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Foreword

Students commonly think of a textbook as merely a tool to get prepared for exams.
This is not the right way of looking at it! A textbook is the fruit of long-term studies
and experience acquired by the author and reflects her or his personality. It embodies
priorities, knowledge, and I dare say even dreams and life attitudes. Compare the
difference in style and content in the now classic physics textbooks by Landau and
Feynman. Both Landau and Feynman were scientists whose minds were ready to
listen to the music of the heavens. But how very differently! Landau wrote with the
authority of a Zeus and his book sounds like the ultimate message from Heaven,
while Feynman’s style is more modest, and his curiosity and quest for truth could
hardly be matched by anyone. His famous textbook is like an invitation to travel
through the Disneyland of Nature, where he acts as a guide, but a guide who is also
learning during this journey. And there is a third example: the Chicago lecture notes
on quantum mechanics by another Nobel laureate – Enrico Fermi. At first sight, it
appears to be more student friendly, simple, and very much to the point, but what a
simplistic and, indeed, incorrect interpretation that would be! Fermi made a selection
of topics and then reduced the content to the absolute essence of what has to be
understood to get prepared for a journey into the quantum wonderland. He did it in
such a way that an average student had the impression he or she understood
everything, while a more demanding student would get a sense of much more: a
feeling that a miraculous quantum world was waiting for him behind invisible doors,
full of questions and surprises. Fermi did what Albert Einstein once said about
science in his peculiar English – do it simple, but not simpler.

I admire this textbook by Professor Razeghi as much as I respect her research
achievements, which she fulfilled in her personal journey through this demanding
life. She was born in Persia, but left her motherland forever to join her new country
France, the country that gave her the chance to continue the science she loved so
much. In doing so, she followed the footsteps of Marie Curie, who a century before
left oppressed Poland as a young math teacher by the name of Skłodowska.
Welcomed in France, Skłodowska completed her studies at the Sorbonne, got
married to a brilliant French physicist Pierre Curie, and then spent endless hours
working with him, processing tons of radioactive ores from Czechoslovakia.
Together they eventually extracted small grains of the miraculous polonium and
radium – two radioactive elements they discovered and named. This superb

v



technological achievement, of which Marie definitely was the master and the spiritus
movens, opened new avenues for science and finally led her twice to Stockholm to be
awarded the Nobel medal.

Dr. Razeghi hopefully was not forced to work in a cold and primitive warehouse,
like the Curies had to. The wise management of the French electronic giant Thomson
spotted her unique talents and gave her proper resources to realize her visions and
dreams. In a short time she became the First Lady in solid-state physics and made
Thomson the leader in modern III-V compound semiconductor technology. Her
laboratory was a dream for most of us, well before the common excellence of today
in many places. But Razeghi became a technologist by choice. She was driven by the
vision of the ultimate device backed by a deep understanding of the science and full
of curiosity. This is what guided her. No wonder she became a very desired
collaborator for top labs and personalities in the semiconductor world. She soon
reached the peak of the Himalayas and could well have stopped there. But not for
Mme Razeghi. After many years of success, she left friendly Europe for the next
grand tour of her life, to the host of the most advanced materials science – the United
States – interestingly, not to another industrial super-organization like Thomson,
but to a university, where she could share her experiences and shape the next
generations. Her energy and visions attracted money, and the money helped to create
one of the most advanced university-based semiconductor labs in the world, visited
and applauded by most Nobel laureates in the field.

So, dear readers, make sure that you learn from this book, but not only science
and technology, which is presented with great clarity, skill, and care (there is even an
appendix on how to work with dangerous chemicals in the MOCVD lab!). Maybe
you will hear – just as I did – the whisper of the modestly hidden powerful message
from Professor Razeghi: the only thing to prevent you from performing miracles in
the tournament with Nature is yourself. To win and to have pleasure, learn first, then
practice in the lab, and work with your notebook. If you work hard enough and still
enjoy it, you may have the stuff for the ultimate destiny – real Himalayas – the
discourse with nature: understand her laws and limitations, but also her immense and
endless frontiers.

Thank you Manijeh for the guidance.

Jerzy M. LangerProfessor in Physics, Institute of Physics
Polish Academy of Science, Warsaw, Poland
Fellow of the American Physical Society
Member of Academia Europaea
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Preface

Learning from Nature: Structure of Matter – Atoms

Nature is the best innovator and teacher. Scientists know for a while now that all
matter consists of atoms. The atom is the smallest part of any material element. So
when we look around us and observe the material world, we know that these natural
colors we see are the light emitted by atoms. But atoms consist of nuclei surrounded
by clouds of electron and the light particles they emit are what we call the quanta of
light or photons. At the end of the last century, we learned from the great physicist
James Clerk Maxwell that light, and its individual quanta, the photons are electro-
magnetic waves emanating from atomic emission or more generally from oscillating
charges. Electrons undergo a transition from a higher to a lower orbit in an atom that
emits light and conversely can also absorb light. The detail of this transition
determines the energy or wavelength of the light. This includes the entire spectrum
of light from gamma rays to UV to visible and to the invisible infrared (IR) rays
down to the THz. Our eyes can see only a small part of the total photonic spectrum,
from 300 to 700 nm in wavelength. So it is understandable that one of the first and
primary aims of physicists was to try making instrumentation in order to see the rest
of the spectrum as well, using artificial eyes. These electronic eyes are made by
materials engineering. Indeed this has been achieved now to a great extent, and the
progress is so important that artificial eyes covering a much larger range of photonic
energies are being made and are constantly being improved. This progress was
acquired by first developing a deep understanding of the workings of atoms. In
fact one can say that the last century was the century of exploring the atom and
mastering the science of materials. The next century will be the century of genes and
biological cells.

Physicists have discovered that detecting and creating photons of different
wavelengths require first a profound understanding of the atom, and this has been
made possible by the science of quantum mechanics. The second step was to
investigate a very special type of materials called the semiconductors. The science
of semiconductors is central to all modern device physics, including the electronic
chip and computer. Unlike in metals, electrical charges in semiconductors are not
free to move under the action of a small electric field; they first have to be “excited,”
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for example, by light or heat, to cross the energy gap formed by the bonding
structure. This gap determines the sensitivity of the material to a particular wave-
length and varies according to semiconductor type, and indeed the gap can now
mostly be designed. To design and understand semiconductors, one has to realize
that semiconductors, like other materials, consist of different types of atoms bonded
together. Materials can be liquid, soft, or hard, and here we are in the first place
talking about hard solids. The most useful and well-known semiconductors are in the
category of silicon and germanium. What distinguishes them is that each atom has
four valence electrons which combine their orbits to point to four different directions
of space (tetrahedron) where they overlap and bond with four corresponding neigh-
bor orbitals. These form semiconductors of the group IV-IV elements.
Semiconductors can also be formed by combining group III and V elements such
a GaAs or InAs (see Fig. 1). Here we have three and five valence electrons in the
outer shells, respectively, and bonding comes about by first transferring an electron
from element five to three, making it possible to form as in silicon, four tetrahedral
bonds. There are many examples of III-V compounds, and they are extremely
important to technology. Similarly, one can combine semiconductors by combining
II-VI elements (CdTe, CdSe) where now two electrons are transferred from VI to II,
making it again 4-4 bonds. A particularly inspiring and special atom is the atom of
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Fig. 1 Basic elements used to make pure and compound semiconductors; each has its own
bandgap and, when combined into compounds, develops a new bandgap; layer-by-layer deposition
generates new class of semiconductor superlattices with designer bandgaps (bottom right)
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the element carbon. The four valence electrons of carbon can bond with one, two, or
three neighbors and in this way form organic molecules, polymer chains, or two- or
three-dimensional solids. A notable example is diamond which is bonded in three
dimensions and is a high bandgap semiconductor with the highest thermal conduc-
tivity and hardness. The next example is the two-dimensional graphene (G).
Graphene is causing a revolution in applied sciences. Carbon physics has already
led to the awarding of three Nobel prizes, one for buckyballs (fullerenes) and the
other two for graphene.

By now the reader should get a feeling of how exciting and useful solids and
semiconductors and their applications are. But before we get into the details of how
the solids work, what constitutes the important physics and engineering, and how we
can develop the necessary sensory tools (see Fig. 2), let us revisit our own natural
sensory systems and find out what challenge we are facing when we want to imitate
or surpass nature.

