 0.5 1.0 1.5 2.0

(Temperature (K))?

Specific Heat / Temperature (cal/g*K?)

Experimental data of the specific heat of an unknown element.



References 249

9. In your own words, describe the meaning of thermal expansion in solid-state
engineering.

10. Look up in tables or reference books the room temperature lattice constants for
the following crystals: aluminum, copper, iron, silicon, germanium, and dia-
mond. Using the coefficients of linear expansion, plot the values of the lattice
constants up to a temperature of 1000 °C.

11. In your own words, briefly describe the meaning of thermal conductivity and the
physical processes that influence the thermal conductivity.

12. Diamond is an electrical nonconductor; however, the thermal conductivity of
diamond is greater than the thermal conductivity of copper for 7 > 40 K. How
can this be explained?
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7.1 Introduction

In Chap. 4, we discussed the quantum mechanical states of electrons in a periodic
crystal potential and the resulting formation of energy bands. We also introduced the
concept of effective mass, that of holes, and the Fermi energy which provides an
easy way to differentiate a semiconductor from a metal.

In semiconductor devices, most of the properties of interest have their origins in
the electrons in the conduction band and the holes in the valence band. Two major
functions are important in understanding the behavior of these electrons and holes:
the density of states and the Fermi-Dirac distribution function, both of which have
been discussed in Chaps. 4 and 5. In this chapter, we will establish the basic relations
and formalism for the distribution of electrons in the conduction band and holes in
the valence band at thermal equilibrium. We will also introduce the notion of doping
and extrinsic semiconductors, in contrast to pure or intrinsic semiconductors.

7.2  Density of States

In Chap. 5, we calculated the density of states of electrons of the conduction band in
a three-dimensional semiconductor to be:

%
V [2m Y
w() =5z (%) (- o) 7.)
where m, is the electron effective mass in the conduction band, E¢ is the bottom of
the conduction band, and V'is the volume of the crystal considered. The subscript “c”
in g. indicates that we are considering the conduction band. This expression was
calculated for a single band minimum and is valid for direct-gap semiconductors,
such as GaAs, where the conduction band minimum occurs at the zone center.
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However, in the case of many other semiconductors, one has to take into account the
degeneracy or number gq of equivalent conduction band minima in the first
Brillouin zone.

For example, we saw in Fig. 5.17a that the conduction band minimum in Ge
occurred along the <111> direction. As there are eight equivalent <111> directions,
there are eight equivalent conduction band minima in Ge. However, because the
minima occur exactly at the boundary of the first Brillouin zone, each minimum is
shared with two neighboring zones and therefore only contributes one half to the
density of states. Thus gqe, = 4, i.e., the expression in Eq. (5.52) needs to be
multiplied by a factor 4. In addition, we also saw in Fig. 5.17b that the conduction
band minimum in Si occurs at k =~ 0.8(2z/a) in the first Brillouin zone along the
<100> direction. Since the <100> direction has a sixfold symmetry, this gives rise to
six equivalent conduction band minima within the first Brillouin zone, and g4 = 6
because the minimum is strictly inside the first Brillouin zone. The expression in
Eq. (7.1) then needs to be multiplied by 6. Finally, for GaAs, as shown in Fig. 5.17c,
the conduction band minimum occurs at the zone center, and the expression in
Eq. (7.1) remains unchanged, i.e., g4 = 1.

In other words, the full density of states of electrons in the conduction band is
(E > Ec)l

b
\% 2m [
w() = 5ze (%) (B Eo) (12)

Example

Q GaN has the wurtzite crystal structure. The first Brillouin zone is shown in the
figure below. From the calculation of the band structure of GaN, it can be seen
that there is a shallow conduction band minimum at the symmetry point K in the
reciprocal lattice. To calculate the density of states given by the expression

% V.
8e(E) = oga(%) (E—Ec)"
should be used?

, what is the degeneracy factor g, which

<
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A The point K is equally shared by three adjacent Brillouin zones. Because the
first Brillouin zone has sixfold symmetry, there are six equivalent points K in
the zone. This leads to a total degeneracy of : 6 x % =2

The value of the electron effective mass m, was determined in Eq. (5.27), in the
simple case of a one-dimensional crystal, as the curvature of the conduction band or,
in other words, the second derivative of the energy spectrum E(k) such that E(k) can
be approximated as:

h2
E(k) ~ —k* (7.3)

2me

In the more general case of a three-dimensional crystal, the effective mass is a
3 x 3 matrix, and each element is a function of the direction in which the two

—

derivatives of the energy spectrum E (k) are performed, ki, ky, or k,.
If the energy spectrum can be approximated as:

_ hz kZ k2 k2
E(k)z—( x +—y+—z> (7.4)

where miyy, my, and m,, correspond to the values of the second partial derivatives in
the ki, ky, and k, directions, respectively; then the electron effective mass m, that is
considered in Eq. (7.3) is the average of these three masses and is given by:

me = (Myxnyyimz) " (7.5)

In the particular case when the energy spectrum can be approximated as:

2 2
e ((B+E) e
J— —+_

E(k) ~ (7.6)

2 my m

where m and m, are customarily called the transverse electron effective mass and the
longitudinal electron effective mass, respectively; then the electron effective mass
m, that is considered in Eq. (7.5) is the average of these three masses and is given by:

me = (m2m)” (7.7)

A similar relation can be obtained for the electronic density of states in the
valence band (Ey < E):

GlE) = - (2’"“)3/2 (Ev—E)" (7.8)

222\ n?2
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where my, is the hole effective mass which accounts for the curvature of the valence
band and Ey is the top of the valence band. In this expression, there is no degeneracy
factor from crystal symmetry because the top of the valence band is unique and
always occurs at the center of the first Brillouin zone.

We saw in Sect. 5.4 that the valence band of a semiconductor is composed of two
main subbands, the heavy-hole and light-hole bands, each with a different curvature
and thus with their own hole effective masses: my,;, and my,, for the heavy-hole
effective mass and light-hole effective mass, respectively. As a result, the hole
effective mass my, that is considered in Eq. (7.7) is the following average of these
two masses:

AL
my = (mhh + mlh) (7.9)

7.3  Effective Density of States (Conduction Band)

As discussed in Sub-sect. 5.2.8, the density of states merely provides information
about the allowed energy states. To obtain the concentration of electrons in the
conduction band, we must multiply this density of states with the Fermi-Dirac
distribution (Eq. (5.28)) which gives the probability of occupation of an energy state:

=y jx ¢ (B (E)dE (7.10)

Expanding this expression using Eq. (5.52) and Eq. (5.28), we get:

3 . l/
_ & <2me> /ZJ ﬂﬂ; (7.11)
2\ Ec exp (E EF) +1

Making the change of variable y = Ek ?C, and thus dy = khLTdE, the previous

integral becomes:

o8] ]/ 00 1/7
_ 2 3 2
J (EZEQ) e (ka)‘/zJ Y dy (7.12)
Ec exp(E EF) +1 0 exp( Ej{hfc) +1

We can define the Fermi-Dirac integral as in Eq. (5.56):

F 2 [ d 7.13
=7 | Trepn =g (7.13)
0

using:
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_ Ep—Ec
kT

X

(7.14)

Equation (7.12) can be rewritten as:

o (5 g ) JE (B

and therefore Eq. (7.11) becomes:

'/
gq [2me) 2 3/ Nz Er — Ec
== k)2 ~—F | ——— 7.16
”2#(#>(b) 2 "\ kT (7.16)
Remembering that i = %, this can be simplified as:
2k Tm\**  (Ep — Ec
or:
Er — Ec
with:
2k T\ >

N, is called the effective conduction band density of states. The Fermi-Dirac integral
defined in Eq. (7.13) is often approximated with simpler expressions. One com-
monly encountered situation is when Ec — Eg >> k,7T. A semiconductor in this
situation is called a non-degenerate semiconductor. Let us give a numerical example.
At room temperature (7 = 300 K), we have k,7 = 25.9 meV. Therefore, we can
consider that we are in the presence of a non-degenerate semiconductor when the
Fermi energy Ef is away from the bottom of the conduction band E¢ by a few times
25.9 meV. This is illustrated in Fig. 7.1a. For most of the practical calculations, a
distance of 3k, T or more, i.e., Ec — Eg > 3k,T, is sufficient.

This approximation means that the Fermi energy is rather far from the bottom of
the conduction band and inside the bandgap and that x << —1 in Eq. (7.13).
Therefore, the exponential function dominates in the denominator for all positive
values of y > 0, 1.e., 1 + exp (y — x) = exp (y — x). Thus:
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Fig. 7.1 Tllustration of the position of the Fermi level with respect to the conduction band (a) in a
non-degenerate n-type semiconductor: The Fermi energy is far from the edge of the conduction
band. (b) In a degenerate semiconductor n-type semiconductor, the Fermi energy is close to the
edge of the conduction band

F ~ — _— = — /2 y 2
1) \/EJGXP()’—X) \/J_Texjy €'d (7-20)
0

The integral on the right hand side can be transformed by integrating by parts:
12 =y g, 1/2,—y1>® 1 =1/2 —y
y'Pedy = [y, |y e dy
0 0
1 —1/2 —y
== d
ZJy e -ay
0

Making now the change of variable ¥ = y'/2, and thus dY = % y~12dy, we get the
well-known integral:

2

| =

l o0
0

o0
J e Vdy = \/—E
0

Substituting in Eq. (7.20), we obtain for a non-degenerate semiconductor:

Fi(x) = &'
and from Egs. (7.18) and (7.20):
Eg — E
n = N.exp (FkTTC> (7.21)

This expression is much simpler than Eq. (7.16) and is more amenable for
calculations. However, when the Fermi energy is close to or even higher than the
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Fig. 7.2 The Fermi integral of order one half and its approximations

bottom of the conduction band, we have a so-called degenerate semiconductor, we
cannot make this approximation anymore, and the Fermi-Dirac integral has to
be used.

An extreme case is when Eg — Ec >> kT, corresponding to highly degenerate
semiconductors, in which the Fermi level lies deeply inside the conduction band.
Electrical properties of such semiconductors are similar to those of metals. At this
condition, the Fermi-Dirac integral can be approximated as:

2
Fi(x) ~ P

Figure 7.2 shows the plots of the Fermi integral and the two approximations
mentioned above. The exponential approximation or the 3/2 power approximation
agrees very well with the Fermi integral when x << —1 or x >> —1. However, when
x ~ 0, the Fermi-Dirac integral has to be used.

Fortunately, we are almost exclusively concerned with non-degenerate
semiconductors. For example, InSb has a bandgap of 0.17 eV at 300 K, which is
one of the smallest bandgaps among all the semiconductors. Assume InSb is pure
and perfect (or so-called intrinsic, see Sect. 7.6), the Fermi energy is approximately



258 7 Equilibrium Charge Carrier Statistics in Semiconductors

in the middle of the bandgap, Ec — Er =~ E,/2, which is about 85 meV at 300 K.
Note that k,7 = 25.9 meV; the condition Ec — Er > 3k,Tis satisfied. Thus the
exponential form can be used. Most of the semiconductors have a larger bandgap,
which means the 3,7 condition is valid at room temperature.

7.4  Effective Density of States (Valence Band)

A similar derivation can be performed for the concentration or density of holes p in
the valence band:

1 (5
r=y | sEnEaE (1.22)
which we obtained from Eq. (7.10) after replacing the density of states with that in
the valence band and the limit of integration for an energy below the top of the
valence band Ey. Moreover, the Fermi-Dirac distribution f.(E) has been replaced
with (see Eq. (5.58)):

(7.23)

B .
To(E) = [1 = f(E)] exp(E;fb}E) +1

which gives the probability of the state at energy E not to be occupied by an electron
and thus to be occupied by a hole.
Expanding Eq. (7.22) using Eqgs. (7.8) and (7.23), we get:

% E h

1 /2 v Ev—E

p== (_’Zh) J V=B e (7.24)
2\ h —o0 exp (E—,fb}E> +1

Using the change of variable y = EZh}E , thus dy = _lq,LT dE, and:

_ Ey —Eg

T T RT

(7.25)

in the previous integral and identifying it with the Fermi-Dirac integral, we obtain a
relation similar to Eq. (7.17) for p:

2rcky, Tmy, 3/2 Ev — Er
=2 ———— Fi| —— 7.2
r=2(5) A (7 (7:26)

or:

(B) )
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where:

2k Trmy \ */2
Ny = 2(%) (7.28)

is called the effective valence band density of states.

Example

Q Find the ratio of the heavy-hole concentration to the light-hole concentration
for GaAs.

A We know that the hole concentration is related to the hole effective mass

through:
'/
—9 27tkamh ZF EV_EF
P= e N\ kT )

The Fermi-Dirac integral is the same for the heavy-hole and light-hole bands, and
the only difference comes from the effective masses. Therefore, we can write:

}/2 3
_ o (045N
’[’)‘1‘: = (:’;T:) . In GaAs, this ratio is: ’I’]‘l‘: =(5)" =12.86

Similar to what we saw in Sect. 7.3, the general expression in Eq. (7.24) can be
simplified in the case of a non-degenerate semiconductor for which Eg — Ey >> &, T.
This situation is of most interest and is illustrated in Fig. 7.3a. It corresponds to the
one where the Fermi energy is rather far from the valence band and inside the
bandgap.

In this situation, the concentration of holes has a simplified expression similar to
Eq. (7.18):

Fig. 7.3 Illustration of the position of the Fermi level with respect to the valence band (a) in a
non-degenerate p-type semiconductor: The Fermi energy is far from the edge of the valence band.
(b) In a degenerate p-type semiconductor, the Fermi energy is close to the edge of the valence band
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Ey — EF>
~ Nyexp| ——— 7.29
p e (2 (7.29)

7.5 Mass Action Law

We saw that a non-degenerate semiconductor has its Fermi energy far away from
both the bottom of the conduction band and the top of the valence band, by about a
few times kT (25.9 meV at room temperature). This situation is more often
encountered in practice than one may believe, and most of the discussion from
now will therefore be in this approximation unless stated otherwise.

An important parameter is the product of n and p given in Eqgs. (7.21) and (7.29)

by:
np = Neexp (Epkb—TEc) Nyexp (%)
= N.N,exp (%)
or:
np = Nchexp(—kEb—gT) (7.30)

where E, = Ec — Ey is the bandgap energy of the semiconductor. This relation is
very important, as it is valid for any value of n or p. This relation is usually called the
mass action law. However, it does not hold in the degenerate semiconductor case. It
is common practice to introduce the intrinsic carrier concentration, n;, which is
defined as:

n? = np = N.Nyexp <—§> (7.31)
ko T

This parameter is a function of the semiconductor effective masses and the
temperature. This concentration is qualified as “intrinsic” because for an intrinsic
semiconductor, the number of electrons and holes are equal, i.e., n = p, and we thus
have from the previous relation:

E
n=p=n;= \/NcheXp <_2kbgT> (732)

Example

Q Calculate the intrinsic electron concentration for undoped GaAs at room tem-
perature (300 K).
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A For a homogeneous non-degenerate semiconductor, like undoped GaAs, the
mass action law gives the intrinsic electron concentration as:

3/ 3/ Eg
=t (=) " (m) o5
(2T [ mem\ R
n 84 moimg P 2k T

where E, is the bandgap of GaAs (1.424 eV). For GaAs, the degeneracy factor g, is
equal to 1 because the conduction band minimum is at the center of the Brillouin
zone. In addition, the hole effective mass my, is calculated from the heavy-hole and

’ o s

light-hole effective masses: m,’ > = my, > + m,; >. We therefore get:

%
’ 27 (1.38066x 1072 ) x 300 (0.91095) x 10~
n =
! (6.62617x103)"

X \/(0.067)3/2 (0.45“/2 +0.0827/2)

( 1.424 x 1.60218 x 10~ )
xexp| —

2 x (1.38066 x 10**) x 300

=2.06 x 10?m™3
=2.06 x 10°cm™3

7.6  Doping: Intrinsic Versus Extrinsic Semiconductor

The energy band structures of the semiconductors that have been discussed so far
corresponded to those of an intrinsic semiconductor, which is a pure and perfect
semiconductor crystal. At a temperature equal to the absolute zero (0 K), the valence
band of such a crystal is completely filled with electrons, and there is no electron in
the conduction band. Indeed, we saw that the Fermi energy of a semiconductor lies
within a forbidden energy gap (Sub-sect. 5.2.7). Since the Fermi-Dirac distribution
function has an exact step shape at T = 0 K (Fig. 5.12), there is no electron with an
energy E > Ep, including the conduction band, and all the electrons are located at an
energy E < Ef.

This phenomenon directly results from the fact that the outer shell of each
constituent atom of a semiconductor is fully filled with four electrons. Counting
the number in the four shared bonds then gives a total of eight electrons. For
example, in the case of a silicon crystal, illustrated in Fig. 7.4, each Si atom is
bonded to four neighboring Si atoms. A Si atom originally has four electrons in its
outer shell (it is in the column IV of the periodic table), each of which is shared with



262 7 Equilibrium Charge Carrier Statistics in Semiconductors
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one different neighboring atom. Every Si atom has therefore a total of eight
electrons: Its original four electrons and one electron from each of the four neigh-
boring Si atoms.

We thus see that all the outer shell electrons are shared into bonds, and thus there
is no extra free electron which can move. Moreover, all the outer shell “spots” are
filled with electrons; therefore there is no room for an electron to move to if
displaced by a field. As a result, the electrical conductivity of a pure semiconductor
is “low” (only excited states can conduct). This is why a pure semiconductor is an
insulator at the absolute zero temperature.

In order to either increase the number of free electrons or increase the number of
“spots” (empty energy levels) where a potential electron can move into, we need to
replace some of the Si atoms with other elements, called dopants, which are not
isoelectronic to it, i.e., not with the same number of outer shell electrons. This
process is called doping, which results in an extrinsic semiconductor. A dopant is
thus an impurity added to the semiconductor crystal. Because the dopant replaces or
substitutes a Si atom, it is called a substitutional dopant. The concentration of such
dopants typically introduced in a semiconductor is in the range of 10'°-10' cm ™2,
which is low in comparison with the concentration of atoms in a crystal (typically
~10%2 cm ™). There are two types of doping, n-type doping and p-type doping,
depending on the nature of the dopant introduced. Such a dopant can be introduced
intentionally or unintentionally during the synthesis of the semiconductor crystal.

The n-type doping is achieved by replacing a Si atom with an atom with more
electrons in the outer shell. This can be achieved, for example, by using phosphorus
(P), an element from the column V of the periodic table, which has five electrons in
its outer shell. The result is shown in Fig. 7.5.

As we can see, four of the electrons in the outer shell of the P atom are involved in
covalent bonds with its four neighboring Si atoms. The fifth electron is therefore free
to move in space. The P atom is therefore called a donor in silicon because it can give
away an electron which can in turn participate in electrical conductivity phenomena.
Once an electron is given away, the phosphor atom becomes a positively charged ion
and is then called an ionized donor. This ionization process is generally achieved
through thermal excitation of an electron from the outer shell of the donor atom.

Because the dopant creates a perturbation to the periodicity of the crystal lattice, it
gives rise to additional energy levels in the bandgap. When the dopant concentration
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Fig. 7.5 Schematic of a Si semiconductor crystal with one Si atom replaced by a P atom to achieve
n-type doping. The dotted circle symbolizes the outer shell of the P atom which contains five
electrons. Because the fifth electron does not contribute to the bonding, it can be free (ionized) to
move inside the crystal. P is thus called a donor

Fig. 7.6 Schematic of the a b
energy levels introduced by AE AE
(a) a donor or (b) an acceptor
dopant in a semiconductor
crystal. The energy level of a
donor is closer to the edge of Ec — Ec
the conduction band, whereas Ey
that of an acceptor is closer to

the edge of the valence band

Conduction band Conduction band

Valence band Valence band

is low in comparison with the density of crystal atoms, the dopant energy level can
be considered as isolated, i.e., there is no energy band associated with it. We can then
talk about a donor energy level Eg4, as shown in Fig. 7.6a. Moreover, because the
extra electron around the P atom is easily ionized, it has a small binding energy, with
respect to the conduction band. The energy of the donor electron Ey is closer to the
conduction band than the valence band. The ionization energy of the dopant is the
difference Ec — Ej.

The other type of doping, p-type doping, is achieved by replacing a Si atom with
an atom with fewer electrons in the outer shell. This can be achieved, for example, by
using gallium (Ga), an element from the column III of the periodic table, which has
three electrons in its outer shell. The result is shown in Fig. 7.7.

As we can see, all three electrons in the outer shell of the Ga atom are involved in
covalent bonds with three of its four neighboring Si atoms. There thus remains an
open location that can be filled with an electron. The Ga atom is therefore called an
acceptor in silicon because it can “accept” or “capture” an extra electron from a
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Fig. 7.7 Schematic of a Si semiconductor crystal with one Si atom replaced by a Ga atom to
achieve p-type doping. The dotted circle symbolizes the outer shell of the Ga atom which contains
three electrons. The Ga atom can accept one more electron from a neighboring bond. Ga is thus
called an acceptor

Fig. 7.8 Schematic showing
the movement of a hole in a Si
semiconductor crystal doped
p-type using a Ga atom. The
hole is represented by an open
circle. When the Ga atom
accepts an electron, the
process can be equivalently
viewed as the Ga atom
releasing a hole inside the
crystal

neighboring covalent bond, thus leaving a new available location for electron
capture. Once an electron is captured, the gallium atom becomes a negatively
charged ion and is then called an ionized acceptor. This movement of electrons is
involved in electrical conductivity phenomena. Remembering the concept of holes
discussed in Sub-sect. 5.3.3, we can see that this electron movement is equivalent to
the movement of a hole in the opposite direction, as illustrated in Fig. 7.8. The Ga
atom, an acceptor (of electrons) in silicon, can then be also considered as a donor of
holes.

Here again, the p-type dopant is a perturbation of the periodicity of the crystal
lattice and leads to additional localized energy levels (i.e., not bands) in the bandgap
at E,, which is called acceptor energy level, as shown Fig. 7.6b. Because the Ga atom
easily captures an electron, E, is closer to the valence band than the conduction band.
The ionization energy of the p-type dopant is the difference E, — Ey.

A semiconductor may contain donors (with a concentration Np) and acceptors
(with a concentration N, ) at the same time. We then talk about compensation and say
that the semiconductor is compensated. The overall behavior of this semiconductor
depends on the relative difference between Np and N,. In either case of n-type
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Table 7.1 Dopants and
ionization energies for

(a) Si, (b) Ge, (c) GaAs (Sze

1981; Wolfe et al. 1989),
and (d) InP (http://www.
ioffe.ru/SVA/NSM/
Semicond/InP/index.html)
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(a) Si
Impurity Type Ionization energy (meV)
P Donor 45.31
As Donor 53.51
Sb Donor 42.51
B Acceptor 45
Al Acceptor 57
Ga Acceptor 65
(b) Ge
Impurity Type Ionization energy (meV)
P Donor 12.76
As Donor 14.04
Sb Donor 10.19
B Acceptor 10.47
(c) GaAs
Impurity Type Ionization energy (meV)
Si Donor 5.854
Ge Donor 5.908
S Donor 5.89
Be Acceptor 30
Mg Acceptor 30
Zn Acceptor 314
C Acceptor 26.7
(d) InP
Impurity Type Ionization energy (meV)
Si Donor 5.7
S Donor 5.7
Sn Donor 5.7
Be Acceptor 30
Mg Acceptor 30
Zn Acceptor 35

and/or p-type doping, the mass action law expressed in Eq. (7.30) remains valid as
long as we have a non-degenerate semiconductor.

Table 7.1 lists the most common dopants with their ionization energies for the
following semiconductors: Si, Ge, GaAs, and InP.

7.7  Charge Neutrality

A semiconductor crystal, be it intrinsic or extrinsic, must be electrically neutral at a
macroscopic scale. Indeed, even if dopants are introduced, they are electrically
neutral, and therefore the semiconductor crystal remains globally neutral too. As
the dopants get ionized, they create mobile electrons and holes in the crystal. But,
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there is no persistent accumulation of electrical charges. Even in a compensated
semiconductor, overall charge neutrality remains.

Before mathematically expressing the electrical neutrality condition, we must first
count all the electrical charges present in the crystal. The negative charges include
the electrons in the conduction band, with a concentration n, and the ionized
acceptors with a concentration No . The positive charges include the holes in
the valence band, with a concentration p, and the ionized donors with a concentration
Np™. The charge neutrality relation can then be written as:

n+Ny =p+N} (7.33)

For a given semiconductor crystal, the concentrations n and p solely depend on
the Fermi energy Ep through Eqgs. (7.21) and (7.29) in the non-degenerate case or
Egs. (7.18) and (7.27) in the general case. The concentrations of ionized donors Np*
and acceptors N5~ depend also on the Fermi energy for a given dopant nature, the
temperature 7, and total concentration as follows:

N 1
L_-_ - (7.34)
Np 2exp (—E*;{;f“> +1
Ny 1
A (7.35)

Na 4exp (ngF) +1

where Ef is the Fermi energy, E, and E, are the donor and acceptor energy levels in
the bandgap, respectively, and Np and N, are the total donor and acceptor
concentrations, respectively. The factor 2 in Eq. (7.34) arises because the donor
atom can in practice only be singly occupied by an electron (electron-electron
repulsion will prevent double occupation), and the factor 4 in Eq. (7.35) arises for
the same reason and the fact that there are two degenerate subbands in the valence
band at the center of the Brillouin zone: the heavy-hole band and the light-hole band
(Sub-sect. 5.4.3). Similar to the Fermi-Dirac distribution, Egs. (7.34) and (7.35) are
derived from statistical physics.

The charge neutrality equation is a very important property because it gives an
implicit equation which can be used to determine the Fermi energy. Once the Fermi
energy is determined, the concentration of electrons in the conduction band and that
of holes in the valence band can be readily calculated through Egs. (7.21) and (7.29)
in the non-degenerate case or Egs. (7.18) and (7.27) in the general case.

7.8 Fermi Energy as a Function of Temperature

An example of such calculation is given here, first for an intrinsic and then for an
n-type extrinsic and non-degenerate semiconductor.



7.8 Fermi Energy as a Function of Temperature 267

In the intrinsic case, we assume there is no dopant, i.e., the total concentration of
dopant is Np = N4 = 0. Substituting in Eq. (7.33), we therefore obtain Eq. (7.32)
again. Now, by identifying » in Egs. (7.21) and (7.32), we can write an expression
for the Fermi energy:

E, Ep — Ec
n = vN:N,exp oy = N.exp T
b b

which becomes, knowing that E, = Ec — Ey:

Er Ny  (Ec+Ey
ZE [P ep (2 EY 7.36
°xp (ka> N eXp( 2T ) (7.36)

After taking the logarithm of this relation:

E E E N
_F_gﬂn( _v>
N

kT~ 2koT
or.
Ec+Ey 1 N,
Ep=—S1"V oy jTln (- 7.37
F y Tk n(NC> (7.37)

This equation shows that the Fermi energy in an intrinsic semiconductor lies near
the middle of the bandgap and is offset by an amount that varies with temperature. At
the absolute zero temperature, the Fermi energy is exactly at the middle of the
bandgap.

Example

Q Determine how far the Fermi energy is from the middle of the bandgap of GaAs
A& 296 K.

The Fermi energy is given the expression: Er = %—i—%kaln (%) The
energy difference between the Fermi energy and the middle of the bandgap is

therefore given by the logarithm function, Er — @ = %ka In (%) , which is

¥
given by the ratio: %kaln (i (%) ). In GaAs, the degeneracy factor gq4 is

equal to 1 because the conduction band minimum is at the center of the
Brillouin zone. In addition, the hole effective mass my, is calculated from the

3 3/
2

3
heavy-hole and light-hole effective masses: m,’ > = m, ;> + mlh/ >, This leads to:
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%%
Ec+Ey 1 2 1
Ep—2C 2V g (M ) 2
2 2 m 2

¥
><138066 X 10_23 X 296 X ln 0453/2 _’_%
0.067"

= 6.00 x 1072 = 37.4meV

For an extrinsic semiconductor, an expression similar to Eq. (7.37) cannot be
easily obtained, because one needs to estimate the concentrations of ionized donors
(Np") or acceptors (N, ) as a function of the total concentrations, which is beyond
the scope of this textbook. Nevertheless, the following discussion will enable us to
qualitatively understand the variation of the Fermi energy as a function of
temperature.

We know that, at the absolute zero temperature (7' = 0 K), the Fermi energy Ef is
such that all the electrons have an energy below Er and no electron has an energy
higher than Ef.

Therefore, in an n-type doped semiconductor at 7 = 0 K, the Fermi energy is
located between Ec and Ey, as illustrated in Fig. 7.9a, which means that the Fermi
energy is much closer to the bottom of the conduction band than in the case of an
intrinsic semiconductor. This proximity has the very important consequence that the
concentration of electrons in the conduction band is much larger than for an intrinsic
semiconductor, as a result of the shape of the Fermi-Dirac distribution shown in
Fig. 5.12, when the temperature is raised. These electrons can easily participate in
electrical conduction phenomena.

By contrast, in a p-type doped semiconductor at 7= 0 K, the Fermi energy Ef is
located between Ey and E,, as illustrated in Fig. 7.9b, which means that the Fermi
energy is much closer to the top of the valence band than in the case of an intrinsic

Fig. 7.9 Position of the a b
Fermi energy at 7= 0 K in (a) E

an n-type semiconductor is A A
located between the donor
energy level and the bottom of Conduction band Conduction band
the conduction band, and (b) Ec
in a p-type semiconductor, it
is located between the EF .......................
acceptor energy level and the E
top of the valence band d

E

Valence band Valence band
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semiconductor. This proximity also has the very important consequence that the
concentration of holes in the valence band is much larger than for an intrinsic
semiconductor, as a result of the shape of the Fermi-Dirac distribution shown in
Fig. 5.12, at room temperature. And these holes can easily participate in electrical
conduction phenomena.

For very high temperatures, all the donors or acceptors are ionized, and we have
Np" = Np or No* = N,. Thus, the contribution from dopants to the charged carriers
is limited, which is typically to a maximum of 10" cm ™. At the same time, the
intrinsic contribution to the concentrations of electrons and holes, given by
Eq. (7.32), is such that (take 7' — o0):

E
n=p =n; = VNNyexp (—ﬁ) ~ v/N.N, (7.38)

Moreover, from Egs. (7.19) and (7.28), we saw that the effective density of states

y N o
N, and N, both increase as T/ *. Therefore, the intrinsic contribution to n and p also
increases as T%, i.e., is not limited when the temperature increases, unlike the

contribution from dopants. The charge neutrality relation in Eq. (7.33) then
becomes:

n=p (7.39)

This means that at very high temperatures, the charge carriers in an extrinsic
semiconductor behave as in an intrinsic semiconductor. This also means that the
Fermi energy tends to the expression given in Eq. (7.37). From these qualitative
arguments, we can schematically illustrate the evolution of the Fermi energy as a
function of temperature in Fig. 7.10 for an n-type and a p-type semiconductor.

a b

LE LE

Conduction band Conduction band
Ec Ec-
) O e I
d E,
E,
Byl e G

Ey E,

_ _

Np>N, N>Np

Fig. 7.10 Evolution of the Fermi energy as a function of temperature in a (a) n-type or (b) p-type
semiconductor crystal. As the temperature is raised, the position of the Fermi energy shifts from its
position in Fig. 7.9 to the position for an intrinsic semiconductor
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7.9 Carrier Concentration in an n-Type Semiconductor

Before concluding this section on the electrical charge distribution at equilibrium, let
us consider the example of a non-degenerate, n-type doped semiconductor. Here
again, we will not go in a detailed numerical analysis but will provide the main
qualitative results. The total dopant concentration will be denoted Np. Assuming
there is no acceptor (Ny = 0), the charge neutrality relation in Eq. (7.33) is now:

n=p+N (7.40)

Several levels of approximations, corresponding to several temperature regimes,
can be considered to further simplify this expression. But before continuing the
discussion, we should point out that holes in this semiconductor can only originate
from the intrinsic contribution, not an extrinsic source such as a dopant (we chose
N, A — 0)

The first regime corresponds to high temperatures. As discussed in the previous
subsection, all the donors are ionized ((N D= ND)). However, the concentrations of
electrons n and holes p are much higher than the total concentration of donors (n,
p >> Np), and they therefore obey the expressions derived for the intrinsic case, i.e.:

E
n~p=~n =+/N.-Nexp (—2ka> (7.41)

As the temperature is lowered, while the donors remain ionized (Ng = ND), the
intrinsic contribution to the concentrations of electrons and holes diminishes. Below
a certain temperature, these contributions become negligible in comparison to Ny} or
Np. In this second temperature regime, p can be neglected (p < Nj,) because the
only contribution to p is the intrinsic contribution. Therefore, Eq. (7.40) becomes:

n~ Np (7.42)

This is the most interesting characteristic of an extrinsic semiconductor. Indeed, if
the concentration of donors can be intentionally controlled in the crystal during the
synthesis, the concentration of electrons in the conduction band is precisely
determined.

Specifically, the temperature at which the carrier concentration from thermal
generation becomes equal to the background carrier concentration is called the
intrinsic temperature 7;. Below T; the carrier concentration is relatively temperature
independent. Above T; it increases exponentially with temperature.

As the temperature is further lowered, we reach a third regime where all the
donors are not ionized anymore (N$ < Np). At the same time, we still havep < NS.
In this case, Eq. (7.40) becomes:

n=~ N} (7.43)
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At low temperatures, the Fermi energy Ef lies between the bottom of the
conduction band E- and the donor level Ey. Therefore, Fr — E4 > 0 and the
expression for N, in Eq. (7.34) can be simplified to become:

N 1 N 1
Np 2exp (E—ib_fd) +1  2exp (E—zb_fd)

or:

N Ep—E
N ~ 2exp (- Fka ") (7.44)

Let us now calculate the product nNy;. On the one hand, it is equal to n’ from
Eq. (7.43). On the other hand, it is equal to:

Er — Ec\ N Er — E
Nd%xp(%)%exp(— Fka d> (745)

after using Eqgs. (7.21) and (7.44). We then obtain:

N¢N, Ec - E
2 ciVD C d
~ — 7.46
n 5 exp( T > (7.46)

which yields:

n~

NeNp o (—EC _Ed> (7.47)

2 2k T

The three expressions of n in Eqs. (7.41), (7.42), and (7.47) provide good
approximations of the concentration of electrons in the conduction band as a
function of temperature. It is customary to plot this concentration in a logarithmic
scale for n and as a function of inverse temperature (i.e., kbLT), so that the slopes of the
curve can be directly correlated to the bandgap energy E, in Eq. (7.47) and the
ionization energy Ec — Eq4 in Eq. (7.47)). This is very simply shown in the schematic
diagram in Fig. 7.11. Here, the temperature dependence of N, (T*) from Eq. (7.19))
has been neglected in comparison to the temperature dependence of the exponential
terms.

In the case of a p-type semiconductor, with an acceptor concentration Ny, the
following hole concentrations for the various regimes discussed previously can be
determined.

In the first regime, at high temperatures, the concentrations of holes p and
electrons n are much higher than the total concentration of acceptors (n, p >> Np)
and thus follow their expressions for the intrinsic case, as in Eq. (7.41):
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Fig. 7.11 Simple schematic 4
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E
n=~p~n; = /NN, exp (Zka) (7.48)

In the second regime, Eq. (7. 42) can be transformed for a p-type semiconductor
into:

p=Na (7.49)

In the third regime, as the temperature is further lowered, Eq. (7.43) can also be
transformed for a p-type semiconductor into:

p~=N, (7.50)

From Eq. (7.35), using the same derivation as between Eqgs. (7.44) and (7.47),
we get:

(7.51)

N Np E,—Ey
P -

4 2k, T

7.10 Summary

In this chapter, we have first described the equilibrium properties of charge carriers
in a semiconductor. We introduced the concepts of effective density of states, mass
action law, and intrinsic and extrinsic semiconductor. The n-type and p-type doping
of semiconductors has been discussed, taking into account the charge neutrality of
the solid. We also discussed the importance of the Fermi energy.
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Problems

10.

11.

. Calculate the conduction band effective density of states for Si, Ge, and GaAs at

300 K. Plot it in logarithmic scale as a function of the logarithm of the
temperature.

. Calculate the valence band effective density of states for Si, Ge, and GaAs at

300 K. Plot it as a function of temperature, in logarithmic scale. We know that
the valence band is degenerate at the center of the Brillouin zone as there is a
heavy-hole band (with effective mass my,;,) and a light-hole band (with effective
mass myy,). The effective mass to be used in Eq. (7.28) is then:

5 N
my = (mlﬁl + ml/ﬁ)

. Find the energies at which the distribution of electrons in the conduction band

and the distribution of holes in the valence band have maxima, if distributions
are governed by Maxwell-Boltzmann statistics.

. Estimate relative errors in the calculation of free carrier concentration when the

Maxwell-Boltzmann statistics is applied for semiconductors with Fermi energy
within the energy gap, if the Fermi level is 3k,7, 2k,7, and k,T away from the
bandgap edge or if it coincides with the edge. Use the given table of the exact
value of the Fermi integral (¥,,) for the comparison.

. Calculate the intrinsic carrier concentrations for Si, Ge, GaAs, and GaN at

300 K, in the non-degenerate case. Plot their evolution as a function of temper-
ature, in logarithmic scale.

. From the periodic table, give examples of n-type and p-type dopants for Ge and

GaA:s. Is silicon an n-type or a p-type dopant in GaAs? Interpret.

. As we know P is an n-type dopant for Si and Ge. Nitrogen is in the same column

as P in the periodic table. Will N be a good dopant? Why?

. Give an expression for the charge neutrality relation when double acceptors are

present with a concentration Na 4. Double acceptors accept one or two electrons.
Use the same notations as those in Sect. 7.3.

. Plot the evolution of the Fermi energy as a function of temperature in

intrinsic GaAs.

Consider a p-type doped GaAs semiconductor at 300 K with an experimentally
measured hole concentration of 1.5 x 10'" cm™>. The p-type dopant has an
energy level such that AE, = E, — Ey = 125 meV. Assuming there is no donor,
determine the proportion of ionized acceptors. Determine the total concentration
of acceptors.

Consider an n-type doped GaAs semiconductor at 300 K with an experimentally
measured electron concentration of 3 x 10'” cm>. The n-type dopant has an
energy level such that AE; = Ec — E4 = 25meV. Assuming there is no
acceptor, determine the proportion of ionized donors. Determine the total
concentration of donors.
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12. Derive expressions for concentrations of free carriers in a semiconductor doped
with both, donor and acceptor impurities. Determine the conductivity type and
calculate the concentrations of carriers in silicon at 7 = 300 K, if it is doped
with:

(@ Na=10"%cm 3> > Np.
(b) Np=10"cm ™3> > N,.
(c) Np=N4= 10" cm 3.
Assume that all impurities are ionized and n; = 1.38 x 10' cm > at 300 K.

13. Calculate the concentration of acceptor impurities in silicon, and determine the
type of semiconductor, if at 7= 300 K the concentration of electrons is 5 x 10"’
ecm > and the concentration of donor impurities is 10" cm™>. Assume
n = 1.38 x 10" cm™ at 300 K.

14. Calculate concentrations of carriers in silicon doped by acceptors Ny = 10
cm ™ at:

(@ 27°C
(b)y 175°C
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8.1 Introduction

In the previous chapter, we established the basic relations and formalism for the
distribution of electrons in the conduction band and holes in the valence band at
thermal equilibrium.

Although the equilibrium state for electrons and holes in a semiconductor is the
result of interactions between carriers or between carriers and phonons, it does not
depend on the way this state is reached. The knowledge of the equilibrium properties
is therefore not sufficient, and this is all the more true since semiconductor devices
usually work under non-equilibrium conditions. In this chapter, we will thus discuss
the dynamics of electrons and holes, including electrical conductivity, Hall effect,
diffusion, as well as recombination mechanisms.

8.2  Electrical Conductivity
8.2.1 Ohm'’s Law in Solids

Because electrons and holes are charged particles, they can move in an orderly
manner in a semiconductor under the influence of an electric field, for example. This
motion generates an electrical current, called drift current, which is at the origin of
the electrical conductivity phenomenon of certain solids. The magnitude of this
current determines whether a solid is a “good” or a “bad” conductor and is directly
related to the density of mobile electrical charge carriers in the solid. In this section,
we will try to model the electrical conductivity in solids starting from the Drude
model, which is a general model and is valid for any solid which contains mobile
charge carriers. This model is based on the kinetic theory of gases which was briefly
mentioned in Sect. 6.11.
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In this model, an electron from the gas of electrons is considered as (i) a free
moving particle in space with a momentum and an energy, (ii) which is subject to
instantaneous collision events (e.g., with other particles such as electrons or atom
cores or with irregularities in the crystal), (iii) the probability for a collision to occur
during an interval of time dt is proportional to dt, (iv) and the particles reach their
thermal equilibrium only through these collisions (see the Monte Carlo method in
Appendix A.8).

Let us start by conceptually considering an electron with an electrical charge —g

in a uniform electric field strength E. The force exerted on this electron is constant
and equal to —q E (g > 0). Newton’s action mass law is such that:

—

dv = -

m— =F=—qE (8.1)
where v is the velocity of the electron and m is its mass (in a semiconductor m = me,
the effective mass). This relation means that the acceleration of the electron is
constant and therefore that its velocity increases linearly with time. In practice the
velocity does not increase indefinitely, because collisions, which change the energy
and or scatter the momentum, prevent the electron velocity from reaching extremely
high values.

—

The current density vector J is a vector which is parallel to the flow of charge and
whose magnitude is equal to the amount of electrical charge (in Coulomb) that
passes per unit time through a unit area surface perpendicular to the flow of charges,
as shown in Fig. 8.1a. The current density is expressed in units of A-cm 2.

The current density can be determined by calculating the number of electrons
which will traverse the surface S, during a time interval dt. Such electrons are in fact

located in the volume defined between the surfaces denoted by S and S’ in Fig. 8.1b.

This volume is equal to A‘?‘dt, where A is the area of the surface S.

a F b 3
< «

ect v S S’ N
electrons &g——
R — W
= »
=/ | A |
e R
vdt ——
Ny <
Fig. 8.1 Schematic diagrams showing (a) the flow of electrons and current density vector in a

uniform electric field, (b) the displacement of the surface area A after a time dt at a velocity equal to
that of the flowing electrons
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Assuming that there is a concentration »n of electrons in this region of space and
that all of them have a velocity v, the total amount of electrical charge traversing the
surface S with area A, during a time interval df, is:

nqA‘?’dt (8.2)

The magnitude of the current density is thus the expression in Eq. (8.2) divided by
the area and the time interval. Because the current density vector is parallel and in
opposite direction to the flow of electrons, we obtain:

—

J=—ngv (8.3)

In reality, the electrons are subject to collisions and do not all have the same
velocity v individually, but they can be considered to have the same averaged
velocity, and the expression in Eq. (8.3) remains valid by considering that V is the
average velocity of the electron gas as a whole. Indeed, if there were no electric field,
because collisions are a statistical process, the electrons are as likely to move in one
direction in space as in another after a collision. The average velocity vector of the
electron gas is thus zero, and there would be no electrical current, as expected (see
the Monte Carlo method in Appendix A.8).