Nature has stimulated human thought and invention before recorded time. Con-
trolled fire, the wheel, and stone tools were all undoubtedly “invented” by humans,
who drew inspiration from some natural phenomena in our prehistory, such as a
wildfire created by a lightning strike, the rolling of round boulders down a steep hill,
and perhaps wounds caused by the sharp rocks of a river bottom. There are examples
during recorded times of other such ingenuity inspired by nature. Sir Isaac Newton

Fig. 2 Evolution of the total number of transistors per computer chip and their corresponding
dimensions (in an inverted scale) as a function of year. For comparison, the number of human brain
cells is shown on the left scale. In addition, the physical dimension limit for conventional transistors
and the size of molecules are shown on the right scale
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wrote that seeing an apple fall from a tree outside his window provoked his initial
thoughts on the theory of gravitation. The Wright brothers and countless unsuccess-
ful aviators before them were stimulated by the flight of birds. Similarly, we can look
to nature to give us inspiration for new electronic devices.

Even a casual glance at the living world around us reveals the rich diversity and
complexity of life on Earth. For instance, we can choose virtually any organism and
demonstrate that it has the ability to sense and react to the surrounding world. Over
millions of years of evolution, almost all types of life have developed some type of
detection ability, seamlessly integrated into the other functions of the life form. More
specifically, we can examine the basic human senses of hearing, smell, taste, touch,
and sight to inspire us to understand more about the physical world.

Human hearing is based around the organ of Corti, which transduces pressure
waves created within the fluids of the cochlea. The 20,000 micron-sized hair cells not
only convert these waves into electrical impulses and transmit them to the brain via
the auditory nerve but allow audio spectral differentiation depending on their
position within the organ. Typical human frequency response ranges from 20 kHz
to 30 Hz with sensitivity up to 130 decibels. Drawing from this natural example,
today microphone manufacturers produce tiny transducers with dimensions of a few
hundred microns.

The human sense of smell is based around approximately twelve million receptor
cells in the nose. Each cell contains between 500 and 1000 receptor proteins that
detect different scents and relay the information to the olfactory bulb and onto the
brain. Today, researchers are developing “electronic noses” to mimic and improve
upon the human olfactory system. Important applications include the detection of
explosives as well as toxic chemicals and bio-warfare agents.

Gustatory receptors on the human tongue act as detectors for specific chemical
molecules and are the basis for the sense of taste. Between 30,000 and 50,000
individual taste receptors make up the taste buds that cover the tongue and are
capable of sensing bitter, sour, sweet, salty, and monosodium glutamate (MSG)-
based foods. “Artificial tongues” are being developed to similarly classify flavors
and also to perform specialized chemical analysis of a variety of substances. Aside
from the obvious commercial applications (such as active sampling of foods and
beverages in production), these devices may act in conjunction with “electronic
noses” to detect various chemical agents for security purposes.

The sense of touch in humans allows several detection mechanisms, including
specific receptors for heat, cold, pain, and pressure. These receptors are located in the
dermis and epidermis layers of the skin and include specialized neurons that transmit
electric impulses to the brain. Today, microswitches have been developed to detect
very small forces at the end of their arms much like the whiskers of a cat.
Thermocouples have been developed for sensitive temperature detection, and load
cells are used for quantitative pressure sensing.

The sense of sight is perhaps the most notable form of human ability. Micron-
sized rods and cones containing photosensitive pigments are located in the back of
the eye. When light within the visible spectrum strikes these cells, nerves are fired
and the impulses are transmitted through the optic nerve to the brain, with electrical
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signals of only 100 mV between intracellular membranes. With the proper time to
adapt to dark conditions, the human eye is capable of sensing at extremely low light
levels (virtually down to single-photon sensitivity). However, our vision is limited to
a spectral band of wavelengths between about 400 and 750 nanometers. In order to
extend our sensing capabilities into the infrared and ultraviolet, much research has
gone into exploring various material systems and methods to detect these
wavelengths.

In order to improve and stretch the limits of innate human capabilities, researchers
have mimicked nature with the development of quantum sensing techniques. Using
these electronic noses, tongues, pressure sensors, and “eyes,” scientists not only
achieve a better understanding of nature and the world around them but also can
improve the quality of life for humans. People directly benefit in a number of
different ways from these advances ranging from restoration of sight, reduction in
terrorist threats, and enhanced efficiency and speed of industrial processes.

Beyond human sensing capabilities, we can also look to the brain as an example
of a computing and processing system. It is responsible for the management of the
many sensory inputs as well as the interpretation of these data. Today’s computers
do a good job of processing numbers and are becoming indispensable in our daily
lives, but they still do not have the powerful capabilities of the human brain. For
example, state-of-the-art low power computer processors consume more power than
a human brain while having orders of magnitude fewer transistors than the number of
brain cells in a human brain (Fig. 1). Forecasts show that the current microelectron-
ics technology is not expected to reach similar levels because of its physical
limitations (Fig. 2).

By imitating nature, scientists have already developed a growing array of elec-
tronic sensors and computing systems. It is obvious that we must continue to take
cues from the world around us to identify the proper methods to enhance human
knowledge and capability. However, future advances in this direction will have to
reach closer to the structure of atoms, by engineering nanoscale electronics (Fig. 3).

Thanks to nanoelectronics, it will not be unforeseeable in the near future to create
artificial atoms, molecules, and integrated multifunctional nanoscale systems. For
example, as illustrated in Fig. 4, the structure of an atom can be likened to that of a
so-called quantum dot or Q-dot where the three-dimensional potential well of the
quantum dot replaces the nucleus of an atom. An artificial molecule can then be
made from artificial atoms. Such artificial molecules will have the potential to
revolutionize the performance of optoelectronics and electronics by achieving, for
example, orders of magnitude higher speed processors and denser memories. With
these artificial atoms/molecules as building blocks, artificial active structures such as
nanosensors, nanomachines, and smart materials will be made possible.

At the foundation of this endeavor is solid state engineering, which is a funda-
mental discipline that encompasses physics, chemistry, electrical engineering,
materials science, and mechanical engineering. Because it provides the means to
understand matter and to design and control its properties, solid state engineering is
key to comprehend Natural Science (Fig. 5).
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The twentieth century has witnessed the phenomenal rise of Natural Science and
Technology into all aspects of human life. Three major sciences have emerged and
marked that century, as shown in Fig. 3: Physical Science which has strived to
understand the structure of atoms through quantum mechanics, Life Science which
has attempted to understand the structure of cells and the mechanisms of life through
biology and genetics, and Information Science which has symbiotically developed
the communicative and computational means to advance Natural Science.

Fig. 4 Schematic comparisons: (a) between a real atom and an artificial atom in the form of a
quantum dot and (b) between a real molecule and an artificial molecule

Fig. 3 The various ways a semiconductor is made as bulk (top left), with atomic beam deposition,
and the way it is patterned and processed for device application using photolithography with laser
beams to delimit regions
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The scientific and technological accomplishments of earlier centuries represent
the first stage in the development of Natural Science and Technology, that of
understanding (Figs. 6 and 7). As the twenty-first century rolls in, we are entering
the creation stage where promising opportunities lie ahead for creative minds to
enhance the quality of human life through the advancement of science and
technology.

Hopefully, by giving a rapid insight into the past and opening the doors to the
future of solid state engineering, this course will be able to provide some of the basis
necessary for this endeavor, inspire the creativity of the reader, and lead them to
further explorative study.

Since 1992 when I joined Northwestern University as a faculty member and
started to teach, I have established the Solid State Engineering (SSE) research group
in the Electrical Engineering and Computer Science Department and subsequently
created a series of related undergraduate and graduate courses. In the creative
process for these courses, I studied similar programs in many other institutions
such as Stanford University, the Massachusetts Institute of Technology, the Univer-
sity of Illinois at Urbana-Champaign, the California Institute of Technology, and the

Fig. 5 The electronic structure and thus properties of materials, such as the density of available
energy levels D(E), for example, changes with confinement size and dimensionality, and can be
controlled by the great progress made using atom-by-atom deposition technologies such as MBE
and MOCVD (molecular beam epitaxy and metalorganic chemical vapor deposition) areas in which
the present author is a world leader
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genetics ( ). These have allowed to both better understand the building blocks of nature
(structures of atoms, genes, and cells) and develop the tools without which these scientific advances
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University of Michigan. I reviewed numerous textbooks and reference texts in order
to put together the teaching material students needed to learn nanotechnology and
semiconductor science and technology from the basics up to modern applications.
But I soon found it difficult to find a textbook which combined all the necessary
material in the same volume, and this prompted me to write the first edition of a
textbook on the Fundamentals of Solid State Engineering (Fig. 8).