In order to calculate the average velocity of the electron gas that results from the
electric field, we have to introduce, as was done earlier in Chap. 6, a characteristic
time called electron relaxation time z, which is the average duration between two
consecutive collisions or scattering events. Such durations typically range on the
order of 10~'>~10~"* s for electrons in metals. The probability of a collision to occur
is in fact proportional to % The average velocity is then called drift velocity and is
denoted v, This quantity can be estimated by integrating Eq. (8.1) over time from
t=0andt =1

—qr E or yWift— —% E (8.4)

N
m vdrlfl _

We see that the drift velocity is proportional to the electric field strength and this
proportionality factor is called the mobility of electrons in the solid:

vd_r;ft: “uwE
- (8.5)

m

This quantity is expressed in units of cm®V~'-s~!, and it represents the velocity
that an electron gains per unit electric field strength (velocity (cm-s~') divided by
electric field strength (V~cm71)). This parameter is not used often in metals but will
be most useful to characterize semiconductors. The drift current density, which
results from the drift of electrons in the electric field, can then be written using
Eq. (8.3):
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— — — 2 —
Vdnft: —ng Vdrlft: nqu E= @ E (8.6)

A “drift” superscript has been added to emphasize that this is the drift current
density. Here again, we see that the current density is proportional to the electric field
strength. This proportionality factor is called the conductivity, is denoted o, and is
expressed in units of S-cm ™! (Siemens per cm) or inverse (£2-cm):

Juit_ o g
ng’t (8.7)
o = ngpu =
m

It is also a common practice to consider the inverse of the conductivity which is
called the resistivity of the material:

potl b (8.9)
o nqu

The linear relation in Eq. (8.7) is called Ohm’s law. In strong electric fields,
deviations from this linear dependence may occur, but one can keep the general
expression for the current density in Eq. (8.7) by considering a field-dependent
conductivity o. In this case, the relation is called the generalized Ohm’s law.

Example

Q Estimate the electron mobility in Cu.

A The charge carriers in Cu are electrons, and their mobility u is related to the

resistivity p of Cu through p = nq#p, where n is the electron concentration

participating in the conduction. Since there are two electrons in the valence

shell of copper, this concentration can be determined by the concentration of

Cu atoms or the density of Cu (d = 8.92 g-cm ™) through n = 2 x -%, where

mey’
mcy, 1s the mass of a Cu atom. Assuming the resistivity of Cu is about
p =17 x 107° Q-cm, we get the mobility:

o mcy
M= 2dgp

63.55 x 1.67264 x 1077’

T 2% (892 x 107%) x (1.60218 x 10 ) x (1.7 x 10°°)
=21.9cm?/Vs

For many, Ohm’s law is more commonly recognized through the relation ‘7 = %,”

where [ is the current, V the voltage, and R the resistance of an electrical component.
Indeed, let us consider a parallelepiped-shaped solid, as depicted in Fig. 8.2. We
assume the electric field in the solid is uniform and that the electrical current flows
perpendicularly to a side of the parallelepiped with surface area WH, as shown in
Fig. 8.2.
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Fig. 8.2 Schematic diagram 1%

illustrating the geometry used —
to illustrate Ohm’s law. A

voltage is applied across two

opposite faces of a rectangular

solid and separated by a ]; W
distance L. This results in an ; 42\
electric field and a current

density perpendicular to these b I H
two faces

In this configuration, the electrical current / is equal to the magnitude of the
current density multiplied by the area WH, i.e., I = WHJ4;¢. The voltage V is equal

to the magnitude of the electric field strength ‘E’ multiplied by the length L of solid

considered, i.e., V = L‘E ’ We therefore get successively:

[ = WHdrft — WHa’E‘

WH WH (8.9)
= —JL’E‘ ch
We thus recognize the relation:

%
I=— 8.10
- (8.10)

where:
L1 L

and A = WH is the area of the surface perpendicular to and traversed by the electrical
current flow. The quantity R is called the resistance of slab of solid considered. This
expression relates a macroscopic quantity (resistance) to an internal property of the
solid (resistivity).

8.2.2 The Case of Semiconductors

So far, the discussion has been general and valid for any solid that contains mobile
charge carriers. In the case of semiconductors, a few modifications to the previous
results need to be made.

A semiconductor has two types of charge carriers which can contribute to the
electrical conduction: electrons in the conduction band and holes in the valence
band. There are thus two separate contributions to the drift current:
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— — —
Jdrm: J(eintt + Jgrlft

where each of the Jgriﬂ and Jﬁriﬂ is expressed through Eq. (8.7) using the carrier
concentrations n and p, mobilities y. and yy,, and effective masses m, and my, of the
electron and the hole, respectively, in the semiconductor considered. Note that,
unlike electrons, the holes flow in the same direction as the electric field, because

of their positive charge. We thus obtain:

drlft d_r;ft drlft
4o E and{ Yo, T TV (8.12)
drlﬁ =1 m E Jdnft_ +p q vdrlfl

The total drift current density can then be written as:

{ Jdit_ o g (8.13)
o = q(nue + ppy)

The typical room temperature conductivity in metals is (0.1 ~ 3) x 10* S-em ™",

while the conductivity in semiconductors depends on the carrier concentrations and
therefore the doping level, as discussed in Chap. 7.

The conductivity in semiconductors depends much more strongly on the temper-
ature than that in metals. This is because in semiconductors, at a temperature of 0 K,
the Fermi energy lies within the forbidden gap (Fig. 5.11) and there is no electron in
the conduction band (and thus no hole in the valence band) as the Fermi-Dirac
distribution is strictly equal to zero there (Fig. 5.12). Remember that a full band does
not carry current. By increasing the temperature, it is therefore possible to increase
the concentrations of electrons in the conduction band, holes in the valence band,
and enhance electrical conductivity as the Fermi-Dirac distribution is not strictly
equal to zero any more. By contrast, in metals, the Fermi energy lies within the
conduction band which is thus partially filled (Fig. 5.11), and an increase in
temperature will not significantly affect the concentration of electrons in it.

8.3  Carrier Mobility in Solids

The mobility of electrons is controlled by two physical parameters: one is the
effective mass and the other is the relaxation time. In Chap. 5, we have seen what
determines the effective mass of a charge. Let us now consider the momentum
lifetime. The scattering processes which determine the momentum lifetime of solids
can be classified into two categories: (a) elastic scattering processes and (b) inelastic
scattering processes. In category (a), the carrier changes its momentum but not its
energy. Any break in the translational symmetry of the solid will give rise to elastic
scattering, and in particular this includes the presence of impurity potentials, defects
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interfaces, and dislocations, but there are also the deviations from periodic order
caused by lattice vibrations: the electron-phonon interactions. The former contribute
to category (a), and the latter involve energy exchange with the lattice and are in
category (b). In category (b) the carrier changes both momentum and energy. An
inelastic phonon-induced scattering process is allowed if it satisfies both the momen-
tum and energy conservation conditions which are, respectively:

where E (k' ) is the energy of the particle after the scattering process and i (g )is the
energy of the phonon absorbed or emitted.

We have seen in Chap. 6 that a solid will in general have two types of phonons, so
there are also two types of electron-phonon scattering processes. These are the
electron-acoustic and electron-optical phonon scattering processes. The acoustic
scattering occurs in all solids, but optic phonon scattering can only take place
when there are optic modes in the system. The strength of the electron-acoustic
and electron-optical coupling determines the efficiency, or the rate at which a carrier

with a given momentum k is scattered into a momentum state k” via a phonon. In ITI-
V semiconductors with polar modes, the electron optic coupling is an efficient
process and is the most important mechanism by which hot carriers relax their
excess energy when they have enough energy to emit an optic phonon. An electron
can also absorb an optic phonon, but this is only possible if a sufficient number is
thermally excited. The rate of optic phonon absorption increases therefore with
temperature, following essentially the Bose-Einstein distribution law of phonon
occupation. When more than one scattering process is contributing, the sum must
be taken. This is done by summing the lifetimes in parallel so that the shortest time
dominates. The total lifetime 7 is thus given by the sum % =14 L4 iwhere the

Tel Top
terms denote the inverse of the elastic, optic, and acoustic scattering lifetimes,
respectively. The temperature dependence of the mobility in different materials is
not simple to summarize, and the reader is referred to the specialized textbooks by
Ridley and Sze. The physics of the situation however is as follows: at very low
temperatures, the phonon modes freeze out and thermal velocities are low, the
inelastic lifetimes therefore increase as we go down in temperature, and eventually
elastic processes dominate. Elastic scattering processes can however be weakly
dependent on temperature and will remain finite even at zero temperature creating
a finite resistance unless the material becomes a superconductor at some stage.
Elastic scattering can take place from neutral defects, and most effectively also
from charged ionized defects and impurities. The state of ionization of an impurity
will in general be a function of temperature, as we saw when we discussed doped
semiconductors (see Sect. 7.6). This means that elastic scattering processes in doped
semiconductors will in general have both strong temperature-dependent and weak
temperature-dependent components. Here are a few typical measured bulk values
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(see also Appendix A4) of the room temperature (7 = 300 K) mobilities of some
important semiconductors: Si electrons, 1500 cmz/Vs; Si holes, 450 cm?/V s; GaAs
electrons, 8500 cm?/V s; GaAs holes, 400 cm?/V s; InAs electrons, 33,000 cm?/V S;
and InAs holes, 460 cm?/Vs. From the example in the text, we calculated the
mobility of Cu, which is a good metal, to be ~20 cm?/Vs. This is typical for good
metals and interestingly lower than for many semiconductors.

8.4 Hall Effect

At the end of the nineteenth century, physicists knew that if a metal wire carrying an
electrical current was placed in a magnetic field, it experienced a force. The origin of
this force was not known. In 1879, E.H. Hall tried to prove that this force was exerted
only on the mobile charges (electrons) in the wire. By doing so, he conducted an
experiment where an electrical current was run through a fixed conductor perpen-
dicularly to a magnetic field.

Let us consider the Hall effect experiment geometry illustrated in Fig. 8.3. An

electrical current, with current density J in the x-direction, is run through a

parallelepiped-shaped solid. A magnetic induction or flux density E is directed
perpendicularly to the current, in the z-direction. The movement of holes and
electrons is shown in Fig. 8.3 as well.

8.4.1 P-Type Semiconductor

Let us now assume that the solid only contains one type of charge carriers and that
they are holes. With the electrical current in the (+x)-direction, a hole moves also in
the x-direction with a velocity v , as shown in Fig. 8.3 . At the same time, it is
subject to the Lorentz force equal to:

ﬁ:gz;w ET
x

Fig. 8.3 Geometry used for a Hall effect experiment. A uniform electric field strength is applied
inside a solid in the x-direction (e.g., by applying a voltage across the solid), which results in an
electric current in the same direction. The movement of holes and electrons in the solid is shown.
The solid is immersed in a magnetic induction which is directed in the z-direction, perpendicularly
to this electric field
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Fran=9EHan

‘
Fig. 8.4 Motion of a hole in the Hall effect experiment. Under the influence of the Lorentz force,
the motion of holes is deviated in the y-direction toward one side of the solid which then becomes
positively charged through the accumulation of holes. The opposite side of the solid therefore

becomes negatively charged. This gives rise to an additional electric field which is directed in the
y-direction

— _ —

Flowenz = qVh X B (814)

which is in the y-direction. If the sample was without limits, the hole would exhibit a

cyclotron (circular) motion around an axis parallel to B. In the case of a finite size
solid as the one shown in Fig. 8.4, holes would accumulate on one of its sides to
create a surplus of positive charges. At the same time, negative charges would appear
on the opposite side from the deficiency of holes there. This separation of charges

results in an electric field strength Ey,y , called Hall electric field and shown in
Fig. 8.4, which drives holes in the y-direction and is opposite to the Lorentz force.

At equilibrium, the Lorentz force and the force due to the Hall electric field must
balance each other. This can be expressed mathematically as:

—

0=h Lotentz + Fraat = ¢ Vo X B +¢ Epan (8.15)
The Hall electric field strength is thus:
Enai = — v X B (8.16)
The component of the Hall electric field strength in the y-direction (i.e., E;an
= (EHall)y ;) in the geometry shown in Fig. 8.4 is:
(EHall)y = (Vh)sz >0 (817)
From Eq. (8.12), we get:
Jx = pq(wh),

where p is the hole concentration in the solid, and we can rewrite Eq. (8.18) as:
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Jx
Enar), = —B 8.18
(Evian), = B (8.18)

This expression contains macroscopic quantities which are characteristic of the
material (p), parameters of the experiments (J and B), and quantities which are
experimentally measured (Ey,;). Through this relation, we can easily extract
properties characteristic of the materials from experiments. It is a common practice
to introduce the Hall constant given by:

Eyan), 1
Ry = By 1 (8.19)
JxB:  pq

The Hall constant therefore yields a direct measure of the hole concentration in
the solid. We can define a hole Hall mobility as:

Hin = 0Ru (8.20)

This Hall mobility has the same units as the drift mobility encountered in
Eq. (8.12) in Sect. 8.2, i.e., cm*-V~'-s~'. However, it differs from the drift mobility
by a factor, called the Hall factor, which is determined by the temperature and the
types of scattering involving the charge carriers. Experimentally, this factor is taken
to be equal to unity and only one mobility is considered. This can be illustrated by
the fact that one can arrive at Eq. (8.20) from Eq. (8.19) by using the expression in
Eq. (8.13) applied to holes only.

8.4.2 N-Type Semiconductor

In the case of a solid which contains only electrons as the mobile charge carriers, a
similar analysis can be conducted. The motion of an electron in the Hall effect
experiment is shown in Fig. 8.5. We can see that the electrons are deflected in the
same direction as the holes in Fig. 8.6.

However, because electrons have a negative charge, the Hall electric field is in the
opposite direction in comparison to the one from holes:

O:Fe,Lnremz + FHall =—q ‘7; x B —-q EHa]l (821)

The Hall electric field strength is thus:

— - —

EHall = — Ve X B (822)
The component of the Hall electric field strength in the y-direction (i.e., E;an

= (Eman), ;) in the geometry shown in Fig. 8.5 is:



8.4 Hall Effect 285
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Fig. 8.5 Motion of an electron in the Hall effect experiment. Under the influence of the Lorentz
force, the motion of electrons is deviated in the y-direction toward one side of the solid which then
becomes negatively charged through the accumulation of electrons. The opposite side of the solid
therefore becomes positively charged. This gives rise to an additional electric field which is directed
in the y-direction

Fig. 8.6 Diffusion of flux ofparticleg
particles (e.g., electrons) in a

one-dimensional model. An ¥ ¥
imaginary surface with a unit ! 2
area is considered, such that particles ° Qe

the concentration of particles (e.g. electrons)
on one side is larger than on
the other side. The diffusion
process is characterized by the

flux of particles spontaneously °
passing through the imaginary dn
surface per unit time nixp)>n(x,) —> I <0

» dn
I::>(I)‘L{’ff=—Dn; >(

(Enar), = (ve),B: < 0 (8.23)

because (ve), < 0. From Eq. (8.12), we have:

JX = 7nq(ve)x
and we can rewrite Eq. (8.23) as:
E __Jep 8.24
( Hall)y——% : (8.24)

This expression is similar to Eq. (8.18), and the Hall constant defined in
Eq. (8.19) becomes:
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Ewan), 1
Ry = BBy 1 (8.25)
JB; ng

Here again, we see that the Hall constant yields the electron concentration in the
solid. Moreover, it is negative, whereas it was positive when holes were the only
charge carrier. The Hall constant is therefore a good method to determine if a
semiconductor is p-type or n-type. The electron Hall mobility given by Eq. (8.20)
is now transformed into:

Uy = 0|Ru| >0 (8.26)

Similar to the previous case, the electron Hall mobility is usually taken equal to
the electron drift mobility.

8.4.3 Compensated Semiconductor

In a compensated semiconductor, both types of dopants are simultaneously present
in the material. Since the electrons and holes released by the doping can recombine, a
decrease of the free carriers’ concentration can be observed. Adding p-type
impurities to an n-doped system will therefore reduce the electron concentration
and vice versa. The charged impurities are still there, having transferred the charge to
each other (donor to acceptor) rather than to the bands. It is possible in this way to
increase the resistance of doped systems by adding the opposite type of dopant. This
can be very useful when ion implantation is used to dope a material, because with
ions, one can in principle achieve a high degree of spatial resolution and select the
depth of implantation. The ion beam can also be focused to compensate the local
doping and thus produce submicron devices.

8.4.4 Hall Effect with Both Types of Charge Carriers

When both electrons and holes are contributing to the transport process, the calcula-
tion of the Hall coefficient is somewhat more complicated. Both types of carriers will
contribute to the Hall effect in an intrinsic material, for example, or when light is
photo-exciting pairs, or when electrons and holes are injected using different types of
source drain electrode materials. The derivation of Ry is however straightforward
and can be done by using the Newton law with the Lorentz force for both carriers:
me% + mevxl = —qE,—qv,B
! 4 V (8.27)
m dvy + mev L E, —qv.B
e dt e yT = —q y qVy
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in the presence of electric fields, E,, E, and a magnetic field B. Similar equation can
be written down for holes, except that ¢ — — ¢g. The steady-state velocities are
obtained by assuming that the velocity no longer changes with time, i.e., by putting
the acceleration term equal to zero. The products uB are very small under typical
measurement conditions, so if we ignore even smaller terms of order Bz, we can
write Eq. (8.27) as:

vy = _ﬂeE}' - /‘gBEx

v

. 5 (8.28)
vy = unEy — up BE,
The above equations can be related to the total current J,, giving:
Jy = nqu(Ey + p.ExB) + pqu, (Ey — u,BE,) (8.29)

Under equilibrium condition, i.e., when the current J, = 0, the ratio of the
components of the electric field is such that:

E 2 _ 2
Sy _ {Lh ””6}3 (8.30)
E.  \np,+pu,
and the Hall constant is now given by:
1 2 _ 2
_ L _PHy TR (8.31)

L =
q (puy + np,)’

where p and n are the hole and electron concentrations and py, and g, are the hole and
electron mobilities, all of which are positive parameters. The Hall mobility is the
combination of the mobilities of the electrons and holes and given by:

PHy — Ny

(8.32)
PHn + nite

i = ol =|

8.5 Charge Carrier Diffusion

In an inhomogeneous solid, certain regions may exhibit more electrons or holes than
other regions. These will then migrate from the high concentration areas to the low
concentration areas. This is a universal and natural phenomenon, called diffusion.
This process is due to an imbalance in the thermodynamic chemical potential. One
may picture the diffusion process as a drop of ink in a glass of clear water which
slowly spreads in the entire volume of water. Because electrons and holes are charge
carriers, their diffusion generates an electrical current, which is very important in
many semiconductor devices.
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8.5.1 Diffusion Currents

In this section, we will describe a simple one-dimensional model for the diffusion of
electrons and holes in a semiconductor. Let us assume the electron concentration n
(x) is not uniform in the x-direction, as schematically illustrated in Fig. 8.6 .

The diffusion process is mathematically described by Fick’s first law of diffusion
which says that the flux, i.e., the number of electrons passing per unit time a unit area
surface perpendicular to the x-direction, is given by:

. d
Ut — —Dnd—z (8.33)

where D, is called the diffusion coefficient or diffusivity and has the units of cm*.s ™'

. We use the subscript “n” to identify that this is the diffusivity for electrons. The
negative sign in this expression means that the flux of electrons is in the direction
opposite to the gradient (or slope) of concentration, as illustrated in Fig. 8.6.

Using a similar approach as for the electrical drift process in Sect. 8.2 to count the
number of electrons that pass the unit area surface in Fig. 8.6 per unit time, we can

extract the electron diffusion velocity v

QU = pydift (8.34)
which leads to the relation:
o 1dn
diff
= —Dy—— 8.35
ve n n dx ( )

The movement of these electrons creates an electrical current. The diffusion
current density of electrons is then determined from Eq. (8.12):
diff diff dn
J = —ngv" = +anE (8.36)
Similar relations to Egs. (8.35) and (8.36) can be obtained for the diffusion of
holes:

i ldp
diff
— _p_-* 8.37
Vh Pp dx ( )
iff iff dp
JEE — it — _qDPE (8.38)

where p is the concentration of holes. Note that there is a sign change from
Egs. (8.36), (8.37), and (8.38) which is due to the positive charge of the hole.
There is no such sign change from Eqgs. (8.35), (8.36), and (8.37), because the origin
of the diffusion process is not dependent on the electrical charge.
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8.5.2 Einstein Relations

The drift and the diffusion of electrons and holes are intimately related processes,
because both contribute to the observed electrical current in a semiconductor.
Let us continue on our simple one-dimensional model and consider a finite size

solid onto which a uniform external electric field of strength E= E Xis applied. As a
result, the electrons will be drifting to one side of the solid, and a concentration
gradient will be achieved. These electrons will then start to diffuse in the direction
opposite to this electrical drift until a balance is reached.

The drift current density is given by Eq. (8.12) J grift = nqu.E, while the electrical

d
diffusion current density is given by Eq. (8.36) Jgrff = +and—n. At the thermal
X

equilibrium of this system, the sum of these two current densities:

. dn
JUft g9 — pgu E + and (8.39)
must be equal to zero, i.e.:
dn
nqu E + qD,,d =0 (8.40)
This first-order differential equation can be rewritten as:
dn u.E
—+-=—n=0 8.41
dx + D, " ( )
which leads to the solution:
E.
n(x) = n(0)exp (— pEx x) (8.42)

where n(0) is the electron concentration at x = 0. We see that we obtain an
exponential-like distribution for this concentration. However, at thermal equilib-
rium, this quantity also obeys Boltzmann statistics, which is analogous to the
Boltzmann probability distribution we encountered in Chap. 5. For a nondegenerate
semiconductor, the electron concentration according to Boltzmann statistics should
be given by:

n(x) = n(O)eXp(—qu> (8.43)

kyT

because gEx is the potential energy of the electron in an electric field strength of
magnitude E. Comparing Eqgs. (8.42) and (8.43), we obtain the relation:



290 8 Non-equilibrium Electrical Properties of Semiconductors

uE _ qE
D, kT
or:

D, kT
-2 b (8.44)
He q

A similar relation can be obtained for holes:
D kT
Zp 5 (8.45)
Hn q

Equations (8.44) and (8.45) are called the Einstein relations and are valid only for
nondegenerate semiconductors. For degenerate semiconductors, we first need to
specify the amount of charge in the bands, and a factor involving the Fermi-Dirac
integral Eq. (7.13) needs to be included in the above expressions. These relations are
important because they provide a mathematical link between the drift and diffusion
processes. They are however not always valid. They apply only when there is a small
amount of charge in the band edges, which is the most interesting situation in
semiconductor technology.

8.5.3 Diffusion Lengths

In the diffusion model considered so far, an electron or a hole can diffuse indefinitely
in space. However, in most real case situations, the diffusion range is much more
limited.

Let us consider the diffusion of electrons in a one-dimensional semiconductor
model, where excess carriers are continuously generated at x = 0 and are then
allowed to diffuse toward x — oo. By the term “excess carriers,” we mean that an
amount of electrons in addition to the thermal equilibrium concentration n, is
injected into the semiconductor. The mechanisms by which this is achieved will
be discussed later in the text. We will denote:

An(x) = n(x) — ng (8.46)

the excess electron concentration which is a function of position. A possible shape
for An(x) is shown in Fig. 8.7.

During the diffusion process, an electron will experience recombination, i.e., they
will not travel in space indefinitely but will be stopped, for example, when it
encounters a hole (remember that a hole is an allowed state vacated by an electron)
or when it gets trapped by a defect in the semiconductor crystal (e.g., an ionized
donor which is positively charged).

The recombination mechanisms are numerous and diverse. However, it is possi-
ble to mathematically express their effects in a simple manner. For this, we introduce
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Fig. 8.7 Excess electron An(x)
concentration in a

one-dimensional model. The

excess concentration

decreases, as it gets deeper An(0) =
into the material as a result of

recombination. The decrease

has an exponential

dependence

X
>
>

a characteristic time, 7, called the electron recombination lifetime, such that the
recombination rate of an electron at a location where there is an excess An(x) of
electrons is given by:

R(x) = (8.47)

This quantity has the units of cm>-s~' and expresses the change in the excess

carrier concentration per unit time.

Let us now consider an infinitesimal region of space, located between x, and
Xo + dx, as illustrated in Fig. 8.8. This region experiences an influx and an outflux of
electrons, denoted, respectively, (Cbgiff)in and (<I>§iff)0m and shown in Fig. 8.8.

If (®J"). > (™) . there is a net influx or accumulation of electrons, but if
(%) > (®I™). | there is a net outflux or depletion of electrons in this region.
Under steady-state conditions, there must not be a never-ending accumulation or
depletion of electrons. The influx of electrons must therefore be equal to the sum of
the outflux of electrons and the number of electrons recombining within this region.
The later quantity is equal to R(xy) multiplied by the width of the region dx, because
we can assume that the function R(x) does not vary too much over a narrow width dx
around the point xy. Numerically, this translates into:

(@0"). = (@) + R(xo)dx (8.48)

out

From Eq. (8.33), we can write:

) n " dn
(@ rf)in —_D, (E) ) and (®¢ ﬁ)out =~Dn (E) —xo+d
X=Xx( e

But, from Eq. (8.46), we easily see that % = d(;‘x") and therefore:
i d(A
@), = D42, o
diffy d(An) '
(q)e )out - _Dn( dx )x:xo+dx

Equation (8.48) becomes then:
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electrons X0 Xo + dx
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Fig. 8.8 Schematic of the influx and outflux of electrons in a region of space, in a one-dimensional
model. In this experiment, the region between the two surfaces located at xo and xo + dx is
considered. This experiment is aimed at determining the net change in carrier concentration in it
as a result of the diffusion of particles and their recombination

which can be rewritten as:

(d(An)) _ (d(An))
dx x=x0+dx dx X=X0

dx

D, = R(xo)

At the limit of dx — 0, i.e., an infinitesimal region, the left-hand side expression

becomes the derivative of d(ic") evaluated at x = x, i.e.:
d*(An
D, (#) — R(xo) (8.50)
d‘x X=X0

This relation is valid for any arbitrarily chosen position xj, which means that the
following equation must be satisfied:
d*(An)
Dn 7 =R (x)
Equating to Eq. (8.47), we get the differential equation that governs the shape of
the excess electron concentration An(x):

d*(An)  An
—t=— 8.51
"dd (®51)
This equation can be rewritten as:
d*(A A
(&n)  An _ (8.52)

dx2 DnTn -
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From this expression, we can easily see that the quantity D,z, has the same
dimension as the square of a distance. We can then define a distance L, called
diffusion length, for electrons, given by:

L, = v/Dyry (8.53)
The solution to Eq. (8.52) then has the general form:
An(x) = Aels + Beln (8.54)

Here A and B are constants and are determined from boundary conditions. For
example, let us assume the sample is delimited by x = 0 and x — oo, and that is thick
enough so that all the excess electrons have been recombined before they reach its
limit: An — 0 when x — oo as shown in Fig. 8.7. We thus have:

An(x) = An(0)e @ (8.55)

From this expression, we see the significance of the diffusion length in determin-
ing the spatial distribution of the electrons in the diffusion process as the character-
istic length of path that a particle travels before recombining.

A similar diffusion length can be determined for holes and is given by:

L, = \/Dyz, (8.56)

where 7, is the hole recombination lifetime.

Example

Q Assuming that in n-type silicon the characteristic time for the minority carriers
(holes) is 7, = 2 x 107'% s, estimate the diffusion length of these minority
carriers at 300 K.

A The diffusion length is given by L, = /D,7,. From the Einstein relations, we
can determine the diffusion coefficient D, = % With the hole mobility in
silicon being about y;, = 450 cm?/Vs, we get:

L= |ty

- \/(1.38066 X 1073) x 300 x (450 x 104

x 2 x 10710

1.60218 x 107"
=048 um
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8.6 Carrier Generation and Recombination Mechanisms

In the previous section, we briefly talked about excess carriers and their recombina-
tion. We also introduced a single recombination lifetime 7 in order to avoid a detailed
description of all the recombination processes.

Excess of carriers can exist when the semiconductor is not in its equilibrium state,
as a result of additional energy that it received from phonons (heat), photons (light),
or an electric field, for example. In a recombination process, the amount of excess
carriers is reduced, and the excess energy is transferred or released.

In this section, we will discuss the four most important recombination
mechanisms encountered in semiconductors, including direct band-to-band,
Shockley-Read-Hall, Auger, and surface recombination. We will also attempt to
express the recombination lifetime in each case in terms of known semiconductor
parameters.

We will denote by:

An(t) =n(t) —n
{ Ap(1) = p(1) —pg (857)

the excess electron and hole concentrations, respectively, where ny and p, are the
equilibrium electron and hole concentrations.

It is important, at this time, to clearly distinguish equilibrium state from steady
state. A system is said to be under equilibrium if it is not subject to external fields or
forces. A system under the influence of external fields or forces is under steady state
if the parameters that describe it (e.g., carrier concentrations) do not vary with time.

8.6.1 Carrier Generation

Before discussing the various recombination mechanisms, we must first review how
carriers are generated in the first place. There are essentially two major types of
generation.

The first one corresponds to the thermal generation of carriers and exists under all
conditions, whether in equilibrium or non-equilibrium. The thermal generation rate
will be denoted G(T') and is expressed in units of cem s L

The other type is the generation resulting from external factors, such as optical
absorption, electrical injection, etc. This process occurs only in non-equilibrium
situations, and the associated generation rate, denoted G, is called the excess
generation rate.

For each generation mechanism, there exists a recombination mechanism which
is its counterpart. The generation and recombination of carriers are inverse processes
to each other.
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8.6.2 Direct Band-to-Band Recombination

In this type of recombination, an electron from the conduction band recombines with
a hole in the valence band. This process is best pictured in the E-k diagram shown in
Fig. 8.9 .

This recombination can be equivalently viewed as an electron which goes from a
state in the conduction band to an allowed state in the valence band. This seems
natural if we remember that a hole in the valence band is in fact an allowed electronic
state that has been vacated by an electron. The energy that the electron thus loses is
most often released in the form of a photon or light as shown in Fig. 8.9. We say that
this is a radiative recombination.

This process is most likely to occur between the minimum of the conduction band
and the maximum of the valence band and at the center of the first Brillouin zone
where the momenta of the recombining electron and hole are both zero. Direct band-
to-band radiative recombination is therefore most likely to occur in direct bandgap
semiconductors, such as GaAs.

Let us look at this recombination mechanism in more detail. In the present case,
the recombination rate, first introduced in Eq. (8.47), is proportional to both the
concentration of electrons in the conduction band # and that of holes in the valence
band p because these are the particles that are recombining. We can then write:

R = r(T)n(1)p(r) (8.58)

where r(T) is the recombination coefficient, which is expressed in units of cm3~s, and
T is the temperature.

In a non-equilibrium situation when the excess generation rate is nonzero, the net
change in the electron and hole densities is given by:

dn d(An)

Tdr ar

=R-G-G, (8.59)

Fig. 8.9 Schematic E-k AE
diagram of a direct band-to-
band recombination process.
The recombining electron and
hole have the same
wavevector
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where we used the fact that the equilibrium concentration n, does not vary with time.
At equilibrium, the excess generation rate G is equal to zero; thus the recombination
rate must balance the thermal generation rate: R = G,. Since at equilibrium we have
n = ng and p = py, we can write from Eq. (8.58):

G, = r(T)ngp, or simply G, = r(T)n} (8.60)

where #; is the intrinsic carrier concentration given in Eq. (7.31). From now, we will
also omit the temperature dependence of r(7) to simplify the equations.

Let us now consider the relaxation process, which occurs after the external source
of generation is removed (G = 0). Taking into account Egs. (8.58) and (8.60),
Eq. (8.59) becomes:

d(An)
dt

= rlnp — ] (8.61)

Using Eq. (8.57), we can expand this expression into:

_% = r[(no + Al’l)(po + AP) - nlz]

ie.:

d(An)
dt

= r[nopy + noAp + pyAn + AnAp — n?| (8.62)

One obvious simplification can be immediately made in the previous expression
as nopy = ”12 from Eq. (7.31). For further simplicity, we can assume An = Ap, i.e.,
the concentration of excess electrons is equal to the concentration of excess holes,
which seems natural in order to ensure charge neutrality locally in the semiconductor
at all times. Equation (8.62) then becomes:
d(Ap) d(An)

T = r[(no + py) + An]An (8.63)

We can successively transform Eq. (8.63) into:

d(An)/d’ _
[(no + po) + An]An

r

1 < ‘@n/, _”A")/d/)_

(no +po) \(no +po) +An  An

Each of the terms in the left-hand side is a logarithmic derivative. By integrating
with respect to time from O to ¢, we get successively:
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1
(no + po)

%im@«%+g+mﬂ&m

(0 -+ po) + An() _ ({0 +py) + An(0)
1“( An(r) ) : < An(0)

[In ((no + py) + An) —In (An)]y = rt

) = rlon o

Taking the exponential on both sides of this last equation, we obtain:

%+gamw‘%+g@mwﬂww+m4

and solving for An(?), we get:

(10 + po)An(0)

Ap(t) = An(f) = [(nO +p0) + An(o)]exp[r(no —|—p0)l] - An(O)

(8.64)

This shows the general form for the change in the excess electron concentration as
a function of time. The only parameters of the variation are the equilibrium
concentrations ng and p, the initial excess electron concentration An(0), and the
recombination coefficient 7(7T). This complicated expression can be drastically
simplified in some cases.

For weak excitation levels, i.e., An(0) < < (ng + po), Eq. (8.64) becomes:

(no + po)An(0)
(no + po)exp[r(no + py)t] — An(0)

et p)an()
(no + po)exp[r(no + po)t]

An(t) ~

or simply:
An(t) ~ An(0)exp[—r(no + po)1] (8.65)
and similarly for Ap(f):

Ap(t) = Ap(0)exp[—r(no + po)1] (8.66)

By defining a direct band-to-band recombination lifetime for electrons and holes
as:

(8.67)
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we obtain:

AMO%AM®E% (8.68)

Ap(t) = Ap(0)e =

This is the same lifetime introduced in Eq. (8.47). Indeed, in the current
conditions, we have by using Egs. (8.59) and (8.68):

d(An) 1 ot
R — — — = — A ™
G, ” = n(0)e
or:
An(t
R—G, = T) (8.69)

which is analogous to Eq. (8.47).

8.6.3 Shockley-Read-Hall Recombination

The previous band-to-band recombination most often occurs in pure semiconductor.
When defects or impurities are present in the crystal, which is nearly always the case
to some extent, energy levels appear in the bandgap and may participate in the
recombination mechanisms. These are called Shockley-Read-Hall (SRH)
recombinations, and the energy is not released in the form of a photon but is rather
given to the crystal lattice in the form of phonons. Such processes are also sometimes
called band-to-impurity recombinations. This is therefore normally a non-radiative
recombination step.

In the present model, we consider the steady-state generation and recombination
of electrons and holes involving an impurity level, also called recombination center,
with an energy E7 in the bandgap, as shown in Fig. 8.10 . Let us assume that
electrons and holes are generated at a rate equal to G, which is the excess generation
rate of Subsect. 8.6.1.

a b c d
Ec
r. Gcl
Er O
R, G,
Ey o)

Fig. 8.10 The four possible transitions for an electron involving a recombination center in the
bandgap: (a) capture of an electron from the conduction band by the center, (b) emission of an
electron from the center into the conduction band, (¢) emission of an electron from the center into a
vacant state in the valence band, and (d) capture of an electron from the valence band by the center
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There are four possible electron transitions which can involve this level: (a) the
capture of an electron from the conduction band by the center, (b) the emission of an
electron from the center into the conduction band, (c) the emission of an electron
from the center into a vacant state in the valence band, and (d) the capture of an
electron from the valence band by the center. The transition (c) can be equivalently
viewed as the capture of a hole by the center and (d) as the emission of a hole from
the center into the valence band. Each of these transitions is illustrated in Fig. 8.10.

The recombination of electrons or holes is enhanced by the presence of the
impurity level if the probability of transitions (a) and (c) is higher than that of
(b) and (d).

If the probability of (a) and (b) is higher than (c) and (d), the impurity level plays
more the role of an electron recombination center. If the probability of (c) and (d) is
higher than (a) and (b), the impurity level plays more the role of a hole recombina-
tion center.

Before analyzing each transition in more detail, let us first assume there is a
density Ny of impurity-related states at an energy Et. At thermal equilibrium, the
density of the recombination center states which are occupied by electrons is then
given by:

Nt
exp (EEEfF> +1

where f. is the Fermi-Dirac distribution given by Eq. (5.28). The density of the
recombination center states which are empty of electrons at equilibrium is given by:

Nife(Er) = (8.70)

Nt

N1l — f,(E7)] =
T[ ( T)] l—}—exp(—%)

(8.71)

However, when carriers are transiting through the recombination centers in
Fig. 8.10, the density of occupied and empty center states is different from their
equilibrium values. We thus introduce a non-equilibrium distribution function f'such
that the densities of occupied and empty center states are Nif and Nt(1 — f),
respectively. Knowledge of the exact value of this function is not important in
analyzing each of the transitions illustrated in Fig. 8.10.

Transition Rates

Let us first discuss the transition (a), i.e., the capture of an electron from the
conduction band by the center. The capture rate, or concentration of electrons
captured by the center per unit time, is denoted R, and is expressed in units of cm
~3.s7!. It must be proportional to the density of electrons in the conduction band
n and the density of empty centers Nt(1 — f).

In addition, R, should also depend on a parameter which describes “how often an
electron encounters the recombination center.” This parameter is the product v,0,, of
two quantities: the electron thermal velocity vy, (in units of cm~s71) and the capture
cross section o, of electrons for this particular recombination center (in units of sz)_
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" "
Gl’l

Vih

Fig. 8.11 Schematic illustration of the concepts of electron thermal velocity and capture cross
section. Using ballistic terminology, the electrons moving with the thermal velocity which would
collide with an object having a cross section equal to ¢, are located in the volume delimited by the
two shaded surfaces in this figure

These two parameters can be better understood by considering the illustration in
Fig. 8.11. It shows that the electrons which have a velocity vy, and which will reach a
surface of area o, are located in a volume equal to the product vy,0, during a unit
time.

The electron thermal velocity in a nondegenerate semiconductor is given by:

Uth = 3k—bT (872)
m

where m is the mass of the electron. The thermal velocity is on the order of 107
cm-s~' at room temperature.

The capture cross section of electrons for a recombination center characterizes the
interaction between an electron and this center. It corresponds to the effective area
around the center that an electron experiences when it is approaching the center. The
cross section depends on the type of interaction involved between the electron and
the center: the stronger the interaction is, the larger the influence of the capture cross
section is. oy, is usually determined empirically and is on the order of 10~'> cm?. The
capture rate R, in the transition (a) is therefore equal to:

R. = vpwoonNt(1 —f) (8.73)

The emission of an electron from the center into the conduction band,
corresponding to transition (b) in Fig. 8.10, is characterized by an emission rate G,
which has the same units as R.. This quantity is equal to the density of occupied
center states Npf multiplied by the electron emission probability e, which is a
parameter characteristic of the recombination center in the semiconductor:

G. = exN1f (8.74)

Because the transitions (c) and (d) are analogous to (a) and (b) but involve holes
instead of electrons, we can easily determine the hole capture rate R, and the hole
emission rate G, from those for electrons Egs. (8.73) and (8.74).

Indeed, R, must be proportional to the density of holes in the valence band p, the
density of centers which are occupied (by electrons) N+f, the thermal velocity of
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holes which is the same as that of electrons given in Eq. (8.72), and the capture cross
section of holes o, for the center considered:

Ry = vinoppNaf (8.75)

G, must be equal to the density of center states which are empty (of electrons)
Nr(1 — f) multiplied by the hole emission probability ep:

G, = e,Nr(1 —f) (8.76)

All these expressions for the recombination and emission rates are not indepen-
dent but must satisfy a number of equations arising from the conservation of
electrons and holes. The total number of electrons (or holes) recombined must be
equal to the number of electrons (or holes) generated; thus, we can write:

{RCGCJrG

R, =G, +G (8.77)

Emission Probabilities e, and e,

At equilibrium, the excess generation rate G is equal to zero. Moreover, the electron
and hole densities are equal ny and p, respectively, and the distribution function fis
equal to f. = f.(Et). All the other parameters remain unchanged. Therefore, by
expressing Eq. (8.77) at equilibrium using Egs. (8.73), (8.74), (8.75), and (8.76), we
get:

I/thO'nn()NT(l _fe) = enNTfe
Vtho-ppoNTfe = epNT(l _fe)

which allow us to extract the electron and hole emission probabilities:

€

fe (8.78)
€y = UnOpPy———
P P 1 7f e
This last set of equations can be simplified by using the expression for the Fermi-
Dirac distribution in Eq. (5.28) to obtain:

1 _fe _ ET - EF
7 exp( T > (8.79)

and by using the expressions of ny and p, given in Egs. (7.21) and (7.29) for a
nondegenerate semiconductor:

€n = LUthOnly
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1—f. Er — Ec Er — Ef
:NC _— _—
mts exp( — )exp( - )

Er—E
= Ncexp (%)

This last quantity can be denoted n and would correspond to the electron density
in the conduction band if the Fermi energy was equal to the recombination center
energy level (Ex = Et):

— Er — E
nr = ny f fe = Ncexp (%) (880)
A similar expression can be derived for:
fe <Ev - ET)
= = Nvex _— 881
Pr=Por_ Pl 0T (8.81)
Therefore, Eq. (8.78) is simplified into:
ey = Vol
{ oo (8.82)
€p = VinopPr

The Non-equilibrium Distribution Function f

The non-equilibrium distribution function, included in the expressions of the transi-
tion rates in Eqs. (8.73), (8.74), (8.75), and (8.76), can be determined by eliminating
the excess generation rate G in Eq. (8.77). For this, we first calculate the difference
between the two expressions in Eq. (8.77):

R. — Ry =G -Gy
which becomes:
vinonNT(1 — f) — vmoppNyf = enNtf — epN1(1 — f)
Using Eq. (8.82), we obtain:
vinoatNt(1 — f) — viwoppN1f = vwoantNtf — viwopprNt(1 — f)
and, after simplifying by vy, and Nt:
onll + Oppr :fLann + opp + onniT + UppTJ

Thus finally we have:

f= Onll + OpPT

= aa T )+ onlp ¥ P1) (8.83)
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Recombination Lifetimes
The net recombination rate of electrons from the conduction band is given by the
difference between the recombination rate R, and the generation rate G, i.e.:

— =R~ G (8.84)

This quantity is also equal to the net recombination rate of holes from the valence
band in view of Eq. (8.77):

d(Ap)
dt

=R, -G, (8.85)

Using the non-equilibrium distribution function (Eq. 8.83) and the expressions
for R., G, and e, in Egs. (8.73), (8.74) and (8.82), we can calculate successively:

R.—G. = Vlho'n”NT(l _f) - eNNTf
= vpouN1[n — (n + nr)f]

ol + opPr
on(n+nr) +0op(p + pr)

vinonNT |1 — (n+ nt)

VihonNT

- on(n +nt) + 0p(p + pr) [0p(p + pr) = (n + nr)opp ]

vtho-nNT [ ]
= oy |np — np
on(n+nr) +op(p+pp) " T

From the definitions of nr and pr in Eqs. (8.80) and (8.81), we have ntpr = ”12
where n; is the intrinsic carrier concentration. The previous equation can then be
simplified into:

(p —12)
on(n+n1) +0p(p + pr)

R. — G = vnonopNT (8.86)

Introducing the excess carriers An and Ap as in Eq. (8.57), and still assuming
An = Ap, we get:

(}’l() +p0 + An)A}’l
on(no + nt + An) + op(pg + pr + An)

R. — Gc = vnonopNT (8.87)

Here we have also used the relation nop, = "12 This expression can be further
simplified by first considering two particular cases.