The book was primarily aimed at the undergraduate level, but graduate students
and researchers in the field will also find useful material in it. After studying it, a
student will be well versed in a variety of fundamental scientific concepts essential to
solid state engineering, in addition to the latest technological advances and modern
applications in this area, and will be well prepared to meet more advanced courses in
this field.

In this fourth edition, I have taken into account the feedback and comments from
students who took the courses associated with this text and from numerous
colleagues in the field. The fourth edition is an updated, more complete text that
covers an increased number of solid state engineering concepts and goes in depth in
several of them. The chapters also include redesigned and larger problem sets.

This fourth edition is structured in two volumes. The first focuses on the basic
physics concepts which are at the heart of solid state matter in general and
semiconductors in particular. The text starts by providing an understanding of the

Fig. 8 The slide is self-explanatory: the many areas of life where solid state engineering has a
direct impact
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structure of atoms and electrons and the structure of matter (Chap. 1); a new chapter
is devoted to the element carbon and its allotropes such as graphene, carbon
nanotubes, and fullerenes (Chap. 2) and then the real and reciprocal crystal lattices
(Chap. 3). An introduction to the basic concepts in quantum mechanics (Chap. 4)
and to the modeling of electrons and energy band structures in crystals is then given
in Chap. 5. Chapter 4 was extended in the fourth edition to include the Heisenberg
equation of motion, the hydrogen atom, and the harmonic oscillator and quite a bit
more. The new material now gives the student a reasonably complete description of
the quantum mechanics tools that he needs. In Chap. 6 the attention is focused on the
thermal and vibrational properties of crystals. The reader is introduced to the concept
of phonons to describe vibrations of atoms in crystals (Chap. 6), and then later in the
same chapter, he learns how to calculate the thermal properties of crystals. The
equilibrium and non-equilibrium electrical properties of semiconductors are
reviewed in Chaps. 7 and 8. First the statistics (Chap. 7) and then, later in Chap. 8,
the transport description are developed. This now includes the Boltzmann equation
approach. The problem of the generation and recombination properties of charge
carriers in semiconductors is also considered in detail in Chap. 8. With these
concepts one can now proceed to model semiconductor p-n and semiconductor-
metal junctions (Chap. 9) which constitute the building blocks of modern electron-
ics. The optical properties of semiconductors are described in Chap. 10. Solar,
thermal, and photothermal harvesting of energy have been added in this new edition
as Chaps. 11, 12, and 13. Screening and electron-electron interactions, on an
elementary level, are the subjects of the new Chap. 14. This is followed by a
discussion of semiconductor heterostructures and low-dimensional quantum
structures including quantum wells and superlattices, wires, and dots in Chap. 15.
The new Chap. 16 contains an introduction to the physics of quantum transport. A
brief description of the coupling between electrons and lattice vibrations (electron-
phonon interactions) then follows in the second part of Chap. 16. In the new and old
chapters, the derivation of the mathematical relations has been spelled out in some
detail, so that the reader can understand the limits of applicability of these
expressions and adapt them to his or her particular needs. The final three chapters
of the book focus on the growth and characterization of real semiconductor crystals.
Chapter 17 introduces modern epitaxial and bulk semiconductor crystal growth
techniques. This is followed by a discussion of semiconductor characterization
techniques and defects in Chaps. 18 and 19.

In each chapter, a section “References” lists the bibliographic sources which have
been referenced in the text. The interested reader is encouraged to read them in
addition to those given in the section “Further reading.”

Evanston, IL, USA Manijeh Razeghi
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Electronic Structure of Atoms 1

1.1 Introduction

In this chapter the electronic structure of single atoms will be discussed. A few
quantum concepts will be introduced, as they are necessary for the understanding of
many aspects in solid-state physics and device applications.

In Chap. 1, we saw that matter was composed of atoms in the periodic table
shown in Fig. 1.2. Until 1911, atoms were considered the simplest constituents of
matter. In 1911, it was discovered that atoms had a structure of their own and
Rutherford proposed the nuclear model of the atom in which almost all the mass
of the atom is concentrated in a positively charged nucleus and a number of
negatively charged electrons are spread around the nucleus. It was later found that
the nucleus is itself made up of protons (positively charged) and neutrons (neutrally
charged). The number of protons is the atomic number (Z ) while the total number of
protons and neutrons is the mass number of the element. Apart from the electrostatic
repulsion between nuclei, all of the major interactions between atoms in normal
chemical reactions (or in the structures of elemental and compound substances)
involve electrons. It is therefore necessary to understand the electronic structure of
atoms. The term electronic structure, (or configuration) when used with respect to an
atom, refers to the number and the distribution of electrons about the central nucleus.

The following discussion traces the steps of the scientific community toward a
description of the electronic structure of atoms. The reader should not be stopped by
the new concepts that arise from this discussion, because they will become clearer
after understanding the quantum mechanics presented in Chap. 4.

Much of the experimental work on the electronic structure of atoms done prior to
1913 involved measuring the frequencies of electromagnetic radiation (e.g., light)
that are absorbed or emitted by atoms. It was discovered that atoms absorbed or
emitted only certain, sharply defined frequencies of electromagnetic radiation. These
frequencies were also found to be characteristic of each particular element in the
periodic table. And the absorption or emission spectra, i.e., the ensemble of
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frequencies, were more complex for heavier elements. Before being able to under-
stand the electronic structures of atoms, it was natural to start studying the simplest
atom of all, the hydrogen atom, which consists of one proton and one electron.

1.2 Spectroscopic Emission lines and Atomic Structure
of Hydrogen

It was experimentally observed that the frequencies of light emission from atomic
hydrogen could be classified into several series. Within each series, the frequencies
become increasingly closely spaced, until they converge to a limiting value. Rydberg
proposed a mathematical fit to the observed experimental frequencies, which was
later confirmed theoretically:

υ

c
¼ 1

λ
¼ Ry

1
n2

� 1

n0ð Þ2
 !

ð1:1aÞ

with n ¼ 1, 2, 3, 4,... and n0 ¼ (n + 1), (n + 2), (n + 3),...
In this expression, λ is the wavelength of the light (in units of distance, and

typically cm in this expression), υ is the frequency of the light emitted,
c (c ¼ 2.99792 � 108 m�s�1 ¼ 2.99792 � 1010 cm�s�1) is the velocity of light in
vacuum, and Ry is the fit constant, called the Rydberg constant, and was calculated to
be 109,678 cm�1. n is an integer, corresponding to each of the series mentioned
above. n0 is also an integer, larger than or equal to (n + 1), showing that the
frequencies become more closely spaced as n0 increases.

The energy of the electromagnetic radiation is related to its wavelength and
frequency by the following relation:

E ¼ hc

λ
¼ hυ ð1:1bÞ

where h (h ¼ 6.62617 � 10�34 J�s) is Planck’s constant. The SI (Système Interna-
tional, or International System) unit for energy is the Joule (J). However, in solid-
state physics, it is common to use another unit: the electron volt (eV) which is equal
to 1.60218 � 10�19 J. The reason for this new unit will become clear later in the text
and reflects the importance of the electron in solid-state physics.

The expression in Eq. (1.1a) shows that the emission of light from the hydrogen
atom occurs at specific discrete values of frequencies ν, depending on the values of
integers n and n0. The Lyman series of spectral lines corresponds to n ¼ 1 for which
the convergence limit is 109,678 cm�1. The Balmer series corresponds to n¼ 2, and
the Paschen series to n ¼ 3. These are illustrated in Fig. 1.1, where the energy of the
light emitted from the atom of hydrogen is plotted as arrows.

Although the absorption and emission lines for most of the elements were known
before the turn of the twentieth century, a suitable explanation was not available,
even for the simplest case of the hydrogen atom. Prior to 1913, the explanation for
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this spectroscopic data was impossible because it contradicted the laws of nature
known at the time. Indeed, very well-established electrodynamics could not explain
two basic facts: that atoms could exist at all and that discrete frequencies of light
were emitted and absorbed by atoms. For example, it was known that an accelerating
charged particle had to emit electromagnetic radiation. Therefore, in the nuclear
model of an atom, an electron moving around the nucleus has acceleration and thus
has to emit light, lose energy, and fall down to the nucleus. This meant that the
stability of elements in the periodic table, which is obvious to us, contradicted
classical electrodynamics. A new approach had to be followed in order to resolve
this contradiction, which resulted in a new theory, known as quantum mechanics.
Quantum mechanics could also explain the spectroscopic data mentioned above and
adequately describe experiments in modern physics that involve electrons and atoms
and ultimately solid-state device physics.