(i) For low excess carrier concentrations, i.e., weak excitation levels where
An << ny, po, and for an n-type semiconductor, where we can assume that n
is much higher than p, nr, and pt, Eq. (8.87) becomes:



304 8 Non-equilibrium Electrical Properties of Semiconductors

(no)An

R.—G. ~ Nt -—"—
c c VthOnOpIVT O'n(no)

which can be rewritten, by taking into account Eq. (8.84):

d(An)
dt

= R. — G. = vopN1An (8.88)

From this last expression, we can introduce a recombination lifetime 7,,, such that:

d(An) An
d Tp

0

i.e.:

1

= 8.89
VthUpNT ( )

Tl’o

Note that the subscript “p” has been used for this lifetime, because it depends on
the capture cross section of holes. This corresponds to a lifetime of holes. Therefore,

in an n-type semiconductor, the excess carrier lifetime approaches that of holes.
(i) In the second case, still An << ny, po; but for a p-type semiconductor this time,

where we can assume that py is much higher than ng, nt, and pr, Eq. (8.87)
becomes:

R. — G. = vqonNTAR

Here again, we can rewrite this as:

with:

- 8.90
o VthGnNT ( )

Here, the suffix “n”” has been used, because the lifetime depends on the capture
cross section of electrons. This corresponds to a lifetime of electrons. Therefore, in a
p-type semiconductor, the excess carrier lifetime approaches that of electrons. Using
the expressions in Egs. (8.89) and (8.90), we can simplify Eq. (8.87):
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(no + py + An)An

R.— G, = 8.91
Tpo (o + 11 + An) + 7, (pg + pr + An) (®:51)
From Egs. (8.84) and (8.85), we can write:
_d(An) _ ~d(Ap) _ (no + po + An)An (8.92)
dt dt Tp, (o + nr + An) + 7, (py + pr + An) '

We can now introduce the Shockley-Read-Hall recombination lifetime 7, = 7,
such that:

d(An) _ d(Ap) _Ap _ An

dt dt Tp Tn

ie.:

7y, (no +nr + An) + 7, (py + pr + An)

T,(1) = 1,(1 8.93
(1) = 7,(1) (no + po + An) ( )
which becomes independent of time for weak excitation levels An << ng, po:
no + nt) + 7, +
7, = Tp — TPU( 0 T) T n(pO pT) (894)

(no + po)

From this relation, we can easily find the two previous particular cases, i.e., for an
n-type semiconductor, 7, = 7, = 1,,, and for a p-type semiconductor, 7, = 7, = 7,,.

8.6.4 Auger Band-to-Band Recombination

Unlike the direct band-to-band or the SRH processes, in the Auger band-to-band, or
simply Auger recombination, the energy that is released when an electron
recombines with a hole is transferred to a third particle, an electron in the conduction
band or a hole in the valence band. This carrier particle is called an Auger electron or
Auger hole. The energy that this third particle acquires is subsequently released in
the form of heat or phonons into the lattice. Auger recombination is an intrinsic
non-radiative mechanism which is more effective at higher temperatures and for
smaller bandgap semiconductors. This recombination mechanism occurs most often
in doped direct bandgap semiconductors.

There are three possible Auger recombination mechanisms, depending on what
type of Auger carrier is excited and where it is excited. These are illustrated in
Fig. 8.12.

The first process, shown in Fig. 8.12a, is called a CHCC process to indicate that
an electron from the conduction band (C) recombines with a hole in the valence band
(H) to lead to the excitation of another electron which remains in the conduction
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conduction

band

heavy-hole . /j, .

band

light-hole
band

spin-orbit

(a) CHCC split-off band (b) CHLH (c) CHSH

Fig. 8.12 Auger recombination process semiconductors. The energy released through the recom-
bination of an electron in the conduction band and a hole in the valence band is yielded to: (a)
another electron in the conduction band which is then excited to a higher state in the band, (b) an
electron in the LH band which is excited to a vacant electronic state in the HH band, (¢) an electron
in the split-off band which is excited to a vacant electronic state in the HH band

band (CC). In the case of an Auger hole, the valence band structure is more complex
than the conduction band, as we saw in Subsect. 5.4.3. We must then distinguish
whether this hole is excited into the light-hole band (CHLH process, Fig. 8.12b) or
the spin-orbit split-off band (CHSH process, Fig. 8.12c).

In all three cases, the total energy and the total momentum (i.e., 7 k) of the system
constituted by the three particles must be conserved.

Similar to the direct band-to-band recombination, the Auger recombination rates
are expressed in units of cm>-s~! and are proportional, in all three processes, to the
density of electrons in the conduction band n and that of holes in the valence band p,
because these are the particles which are recombining.

In the CHCC case, this rate is also proportional to the density of electrons which
are susceptible to be excited, i.e., n again. The recombination rate in the CHCC
process is therefore given by:

RCHCC = rlnzp (895)

where rq is the Auger recombination coefficient for this case and is expressed in units
of cm™'.
For the CHLH and CHSH processes, the same argument leads to a compounded

recombination rate equal to:

Reuinscusu = ranp’ (8.96)

where r; is the Auger recombination coefficient when Auger holes are excited.
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The total Auger recombination rate is therefore:
R = Rence + Reninscusu = rin’p + ranp” (8.97)

We can now follow the same analysis as the one conducted for the direct band-to-
band recombination in order to determine the Auger recombination lifetime. We start
from the rate Eq. (8.59). At equilibrium, % =0 and G = 0, and the thermal
generation rate is thus equal to:

Gi=R= rlnépo + }"gl’l()pg (8.98)

Let us now consider the relaxation process, which occurs after the external source
of generation is removed (G = 0). Taking into account Egs. (8.97) and (8.98),
Eq. (8.59) becomes:

d(A
- (dtn) =R—-G =r (”217 - n%po) +r (np2 — nopoz) (8.99)

where An = Ap is the excess electron and hole concentrations defined in Eq. (8.61).
This expression can be expanded using Eq. (8.61), and we obtain:

_ d(An) =—r {n(zlpo — (no + An)z(po + An)} — [nop(z) — (no + An)(py + An)z}

dt
=r [(n% + 2n0p0)An + (2ng +p0)(An)2 + (An)ﬂ
72| (03 + 2n0p) An + (2py + o) (An)° + (An)’]

We can now introduce the Auger recombination lifetime z, = 7, such that:

d(An) _ d(Ap) _Ap _An

dt dt T Ty

r [(”% + 2nopy) + (2ng + py) An + (A”)z}

, (8.100)
12 (P + 2n0po) + (2py + no)An + (An)’]

which becomes independent of time for weak excitation levels An << ng, py:

1
. 8.101
=" r1(nd + 2nopy) + r2 (P} + 2n0py ) ( )

8.6.5 Surface Recombination

The surface of a semiconductor is a violation of the crystal periodicity and therefore
gives rise to energy levels near the surface which lie within the bandgap. These
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correspond to surface traps. However, unlike the previously discussed carrier
recombination mechanisms which occur in the bulk solid, surface recombination
occurs at the surface of the solid. Moreover, the surface recombination takes place
even in pure materials. Such processes play an important role in semiconductor
device technology.

The energy levels introduced by the surface traps can be considered as a special
case of recombination centers in Shockley-Read-Hall recombination mechanism.
The same analysis as in Subsect. 8.6.4 can be conducted here for surface recombi-
nation, provided a surface density of recombination centers (Nt); is used instead of
the bulk density of centers Ny. All the other parameters would keep the same
meaning.

The excess surface recombination rate is the number of electrons or holes which
are recombined per unit area of the surface and per unit time. It is thus expressed in
units of cm™~*s~" and can be obtained by analogy with the SRH recombination in
Eq. (8.87):

(no + py + An)An

R — G,). = vy,0,0,(N
( Uy = VinOn0p( T)San(no+nT+An)+0p(P0+pT+An)

(8.102)

Here, An is the excess electron concentration near the surface considered. We can
rewrite this relation as:
d(An)
dt

= (R -Gy, = SuAAn (8.103)
where:

(n() +p0 + Al’l)
on(no + nr + An) + 6,(pg + pr + An)

Sn = vinonop (N1, (8.104)

This quantity is expressed in units of cm-s~ ' and has thus the same dimension as a
velocity. It is called the surface recombination velocity.

8.7  Quasi-Fermi Energy

In Sect. 7.5, we calculated the equilibrium electron concentration in the conduction
band 7, and the hole concentration in the valence band p, using the Fermi-Dirac
distribution and arrived at Eqs. (7.18) and (7.27) in the general case and Egs. (7.21)
and (7.29) in the nondegenerate. For a given semiconductor material, these
concentrations depended solely on a single parameter, the Fermi energy Ef.

Under non-equilibrium conditions, where the electron and hole concentrations in
their respective bands are given by:



8.7 Quasi-Fermi Energy 309

{”:”O+A” (8.105)

p=po+Ap

the Fermi-Dirac distribution is not valid any more. However, it is convenient to
maintain the mathematical formalism of the equations mentioned previously, and
this is most often done for a nondegenerate semiconductor only.

Therefore, by analogy with Eq. (7.21), the non-equilibrium electron concentra-
tion in the conduction band is given by:

Er. — E
n = Neexp (%) (8.106)

where the quantity Er, is used instead of the Fermi energy Er. This quantity is called
the electron quasi-Fermi energy. Using this expression, Egs. (7.21) and (8.105), we
can write:

An n EF — EF
—=——-1= —— ) -1 8.107
no no exp( ka ) ( )

Therefore, under non-equilibrium conditions, the difference between the quasi-
Fermi level and the Fermi level determines the relative excess electron concentration
with respect to the equilibrium concentrations.

Using this quasi-Fermi energy, it is possible to define a quasi-Fermi-Dirac
distribution for electrons, which is analogous to Eq. (5.28) with Ef replaced by
EF .

n

1
fe(B) = —F—F~——
‘ exp(E;:;F“) +1

A similar concept can be introduced for holes in the valence band. The hole quasi-
Fermi energy EF, is defined such that:

Ey — Er )
= Nyexp| ——2 8.109
p= e (8.109

(8.108)

A quasi-Fermi-Dirac distribution for holes can also be defined by analogy with
Eq. (7.23):

1

fh (E) = T g _EN
’ exp (E;{ZTE) +1

(8.110)

The quasi-Fermi-Dirac distributions allow separate mathematical computations
for electrons and holes in an easier manner. At equilibrium, the electron and hole
quasi-Fermi energies are both equal to the Fermi energy, i.e., Er, = EF, = EF.
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Example

Q Estimate the difference between the quasi-Fermi energies Eg, and Eg;, and the
Fermi energy Er in an intrinsic semiconductor, given that the excess carrier
concentration An = Ap is 1% of n,.

A The quasi-Fermi energies Eg, and Eg, are related to the excess carrier concen-

tration  through the expression Eg, — Ep = k,TIn (,Al—;‘) and

Er — Ef, = kT In (?—f), where ng and py are the equilibrium electron and

hole concentrations and are both equal to the intrinsic carrier concentration n;
Ap

since the semiconductor is assumed intrinsic at equilibrium. Therefore ﬁ—: =

= 0.01 and we obtain: Eg, — Eg = Efp — Ef, = 0.0095k,T.

8.8  Transport Theory: Beyond Drude

In this chapter we derived the electrical conductivity of materials using a very simple
classical Newton’s laws approach. We did this because the so-called Drude theory of
conductivity is surprisingly powerful and useful. But it does not include the Pauli
principle, for example, and does not incorporate the concept of the Fermi distribution
and the Fermi level. There are many situations in which the simple Drude theory is
not adequate. So we will here derive a more rigorous transport theory based on the
work of Ludwig Eduard Boltzmann, and we will show how it differs from Drude,
and in what special limits it reduces to the Drude theory.

8.8.1 The Boltzmann Equation

We must start with the concept of the distribution function of electrons f i (7, t) . This
quantity is the probability of an electron occupying the Bloch state k in the solid at
position r at time 7. Note that this is not the equilibrium Fermi distribution function
f ; % from Eq. (5.28) which only depends on the energy and Fermi energy. The new
non-equilibrium distribution fZ (?, t) tells us how many particles there are in this

region of space at time t and with momentum k. In a steady-state situation, the total
rate of change with time of the distribution function must be zero. Specifically, there
are changes in the function f; (7, t) caused by specific processes. Thus the distribu-

tion changes because:
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1. The particles in the material are diffusing in space.

2. Electric and magnetic fields are accelerating the particles.

3. There are scattering processes which change the momentum and energies of the
particles. These processes include scattering from impurities, defects, phonons,
etc., all processes which break the Bloch symmetry of the crystal.

The information we seek is in f z (?, t). Knowing this function we can compute

the current via

—

J= f/d k qv;f(k,?,t) (8.111)

where vy is the velocity. To calculate the distribution function, we now examine each

of the above processes in turn. First we note that because the particles diffuse in
space, one source of time variation is “diffusion” which is described by the variation:

- of o7 Oy

of
ot

diffusion

Then there is the influence of external fields. To proceed we remember from
Egs. (8.1) and (8.14) that with Bloch states, the Newton laws act on the pseudo
momentum parameter k as:

x B) — MKS (8.113)

where E,, is the applied field. Thus it follows that the field variation is:

of :_Q.M:g(g‘-‘,—;xE) 0f(k, 1) (8.114)
0t | ietg dt 0k hta 0k
1~>
ve=3 VE, (8.115)

Finally the change due to collisions can be written in terms of a generalized rate
equation:

of
ot

- = —
/

— [{ri=r) ~r 0 =r ) Wik Yak

(8.116)

collisons

where W(k, K ) is the rate at which electrons are scattered from k to k.
In the steady state, the sum of all variations must add up to zero:
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of- of- of- df-
a—tk —k —& = d—t" =0 (8.117)
field diffusion collisions
So we have:
of 7N g
So= [ 0-1) —£,0—1) fw(k.K)d k
- (8.118)
q,7z — - 8f(k, r,t) - Z .
+£(Ea+ v X B).—11~— v V=0

0k

In principle if one knows the scattering rates, then one can compute the result by

following the trajectory of the particles in space and time. The Boltzmann equation

can also be solved numerically using the Monte Carlo Method. Let us consider the

simple first-order solution in an electric field using the relaxation time approxima-

tion. So one says the following: the field produces a small change in the distribution
function which we call:

F=fo+rfi(k,7.1) (8.119)

This deviation from the steady state must return to zero when the system has had
time to relax or reach a steady state, so we can write:

of, 1.~ -
— 5 =_hi(k 1) (8.120)
fr =F1(k, 7,00 (8.121)
It is also useful to write:
OE-.
o 2 aa—f (8.122)
ok 0k 9k

Substituting back into the Boltzmann equation and including only the electric
field term, we have:

e | (8.123)

fi=a (v E)r (8.124)
k

This actually already gives us the first-order solution in an electric field.
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Note that in Drude theory we say that in the steady state, the field force balances
the frictional force. Here it is the population which reaches a steady state, not the
individual particles. Another way of looking at it is to go back to Eq. (8.119) and
allow the electron momentum to be increased by the field up to a relaxation time ,
after which it is interrupted and has to start accelerating again. Thus in the steady
state, 6k, = — qtE,/h which gives a concomitant change in the energy to E(ky, k,,
k. — qE.7/h). The change in the energy gives rise to a steady-state change in the
distribution function fas in Eq. (8.119), E, is the applied field, and:

om0y 2AE) OER) o

OB, ok M

(8.125)

=yl

Substituting Eq. (8.125) back into the expression for the current, we have:

— 1 — N - -
J= i gquvzf(k,r,t):_m quv;fl(k,r,t) (8.126)
J=754 /d ke(E)v (v E)| - 3E. (8.127)

Write the volume integral as an integral over energy and surface of constant
energy:

d k= K2dk sin (9)d6dep
K* = 2mE /1* (8.128)
d k= m?2E"?dE sin (9)d0d¢ = dEdSk [hv-

So that:

1 A
J=77[dka (B v, (viE)| - 5 (8.129)

k
J=2 / dExgy(E(EDV (V) | - 52 (8.130)
Exg = 1/2mv? (8.131)

- 2E

vev E— V2E,x = 3 Eax (8.132)
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where in order to avoid confusion, we use E, for applied field and we use gy to
denote the density of states per unit volume. With the low-temperature form:

of

—=—==0(E—-E 8.133

5% = 8(E — Ex) (8.133)
The current density reduces to the form (where d is the dimensionality of the

system):

q’7(Er)
d

J= vigy (Er)Eq x (8.134)

8.8.2 Connection to Drude Theory

In order to relate this expression to the familiar Drude result from Eq. (8.7), we
consider three dimensions and also assume that the relaxation time is energy
independent and that we are dealing with nearly free electrons:

2z 1 2z
J = %v%g(EF)Ea,x ~ §m*V%g(EF)Zl_* (8.135)
gt 1 2
J = nﬁEa,x —n= gm*vFg(Ep) (8.136)
2 E 2
o=1 T; B 2o () — ndl: (8.137)
m

Here n is the effective carrier density.
The connection is made and we see why Drude represents a serious
approximation:

(i) The more correct i.e, Boltzmann form of the conductivity scales with the
density of states at the Fermi level. So that if there is no free charge that
responds to an applied field, there is no conduction.

(i) The Boltzmann equation includes the Fermi distribution, so the Pauli principle
is obeyed.

(iii)) The Boltzmann equation result allows the relaxation time to be energy depen-
dent. This energy dependence enters the result via the integral Eq. (8.130)
which then also takes care of the temperature dependence.

(iv) The Boltzmann equation result allows the group velocity to deviate from the
nearly free electron law.

In general we see therefore that the Boltzmann equation conductivity is far
superior to the Drude theory and is really the right way to proceed in a Bloch solid.
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8.9 Summary

In this chapter, we have covered a few important non-equilibrium transport phenom-
ena involving charge carriers. Firstly, we discussed the electrical conductivity
(Ohm’s law) in the presence of an external electric field. There, we introduced the
concepts of conductivity, resistivity, as well as carrier collision or scattering. Then,
secondly we described the Hall effect for an n#-type and then a p-type semiconductor
in the presence of perpendicular electric and magnetic fields. There, we introduced
the notion of carrier mobility. Thirdly, we discussed the diffusion of charge carriers
in an inhomogeneous semiconductor, leading to the concepts of diffusion length and
the Einstein relations.

The recombination mechanisms of charge carriers in a semiconductor have been
described, including the direct band-to-band, Shockley-Read-Hall, Auger, and sur-
face recombination processes. The concepts of recombination lifetime and capture
cross section were introduced.

We introduced the notion of quasi-Fermi energy to describe the electron and hole
distribution under non-equilibrium conditions while at the same time maintaining the
same mathematical formalism as under equilibrium conditions.

In the last part of the chapter, we introduced the reader to a more powerful
transport description known as the Boltzmann equation approach. We derived a
more general formula for the conductivity, and we showed why it is superior to the
Drude method.

Problems

1. Consider the semiconductor slab shown in the figure below with dimensions
L=1cm, W=0.2 cm, and H = 0.25 cm and with a resistivity of 0.01 Q-cm.
What would be the resistance one would measure across opposite faces in all
three directions (x, y, and z)? Knowing there is a uniform concentration n = 10'°
cm > of electrons in this semiconductor (and no holes), calculate the mobility of
these electrons.

=1
N
—_—

2. Consider the semiconductor block with a resistivity of 0.01 Q-cm as shown in the
figure below. The width of this block is constant but follows the relation
W =1+ 2(L — x) cm when x is varied from O to L. The other dimensions are
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L =1 cm and H = 0.25 cm. Calculate the resistance in the x-direction. For this,
you may consider the semiconductor block as a series of parallelepiped slabs next
to one another.

(O8]

. Do the same as in Problem 2, but in the y-direction.
4. Consider the Hall effect measurement experiment depicted in the figure below.
The dimensions of the semiconductor slab are L = 2 mm, W = 1 mm, and
H =2 pm. Assume the current I, = 10 mA, the voltages V, =10 Vand Vy, = -4V,
and a magnetic induction B, = 0.05 T.

Determine if the semiconductor is n-type or p-type, the Hall constant, the
carrier concentration, the Hall mobility, the conductivity, and the resistivity of
the semiconductor (assumed uniform).

-
I U

5. Consider an experiment where excess electrons are generated in a “burst” at =0
and x = x in a semiconductor, resulting in the concentration profile n(x) shown in
the figure below.
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n(x)

X0

Draw the shape of the concentration profile n(x) as a result of the
one-dimensional diffusion in the x-direction. No other external forces are present.
Draw several shapes corresponding to several times after the initial “burst.”

6. Do the same as in Problem 5, but consider, in addition, that there is an electric

field strength E in the direction as shown in the figure below.

n(x) -
E

| X
T
X0

7. The electron mobility in a Ge crystal is experimentally found to be proportional
to 7% (i.e., the mobility decreases with increasing temperature). Knowing
that this mobility is 4000 cm?/Vs at 300 K, determine the electron diffusion
coefficient at 300 K and 77 K. Compare.

8. Consider an n-type Si semiconductor at room temperature with an excess electron
concentration which decreases from 4 x 10'® cm ™ to 1 em ™ (practically zero)
over a distance of 1 mm. Determine the diffusion length of these electrons.

9. Assume a one-dimensional model in which holes are generated at a rate of G(x;1).
Let 7, be the recombination lifetime for holes and p, be the equilibrium

hole concentration. Give an expression for o é’;’t>, i.e., the rate of change for the

hole concentration at position x, as a function of the diffusion current Jﬂiff(x, 1)
and the parameters defined previously. This relation is called a continuity equa-
tion and states that the total number of holes must be accounted for.
Using Eq. (8.42), rewrite this relation such that it involves the hole concentration
p(x,1) as the only unknown.
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9.1 Introduction

Until now, our discussion was based solely on homogeneous semiconductors whose
properties are uniform in space. Although a few devices can be made from such
semiconductors, the majority of devices and the most important ones utilize nonho-
mogeneous semiconductor structures. Most of them involve semiconductor p-n
junctions, in which a p-type doped region and an n-type doped region are brought
into contact. Such a junction actually forms an electrical diode. This is why it is usual
to talk about a p-n junction as a diode. Another important structure involves a
semiconductor in intimate contact with a metal, leading to what is called a metal-
semiconductor junction. Under certain circumstances, this configuration can also
lead to an electrical diode.

The objective of this chapter will first be to establish an accurate model for the p-n
junction which can be at the same time mathematically described. This model will be
the ideal p-n junction diode. The basic properties of this ideal p-n junction at
equilibrium will be described in detail. The non-equilibrium properties of this p-n
junction will then be discussed by deriving the diode equation which relates the
current and voltage across the diode. Deviations from the ideal diode case will also
be described. Finally, this chapter will also discuss the properties of metal-
semiconductor junctions and compare them with those of p-n junctions.

9.2 Ideal p-n Junction at Equilibrium

9.2.1 Ideal p-n Junction

The ideal p-n junction model is also called the abrupt junction or step junction
model. This is an idealized model for which we assume that the material is uniformly

doped p-type with a total acceptor concentration N on one side of the junction (e.g.,

© Springer International Publishing AG, part of Springer Nature 2019 319
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75708-7_9&domain=pdf

320 9 Semiconductor p-n and Metal-Semiconductor Junctions

Fig. 9.1 Ideal p-n junction
model, in which one side of p-type n-type
the junction is a purely p-type
semiconductor and the other a Ny Np

purely n-type semiconductor. Pps D 1

Both materials are uniformly | X
doped \ "

x < 0), and the material is uniformly doped n-type with a total donor concentration
Np on the other side (e.g., x > 0). For further simplicity, we will consider a
homojunction, i.e., both doped regions are of the same semiconductor material.
We will restrict our analysis to the one-dimensional case, as illustrated in Fig. 9.1.

In the p-type doped region far from the junction area, the equilibrium hole and
electron concentrations are denoted p, and n,, respectively. In the n-type doped
region far from the junction area, the hole and electron concentrations are denoted p,,
and n,, respectively. These carrier concentrations satisfy the mass action law in
Eq. (7.31):

Ppltp = Pplin = ”12 (9.1)

where n; is the intrinsic carrier concentration in the semiconductor material consid-
ered. We further assume that all the dopants are ionized, which leads to the following
carrier concentrations for the p- and n-type regions, respectively:

Pp = Na(10'"%cm—3) ny = Np(107cm™3)

and (9.2)

”12 4. -3
pn:N—(lo cm )

n:
=1 (10°cm™3
l’lp NA ( cm ) b

A few typical values for these concentrations are given in parenthesis. It is
important to remember that both a p-type, and an n-type, isolated semiconductors
are electrically neutral.

9.2.2 Depletion Approximation

However, when bringing a p-type semiconductor into contact with an n-type semi-
conductor, the material is not electrically neutral everywhere anymore. Indeed, on
one side of the junction area, for x < 0, there is a high concentration of holes, whereas
on the other side there is a low concentration of holes. This asymmetry in carrier
density results in the diffusion of holes across the junction as shown in Fig. 9.1. By
doing so, the holes leave behind uncompensated acceptors (x < 0) which are
negatively charged. A similar analysis can be carried out for electrons as there is
also an asymmetry in the density of electrons on either side of the p-n junction. This
leads to their diffusion and makes the material positively charged for x > 0 as the
electrons leave behind uncompensated donors, as shown in Fig. 9.2.
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p-type n-type
| y
0
pp >> Pn
hole dlfquIO}’l :—::—::—::—::—::—::—::—::‘:—::—::—::—::—::—::—::—>
hole diffusion current: difr
» i
ny, << n,
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electron diffusion current: N> J;jiff

electrical charge: EI

Fig. 9.2 Hole and electron diffusion across a p-n junction. The holes diffuse from the left to the
right, which leads to a diffusion electrical current from the left to the right as well. By contrast, the
electrons diffuse from the right to the left, but this leads to a diffusion electrical current from the left
to the right because of the negative charge of electrons. The diffusion process leaves uncompen-
sated acceptors in the p-type region and donors in the n-type regions, i.e., a net negative charge in
the p-type region and a net positive charge in the n-type region. The presence of these charges
results in a built-in electric field

This redistribution of electrical charge does not endure indefinitely. Indeed, as
positive and negative charges appear on the x > 0 and x < 0 sides of the junction,
respectively, an electric field strength E(x), called the built-in electric field, will result
and is shown in Fig. 9.3 As discussed in Chap. 8, this electric field will generate the
drift of the positively charged holes and the negatively charged electrons. By
comparing Figs. 9.2 and 9.3, we can see that the drift of these charge carriers
counteracts the previous diffusion process. An equilibrium state is reached when
the diffusion currents JY™°" and drift currents J'" are exactly balanced for each
type of carrier, i.e., holes and electrons taken independently:

Jgiff + Jﬁrifl =0

- . (9.3)
ngft + Jgnft =0

There is a transition region around the p-n junction area with a width Wy in which
the electrical charges are present. This region is called the space charge region and is
schematically shown in Fig. 9.4a. The charge distribution within this region is
modeled as follows: we consider that there is a uniform concentration of negative
charges for —xpo < x < 0 equal to Q(x) = —gNa (Where N, is the total concentration
of acceptors in the p-type region) and a uniform concentration of positive charges for
0 < x < xp0 and equal to Q(x) = +gNp (where Np is the total concentration of donors
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Fig. 9.3 Hole and electron
drift across a p-n junction.
Under the influence of the
built-in electric field, the holes
drift from the right to the left,
which leads to a drift electrical
current from the right to the
left as well. By contrast, the
electrons drift from the left to
the right, but this leads to a
drift electrical current from the
right to the left because of the
negative charge of electrons.
The drift process
counterbalances the diffusion
of charge carriers in order to
bring the system into
equilibrium

Fig. 9.4 (a) Space charge
region in a p-n junction. Near
the junction area, the p-type
region is negatively charged
as a result of the diffusion of
charge carriers. (b) Electrical
charge density in a p-n
junction. To keep the overall
charge neutrality, the total
number of negative charges in
the p-type region is equal to
the total number of positive
charges in the n-type region.
In the depletion
approximation, the charges
are assumed uniformly
distributed in space, within the
depletion region delimited by
—Xpo and Xno
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in the n-type region). The quantities x, and x, are positive and express how much
the space charge region extends on each side of the junction, as illustrated in
Fig. 9.4b. The width of the space charge region, also called depletion width, is

then given by:
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Fig. 9.5 (a) Hole and (b) a

electron concentrations in a p-type px) 4 n-type

p-n junction. In the depletion

approximation, the hole and TPp

electron concentrations are )

assumed to be constant and

equal to their equilibrium Pu

values outside of the depletion T

region ] ]
—xpo Xno X

v

p-type nx) a n-type

—Xp0 Xn0

Wo = xno + Xp0 (9.4)

Outside of this space charge region, we assume that the semiconductor is electri-
cally neutral without any charge depletion and that the hole and electron
concentrations are given by Eq. (9.2). These regions will be called the bulk p-type
and bulk n-type region. The carrier concentrations must therefore somehow go from
a high value on one side of the junction to a low value on the other side, and this
occurs within the space charge region, as illustrated in Fig. 9.4 In particular, we have
(Fig. 9.5):

{p<_xpo) =Dp and p(xno) =Pn (9 5)
n(—xpo) =n, and n(xy) =nn '

This model is called the depletion approximation. In this model, there are no free
holes or electrons in the space charge region: the depletion of carriers is complete.
The electric field exists only within this space charge region.

Because the entire p-n structure must globally remain electrically neutral, and
therefore the space charge region must be neutral as a whole, we must equate the
total number of negative charges on one side of the junction to the total number of
positive charges on the other side, i.e.:

gAN pxp0 = gANpxyo
where A is the cross-section area of the junction, and after simplification:

Naxpo = Npxno (9.6)
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Combining Egs. (9.4) and (9.6), we can express the quantities xpp and x,o as a
function of the depletion width Wj:

Np
T Ny +Np °
N (9.7)
Xy = —— A W
0T NA+Np °

These show that the space charge region extends more in the p-type region than in
the n-type region when Np > N and reciprocally.

Example

Q Estimate the thickness ratio of the depletion region in the p-type side (N5 = 10
'® cm™?) and the n-type side (Np = 10'7 cm ™) for an abrupt p-n junction in the
depletion approximation.

A The thicknesses of the depletion region in the p-type side and the n-type side are
denoted xp and xpo, respectively. Their ratio is such that:

9.2.3 Built-In Electric Field

The built-in electric field strength can be calculated using Gauss’s law which can be
written in our one-dimensional model as:
dE(x) _ O(x)

I~ e (9.8)

where ¢ is the permittivity of the semiconductor material and Q(x) is the total charge
concentration. This relation can be rewritten for either sides of the junction:

dE N
d(x) — 1% for —xp <x <0
dg‘ Ng (9.9)
() o for0 < x < xy0
dx £

From these relations we see that the electric field strength varies linearly on either
side of the junction. By integrating Eq. (9.8) using the boundary conditions assumed
in the depletion approximation:

E(—xp()) = E(xno) =0 (910)

that the electric field strength is equal to zero at the limits of the space charge region
(x = —xpo and x = x,0), we obtain successively:
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p-type E(x) n-type
0, 0 | Xn0 "
N, N,
_qu Xp0=— qu X0

Fig. 9.6 Built-in electric field strength profile across a p-n junction. In the depletion approxima-
tion, the electric field strength is zero outside the depletion region because there is no net electrical
charge. Within the depletion region, the electric field strength varies linearly with distance

X X
N
E(x) = /dde: / —q—Adx for —xp0 <x <0
£
—Xpo —Xpo

X

N
E(x) = /dde = [1byy for 0 < x < Xy
€

Xn0 Xn0
N
E(x) = —qTA(x—i—xpo) for — xp0 <x <0 ©0.11)
9.11
N,
E(x) = q—D(x — Xno) for 0 < x < xy0
E

For x = 0, we obtain two expressions for the electric field strength from the two
previous expressions for E(x):

(9.12)

And these expressions are equal, according to Eq. (9.6). Therefore, the global
electrical neutrality of the p-n structure ensures the continuity of the built-in electric
field strength. A plot of E(x) is shown in Fig. 9.6.

9.2.4 Built-In Potential

As a result of the presence of an electric field, an electrical potential V(x) also exists
and is related to the electric field strength through:

V(x)

E(x) = - (9.13)
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Fig. 9.7 Built-in p(')tenti'al p-type Vix) n-type

profile across a p-n junction. .
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The potential is constant outside the space charge region because the electric field
strength is equal to zero there. An analytical expression for the electrical potential
can be obtained by integrating Eq. (9.11):

WINES
V(x) = qTA<E + xpox) for —xp0 <x <0

(9.14)

N. 2
V(x) = _4%p <% — xn0x> for 0 < x < xy0
e

where we chose the origin of the potential at x = 0 and applied the continuity
condition of the potential at x = 0. This potential is plotted in Figs. 9.6 and 9.7.

The total potential difference across the p-n junction is called the built-in potential
and is conventionally denoted V,; or V,. It can be obtained by evaluating the
potential difference between x = —xpp and x = x0:

Vo = V(xm) — V(—xp0) (9.15)
This can be rewritten as:

Np 220 gN, 30
_ 4% X _,_q_AL (9.16)

1% nY
0T e 2 e 2

Expressing —x, and x, as a function of the depletion width given in
Eq. (9.7), we obtain:

q NaNp

Vo= 272
07 2¢ (Na + Np)

w3 (9.17)

Another independent expression of the built-in potential can be obtained by
expressing the balancing of the diffusion and drift currents. In Chap. 8 we deter-
mined analytical expressions for these currents in Egs. (8.12) and (8.38) for holes
and Egs. (8.12) and (8.36) for electrons. The total current from the motion of holes
and that from the motion of electrons are given by:
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if ri dp(x
T+ I = 4D, d( Lt qup ) E)
() (9.18)
JE 4 I = gD, T+ quen(x)E(x)

In these expressions, p(x) and n(x) represent the hole and electron concentrations
at a position x. Taking into account the condition of Eq. (9.3) stating the exact
balancing of the diffusion and drift currents for holes and electrons, we can write:

0, P p(E) -
D, P (o))

which can be rewritten using Eq. (9.19) as:

D, 1 dpx)  dV(x)

) A dx
D, 1 dn(x) dV(x)
pe n(x) dx  dx

By integrating these equations, we get successively:

Xn0 Xn0
D, 1
b [t v,
w ] P ax ax
—Xpo —Xpo
Xn0
D 1 d \%
n(x _ / dV(x) dx
dx
7X’p() —Xp0

Using Eqgs. (9.5) and (9.15), and by taking into account the Einstein relations
Dy Dy k"TT obtained from Egs. (8.44) and (8.45), we get:

-p
Hn He

kT [d

b /p /dv
ka/dn /dV

which integrates easily into:
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ie.:

kT kT

Vo =20 1 (?) SLLL (”—) (9.20)
q n q le

This can be rewritten into the form:

pp ny qVO
Fp _Tn _ 2’0 9.21
aall(=) 021

Using the expressions in Eq. (9.21), we can write the built-in potential as a
function of the doping concentrations:

vo =Rl (NAND) (9.22)

2
q n;

This potential exists at equilibrium and is a direct consequence of the junction
between dissimilarly doped materials. However, it cannot be directly measured using
a voltmeter because voltmeters measure the chemical potential difference, and the
chemical potential is the same throughout the device since it is at thermal equilib-
rium with balanced drift and diffusion currents everywhere.

9.2.5 Depletion Width

It is now possible to relate the width W, of the space charge region, as well as its
extent on either side of the p-n junction, with the built-in potential. From the
expression of the built-in potential in (Eq. 9.22), we can express the depletion

width as:
2e (Na + Np
Wo=/—|——— |V 9.23
: ¢ . ( A ) ! 9.23)
which becomes, after considering Eq. (9.22):
2ekpyT (Na + Np NaND
Wy = 1 9.24
' \/42<NAND)H<"?> 24

The extent of the depletion width into each side of the p-n junction can then be
determined by replacing W, from Eq. (9.23) into Eq. (9.7):
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2e < ND >V
X =4[] — [ ————
P g \Na(Na + Np) 0

2e ( NA )V
X0 = 4| — [ —T"——
0 g \Np(Na + Np) 0

(9.25)

These last two expressions show that the space charge region extends more into

the region of lower doping, in accordance with Subsect. 9.2.2.

Example

Q

because the intrinsic carrier concentration in GaAs at 300 K is n; = 1.79 x 10°cm 3.

Consider a GaAs abrupt p-n junction with a doping level on the p-type side
of No =2 x 10" cm ™ and a doping level on the n-type side of Np = 1 x 107
cm . Estimate the depletion region widths on the p-type side and the n-type
side at 300 K.

The depletion region widths sought are given by the following expressions:

Xp0 = QS(ND )V
0 q \NA(Na + Np) 0

where ¢ is the dielectric constant of GaAs

2¢e ( NA )V
Xo=4/—|—"——
0 g \Np(Na + Np) 0

(e = 13.1¢p) and V) is the built-in potential. The latter is calculated from:

q n;
_ (138066 x 10°) x 300 ((2 x 10'7) (1 x 10”))
1.60218 x 1071 (1.79 x 106)2
= 1.297V

kT . (NAN
Vobln< A D)

3

The widths can then be calculated as:

2e ND
X0=4/— | 5= |Vo
q \NA(Na + Np)

2 x (13.1 x 8.85418 x 10 ')
1.60218 x 10~ "
1 x 10"
. ((2 x 10'7)(2 x 107 + 1 x 10'7)) X 1297

Xp0 = 5.6 X 10~%cm

Xpo = 56 nm
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Xpo = % 7NA V
n0 — q ND(NA+ND) 0
Na

0
Np ?

2 x 10"
= ﬁ56 X 10_6
X

=11.2 x 10"%m
Xpo = 112 nm

9.2.6 Energy Band Profile and Fermi Energy

Because of the presence of a built-in potential, the allowed energy bands in the
semiconductor, e.g., the conduction and the valence bands in particular, are shifted
too. The resulting energy band profile is obtained by multiplying the potential by the
charge of an electron (—¢). This is shown in Fig. 9.10e, where it is conventional to
plot the bottom of the conduction band (Ec) and the top of the valence band (Ev)
across the p-n structure.

The reason why we must multiply by the negative charge of an electron is because
the resulting band diagram corresponds to the allowed energy states for electrons.
This is intuitively understandable because the electrons are more likely to be where
there is a higher positive electrical potential; thus the energy band for electrons will
be lower there.

We therefore see that the conduction and valence bands are “bent” from the
p-type to the n-type regions. Moreover, the amount of band bending is directly
related to the built-in potential:

Evp — EVn = Ecp — ECn = CIVo (926)

Example

Q Estimate the energy band bending from the p-type side to the n-type side in a
GaAs abrupt p-n junction with a doping level on the p-type side of Ny =2 x 10
7 ¢m ™ and a doping level on the n-type side of Np = 1 x 107 cm ™ at 300 K.

A From the previous example, we know that the built-in potential is V = 1.297
V. The band bending is therefore equal to gV, = 1.297 eV.

Away from the space charge region, the Fermi energies in the p-type and n-type
regions are denoted Egp, and Efy, respectively, as shown in Fig. 9.8 . At equilibrium,
these quantities must be equal. Indeed, the hole density in the p-type and n-type
regions is given by Eq. (7.29) in the nondegenerate case:
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Fig. 9.8 Energy band profile p-type n-type
across a p-n junction. This Eg, s e S -
profile is obtained by
multiplying the potential in aVy
Fig. 9.6 by —q, the electrical
charge of electrons Ep, v E¢,
E Vp \ Epy,
E Vn
—Xp 0 Xno )E
Ev, Er,
pp = NveXp< Pka .
Evy — Epy (9.27)
Pn = Nyexp kb—T

Utilizing Eq. (9.25), we get:

ka Pn B exp (EV‘]‘(;TEF“>

\% Ev, — Ev, Ep, — F
exp (z_T) — exp (k_T) exp (W) (9.28)

In addition, by using Eq. (9.26) in this expression, we get:

Ep, — E
1:exp<%)

exp (q_VO) _Pr_ kT

which means that Eg, = Ery, i.€., the Fermi energies in the p-type and n-type regions
are equal, and this has already been anticipated in Fig. 9.8 . In fact, this is a general
and important property that, at thermal equilibrium, the Fermi energies of dissimilar
materials must be equal. This physically means that there must not be a net flow of
holes or electrons across the structure at equilibrium.

9.3  Non-equilibrium Properties of p-n Junctions

The most interesting and practical properties of a p-n junction are observed under
non-equilibrium conditions, such as when a voltage is applied across it and/or when
it is illuminated. Because of its nonsymmetrical nature, a p-n junction will exhibit
different properties depending on the polarity of the external voltage or bias applied.
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Fig. 9.9 Convention for the I
polarity of the external voltage ’
and current
o—i p n —O
--------- >
- Vo +
) v

The sign convention used for the external voltage and the current in a p-n junction is
shown in Fig. 9.9: the voltage will be positive if the applied potential on the p-type
side is higher than that applied on the n-type. Note that the built-in voltage V|, has
been taken to be positive.

When an external bias is applied, the diffusion and drift currents do not balance
each other anymore. This imbalance results in a net flow of electrical current in one
or the other direction. In addition, the internal electric field and voltage across the p-n
junction, the depletion width, and the energy band profile will all be changed. In this
section, we will review how these parameters are modified.

9.3.1 Forward Bias: A Qualitative Description

When an external bias V is applied to the p-n structure depicted in Fig., there is
usually some voltage drop across both the neutral bulk p-type and the n-type regions
(i.e., outside the space charge region) due to Ohm’s law (Sect. 8.2). In other words,
the entire external bias is not applied across the transition region because part of it
would be “lost” across the neutral regions due to their electrical resistance.

However, in most semiconductor devices which use p-n junctions, the length of
these neutral regions which the electrical current would have to flow through is
small, and any voltage drop would thus be negligible compared to the voltage
change across the transition region. In our discussion, for now we will assume that
the external bias is applied directly to the limits of the space charge region.

According to the sign convention in Fig. 9.10d, the total voltage across the
transition region is now given by V,-V. There are typically two regimes which
need to be considered for the non-equilibrium conditions of a p-n junction: forward
bias and reverse bias.

In the forward bias regime, corresponding to V > 0, the total voltage or potential
barrier across the transition region is actually reduced from V,, to Vy—V, which has a
number of consequences. First, the strength of the internal electric field associated
with the lower potential barrier is reduced as well, as shown in Fig. 9.10c. This in
turn means that the width of the space charge region is reduced because fewer
electrical charges are needed to maintain this electric field, as shown in Fig. 9.10b.
In other words, W, is reduced and is now denoted W, x,o becomes x,, and x
becomes x, as illustrated in Fig. 9.10a. As the internal voltage is reduced from its
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equilibrium value by an amount equal to V, the energy band profile is changed,
and the amount of band bending is reduced by ¢V, as depicted in Fig. 9.10e.
This means that:

EVp —Ev, = ECp —Ecn = CI(VO - V) (929)

instead of Eq. (9.26). Furthermore, we can still consider that the Fermi energy levels
outside the space charge region, i.e., in the neutral bulk p-type (Eg,) and n-type (Eg,)
regions, are located at their equilibrium positions because we assumed no voltage
drop in these regions. Therefore, because the band bending has been reduced by ¢V,
according to Fig. (e), we must have:

E]:p - Epn = —qV (930)

This means that the Fermi energy is not constant throughout the p-n junction
structure, but the Fermi energy levels in the neutral p-type and the n-type regions are
separated by ¢V, where V is the applied external bias. This is a direct consequence of
a non-equilibrium condition.

Let us now qualitatively examine the effects of a forward bias on the diffusion and
drift currents across the space charge region of a p-n junction. As we saw in the
previous section, the diffusion current arises from the difference between the
densities of charge carriers on either side of the junction area. It corresponds to the
motion of electrons from the n-type region toward the p-type region, and conversely
for holes. This means that, at its origin, the diffusion current is related to the motion
of majority carriers (e.g., electrons in the n-type region). However, as soon as these
carriers reach the other side of the junction, they become minority carriers. There-
fore, the diffusion current acts as if it injects minority carriers into one side of the
junction by pulling them from the other side of the junction where they are majority
carriers.

At equilibrium, the diffusion process is stabilized when the built-in electric field
exerts a force that exactly counterbalances the diffusion of these charge carriers.
Under a forward bias, as we just saw in Fig. 9.10c, this electric field strength is
reduced. Therefore, each type of charge carriers can diffuse more easily, which means
that the diffusion currents for both types of carrier increase under a forward bias.

This can also be understood by examining the energy band profile. For example,
when the electrons in the n-type region, on the right-hand side of Fig. 9.10c where
they are more concentrated, diffuse toward the p-type region where they are less
concentrated, the allowed energy states are located at higher energies. This means
that the diffusion electrons have to cross a high-energy barrier. Under a forward bias,
this energy barrier is reduced, as shown in Fig. 9.10e, and more electrons can thus
participate in the diffusion toward the p-type region. A similar argument is valid for
holes. As a result, the diffusion currents for both types of carrier increase under a
forward bias.

By contrast, the drift current does not change with an external bias, although this
may seem contradictory with the fact that the internal electric field is weaker. This
can be understood by examining the drift current in more detail. We saw in Sect. 9.2
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that the drift current counterbalanced the diffusion of charge carriers and thus
consisted of electrons moving toward the n-type region and holes moving toward
the p-type region. This means that, at its origin, the drift current is related to the
motion of minority carriers, such as electrons in the p-type region which drift toward
the n-type region under the influence of the electric field. The drift current thus plays
the converse role of the diffusion current. The drift current acts as if it extracts
minority carriers from one side of the junction to send them to the other side of the
junction where they are majority carriers. Because the concentrations of minority
carriers are very small (see Eq. (9.2)), the drift currents are mostly limited by the
number of minority carriers available for drift (i.e., electrons on the p-type region
and holes on the n-type region) rather than by the speed at which they would drift
(i.e., the strength of the electric field). We then understand why the drift current does
not change significantly when an external bias is applied, in comparison to the
diffusion current.

9.3.2 Reverse Bias: A Qualitative Description

By contrast, in the reverse bias regime, corresponding to V < 0, the total voltage or
potential barrier across the transition region is actually increased from Vj to Vy—V,
which also has the opposite effects of a forward bias. The strength of the internal
electric field is increased, as shown in Fig. (c). This enlarges the width of the space
charge region from W, to W (with x,, becoming x,, and x,, becoming x,, as
illustrated in Fig. 9.11a) because more electrical charges are needed to maintain
this electric field, as shown in Fig. 9.11b. As the internal voltage is increased from its
equilibrium value by an amount equal to —V, the energy band profile is changed, and
the amount of band bending is increased by —¢qV, as depicted in Fig. 9.11e. The total
amount of band bending is still given by the expression in Eq. (9.29). The difference
between the Fermi energy levels outside the space charge region is also still given by
Eq. (9.30).

In addition, by contrast with the forward bias case, the diffusion currents for both
types of carrier decrease under a reverse bias. However the drift current still does
not change significantly in comparison to the diffusion current when a reverse bias is
applied, for the same reason as discussed previously.

9.3.3 A Quantitative Description

In the previous subsections, we have expressed quantitatively the amount of band
bending and the difference between the Fermi energy levels of the neutral p-type and
n-type regions as a function of the applied external bias (Eqs. (9.29) and (9.30),
respectively).

In fact, most of the relations that were derived in Sect. 9.2 for the equilibrium case
are valid when an external bias voltage V is applied, provided we make the following
transformations:
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Fig. 9.11 (a) Space charge
region width, (b) electrical
charge density, (c) electric
field strength, (d) potential
profile, and (e) energy band
profile of a p-n junction under
reverse bias (V < 0). The thick
dashed curves represent the
equilibrium case for
comparison
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W() - W

oo T (9.31)
Xn0 —  Xn .
V() — V() -V

This statement is justified by the fact that most of the expressions in Sect. 9.2 have
been obtained without invoking the equilibrium condition of Eq. (9.3) but by using
the electrical charge neutrality principle and Gauss’s law instead which are valid at
all times.

The following few relations will be important for future discussions. The deple-
tion width can be obtained from Eq. (9.23) by using Eq. (9.31):

2¢ (Na + Np

for V < V,,. We clearly see that the depletion width shrinks when a forward bias is
applied (V > 0), whereas it expands when a reverse bias is applied (V < 0). This
confirms the qualitative discussion of the previous subsection.

Example

Q Calculate the ratio of the depletion region width W under a forward bias of 0.3 V
to the equilibrium width W, for a GaAs abrupt p-n junction with a doping level
on the p-type side of Ny = 2 x 107 cm ™ and a doping level on the n-type side
of Np =1 x 10"7 cm™ at 300 K.

A The depletion width W under a bias V is given by the expression:

W= \/ % (M) (Vo — V), where the built-in potential is Vo = 1.297 V, as

NaNp

determined in earlier examples. The ratio sought is therefore:

W (Vo—V) _ /(2.297 — 0.3) 0877
Wo Vo 1.297

The depletion width is then:
W = 0.877W, = 0.877 (xp0 + Xno)
=0.877(56 + 112)
= 147 nm

The extent of the space charge region inside the p-type and n-type regions, as
shown in Figs. 9.9a and 9.10a, can be obtained from Eq. (9.25):
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= fq () o=

e \/% (ND(N]ZAJr ND)) Vo=V)

Similarly, the non-equilibrium hole and electron concentrations at the edges of
the space charge region, denoted p(—x,), p(x,), n(—x,), and n(x,), can be obtained by
considering Eq. (9.21):

p(=%)  n(w) exp<‘1(V0—V)> (9.34)

p(xn) B n(—xp) kT

(9.33)

In addition, following our previous discussion, we realize that the majority
carrier concentrations are little changed under a moderate forward or a reverse
bias, i.e., p(—x,) = p, and n(—x,) = n,, which after replacing in Eq. (9.34) to:

Pp :n_n):exp<q(vo—v)>

P(Xn) n (—)Cp ka

and by using Eq. (9.21) to eliminate p,, and n, from this latest equation:

pla) _n(=x) _ (ﬂ) (9.35)

D np ko T

These expressions are important as they show that, when an external bias voltage
is applied, the minority carrier concentrations at the boundary of the space charge
region, p(x,) and n(x,), are directly and simply related to the equilibrium minority
carrier concentrations p, and 7, and the applied bias voltage V. All these relations
will prove important in the derivation of the diode equation for an ideal p-n junction
which will be the topic of the next subsection.

Example

Q Calculate the minority carrier concentrations at x, and —x, for the GaAs p-n
junction described in the previous example.
A The minority carrier concentrations at x, and —x, are given by:

P(Xn) o n(—xp) _ qV . . .
= T = X7 where p, and n, are the minority carrier
concentrations in the neutral n-type side and p-type side, respectively, at

equilibrium. These are given by the action mass law:

n? (179 x 10°)

Phn =73 =

N W =3.20 x 10_Scm_3and
D X
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Fig. 9.12 Depletion layer
capacitance as a function of
bias voltage, showing the
increase in capacitance with
forward bias and the decrease
with reverse bias

Capacitance

Reverse Bias

External Bias

w2 (179 % 10°)°
Na 2x 107
In addition, the exponential is numerically equal to:

VY e ((L00218X1072)x03) : .
exp(khT) = eXp((1.38066x1023)x300 = 1.1 x 10°. Thus, we get:

— -5 5
plw) = (3.1();.513“)3(1.1 x10°) 4
n(x,) = (1.60 x 107°) (1.1 x 10°)
~ 1.76cm™3

ny =1.60 x 10 7cm ..

9.3.4 Depletion Layer Capacitance

The depletion layer is relatively devoid of mobile carriers and can therefore be
thought of as somewhat similar to the dielectric in a capacitor. Positive and negative
charges are separated by this depletion layer, and this leads to a capacitance
associated with the p-n junction. This capacitance can be thought of as like that of
a parallel plate capacitor and expressed as:

eA

Caep = W (9.36)

However rather than being constant, the capacitance of a p-n junction varies with

the reverse bias via the voltage dependence of the depletion width as shown in
Fig. 9.12.

More formally, the capacitance of the p-n junction can be derived starting from

the definition of capacitance:

Cap — ’ (9.37)

av
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where dQ is the incremental change in charge stored on either side of the junction for
an incremental increase in voltage of dV. For the abrupt junction, the charge stored
on either side of the junction can be expressed as:

Quep = GANDXn = GAN 5 X, (9.38)

where x, and x, are given by Eq. (9.33). Substituting in Eq. (9.38) for either term
gives the equation:

NaNp
o = Ay 2ge 2T (v —y
de \/q(NA+ND)( 0 )

which can then be differentiated with respect to V to yield:

q NaNp
V()— NA +ND)

Cdep (939)

which we can see reduces to Eq. (9.36) above when V = 0.

The voltage dependence of the p-n junction capacitance is used in varactor diodes
or varicaps, in tuning circuits where the diode is reverse-biased to prevent forward
conduction, and a small DC tuning voltage is applied to vary the capacitance.
Additionally, measuring the capacitance of a diode as a function of bias can be
used to extract information about the built-in voltage and the doping profile. This can
be done by plotting 1/Cqep, vs. applied voltage:

V= A2 {M}% -V, (9.40)
2(Na + Np)] C3,,

In the case of an abrupt one-sided junction (such as a p™n~ or a metal-
semiconductor Schottky diode (see Sect. 9.5)), this equation reduces further, and
the carrier concentrations can be extracted more directly:

_A2q8 1
V= Na > -V, (ND >> NA)
2 Ca 9.41
A2q€ 1 ( ° )
V= > NDC2 -V, (NA >> ND)
dep

9.3.5 Ideal p-n Junction Diode Equation

The diode equation refers to the mathematical expression which relates the total
electrical current / through an ideal p-n junction to the applied external bias voltage
V. It is also referred as the current-voltage or I-V characteristic of the diode. To
determine it, we must focus our analysis on the minority carriers, i.e., holes in the n-
type region and electrons in the p-type region.

In addition to the depletion approximation model considered so far, a few more
assumptions need to be considered:
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(i) First, we assume that there are no external sources of carrier generation.
(i) No recombination of charge carriers occurs within the space charge region.
(iii)) We assume that the applied biases are moderate enough to ensure that the
minority carriers remain much less numerous than the majority carriers in the
neutral regions.
(iv) Finally, we assume that the change in minority carrier concentrations in the
neutral regions does not result in a non-negligible electric field.

In virtue of assumptions (i) and (ii), any hole or electron that has diffused across
the space charge region must be present at its boundaries, i.e., at —x, and x;,
respectively. When a bias V is applied, the concentrations of these holes and
electrons, which are in excess of their equilibrium concentrations, are given by:

Ap, = p(xa) — pa
Any = ”(_xp) —np

This becomes after using Eq. (9.35):

Apy = pa (1)
P (9.42)
An, = np (eka - 1)

Here, and in the rest of the text, we will use the extended meaning of the term
“excess carrier.” For example, if Ap, and An,, are positive, i.e., V> 0 or forward bias,
then there are net real excesses of holes and electrons at the space charge boundaries,
and we talk about minority carrier injection. This is shown in Fig. 9.13.

But if Ap, and An,, are negative, i.e., V < 0 or reverse bias, then there are net real
deficiencies of holes and electrons, and we talk about minority carrier extraction. In
this case, the minority carriers at the boundaries of the space charge region are less
numerous than in the bulk neutral material; therefore there is a diffusion of minority
carriers from the bulk neutral region toward the edges of the space charge region.
This is illustrated in Fig. 9.14.

Returning to the forward bias case, the excess holes, present at x = x, with a
concentration Ap,, will be diffusing deeper into the neutral n-type region where their
equilibrium concentration is only p,,. As they diffuse, they will experience recombi-
nation as discussed in Chap. 8, with a characteristic diffusion length L, in the steady-
state regime. The excess hole concentration is therefore reduced as we advance
deeper in the material. This situation has already been encountered in Chap. 8 and
the analytical expression for dp,(x;), the excess hole concentration at a position xy, is
obtained for Eq. (8.55):

5pa(x1) = Apye (9.43)

where Ly, is the hole diffusion length in the n-type region. In this expression, we
chose another axis, denoted x;, oriented in the same direction as the original axis
x and with its origin at x = x,. It is important to remember that the excess



342 9 Semiconductor p-n and Metal-Semiconductor Junctions

n-type

Pu i Apﬂ -i\l
5}7“(-\_1) =Ap,e

Xy

ci!?P(.\‘g) = m?Pe "

A

2 ::I 0 :: X
Net minority carrier Net minority carrier
(electron) diffusion (hole) diffusion

(b) (a)

Fig. 9.13 (a) Excess hole concentration profile in the n-type region, and (b) excess electron
concentration profile in the p-type region, under a forward bias. The excess carrier concentrations
decrease, following an exponential decay, as they go further from the edges of the depletion region

concentration of holes at x = x;, remains constant at Ap, given by Eq. (9.42) because
holes are continuously injected or extracted through the space charge region into or
from the n-type region due to the application of the external bias voltage. We can
make use of Fig. 8.7 to plot the spatial profile of the excess hole concentration in
Fig. 9.13a for the forward bias case and Fig. 9.14a for the reverse bias case.

Conversely, the excess electrons present at x = —x;, with a concentration An,, will
diffuse deeper into the neutral p-type region, with a diffusion length L,,. This leads to
the spatial profile onp(x,) shown in Fig. 9.13b for the forward bias case and
Fig. 9.14b for the reverse bias case, and it is analytically given by:

ony(xy) = An efz_ﬁ 9.44
P p

where L, is the electron diffusion length in the p-type region. It is important to note
that, here, we chose the sign convention for the axis x, in the opposite direction of the
original axis x because the electrons diffuse in this opposite direction.

There are essentially two methods to compute the diode equation. The first one
consists of analyzing the diffusion currents in the p-n junction. From our discussion
in Subsect. 9.3.1, we understand that, when an external bias is applied, the drift
currents across the space charge region do not vary, whereas the diffusion currents
change. The sum of the increments in the hole and the electron diffusion currents
across the space charge region is thus a direct measure of the net electrical current
through the p-n junction since no net current is originally present at equilibrium,
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Fig. 9.14 (a) “Excess” hole concentration profile in the n-type region, and (b) “excess” electron
concentration profile in the p-type region, under a reverse bias. These carrier concentrations change
following an exponential dependence as they go further away from the edges of depletion region

because we have assumed there are no external sources of carrier generation and
because the total electrical current is constant throughout a two-terminal device, such
as the p-n junction earlier shown in Fig. 9.8.

The incremental diffusion currents are the diffusion currents which result from
the excess carriers in the material. The diffusion current densities for electrons and
holes can be obtained from Egs. (8.36) and (8.38) and are given by:

I (x) = —q0, X2
(9.45)
Jdlff(xz) _ and(é’Z(xz))
2

Using the expressions of the excess carrier concentrations in Egs. (9.43) and
(9.44), we get:

. D n
JiT() = +g28p,e
p

. D _
JU (xy) = —qL—nAnPe L,
n

(9.46)

s
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In order to obtain the total current through the p-n junction, we must evaluate the
diffusion current densities for holes and electrons at the limits of the space charge
region at x = x, and x = —x,, respectively, or equivalently at x; = x, = 0:

D
I (0) = +q7"Ap,
Ly (9.47)
diff Dn
JIM(0) = —g—An,

Example

Q Estimate the ratio of the diffusion current densities of holes and electrons for the
GaAs p-n junction described in the previous example.

JT(0)| Dy Ly Ap,

JSE(0)| D, L, Any’

Ap, and An,, are the excess minority carrier concentrations at the limits of the

where

A The ratio of the diffusion currents is given by:

qV
depletion region. These quantities are given by: Ap, = p, (ekb_T — 1) and

2
Ap, _Pn_ I/ND = % In addition,
N

T2
np Ry " /NA D
the diffusion lengths can be expressed as a function of the minority carrier
lifetime on the n-type and the p-type sides. These lead to the ratio:

Jﬂiff(O)‘ Dy \/Dyty Na

. ——. Assuming that the minority carrier lifetimes are
JET©0)|  Dn /Dy, N £ Y

’/ ——. The ratio of

the diffusion coefficients can be calculated using the majorlty carrier mobilities

Jdiff 0 N
giff( )‘ = [t and
T (0) He Np

v . ..
An, = n, (ekb’ — 1). Their ratio is then:

]dlff

the same for holes and electrons, we get:

]dlff

through the Einstein relations and we obtain:

JET©) /400 2 x 10"
JETO)] V85001 x 10"
~0.43

In all these expressions of current densities, it is important to remember that the
sign convention for the current density Jﬂiff (1) is the same as the axis x, whereas for
J ‘enff (x7) it is opposite that of axis x. The total current density is the sum of the hole
and electron diffusion currents, with however a sign difference:

Jio = I3 (0) = J(0) (9.48)

The minus sign for Jgiff(O) accounts for the sign convention chosen for axis x;.
Inserting Eq. (9.47) into this relation, we get:
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D D
Jiotal = Q(iApn + L_nAnp> (949)

and using Eq. (9.42), we finally obtain:

D D, v
Jto[a.l = 6]<—an +-n > (eka - 1) (950)
L, L, "

The total current is given by the total current density multiplied by the area of the
p-n junction. If we assume a uniform area A, we get:

D, D, a
Itolal = A-Itolal - qA —Pn + —p (ekhl — 1) (951)
L, "L,

By introducing a new term I, this can be rewritten as:

Tow = Io <ek1—VT - 1) 9.52)
with:
D, D
Iy = qA( p, +— 9.53
o= aa(Tomy 4 ) (9.59

Equations (9.52) and (9.53) represent the diode equation for an ideal p-n junction.
This function is plotted in Fig. 9.15.

We see that under a forward bias, the current increases exponentially as a function
of applied voltage. By contrast, under reverse bias, the current rapidly tends toward
—Iy. The value of the current I, is therefore called the reverse saturation current. The
physical meaning of this current can be understood as follows. When a strong
reverse bias is applied (V < 0), the density of minority carriers at the boundary of
the space charge region quickly falls to zero according to Eq. (9.35). This means that,
inside the depletion region, there is no diffusion of carriers, but only drift currents are

Fig. 9.15 Current-voltage I
characteristic for an ideal p-n

junction diode. The

dependence of the current on

the voltage follows an

exponential expression. The

current is zero when the

voltage is zero, without

external excitation
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present. Outside the depletion region however, the only charge motion is the
diffusion of minority carriers from the neutral regions toward the depletion region,
as illustrated by the block arrows in Fig. 9.14. We can therefore say that the
saturation current in Eq. (9.53) corresponds to the total drift, across the space charge
region, of minority carriers which have been extracted or able to reach the limits of
the space charge region through diffusion from the neutral regions.

The p-n junction diode acts like a one-way device: when it is forward-biased,
current can flow from the p-type to the n-type region without much resistance,
whereas when it is reverse-biased, a very large resistance prevents the current from
flowing in the opposite direction from the n-type to the p-type region.

The second method which can be used to determine the diode equation consists of
calculating the total charge accumulated on each side of the junction area. This
second method is called the charge control approximation. Let Q,, be the steady-state
excess positive charge in the n-type region which is given by integrating Eq. (9.43):

0, = qA/épn(xl)dxl = qAApn/ efz_édxl
0 0

ie.
0, = qAL,Ap, (9.54)

where A is the area of the p-n junction. This excess charge is illustrated in Fig. 9.16a,
in the forward bias case. The hole diffusion current must then be able to maintain this
excess positive charge, even though the holes are recombining. As the average
lifetime of holes in the n-type region is the recombination lifetime 7, defined in
Subsect. 8.5.3, the hole diffusion current must be able to supply Q,, positive charges

during a time equal to z,. This current must therefore be I, = =2
P

Similarly, the excess negative charge in the p-type region is given by:

O, = gAL,An, (9.55)
and is shown in Fig. 9.16b. The electron diffusion current into the p-type region is
—I, = —%. In this last expression, we made use of the same sign convention as for
axis x,. The total current is therefore given by:

L L
Lol = Ip + 1, = QA—p Apn + qA—nAI’lp
Tp Tn

or:

L L,
Lol = qA (—pApn + —Anp> (956)
Tp Tn
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Fig. 9.16 (a) Excess positive charge in the n-type region and (b) excess negative charge in the p-
type region, under a forward bias. The total excess charges are calculated by integrating the excess
carrier concentrations over the volume of the regions outside the depletion region

Using the definition of the diffusion lengths given in Egs. (8.53) and (8.56), and
using Eq. (9.42), we can transform this last expression into:

D D W
Liotat = AJtotal = A (ipn + L—:l’lp> (eka — l)

and thus get the diode equation obtained in Eq. (9.51).

9.3.6 Minority and Majority Carrier Currents in Neutral Regions

In the previous discussion, we saw that the total electrical current through a p-n
junction device was determined by the diffusion currents across the space charge
region which result in minority carriers being injected into or extracted from the
neutral regions under the influence of an applied external bias.

For the sake of clarity, let us consider the example of a forward-biased p-n
junction, as the one shown in Fig. 9.13. We saw that the excess minority carriers
diffuse into the neutral regions following an exponential decay given in Eqgs. (9.43)
and (9.44). This leads to diffusion currents which also follow an exponential decay,
as obtained in Eq. (9.46). However, we know that the total electrical current
throughout a two-terminal device is constant. Therefore, the decrease in diffusion
current, for example, that of holes in the right-hand side of the figure, as we move
away from the space charge region has to be compensated by another current. This is
achieved through the drift of majority carriers, for example, electrons in the neutral
n-type region. Indeed, through their diffusion and recombination, the minority
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Fig. 9.17 Diffusion current of minority carriers and drift current of majority carriers in the (a) n-
type region and (b) p-type region, under a forward bias. As the minority carriers diffuse further
away from the edges of the depletion region, they recombine with majority carriers. The diffusion
current of minority carriers is therefore reduced. But, this process also results in the flow of majority
carriers in the opposite direction, which compensates the decrease in diffusion current with a drift
current in the same proportion

carriers “consume” majority carriers (e.g., electrons). There thus must be a flow of
majority carriers (e.g., electrons) in the opposite direction to resupply those lost in
the recombination process. This flow of majority carriers generates a drift current.

Therefore, in the neutral regions, there are two components which make up the
total electrical current: the diffusion current of minority carriers and the drift current
of majority carriers. These are shown in Fig. 9.17 . This means, in particular, that
there must be an electric field present in the neutral regions; otherwise there would
not be any drift current. This apparently contradicts our assumption at the beginning
of Subsect. 9.3.1 that there was no potential drop within the neutral regions. In fact,
the potential drop is very small in comparison with any applied external bias voltage
and therefore can be neglected in our model.

An analytical expression for the drift current can be easily determined, on each
side of the p-n junction. Indeed, the total hole and electron current densities must be
constant at the values given by the diode equation in Eq. (9.47). As we know the
expression for the diffusion current densities J{ (x;) and J3 (x,) from Eq. (9.46),
the drift current densities will be the difference:

Jgriﬂ ( X ) — Jgiff (O) _ J(eliff ( x2)

. . . (9.57)
Jgrlfl(xl) — ngff(o) _ Jﬁlff(xl)

Recalling Egs. (9.46) and (9.49), we get successively:
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A D D x
JE(x)) = —g—An, + g—Anye Ln
h ( ) Ln P Ln p
. D D, — u
JE(x0) = qoApy — g7 Apye B
Ly Ly

n

drift Dy -3
JM () = qL—Anp e Ln—1
(9.58)
. D _n
T (n) = g7 "Ap, (1 e LP>
Ly
It is important to remember that the sign convention chosen for Jﬂﬁﬁ(xz) is
opposite that of axis x.

9.4 Deviations from the Ideal p-n Diode Case

Before deriving the ideal diode equation in the previous section, it was necessary to
make several assumptions. In reality, these assumptions are not necessarily valid,
and the ideal diode equation gives only qualitative agreement with actual
measurements of the /-V characteristics of real p-n junction diodes. This deviation
from the ideal case is mainly due to (a) generation of carriers in the depletion region,
(b) surface leakage effects at the periphery of a real junction, (c) recombination of
carriers in the depletion region, (d) the high-injection condition (when the injection
of minority carriers exceeds the doping density), and finally (e) all the applied bias
not being dropped across the depletion region due to series resistance effects. The
above deviations are illustrated in the figure below. The special case of reverse
breakdown will be discussed in Subsect. 9.4.3 (Fig. 9.18).

9.4.1 Reverse Bias Deviations from the Ideal Case

Part of the deviation of the leakage current from the ideal reverse saturation current
arises from the thermal generation of electron-hole pairs within the space charge
region. The built-in electric field separates these carriers and they drift toward the
neutral regions of the diode. This drift results in an excess current that is in addition
to the diffusion of minority carriers, discussed in the ideal case. Section 8.6
introduced the concept of thermal generation of carriers, and along with it a thermal
generation rate per unit volume G(T), expressed in cm™>-s~'. Since the volume of
the depletion region is equal to WA, assuming no recombination occurs, the current
due to generation in the depletion region can be expressed as:
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Fig.9.18 The current-voltage characteristic for a real Si p-n junction diode (solid) does not exactly
match the behavior of a Si junction diode predicted by the ideal diode model (dotted), both shown
above in semilog scale. A real Si diode shows the following deviations from the ideal (diffusion
limited) case: reverse leakage current due to thermal generation and surface leakage effects,
recombination in the depletion region, high-injection deviation, and series resistance effects

Ieen = qWAG,(T) (9.59)

Under reverse bias the current can then be expressed as the sum of the diffusion
and generation components:

Ly = gA (&pn + &np> + gWAG(T). (9.60)
L™ "L,

Since the depletion layer width (W) depends upon the applied bias, the reverse
current of the diode now shows a bias dependence: as the reverse bias is increased,
the depletion width widens, and hence this increases the generation current leading
to a corresponding increase in the reverse leakage current as a function of applied
bias. In addition to excess carriers arising from thermal generation, it is possible for
external photoexcitation to create carriers in the depletion region — this is the case of
a photodiode.

This leakage current is further compounded by the surface leakage. Surface
leakage effects are due to the finite extent of the p-n junction area and the
characteristics of the junctions that occur at the periphery of the diode. This is due
primarily to ionic charges on or outside the semiconductor that induce corresponding
image charges within the semiconductor. These charges create their own surface
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depletion region that acts as a parallel conduction channel that bypasses the p-n
junction and allows current to flow along the surface of the diode. Typically this
leakage current increases with reverse bias.

9.4.2 Forward Bias Deviations from the Ideal Case

Under forward bias recombination dominates over the generation processes. In order
to supply the carriers lost to recombination, the net external current flowing
through the diode is increased. This current is called the recombination current
(Iec)- The recombination rate is at its maximum near the center of the depletion
region, where nearly equal number of electrons and holes are available to contribute
to recombination. Assuming a linear variation of the potential across the depletion
region, the potential at the center can be taken as Y-V, In this case the carrier

concentration at the center of the depletion region depends upon exp(— qg/,gib}v))

rather than exp (%) The rate at which electrons and holes are recombining is

then proportional to exp (%) By introducing a material constant (/ro) dependent

upon the minority carrier recombination lifetimes in the respective halves of the
depletion layer, and the overall depletion layer width, it becomes possible to arrive at
an expression for the recombination current (/R):

Vv
Ix ~ Iroexp (%) (9.61)

Combining this new equation for the recombination current together with the
existing minority carrier diffusion current yields a new expression for the total
current though the diode:

qvV qV
I1=1 -— I — .62
0€XP (ka> + Irpexp (Zka) (9.62)

In working with real diodes, this equation is generally represented in an empirical
form by introducing a new factor n called the ideality factor:

I =~ Iyexp <ﬂ> (9.63)

nka
In this combined equation, the ideality factor n tends toward 2 when recombina-
tion current dominates and tends toward 1 when diffusion current dominates and
varies from 1 to 2 when both currents are comparable. In the case of silicon diodes
operating at room temperature, both processes can be seen to operate as the current
injection is increased from low to moderate levels.

Under higher levels of current injection (under forward bias), the diode enters the
high-injection regime where the injected minority carrier density becomes
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Fig. 9.19 Current-voltage I
characteristic for an ideal p-n
junction diode showing a
reverse breakdown. When the
voltage across the p-n junction
is equal to the reverse
breakdown voltage, the
current increases dramatically.
If it is not limited, this current
can damage the diode through / =1
heating _;\

comparable or greater than the majority carrier density. In this case the current

becomes proportional to exp (%), as is shown in Fig. 9.19.

Under higher reverse bias, the contact potentials and the potential drop across the
bulk regions of the semiconductor cease to be negligible, and the series resistance of
the p-n diode no longer dominates. At this point the exponential increase in current
begins to subside in favor of a more linear increase, limited by the series resistance of
the diode. The empirical diode equation introduced above can be modified to take
this behavior into account, by introducing a term (Rs) for the series resistance. Thus
the equation becomes:

(9.64)

V — IR
1 = Ipexp <—q( kT S))

9.4.3 Reverse Breakdown

In the ideal p-n junction diode model, we saw that the current through a p-n junction
diode was limited by the saturation current —/, when a reverse bias was applied.
Even in the non-ideal case the reverse current was seen to increase slowly. In reality,
this model holds only up to a certain value of reverse bias —V,,, called the
breakdown voltage. At that point, the current suddenly increases dramatically as
shown in Fig. 9.19 . This phenomenon is called reverse breakdown. The peak value
for the internal electric field strength (i.e., at x = 0) corresponding to this applied
reverse bias is called the critical electric field.

This situation is not necessarily a damaging one for the p-n junction and is
reversible, as long as the current can be limited to prevent too much power from
being dissipated inside the device. Otherwise, parts of the device can be physically
destroyed (e.g., melted).

There are two major mechanisms for the reverse breakdown: avalanche break-
down which occurs at higher reverse biases as a result of impact ionization and Zener
breakdown which occurs at lower reverse biases as a result of tunneling across the
junction.
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9.4.4 Avalanche Breakdown

As a stronger reverse bias is applied, the electric field strength across the space
charge region increases. The charge carrier particles, holes, and electrons which drift
across the depletion region can therefore achieve higher velocities.

When the reverse bias is strong enough, typically higher than 6E,/q and can even
go up to 1000 V, the electric field strength can become so large that a hole or an
electron can gain sufficient kinetic energy to impact on a semiconductor lattice atom
and ionize it, or even break a chemical bond. This phenomenon is called impact
ionization. It may seem conceptually difficult to envision a hole impacting on the
crystal lattice, but this can be better understood when we realize that when a hole
moves in one direction, it in fact corresponds to the motion of an electron in the
opposite direction with the same velocity. An accelerated particle must typically
acquire energy at least equal to the bandgap energy E, in order to break a chemical
bond, because this corresponds to the energy required to excite an electron from the
valence band to the conduction band. Therefore, for wider bandgap semiconductors,
higher electric field strength is necessary to ensure impact ionization.

As aresult of impact ionization, an electron-hole pair (EHP) is created within the
space charge region in addition to the impacting particle. The electron and the hole
from the pair will then be spatially separated by the electric field present at that
location: the electron drifting toward the n-type side and the hole toward the p-type
side, as illustrated in Fig. 9.20.

The electrons and holes thus generated can themselves be further accelerated by
the electric field. If they reach a sufficient high kinetic energy within the space
charge region, they can in turn contribute to create additional EHPs through ionizing
collisions. This results in a cascade or avalanche effect. One initial charge carrier
thus has the potential to create many additional carriers, and a dramatic increase in
current is achieved as the one shown in Fig. 9.19.

It is possible to characterize the avalanche breakdown quantitatively by
introducing a multiplication factor M such that the reverse current near breakdown
is given by MI, where I is the saturation current. This factor actually means that an
incident electron results in a total of M electron-hole pairs. This factor is empirically
given by:

M=—1 (9.65)

- n
- (%)
where V; is the reverse bias, V), is the breakdown voltage, and 7 is an exponent in the
range 3~6. From this expression, we clearly see that the reverse current, MI,
increases sharply when V; nears V,,; as depicted in Fig. 9.19.

The avalanche process is more likely to occur when a wide enough space charge
region can be sustained to ensure sufficient acceleration. This can be more easily
achieved by using lightly doped p-n junctions because, if heavily doped junctions are
used, another phenomenon can more easily occur: the tunneling of charge carriers
from one side of the junction to the other.
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Fig. 9.20 Impact ionization
process: under strong reverse
bias, electrons and holes are
injected into the depletion
region; when they gain
enough kinetic energy, they
impact on the semiconductor
lattice to create electron-hole
pairs. These newly created
carriers can then lead to the
same impact ionization
process if they can gain
enough kinetic energy within
the space charge region

Example

Semiconductor p-n and Metal-Semiconductor Junctions

o— p-type

Q A voltage-stabilizing diode takes advantage of the steep slope in the breakdown
regime to clamp the voltage. For such a kind of diode with V,,, = —14 V,
estimate how many times the current will increase when the reverse bias goes
from —13.990 to —13.995 V. Assume n = 6.

A The multiplication factor if given by: M = —1—. For the two reverse biases
()

1

Ve

Vor

mentioned, we get the ratio of the multiplication factor:

V n
M, 1—(v—£)

E: | (L>n
Vor

G Uk
6
i é - (131,395

The current will thus increase by a factor 2 when the voltage is reduced by

0.005 V.
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9.4.5 Zener Breakdown

Under a more moderate reverse bias, typically less than 6E,/q, the top of the valence
band in the p-type side Ev,, is already higher than the bottom of the conduction band
in the n-type side Ey.. This situation is illustrated in Fig. 9.21. This means that the
electrons at the top of the valence band in the p-type side have the same or higher
energy than the empty states available at the bottom of the conduction band in the n-
type side.

This staggering of the energy bands also results in a reduced spatial separation
between the conduction and valence bands, as shown by d in Fig. 9.21 .Moreover, in
heavily doped p-n junctions, the space charge region is already narrow (with a width
W) and does not expand much under a moderate reverse bias.

The staggered alignment of the energy bands and their spatial proximity favor the
tunneling of electrons from the valence band in the p-type side into the conduction
band in the n-type side, as shown in Fig. 9.21. This leads to a negative current. This
process is called the Zener effect. As there are many electrons in the valence band
and many empty available states in the conduction band, the tunneling current can be
substantial.

The Zener tunneling probability 77 is strongly field dependent on the applied bias
V and the bandgap E,. It can be written as:

4/ 2m*
Ty = exp{ 3qVi Egﬂ} (9.66)

Fig. 9.21 Zener breakdown E(‘
mechanism involving P
electrons tunneling from the

valence band of the p-type

side to the conduction band of E
the n-type side FD oooeeeeereeresnnes Tunne[ing
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9.5 Metal-Semiconductor Junctions

As we have already mentioned in Subsect. 9.2.6 and illustrated in the case of a p-n
junction, two dissimilar materials in contact with each other and under thermal
equilibrium must have the same value of Fermi energy.

When a metal is brought into contact with a semiconductor, a certain amount of
band bending occurs to compensate the difference between the Fermi energies of the
metal and that of the semiconductor. In fact, this difference in Fermi energy means
that electrons in one material have a higher energy than in the other. These will
therefore tend to flow from the former to the later material. There is thus a transfer of
electrons across the metal-semiconductor junction in a similar way as the charge
transfer in the case of a p-n junction. Such a junction is also often called a metallurgic
junction or a metal contact because metals are commonly used in semiconductor
industry to connect or “contact” a semiconductor material to an external electrical
circuit.

The charge transfer can be readily achieved because, as we saw in Fig. 5.11 in
Subsect. 5.2.7, the Fermi energy in a metal lies within an energy band, which makes
it easy for electrons to be emitted from or received by a metal. This charge
redistribution gives rise to a local built-in electric field which counterbalances this
redistribution. When sufficiently large electric field strength is established around the
metallurgic junction, the redistribution stops.

Since the overall charge neutrality must be maintained, the excess electrical
charges inside the semiconductor and that inside the metal must be of an equal
amount but with opposite signs. However, because a metal has a much higher charge
density than a semiconductor, the width over which these excess charges spread
inside the metal is negligibly thin in comparison to the width inside the semiconduc-
tor. This is somewhat similar to the case of a p-n junction with one side heavily
doped. As a result, the built-in electric field and the band bending are primarily
present inside the semiconductor as well. The following section aims at giving a
quantitative description of the physical properties of a metal-semiconductor
junction.

9.5.1 Formalism

The physical parameters which need to be considered in this description are depicted
in Fig. 9.22. For the metal, these include its Fermi energy Eg, and work function
@,, > 0. As we saw when discussing the photoelectric effect in Chap. 4, the work
function of a metal is the energy required to extract one electron from the metal
surface and pull it into the vacuum. In a more quantitative manner, the work function
is the energy difference between the Fermi energy and the vacuum level as shown in
Fig. 9.22. For the semiconductor, the parameters of interest also include its Fermi
energy Er, its work function @, > 0, and also its electron affinity y > 0. The latter is
the energy required to extract one electron from the conduction band of the semi-
conductor into the vacuum and is given by the energy difference between the bottom
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Fig. 9.22 Fermi energies, Vacuum

work functions in a metal and Joye] T R————sssnges
a semiconductor, when @, X
considered isolated from each '

other. The vacuum level is the )

same for both materials, but
the Fermi energies are
generally different

Metal Semiconductor

of the conduction band and the vacuum level. A few values of electron affinity for
elements in the periodic table are given in Fig. A.12 in Appendix A.3.

The amount of band bending and the direction of electron transfer depend on the
difference between the work functions of the metal and the semiconductor. When
these materials are isolated, their vacuum levels are the same, as illustrated in
Fig. 9.22. But, when these materials come into contact, the Fermi energy must be
equal on both sides of the junction. The vacuum level is at an energy ®,, above the
top of the metal Fermi energy, while it is @, above the semiconductor Fermi energy.
This means that the energy bands in the semiconductor must shift upward by an
amount equal to ®,,—®, in order to align the Fermi energy on both sides of the
junction.

On the one hand, if @,, > @, the energy bands of the semiconductor actually shift
downward with respect to those of the metal, and electrons are transferred from the
semiconductor into the metal, as shown in Fig. 9.23. The signs of the charge carriers
which appear on either side of the junction and the direction of the built-in electric
field, also shown in Fig. 9.23, are determined from the analysis conducted for a p-n
junction. On the other hand, if ®,, < @, the energy bands in the semiconductor shift
upward with respect to those of the metal, and the electrons are transferred from the
metal into the semiconductor.

9.5.2 Schottky and Ohmic Contacts

The electrical properties of a metal-semiconductor junction depend on whether a
depletion region is created as a result of the charge redistribution. This phenomenon
in turn depends on the difference in work function ®,,-®,, and on the type of the
semiconductor (n-type or p-type).

Indeed, we know that when ®,, > @, electrons are extracted from the semicon-
ductor into the metal.

If the semiconductor is n-type, then this process depletes the semiconductor of its
electrons or majority charge carriers. A depletion region thus appears near the
junction, and we obtain a diode-like behavior similar to a p-n junction when an
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external bias is applied. This is shown in Fig. 9.24a. This situation is often called a
rectifying contact or Schottky contact.

However, if the semiconductor is p-type, the electrons which are extracted from
the semiconductor are taken from the p-type dopants which then become ionized.
This process thus creates more holes or majority charge carriers. In this case, there is
no depletion region, but rather majority carriers are accumulated near the junction
area, and we do not observe a diode-like behavior. Majority carriers are free to flow
in either direction under the influence of an external bias. This is shown in Fig. 9.25a.
This situation is often called an ohmic contact and the current-voltage characteristics
are linear.

If we now consider ®,, < ®,, electrons are extracted from the metal into the
semiconductor. The previous analysis needs to be reversed. In other words, for an n-
type semiconductor, the junction will be an ohmic contact, while for a p-type
semiconductor, the junction will be a Schottky contact.

These four configurations are shown in Figs. 9.23 and 9.24 and summarized in
Table 9.1.

In the case of a Schottky contact, the existence of the depletion region means that
there is a potential barrier across the junction which can be shifted by an amount
equal to -gV when an external voltage V is applied between the metal and the
semiconductor. This in turn influences the current flow in a similar way as for a
p-n junction. This is shown in Fig. 9.26 for the case of an n-type semiconductor. It is
however important to understand that majority carriers are responsible for the current
transport in a metal-semiconductor junction, whereas in a p-n junction, it is due to
the minority carriers.

The sign convention for a metal-semiconductor junction is the same as for a p-n
junction by considering the type of the semiconductor. Although the current
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n-type p-type
Metal Semiconductor Metal Semiconductor

Schottky contacts

1

Fig. 9.24 These two of the four possible metal-semiconductor junction configurations lead to a
Schottky contact: (a) ®,, > @, and n-type, (b) ®,, < @, and p-type. A Schottky contact is obtained in
each case because the majority carriers in the semiconductor experience a potential barrier which
prevents their free movement across the metal-semiconductor junction, and therefore as shown at
the bottom of the figure, the I-V characteristic shows rectifying behavior

transport mechanism in a Schottky contact is somewhat different from that in a p-n
junction, the current-voltage relation for an ideal Schottky contact has a similar
expression as for an ideal p-n junction:

I=1I (ew - 1) (9.67)

where I, is the reverse saturation current and is exponentially proportional to the
difference between the metal work function ®,, and the semiconductor electron
affinity y:

_(@m—x)
Iy :ABeT2e< ol ) (9.68)
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Fig. 9.25 These two of the four possible metal-semiconductor junction configurations lead to an
ohmic contact: (a) @,, > & and p-type, (b) ®,, < ®, and n-type. Unlike the configurations shown in
Fig. 9.24, the energy band profiles here are such that the majority carriers in the semiconductor can
move across the metal-semiconductor junction without experiencing a potential barrier, and there-
fore as shown at the bottom of the figure, the I-V characteristic shows ohmic behavior

Table 9.1 Four possible

. Semiconductor Junction
Fnetal‘—semlconduct(.)r D, > D n-type Schottky
junction configurations and
the resulting contact types ~ Pm <Py p-type Schottky

D, > D, p-type Ohmic
D, < n-type Ohmic

B. is the effective Richardson constant, and for most metal-semiconductor
Schottky junctions, it varies from 10 to 100 K2 cm 2. The quantity (®,,—y) is
often denoted q®p, where @y is called the Schottky potential barrier height. For a
real Schottky contact, one needs to take into account thermionic emission (Appendix
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Fig. 9.26 Band alignment in a Schottky metal-(n-type) semiconductor contact under (a) forward
bias where the potential barrier is reduced, and under (b) reverse bias where the potential barrier is
increased, thus reducing the tunneling of carriers

A.9), as well as impurity and interface states. In this case, the current-voltage relation
is given by:

I=1I (e# - 1) (9.69)
where n is the ideality factor as mentioned before and is typically between 1 and 2.
9.6 Summary

In this chapter, we have presented a complete mathematical model for an ideal
p-n junction, based on an abrupt homojunction model and the depletion approxima-
tion. We introduced the concepts of a space charge region, built-in electric field,
built-potential, and depletion width at equilibrium. We have discussed the balance of
electrical charges, as well as that of the diffusion and drift currents within the space
charge region.