Niels Bohr first explained the atomic absorption and emission spectra in 1913.
His reasoning was based on the following assumptions, which cannot be justified
within classical electrodynamics:

1. Stable orbits (states with energy En) exist for an electron in an atom. While in one
of these orbits, an electron does not emit any electromagnetic radiation. An
individual electron can only exist in one of these orbits at a time and thus has
an energy En.

2. The transition of an electron from an atomic orbit of energy state En to that of
energy stateEn0 corresponds to the emission (En > En0) or absorption (En < En0) of

electromagnetic radiation with an energy En � En0j j or frequency υ ¼ En�En0j j
h .

E (eV)

E• (0 eV)
E5 (−0.54 eV)

E3 (−1.51 eV)

E2 (−3.40 eV)

E4 (−0.85 eV)

E1 (−13.6 eV)

Lyman
series

Balmer
series

Paschen
series

Fig. 1.1 Energies of the light
emitted from the hydrogen
atom (shown by arrows). The
Lyman series corresponds to
n¼ 1 in Eq. (1.1a), the Balmer
series corresponds to n ¼ 2,
and the Paschen series
corresponds to n ¼ 3
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With Sommerfeld, Bohr implemented these postulates into a simple theory.
Assumption (1) of stable orbits meant that the values of angular momentum L and
thus the electron orbit radius r

!
were quantized, i.e., integer multiples of a constant.

For the simple hydrogen atom with a circular electron orbit, the Bohr postulate
(1) can be expressed mathematically in the following manner:

Ln ¼ mνrn ¼ n
h

2π
, n ¼ 1, 2, . . . ð1:2aÞ

where m is the mass of the electron, ν is the linear electron velocity, and n is an
integer expressing the quantization and used to index the electron orbits. Since the
orbit is circular, the electron experiences a centripetal acceleration ν2/rn. The cou-
lombic force between the electron and nucleus provides this acceleration, as
illustrated in Fig. 1.2.

Therefore, according to Newton’s second law, equating Coulomb force with the
mass times the centripetal acceleration, we can write:

q2

4πε0r2n
¼ F

!
coulombic

��� ��� ¼ mν2

rn
ð1:2bÞ

where ε0 (ε0 ¼ 8.85418 � 10�12 F�m�1) is the permittivity of free space and
q (q ¼ 1.60218 � 10�19 C) is the elementary charge.

Combining Eqs. (1.2a and 1.2b), one obtains the discrete radius of an electron
orbit:

rn ¼ ε0n2h
2

πmq2
ð1:3Þ

The total electron energy En in the various orbits is the sum of the kinetic and
(coulombic) potential energies of the electron in the particular orbit:

En ¼ 1
2

q2

4πε0rn
� q2

4πε0rn
¼ �1

8
q2

πε0rn
ð1:4Þ

With Eq. (1.3) we finally have:

En ¼ �m q4

8 ε0n hð Þ2 ¼ �13:6
n2

in units of electron� volts eVð Þ ð1:5Þ

Nucleus (+q) Electron (−q)

n

FCoulombic

Fig. 1.2 Schematic diagram
showing the electron orbit, the
attractive coulombic force
between the positively
charged nucleus and the
orbiting negatively charged
electron, and the velocity of
the electron which is always
tangential to its circular orbit
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This theory thus provided an explanation for each series of spectroscopic lines in
the emission spectrum from atomic hydrogen as shown in Fig. 1.1. An electron has
the lowest (i.e., most negative) energy when it is in the orbit n¼ 1. The radius of this
orbit can be calculated using Eq. (1.3) and is a0¼ 0.52917 Å. If an electron is excited
to an orbit with higher energy (n

0 � 2) and returns to the ground state (n ¼ 1),

electromagnetic radiation with the frequency c� Ry 1
12

� �
� 1

n02

� �h i
is emitted, where

c is the velocity of light in vacuum and Ry the Rydberg constant. In this case, the
Lyman series of spectroscopic lines in Fig. 1.1 is observed. The other series arise
when the electron drops from higher levels to the levels with n ¼ 2 (Balmer series)
and n ¼ 3 (Paschen series), as shown in Fig. 1.1. Therefore, the Bohr-Sommerfeld
theory could accurately interpret the observed, discrete absorption/emission
frequencies in the hydrogen atom. Despite its success for the hydrogen atom, this
theory still had to be improved for a number of reasons. One major reason was that it
could not successfully interpret the spectroscopic data for atoms more complex than
hydrogen. However, the results of Bohr’s model can be extended to other structures
similar to the hydrogen atom, called hydrogenoid systems. For example, the energy
levels of several ionized atoms that have only a single electron (e.g., He+ or Li++) can
be easily predicted by substituting the nuclear charge q of Bohr’s model with Zq
where Z is the atomic number.

The simple picture developed by Niels Bohr for electrons in atoms was among the
first attempts to explain experimental data with assumptions based on the discrete
(or quantum) nature of the electromagnetic field.

A typical example of the interaction between an electromagnetic field and matter
is a blackbody, which is an ideal radiator of electromagnetic radiation. Using
classical arguments, Rayleigh and Jeans tried to explain the observed blackbody
spectral irradiance, which is the power radiated per unit area per unit wavelength,
shown in Fig. 1.3. However, as can be seen in the figure, their theoretical predictions
could only fit the data at longer wavelengths. In addition, their results also indicated
that the total irradiated energy (integral of the irradiance over all the possible
wavelengths) should be infinite, a fact that was in clear contradiction with experi-
ment. In 1901, Max Planck provided a revolutionary explanation based on the
hypothesis that the interaction between atoms and the electromagnetic field could
only occur in discrete packets of energy, thus showing that the classical view that
always allows a continuum of energies was incorrect. Based on these ideas, a more
sophisticated and self-consistent theory was created in 1920 and is now called
quantum mechanics (see Chap. 4 for more details).

1.3 Atomic Orbitals

Bohr’s model solved the problem of the energy levels in the hydrogen atom but had
several drawbacks: it could neither explain some of the other properties of hydrogen
atoms nor correctly predict the energy levels of more complex atoms. In addition, a
few years later, new experiments pointed out that particles could behave as waves,
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and therefore their position could not be determined exactly. In Bohr’s model, the
radius of the first Bohr orbit in the hydrogen atom was calculated to be exactly
a0¼ 0.52917 Å (Angstrom, abbreviated as Å, is equal to 10�10 m). This distance is a
constant called the Bohr radius and is shown in Fig. 1.4a as a spherical surface with
radius ao.
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Jeans Law

1.0 10 100

Fig. 1.3 Spectral irradiance of a blackbody at different temperatures. When the temperature is at or
below room temperature, the radiation is mostly in the infrared spectral region, undetectable by the
human eye. When the temperature is raised, the emission power increases and its peak shifts toward
shorter wavelengths. One of the more successful interpretations, yet inaccurate because it was based
on classical mechanics, was conducted by Rayleigh and Jeans but could only fit the experimental
data at longer wavelengths

z

r = a0

y

x

a
z

y

x
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Fig. 1.4 (a) The precise spherical orbit of an electron in the first Bohr orbit, for which the radius is
a0 ¼ 0.52917 Å, as calculated by Bohr’s model. (b) The electron probability density pattern for the
comparable atomic orbital using a quantum mechanical model. The darker areas indicate a higher
probability of finding the electron at that location. The center cutout shows the interior of the orbital.
The outer sphere delineates the region where the electron exists 90% of the time

6 1 Electronic Structure of Atoms



A new approach was clearly needed in order to describe matter on the atomic
scale. This new approach was elaborated during the next decade and is now called
quantum mechanics. In quantum mechanics an electron cannot be visualized as a
point particle orbiting with a definite radius, but rather as a delocalized cloud with
inhomogeneous probability density around a nucleus as illustrated in Fig. 1.4b. The
probability density gives the probability of finding the electron at a particular point in
space. In this picture, the Bohr radius can be interpreted as the radius a0 of the
spherical surface where the maximum in the electron probability distribution occurs
or, in other words, the spherical orbit where the electron is most likely to be found.
This can be further illustrated by Fig. 1.5 where the electron probability density
function P(r), which is the probability to find an electron at a distance r from the
nuclei, is plotted as a function of r (for the lowest energy state of hydrogen atom
n ¼ 1). This function reaches its maximum at the value of Bohr’s first orbit a0.

We saw earlier that there were several stable orbits for an electron in the hydrogen
atom which are distinguished by the energy given in Eq. (1.5). The orbit or energy is
not enough to characterize the properties of an electron in an atom. The spatial shape
and direction of the orbit are also important, as it is not always spherical, and so the
term “orbital” is employed. Each orbital is assigned a unique set of quantum
numbers, which completely specifies the orbital’s properties. The orbital designation
and its corresponding set of three quantum numbers n, l, and ml are listed in
Table 1.1 along with the electron spin quantum number ms.

The principal quantum number n may take integral values from 1 to1, although
values larger than 7 are spectroscopically and chemically unimportant. It is the value
of this quantum number n that determines the size and energy of the principal
orbitals. Orbitals with the same n are often called “shells.”

For a given value of n, the angular momentum quantum number l may take
integer values within [0, 1, 2, 3, . . ., (n�1)]. It is this quantum number that
determines the shape of the orbital. A letter designation is used for each orbital
shape: s for (l ¼ 0), p for (l ¼ 1), d for (l ¼ 2), f for (l ¼ 3), etc. followed
alphabetically by the letter designations g, h, and so on.

0 1 2 3 4 5 6
r/a0

P(r/a0)
r

+q

−q
Fig. 1.5 The electron radial
probability density function P
(r/a0), which describes the
probability of finding an
electron in a spherical surface
at a distance r from the
nucleus in the hydrogen atom
(for n ¼ 1). This probability
has a maximum value when
the electron is at a distance
equal to the Bohr radius:
r ¼ a0
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Finally, for a given orbital shape (i.e., a given value of l ), the magnetic quantum
numbermlmay take integral values from�l to +l. This quantum number governs the
orientation of the orbital. Once an electron is placed into one specific orbital, its
values for the three quantum numbers n, l, and ml are known.

A fourth quantum number is needed to uniquely identify an electron in an orbital,
the spin quantum number. The spin quantum number is independent of the orbital
quantum numbers and can only have two opposite values: ms ¼ �1

2 (in units of h
2π).

Electrons that differ only in their spin value can only be distinguished in the presence
of an external magnetic field.

1.4 Structures of Atoms with Many Electrons

In multi-electron atoms, the energy of an electron depends on the orbital principal
quantum number n and the orbital momentum quantum number l, i.e., whether the
electron is in an s, p, d, or f state. The different ml quantum numbers for a fixed set of
n and l are degenerate (they have the same energy). The electronic configurations of
such atoms are built up from the ground state energy, filling the lowest energy
orbitals first. Then, the filling of the orbitals occurs in a way such that no two
electrons may have the same set of quantum numbers. This rule governing electron
quantum numbers is called the Pauli exclusion principle. If two electrons occupy the
same orbital, they must have opposite spins: ms ¼ +½ for one electron and ms ¼�½
for the other electron. Because the spin quantum number ms can take only these two
values, an orbital with given (n, l, m) can be occupied by at most two electrons.

One more rule, called Hund’s rule, governs the electron configuration in multi-
electron atoms: for a given principal quantum number n, the lowest energy electron
configuration has the greatest possible sum of spin values and greatest sum of orbital
momentum values.

Example

Q Hund’s rule says that the electrons occupy orbitals in such a way that, first, the
total spin number (∑ms) is maximized and then the total orbital momentum is

Table 1.1 Quantum
numbers and atomic
orbital designations for
electrons in the four
lowest values of n.
When n increases, the
scheme continues to
develop with the same
basic rules

Orbital n l ml ms

1 s 1 0 0 –½, +½

2 s 2 0 0 –½, +½

2p 2 1 –1, 0, +1 –½, +½

3 s 3 0 0 –½, +½

3p 3 1 –1, 0, +1 –½, +½

3d 3 2 �2, �1, 0, +1, +2 –½, +½

4 s 4 0 0 –½, +½

4p 4 1 �1, 0, +1 –½, +½

4d 4 2 �2, �1, 0, +1, +2 –½, +½

4f 4 3 �3, �2, �1, 0, +1, +2, +3 –½, +½
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maximized (∑l ). Determine the electronic configuration, including the spin, of
the carbon atom, which has six electrons in its ground state.

A Carbon has six electrons and has the electronic configuration 1s22s22p2. The
last two electrons in the p shell can have spins +½ or –½. To maximize the total
spin number, both electrons must have their spin up, so that ∑ms ¼ 1, as shown
below.

1s2 2s2 2p2 1s2 2s2 2p2

Incorrect Correct

Both the Pauli exclusion principle and Hund’s rule govern the electron
configurations of atoms in the periodic table in their unexcited state, which is also
called the ground state. Other electronic configurations are possible when the atom is
in an excited state as a result of an external force such as an electric field.

Examples of the ground state electron configurations in a number of elements are
shown below. The sequence for Z ¼ 1 to Z ¼ 18 is built in a straightforward and
logical manner, by filling the allowed s, p, d... orbitals successively (i.e., in this
order). For Z ¼ 19, the first deviation to this procedure occurs: the 4s orbitals are
filled with electrons before the 3d orbitals. Elements in the periodic table with
partially filled 3d orbitals are usually transition metals and the electrons in these
3d orbitals contribute to the magnetic properties of these elements. For example, the
electronic configuration of the Ga element can be read as follows: two s-electrons in
orbit 1, two s-electrons in orbit 2, six p-electrons in orbit 2, two s-electrons in orbit
3, six p-electrons in orbit 3, two s-electrons in orbit 4, ten d-electrons in orbit 3, and
one p-electron in orbit 4.

Z ¼ 3Li 1s22s1

Z ¼ 4Be 1s22s2

Z ¼ 5B 1s22s22p1

Z ¼ 6C 1s22s22p2

Z ¼ 7N 1s22s22p3

Z ¼ 8O 1s22s22p4

Z ¼ 9F 1s22s22p5

Z ¼ 10Ne 1s22s22p6

... ...
Z ¼ 31Ga 1s22s22p63s23p64s23d104p1

Example

Q Determine the electronic configuration for copper (element Cu, atomic number
Z ¼ 29 in the ground state).

A There are 29 electrons in copper in its ground state. It has an inner Ar shell,
which has 18 electrons: [Ar] ¼ 1s22s22p63s23p6. The remaining 11 electrons
must be distributed inside the 3d and 4s orbitals. Suppose that the two
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possible configurations are [Ar]3d94s2 and [Ar]3d104s1. According to Hund’s
rule, the lowest energy configuration, corresponding to the ground state, is
such that it presents the greatest possible spin value and greatest orbital
momentum. The two configurations above have the same spin but the second
one has greater orbital momentum. Since the orbital quantum number for the
s orbital is 0 and for d is 2, we can say that Cu exhibits the second electronic
configuration:

[Ar]3d104s1 or 1s22s22p63s23p63d104s1 which is illustrated below:

n=1 n=2 n=3 n=4

1s2     2s2          2p6             3s2          3p6                         3d10                    4s1
29Cu

Quantum mechanics is able to predict the energy levels of the hydrogen atom,
but the calculations become too complex for atoms with two or more electrons.
In multi-electron atoms, the electric field experienced by the outer shell electrons
does not correspond to the electric field from the entire positive nuclear charge
because other electrons in inner shells screen this electric field from the nucleus.
This is why outer shell electrons do not experience a full nuclear charge
Z (the atomic number), but rather an effective charge Z* which is lower than Z.
Values of the effective nuclear charge Z* for the first ten elements are listed in
Table 1.2. Therefore, the energy levels of these outer shell electrons can be
estimated using the results from the hydrogen atom and substituting the full
nuclear charge Zq with Z*q.

Let us consider an example of electronic configuration in the multi-electron atom
of Si. As shown in Fig. 1.6, 10 of the 14 Si-atom electrons (2 in the 1s orbital, 2 in the
2s orbital, and 6 in the 2p orbital) occupy very low energy levels and are tightly
bound to the nucleus of the atom. The binding is so strong that these ten electrons
remain essentially unperturbed during most chemical reactions or atom-atom

Table 1.2 The full nuclear
charge Z and effective
nuclear charge Z* for the
first ten elements

Element Z Z*

H 1 1.00

He 2 1.65

Li 3 1.30

Be 4 1.95

B 5 2.60

C 6 3.25

N 7 3.90

O 8 4.55

F 9 5.20

Ne 10 5.85
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interactions. The combination of the ten-electron-plus-nucleus is often being referred
to as the “core” of the atom. On the other hand, the remaining four Si-atom electrons
are rather weakly bound and are called the valence electrons because of their strong
participation in chemical reactions. Valence electrons are those in the outermost
occupied atomic orbital. As emphasized in Fig. 1.6, the four valence electrons
occupy four of the eight allowed states belonging to the 3s and 3p orbitals.