The non-equilibrium properties of p-n junctions have also been discussed. The
forward bias and reverse bias conditions were examined. We emphasized the
importance of minority carrier injection and extraction. We derived the diode
equation and understood the nature of the currents outside the space charge region.
We have discussed the avalanche and Zener breakdown mechanisms as deviations
from the ideal p-n junction diode behavior under strong reverse bias conditions.

Finally, we presented the electrical properties of metal-semiconductor junctions
and introduced the concepts of Schottky and ohmic contacts.

Problems

1. A p-n junction diode has a concentration of Ny = 10'” acceptor atoms per cm®
on the p-type side and a concentration of N, donor atoms per cm® on the n-type
side. Determine the built-in potential V;, at room temperature for a germanium
diode for values of Np ranging from 10" to 10'® cm ™. Also determine the peak



362

10.

1.

12.

13.

. Consider a Si p-n step junction with Ny = 10

9 Semiconductor p-n and Metal-Semiconductor Junctions

value of the electric field strength for this same range, and plot both of these
values as a function of Np on a semilog scale.

. Consider a GaAs step junction with No = 10"” cm ™ and Np = 5 x 10" cm ™.

Calculate the Fermi energy in the p-type and n-type regions at 300 K. Draw the
energy band diagram for this junction. Determine the built-in potential from the
diagram and from Eq. (9.22). Compare the results.

. Consider an asymmetric p*-n junction, which has a heavily doped p-type side

relative to the n-type side, i.e., No> > Np. Determine a simplified expression for
the width of the space charge region given in Eq. (9.23).

. Calculate the depletion width for a Si p-n junction that has been doped with 10'®

acceptor atoms per cm® on the p-type side and 10'® donor atoms per cm’ on the
n-type side. Compare this depletion width to the width of the depletion region on
the n-side (from Eq. (9.33)). What percentage of the width lies within the n-type
semiconductor. T = 300 K.

. Assilicon p-n diode with N5 = 10'® cm ™ has a built-in voltage of 0.814 eV and

capacitance of 10~® F-cm ™2 at an applied voltage of 0.5 V. Determine the donor
density. A = 1 cm?.

. Plot the diode equation for an ideal Si p-n junction diode with an area

50 pm?, an acceptor concentration N = 10'® cm™, a donor concentration
Np = 10'® cm ™3, recombination lifetimes equal to 7, = 7, = 1 ps, and diffusion
coefficients equal to D, = 35 cm*s ™' and D, = 12.5 cm?:s .

f cm > and Np = 10'6 cm_3, with
recombination lifetimes 7, = 0.1 ps and 7, = 0.01 ps and carrier mobilities
pn = 450 cm?/Vs and p. = 800 cm?/Vs at 300 K.

. Determine the total reverse saturation current density, the reverse saturation

current density due to holes and that due to electrons.

. Assume a forward bias equal to V(/2 is applied, where V,, the built-in potential,

is equal to 0.7546 V. Calculate the injected minority carrier currents at the edges
of the space charge region.
Assume a reverse bias equal to -Vy/2 is applied. Calculate the minority carrier
currents at the edges of the space charge region.
A Si p-n junction is doped with an acceptor concentration N = 5 x 10'® cm ™
and a donor concentration Np = 5 x 10 cm >, The critical electric field
strength for breakdown is equal to 10° V-cm™'. Determine the breakdown
voltage and the corresponding depletion width. Do the same for a donor
concentration Np = 5 x 10" em™>.
Consider an ideal metal-semiconductor junction between p-type silicon
and polycrystalline aluminum. The Si is doped with Ny = 5 x 10" cm™>.
The metal work function is 4.28 eV and the Si electron affinity is

4.01 eV. Draw the equilibrium band diagram and determine the barrier
height ¢p.
Consider the same silicon-aluminum metal-semiconductor junction. The cross-
sectional area of the junction is 10 pm?. Assume that B, is 30 AK % cm ™ ?
and the ideality factor n is 1. Calculate the reverse saturation current and plot
the I-V curve as a function of applied bias.
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10.1 Introduction

In previous chapters, we introduced the reader to the fundamental concepts of
quantum mechanics, band structure, and semiconductor physics. In this chapter we
have the opportunity to apply this acquired knowledge of the electronic structure of
solids to understand the optical properties. We do this by modeling the optical
response properties, in particular the permittivity of the solid. We present the
formalism which allows one to calculate the permittivity and then study how this
permittivity affects the light penetrating the solid. We shall demonstrate how band
structure and free electrons determine the permittivity, and therefore the way light
propagates in a solid, and how much of this light gets absorbed. We shall investigate
under what circumstances the lattice can couple to photons and how this coupling
can affect the velocity of light in a medium. But we shall see in the next chapters that
band structure depends on the dimensionality of the system, and we have already
seen in Chaps. 8 and 9 that carriers can be added or neutralized in semiconductors.
So it turns out that just in the same way that the energy bands can be engineered, so
can the optical properties. Atom by atom growth and miniaturization are modern key
engineering tools, but so is the application of external electric and magnetic fields. In
the last sections of this chapter, we therefore investigate how an electric or a
magnetic field modifies the band structure and how this reflects on the optical
properties. The fundamental concepts developed in this chapter are a necessary
prerequisite to understand the way optical methods can be used to characterize the
electronic structure of semiconductors as is described in Chap. 15.

Maxwell showed many years ago that light is an electromagnetic wave which
travels in space and in media and interacts with the medium because the electric field
vector of the light can polarize the medium and move the free charges about and
produce a time-dependent current. The field changes the medium which acts back on
the wave, becomes the wave, and affects its speed and amplitude.
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Quantum theorists, as we have seen in Chap. 4, have shown that electromagnetic
waves can also be viewed as moving vibrations which consist of bundles of energy,
as particles called photons, which each carry a specific quantum of energy propor-
tional to the frequency of the vibration v; the energy is hv = fiw where @ is the
angular frequency. In analogy to phonons, the quantum of lattice vibrations, it turns
out in practice that for most purposes, the classical description of light (photons) is
quite adequate, and we shall therefore continue our study of optical properties using
Maxwell’s equations. When necessary we will change to quantum mechanics, but
throughout we shall also freely use the term photons to describe the particles which
constitute a beam of light.

10.2 The Complex Refractive Index of a Solid
10.2.1 Maxwell’s Equations

In order to understand how light interacts with a semiconductor, we need to say a few
words about light propagation in a given medium. Consider a medium which has
both bound electrons and free electrons. The propagation of light in this medium is
described by Maxwell’s equations. Maxwell’s equations can be written in a form
which from the very beginning distinguishes a conducting medium from a noncon-
ducting medium, by writing:

V x E= —a—f (10.1)

bl — — B
V x H= o(w) E +a—t (10.2)
V.D=p (10.3)
V.B=0 (10.4)

where o(w) is the complex frequency- dependent conduct1v1ty of the medium with a

density of p mobile charges, and E D H and B are the electric field,
displacement, magnetic field, and magnetic flux, respectively.
We are mainly interested in neutral media, so we shall put p = 0 and assume that

the relative perm1tt1v1ty & of a medlum with bound charges in D— €0 E is time

independent and D— £ E + P where P is the bound polarization vector which gives
the electric dipole moment per unit volume and & is the permittivity of free space.

We also assume that the medium is not magnetic so that B= puuy H, p = 1,
the permeability of free space. Using the fact that the velocity of light in free
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space is ¢Z = (uogo)” ', one can combine Eqs. (10.1 and 10.2) by taking the “curl”
(or “rot”) of Eq. (10.1) to give the wave equation for an EM wave as:

- 1( ®E cOE

As we will see, this equation describes a traveling wave that can be solved by
assuming that the electric field of the light is of the form:

E= Eo exp {z(; T wt)J (10.6)

The substitution of Eq. (10.6) into Eq. (10.5) then gives rise to the requirement

that to be a solution; the length of the vector k (the wavevector) must satisfy the
complex equation:

0] ic \ '/
k=— (8;) + —) (10.7)

c E0W

since the wavevector k = ko = ¢in free space, we can interpret the square root factor
in Eq. (10.7) as the complex refractive index of the material N:

~ ic 1/2
N = (e;, +> (10.8)

Eow

We recall that in this representation, &, refers to the (relative) bound electron
permittivity and is itself normally a complex quantity. This is why some authors

prefer to work with a total relative complex permittivity (& (@) = & +;)—”w) and

define D= gy, E, which includes both the complex free and the complex bound
electron permittivities. In the notation that we have chosen, the conductivity of the
medium is made explicit, and o(®) is the complex frequency-dependent conductivity
of the system, the real part of which is the AC conductivity or, with geometry factor
(area /length), the “conductance” of the system. The imaginary part then corresponds
to wC where C is the capacitance. Indeed if we separate the bound electron
permittivity into real e, and imaginary parts ¢;, we have:

N? :e,+i<ei+i> (10.9)

Eow

The free electron contribution to the permittivity is now by definition:

ef(w) =i——= (10.10)



368 10 Optical Properties of Semiconductors

We can now rewrite the complex refractive index and complex wavevector as:

N =i+ i (10.11)
=10 KO (10.12)
C c

The imaginary part of Eq. (10.11) acquires physical significance as soon as we
substitute Eq. (10.12) back into the wave solution Eq. (10.6) and for simplicity
assume propagation in the z-direction only, then we have:

E= Eo exp{iw (E - t) }exp(—%> (10.13)
c c

For g = E x the corresponding HJ is given by H) = N, /8—0E6‘ where we also
Ho
have from Eq. (10.9) and ¢ = o, + io;:

-k = & — o
@Eo (10.14)

or

Eo

2nk = €; +

The medium has modified the electromagnetic wave or photon, in two ways. It
has changed the velocity of propagation from ¢ to ¢/n, and it has given rise to
damping. The damping is due to the imaginary part of k£ and is caused by the
absorption of electromagnetic energy in the medium. From Eq. (10.14) it follows
that one principal source of absorption is the conductivity term. But loss of ampli-
tude can also be caused by the bound electrons absorbing light energy and getting
excited into higher-energy levels in the solid. Bound electron absorption happens at
relatively high frequencies, so that in practice, as we shall see later, the
low-frequency damping is mainly due to free charges, and the high-frequency
damping is mainly due to band-to-band absorption. Noting that the energy density
is proportional to the square of the electric field amplitude, we recover the Beer-
Lambert law:

|EP* = |Eof e
- (10.15)
C

where a is the absorption coefficient and measured in units of m~" in the MKS units
as used here.

A word of caution as to the definition of the absorption coefficient. In the
transmission of light through a material, the electric field amplitude can decay not
just because of absorption. The decay may be due to a disorder, i.e., scattering, and
this is why some authors prefer to compute the power dissipated per unit length.
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The optical power density of the electromagnetic wave in units of W/m? is given by
the time averaged Poynting vector:

S=1/2Re(E xH*) = %80 (ED) e 7 (10.16)

10.2.2 Reflectivity

Before getting on with the evaluation of the complex permittivities and conductivity,
it is convenient to investigate what happens when photons, or in other words the light
beam, are incident onto a medium with complex refractive index coming from free
space. Consider for simplicity normal incidence as shown in Fig. 10.1.

The wavevector k = kg, has a z-component only and is traveling in the z-direction.
We assume that the wave is polarized with its E, vector lying in the x-y plane and
pointing in the x-direction. The boundary of the two media is at z = 0, so in the
region z > 0, i.e., in the medium, the EM wave is traveling in one direction only and
given by:

N
E.(t,z) = Eg exp (la)TZ — t> (10.17)

We are assuming that the medium is thick, so that there is no back reflected wave
from a second interface. In the z < 0 region, free space, we have both the incoming
wave E; and the reflected wave E,:

E,(t,z) = E; exp [iw (E - t)] +E, exp [—iw (E + t)] (10.18)
c c
The continuity requirement of the electric field at the boundary z = 0 gives us:
Ey=E;,+E, (10.19)

Knowing the electric field allows us to deduce the magnetic field using Maxwell’s
equation so that, for z > 0:

Fig. 10.1 The reflection and
transmission process
expressed in terms of a
diagram

0 z
e

Ey

T—»z—v ko
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-1 _
H, = o (Nko)E, (10.20)
and then use the continuity condition for H at the boundary, which gives:
NEy, =E; - E, (10.21)
Note the magnetic field at z = 0 depends on the direction of propagation.

From this pair of equations, we can deduce the relation:

—-—=— (10.22)
e 2
The ratio of reflected to incident power is the reflectivity R = ‘F‘ of the medium,
and the squared of the absolute value of Eq. (10.22) gives:

1-N
1+N

2_ (ﬁ—1)2+l<2
(i+1)° +&2

R = ‘ (10.23)

Thus knowing the complex refractive index as a function of frequency allows us
to immediately calculate the reflectivity of a medium. One should note that there is,
at this stage, no simple intuitive way of seeing from Eq. (10.23) when a medium is
highly reflective or not. One has to calculate the equation. In order to develop this
intuition, we need to go one step forward and actually derive explicit expressions for
the refractive index in limiting situations of interest. Before that, it is useful and
instructive to also consider the optical transmission and reflection through a slab of
finite thickness d.

10.2.3 Transmission Through a Thin Slab

If R is the reflectivity, A the absorbance, and 7 the transmissivity, for a slab of finite
thickness d, we must, by energy conservation, haveR + T+ A = 1. In the region z < 0,
we have two waves as before, the incoming and reflected waves E; and E,,. In region
z> 0, inside the medium, the EM wave now also consists of two components, one
moving forward as before E;; and one back reflected from the second interface E,,.
The second interface is at z = d. The waves E;; and E,, are traveling inside the
medium and are therefore simply related via Eq. (10.6) to the corresponding waves at
z =d, E’,;, and E’,, by a phase factor ¢V Qutside, we have the outgoing
transmitted wave into free space E,;. The boundary condition for the electric and
magnetic field must be taken at z = 0 and at z = d and give four equations for four
unknowns (E,;, E;;, E,2, E;») and allow an explicit solution of this problem as before.

Ep

2
2| becomes:

The transmissivity T defined as
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2
(1 — |r01|2) e“’d

2 2
(1 — |ro1] e*”d> (10.24)

_12
2 _
raf = |15

where a = 2%k is the absorption coefficient in the medium and Ir01I2 can be
recognized to be from Eq. (10.23) the reflectivity of the slab if it were very thick.

2
En
E;

_ |r01|2(1 - e""‘j)2

2
(1 — |r01 |2€_ad)

From Egs. (10.24 and 10.25), one can now deduce the absorbance A — 1 — R — T.
In the limit of a very thick slab, e~*? — Oand R reduces to the previous expression.

The reflectivity of the slab R is given by the ratio and correspondingly:

R (10.25)

10.3 The Free Carrier Contribution to the Complex
Refractive Index

10.3.1 The Drude Theory of Conductivity

In Chap. 7 we calculated the conductivity of a nearly free electron gas in a dc field
using a very simple relaxation time model also called the Drude model. We now
consider the same model but allow the electric field to be time dependent. In
particular, this can be the electric field vector of an impinging light (EM) wave as
considered above.

Newton’s law for carriers of effective mass m* in a time-dependent field Eye
and subject to the frictional force (Chap. 8) can be written as:

—iwt

d*x dx1
* * L gE(t 10.26
" T w gE(1) ( )
The displacement x(#) of the particle is also expected to oscillate in time and
follow the field, so that a solution to this equation could be x(¢) = xpe~"". Substitute
this trial function into Eq. (10.26) and differentiate in time. The condition that this
can be a solution to Eq. (10.26) is that:

—m*atxg — m* L xy = —qE, (10.27)
T

which immediately allows us to extract the amplitude x, as:
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qt 1
= E 10.28
0 e (1 — ian’) 0 ( )

When negative charges move against a positive background, they produce a
dipole. The polarization density produced by the time-varying field is the next
quantity of interest. Thus the polarization density produced by a density n. of
displaced electronic charges is given by:

m*iw \1 — iwt

g 1 ;
P = —n.qx(t) = feq T < >Eoe"‘” (10.29)

from which we can now also deduce the polarizability or optical susceptibility as the
ratio:

Pe(1)

ay(w) = oo (10.30)
and write:
2
n.q-t 1
=— 10.31
(@) m*iw <1 - ian'> ( )
And for the complex conductivity we have, from the current:
dx 2
neq g neq-t 1

Epe! o() m* <1 — ian-) ( )

From the polarizability, we can deduce the relative permittivity produced by

nearly free electrons, in the usual electrodynamic way (g5 = (l + Z—g) ):

7 1
R L ( ) (10.33)

gom*io \1 — iwt

It is convenient and useful to rewrite the relative permittivity in a form which
involves the plasma frequency w,, and rewrite it as:

0)2 .
er=1--2 %7’2) (10.34)
o- \ 1+ (w1)
2
2 neq
_ 10.35
b= e (10.35)

The plasma frequency is the frequency at which the electron gas would oscillate
as a whole if the electrons were collectively displaced and released from their
equilibrium position. This can happen as follows: the electrons (n. per unit volume)
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are all displaced by a field by a distance x. This displacement causes a polarization
P = n.gx, which produces an electric field and restoring force=—n.g*x/eo. The
restoring force acting on each electron is proportional to the displacement, and we

. . . . 2
thus have simple harmonic motion with frequency w, = 4 /m";‘io.

Now that we have the permittivity, we can apply it to find out a bit more about the
optical properties of systems with free charge: metallic systems. Assume that the
solid in question is a pure nearly free electron gas embedded in a jellium. A real
metal will have both free and bound electron contributions, but the free electron
responds strongly, and this term is often dominant. We will consider the bound
electrons in the next section. There are two interesting limits for the refractive index.

First, when wr << 1, the second complex term on the right-hand side of
Eq. (10.34) dominates and e{w) reduces to:

2
ef(w) ~i Neq T

10.36
eom*w ( )
the permittivity is purely imaginary, and the square root of i has an equal real and
imaginary part of cos(z/4) and sin(z/4), giving:

n(w) = {L’zf}m (10.37)

2eom™* w

and which via Eq. (10.27) gives rise to a high reflection coefficient for small
frequencies.

Secondly, in the limit that wz >> 1, the relative permittivity is dominated by the
real part and reduces to the form:

er(w) ~ {l —w—;} (10.38)

w?

In this limit the permittivity is purely real, which means that there is no absorp-
tion. It is also negative when the frequency is smaller than the plasma frequency.
This implies that in this region, the refractive index is purely imaginary, and
according to Eq. (10.23), we have perfect reflectance. Perfect reflectance means
that the wave is not allowed to travel inside the medium. It can just tunnel in a little
and go back out again. The fact that the permittivity can become less than 1, and
even negative, turns out to be one of the most significant properties of metallic
systems. It gives rise to the phenomenon of surface plasmon excitations at metal-
dielectric interfaces and in metal particles. These are collective charge oscillations
which can be excited by light, are mobile, and absorb the light very efficiently when
the energy momentum conservation laws for their production are satisfied. Indeed
when e(w) = 0, a transverse wave can excite a longitudinal wave. The topic of
surface plasmons is outside the scope of this textbook, but the reader can consult the
textbook by Peyghambarian et al. (1993).
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Fig. 10.2 The reflectivity and transmissivity of an electron gas (thin film) (Peyghambarian et al.
1993, p. 62, Fig. 3., Reprinted with permission)

When the frequency is above the plasma frequency, the permittivity is real and
when € < 1, it vanishes at the plasma frequency. The refractive index in this limit
becomes:

(10.39)

and gives rise to an unattenuated wave which is part reflected and part transmitted.
The bulk reflectivity of a metal can be evaluated numerically and is given by
substituting Eq. (10.33) into Eq. (10.23). The result is shown in Fig. 10.2.

10.3.2 The Classical and Quantum Conductivity

One question the reader may ask at this stage is, how come it is possible to describe
the optical properties of an electron gas with classical methods and get the right
answers? The answer to this question is that if one carries through the fully quantum
mechanical derivations of the above results, one arrives in the limit of weak
scattering, to essentially the same answers. The quantum mechanical derivation
does however tell us two new important things: (1) that the lifetime 7 entering the
Drude theory is not classical friction, but the quantum mechanical coherence time of
electrons. It is the average time a particle stays in an eigenstate before it is scattered
out of it by a phonon or an impurity potential, defect, etc. and (2) that true quantum
effects become important when the electron gas is not treatable in the nearly free
electron approximation anymore. If the metallic system is an alloy, or a liquid metal,
or an amorphous medium, for example, then the quantum description matters very
much. Indeed in this limit, the improved quantum mechanical theory tells us that
there is a serious modification which has to be made to the Drude result. The
necessary change is to replace the carrier density n, with the expression:
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1
n. — Eg(Ef)m* ‘vf|2

c(0) = g(Ef)quZT/m*

(10.40)

The above new equation for the conductivity signifies that the carrier density in
the Drude formula is in reality the density of states at the Fermi level times the Fermi
energy (Fermi velocity squared times 'z effective mass). In the nearly free electron
gas, the two are identical and the right-hand side of Eq. (10.40) is exactly n.. Butin a
more complex metal, the density of states at the Fermi energy can be very different
from the free electron form, both in its energy dependence and its value. Indeed if the
density of states at the Fermi level is zero, or below a “minimum number,” then the
electron gas has no mobile carriers which can respond to a field, and the system does
not conduct at all! In classical physics, electrons do not obey Fermi statistics, and all
carriers can participate in conduction. Not so in quantum physics, Eq. (10.39) says
that only the ones near the Fermi level can respond to a small electric field. Changing
the density of states at the Fermi level therefore strongly affects the transport
properties and consequently also the optical properties. This observation is particu-
larly important for low-dimensional systems, where it is possible to engineer and
externally manipulate the band structure and therefore the density of states at Ex.

The reader is referred to Madelung’s (1978) and Ziman’s (1964, 1969) books in
the further reading section for a more detailed discussion of quantum transport.

10.4 The Bound and Valence Electron Contributions
to the Permittivity

10.4.1 Time-Dependent Perturbation Theory

Consider now the influence of bound electrons on the optical properties. When
bound charges are subject to an electric field, they will also be displaced, but not
freely, and not to “infinity,” as the frequency tends to zero. For bound electrons, the
external field is only a small perturbation, which gives rise to polarization of the
bonds and orbits, and we can apply methods of quantum mechanical perturbation
theory. We consider therefore the effect of the time-dependent external field as an
additional new term in the total energy or Hamiltonian of the system:

V()= —qE.7 (10.41)

The next step is to solve the time-dependent Schrodinger equation in Chap. 4 in
the presence of this new term. Previously the Hamiltonian was time independent,
and we could therefore write the unperturbed solutions in the usual way as shown in
Chap. 4, namely, as the set:
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W, (7,1) = @,(r)e B/ (10.42)

with energy eigenvalues E,,. In the presence of the perturbation, the electrons are no
longer in their stationary sates but can now admix with other, higher-lying excited
states and change their orbital configurations and in principle also undergo
transitions into these excited states. The change of spatial configuration is just
what polarization is in the classical sense, and the transition into excited states is
what we call absorption of energy from the light beam. We shall now see how
polarization and absorption can be computed in quantum mechanics. We do this by
assuming without loss of generality that the system was in its ground state g for r <0,
and then the effect of the perturbation applied at = 0 is to generate a new electronic
configuration which is a superposition of the ground state and all the other excited
states of the system. The new wavefunction is a solution of the time-dependent
Schrodinger equation in the presence of the coupling term described in Eq. (10.41).
We emphasize that the principle of superposition is rigorously true and part of the
principles of quantum mechanics we discussed in Chap. 4. So we can write for 7> 0:

—

W(r, 1) = Ope B 1> "¢, (1) Do (10.43)
n#g

where g denotes the ground state and n the excited states. The next step is to
determine the new admixture coefficients c,(f). We do this by substituting
Eq. (10.43) into the time-dependent Schrodinger equation (see Eq. 4.4a)). On one
side we take the derivative with respect to time to obtain:

0

ow o
St T (10.44)

ity = Eg@ee ™" + 3 Encn()@ue " 43 in
n#g n#g

On the other side of the Schrodinger equation, we have:

{Ho + V(t)}‘l’(7’ t) = qu)ge—iEgt/h + ZEncn<t>q)ne_iE”t/h iy
n#g

v -%(e_iwt +e)W(r, 1) (10.45)

We now equate Egs. (10.44 and 10.45) and cancel the common terms. This leaves
the last terms of the right-hand side of Eqs. (10.44 and 10.45) as equal to each other.
Now we multiply the new equation on both sides with dD;'.‘ ¢EitM and integrate over
space. This operation eliminates all orthogonal terms, because we are using the fact
that states belonging to different eigenvalues are orthogonal to each other (see
Eq. 4.6). We also drop all terms which involve the product of the perturbation V(t)
and a coefficient c,() because such terms are necessarily of second order or above in
the strength of the perturbation. The orthogonality rule, and the first-order
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perturbation approximation, only leaves one term in the sum of the last term on the
right-hand side of Eq. (10.45) which now gives:

(eiwt + e—iwf)ei(E/_Eg)t/hq)g (7) (1046)

oyl

dc: - o =
i%:—/drq)*j(r)qr

This can be integrated to give:

- l_ei(huH-Ej—Eg)z/h l_ei(—hw-&-Ej—Eg)z/h
cj(t)=—qE - r - (10.47)
0 Js| ho+ (E;— Ey) ho — (E; — Ey)
where the position matrix element is:
7:/d7q>*,(7) 7 @ (1) (10.48)
Js

For simplicity we assume that the wave is polarized in the x-direction so the first
factor reduces to gEjxj,. Equation (10.48) is, apart from a factor ¢, the matrix
element of the dipole moment of the electron; it is a measure of how much the
excited state j has ground state g character mixed into it when acted on by the
position coordinate. The matrix element of an operator Eq. (10.48), in this case the

displacement, 7/}, is sometimes also written in the Dirac notation <a‘7’ ﬁ>.
Q,

The above results now allow us to compute how the applied field polarizes the
bound electron system. By definition the induced time-dependent dipole moment
P.(7) is given by the charge g times the expectation value of the position operator:

Pi(t) = —q/d (7, )2 (7, 1) (10.49)

Substitute the solution from the wavefunction, and keep only the linear terms in
the coefficients which immediately give us:

P, (1) =— Zq(xg,-cj(t)e_i“’/’ + xjp; ™ ()e™ ") (10.50)

_ A 2 1 1 x [ ,—iot —iwt
Px(t)—zj:q |xg,| (Ejo—hw+Ejo+hw>EO(e +e ) (10.51)

From the dipole moment induced by the field, we can now deduce the polariz-
ability in the usual way:

2Ej0
2
E?o — (hw)

ap(@) = Plxg|”

J

(10.52)

and by introducing the oscillator strength Fj:
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21 g el (10.53)

FJ: h2

We can rewrite the ground state polarizability in an elegant form:

F.
ay(w) =L >t (10.54)

. — w?

with w;, = (E; — Eg)/h. The significance of this expression becomes clear when we
note that the oscillator strengths obey a simple sum rule:

Y Fi=1 (10.55)

This sum rule is important. It is a check of consistency and follows from two
quantum mechanical identities. The momentum position commutation relation:

xp, — pXx =ih (10.56)

and taking the expectation value of this equation and expanding over a complete set
of intermediate states:

ih = Z (xilpli,x - pil,xxli) (10.57)
I
and using an identity from Heisenberg equation of motion which reads:
Pijx = X (Ej — Ei)mo/ih (10.58)

Substituting Eq. (10.58) into Eq. (10.57) gives the sum rule. Now that we know
the bound electron polarizability, we can compute the relative permittivity by
considering the polarizability of N, of such atoms or molecules per unit volume.

Nypg? F;
=1 10.59
8(0)) + oMo zj: 0)3 — 0)2 ( )

The sum now runs over the eigenstates of one such elementary unit, i.e., an atom
or a molecule. In the zero frequency limit, we have:

2

Fja)p
2
J

£(0) =1+ Z = (10.60)

And in the high-frequency limit, when the light energy exceeds all bound-to-bound
transitions, we recover the corresponding Drude result:
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w2

e(w)=1 _a)_g (10.61)
which also implies that close to the plasma frequency, the permittivity can be
negative, and the refractive index is purely imaginary implying from Eq. (10.23)
perfect reflection.

10.4.2 Real Transitions and Absorption of Light

So far we have not considered what happens when the energy of the photon matches
the energy difference between two bound levels. From Eq. (10.49), we should expect
an infinite response. But what does this mean? When we have matching of energies,
we should expect the electron to reach the excited state and the photon to be
absorbed. In order to track such a transition mathematically, we go back to
Eq. (10.47) and evaluate the probability that the particle is in the excited state j at
time ¢ having started at = 0 in the ground state. From Eq. (10.47) we note that in the
expression for ¢(t), there are two terms, one corresponding to the possibility of
absorption, namely, a resonance when /@ = A, and one corresponding to emission.
For simplicity we keep the absorption term only so we have:

2 sin?(w; — w)1/2
(0~ )’

The right-hand term or sine function is strongly peaked at w; = @ and decays
strongly with frequencys; it is a well-known function of mathematical physics and is
best analyzed if, instead of the probability, we consider the probability per unit time
of finding the particle in the excited state j that is divided by time ¢ to study W; = |
cj(t)lzlt. Dividing the right-hand side of Eq. (10.62) by ¢, and letting time go to
infinity, gives us a function which we recognize to be the well-known Dirac delta
function:

|e;j(2)

X
2 ‘qhg’ X (10.62)

a2 R
o sin [(ha, ha)z)t/zh} _2z 8(hw; — ho) (10.63)
1 (0; — w)" /4 f

The Dirac delta function §(x) has the property that:
o0
/ dxé(x) =1 (10.64)

And also as the imaginary part of the fraction:
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Im (x_l in) = 75(x) (10.65)

with infinitesimal #. So basically Eq. (10.62) contains the statement that the particle
can end up in an excited state if energy is conserved in the long time limit. Although
the Heisenberg uncertainty relation allows energy not to be conserved at short times,
to complete the transition, and to make a temporary admixture real, energy conser-
vation must be satisfied in the long time limit.

We can summarize this result in the form known as the Fermi’s golden rule which
states that if a particle is subject to perturbation of the form 2V(r) cos wt, then the
probability per unit time of finding it in an eigenstate j given that it started in g at
t = 0 is given by the formula:

2
Wg,:%” /d?obj*v(?)q)g 8(hw — E; + Ey) (10.66)

Now we can understand the meaning of the resonances in the permittivity
expression Eq. (10.59). They do indeed indicate absorption processes, and the way
to take care of the singularity is to introduce the notion of a lifetime. Clearly when
excited, the electron can recombine back down again so it has a finite lifetime in the
excited state, and by Heisenberg uncertainty principle, because of this time uncer-
tainty, it has a finite energy uncertainty or energy broadening. There is a broadening
associated with each level j, and the lifetime is measured in Hz. The broadening
introduces a complex number in the denominators of Eq. (10.47) so that the relative
permittivity becomes the complex function (7' = 0 K):

Nyg? F;
=1 E 10.67
e(®) + €0mo 45 w% —w? —iol; ( )

This function has a real and an imaginary part. The imaginary part, we know, is
related to the absorption coefficient, and this time it is not the joule heating of free
electrons as in Drude theory but the absorption of photons by bound electrons in the
solid. We are now in the position to write down an expression for the relative
permittivity of the solid including both bound N, and free electrons n.:

Npg? F; neq’ ( @t — i )
elw)=1+ - 10.68
@ =1+ g 3 (10.68)

o —iwl;  g,m* \w?7* + 1

At this stage it is also useful to generalize the bound relative permittivity to finite
temperatures, allowing the light to admix bound levels up and admix thermally
excited levels down in energy, to find (I'; largest of the two widths and f; is the
Fermi-Dirac function):

e(w) =1+

Nog? 5 hlxy|"(fi = 1)) (@) — o) (10.69)

2 2
0 L ) — 2 — il
h-eg iz (a)j w,) w* — iol;
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10.4.3 The Permittivity of a Semiconductor

We can apply these results to a semiconductor. Consider a direct bandgap semicon-
ductor with no free carriers for the sake of simplicity. In this case the bound electrons

are in the valence band, and the quantum label j becomes a Bloch k -state, and the

number of orbital N,/volume falls under the Bloch integral k. The transitions that the
light can induce are from valence to conduction band and involve a negligible
momentum of the light wave. For band-edge absorption, this is only possible with
direct bandgap materials (see Fig. 5.17). The indirect bandgap systems will be
discussed later on in this chapter. In direct bandgap materials, or for sufficiently
high photon energy, Eq. (10. 67) means that the perm1tt1v1ty involves to a good

approximation only the vertical k valence to same k conduction band admixtures.
We also assume that the valence band is full and the conduction band is empty so
that we have (T = 0 K):

1

2
(@ —op) —o

2
es(@) ~ 1+ gfmo SF. (10.70)
x

where the Bloch sum over the occupied states is normalized by the volume and
defined as:

> =N, (10.71)

v

with N, denoting the effective number of bound eigenstates per unit volume. At
® = 0, the largest contributions in this sum are from the band-edge states, so the
denominator can be replaced by the bandgap E,/#, and the oscillator strength for the
vertical band-to-band transition F z is to a good approximation reducible under the

sum to give the total valence band electron density and therefore the expression:

2 2
q Niq ( b)2
Fo~ _ 10.72
moé€o Xk: £ egmy  \ " ( )
hw? ?
£(0) ~ 14+ [ =2 (10.73)
Eq

where w,’,’ is the effective bound electron plasma frequency and can be obtained by
comparison with the experiment. It should be roughly a factor% (Ep,, 1s the valence
band width) smaller than the absolute valence band plasma frequency. This expres-
sion is valid for the low-frequency permittivity of a semiconductor of energy gap E,.
Given that a bandgap can typically be ~ 3 x 10'* Hz, we see that the low-frequency
limit can go a long way. So in the range 0~10"" Hz, for example, the zero frequency
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form is quite adequate, and for a doped semiconductor, the bound valence band
contribution can be combined with the free electron contribution.

At finite temperature, the above expression is still a good approximation in a
wider gap semiconductor, but the full generalization for finite temperature,
substituting for the oscillator strength, and including the broadening, is in fact:

OO e (e,

(@) ~ 14 ’ ;
83( +h€oz ke, kv w a); _|_a); ) +72
Y

(10.74)

where the sum is now over the k index normalized per unit volume. The x-position
matrix element has to be evaluated using the valence and conduction band Bloch
functions. Fortunately and to a good approximation, this matrix element can be
calculated using Kane theory to give us the result (Rosencher and Vinter 2002):

- - - 1> 1HE
wlP = d7 s (k)x®, (k)| =-="2 10.75
\xkk| ‘/ r ( )x ( ) 3E§m0 ( )

where Ep is the Kane parameter and a number which varies only slightly between
20 and 25 eV in most semiconductors (see also Sect. 5.7). This powerful last
equation now allows us to compute the permittivity for most situations of interest
in semiconductor physics. All we need for Eq. (10.74) is the density of band states
which as we know is usually well described in the nearly free electron
approximation.

10.4.4 The Effect of Bound Electrons on the Low-Frequency Optical
Properties

We have seen that bound electrons usually contribute frequency dependence to the
permittivity only at high frequencies. When we consider both free and bound
carriers, we must go back and see how one affects the other. One of the important
consequences of ¢, on the free carrier response is in the regime wz > 1 discussed
previously for free carriers only. The combined permittivity in this regime is
approximately real, but the bound electron contribution is significant, so that the
refractive index now becomes:

W 1/2
i(w) = ((1 + &) <1 - M)) (10.76)

or as is the notation of some other authors, one can also replace:

e(00) =1+ ¢ (10.77)
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One can think of Eq. (10.76) as a renormalization of the plasma frequency of the
electrons to a)lz, — a)lz, /(1 + &). This is a real effect because the electrons are now

oscillating in a medium in which the electric field of the restoring force is screened
by the permittivity of the bound carriers. The low-frequency permittivities of some
important semiconductors are given in Appendix 4, for example, GaAs, €, = 13.1;
Si, &, = 11.9; and C, ¢, = 5.7. From Eq. (10.73), it follows that the large bandgap
materials are expected to have the lower permittivity, and this is in general observed.

10.5 The Optical Absorption in Semiconductors
10.5.1 Absorption Coefficient

The optical absorption of a direct bandgap semiconductor is given by the imaginary
part of the permittivity Eq. (10.67) (Fig. 10.3).
This is a sum of energy-conserving transitions described by matrix elements

which take an electron from the valence band vertically up (i.e., same k value) to
the conduction band. The number of such terms is therefore directly proportional to
the number of available band states. Thus the optical absorption properties of
semiconductors are intimately related to the density of allowed states in the conduc-
tion and valence bands.

The absorption process is characterized by the absorption coefficient, a(w), which
is usually expressed in units of cm~' or m~' in MKS, as used in this book. This
quantity depends on the incident photon energy 7w and expresses the ratio of the
number of photons actually absorbed by the crystal per unit volume per second, to
the number of incident photons per unit area per second. The calculation of the
absorption coefficient for a direct bandgap material resembles that of the density of

states but takes into account the E— k relationships in both the conduction band for
electrons (with effective mass m,) and the valence band for holes (with effective
mass my,). This consideration results from two important conservation laws that rule

Fig. 10.3 Electronic a b
transition, (a) from the
valence band to the
conduction band resulting
from the absorption of a
photon, (b) from the
conduction band to the o
valence band resulting into the Ec
emission of a photon
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the optical absorption process: (i) the total energy (electron+hole+photon) must be
conserved and (ii) the total momentum or wavevector must also be conserved.
Assuming that in Eq. (10.70), the oscillator strength F : is only a weak function of

—

k which allows us to take the imaginary part of the permittivity as the delta function
sum to obtain for absorption, with:

Im ! ) {ha} — Ec(k) +Ey (Z)} (10.78)

— —

fiw — Ec(k) —|—Ev(k) —in

and therefore having split up the expression in Eq. (10.70), we have:

2nk = ——Fy. | —=—d k 6| hw —Ec(k) +Ey(k 10.79
e Mmoé&o /271(0 < “ C( )+ V( )> ( )

The delta function sum is called the joint density of states per volume and can be
evaluated as the ordinary density of states by introducing the reduced mass via
(remember the valence band energy is defined negative):

KRR RkE (1)
o = = —

= — 10.80
2m,  2my, 2 ( )

m,

The absorption coefficient can then be found to be proportional to the density of
states, with the effective mass m* replaced by the reduced effective mass defined as:

x MMy
-

- 10.81
s~ (10.81)

For example, in a three-dimensional bulk semiconductor structure with direct
bandgap:

%
hq? 1 [2m*
2tk = W%Fc{z—th—z) hoo — Eg} (10.82)

.. . . . o .
where by definition, the absorption coefficient is « = — 2k and where %iw is the
nc

incident photon energy, E, is the energy gap of the semiconductor, and F,,. can be
evaluated using Kane theory Eq. (10.75) (see also Sect. 5.6).

A word of caution: when using approximation methods such as Kane theory, it
can happen that the oscillator strength defined using the bare mass as in Eq. (10.53)
exceeds 1, which is inconsistent with the sum rule. This is because the sum rule
should really be evaluated within the same scheme so that m, in Eq. (10.53) should
be replaced by the Kane m* (see Sect. 5.7). The expression in the curly bracket on
the right-hand side of Eq. (10.82) is called the electron-hole or joint density of states
because it takes into account the density of states in both the conduction and valence
bands.
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In reality, the absorption spectra do not reproduce exactly the joint density of
states because there are other processes which contribute to absorption as well.
These are due to photons coupling to lattice vibrations, i.e., electron-phonon
interactions and also excitonic effects. Let us first consider the excitonic
contribution.

10.5.2 Excitonic Effects

Let us now consider excitonic effects. An electron excited into the conduction band
is a negatively charged particle in a neutral medium which will interact with the
resulting hole created in the valence band (positively charged particle). In other
words when light creates an e-h pair, it is not yet a free pair. This pair of charged
particles is created locally, and they attract each other by the Coulomb force. They
form a unit called the exciton. In an exciton, the electron and the hole attract each
other and move together as a single particle consisting of a coupled (i.e., not free)
electron-hole pair. This pair resembles a hydrogen atom where the role of the nucleus
is played by the hole.

An exciton has two degrees of freedom: the relative motion of the electron and the
hole and the motion of the exciton as a single unit. As in the case of the hydrogen
atom, the relative motion is quantized, and the energy spectrum of an exciton
consists of discrete energy levels in the bandgap corresponding to the ground state
and the excited states of an exciton. But unlike in hydrogen, the pair is moving in a
medium which has a finite polarizability as we have just seen above. So the Coulomb
potential is screened by the medium. Using the results of section O for the hydrogen
atom, we obtain the energy associated with the relative motion of an exciton:

E,= -2 (10.83)

where n = 1,2,... is an integer and E, is the exciton Rydberg energy. This shows
that, similarly to the hydrogen atom, the energy spectrum of the relative motion of an
exciton consists of discrete levels. Each level is indexed by a main quantum number
n, and the wavefunctions are characterized by orbital quantum numbers / =0, 1, . . .,

n — 1 and magnetic quantum numbers m = — I, — [+ 1, ..., I. The Rydberg energy
is given by:
* 4
Egy=—rT (10.84)
" 8(ereoh)

with ¢, is the real part of the zero-frequency relative permittivity or the dielectric
constant of the material and g, is the permittivity of free space and / is Planck’s
constant. Furthermore, by defining an exciton Bohr radius, ap, derived from
Eq. (1.3) such that:
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Fig. 10.4 Excitonic
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ap = ——— (10.85)

we can rewrite the Rydberg energy as:

E—_4 __T (10.86)
Y 8ree0ap 2m*ag?

The first fraction is similar to Eq. (1.5) and expresses the hydrogen atom analogy
for the exciton. The energy spacing between the ground state exciton level and the
bottom of the conduction band is called the exciton binding energy and physically
represents the energy needed to separate the electron and the hole into two free
particles. We note that because of the permittivity of the host €, = £,(0) > 1, the
binding energy is considerably reduced compared to the hydrogen atom. Given that
for a semiconductor like silicon, €, ~ 10, and this is true for most semiconductors of
interest (&, ~ 10 — 15), we have a reduction of energy of ~100-300 from 13 to
~0.13 eV and less.

Excitons can be efficient absorbers of light. When excitons are involved in the
optical absorption process, the absorption spectrum exhibits additional sharp peaks
within the energy gap, near the bandgap energy (E,), corresponding to the excitonic
energy levels. This is illustrated in Fig. 10.4 for a bulk semiconductor (3D). In
addition, even at higher energies, deep inside the conduction band where excitons
are typically not encountered, the absorption coefficient is still influenced by the
Coulomb interaction between electrons and holes.

It should be noted that in bulk semiconductors, the presence of excitons has been
verified only at cryogenic temperatures. This is because an exciton has a small
binding energy, and electron-phonon interactions can, at higher temperatures, easily
break up the exciton into free electrons and holes, i.e., the lifetime of an exciton is
very short at high temperatures.

However, in low-dimensional structures, one can observe excitonic effects at
much higher temperatures because the spatial confinement reduces the screening
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efficiency and enhances the binding of the pair; they have a smaller chance to escape
and thus a larger exciton binding energy. We shall see this in Chap. 12.

10.5.3 Direct and Indirect Bandgap Absorption

The formalism for the optical permittivity of semiconductors above applies mainly
for the direct bandgap materials because it assumes transitions with zero momentum
exchange. This includes the important class of materials such as GaAs and InAs.
Now let us consider the indirect bandgap systems.

In the chapter where we discussed the band structure of semiconductors, recall
Fig. 5.17 in Chap. 5; we encountered two distinct classes of materials: the direct and
indirect bandgap materials. Semiconductors like Si and Ge have indirect bandgaps.
That means that the lowest photon energy that can be absorbed necessarily involves
a change of momentum, and this process is not included in the formalism of
Eq. (10.74).

From Fig. 5.17 for Ge, we see that the lowest-energy absorption is one where an
electron is taken out of the top of the valence band at the I" point and put into the
lowest energy in the conduction band at the X point. The momentum change is
substantial and cannot be supplied by the photon; it must come from another source.
The most obvious one is the phonon bath. Phonons can couple to the photons and
make the transition happen. They can do this in absorption or in emission of a
phonon. Energy and momentum can be satisfied in particular with optical phonons
where the energy dispersion with momentum is weak and can be neglected for most
purposes. Energy conservation gives:

—

E.(k + Q) = E,(k) £ 12 + hoo (10.87)

where the required momentum Q is fixed by the band structure. The process can be
one of the emissions in which case the photon needs more energy than the indirect
bandgap. The emission process is weakly dependent on temperature and involves the
factor 1/ (em/ kT _ 1) + 1 = N(w) + 1. Phonon absorption, on the other hand, can
happen with photon energies less than the indirect bandgap, but only if such phonons
are excited, so here we have a Bose factor N(w) which is temperature dependent. In
summary after doing the integrations in the corresponding Fermi’s golden rule
formulae, one arrives at the two indirect absorption coefficients which have the
form (assisted with the emission and absorption of an optical phonon, respectively):

(hw — ES, — 1)*

Aep = Ae 1 — o h2/kT

H(ha) — Elfg;ld — h.Q)
(10.88)
(hw — ES, + 1€
QAep = Ag 1 —I—ehg/k”T

2
) 0(hw — E§, + hQ)
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Fig. 10.5 Band-edge absorption of GaAs showing also the evolution of the exciton absorption for
different temperatures left to right: 294 K;186 K; 90 K; 21 K (Reprinted figure with permission from
Sturge 1962, p. 768, Fig. 3. Copyright 1962 by the American Physical Society)

The A's are constants, and the theta function @ is zero when the argument is less
than zero and one otherwise (Peyghambarian et al. 1993). Note the different
(squared) behaviors of the band-edge absorption Eq. (10.88) with photon energy
when compared with the direct bandgap case Eq. (10.82) (square root).

Figures 10.5 and 10.6 illustrate the absorption edges of GaAs and Ge. The GaAs
data is plotted on a linear scale and the Ge data logarithmically so that one can see the
crossover from indirect to direct absorption at the inflection point of the curve.

When a phonon is needed, the transition is more complex, involves three bodies,
and is therefore also less efficient. When an electron is excited in the conduction

band with high energy, so that the direct k=0 transition is possible, it will in general
thermalize down very quickly to the indirect band edge, and light emission will only
take place at the final recombination step at the lowest bandgap. In an indirect
bandgap system, a phonon is needed, and therefore materials such as Ge and Si
will be poor light-emitting systems (Fig. 10.6).

10.6 The Effect of Phonons on the Permittivity
10.6.1 Photon Polar Mode Coupling

We have so far included free and bound electrons contributions in the permittivity.
We have discussed the effect of excitons, so now we must ask: what other processes
can affect the optical response of a solid? Clearly at finite temperatures, the lattice
atoms are thermally excited and vibrate. We have seen that the atomic bonds can be
polar, and the lattice dipoles can vibrate and be stimulated to vibrate by light waves.
This means that in particular, it is also possible for such polar lattice vibrations to
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Fig. 10.6 The band-edge absorption of Ge on a logarithmic scale. Note the change of behavior at
102 cm™' from indirect to direct band-to-band transitions (Reprinted from Newman and Tyler
(1959), p. 58, Fig. 1. Copyright (1959), with permission from Elsevier)

absorb energy from the light passing through the medium. The effect of light
coupling to atomic motion is not negligible in semiconductors with polar modes
and needs special treatment. The general treatment of photon-phonon coupling, i.e.,
including acoustic coupling and many phonon effects, is beyond the scope of this
textbook. In this chapter, we will develop the methodology for the strongest interac-
tion, namely, for the polar lattice.

To investigate the influence of atomic vibrations on the permittivity, we consider
the two-atom model of lattice vibrations from Chap. 6. If the bond is polar, then the
atoms in the bond carry a net charge and couple to the light wave. Furthermore
the vibrating atoms or charge can reemit light and also give up its extra energy to
other phonon modes. So we also introduce a damping term y to take care of this
effect. The equation of motion Eq. (6.5) now becomes:
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d2 d —iwt
M, - +M1yd— — C(Vas1 + Va1 — 2u,) = —qEge™™
10.89
dzv’l d —iwt ( )
M, 3 + Moy— r — C(Upg1 + uy—1 — 2vy) = qEge

where we have assumed that the M; mass is negatively charged and M, positively
charged. The damping term is here, as before, proportional to the velocity.

We are not interested in the complete solution of this problem, so we focus only
on those modes which could result in absorption or strong scattering of light, and we
know that this is only possible when momentum is conserved. Since the photon only
has negligible momentum to exchange, light can only excite or absorb phonons with
a small momentum. It can absorb or emit acoustic and optical modes with small
momentum exchange. With optical modes it is possible to excite relatively high-
energy phonons with almost zero momentum. Indeed energy exchange can take
place with optical modes near k = 0. So we focus only on those solutions to
Eq. (10.89), namely, the ones at or near k = 0. The k = 0 optical phonon modes
are the ones where the two sublattices move in phase relative to each other. We try a
k = 0 mode:

Uyt =A é‘iiwt
" 1 i (10.90)
Un(t) — Azeﬂ(ut
and find from Eq. (10.89):
2C — M, (0’ + iyw)]A| — 2CA; = —qE,
[ (" + iyw)|As 2 = —qE, (10.91)
[2C — My (w? + iyw)|A; — 2CA; = —gE,
The solution is:
A= —qEy
M, Q] — (@ + iyw
1 [ ! ’ )] (10.92)
A, = qE,
M@ — (@ + iyw)]
2C(M, + M»)
QL= 0) === 10.
+k=0) MM, (10.93)

Using this result we can now go back and compute the polarization induced by
the light wave. Given N, ion pairs per unit volume, we have the volume dipole
moment:

Py = —gN,(uy — vy) (10.94)

or:
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Py =gN,(Ay — Ay)e ™ (10.95)

which then using Eq. (10.92) reduces in the limit of the pure ionic permittivity to:

N
e(w) = 1 +g L (A (o) — A (@)) (10.96)
0€0
o) =1+ aNi ! (10.97)
S &M, Q2 — (0* + iyw) '
MM
p =2 (10.98)
M, + M,

The optical phonon contribution to the permittivity has a real and imaginary part,
from which one can evaluate the effect of optical phonons on light dispersion and
absorption. We are now at last in a position to write down all the important
contributions to the relative permittivity of a doped polar semiconductor as:

e(w) = 1+ (e(w) = 1) + (ep(@) — 1) + (e1(w) — 1) (10.99)

where the polarizability contributions are added to give Eqs. (10.34, 10.67, and
10.97) and where it is understood that in a semiconductor, the bound contribution is
the same as the formula in Eq. (10.69). With this theory we now can handle most
situations of interest in semiconductor physics.

10.6.2 Application to lonic Insulators

In this limit we neglect the free electrons, and it is again convenient to lump together
all other lattice contributions into ane(co)term and write the ion permittivity as being
due to the transverse optical active mode denoted with frequency Q-
g°N; Q2 —
2

oM, (Q% _ wz) + w?y?
_ ¢°N, Yo
- 2

oM, (QZT - @?)" + w2y

(10.100)

Figure 10.7 shows the reflectivity R of an ionic insulator. The effect of the
resonance on the reflectivity is to produce a sharp crossover from high to low
reflectance as the photon energy is changed.
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Fig. 10.7 Lattice reflection
spectrum of AlSb. Points are
experimental data; line is fit
using the single oscillator
model (Reprinted figure with
permission from Turner and
Reese (1962), p. 126, Fig. 4.
Copyright 1962 by the
American Physical Society)
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10.6.3 The Phonon-Polariton

The real part of the refractive index due to the coupling with ions has a strong
frequency dependence as can be seen in the previous figure and strongly modulates
photons with frequencies in the neighborhood of the optical modes. Indeed the
photon dispersion relation relating photon frequency and momentum & is:

ck 1?
2
k) =|——= 10.101
o= (0100
where 7i(w)is given by the pair of Eq. 10.100. One can see that the refractive index
changes with frequency so that the allowed frequencies of propagation of photons in
the medium are solution of this equation, which can have several branches. Let us
assume the damping is weak so that k(w) = 0 in Eq. 10.100, and one has 77(w) only so
Eq. 10.101 becomes:

wz(k){e(oo) + fo A]Zl @ _1w2 (k))} = 2 (10.102)

which is a quadratic equation in w” with two branches.
The frequency versus momentum of the physical roots is shown in Fig. 10.8

where Q; = Qr, /;(ioo)) turns out to be the longitudinal phonon frequency, and the

zero frequency limit £(0) includes the zero frequency limit of the lattice term.

The excitation can be understood to be part photon and part phonon in its
structure. Near k = 0 and at low frequency, it is mainly photon-like and basically
follows the photon dispersion curve slowed down by the mainly bound electron
refractive index 4/&(00) of course. Then, when the light energy reaches the optical
mode energy of the phonon, a strong mixture of the two excitations takes place.
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Fig. 10.8 The dispersion o =ck/Ve,
curve for a phonon-polariton
(Peyghambarian et al. 1993,
p. 98, Fig. 4.11. Modified with
permission)
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Here, the photon becomes a mixed state, part phonon and part photon; it gets slowed
down in the process because the phonon is slow and almost localized. The group
velocity of this combined particle can be much slower than light as one can see from
the dispersion curve. At higher frequencies the two states demit because their
energies no longer match, and the excitation acquires its photonic character again.
This happens as we go up the k-axis and up in frequency. This photon which is
crossing into a phonon-like mode is called a phonon-polariton. It is of great
conceptual importance, as it allows regions of energy where photons can propagate
at a much lower speed.

Photon-phonon coupling has many other very subtle aspects which we have not
covered in this chapter. The reader is referred to the book by Seeger (1997) for a
more specialized treatment. For example, whereas in III-V compounds, one does
have polar bonds, the same is not true of other important classes of semiconductors
such as silicon and germanium. Here phonon-phonon coupling and absorption are
more subtle and involve higher-order processes. Whereas single-phonon excitations
are forbidden by symmetry, higher order processed involving two and more phonons
are allowed and give rise to rich absorption spectra.

10.7 Free Electrons in Static Electric Fields: The Franz-Keldysh
Effect

So far we have assumed that the system in question is itself not subject to a strong
electric or magnetic field. In this and the next sections, we consider the effect of an
electric and magnetic field on the optical properties. Much of modern technology is
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devoted to making optical systems for communication, displays, wavelength trans-
formation, and computing. Optoelectronics is a very lively and exciting field and has
acquired even more importance with the advent of nanotechnology. The basic
element of all optical technology is the optical switch or optical transistor. How
can one make a medium change its transparency or absorption properties by a simple
low power electronic or magnetic switch? In order to understand how to design such
a system using the right material, engineers need to understand what external fields
do to the electronic structure of materials, and in particular they need to know how
the optical properties of semiconductors behave when subjected to external fields.

Consider therefore a band of nearly free electrons in an electric field. We assume
that we can use the effective mass approximation. When we previously considered
the action of the electric field, it was in the context of electrical conduction, and it
was good enough to treat the problem using a semiclassical approach. This is
because the electric fields were small, and the dipoles generated were calculated to
first order in field. Now we are looking at the effect of light on systems subject to
strong electric fields, and we ask: what is new and important about strong electric
fields? To answer this question, we first note that the external field is no longer a
small perturbation on the wavefunctions. So we cannot use Drude-type theories but
need to go back and solve the time-independent Schrodinger equation in the
presence of an external electric field Ej applied in the z-direction, for example. It
is understood that the motion in the x- and y-directions is nearly free electron-like, so
that the total wavefunction and energy of the charge are separable:

Ye(x,y,z) = e* e d(z) (10.103)
h2 2 2
-— (kx n ky> +E, (10.104)

The Schrodinger equation in the field direction becomes:

1 ()
2m* 072

— gE3z®(z) = E,®(2) (10.105)

Note that in the current formalism, the electric field is denoted Ej, while the
energy associated with the wavefunction is denoted E,. The wavefunctions which are
solutions to these equations are called the Airy functions Ai,(z) with energy E, and

given by an integral representation:
/ cos < + szv)d (10.106)
0

::|~

Aiy(z,) =
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2m*qEj 173 E,
=|— - 10.107
o= () () (10197

The normalized eigenstates of Eq. (10.105) labeled with their energies are:

¥\ 13 7 1\ 1/6 m*aE\ /3 E,
D, = (%) <—> Ai (%) (z— ) (10.108)
h q9E; h qE;

The eigenfunctions can be thought of as starting at each lattice site, one for each
site, at a distance a along the z-axis, so that E, / gE§ = av where v is an integer in the
range {oco, — oo}, and av defines the origin of the v, Airy state. The Airy function
decays asymptotically as e forz>0 against the potential of the field, where the
particle encounters a triangular barrier starting from the origin. In the direction
(z < 0), moving with the potential of the field, the wavefunction is that of an
accelerating particle and oscillates with increasing frequency as it moves:

Ai(z) = %ﬁ sin (%(—zv)”2 + %) (10.109)

In a semiconductor, both valence band k-states and conduction band k-states will
turn into Airy functions when a strong field is applied. So the optical admixtures and
optical transitions will now be between these new Airy functions labeled ¢ and
v rather than the Bloch states considered earlier. In particular it is now possible for a
photon to excite any valence band Airy electron state into any conduction band Airy
state. Momentum conservation no longer applies because the electrons in a field are
not in a well-defined momentum state anymore. Indeed they are constantly
accelerated, and this is why the oscillations in shape Eq. (10.109) are getting faster
and faster as the electrons move in the direction of decreasing potential energy. The
rate at which a charge will be excited from the valence Airy set to the conduction
Airy state by the action of a light field is given by Fermi’s golden rule:

2

2
7 / @, * (2)gEz®y (2)dz| 8(Ey., — E,, — ho) (10.110)

WW’ = 7
h

Here the momentum rule reappears as a reduction in the overlap integral
Eq. (10.110) between levels which are not vertically above each other, i.e., differ
by the v index of the valence to the V' index of the conduction band Airy states. So we
see that non-diagonal transitions v v are possible, but less likely. Thus a useful
quantity for characterizing optical absorption is the local density of states, which, for
vertical transitions, is apart from a constant, also the joint density of states discussed
before. Remember that the sum of vertical transitions is directly proportional to the
joint density of states. The density of states is conveniently expressed using the local
density of states which in one dimension is:
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Fig. 10.9 The density of states from left to right for a one-, two-, and three-dimensional free
electron system in the presence of an electric field (Davies (1998), p. 211, Fig. 6.2. © Cambridge
University Press 1998. Reprinted with the permission of Cambridge University Press)

n(E,z) = > |@u(2)5(E — E,) (10.111)

where here, @, are the energy eigenstates Eq. (10.108) and the E, are the
eigenvalues. The local density of states say at z = 0 gives us a measure of how
many eigenstates exist in an energy interval in a given locality. The total density of
states g(E) is obtained by integrating the local density of states over all space:

/Z\(I)n(z)|25(E—En)dz: > 8(E — E,) = g(E) (10.112)

The local density of states, assuming for convenience that the hole electron
masses are the same, is a measure of the optical absorption and can be calculated
in this case by substituting in the Airy functions Eq. 10.109) and eigenvalues into
Eq. (10.112) and doing the sum at z = 0. The integrations are straightforward but
lengthy. The reader is referred to the details in the books by Chuang (1995) and
Davies (1998) for more details. The Franz-Keldysh oscillations in the density of
states of free electrons are shown in Fig. 10.9 for a one-dimensional band and also
for the two- and three-dimensional systems. Figure 10.9 shows the predicted Franz-
Keldysh oscillations in the joint density of states, at the band edge of a semiconduc-
tor when an electric field is applied.

When excitons are present in the absorption spectrum, we would expect the
electric field to help ionize the excitons and change the absorption spectrum toward
the free electron system again. This is indeed observed experimentally at very low
temperatures in bulk and at higher temperatures in semiconductor quantum wells as
we shall see in Chap. 13 (Fig. 10.10).
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Fig. 10.10 Franz-Keldysh oscillations in the absorption of bulk semiconductors. The dashed line
is the spectrum without a field (Chuang (1995), page 549, Fig. 13.2b, Copyright © 1995 by John
Wiley & Sons, Inc. Reprinted with permission of Wiley-Liss Inc., a subsidiary of John Wiley &
Sons, Inc.)

10.8 Nearly Free Electrons in a Magnetic Field

We now consider the effect of a DC magnetic field on the nearly free electron states
of a solid. In order to do this, we write down the Hamiltonian in a field E applied in
the z-direction. To do this we need to introduce the vector potential X and note that in
quantum mechanics, the effect of the E-ﬁeld is to replace the electron momentum
operator 7) with the new operator ( 77 +q X) in the Schrédinger equation. In the

so-called Landau gauge, the vector potential is given by A= (0,Bx,0) and §
becomes:

B=V x A (10.113)
and consequently the time-independent Schrédinger becomes:
1 0 0 : 0*
Ny —iha+qBx | — =
2m* l a2 < : ay+q x) 022

From Eq. (10.114) it follows that in the z-direction, the Hamiltonian is that of the
free particle, and in the y-direction, the interaction is an x-y product term so we try
the solution:

W(x,y,z) = E¥(x,y,2) (10.114)
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W(x,y,2) = u(x)e™res (10.115)
with:
k2
E:2mi—|—En// (10116)

Including the spin degree of freedom s = £ 1/2, we also have the Zeeman
splitting in a magnetic field:

21,2

h 4
Enis = By + 5 — s8ugB (10.117)

where g is the Lande factor and up = 2‘1—,2) is the Bohr magneton.

Substituting the trial function given in Eq. (10.115) into Eq. (10.114), we find that
the function u(x) must satisfy:

2 2 o N\ 2

2m* dx? qB

This equation is similar to the one of the harmonic oscillator where:

_ 9B

m*

R (10.119)
is the cyclotron frequency and % is a length which we shall denote with {—xk)_}.
Equation (10.118) is a standard differential equation of mathematical physics which
has the Hermite polynomials H, as solutions. We can therefore now write the
complete wavefunction as:

2
. X — X X — X,
W(x,y,z) = Ae® e H “ )exp ( 2"»‘) (10.120)
’ Ip 21
where n are integers, A is the normalization constant, and Iz = \/qu is called the

magnetic length that is typically ~25 nm for B = 1 T. The first few normalized
Hermite polynomials are tabulated and given by:

H()(S) =1
Hi(s) = 2s (10.121)
Ho(s) = 45> -2

The corresponding x-y energy levels are independent of the index k, and given
by (n is an integer including 0):
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E; =g = (n+1/2)ho. (10.122)

These levels are called the Landau levels. Each Landau level is highly
degenerated because there are many k, levels in each Landau level. In fact there
are exactly @ states in each Landau level, apart from spin which is another factor
2. Thus the degeneracy grows with B because the separation of the levels also grows
with B. When we include the spin, the Landau spin up and spin down bands are
shifted relative to each other by the Zeeman energy gugB. The collapse of the x-y
spectrum into discrete Landau levels is a novel phenomenon with strong con-
sequences for the transport and optical properties of systems with free carriers.
The condition for observing subtle effects in transport and optical spectra which
are caused by the magnetic field is that the energy levels should have long relaxation
times, so that the broadening of the levels should satisfy the condition that% < ho,.
This condition is difficult to satisfy in practice because in a metal z~10""* — 1074,
which gives a much larger uncertainty AE~A/r than the typical Landau level
separation which is 7iw,~10"*¢Vat B = 1 T. To observe the effect of Landau levels
experimentally, one has to work with very high-quality and low effective mass
semiconducting materials and preferably quantum wells that are systems composed
of a thin lower bandgap semiconductor layer sandwiched between two higher
bandgap materials (see Chap. 15 for details).

Normally, one also has to work at very low temperatures. Good materials for
large Landau level separations are, for example, GaAs and InAs and InSb
which would enhance the B = 1 T splitting by a factor 40 (InAs: m:‘ /mo = 0.023)
to 4 x 107> eV or 70 (InSb: m* /my = 0.0145) to 7 x 10> eV which is ~70 K. We
will come back to this topic when we discuss the low-dimensional semiconducting
systems in Chap. 15. As before, the easiest way to study the effect of Landau levels
on optical absorption theoretically is to evaluate the local density of states by
substituting the wavefunctions and energies into Eq. (10.111) and carry out the sum.

In a two-dimensional system, for example, which one can engineer with a
quantum well structure, the free electron density of states can be computed in the
same way as we did for the three-dimensional case (Chap. 5 replace 4zk*dk — 2zkdk
in Eq. (5.37)). It is constant for the two-dimensional case and given by g, (E) = %
where S is the area of the system. When subject to a B field, we see from the above
solution that we now only have the Landau spectrum, and the Landau level density
of states now consists of sharp delta function peaks for each Landau level. The sharp
delta function peaks are of course unrealistic, and one has to evaluate the sum by
including a finite level broadening before plotting the function.

Figure 10.11 illustrates how the two-dimensional constant density of states
collapses into Landau levels which are not ultrasharp delta functions but broadened
by disorder or phonon scattering processes. Thus in a two-dimensional system, the
electrons would fill the Landau levels up to the Fermi energy. The Fermi energy can
then be in the Landau band or in a gap, depending on the electron concentration and
the magnitude of the magnetic field. Such quasi-two-dimensional systems can be
made using multilayers and quantum wells as we shall see in detail in Chap. 15.
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Fig. 10.11 The density of states of a two-dimensional electron gas in a magnetic field for two
different values of broadening. As the broadening is reduced, the Landau levels become delta
function like peaks. With increased broadening, the trend is to a constant density of states as in the
B = 0 limit (Davies (1998), p. 225, Fig. 6.7b and 6.7c. © Cambridge University Press 1998.
Reprinted with the permission of Cambridge University Press)

By changing the magnetic field, it is therefore possible to move the Fermi energy
inside the Landau bands, and from inside the band to the gap between adjacent
bands, when the bands are full. In Eq. (10.40) we made the observation that when the
density of states at the Fermi level is zero, there is no conduction. By changing the
magnetic field, it is therefore possible to make the two-dimensional system undergo
a transition from a conducting to a nonconducting state. This happens because by
changing the level density in each Landau subband, one can move the Fermi level
from inside a Landau band to a gap. Thus the resistance of a two-dimensional gas is
expected to oscillate with magnetic field, a phenomenon known as Shubnikov
de-Haas effect, and this is indeed observed in high-quality semiconducting quantum
wells. This is discussed in more detail in Chap. 15.

In a three-dimensional system, the k, degree of freedom broadens the Landau
bands, and we have (spinless case):

BL,L K
g(E)qh"yZ(S(E—sn—zmi> (10.123)
nyk;
VBV 2m* & -
¢(E) :% Y IE=(n+1/2)ha] ' (10.124)
n=0

where ny,,is the highest allowed subband index below the given energy E.

The conductivity is included in the total permittivity, so the magnetic field can in
principle strongly change the refractive index of the system. The key factor in
magneto-optics is however the broadening, which is, as we have seen, in most
systems, larger than the Landau level separation. In practice one cannot go to fields
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much higher than about 17 T, and this therefore severely limits possible technical
applications of orbital magnetism to optoelectronics.

The permittivity of free electrons in a magnetic field can be computed using
the wavefunctions we obtained Eq. (10.120) and substituting them into Eq. (10.11);
however, it is often adequate to compute the optical spectra of materials within a

d s
semiclassical treatment. This can be done by adding the Lorentz force F; = —¢q d_tr
X E to the right-hand side of Eq. (10.69), the Newton equation of motion, and
evaluating the magneto-Drude polarization response just as we did before. With the
B field in z-direction, the Lorentz force makes the problem necessarily
two-dimensional in the x-y plane, because it introduces a transverse Hall velocity,
so that now we have two equations for the two velocities v, and v,, in response to the
x-electric field. Assuming that the light vector is polarized in the x-direction as in
Eq. (10.18), we can solve for the permittivity as we did before, but now including the
Lorentz force and neglecting the phonon contribution, we find from Eq. (10.26):

dx dx1
* 7 7 * —
" dr* tm dtt
e LY el
dr* dtt  “dt

dy
—qE(1) — 9B
(10.125)

These equations are solved by making the same assumption as before for the
displacements x(r) = xoe " and y(f) = yoe *". We find the new B field-dependent
free carrier relative permittivity contribution and add it to the bound relative permit-
tivity to obtain:

8@0:%@ﬂ+j;d&w) (10.126)

where the complex conductivity now is dependent on the B field via the cyclotron
frequency:

g’ (1 1/t —i
o(Bw)="4" (_> [z - (10.127)
m* \7/ | (iw — 1/7)" + o?
Equation (10.127) reduces to the usual result Eq. (10.30) when the magnetic field

B goes to 0.

Since absorption is related to the imaginary part of the permittivity, and the bound
term can be treated as real for frequencies below 10'® Hz, the absorption coefficient
is proportional to the real part of the conductivity. Indeed we have from Eqs. (10.130
and 10.15):
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[(1/1)2 + w2 — a)z}2 + 4w? /72 eom* \wr

The absorption exhibits resonance absorption at light frequencies which match
the cyclotron frequency w, shifted by the relaxation broadening. This resonance is
called the cyclotron resonance and is most important for measuring the cyclotron
frequency or what in other words is the effective mass of the electrons. The
resonance can be understood immediately in the quantum mechanical picture as
the absorption of a photon when an electron goes from one Landau level to the next.
The semiclassical result suggests that most of the oscillator strength is indeed
associated with a transition from one to the next adjacent Landau level, as is the
case in the harmonic oscillator problem.

The full quantum mechanical treatment of magneto-optics is very rich in infor-
mation. The formalism gives rise to complex expressions which are sometimes
difficult to handle analytically. The full treatment is normally not necessary unless
one is truly in the limit of long coherence lengths, or small broadening, i.e.,
broadening smaller than the Landau level spacing. This is achievable with very
high-quality semiconductors at low temperatures, but almost never in a metal.
Figure 10.12 shows the change in the optical absorption edge of InSb caused by a
magnetic field. The reader should also refer to the discussion presented in Chap. 15.
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Fig. 10.12 The band-edge absorption of InSb with magnetic field at room temperature (Reprinted
figure with permission from Burstein et al. (1956), p. 827, Fig. 1. Copyright 1956 by the American
Physical Society)



10.9 Nonlinear Optical Susceptibility 403

10.9 Nonlinear Optical Susceptibility

We have seen how a medium affects light and how this can be described by the
concept of permittivity and complex refractive index. Throughout however, we
assumed that the light wave constituted only a weak perturbation on the electronic
and lattice coordinates. It was therefore sufficient to allow the light vector to couple
with these modes and consider the response of these modes to first order in the light
electric field. The dipole moment that the light induced was evaluated in linear
response only. Even though we did allow other external electric and magnetic fields
of arbitrary magnitude to act on the system, this was not the electric field of the
photon. One may therefore ask: what happens when the photonic field is so strong
that higher-order processes in the optical permittivity or susceptibility become
important? The first thing we note is that in this case, we need to compute the

polarization P to higher orders in the electric light field E, so we write in the usual
tensor notation:

P=yVE O E . E1yYE E-E+... (10.129)
or equivalently:
Pi=> yVE+ Y aWEEA+ Y rGEEE, + ... (10.130)
1 Ik Iks

where y™ are the susceptibility tensors.

When the field is time dependent, the susceptibilities can be evaluated by the
same method as used in Eq. (10.43) for the first-order term, i.e., by using time-
dependent perturbation theory and going to higher orders. When the electric field
frequency is not monochromatic, i.e., if E(f) = > E, e, the susceptibilities will

Dy
depend on two frequencies for the second-order term, on three frequencies for the
third-order term, etc., and the sums in Eq. (10.129) will run over frequencies as well.

The physical significance of the higher-order terms will now be explained. The
first-order term contains the one-photon absorption or emission process which is
what we have discussed until now, having specialized the analysis to a polarized
electric field and the term y, (@) = a,(w) only. Similarly, the second-order term
describes processes which allow two photons to be absorbed or emitted simulta-
neously. It includes also the process in which a photon is converted into a lower-
or higher-energy one (with phonon absorption or emission). The second-order
term only exists in crystals which have no center of inversion symmetry. When
they do, then this term vanishes by symmetry. The third-order term is always
there, but the second-order term can sometimes be induced by applying a strong
additional static external field which breaks the symmetry of the crystal. The third-
order term involves three-photon processes, for example, two absorbed and one
emitted or vice versa. It is clearly highly desirable to be able to do that kind of



404 10 Optical Properties of Semiconductors

photon-to-photon energy conversion with high efficiency and reproducibly many
times over. Unfortunately, the higher-order susceptibilities get progressively
weaker with order, and such conversions are normally inefficient and require
high laser power. The high laser power then damages the material with time,
and this constitutes a serious problem. The field of nonlinear optics is therefore
very well developed. Many materials including organic and inorganic ones have
been studied, and the reader is referred to the specialized literature on the subject
(Peyghambarian et al. 1993).

Let us return to the first-order term in the above expansion and now allow an
external say static field to modify the permittivity. This is a most important scenario
and gives rise to the so-called electro-optic and magneto-optic effect. It allows us to
change the complex permittivity of a medium by applying an external field. The
basic theory for evaluating the electro- and magneto-optical effects was developed
above. The “ease” with which a medium changes its permittivity under the action of
such a field is measured by the so-called electro-optic coefficients. These can be
obtained as the coefficients of the expansion of the permittivity with the external
applied fields. The refractive index of materials such as LiNbOj; (one of the best),
KH,PO,, and even GaAs responds relatively strongly to an applied electric field. In
the material which we are familiar with, namely, GaAs, the applied electric field will,
for example, change the band structure and bandgap by replacing the Bloch states
with Airy functions and in this way give rise to a new refractive index. This
refractive index can be calculated by first evaluating the field-dependent polarization
using the above formalism. For more details and a more quantitative analysis, the
reader is referred to the book by Chuang (1995).

10.10 Summary

In this chapter we have presented a detailed and reasonably complete treatment of
the optical permittivity of a solid. We have shown how one can relate absorption,
refraction, reflection, and transmission of light to the real and imaginary parts of
the complex refractive index. Then we showed how the refractive index has to be
computed in different types of solids. We started with the free electron contribu-
tion, then added the bound electrons, and finally included the photon-phonon
coupling. Only polar optical phonon modes were included, which of course covers
only a very small part of the field. It was shown how photon-phonon coupling can
lead to the formation of a new type of particle called the polariton. The polariton is
“part photon part phonon” and is a very beautiful effect. We also mentioned, but
did not develop, the science of the surface plasmon. We showed how absorption
could be related to quantum transitions. For this we had to derive the important
rule called Fermi’s golden rule which gives us the rate of transfer from one
eigenstate to another under the action of a time-dependent perturbation. We
specialized the permittivity calculation to the case of semiconductors and
introduced a very elegant way of computing the Bloch matrix elements known
as the Kane parameter method derived from the Kane effective mass method.
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We introduced the reader to the quantum mechanics of nearly free electrons
subjected to the effect of strong electric and magnetic fields. The corresponding
Franz Keldysh and Landau wavefunctions and energy levels were derived, and we
showed how electric and magnetic fields changed the density of states of electrons.
The new quantum energy spectra affect both transport properties and optics, but
these are highly specialized themes which need detailed focused treatment. We
introduced the reader to the fundamental new science, the new concepts, and the
methodology needed to compute the optical permittivities with some simple
examples. Magnetic and electric fields can be very effective tools for the modula-
tion of optical properties, with a strong impact on technology. This is especially
true in low-dimensional systems, so we defer the discussion on some of the
applications to the chapter on low-dimensional solids. One problem is that mag-
netic and electric fields, however weak, can never be treated mathematically in
perturbation theory using the unperturbed Schrodinger equation, when we have an
infinite unbounded system. The magnetic perturbation involves a term ~—x*
which binds electrons in one direction and the electric field a term ~ —gE§z
which is unbounded as z — oo. The quantum treatment can be technically tedious
because we are forced to use the exact wavefunctions derived above; however, it
weaks the perturbation. These exact wavefunctions are, as one can verify, not at all
simply related to the free electron-like waves. In this context it is therefore
noteworthy that the semiclassical methods, when applicable, can be very useful.
This was shown here in the magneto-optical example. In finite quantum confined
systems on the other hand, the wavefunctions are bounded and normalized in a
finite volume. Here one can treat electric and magnetic fields using second-order
perturbation theory and get good results. This then also allows one to evaluate the
electro-optic coefficients using perturbation theory. We shall look at this in more
detail in Chap. 15.

Problems

1. Calculate the real and imaginary part of the frequency-dependent admittance of
a wire as a function of frequency, if the area is 1 cm?, the length 0.1 cm, the
charge density 10*' cm ™, and the relaxation time 7 = 10~ s and effective mass
0.1m,. Write down the results as a function of frequency. What are the conduc-
tance and the capacitance?

2. Calculate the oscillator strength F;, linking the ground state » = 1 and first
excited state n = 2 of box eigenstates with box size L = 1 nm and effective mass
m* = 0.023 m,.

3. Calculate the reflectivity of a metal as a function of frequency using the Drude
permittivity formula with free carrier concentration 1. = 10°? cm™>, relaxation
time 7 = 10?5, and m* = 0.045 my. Plot the result and compare with Fig. 10.2.

4. Explain the difference between direct and indirect bandgap materials. Sketch the
two situations. If phonons were not allowed to provide the necessary momentum
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10.

in an indirect bandgap excitation, what other mechanisms can you think of
which could make the absorption process happen in another way?

. Calculate the density of states per unit volume of a three-dimensional nearly free

electron gas with effective mass m* in a magnetic field B, perpendicular to the
x-y plane including spin. Remember that the number of allowed k, states per
Landau level is given byL,L,qB/h for an area of size L., and that there is
another (free electron) z-degree of freedom in the z-direction.

. What is meant by the permittivity of a solid? How is it calculated? How is it

related to the refractive index? What does the real and imaginary part of the
refractive index signify? How would you design a material which is a perfect
reflector?

. Using the definition of the complex refractive index given by Eq. (10.9), derive

the pair of equations given by Eq. (10.14) which show that this leads to a
quadratic equation from which the real and imaginary part of the complex
refractive index 7 and k can be computed.

. What is a phonon-polariton? Write down the explicit algebraic solutions which

give the two branches of the dispersion relation w”(k) for the phonon-polariton
equation using Eq. (10.102). Explain how and why the group velocity of this
new particle changes with wavenumber.

. What is an exciton? In GaAs the effective mass of an electron is m, = 0.067 my,

and the effective mass of the hole is m;, = 0.082m,. The relative static permit-
tivity e, is 13.1. Using Eq. (10.85) and Eq. (10.86), calculate the exciton radius
and binding energy. At what temperatures would you expect the excitons to be
detectable by experiment?

With the help of Eq. (10.125), derive the magnetic field-dependent complex
conductivity of an electron gas as given by Eq. (10.127):

2z (1 1/t —i

o(B,w) = "4 *T () / ;a) . Discuss the behavior of the real
m* \7/) | (iw—1/7)" + @?

part as a function of the magnetic field. What happens when the magnetic

field becomes very large? Give a physical interpretation. How does a magnetic
field affect the reflectivity of a free electron gas?
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11.1 Photovoltaic Cells (PVC) Introduction

The sun is a serious and vital source of energy, without which there would be no life
on the planet. Plants get most of their energy from the sun by a process called
photosynthesis (Jordan et al. 2001). Though fascinating and beautiful, the mecha-
nism of photosynthesis is beyond the scope of this book, and the interested reader is
advised to follow up the vast literature on this subject which encompasses physics,
chemistry, and biology. But a part of the sun’s energy can also be harvested
artificially using photoconductive devices (Pohlman, Heeger). This subject and
technology has become of supreme importance since the realization that fossils
fuels are slowly but surely destroying our planet. The sun emits light over a broad
spectrum of frequencies as shown in Fig. 11.1.

The process of photon harvesting is illustrated in Fig. 11.2, and one can see that
semiconducting p-n junctions (Chap. 6, this book) are the ideal way to collect the
photonic power. But there are restrictions here too. One can see from the diagrams
that the photon energy must exceed the bandgap of the material to be absorbed
efficiently. So depending on the semiconductor in question, “all” the photons above
the bandgap can be harvested, but this also means that the solar photons below the
bandgap are not harvested. The latter constitutes in general a non-negligible amount.
This implies that semiconducting solar cells are not as efficient as they could be
if they collected the entire spectrum. Si or GaAs, which are some of the best PVCs,
leave out the photons below 1 eV (> 1200 nm), and this is an important loss
limiting efficiency to ~20%. Indeed, combination cells which are designed to collect
a wider range of wavelengths can nowadays reach efficiencies of 45% (see below);
the problem is that they are still too expensive for large-scale commercial
application.

Long-wavelength collection can be done with type Il semiconducting devices
(Delaunay et al. 2008), which are also used for long-wavelength photodetection.
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Fig. 11.1 The most important range is in the UV to visible to near-infrared range (300-1000 nm).
The total solar power reaching the surface is roughly 1000 W/m?> on average, a non-negligible
amount. The mentioned photon range is ideal for the application of semiconducting p-n junction
technology. Remember Fig 9.2 from Chapter 9

Figure 11.3 is a beautiful illustration of a device which can be used for long
wavelength (>3 pm; the same geometry is used for making top of the scale
photodetectors operating currently at 200 K).

11.2 Examples of Photodiodes

*For commercial use of PVC devices, efficiency is not the only criterion. Many
applications require mechanical flexibility and thus polymer cells or biocompatibil-
ity (plastic electronics implants into the body) (Figs. 11.4, 11.5, and 11.6).

11.3 The Current Voltage Characteristic of a Solar Cell
(Figs. 11.7 and 11.8)

L = width
vgq = drift-velocity
7 = recombination-time

=291 — exp[~L/va]] (11.1)
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Fig. 11.2 (a) A photon (blue wiggly line) comes into the high-field region and excites an electron
(red) hole (blue dot) pair across the gap of a p-n junction semiconductor. The electron and hole are
subject to an internal space charge field which makes them drift into the electrode regions where
they are absorbed, thus creating a current without an applied bias. This current can heat a resistor in
series and thus constitutes harvested solar energy. (b) Showing (left) a semiconductor junction
under reverse and (right) forward bias. Note that reverse biasing enhances the internal field and
facilitates charge collection
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Fig. 11.3 Type II photon detection or light-harvesting structure (Delaunay et al. 2008)
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Fig. 11.4 Schematic
representation of a photo-
harvesting device

Let us now consider the limit in which charges generated in the cell can only drift
and are collected at the perfect absorbing electrode, or they recombine in the material
with lifetime 7.

n = quantum — efficiency =

charge — collected — per — photogenerated — charge

1 =" (1 — expl—L/vr] (1)
L = width

vg = drift — velocity
7 = recombination — time

Equation 11.1 is the expression for the QF (quantum efficiency) n in the drift limit
(no back diffusion) (called the Hecht formula).

11.3.1 Solar Cell IV Characteristic Curve

It explains how much power can be extracted for a given photogenerated current IV.
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Fig. 11.5 (a) (top figures = example of multijunction cell structure (left) and harvesting ranges
(right), lower figure corresponding band structure) Combination cells which harvest a wider region
of the sun’s spectrum. Note how the interfacial barrier is designed to be thin enough for carriers to
tunnel through, lower figure. (b) Band structure of a multijunction cell showing the way the two
modules work together. Electrons generated in one module recombine with holes through thin
barrier in the other to produce a current (Yamaguchi et al. 2005)

11.4 General Expression for the Quantum Efficiency

Let us consider the semiconductor channel in a p-n junction and model it as a
one-dimensional system since the planar motion is uniform. Light impinges from
the left a shown in Fig. 11.10 and creates e-h pairs which drift diffuse into the
electrodes. This time the electrodes are not considered a being totally absorbing, but
they have finite surface recombination velocities s; and s,. The width of the
depletion layer is taken as w and ¢ + w is the total length.
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Fig. 11.7 Current voltage characteristic under simulated light of 1.5 suns or 100mw/cm? solar
irradiation of the best performing perovskite solar cells ( = 12.3%) (From Bail JM, Leed M,
Hey A, Henry J Snaith Energy Envir. Sc. Vol.6, p 1739 (2013) “Low-temperature processed meso-
superstructured to thin-film perovskite solar cells”)

11.5 Some Definitions, Power Collected

Consider A = power collection efficiency (not to be confused with quantum
efficiency for charge collection 5); V,. = open circuit voltage, or forward bias at
which the bias produced current cancels photocurrent. FF = fill factor of IV curve,
deviation of IV curve from perfect rectangular shape; /,, maximum photocurrent at
zero bias; see Fig. 11.9.

A = Vol oFF /Py, (11.2)
FF = Fill — factor (11.3)
I, = sat — current (11.4)
P;, = total — power — incident (11.5)



416 11 Solar Energy Harvesting
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Fig. 11.9 Illustration of the ideal situation with corresponding definitions (Credgington &
Durrant 2012)

In the limit of no back diffusion, all carriers generated by light drift into the
electrode or recombine in the bulk unless they recombine in the bulk with lifetime 7.
From Fig. 11.10 which explains what is meant by power collection efficiency, we
note that if a semiconductor has a low bandgap and thus high dark current at room
temperature, then the V. is small and the IV area is reduced and thus of lower
efficiency. Let us now cone the complete formula for the quantum efficiency # in a
p-n junction such as in Fig. 11.1. The saturation current is just the product of the
number of photons absorbed and efficiency 7.
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11.6 Complete Mathematical Expression for the Quantum
Efficiency

The quantum efficiency (charge collected per charge created) # is divided in three
contributions: the n-region, the high-field region DR, and the p-region.

The theoretical evaluation, which involves solving the diffusion equation with
boundary conditions, is given below noting that (Movaghar & Schirmacher 1981):

r = reflection coefficient, ¢ = absorption coefficient, and y; = s,L/Dy,
Y2 = SZLe/De-

L. and L;, are the electron and hole diffusion length, respectively. D, and Dy, are
the electron and hole diffusion coefficient; s; and s, are the surface recombination
velocities at the illuminated and back photodiode surface, respectively.

N ="+ Npr +1,

Respectively, n-region, high-field region DR, and p-region:

(1 —r)aL

7a(x,,+W)S 11.7
a2 — 1 ¢ (11.7)

=

(5 —aLe)e~ =) _sh[(t4+d —x, —w)/Le| — yych|(t+d —x, —w) /L]

= Le
S CHIlEd =% —w) L] T 7ashl(1+d sy —w) /L] ta
(11.8)
_ (I—r)aLy ([aLy + 7, — e (yich(xu/Ln) + sh(x, /L)) “ax,
N, = 3 —alye
2Ly — 1 v18h(x,/Ly) 4 ch(x,/Ly)

(11.9)
mpr = (1 —7) e — e""*”*w’] (11.10)

Y1 :Sth/Dh, YzZSZLe/De (1111)
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The regions x,, #, and w are defined in the figure; see A Rogalski ad J Rutkowski
Infrared Phys Vol 22 p199 (1982).