The electronic configuration in the 32-electron Ge-atom (germanium being the
next elemental semiconductor in column IV of the periodic table) is essentially
identical to the Si-atom configuration except that the Ge-core contains 28 electrons.

Z =14

(n = 2, l = 0)
s orbital

2 electrons

(n = 1, l = 0)
s orbital

2 electrons

(n = 3, l = 0)
s orbital

2 allowed levels

(n = 3, l =1)
p orbital

6 allowed levels

(n = 2, l =1)
p orbital

6 electrons

Fig. 1.6 Electron configuration for electrons in a Si atom. The ten electrons in the core orbitals, 1s
(n¼ 1), 2s (n¼ 2, l¼ 0), and 2p (n¼ 2, l¼ 1) are tightly bound to the nucleus. The remaining four
electrons in the 3s (n ¼ 3, l ¼ 0) and 3p (n ¼ 3, l ¼ 1) orbitals are weakly bound
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1.5 Bonds in Solids

1.5.1 General Principles

When two atoms are brought very close together, the valence electrons interact with
each other and with the neighbor’s positively charged nucleus. As a result, a bond
between the two atoms forms, producing, for example, a molecule. The formation of
a stable bond means that the energy of the system of two atoms kept together must be
less than that of the system of two atoms kept apart, so that the formation of the pair
or the molecule is energetically favorable. Let us view the formation of a bond in
more detail.

As the two atoms approach each other, they are under attractive and repulsive
forces from each other as a result of mutual electrostatic interactions. At most
distances, the attractive force dominates over the repulsive force. However, when
the atoms are so close that the individual electron shells overlap, there is very strong
proton-to-proton shell repulsion, called core repulsion, that dominates. Figure 1.7
shows the interatomic interaction energy as a function of the distance between atoms
r. The system has zero energy when the atoms are infinitely far apart. A negative
value corresponds to an attractive interaction, while a positive value stands for a
repulsive one. The resulting interaction is the sum of the two and has a minimum at
an equilibrium distance, which is reached when the attractive force balances the
repulsive force. This equilibrium distance is called the equilibrium separation and is

U(r)

r

r0

Cohesive energy

attractive potential

repulsive potentialNet potential

r = r0 r =¥

0

Fig. 1.7 Potential energy versus interatomic separation r. The net potential is the sum of repulsive
and attractive components. The minimum of the net potential corresponds to the equilibrium
distance r0 between the two atoms
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effectively the bond length. The energy required to separate the two atoms represents
the cohesive energy or bond formation energy or simply bond energy (also shown in
Fig. 1.7).

Similar arguments also apply to bonding between many more atoms, such as the
billions of atoms found in a typical macroscopic solid. Even in the presence of many
interacting atoms in a solid, we can still identify a general potential energy curve
U(r) per atom similar to the one shown in Fig. 1.7. Although the actual details will
change from material to material, the general concepts of bond energy U0 per atom
and equilibrium interatomic separation will still be valid. These characteristics
determine many properties of solids such as the thermal expansion coefficient and
elastic modulus.

Example

Q For a face-centered cubic lattice, such as in an inert gas turned solid at low
temperature, the potential energy can be expressed as:

U ¼ N 12:13 σ
r

� �12 � 14:45 σ
r

� �6h i
,

where r is the distance between nearest neighbors and σ is a constant of the
crystal. Determine the lattice constant a of the lattice in terms of σ.

A The equilibrium distance r is given by the minimum of the potential energy,
which can be calculated by taking the derivative of the function U with respect
to r and setting it equal to zero:

dU
dr ¼ N �145:56σ

12

r13 þ 86:7σ
6

r7

h i
¼ 0

which yields r¼ 1.09σ. Since we are considering a face-centered cubic lattice, the

nearest neighbor distance is such that r ¼
ffiffi
2

p
2 a. Therefore, the lattice constant is

a ¼ 1.54σ.

1.5.2 Ionic Bonds

When one atom completely loses a valence electron so that the outer shell of a
neighboring atom becomes completely filled, a bond is formed which is called ionic
bond. The coulombic attraction between the now ionized atoms causes the ionic
bonding. NaCl salt is a classic (and familiar) example of a solid in which the atoms
are held together by ionic bonding. Ionic bonding is frequently found in materials
that normally have a metal and a nonmetal as the constituent elements. For example,
Fig. 1.8 illustrates the NaCl structure with valence electrons shifted from Na atoms
to Cl atoms forming negative Cl� ions and positive Na+ ions. The physical structure
of the NaCl crystal is shown in Fig. 1.9.

Ionic bonds generally have bond energies on the order of a few eV. The energy
required to take solid NaCl apart into individual Na and Cl atoms is the cohesive
energy, which is 3.15 eV per atom. The attractive part of Fig. 1.7 can be estimated
from the sum of the coulombic potential energies between the ions (see Problem 11).
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Example

Q Calculate the total coulombic potential energy of a Cs+ ion in a CsCl crystal by
only considering the nearest neighbors of Cs+.

A In the cubic unit cell shown in Fig. 1.9, one can see that one Cs+ ion (at the
center of the cube) has eight nearest Cl� neighbors (at the corners of the cube).
Since the lattice constant for CsCl is a¼ 4.11 Å, the distance between a Cs+ and

one of its Cl� neighbors is rnn ¼
ffiffi
3

p
2 a¼ 3.56 Å. The coulombic potential energy

is thus E ¼ �8 q2

4πε0rnn
¼ �32.36 eV.

Many other solids consisting of metal-nonmetal elements also have ionic bonds.
They are called ionic crystals and, by virtue of their ionic bonding characteristics,
share many similar physical properties. For example, LiF, MgO (magnesia), CsCl,

Na Cl

Na+ Cl-

Fig. 1.8 Schematic
illustration of the formation of
an ionic bond in NaCl,
showing the electron transfer
between the two elements and
their final electronic
configurations

b

Na+ Na+

Na+ Na+

Cl− Cl−

Cl− Cl−

Cl−

Na+

Na+ Na+

Na+ Na+

Cl− Cl−

Cl− Cl−

Cl−

Na+

Na+ Na+Cl− Cl− Cl−

a

Fig. 1.9 (a) A schematic illustration of a cross-section from solid NaCl. Solid NaCl is made from
Cl� and Na+ ions arranged alternatively, so that the oppositely charged ions are closest to each other
and attract each other. There are also repulsive forces between the like-ions. In equilibrium, the net
force acting on any ion is zero. (b) 3D illustration of solid NaCl
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and ZnS are all ionic crystals; they are strong, brittle materials with high melting
temperatures compared to metals. Most are soluble in polar liquids such as water.
Since all the electrons are within the rigidly positioned ions, there are no free
electrons to move around in contrast to metals. Therefore, ionic solids are typically
electrical insulators. Compared to metals and covalently bonded solids, ionically
bonded solids also have poor thermal conductivity.

1.5.3 Covalent Bonds

Two atoms can form a bond with each other by sharing some or all of their valence
electrons and thereby reducing the overall energy. This is in contrast with an ionic
bond because the electrons are shared rather than completely transferred. This
concept is purely quantum mechanical and has no simple classical analogue. Never-
theless, it still results in the same basic principles as those shown in Fig. 1.7, i.e.,
there is a minimum in the total potential energy at the equilibrium position r ¼ r0.

Covalent bonds are very strong in solids. Figure 1.10 shows the formation of a
covalent bond between atoms in crystalline Si, which has the diamond structure with
eight atoms per cubic unit cell. Each Si shares its four valence electrons with its
neighbors as shown in Fig. 1.10. There is an electron cloud in the region between
atoms equivalent to two electrons with opposite spins.

In the structure of diamond, a C atom also shares electrons with other C atoms.
This leads to a three-dimensional network of a covalently bonded structure as shown
in Fig. 1.11. The coordination number (CN) is the number of nearest neighbors for a
given atom in the solid. As it is seen in Fig. 1.11, the coordination number for a
carbon atom in the diamond crystal structure is four, as discussed in Chap. 2.