This is the complete mathematical expression for the number of carriers collected
per photon when we allow for both diffusion and drift and the fact that the carriers
are not necessarily collected with unit absorbing efficiency when they reach the
electrode boundaries, but that there can be back reflection expressed by the finiteness
of the so-called surface recombination velocities s; and s,. Note that there are three
regions of charge generation n,p and depletion region DR. The simple Eq. (11.1)
called also the Hecht formula (Hecht 1932) is recovered in the limit that the y’s are
infinite, and we only have one carrier type r = 0 and only n-region.

11.7 Summary: Discussion

We have given in this chapter a brief description of the semiconducting solar cell
used for light harvesting. The focus is on inorganic materials. The subject in general
is a vast one with colossal importance to society in view of the gigantic damage
being caused by fossil fuels and global warming. Work is going on all over the world
in trying to still raise the efficiencies of solar cells. Electric cars and trains will be the
dominant form of transport for sure, and the target of getting rid of fossil fuels is now
very near. The combination devices illustrated in Fig. 11.5 exhibit great values, and,
were it not for the high production cost and maintenance charges, one could consider
the problem as almost solved. The difficulty is to harvest a larger part of the solar
radiation than, for example, silicon or GaAs (>1 eV), without too many expensive
processing and manufacturing steps. Scientists are working to solve this problem by
tackling the problem from many directions: new materials and new geometries. We
also reported on the important breakthrough made recently in making polymer solar
cells such as the system P3HT/PCBM (Polman et al. 2016; Street & Schoendorf
20105 Sariciftci et al. 1992) which have reached power efficiencies 7, of ~ 10%.
This is a very great success for an organic system, but not good enough yet for mass
commercialization which needs ~18%. Polymers can be made plastic, and even
woven into garments, and made biocompatible, and this creates a wide range of new
applications; for example, in biomedicine,“tattoo electronics” are already in use
now. Building electronic circuits in the body and brain, self-powering these devices
with PVC, is a great challenge, which is being pursued vigorously with recent
applications to making wireless wifi brain to spine communication (Capogrosso
et al. 2016), in order to cure paralysis and maybe blindness.

In the next chapter, we shall focus on another very exciting topic which is the
harvesting of heat, either directly from the sun’s infrared rays or from hot bodies
created in, for example, “motors,” friction, nuclear plants, or even geothermal
processes. The heat ray part of the light spectrum is in the wavelength range longer
than 5 pm; see Figure 1. Though one could in principle use semiconductors with
very low bandgaps, the problem is that such devices would have a huge dark current
for a given load which would swamp the photocurrent and deform the ideal square-
shaped IV curve into a triangle with smaller fill factor.
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Problems

1. Using the Hecht formula Eq. 11.1, calculate the carrier collection efficiency 5
given that the width of the device is 5 pum, the drift velocity is 10° cm/s, and the
recombination time is 1 ns.

2. In your own words, explain how the multijunction cell illustrated in Fig. 11.5 a
works. How do the two absorbing junctions cooperate to optimize the collection
of light over a wider spectrum?

3. Define the power collection efficiency A in terms of its components and explain
why a square-shaped IV curve is better than a triangular one.

4. If the carrier collection efficiency is 1, what is the single most important factor
which limits the solar cell performance in a single junction system?
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12.1 Introduction

Turning away from fossil fuel to green energy is one of the most important targets for
the world and critical to the survival of our way of life this century. Wind and solar
energy are being developed in almost every country on the globe. They provide
some relief but at this time fossil fuel is still the dominant source of energy. One way
forward is to try to minimize the loss and wastage of energy, specially where fossil
fuel is inevitable. Generally speaking one can summarize present-day wastage cycles
as unused heat which is an inevitable component of most power sources: automobile
engines, power stations, and solar radiation, just to mention a few examples. The
reader is referred to the widely available literature on green energy and global for
detailed descriptions of this cycle. Here we shall, as solid-state physicists, concen-
trate on two examples: (1) heat harvesting from hot surfaces or hot sources via the
thermoelectric effect and (2) harvesting the sun’s heat rays, i.e., the energy of the
longer-wavelength part of the spectrum which is not routinely collected by commer-
cial solar cells (Fig. 12.1).

This we call thermophotovoltaics as opposed to normal photovoltaics. Both these
topics are very much part of solid-state discipline and involve the most modern
nanotechnological considerations, with materials and material growth and
structurization forming the key ingredients.

12.1.1 Power Generation

Approximately 90% of the world’s electricity is generated by heat energy, typically
operating at 30—40% efficiency, losing roughly 15 terawatts of power in the form of
heat to the environment. Thermoelectric devices could convert some of this waste
heat into useful electricity. Thermoelectric efficiency depends on the figure of merit,
ZT. This will be discussed in a later section. There is no theoretical upper limit to ZT,
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25% effective power:
motion & accessories

100 % fuel
energy

Engine losses
5% friction losses

30% coolant losses

40% exhaust gas losses

BMw

Fig. 12.1 A schematic diagram of how the energy from a combustion engine in a car is distributed
Twenty-five percent of the energy produces motion and through the alternator generates electricity
to power accessories including the electrics, the air conditioning, and the hifi system. Seventy-five
percent of the energy from the fuel is lost mostly through friction and heat; 40% of the fuel energy
disappears though the exhaust system; hence, there is interest in using thermoelectrics to harvest
some of the waste energy (From Douglas Paul Book chapter http:dx.doi.org/10.5772/57092)

and as ZT approaches infinity, the thermoelectric efficiency approaches the Carnot
limit. However, no known thermoelectrics have a ZT > 3. As of 2010, thermoelectric
generators serve application niches where efficiency and cost are less important than
reliability, light weight, and small size.

Internal combustion engines capture 20-25% of the energy released during fuel
combustion. Increasing the conversion rate can increase mileage and provide more
electricity for onboard controls and creature comforts (stability controls, telematics,
navigation systems, electronic braking, etc.). It may be possible to shift energy draw
from the engine (in certain cases) to the electrical load in the car, e.g., electrical
power steering or electrical coolant pump operation.

12.1.2 The Thermoelectric Effect

Consider a piece of material, metal, semiconductor, glass, alloy, etc., and keep one
end at a high-temperature 7}, and the other end at a lower-temperature 7. If a
conducting wire is connected across the hot and cold ends, then a voltage will
develop across the terminal, and power can be generated (Figs. 12.2 and 12.3).
The voltage or current generated by temperature differences is called the “ther-
moelectric voltage and due to the thermoelectric effect.” The power extracted is
called “thermoelectric power.” Before proceeding to analyze the amount and effi-
ciency of heat extraction, and the materials to be used, we need to recall some basic


http://doi.org/10.5772/57092
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Fig. 12.2 Inthe above diagram, an electrical current I is generated as well as a heat current Q . As a
result of this geometry, a temperature gradient 7(x) develops along the specimen so that the
temperature difference depends on the position x along the specimen wire

Fig. 12.3 (a) The (a)
thermocouple system between
two heat reservoirs required to
demonstrate the Peltier effect.
(b) The thermocouple system
between two heat reservoirs

required to demonstrate the

Seebeck effect (From Douglas
Paul, Book chapter, http:dx.

doi.org/10.5772/57092) (b)

heat transfer, Q

principles of transport theory. Let us start with heat transport. In the illustration
shown, heat flows from hot to the cold end.
The amount of heat flowing Q is given by:

0 = —AkVT (12.1)

where k is the thermal conductivity in units of watts/Km and A the area with VT,
denoting the temperature gradient. Along a wire of length L, the expression for the
heat transferred Q is:

0 = —Ax{T) — T.}/L (12.2)
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The thermal conduction efficiency plays a critical role in thermal harvesting; we
shall see how later. Let us now define the electrical conductance G-

G= A{ / dE(—(;S—f;) p(E)a(E)} /L (12.3)

1=GsV (12.4)

where o(E) is the energy-dependent electrical conductivity, p(E) the density of
states, and 6V the voltage drop. The energy-dependent conductivity ¢ for bulk
materials can be written (q is the electrical charge):

o(E) = ¢* <V*(E) > 7(E) (12.5)

with <v*(E) > denoting the mean squared velocity at energy E and 7(E) the effective
carrier relaxation time. To recover the Drude theory at 7 = 0, one has to neglect all
energy dependences and put m* < V* > ~ 2F the carrier energy, and then put pE~
n the carrier density, and replace the Fermi function derivative with a delta function.

In the limit of diffusive or hopping transport, it is convenient to introduce the
carrier diffusivity D(E) such that now:

D(E) =< V*(E) > ©(E) (12.6a)

In the limit of quantum transport on the other hand, in short low-dimensional
systems, it is more convenient to work with the Landauer transport formalism (see
Razeghi Fundamentals Chap. 16). Here one works with the transmission coefficient
T(E) so that:

1= Aq2{/dE(—§Tj;)p(E)T(E)V(E)) v (12.6b)

T(E) is calculated by considering the transmitted and reflected waves incident on the
material; V(E) is the velocity at energy E (2E/m>l<)” 2, and V the external bias A is the
area .

Finally the first principle expression for conductivity which can be reduced to
Eq. (12.5) in the limit of bulk transport and scattering is the Kubo-Greenwood
formula [Madelung, Solid-state physics] with the energy-dependent diffusivity
given by:

D, = hzé(&x - 8ﬁ)|<a|vx|ﬂ>|2 (126C)
p

where v, is the velocity operator in x-direction (same for y and z) and the matrix
element is taken between the exact eigenstate of the system. Correlation effects if
any are partially taken care of in the computation of the matrix element and appear as
self-energy terms in the Green functions.
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12.1.3 The Thermoelectric Voltage

The heat generated electrical current I can be calculated by envisaging the follow-
ing scenarios: carriers in the hot region are excited to higher energies; they will have
higher average velocities and will move, and delocalize, toward the cold terminal in
order to equilibrate the slab. Similarly the fewer excited colder carriers will also
delocalize toward the hotter terminal. The two constitute opposing currents which
would exactly cancel if the temperatures were the same. But this is not the case, so
there will be a net current flowing from hot to cold given by:

Ir = AV,G = {/ dE(f(T + AT,E) — f(T,E))p(E)o(E) (12.7)
f(T +AT,E) =f,+ AT::—J; (12.8)
o o ((E-Es) OE
6_T:6_E{7T / _8_7{} (12.9)

The derivative term involving the Fermi energy is neglected unless we are dealing
with a strongly correlated system. So it follows that the voltage drop generated by the
temperature difference can be written:

gav, =T ; L {/ dE(—?—é) (E - Ef)p(E)a(E)}/G (12.10)

The Seebeck coefficient a is defined by the ratio of the voltage generated to the
temperature difference:

AV

=— 12.11
a=— (12.11)

We note that the magnitude of a depends on the product of the energy from the
Fermi level times the density of states times the conductivity. It is in effect the
effective energy or entropy (times T') transported by the carrier as it moves from hot
to cold. The Peltier coefficient is defined by:

=al (12.12)

The units for the Seebeck coefficient are V/K. The Seebeck coefficient is 1/q times
the entropy (Q/T) transported with each electron charge. Hence the Peltier effect is
just due to electrons transferring heat from one reservoir to the other.

Note that a symmetrical density of states about the Fermi level gives zero net
energy transfer and is therefore to be avoided by the designers.

It is instructive to examine some typical cases.



426 12 Thermal and Photothermal Energy Harvesting

12.2 Seebeck Coefficient of a Free Electron Gas
This is given by:

kg kgT
a=-2222

12.13
q Ey ( )

which is the classical energy per carrier k3T reduced by the effective number of
carriers participating in the transport process, and the classical value of kg /q is
86 pV/K.

12.3 The Seebeck Coefficient of an Undoped Semiconductor

In the nondegenerate limit where carriers have to be excited above the bandgap E, of
the semiconductor, the Seebeck coefficient is:

kg kgT
a=——

12.14a
q Ey ( )

The thermoelectric efficiency to be developed in Section 3.0 is given by the
product ZT:

Zr==°T (12.14b)

where « is the thermal conductivity (Figs. 12.4 and 12.5).

12.4 Doped Semiconductors

The doping of semiconductors gives one a method of making conducting wires such
that the charge transporter can be electrons or holes. This is beautifully illustrated in
the device of Fig. 12.6, where electrons are the transporter of charge in the n-wire,
but holes are the transporters in the p-wire. In this way it is possible to harvest heat
into electricity or alternatively to transfer heat from the cold side to the heat sink and
cool the material.

12.5 Seebeck Coefficient and Conductivity of a Hopping
Conductor, i.e., Amorphous Silicon

The hopping transport limit is of some interest and importance because so many
disordered materials exist which are hopping conductors. Amorphous silicon is a
famous hopping conductor with considerable commercial significance. Its
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Fig. 12.5 Left: a comparison of ZT for p-type material as a function of temperature. Right: a
comparison of ZT from n-type material as a function of temperature (See Douglas Paul book chapter
(http:dx.doi.org/10.5772/57092 school of engineering Glasgow UK for original references))

conductivity exhibits the famous Mott T law, and theoretician has been able to
rigorously derive such laws and explain Mott’s variable-range hopping (VRH)
mechanism (see Mott and Davis Oxford Uni Press) (Fig. 12.7).
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Fig. 12.6 Heat harvesting:
electrons flow down the heat sou rceTh
n-doped wire and are
replenished by holes injected
down the p-doped wire. The
hot end helps to inject the
carriers over the barriers

Fig. 12.7 Top curves: The
log of the conductivity plotted
against 1/7T (left curve) and T
—la (right curve). Lower: The
hopping thermopower eSlk,,
plotted against 1/T (left curve)
and T (right curve). The
density of states used in the
calculation is described in
detail in Movaghar et al. and is
linearly increasing in E from
the Fermi energy (From
Movaghar and Schirmacher)
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12.6 Polaron Hopping

In the limit of strong electron-phonon interaction, the carriers will dig in and deform
the lattice to lower the energy; the thermopower will now in general involve the
transfer of both activation energy and vibrational energy. The latter depends on
whether the sites are equivalent or not and on temperature. The details are beyond the
scope of this article, and the reader is referred to the book by Emin or Boettger and
Bryskin for a more complete discussion of this interesting subject.

In the following chapter, we consider the power that can be extracted from a
thermoelectric circuit (Boettger and Bryskin (n.d.), Emin 1985).

12.6.1 Thermoelectric Efficiency

Let use imagine that we want work to be extracted from a heat engine; to analyze this
we can go back to the basic principle of thermodynamics and consider the Carnot
engine. Carnot showed a century ago that there is a maximum amount of work that
can be extracted from a hot reservoir in a cycle of work such as a steam engine.
Indeed this efficiency can be written:

T,
n=1 T, (12.15)
where T}, is the temperature of the hot and T'. of the cold reservoir. This is related to
the Kelvin statement of the second law of thermodynamics which states that no
system operating in a closed cycle can convert all the heat absorbed from a heat
reservoir into the same amount of work. Another way of saying the same thing is that
no thermodynamic heat engine is 100% efficient.

Now one can think of the thermoelectric power generator as an engine and takes
into account all gains and losses of energy in a complete cycle. Carriers are heated at
the hot terminal, move to the cold terminal, and produce a voltage or current, but in
the process they also dissipate joule heat because there is a current flowing. The
inevitable heat flowing between the hot and cold reservoirs tends to equalize the
temperatures. The heat reaching the cold terminal is not collected and therefore lost
as far as the power generator is considered. When adding all gains and losses, one
arrives at an efficiency equation which now looks as (Paul):

n= (1 7}) Vit (12.16)

ST VT T+

where ZT is called the ZT factor and given by:
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from which it follows that the thermoelectric efficiency is smaller than the Carnot
efficiency and increases with the ZT factor of the material in question. In order to be
of practical use the material must have a ZT of at least ~1. Figure 12.8 shows the
connection between ZT and # .

Figure 12.8 data is from a dissertation presented by Xin Liang in Applied Physics,
Harvard University, August 2013. Figure 12.8 shows calculation and plot of power
generation efficiency with the figure of merit ZT; calculations were done using
Eq. (12.16) with T), = 1273 K and T, = 500 K. The energy conversion efficiency
corresponding to a ZT value of 1.0 is indicated on the plot.

The next observation is that in order to have a high Z7, a material must satisfy a
number of conditions. First we note that the electrical conductivity and Seebeck
coefficient @ must be as high as possible. This must be achieved in combination with
a thermal conductivity which is as low possible. Looking at the o for a semiconduc-
tor, one can conclude that this corresponds to a good value compared to a metal. This
would be true except for the fact that a semiconductor with a high bandgap has a low
conductivity which in turn lowers ZT and more than makes up for the gain in a. But
as a rule one can see that materials with an asymmetric density of states around Ef
which increases rapidly with a high value around 2 or 3 kgT and covers delocalized
conductive eigenstates are good for a.

The plot in Fig. 12.9 is very instructive and shows us how carrier density n,
conductivity o, and ZT scale. Surprisingly ZT seems to be best around a Mozt
transition, i.e., a metal to insulator transition triggered by correlations. But ZT
also involves thermal conductivity k in a significant way, so if we find a material
with a good ¢ and a, for example, with Mott-like transition as shown, then we could
proceed to lower its thermal conductivity by nanomaterial engineering. One way is
to punch holes and make defects, cavities, and holes into the structure as shown in
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Fig. 12.9 A semi-schematic diagram of the thermoelectric properties using reasonable Seebeck
coefficients S is here used to denote o the Seebeck coefficient (From “Ferroelectric thermoelectric-
ity and Mott transition of ferroelectric oxides with high electronic conductivity,” by Soonil Lee et al.
Journal of the European Ceramic society vol.32, p3971 (2012))

Fig. 12.11 which illustrates how strongly the thermal conductivity can be made to
vary using structural engineering. This kind of engineering will of course also
change the conductivity, so in order to optimize Z7, the multifunctionality of the
process has to be carefully considered. It is an exciting challenge for material
engineering. In Sect. (12.7) we look at some actual values for ZT and see which
ones are best. Let us now focus on one of the key properties, namely, the thermal
conductivity.

12.6.2 Thermal Conductivity

The thermal conductivity of a material consists in general in two parts. It is the
sum of the phonon or lattice contribution k., and the electronic contribution
k. (Keivan and Chen 2011).

The phonon thermal conductivity kp, can be calculated using the expression:

ph

Kph =z ——V,I (12.18)

3V
where CP" is the phonon contribution to the heat capacity, V the volume, vp a typical
phonon velocity (velocity of sound), and I" the phonon mean free path.

In a Bloch crystal at any temperature 7, a more fundamental first principle
expression is:
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Fig. 12.10 Left axis: thermal conductivity variations of a mesoporous germanium thin film with a
uniform pore diameter d = 6 nm as a function of the porosity; blue dots correspond to Monte Carlo
simulations and red triangles correspond to the kinetic theory model. Right axis: nanoporous
phonon mean free path as a function of the porosity for a uniform pore diameter d = 6 nm green
dashed line (From “Thermal conductivity of meso-porous germanium” by M Isaiev et al. APL vol
105, 031912, (2014))

1 ) anu
Ko = 3087 ;vkﬂuhwmﬁ (12.19)

where 7, is the phonon relaxation time in a state k, with 4 denoting the mode index
and Q the unit cell volume, also is n;; the Bose distribution function and w; the
phonon frequency with v, the corresponding velocity (Figs. 12.10, 12.11, 12.12, and
12.13).

Note: Just as the electrical conductivity, which was analyzed by Movaghar and
Schirmacher, the thermal conductivity with disorder also increases with frequency
until saturation sets in. Going up in frequency means sampling over smaller and
smaller regions of the material and consequently more and more order. The heat
diffusion theory presented below can offer an explanation of this behavior.

12.6.3 Thermal Conduction in the Diffusive Limit of Phonon
Transport

In the incoherent propagation limit (short mean free path), heat transport can be
described as an excitation diffusion process. We can apply the standard temperature
diffusion equation given by:
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Fig. 12.11 The cross section of the modeled crystalline core/amorphous shell germanium
nanoparticles with molecular dynamics is depicted. The characteristic lengths of the geometry are
given. Gray atoms indicate four coordinated atoms, blue with one, yellow with two, and green with
three (From “Thermal conductivity of meso-porous germanium” by M Isaiev et al. APL vol
105, 031912, (2014))

Fig. 12.12 Structure of nanoscale 3D Si PnCs . The period length of 3D PnCs is 8 units and the
side length of simulation cell is 16 units. The periodic boundary condition is applied in simulation.
The lattice constant is 0.543 nm of Si, and 1 unit represents 0.543 nm: (a) porosity is 50%, (b) has
90%, (¢, d) normalized energy distribution on the PnC at 300 K with porosity of 70% and 90%,
respectively (From: Extreme low thermal conductivity in nanoscale 3D Si Phononic Crystal with
spherical Pores by Lina Yang et al. Nanoletters vol 14, 1734 (2014))
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Fig. 12.13 (a) shows the strong connection between porosity and thermal conduction with (b)
showing the temperature dependence, and the fact that when the disorder is strong, and the mean
free path short, temperature or phonon-phonon scattering no longer matters. (¢) Importantly the
figure also shows the frequency-dependent thermal conductivity

8T (r)
ot

_Q

pC,

+D,V?T — sT (12.20)

[T3=1]

where T(r,t) is the local temperature at time ¢ and where “s” is a uniform heat loss
rate, dQ/dt is the rate of heating in a given region or point, p is density, C,, is specific
heat capacity, and D, is the thermal diffusion rate. In this limit it is the heat which is
diffusing not the phonons. In the percolation or highly disordered limit, see
Fig. 12.11; this equation can be discretized and turned into a hopping or random
walk problem as done in Movaghar and Schirmacher for charge transport. The
discretization can be done on a lattice for which the cell length is roughly the
mean free path of the dominant phonons. We can Laplace transform Eq. (12.20)
with “p” replacing “f’ and solve this equation by Laplace transform on a lattice

with constant D,, the (extra) temperature at ‘5 at time t given that the heat pulse

was started at 7 = 0 at ¢ = 0 is in Laplace space, with D, denoting the diffusion
propagator matrix:

g|0><0 0
p+s—D, /a®

T:(P)

Toj(p) = <j 5

‘0> —O/dteP’Toj(t) (12.21)
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0;
rC,p

() = 8o/p (12.22)

For Eq. 12.22 it is assumed that the heating source has constant power where D
“D- hat” is the diffusion matrix and “a,” a cell-to-cell distance. On a periodic lattice
with Bloch dispersion ¢, the diffusion propagator is:

and represents the probability of a temperature shift “7” at the point R;. It is in fact
the (extra) temperature of the system at a point R in space given that the pulse was
created at the point R; at t = 0. Given a constant point power source generating heat
at “0” with intensity go in Hz, we have been using the standard diffusion solution in
3D (a = lattice spacing):

T(t,R) = g, / dr( @ >3/26xp{ K ]exp[—sr} (12.24)
0

4rnDyt _4Dp1

—

1 1
i) =G;i(p)= ) ——— k
|,> P = T _Ezexp[z

S — R
p+s—D, |a® p

(12.23)

The dispersion e(k) in Eq. 12.23 applies to a periodic lattice and represents the
tight-binding-like energy versus k relation for the lattice in question; see Chaps. 2
and 5, Eq. 2.1 . For 3D cubic we recall (t = D, /az):

e(k) = 2|1|( cos kya + coskyb + cos k.c)

The case with disordered and spatially variable D, can be solved like the
corresponding hopping charge transport problem, in the same way. Here we use
the effective phonon (heat) transfer rates from cell i to cell j, D,-j/<a2 > rather than the
charge hopping rates from site to site. The self-consistency relation involving the
effective frequency-dependent heat diffusivity D,(w) for the “heat transfer rate” and
the distribution function for the actual local transfer rates D,~j/<a2> will lead to an
equation for the effective frequency-dependent phonon diffusion propagator D,(w)
which contains the information on the thermal conductivity.

Given by:

1

> (12.25a)
where D,,(w) is the complex self-consistent average diffusivity, the average <>:

< Q>= /OC dWx(Wy)Q (12.25b)
0
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goes over the distribution y of transfer bonds W, *5” is the sum index over the
number of “transfer bonds” (heat hopping links) emanating from a given site “0”,
and < a” > is the mean squared distance between the transfer cells. The calculation of
D, is completely analogous to the one for charge diffusion as given in ref Movaghar
et al. The zero frequency thermal conductivity xpy, is:

16,

1C
pD (O) —57\/];

Kph =3, Dp A, (12.26)
where v, is the dominant phonon velocity (velocity of sound) and A, the mean free
path. The frequency diffusion rate D,, (w) is complex, but the zero frequency w = 0
(long time) value is real. From the corresponding analysis of the ac hopping and
percolation conduction, one can infer that with a suitable distribution function of
phonon-hopping rates, Eq. (12.25) will be able to explain the behavior shown in
Fig. 12.13c. At long times the diffusivity is lower because the phononic excitations
have encountered the worse possible scenarios. At high frequencies the diffusivity
reflects the well-connected and ordered domains where heat or phonon transport is
highest.

In metallic materials we have conductivity contributions both from electrons and
from phonons; here we show an example.

12.6.4 Phonon Contribution to Thermal Transport at Room T
A, = 3.10"%m; v, = 10°cm/s; C,/V = 25J /K Mol
1C,
Kphonon = gvv,,/\p =2.5 W/em/K (12.27)
12.6.5 Electron Contribution for a Metal at Room T (C, . Is
the Electronic Specific Heat)
A = 10"cm; v, = 10%cm/s; C,,./V = 0.5 J/K Mol

1Cp.e
ke=37y

VA, =250 W/em/K (12.28)

In materials with low electrical charge density, only the lattice or phonon thermal
conductivity matters.
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12.7 Summary: Typical Thermoelectric Generator

Using n- and p-doped semiconductors as charge/heat transporters, the common
device structure for power generation is shown below (Figs. 12.14 and 12.15).

12.8 Application to Cooling

To cool a surface, we have to reverse the process and use electrical power to drag
carriers from the side to be cooled to the heat sink; see Fig. 12.16 right. Best
thermoelectric cooling at present works down to roughly 200 K which is impressive
when taking into account the simplicity of the set up.

Fig. 12.14 Schematic energy
diagram of a basic
thermocouple unit made with
doped semiconductors for
harvesting heat

heat sourceTy

[ metal |
Iu \ He

heat sink T,

Load

generated current ceramic substrate
A—

p -type material

-type material

conductive metal

applied heat ﬁ ﬁ

:I Schematic diagram of a typical thermoelectric module (SIGMA-ALDRICH, 2015)

Fig. 12.15 Schematic diagram of a typical thermoelectric module (Sigma-Aldrich) (Sigma-
Aldrich (2015) Materials for advanced thermoelectrics. Retrieved from http://www.sigmaaldrich.
com/materials-science/metal-and-ceramic-science/thermoelectrics.html)


http://www.sigmaaldrich.com/materials-science/metal-and-ceramic-science/thermoelectrics.html
http://www.sigmaaldrich.com/materials-science/metal-and-ceramic-science/thermoelectrics.html
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Figure 62. Thermoelectric refrigeration and power generation. A
single thermoelectric couple is shown, configured for refrigeration
(left) or power generation (right). The labels “p” and *“n” refer to
the sign of the majority charge carriers in each leg; “O” com:spond
to holes, and “@” correspond to electrons. The copper-colored
regions depict electrical connections. Reproduced with permission
from ref 650. Copyright 2002 American Association for Advance-
ment of Science.
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Fig. 12.16 The cold surface is cold because carriers absorb heat energy in order to transfer into the
n-wire from the metal surface assisted by a bias. The electrons are replenished by cold electrons
which are emitted by activated hole injection down the p-wire (From Paul). Both carriers in the top
layer need heat in order to transfer along the circuit which is powered by a voltage source
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12.9 Materials Old and New (Figs. 12.17 and 12.18)
From Douglas Paul’s review, some of the original work comes from:

Dismukes JP et al (1964) Thermal electrical properties of heavily doped ge-si alloys
up to 1300 K. J Appl Phys 35:2899

Venkatasubramanian R et al (2001) Thin film thermoelectrics devices with high
room temperature figures of merit. Nature 413:597.

Boukai AI et al (2008) Silicon nanowires as efficient thermoelectric materials.
Nature 451:168.

A more complete list of references is given in the review by D Paul.

12.9.1 Properties Which Make a Thermoelectric Material Efficient

The bismuth telluride (Bi,Te;)-type compounds are narrow gap layered
semiconductors. The gap is ~0.2 eV with asymmetric density of states around Ej,
making it ideal for carrier excitation at room temperature and high conductivity.
Also, the van der Waals bonded layered structure is good for lowering the thermal
conductivity. At all times one has to remember that electrical and thermal
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Fig. 12.17 From J P Heremans, M S Dresselhaus, L E Bell D T Morelli, “When thermoelectrics”
reached the nanoscale” Nature Nanotechnology vol 8, p471, (2013)



440 12 Thermal and Photothermal Energy Harvesting

-200 0 200 400 600 800 [1] 200 400 600 800
3.00 T T T T 4.00 - T T T—T
0D n-PbSe,, Te, /PbTe 1
20 p-E ** b
250 i ] A8 * ]
2.00 F . 3

* 4

g ]
0D n-PbSeTe/PbTe ™ ]
L] ]

1.0 " 0D nSiGe
il n-BiTe, g ane .
0.50
: ' - 0.00 ' - - - :
200 400 600 800 1000 1200 400 600 800 1000 1200
Temperature (K) Temperature (K)

Fig. 12.18 Shows that one can achieve a few very good values of ZT with suitable material design.
The inclusion of Te or Se seems to be particularly helpful. These alloys produce a high density of
states just above the Fermi level which enhance o

conductivity of electrons in the relaxation time approximation are related to each
other by the Wiedemann-Franz law which states that:

7’k
Ke = 3—q20 (1229)
K =K+ Kp (12.30)

This implies that the electronic part of the thermal conductivity is intimately
linked to the electrical conductivity so that the two cannot be independently
engineered. The total thermal conductivity is a sum of the electronic and phononic
components, and the phononic component can be engineered independently. Also in
semiconductors, usually x, < k,, lowering the phononic thermal conductivity is
relatively straightforward because one can do that by lowering the crystal quality
or dimensionality of the material.

12.9.2 Low-Dimensional Structures

Low-dimensional structures such as nanowires or quantum wells and superlattices
can sometimes be used to optimize ZT. We saw, for example, how porosity helps to
lower k, without necessary altering too much the electronic contributions.
Superlattices can be made by depositing one material on top of the other, doping
layers, forming minibands for electron transport, and indeed making phonon filters
(Fig. 12.19).
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Fig. 12.19 The electron density of state as a function of energy for (a) 3D, (b) 2D, and (c) 1D
semiconductor systems. The best position of the Fermi level for Seebeck coefficient is also shown
(note the asymmetry) by the dashed line (see Dresselhaus et al. book for ZT “Recent trends in
thermoelectric power conversion”)
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Fig. 12.20 Left figure shows theoretical estimates for the figure of merit as a function of well or
wire width, from Dresselhaus; right figure shows the density of states and Fermi energy assumed
(see Dresselhaus et al. book for ZT “Recent trends in thermoelectric power conversion”)

A system may be designed and fabricated which optimizes ZT to the extent
allowed by material properties. Phonon transport and electron transport in
superlattices (SL) and superlattice wires are normally studied separately. The science
of thermoelectric engineering of SL is relatively new. Samarelli et al. have shown
that the expensive Te in BiTe materials can be replaced by SiGe modulation-doped
superlattices with ZT reaching respectable values of ZT~0.15 (Fig. 12.20).
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12.9.3 Advantages of Lower Dimensionality

These are associated with the lower thermal conductivity by enhanced phonon
scattering and the strong asymmetry of the density of states about the Fermi level
when strategically doped (Figs. 12.21 and 12.22).

Fig. 12.21 Left: a cross-sectional TEM image of Ge quantum wells with Sip, Gegg barriers
forming a 2D thermoelectric system. Middle: a SEM image of etched 50-nm-wide nanowire of Ge/
Sig» Gepg material forming 1D thermoelectric systems. Right picture: a TEM image of a Ge
quantum dot grown on a silicon substrate forming a 0D thermoelectric system for scattering
phonons

25 o
. ——rr———T—r——Tr—rr71rr—Tr7Tr—r—r7TTrr

Bi,Te /Se,Te, PbTeSeTe/PbTe
" PERLATTICES QUANTUM DOTS 1
20 F " g SUPERLATTICES -
o E

15

DIMENSIONLESS FIGURE OF MERIT ZT

0.0

0 200 400 600 800 1000 1200 1400
TEMPERATURE (K)

Fig. 12.22 The ZT value plotted for a number of alloys as a function of temperature (“Thermo-
electric performance of metal semiconductor superlattice nanowires” from Sajid Kabeer. Online)



12.9 Materials Old and New 443

Fig. 12.23 Dimensionless 0.06 — - T - T - T
figure of merit at elevated - S

. —e— Thin film T, _=400°C
temperature using thermal —w— Bulk dep
conductivity at 300 K for e
AZO thin film deposited at 0.04r e R
400C compared with previous Va
material (see Shrikant Sani r
et al. Japanese Journal of
applied Physics vol53 0.02F o .
p 060306 (2014) “Enhanced .
thermoelectric performance of [ _e—*® *
Al-doped ZnO films on 0.00 ;———"/*/
amorphous substrates”) 300 400 500 600

Temperature (K)

T
\
o

Fig. 12.24 A Samarelli et al. 60
“the thermoelectric properties ! m ZnO 1150°C 1 day, Exp.
of Ge/SiGe modulation-doped - —— Present work, eq. 3.38
superlattices” J Appl Phys Vol 50 - - - Callaway’s model, eq. 3.13
113, 233704 (2013)

30 -

20 +

Thermal conductivity (W/m.K)

10 -

300 400 500 600 700 800 900 1000 1100
Temperature (K)

Zn0O has a number of advantages (high bandgap, stability dopability) which can
be exploited in thermoelectrics as well as shown by the Al-doped material in
(Figs. 12.23 and 12.24)).

Thermal conductivity of mesoporous germanium by M Isaev et al. APL, vol 105, p
031912 (2014) (Fig. 12.25).

12.9.4 Summary

Low-dimensional structures such as nanowires can be beneficial because they can
combine high electrical conductivity with low thermal conductivity using surface
scattering of phonon heat carriers. Nanoparticle lattices are very versatile, and one
has now learned how to generate assemblies with wide enough energy bands for high
electrical conductivity, and soon one will learn how to concomitantly lower the
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Fig. 12.25 Temperature dependence of the thermal conductivity of Si/Ge superlattice nanowires
in comparison with pure smooth Si nanowires, Siy sGe 5 alloy nanowires, and fully amorphous Si
nanowires. All wires have the same cross-sectional area, 3.07nm x 3.07 nm, and the scan length of
278 nm from “Si/Ge superlattice nanowires with ultralow thermal conductivity” (Ming Hu and D
Poulikakos Nanoletters, vol.1, p5487 (2012); see also Keivan Esfarjani and Gang Chen PRB vol
84 p 085204 (2011) Heat transport in silicon from first principles calculations™)

thermal conduction. Metallic nanoparticles can be used as high absorbers of photons
via surface plasmon excitations and hence used for nanoscale local heating. This can
be integrated into nanotechnology to focus light, achieve strong absorption, and
heating, and then hopefully high ZT value. There is a lot of scope in the nanoparticle
material technology area, and there are some good prospects both for heat and light
harvesting.

See Jong Soo Lee et al. (2011) Bandlike transport high electron mobility and high
photoconductivity in all inorganic nanocrystal arrays. Nature Nanotechnology letters
6:348.

M P Bonechanscher et al. (2014) Long range orientation and atomic attachment
of nanocrystals in 2D honeycomb superlattices. Science 344:1377.
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The other and more common strategy for harvesting energy from heat and light is to
use PVC devices (see the previous chapter on light harvesting). The PVC devices are
very well documented and constitute a mature technology that utilizes solar cells
which the reader can access in the literature and books and buy in shops. The
problem with current PVC technology is that it is mostly geared to the harvesting
of shorter-wavelength region of the sun’s spectrum; see Fig. 12.32. Silicon is
currently still the typical and best material class; the lowest-energy photons collected
have energies around 1 eV or 1.2 pm (Figs. 13.1 and 13.2, 13.3).

C Ferrari et al. “Overview and Status of Thermophotovoltaic Systems” Energy
Procedia Vol 45, p160, (2014) 68th Conference of the Italian Machines Engineering
Association ATI 2013

13.1 Photothermal Harvesting Using Photonic
Crystal Conversion of Blackbody Heat
into High-Energy Photons

The objective and design are illustrated in the diagram in Fig. 13.3. The idea is to
harvest the long-wavelength light emitted by a hot body, not just the shorter
wavelengths. Here, one designs an absorber of, for example, sunlight, the absorber
gets hot, and now this absorber will also act as an emitter. Normally, it would emit in
the blackbody spectrum. The point is to modify it in such a way so that its light
emission now covers a smaller wavelength range than the whole blackbody spec-
trum and shifted to higher energies. In this way, the longer wavelengths can ideally
be reemitted in a shorter wavelength range, and one can then proceed to harvest the
heat rays emitted using conventional highly efficient semiconducting photovoltaic

© Springer International Publishing AG, part of Springer Nature 2019 447
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_13
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cells such as silicon cells. These cells operate above the bandgap of Si and thus cover
the higher part of the bb spectrum.

In the proposed design shown in Fig. 13.5, the absorber and emitter consist of
tungsten photonic crystals whose properties can be tailored to provide broadband
absorption of light over the entire solar spectrum. The emission spectrum can be
adjusted to match, at least in part, the absorption characteristics of a silicon photo-
voltaic cell. The absorber and emitter are integrated within the intermediate wave-
length range to optimize thermal transfer. The bb light emitted which is below the
absorption band of the photocell is designed to reflect back into the emitting material
again; in this way it gets recycled into heat and is not lost. In this way, the conversion
of long-wavelength light to shorter-wavelength light is done by the “emitter” itself,
by way of raising the temperature of the emitter. This conversion does not explicitly
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Fig. 13.3 Illustration of the action of a combination cell designed to pick up a wider range of
wavelengths. The efficiency of such cells has reached values of 40% or more. The problem however
is the cost of production which makes large-scale commercialization difficult
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Fig. 13.4 Schematic of the proposed thermophotovoltaic cell. The receiver and emitter layers of
the intermediate are shown together with the idealized absorption spectrum (including the solar
spectrum in yellow) and emission spectrum (the dotted line indicate the PV cell bandgap energy
level), respectively. The photonic crystal lens focuses the light, maximizes the absorption, and then
reemits in a narrower wavelength region tuned to a conventional solar cell

involve exploiting any nonlinear processes, though these can indeed be involved as
well (Fig. 13.4).

*The design and fabrication of photonic crystals transformers is a highly non-
trivial task. The interference of light is used to narrow down the spectrum like Bragg
reflection. This is in contrast to photonic conversion using the nonlinear optical
effects, see the work of Fan et al. The net photon power emitted from a body at a
given temperature T and emissivity o, is given by the Stefan-Boltzmann law:
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Fig. 13.5 Scanning electron
microscope picture of a
representative nickel photonic
crystal fabricated by
electrodeposition using a self-
assembled polystyrene opal
template

Pou = Ago, (T* — T}) = Py (13.1)

The trick is to keep the temperature high in the emitter using the recycled photons
which are back-reflected into it. Photons can ideally only leak out through the
allowed window and then into the photovoltaic device. The conversion to shorter
wavelength is done by using the entropic pressure which makes a hotter body emit
in a different (wider and shorter) spectrum with photons occupying higher energy
modes with higher probabilities. The extra temperature is acquired by absorbing
reflected photons from the photonic crystal filter.

13.2 Dichalcogenides: From Monolayers to Nanotubes

Layered compounds transition metal dichalcogenides TMD exhibit quite a good
figure of merit as can be seen from Fig. 13.6, but they will, because of the high
crystal quality, have high thermal conductivities which is a disadvantage. The latter
needs to be reduced to enhance the ZT further.

Flexible n-type thermoelectric materials can be made by organic intercalation
of layered transition metal dichalcogenide TiS, (Chunlei Wan et al. Nature materials
vol 14 p 622 (2015)). Flexible n-type thermoelectric materials by organic intercala-
tion of layered transition metal dichalcogenides with Z7 of 0.28 at 338 K have been
recently discovered; see above reference. The injection of organic layers consider-
ably reduces the thermal conductivity.

*Organic layers were externally injected into the inorganic layers and then
stabilized by organic cations, providing n-type carriers for current and energy
transport. An electrical conductivity of 790 S cm(—1) and a power factor of
0.45 mW m(—1) K(—2) was obtained for a hybrid superlattice of TiS2/
[(hexylammonium)x(H20)y(DMSO)z], with an in-plane lattice thermal conductiv-
ity of 0.12 4+ 0.03 W m(—1) K(—1), which is two orders of magnitude smaller than
the thermal conductivities of the single-layer and bulk TiS2. High power factor and
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Fig. 13.6 (a) Electrical conductance G and (b) thermopower (@) TEP of a graphene sample as a
function of back-gate voltage V, for T = 300 K (square) 150 K (circle), 80 K (up triangle) 40 K
(down triangle), and 10 K (diamond). Upper inset: SEM image of a typical device for thermoelectric
measurements; scale bar is 2 pm. Lower inset: TEP values taken at Vg = -30 V (square) and —5 V
(circle); dashed lines are linear fits to the data (From Y M Zuev et al. PRL vol 102 p 096807 (2009)
Published on line Feb.5 (2014)) (From “Thermoelectric Properties of Transition Metal
Dichalcogenides: From Monolayers to Nanotubes”, Kai-Xuan Chen, Xiao-Ming Wang, Dong-
Chuan Mo, and Shu-Shen Lyu. J. Phys. Chem. C, 2015, 119 (47), pp. 26706-26711)

low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of
0.28 at 373 K, which might find application in wearable electronics.

13.3 Special Case: Graphene

Thermoelectric properties of graphene are described in the paper by Yong Xu et al.
Condensed matter Science Feb 2015 published online. “Thermal and Thermoelectric
properties of graphene.”

The investigated thermoelectric properties on graphene suspended and on a
substrate all demonstrate that high electrical conductivity is accompanied by high
thermal conductivities as well, so that the ZT value is not very high. But individual
properties are of great interest especially in view of the fact that a gate voltage can be
used to control the carrier density, mobility, and conductivity and thus also the
electronic thermal contribution. Researchers will eventually also find a way to also
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control the lattice heat conduction by engineering defects and interfaces,
superlattices, and heterojunctions in combination with TMDC, making graphene a
uniquely versatile system.

13.4 Thermoelectric Mapping Graphene

Recently, researchers have managed to combine STM and thermal scanning to
obtain atomic scale temperature images and have applied the technique to graphene.
This is shown in Fig. (13.7); the temperature scan gives one yet another handle on
the local properties of surfaces which can be combined with the STM and or AFM
information to complete the picture. This is especially valuable for the study of
systems which are highly correlated, such as magnetic layers or ferroelectrics, and
materials which exhibit a metal insulator transition such as VO,. One can in this way
go some way toward disentangling the one-body from the many-body effects. But
this type of work is very new, and a lot more needs to be done on measurement and
modeling.

See “Atomic scale mapping of thermoelectric power on graphene: Role of defects
and boundaries” Jewook Park et al., Nanoletters vol 13, p 3269 (2013).

Fig. 13.7 Structure and thermovoltage measurement of graphene with an STM at the atomic
resolution on epitaxial graphene on SiC. (a) Schematic diagram of measurement technique. Atomic-
resolution images of topography (b) and thermovoltage (c) for the epitaxial graphene acquired
simultaneously at 130 K (image size 7.5 nm x 7.5 nm). The temperature at STM tip is 298.5 K with
an applied temperature difference delta 7 = 168.5 K. “Atomic scale mapping of thermoelectric
power on graphene: Role of defects and boundaries” (Jewook Park et al., Nanoletters vol 13, p 3269
(2013))
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13.5 Phononic Crystals

Another class of materials which is currently arousing great interest are the phononic
crystals. Similar to photonic crystals, phononic crystals can be engineered with
superlattices or other forms of topological complexity to form materials with
phononic bandgaps. The field is relatively new and is very promising for application
to green energy management and harvesting. It could well provide us with a highly
desirable class of thermal diodes and selective frequency sound insulators or
blockers. The reader is referred to the review by Martin Maldovan in Nature vol
53 p 209 (2013).

13.6 Organic Materials: Single Molecule Junctions (Fig. 13.8)

Researchers have investigated structural, electrical, thermal, and thermopower
properties of molecular junctions, down to single molecules; see Fig. 13.9. This is
by now a vast field of research, with many interesting results (Reddy) published in
the literature. Voltage generation is shown for a series of molecules in Fig. (13.9).
Most work on molecule junctions at present targets, quite understandably sensoric
applications for single molecule detection. As an engineering discipline, this subject
is still in its infancy, but it is not too difficult to envisage the great potential that this
type of approach has to offer. It must be put in conjunction and combined with
nanoparticle surface plasmon technology, excitons, energy and charge transport
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Figs. 13.8 and 13.9 From Pramod Reddy et al. “Thermoelectricity in Molecular Junctions”
Science Vol 315 p 1568 (2007)
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along DNA strands, muscle fiber, photosynthesis, nerve cells, tattoo electronics,
animal hibernation, and information storage in biological materials. For transfer
across a molecular bridge, see also D Segal et al. (J Phys Chem B vol 104 p3814
(2000)) and A B Butler Ricks et al. (JACS vol 132 p15427 (2010)).

13.7 Many-Electron Thermopower: The Effect of Electron
Correlations

13.7.1 Kondo Systems

Up to now, we focused on materials which can be described by effective single
particle physics. This includes the vast majority of useful semiconductors. The
question is what happens when electron correlations get involved. This is an exciting
subject in its own right. Though the Seebeck term can be large, useful thermoelectric
performances are normally limited to low temperatures, because that is where
correlations play a major role. Thus, this type of material technology is not currently
pursued for large-scale energy harvesting and cooling. But in this category, we
encounter a particularly interesting and topical class of materials, namely, solids,
where narrow, strongly coulomb-correlated “d and f” electron bands are present
which mix with broader s-like bands. The Hubbard energy U acts to oppose the
filling of the atomic d or f shell leaving a net paramagnetic spin on the atoms. The
localized spin strongly scatters the electrons in the s-bands, raising the energy of the
electrons in such a way that the system prefers to screen this localized spin and form
a singlet combination involving quasi-free “s”-like states and the more localized
d-levels. The screened spin is then made invisible to the sea of other electrons
roaming in the bands of the system, and this helps lower the total energy of the
electrons. The localized singlet is called a “Kondo resonance” or Kondo bound state.
This Kondo resonance produces a peak in the density of states for the excited
spectrum which in turn leads to a high Seebeck coefficient. The problem is that
the Kondo bound states are low temperature (<200 K) phenomena, and the
thermopower is only enhanced typically at low temperatures, mostly below
T = 200 K. Cooling and heat harvesting applications could indeed be envisaged at
low T. For a comprehensive and up-to-date theoretical review, the reader is referred
to the book by Zlatic. The Kondo systems FeSb, (see Fig) and FeAs, exhibit what
can be termed a giant thermopower. The reason is that the s-d coupling or Kondo
resonance generates a large density of states which peaks near the Fermi level.
Looking at the formula (12.10), we note that this implies that excitation above E;can
lead to the transport of a large number of electrons which then gives rise to a large
entropy per carrier. Kondo materials have a high and strongly temperature-
dependent resistance (minimum structure) caused by the strong scattering of the
nearly free electrons with the local bound state. It turns out that when magnetic
impurities are used to dope nonmagnetic semiconductors giving rise to a Kondo
resistivity, a similar peak in the density of states and similar enhanced value of the
thermopower are recovered (Fig. 13.10).
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PHYSICAL REVIEW B 86, 115121 (2012)

TT1 T T

1000 3 -

_ A(meV)

3 i 14.7
@ 21.0

102- ﬁ i

T(K)

Fig. 13.10 « (T') marked on figure as S, for FeSb, crystal red and blue squares. Red and blue ball
show fits to a correlated electron model. The ratio of individual and mobilities in a two-carrier
model is shown by the red/orange and dark/light blue squares (see Qin Jiu et al.)

Qing Jie et al. “Electronic thermoelectric power factor and metal insulator
transition in FeSb,” PRB Vol 86 p115121 (2012), and references cited.

*Although small in comparison to o in FeSb,, exceptionally large Seebeck
coefficients are found in metals containing dilute magnitude impurities and in
semiconductors containing resonant-level dopants and highly degenerate electronic
bands. Among all these systems including FeSb,, there is a shared commonality that
plays a role in the large @, namely, large peak in the electronic density of states
(DOS) near the Fermi level E. However, only in the former class of materials where
magnetic interactions between localized and itinerant electrons take place are spins
also suggested to play a role. Observation of this same effect, i.e., Kondo effect in
semiconductors, has led to the term Kondo insulators. Examples of the anomalous
peaks in a for these materials occur in FeSi, Ce; Pt; Sby, and CeFe, P, reaching
about 500, 350, and 800 pV/K, respectively (Fig. 13.11).

Tetsuro Saso “Thermoelectric Power and electronic structures of Kondo
insulators” Physica B vol 328 p58 (2003)

“Correlated evolution of colossal thermoelectric effect and Kondo insulating
behavior” by MK Fuccillo et al... APL Vol 1 062102 (2013)

JM Tomczak et al. “Thermopower of correlated semiconductors” Applications to
FeAs, and FeSb, PRB Vol 82, p085104 (2010)

“Modern theory of Thermoelectrics” by Vejko Zlatic and Rene Monnier Oxford
University press May 2014

Peijie Sun et al. Huge thermoelectric power factor: FeSb, versus FeAs, and
RuSb,, Applied Physics Express Vol 2 p 091102 (2009).
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Fig. 13.11 Thermoelectric power S (a in our notation) for FeSb,, FeAs,, and RuSb, which all
have a similar carrier concentration below 30 K; inset shows the electrical resistivity p as vs T. The
resistance is thermally activated in certain T ranges. For FeSb, E, = 0.20 eV. For FeAs, and RuSb,
E, = 0.29 eV (for original data, see Peijie Sun et al. Peijie Sun et al. Huge thermoelectric power
factor: FeSb, versus FeAs, and RuSb,, Applied Physics Express vol 2 p 091102 (2009))

13.8 Material with Metal Insulator MI Transitions, Example VO,
Phase (Fig. 13.12)

In Fig. 13.13, we exhibit the evolution of the resistivity and Seebeck coefficients
with temperature in VO,.

A light beam applied to the material can switch the material from below to above
the percolation threshold of conduction, and this gives a giant gain. Light can induce
an MI transition in island networks. Understandably, this material is one of the best
existing and useful bolometers because the MI transition is just above room temper-
ature. For other examples, where collective effects give MI transitions, see also
Fig. 12.9.

Takayaoshi Katase et al. “Thermopower analysis of metal insulator transition
temperature modulation in vanadium dioxide films with lattice distortion.”

*The conductivity can jump in the critical region when the gap decreases sharply
with T.

*Movaghar-Schirmacher’s method allows frequency-dependent thermal diffu-
sion to be computed as well.

*Positive bias gate controlled metal insulator transition in ultrathin VO2 channels
with TiO2 gate dielectrics by Yajima et al. DOI 10.1038 /ncomms10104
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Fig. 13.12 Thermoelectric power S (a in our notation) for FeSb,, FeAs,, and RuSb, which all
have a similar carrier concentration below 30 K; inset shows the electrical resistivity p as vs T. The
resistance is thermally activated in certain T ranges. For FeSb, E, = 0.20 eV. For FeAs, and RuSb,
E, = 0.29 eV (for original data, see Peijie Sun et al. Peijie Sun et al. Huge thermoelectric power
factor: FeSb, versus FeAs, and RuSb,, Applied Physics Express vol 2 p 091102 (2009))

13.9 Summary: Conclusion

Thermoelectric generators are already used in car exhausts and power stations and
constitute now well-established technologies. But despite all the research, there are
until now only a few materials which satisfy the efficiency criterion ZT > 1 criterion.
Work is still in progress with new materials being designed and investigated every
day using the most modern nanotechnology growth methods. The research program
is exciting, and this applies in particular to the field of photothermal harvesting from
blackbody sources.

In this chapter, we have shown the reader how to model thermoelectric efficiency,
even, and in particular, in the presence of disorder. The chapter covered electric and
thermal conductivity as well as the Seebeck effect.
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Resistivity, p

Seebeck coefficient, |S|

Temperature, T

Fig. 13.13 Color online schematic illustration of metallic and insulating domain configuration at
each temperature (a—d) around MI transition and corresponding changes in p-T and S-T Majority
phase changes from Takayaoshi Katase et al. “Thermopower analysis of metal insulator transition
temperature modulation in vanadium dioxide films with lattice distortion.” Metallic domains are
shown in red and grow as the T is increased until they form a connected percolation path. The
thermopower and resistivity weigh in differently in this percolation transition, and the ensuing
information is thus very useful. Thermal conductivity evolution will add yet another angle
(Takayaoshi Katase et al., “Thermopower analysis of metal insulator transition temperature modu-
lation in vanadium dioxide films with lattice distortion” transition in FeSb,” PRB vol 86 p 115121
(2012))

For the materials physicists and theorists, the challenge is to identify, then model,
and then fabricate the materials with a high Seebeck coefficient and high electrical
conductivity yet low thermal conductivity. The effect of many-body interactions has
also been considered. It turns out that Kondo insulators have high Seebeck
coefficients, but their exploitation can at present only be envisaged at low
temperatures. The physics of thermoelectric response in correlated materials such
as ferromagnets is a subject of great interest in its own right because temperature
gradients can produce ferromagnetic polarization and spin gradients without charge
currents. Internal spin gates can be generated from regions of varying spin polariza-
tion, which seriously modify the internal carrier and phonon dynamics of the
problem. This is especially true in ferromagnetic multilayers and nanowires. This
subject is relatively new and as yet relatively unexplored. Applications are to be
expected in the field of spintronics rather than energy harvesting (Nakano, Setsuro).

The fields of ordinary and giant magnetoresistance, magnetism and Hall effect,
anomalous magnetoresistance, and spin Hall effect are by now vast and important
fields of research and development in the category of spintronics. This book
specializes in one-body quantum phenomena; spintronics involves collective effects
and, like superconductivity, ferromagnetism, ferrimagnetism, and ferroelectrics, is
beyond the scope of this book. The interested reader should consult some excellent
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reviews, namely, by A Fert and P Gruenberg in Nature Physics vol 3 p 754 (2007); 1
Zitic, J Fabian, and S Das Sarma in Rev Mod phys vol 76, p323 (2004); and Thomas
Dietl in Nature Materials vol 9 p 965 (2010) for the magnetically doped
semiconductors. Albert Fert was awarded the Nobel Prize for his work on ferromag-
netic interfaces and transport in 2007.

13.10 Discussion

In this chapter, we examined how electrical energy can be harvested from heat
sources, for example, hot surfaces or substrates, and we did this in the context of
solid-state electronics. The basic principle of thermoelectricity was explained, and it
was shown how the thermally induced voltage could be calculated. As in a Carnot
engine, some loss is inevitable, and the efficiency of a thermoelectric generator is
lower than the Carnot efficiency. It was shown how the efficiency is calculated, and
the figure of merit or ZT value was derived. The remainder of the chapter was
devoted to studying particular examples. In particular, we discussed the effect of
dimensionality, layered structures, molecular devices, and briefly also photothermal
systems. It is still very difficult even now to generate useful systems with a ZT > 1,
and the field is researched into with endeavor.

Problems

1. Calculate the thermoelectric efficiency ZT for a device for which the conductivity
is 10° siemens/cm, the thermal conductivity is k = 5 W/Km, and the Seebeck
coefficient a is

200 pV/ky,, T = 300 K.

Write down the formula for the Seebeck coefficient of a free electron system and a
wide bandgap semiconductor.

Calculate it for crystalline Al metal and semic. AlAs at T = 300 K, extract
parameters from Google.

2. (a) How does the spectrum of blackbody radiation scale with the temperature of a
body? Make a typical sketch.
(b)What is the photothermal effect? Explain how one can use the long-wavelength
induced heating in a solid to harvest higher-energy photons in a
conventional PVC.

3. Use your own ingenuity to design a thermoelectric material of high ZT. You can
use any material and composition, drill holes, etc. Explain your choices. Plastic
polymers are mechanically ideal, but what is the drawback in this context?
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4. The Wiedemann-Franz law connects the thermal and electrical conductivity of a
free electron gas in the Drude or nearly free electron gas approximation. The
statement is (Eq. 6.38b):

342
From this law, it follows that one cannot expect a good simple metal to be a good
ZT material because the thermal conductivity must be also high.

Calculate the thermal conductivity if the o,; = 10* S/m at T = 300 K.

Kol = To,; where k., is the thermal and o, the electrical conductivity.

References and Further Reading

Ferrari FJ et al (2014) Overview and status of thermophotovoltaic systems. Energy Procedia 45:160
68 th Conference of the Italian Machines Engineering Association ATI 2013

Jeewok P et al (2013) Spin dependent Seebeck effect, thermal colossal magnetoresistance negative
differential thermoelectric resistance in zigzag silicene nanoribbon heterojunction. Thermal
conductivity of Mesoporous Germanium. Nanoletters 13:3269

Jie Q et al (2012) Electronic thermoelectric power factor and metal insulator transition in FeSb,.
PRB 86:115121 References cited

Martin M (2013) Sound and heat revolutions in phononics. Nature 53:209

Nakano M et al (2012) Collective bulk carrier delocalization driven by electrostatic surface charge
accumulation. Nature 487:459—462. https://doi.org/10.1038/nature11296

Pramod R et al (2007) Thermoelectricity in molecular junctions. Science 315:1568 See also
“Hybrid thermoelectrics”.

Sun P et al (2009) Huge thermoelectric power factor: FeSb, versus FeAs, and RuSb,. Applied
Physics Express 2:091102

Tetsuro S (2003) Thermoelectric power and electronic structures of Kondo insulators.
Physica B 328:58 “Correlated evolution of colossal thermoelectric effect and Kondo insulating
behavior” by

Tomczak JM et al (2010) Thermopower of correlated semiconductors. Applications to FeAs, and
FeSb,. PRB 82:085104

Wan C et al (2015) Flexible n-type thermoelectric materials by organic intercalation of layered
transition metal dichalcogenides with ZT of 0.28 at 338 K. Nat Mater 14:622

Xianliang L et al (2011) Taming the blackbody with infrared metamaterials as selective thermal
emitters. PRL 107:045901

Zuev YM et al (2009) Atomic scale mapping of thermoelectric power on graphene. Role of defects
and boundaries. PRL 102:096807 Published on line Feb 5 (2014)


https://doi.org/10.1038/nature11296

®

Check for
updates

14.1 Introduction

In this chapter we will investigate how the presence of other charges and dipoles
influences the charge-charge interaction.

Consider, for example, a net charge introduced into a semiconductor, and con-
sider how the electrons in the conduction band react to it. The net charge could be,
for example, the charge of the ionized Si impurity in GaAs or P impurity in Si. One
can ask what is the electric field that the carriers see? Do they see the full Coulomb
field of the ionized impurity or a reduced field? We know from elementary electro-
magnetic theory that the presence of an insulating medium around a charge partially
screens the charge and introduces the bound electron permittivity term ¢, in the
Coulomb potential, for example. We also saw in Chap. 10 how one can derive the
permittivity of bound charges ¢, in a medium. But what about the presence of free
electrons? What happens to the net field in a metal where we have both bound and
free charges? We saw how the free carriers change the total permittivity of a system
and how this can be incorporated in the optical properties of solids, but we did not
look at the consequences for carrier-carrier and carrier-charge interactions. The free
carriers were given a classical Drude treatment which is adequate for optics, but we
did not investigate how the medium affects the net interaction between the charges
themselves. To answer this question, we have to start from a first principle point of
view and give the problem a quantum mechanical treatment. Let us examine these
questions from a fundamental point of view following closely the book by J. Ziman
(see references). We start by applying a general potential V(r, f) to a medium where:

V(F,1) = Vel 7 e e (14.1)

We have allowed the field to grow slowly to its full value with a time constant « in
order not to cause large deviations from equilibrium. Now we go back and use time-
dependent perturbation theory as we did before for bound electrons in the previous
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chapter and consider the first-order change in the wavefunction of a Bloch electron in
a solid that this potential introduces (Ziman 1964):

Yo (7.1) = ’Z> n bhp(t)‘; +P> (14.2)

whereas in Eq. (10.42), we have from perturbation theory:

<Z V(.70 % +P>
= 14.
®) E. - —E. - +ho—ila (14.3)
k+k

e
k

Voeiwteat
E-—E. - +hw— iha
k k+k

Q(I) =

o (14.4)

The new wavefunction implies also a new charge distribution. Thus, we can
compute by considering the deviation from the unperturbed distribution:

ap(7 1) :qZ{“PZ(r,t)‘Z— 1} (14.5)
k

Substituting from Eq. (14.4) and keeping only terms in first order, we find:
lk T 71'127
1) = +bZ 14.6
(7, qE {kk’ Hk,() } (14.6)

In practice, it is more convenient to work with a real perturbation, so let us write
instead:

sV (r,1) = Ve " 1y Y g T g g (14.7)

Then it follows by substituting Eq. (14.7) into Eq. (14.3) and then Eq. (14.5) that:

op = qz Vo n Vo

—

E(k) — E(; + k) +ho —iha E(k) —E(Z —K') — ho + iha

% eil??eiwz + cc
(14.8)
The next step is to generalize this expression taking into account the fact that the

initial states must be occupied, and the final states, to which the electrons are moved
to by the perturbation, must be empty to find the charge density change:
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- N
dp=qVoy — fo(k)d f‘L(k +) e et 4 cc (14.9)
¢ \E(k) —E(k +K) + ho — iha

This is a new charge distribution caused by the application of the perturbation, so
it also produces a new potential, which must be a solution of the Poisson equation:

V2(6®) = —dnqdp
o (14.10)
5P = Dyl T e + cc

where we have assumed that the potential has the same time and spatial variation as
the perturbation. Now we substitute Eq. (14.10) and evaluate the % operator to find:

FOO) —f£(k + %)
T E(k) —E(k+ l?)+hw—iha
Vo f(k) £ (k

) —f(k+K)
7 E(K) —E(K +K ) +ho — iha

(14.11)

1

—

So we see that the perturbation has produced a reaction, a new internal potential.
But this reaction is itself a similar perturbation, so the calculation should really be
self-consistent and take this internal response into account right from the start. In
other words, the total perturbation acting on the electrons is not just the external
potential but also the internal response that the external one has generated. We now
have the total perturbation:

sU(r,t) =6V (r,1) +60(r,1) (14.12)

And if we assume that the external potential has the form given by Eq. (14.7):

2 N (T
U:V+4ﬂg Y — f(k)ﬁ f(_k+k> U (14.13)
k= =7 \E(k) — E(k +K) + hao — iha
or in other words:
v-—"Y (14.14)
ek, o)
where:
. 2 N (ha
ek, w) = 1+ 24 UORAGLY (14.15)

K? P h
: \E(k+K)—E(k) - ho + iha
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This important formula is known as Lindhard’s expression. The applied potential
is V(77 t), but the potential seen by the carriers is modified or screened by the

medium to give U(r,t) where:

V(r,1) = ”d/? dweik/'7ei“”V(k’Ta) ) (14.16)
o) = -
U(r,t) = ”Mdk’ dwe™ " " (14.17)
e(K, )

14.2 Static Response

In order to appreciate the significance of this formula, consider the situation where
the applied field is time independent, so we need to study e(k,0), i.e., at zero

frequency. To do that we look at the limit k' — 0 in Eq. (14.15) where the denomi-
nator is largest and write:

E(k +K) — E(k) =k .V E(k)

- L Lo (14.18)
flk)=flk +K)=—k 5% V;E(k)
And in Eq. (14.15), we have:
e(k,0) — 1+-2 Z/H k (H) <—%>dk (14.19)
eok™ ) kv _E(k)
k
— 2
/ _ q _ﬂ
e(K,0) _1+€0k/2/< aE>gv(E)dE (14.20)
— 22
e(kK,0) =1 +17S2 (14.21)

where gv is the density of states per unit volume. If we remember that (— %) is at

low temperatures almost a delta function at the Fermi energy, then this gives us:
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2
E
3, = T8vER) (14.22)
€0

But the general result at any temperature follows from Eq. (14.20) and
Eq. (14.21).

Now assume that the external potential is, for example, caused by an impurity
with a Coulomb potential:

q2

V(r) = Tneor (14.23)
In Fourier space the bare Coulomb potential gives:
VK = q—22 (14.24)
4reok’
so that the net potential seen by the other carriers in Fourier space is:
T . ! = 7 (14.25)
1+ 5 | 4meok’™  dae (/15 + k’2)
And in real space this transforms back to:
U(r) = 7 exp|—Ay7] (14.26)
dregr

Now we understand that the quantity A, is an inverse screening length and
depends on the magnitude of the density of states at the Fermi level. The density
of states at the Fermi level is only finite when we have free carriers, i.e., when we
have a finite conductivity at 7= 0. In a metal, the screening length can be as short as
1/4,~0.1 nm. In a doped semiconductor, the screening length can be 100 times
longer than that. Note that Eq. (14.21) is an approximation, and Eq. (14.26) is only
valid at longer distances than the screening length. The exact evaluation and spatial
dependence of the potential are quite a bit more complicated than that. For our
purposes, however, the simple exponential result which is valid at long distances
r > 1/ is good enough.

14.3 Screening in a Semiconductor

Now let us consider how charges are screened in a medium such as a semiconductor,
where there are no free charges at low temperatures. For this purpose it is convenient
to now explicitly index the bands so we have:
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— 2 '<;7g k/7m>
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|ACEAGYY

(14.27)

where g is the valence bands and m the conduction bands. The first allowed process

in the sum is from the valence band to the conduction band, so we have for small k’:

en(k + K ) — ey (k) ~ Egyp (14.28)

In order to proceed further, we use the sum rule:

Z (E, — E,) <n s>

which follows from the commutator [x,p] = ii. Then we use the approximation
Eq. (14.28), assuming this is true for all ¥’ to find:

2 _h2k2
T 2m

-
ik-r

¢ (14.29)

e AV
k,gle™ | k + K ~ 14.30
; < s 7m> 2mE gy ( )
which then gives when substituted back into Eq. (14.27):
2 o, BK? 2
e(k,0)=1+-1 2 (14.31)
eok’" Egap 2 Egap
2o, W1
e, 0)=1+L 0 (14.32)
€0 Egap m Egyp
/ hwp ?
e(k,0)=1+|— (14.33)
Egap

where n, is the density of electrons in the valence band and where we have defined
the plasma frequency in the valence band as:

2y 1/2
W, = {”V" } (14.34)

mey

Going back to Eq.(13.14) again, and looking at the effective Coulomb potential,
transforming back to real space, we now have:
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V(r) = i (14.35)

= dreg [l + <%>2}r

which, in contrast to Eq. (14.21), gives us a constant permittivity and keeps the long
range nature of the Coulomb potential. The effective permittivity produced by the
polarization of the valence band in the absence of free carriers is therefore:

hw,\ >
g =1+ (”) (14.36)

E;

The presence of free charges has a drastic effect on the screening as can be seen
by comparing Eqs. (14.36) and (14.26). These results are some of the most important
in solid-state physics.

According to Eq. (14.36), we have for direct bandgap zinc-blende materials, a
valence band electron density which is the atom density, because we have four
valence electrons per atom and thus a scaling of the permittivity with the energy gap.
The smaller the gap, the larger the permittivity. Table 14.1 shows the experimental

Table 14.1 Table of

. . Bandgap energy (eV)
important semiconductor

parameters (see also Semiconductor 300 K 0K Band €
Appendix A.4) Element C 5.47 5.48 Indirect 5.7
Si 1.12 1.17 Indirect 11.9
Ge 0.66 0.74 Indirect 16.0
Sn 0.082 Direct
IV-1v a-SiC 2.996 3.03 Indirect 10.0
m-v BN ~1.5 Indirect 7.1
GaN 3.36 3.50 Direct 12.2
GaP 2.26 2.34 Indirect 11.1
BP 2.0
AlSb 1.58 1.68 Indirect 14.4
GaAs 1.42 1.52 Direct 13.1
InP 1.35 1.42 Direct 12.4
GaSb 0.72 0.81 Direct 15.7
InAs 0.36 0.42 Direct 14.6
InSb 0.17 0.23 Direct 17.7
1I-VI 7ZnS 3.68 3.84 Direct 5.2
ZnO 3.35 3.42 Direct 9.0
CdS 2.42 2.56 Direct 54
CdSe 1.70 1.85 Direct 10.0
CdTe 1.56 Direct 10.2
IV-VI PbS 0.41 0.286 Indirect 17.0

PbTe 0.31 0.19 Indirect | 30.0
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values for different semiconductors. Although there is a clear relationship, it is not as
pronounced as that given by Eq. (14.36). There are two main reasons: the first one is
that we have used quite a strong approximation in deriving Eq. (14.36). In particular
the nature of the variations in the Bloch functions and effective masses has not been
properly included in the evaluation of the permittivity and plasma frequencies. All
that is left to distinguish the materials is the energy gap and the plasma frequency
which itself also depends on the effective mass. The variations in the plasma
frequency should of course also be included. Within the Kane model of Chap. 5,
small m* implies small bandgap and from Eq. (14.34) large plasma frequency, so the
scaling with the energy gap is apparently even stronger. But the fact that this strong
dependence is not observed has to do with the strong approximation we used to
derive Eq. (14.33) which neglects the effect of the effective mass matrix elements.
The second reason is that we have neglected exchange and correlation effects in
discussing the electronic structure and assumed that one-body band theory is
enough. Deriving the energy gap of semiconductors without these corrections
turns out to be impossible. So it is not surprising that this simple scheme does not
fully reproduce the experimental trend.

14.4 Screening in a 2-Dimensional System

The Lindhard function Eq. (14.15) is sensitive to the dimensionality of the system.
For example, in a 2D free electron gas, Eq. (14.15) can be shown to become:

P A
s(k’,O) :1+% 1-— [1— (k_’F> ] — k' > 2kg (14.37)
where:
2
mq 2
== 14.38
Q24 271'8()8;,712 as,e ( )
Th’epen
ag,e = e (14.39)

and where we have assumed that the bound electrons give a constant permittivity &,
or &. This expression is actually very close to the classical 2D Thomas-Fermi
function:

—

err(K,0) = 1+ % (14.40)



14.5 Plasmon Modes 469

which gives us the screened Coulomb potential:

2
- 9" a1+ qo4d)
Vaa () = 2d . (14.41)
dreoer  (rqyy)

and thus a cubic power law distance dependence. The quantum mechanical form
Eq. (14.37) is more difficult to evaluate in real space, but at long distances, it has the
interesting oscillatory structure:

P Ak)? sin(2ker)
dreoe, (2kp + 924)2 2kpr?

Vaa(r)om = (14.42)

We note that the quantum mechanical result depends explicitly on the magnitude
of the Fermi wave vector kg, but the classical Thomas-Fermi result does not. The
reader should also make a note of the very different screening properties of a 3D and
2D electron gases. This is very important in nanotechnology. The lower the
dimensionality, the more ineffective the screening becomes. In one dimension, the
Lindhard approximation is not accurate, so we have not discussed it here. One
consequence is that in nanostructures, the effect of electron-electron interactions
on the electronic transport and optical properties is much more significant than in the
bulk. This has implications for engineering because it implies that physicists and
engineers can use electron-electron interactions as an engineering design tool to find
novel device functionalities.

14.5 Plasmon Modes

Consider again the 3D permittivity Eq. (14.15), and this time the very high-
frequency limit:

—

hw>e(l€+/? ) —e(k) (14.43)
with:

—

2 (k) (Ec —E, )

k+k

—

2
q Z
8(](/,0)) =1 +€0k,2
k

(14.44)

where Eq. (14.44) becomes after expanding for small &':
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giving:
2 2
1% »_qn
e(w,0)=1-— i o (MKS) (14.46)

The reader should note that we have encountered this result before when we were
analyzing the permittivity of the electron gas in Drude theory; see Eq. (14.37).

If we do the same analysis in 2D, we obtain a different plasma dispersion. We
quote here the result which is (¢ = electron charge):

g*nypk,
wp,20 (kp) = ”7280(%11: (14.47)

We note that the zero wavevector value of the 2D plasmon dispersion is zero in
contrast to the 3D result. Plasmon modes are very much geometry and system size
dependent. The general plasmon dispersion relation can be obtained from the
requirement that there be longitudinal mode solutions in the Maxwell equations
and thus that the wavevector and frequency-dependent permittivity be:

e(k,w) =0 (14.48)

14.6 Surface Plasmons

Plasmon modes or, in other words, the collective oscillations of electron clouds in
bulk 2D systems and nanoparticles are the so-called surface plasmons. This is a field
of great current interest, and the reader is referred to the specialized literature on this
topic available from Internet searches. The point is that, normally, in solid-state
physics, we consider the properties and response behavior of single charges. But in
general and especially when we apply a time-dependent electric field, we also have
to take account of the fact that all the free electrons experience the same stimulation
and therefore produce internal and external responses which are the result of the
motion of many charges. This collective response can be very much larger than the
response of a single particle and enhance the total electric field seen by individual
charges. Thus if we place a charge near a small spherical metal particle and then
apply an oscillating field to the system, the charge sees not only the applied field but
also the field produced by the collective motion or response of the free electrons in
the metallic nanoparticle (see Pinchuk et al. 2004, in the references). This additional
field would not be very significant until the frequency of the applied stimulation
reaches the plasma frequency of the nanoparticle. When this happens, i.e., at
resonance, the collective response becomes very large and can be many orders of
magnitude bigger than the original stimulating field. Clearly these types of processes
imply many novel applications. One can, in this way, enhance local fields by using
surface plasmon amplifiers, by many orders of magnitude, and thus is a very topical
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field in modern solid-state engineering. The reader is referred to the specialized
literature on the subject.

14.7 Summary

In this chapter we have in some sense completed the work we started in Chap. 10 and
investigated how bound electrons and free electrons change the electric fields that
charges produce in solids. This gave rise to the concept of screening which we have
in part already encountered in elementary electromagnetic theory. We derived the
important Lindhard function. We noted how drastically a Coulomb potential is
modified at long range by the presence of free electrons. This is ultimately one of
the reasons which one-body approximations work so well in solids. Then we
discovered that the screening is strongly dimensionality dependent becoming less
and less effective the lower the dimensionality of the system. This has a strong
impact on ‘“nanotechnology” and makes electron-electron interaction a serious
design tool. For example, a single trapped charge can block an entire current path
in a thin enough wire. Removing the charge will open the channel again. We also
briefly touched on the exciting new field of “surface plasmon” research and devel-
opment and urged the interested reader to consult the specialized literature.

Problems

1. Explain what is meant by screening of electrical potentials. Explain the difference
between the screening properties of metals and insulators. If in a solid the density
of states at the Fermi level g,(EF) is 10%%/m>eV, what is the screening length? If
we lower the temperature and the solid turns into an insulator or wide bandgap
semiconductor, what happens to the screening length?

2. What is a plasmon? What is the plasma frequency of a 3D metal for which the
electron density is n. = 10?’/m>. If you were asked to choose materials or design a
system for which the plasmon frequency is in the regime of iw,~0.5 eV, what
would you choose? What is the free electron density needed to obtain such a
plasmon frequency?
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15.1 Introduction

In Chap. 4, we have introduced the basic concepts and formalism of quantum
mechanics. In Chap. 5, we have determined the energy spectrum, or energy-
momentum or E—k relations, for electrons in a crystal which governs their interaction
with external forces and fields. Moreover, we saw that the quantum behavior of
particles is best observed in small, typically nanometer scale (one billionth of a meter
or 107° m) dimension structures, as illustrated in the example of a particle in a
1D box.

In nanometer-scale structures in a crystal, the motion of an electron can be
confined in one or more directions in space. When only one dimension is restricted
while the other two remain free, we talk about a quantum well; when two dimensions
are restricted, we talk about a quantum wire; and when the motion in all three
dimensions is confined, we talk about a quantum dot. In solid-state engineering,
these are commonly called low-dimensional quantum structures.

In the past few decades, progress in semiconductor crystal growth technology, such
as liquid-phase epitaxy (LPE), molecular beam epitaxy (MBE), and metal-organic
chemical vapor deposition (MOCVD), has made it possible to control with atomic-
scale precision of the dimensions of semiconductor structures and thus to realize such
low-dimensional quantum structures through the formation of heterojunctions or
heterostructures. A semiconductor heterojunction is formed when two different
semiconducting materials are brought into direct contact with each other, while
heterostructures can be defined as materials that incorporate one or more
heterojunctions and can describe more complicated device architectures such as
multiple quantum wells, superlattices, and other low-dimensional quantum structures.

First proposed by Shockley in 1951 in a heterojunction bipolar transistor (HBT)
(Shockley 1951), heterojunctions have been used heavily in a variety of applications.
Many conventional devices take advantage of the special properties of
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heterostructures  including  semiconductor lasers, light-emitting diodes,
photodetectors, etc.

There exist several inherent design advantages to using heterojunctions as
opposed to standard homojunctions in semiconductor devices. Due to pairing
small- and wide-bandgap materials or by tailoring their lineup energy position,
charge carriers can be confined or redistributed. This offers the chance to control,
to considerable extent, the physical location of free electrons and holes within the
device as well as the wavefunction overlap between the carrier types. Furthermore,
by choosing the semiconducting materials and the doping level, important properties
of the heterostructure device can be designed. This includes the bandgap, the
effective mass, and the carrier transport. Finally, depending on the lattice mismatch
between the heterojunction materials, built-in strain fields can be engineered and
used to obtain enhanced electrical or optical properties.

This chapter will first review the concepts associated with semiconductor
heterostructures, including energy band offsets, types of alignment, and a few
models for heterojunction energy band alignment. Then, the properties of
low-dimensional quantum structures will be discussed in detail.

15.2 Energy Band Offsets

When a heterojunction is formed, the conduction and valence band alignment is
dependent upon the properties of the constituent materials such as their bandgap, the
doping, and the electron affinity. Heterostructures can be classified depending on the
band alignment formation between the two semiconductor materials. The possible
band alignment combinations include “type L, “type II staggered,” and “type II
broken gap” and are described below.

15.2.1 Type | Alignment

When the valence and conduction band of one material “straddles” the bands of the
narrow-gap material, the heterojunction band alignment is termed type 1. The heavily
investigated AlGaAs/GaAs heterojunction exhibits this band lineup with the
aluminum-containing material having its conduction band above and valence band
below the corresponding GaAs band energies. An example of type I band alignment
is shown in Fig. 15.1a. The schematic figure shows materials in electrical isolation
from one another. As we will see later in this chapter, direct interaction between
semiconductor materials results in space-charge redistribution, which leads to band
bending near the junction position.



15.3  Application of Model Solid Theory 475

Fig. 15.1 Heterojunction a b c
band lineups for isolated E E
but adjacent semiconductors: ¢ ¢
(a) type L, (b) type I
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15.2.2 Type Il Alignments

Semiconductor heterojunctions may also form where the conduction and valence
bands in one material are both slightly below the corresponding band energies in the
adjacent semiconductor. This band alignment is termed type II staggered and is
shown in Fig. 15.1b. One example of a heterojunction material system that can be
generally classified as type II staggered is InAs/AlSb.

The InAs/GaSb heterojunction is an example of a type II broken gap alignment.
This occurs when the conduction of one material is at a lower energy than the
valence band of the adjacent semiconductor. An example of broken-gap band
alignment is shown in Fig. 15.1c.

15.3 Application of Model Solid Theory

In the previous sections, we have introduced different types of band lineups. In order
to better understand the heterojunction properties, it is important to determine the
actual band lineups between two different materials. We introduce the application of
model solid theory for this type of calculation. For simplicity, we consider
unstrained junctions only. This is true for the GaAs/Al,Ga; xAs (0 < x < 0.4)
junction system.

We assume A and B in Fig. 15.2 represent two III-V semiconductors that have
the same lattice constant. The valence band position can be calculated as:
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Ev :Ev,aer% (15.1)
in which Ey ,, is the average valence band position which is obtained from theory
and is referred to as the absolute energy level, Ey is the valence band position, and A
is the spin-orbit splitting energy. The values for different semiconductors are usually
tabulated in the literature.

The valence band offset between semiconductor A and B thus can be calculated
as:

1
AEy = (Eyo = Ev) +3 (80— Ap) (15.2)

The conduction band edge is obtained by adding the bandgap value to the valence
band position:

Ec =Ev + E; (15.3)
Therefore the conduction band offset can be calculated as:
1
AEC = (E\é,av - E\E/;,av) + g(AA - AB) + (E? — E;?) (154)

All these quantities are summarized in Fig. 15.2.

Example

Q: Determine the band offset of a GaAs/Aly,Gag gAs heterojunction. The material
parameters for GaAs and AlAs are listed in Table 15.1.

A: For GaAs, we have:

V,av

EgaAs — EGaAs + A(;aAS = —6.807eV

For Aly,Gag gAs, we use the arithmetic average of 20% AlAs and 80% of GaAs:

EjoaGushs — 0.2 x (Ee{{jj + —A*;'AS> +0.8 x (ES‘j‘fj + —AG;AS>

= —6.925eV

ERaGusts — 0.2 x ER™ 4 0.8 x ES™™ = 1.842eV

Table 15.1f Méte:al Ey . (€V) AeV) E,(eV)
parameters for GaAs GaAs —6.92 0.34 1.52

and AlAs
AlAs —7.49 0.28 3.13
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Therefore, we obtain the band offset as follows:

AEy = EGs — EglaGashs — (_6.807) — (—6.925)
=0.118eV

AEC _ (Eélo.zGﬂo.xAs + EQIo.zGaO.sAs) o (EgaAs + EgaAs>
= (—5.287) — (—5.555)
=0.268eV

15.4 Anderson Model for Heterojunctions

When we bring two different semiconductors in contact with each other, due to their
difference of the Fermi level with respect to the vacuum level, there will be net
charge transfer from one material to the other. At equilibrium, the Fermi level lines
up on both sides of the junction. This will change the band diagram of the
heterojunction from straight lines to partially rounded curves. In this section, we
use the basic Anderson model to calculate the zero-bias band diagram for a p-n
junction made from a type I heterojunction, with N representing the p-type doping
level of the narrower-gap material and Np, the n-type doping level of the wider-gap
material. The other cases of p-n heterojunctions can be derived in a same manner and
will not be covered.

To simplify the calculations and emphasize the methodology that will be
introduced, we assume that both N, and Np are much larger than the intrinsic carrier
concentration and that all the dopants are ionized. Before contact, the Fermi level
on each side is represented as Ep, and Eg,. We use V, to represent the potential
difference due to the energy difference between Ef, and Ef,, as shown in Fig. 15.2.
According to Fig. 15.2, we have:

Vo =E} + AEc — (Ep, — Ey) — (E¢ — Er,) (15.5)

For nondegenerate semiconductors, we have:

N
Ep, — Ed = —kTn (1\[—2)
b (15.6)

Ny
ES — Ep, = —kpTIn (W)
where N* and N? are the valence band and conduction-band density of states for
semiconductor A and B, respectively. Substituting Eq. (15.6) into Eq. (15.5), we
obtain the expression for V:
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Fig. 15.3 Illustrations for (a) band diagram for the heterojunction before charge transfer, (b) band
diagram after charge transfer, (c¢) depletion approximation, (d) electric field distribution, and (e)
electrical potential distribution

NA'ND) (15.7)

Vo =E}+ AEc + kT In (—
0 N C T kp NA NP

After we bring semiconductor A and B together into contact, there will be a net
electron transfer from B to A (see Fig. 15.3c) until the Fermi levels on both sides
reach the same value, as shown in Fig. 15.3b.

The number of excess negative charges (ionized acceptors) on the p-side will be
exactly the same as that of the excess positive charges (ionized donors) on the n-side.
N, and N4 equal the charge densities on the p and n-sides of the junction within the
depletion region. Thus we have the charge conservation equation:

Nax, = Npx, (158)

We assume that the charge density is uniformly distributed on either side of the
junction over a certain distance. This is called the depletion approximation. Under
this approximation, we can calculate the electric field distribution and thus the
electrical potential profile.

Assume that €5 and eg represent the relative permittivity for semiconductor A and
B. Using Gauss’ law, we can obtain the electric field within the depletion region as:

N +
Ex:_iq Al xp), —x, <x<0
EAEQ (15.9)
E o= No=x

EBEQ
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Outside the depletion region, the net charge density is zero, and there is no electric
field. We take the zero potential to be at the neutral region in the semiconductor
A. We integrate the electric field from the point of calculation toward the potential
zero point to obtain the electrical potential profile:

fpx:J " Edx (15.10)

X

Substituting Eq. (15.9) into Eq. (15.10), we have:

@, =0, x < —Xxp
2
GNa(x + )
ATy <x<0
¥ 2ep€p =4
N 12 2 (15.11)
g = D% apur=X) g
2€A€0 28]380
N 2 Nex2
¢x:—q Ap —q Dxn, .x>.xn
28A80 28]360

We recall that the total potential drop is V; as calculated before, i.e.,

gN sz gN, Dxi
—|— —_—
2epgy)  2€BEo

(15.12)

Combining Eq. (15.8) and Eq. (15.12), we obtain the values of x, and x; in terms
of Vo:

NA2€0V() EAEB
Xy = 4| —
N Naes + Npe
D g A€A DEB (15.13)
ND2€0V0 EAEB
Xp =4[

Nao g Npep+ Npep

We define the junction depletion width as x,, = x, + xp. Taking into account
Eq. (15.13), we can obtain:

28()V0 EAEB
Xy = -(Np + N 15.14
\/qNDNA Naea + Npep (o +Na) ( )

Substituting Eq. (15.13) into Eq. (15.12), we will obtain the values for the
electrical potential ¢,. In order to update the electron energy band diagram, we
need to take into account that the electron charge is negative and the electron energy
profile will be inverted. Adding this energy profile to the flat band profile as shown in
Fig. 15.3a, we will obtain a calculated electron energy profile for the heterojunction
under equilibrium as illustrated in Fig. 15.3b.
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