In the tetrahedral systems such as C, Si, or Ge, for example, the covalent bonds
undergo a very interesting process called hybridization. What happens is that the
atom first promotes one of outer s-electrons (e.g., 2s shell in C and 3s shell in Si) into
the doubly occupied p-shell. This costs energy, but this energy is more than

Si Si Si

Si Si Si

Si Si Si

Fig. 1.10 Schematic of covalent bonds in Si. Each Si atom contributes one of its four outer shell
electrons with each neighboring Si atom. This creates a pair of shared electrons between two Si
atoms, which constitutes the covalent bond. Because the two atoms are identical, the electrons have
the highest probability of being located at equal distances between the two atoms, as illustrated here
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recovered because now the system can use the 2px, 2py, 2pz orbitals in C, for
example, to combine with the one left over in “s” to form four directed bonds:

1
2
2sþ 2px þ 2py þ 2pz
� �

1
2
2sþ 2px � 2py � 2pz
� �

1
2
2s� 2px þ 2py � 2pz
� �

1
2
2s� 2px � 2py þ 2pz
� �

pointing toward the four other atoms, where the same process has taken place, each
atom providing a bond partner which is pointing in the opposite direction and giving
maximum overlap.

Due to the strong Coulomb attraction between the shared electrons and the
positive nuclei, the covalent bond energy is the strongest of all bond types, leading
to very high melting temperatures and very hard solids: diamond is one of the hardest
known materials. Covalently bonded solids are also insoluble in nearly all solvents.
The directional nature and strength of the covalent bond also makes these materials
nonductile (or nonmalleable). Under a strong force, they exhibit brittle fracture.

1.5.4 Mixed Bonds

In many solids, the bonding between atoms is generally not just of one certain type
but rather is a mixture of bond types. We know that bonding in silicon is totally
covalent, because the shared electrons in the bonds are equally attracted by the

Fig. 1.11 The diamond
crystal with covalent bonds.
The diamond crystal is most
often represented using a
cubic unit cell, as shown here.
Each atom in the structure is
covalently bonded to four
neighboring atoms
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neighboring positive ion cores and are therefore equally shared. However, when
there is a covalent-type bond between two different atoms, the electrons are
unequally shared because the two neighboring ion cores are different and hence
have different electron-attracting abilities. The bond is no longer purely covalent but
has some ionic character, because the shared electrons are more shifted toward one
of the atoms. In this case a covalent bond has an ionic component and is generally
called a polar bond. Many technologically important semiconductor materials, such
as III–V compounds (e.g., GaAs, InSb, and so on), have polar covalent bonds. In
GaAs, for example, the electrons in a covalent bond are closer to (i.e., more probably
found near) the As ion core than the Ga ion core. This example is shown in Fig. 1.12.

In ceramic materials, the type of bonding may be covalent, ionic, or a mixture of
the two. For example, silicon nitride (Si3N4), magnesia (MgO), and alumina (Al2O3)
are all ceramics, but they have different types of bonding: Si3N4 has covalent, MgO
has ionic, and Al2O3 has a mixture of ionic and covalent bondings. All three are
brittle, have high melting temperatures, and are electrical insulators.

1.5.5 Metallic Bonds

Atoms in a metal have only a few valence electrons, which can be readily removed
from their shells and become collectively shared by all the resultant ions. The
valence electrons therefore become delocalized and form an electron gas, permeating
the space between the ions, as depicted in Fig. 1.13. The attraction between the
negative charge of this electron gas and the metal ions forms the bonding in a metal.
However, the presence of this electron cloud also adds a repulsive force to the
bonding. Nevertheless, overall, Fig. 1.7 is still valid except that the cohesive energy
is now lower in absolute value compared to ionic and covalent bonds, i.e., it is easier

Ga As Ga

As Ga As

Ga As Ga

Fig. 1.12 Polar bonds in a III–V intermetallic compound. Similar to the case of Si in Fig. 1.10, a
covalent bond is formed by the sharing of an electron from a Ga atom and one from a neighboring
As atom. However, because a Ga atom has only three electrons in its outer shell, while an As atom
has five, one of the four covalent bonds is formed by the As atom contributing two electrons, while
the Ga atom contributes none. In addition, because the atoms involved are not the same, the
electrons in the bonds are more attracted toward the atom with largest nucleus, as illustrated here
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in many cases to “pull apart” metal regions, which explains why metals are usually
malleable.

This metallic bond is nondirectional (isotropic). Consequently, metal ions try to
get as close as possible, which leads to close-packed crystal structures with high
coordination numbers, compared to covalently bonded solids. “Free” valence
electrons in the electron gas can respond readily to an applied electric field and
drift along the force of the field, which is the reason for the high electrical conduc-
tivity of metals. Furthermore, if there is a temperature gradient along a metal bar, the
free electrons can also contribute to heat transfer from the hot to the cold regions.
Metals therefore also have a good thermal conductivity.

1.5.6 Secondary Bonds

Since the atoms of inert elements (column VIII in the periodic table) have full shells
and therefore cannot accept any extra electrons nor share any electrons, one might
think that no bonding is possible between them. However, a solid form of argon does
exist at temperatures below �189 �C, which means that there must be some type of
bonding mechanism between the Ar atoms. However, the bond energy cannot be
high since the melting temperature is so low.

A particular type of weak attraction that exists between neutral atoms and
molecules involves the so-called dipolar and the van der Waals forces, which are
the result of the electrostatic interaction between permanent or temporary electric
dipoles in an atom or molecule. An electric dipole occurs whenever there is a
separation between a negative and a positive charge of equal magnitude Q, as
shown in Fig. 1.14a. A dipole moment is defined as a vector p

!¼ Q x
!
, where x

!
is

a distance vector from the negative to the positive charge.
One might wonder how a neutral atom can have an electric dipole. We know that

electrons are constantly moving in orbitals around the nucleus. As a result of this
motion, the distribution of negative charges is never exactly centered on the nucleus,
thus yielding a tiny, transient electric dipole. A dipole moment can also be a

+ + + + + +
+ + + + ++ + + + ++ + + + ++ + + + +

electron
gas

positive metal
ion cores

Fig. 1.13 Metallic bonding resulting from the attraction between the electron gas and the positive
metal ions. The electrons are delocalized inside the volume between the atoms in the crystal
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permanent feature of a molecular structure or induced by an external electric field. In
the latter case, the atom or molecule in which a dipole moment appears is said to be
polarized by the external electric field.

When an electric dipole is placed in an external electric field E
!
, it will experience

both a torque τ and a force F
!
(unless the external electric field is uniform in space) as

a result of the electrostatic forces exerted on each charge by the electric field, which
is depicted in Fig. 1.14b, c. In a uniform field, the torque τ will simply try to rotate
the dipole to line up with the field, because the charges +Q and –Q experience similar
magnitude forces in opposite directions. In a nonuniform field, the net force

+Q

-Q
=

a
dipole moment

x

p =Qx

b c

d e

uniform E large
region

small
region

E

E

F

field due to a dipole

E'

F F

F F

+Q

-Q

+Q
+Q +Q

-Q

-Q -Q

+Q-Q+Q-Q

+Q

-Q

t

t

t

t

�r�

Fig. 1.14 Electric dipole moment and its properties. (a) A dipole is formed when two electrical
charges with opposite signs and equal magnitude are separated by a distance. This creates a dipole
moment. (b, c) A dipole can rotate and be translated in the presence of an electric field. (d) A dipole
creates an electric field of its own, as a result of its two constituting electrical charges. (e) Dipoles
can interact with each other because one will feel the electric field produced by the other
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F experienced by the dipole tries to move the dipole toward stronger field regions.
This force will depend on both the orientation of the dipole and the gradient of the
electric field.

Moreover, a dipole moment creates an electric field E0! �
r
!�

of its own around it as
shown in Fig. 1.14d, just as a single charge does. Therefore, a dipole can interact
with another dipole as shown in Fig. 1.14e. This interaction is also at the origin of the
van der Waals force and the van der Waals bond. The van der Waals bond is the
result of the attraction caused by the instantaneous dipole of one atom inducing a
dipole in another atom. It occurs even when the atoms have no permanent (time
averaged) dipole moment. This bond is very weak and its magnitude drops rapidly
with distance R, namely, as 1/R6. Figure 1.7 is nevertheless still valid but with a
much smaller cohesive energy. The bond energy of this type is at least an order of
magnitude lower than that of a typical ionic, covalent, and metallic bonding. This is
why inert elements such as Ne and Ar solidify at temperatures below 25 K
(�248 �C) and 84 K (�189 �C), respectively.

In some solids, a van der Waals force may dominate in one direction, while an
ionic and/or covalent bond dominates in another. Several solids may therefore have
dominant cleavage planes perpendicular to the van der Waals force directions.
Moreover, many solids that we say are mostly ionic or covalent may still have a
very small percentage of van der Waals force present too. Graphite is a typical
example. It is made up of stacks of sheets of carbon. In one sheet the carbon atoms
are covalently bound. However, the sheets are held together only by van der Waals
forces, and as a result the sheets slide easily over each other making graphite easily
cleavable and very soft, properties put to good use in pencil lead.

There is a special class of bond called the hydrogen bond, in liquids and solids
where the attraction between atoms or molecules appears through a shared proton.
Figure 1.15 shows the hydrogen bond in the H2O molecule. Such a molecule has a
permanent dipole moment. Each proton in a molecule can form a bond with the
oxygen in two other molecules. This dipole-dipole interaction keeps water molecules
together in liquid water or solid ice.

The greater the energy of the bond is, the higher the melting temperature of the
solid is. Similarly, stronger bonds lead to greater elastic moduli and smaller expan-
sion coefficients.

1.6 Atomic Property Trends in the Periodic Table

1.6.1 The Periodic Table

As its name suggests, the periodic table of elements is organized based on the
periodicity of the electronic structure in atoms. In the periodic table, all the
elements in the same row make up a period (in this discussion “across a period”
will mean from left to right), and all the elements in a column are a group.
Elements in a group have the same valence shell configuration. The part of the
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periodic table shown in Fig. 1.16 can be divided into three sections that indicate
which orbitals (s, p, or d ) are the valence shell. The f-orbital valence shell
elements are omitted for simplicity.

The electron configuration of an atom (especially that of its valence shell) is a
primary determinant of the atom’s properties. As a result, the variation of atomic
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Fig. 1.15 The origin of hydrogen bonding between water molecules. A H2O molecule has a net
permanent dipole moment as a result of its lack of central symmetry. The H2O molecules can
therefore interact with one another. Attractions between the various dipole moments in water give
rise to hydrogen bonding
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Fig. 1.16 Part of the periodic table with divisions indicating valence shells and a summary of
atomic property trends
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properties across the table should reflect the “structure” of the periodic table. This
can be seen in many of the basic atomic properties. The discussion here will focus on
atomic and ionic radii, ionization energy, electron affinity, and electronegativity. The
variation trends of these properties across a period (from left to right) and down a
group are very good examples of the role of the interatomic electrical forces. The
properties discussed here are determined by the interplay between nuclear attraction
of electrons, electron-electron repulsions, and nuclear-charge screening.

1.6.2 Atomic and Ionic Radii

Since electrons in an atom are delocalized in the orbitals, not only does the orbital
not have a well-defined boundary, but the whole atom also does not have a well-
defined size. Typically, the atomic radius (a spherical shape is generally assumed) is
instead defined by half the distance between the atoms in a chemical compound. This
definition is oversimplified since different atoms form different types of bonds, but
regardless, trends can still be observed.

The atomic radius decreases going across a “period” and increases going down a
group. Going across a period, protons and electrons are being incrementally added.
The dominant force originates from the increased nuclear charge attracting the
electron clouds more strongly. Going down a group, the atomic radius increases
because electrons are occupying larger orbitals corresponding to higher and higher
principal quantum numbers.

Another important size is that of an element’s ion compared to its neutral state. A
positively ionized atom has lost an electron from the outermost (largest) shell, which
reduces its size. Also, the loss of an electron reduces the electron-electron repulsions
in the orbitals that would otherwise cause them to spread out over a larger space. A
negative ion is larger than the neutral ion because the additional electron increases
electron-electron repulsions. The change in size for ions can be very large. For
example, the radius of Li changes from 1.52 Å to 0.76 Å when it loses an electron.

1.6.3 Ionization Energy

Ionization energy is defined as the energy required to remove an electron from an
atom or ion, creating a more positive particle. In the ionization process, the highest
energy, or outermost, electron is removed. The energy required to remove an
electron from an atom in its ground state is called the first ionization energy. The
energy required to remove a second electron is called the second ionization energy
and so on. As the degree of ionization increases, so does the energy required. This is
because it is increasingly more difficult to remove a negative charge from an
increasingly positively charged ion. As the ion becomes more positive, it attracts
any electrons around it more strongly because the effective nuclear charge they
experience is larger. From the point of view of the orbital model, taking successive
electrons from an atom requires reaching deeper into the atom to remove an electron
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from the more tightly bound lower energy levels. The ionization energy always
jumps by a large amount once all the valence electrons have been removed, and
ionization from the full shell starts.

Going across a period, the first ionization energy increases due to increased
nuclear attraction. This is like the trend for atomic radius. Going down a group,
the first ionization energy decreases because the ionized electron is coming from
orbitals with a higher principal quantum number. In these higher orbitals, the
electron spends the majority of its time further from the nucleus and so the atom is
easier to ionize.

1.6.4 Electron Affinity

The electron affinity is the potential energy change of the atom when an electron is
added to a neutral, gaseous atom to form a negative ion. So the more negative the
electron affinity, the more favorable the electron addition process is. Not all elements
form stable negative ions, in which case the electron affinity is zero or even positive
(energy is required to add an electron).

Of the properties discussed, electron affinity is the least well behaved because it
has the most exceptions. It is also difficult to measure. There is a tendency toward
increased electron affinity going left to right across a period. The overall trend across
a period occurs because of increased nuclear attraction. The exceptions occur
because, for certain electron configurations, the electron-electron repulsion force
(not to be confused with screening) is stronger than the nuclear attraction. Exceptions
also occur because those elements that have completely filled valence shells are
particularly stable. Going down a group, the electron affinity should decrease since
the electron is being added increasingly further away from the atom (i.e., less tightly
bound and therefore closer in energy to a free electron). In reality, this trend is a very
weak one as the affinities do not change significantly down most groups.

1.6.5 Electronegativity

Electronegativity is a measure of the ability of an atom in a molecule to attract shared
bonding electrons. This property is different from the other ones presented here
because it is not relevant for an isolated atom since it deals with shared electrons. A
higher electronegativity means that the atom will attract bonded electrons to it more
strongly. Electronegativity increases across a period and decreases down a group.
The difference in electronegativity between bonding atoms determines whether the
bond is covalent, ionic, or in between (polar covalent). For atoms with similar
electronegativity, neither atom attracts the shared electron more strongly. This
equal sharing is characteristic of a purely covalent bond. As the electronegativity
difference increases, the shared electron will spend more time near the more electro-
negative atom. The unequal sharing results in a polar covalent bond, which in the
extreme case of complete electron transfer becomes an ionic bond.
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1.6.6 Summary of Trends

The different trends are summarized in Fig. 1.16. Appendix A.3 contains periodic
tables that give the atomic radius, ionization energy, electron affinity, and electro-
negativity for all the elements. Understanding these trends allows one to understand
properties not only of individual elements but also solid properties like lattice
constants and semiconductor bandgaps. It is important to keep in mind that the
trends discussed here are just generalizations, and exceptions do occur throughout
the table. A more detailed discussion of these properties and the exceptions can be
found in most general chemistry texts (see Further Reading section).

1.7 Introduction to Energy Bands

So far, we have considered the concepts associated with the formation of bonds
between two atoms. Although these concepts are important issues in semiconductor
materials, they cannot explain a number of semiconductor properties. It is necessary
to have more detailed information on the energies and the motion of electrons in a
crystal, as well as understand the electron collision events against imperfections of
different kinds. To do so, we must first introduce the concept of energy bands. The
formation of energy bands will be discussed in more detail in Chap. 5 using a
quantum mechanical formalism. However, for the moment, energy bands can be
conceptually understood by considering a simple example.

The electronic configuration in an isolated Si atom is such that 10 of its
14 electrons are tightly bound to the nucleus and play no significant role in the
interaction of the Si atom with its environment, under all familiar solid-state device
conditions. By contrast, the remaining four valence electrons are rather weakly
bound and occupy four of the eight allowed energy states immediately above the
last core level. For a group of N isolated Si atoms, i.e., far enough apart so that they
are not interacting with one another, the electronic energy states of their valence
electrons are all identical.

When these N atoms are brought into close proximity, to form crystalline Si, for
example, the energy levels for the outer electrons are modified as shown in
Fig. 1.17b. Exactly half of the allowed states become depressed in energy (bonding
states) and half increase in energy (antibonding states). Moreover, this perturbation
does not leave the energy levels sharply defined but spread them into bands instead.
Two bands of allowed electronic energy states are thus formed, as shown in
Fig. 1.17b, which are separated by an energy gap, i.e., an energy region forbidden
for electrons where there is no allowed electronic energy state.

At very low temperatures, the electrons fill the low-energy band first. The band
below the bandgap in energy is called the valence band. The band above the
bandgap, which is not completely filled and in most cases completely empty, is
called the conduction band. The energy gap between the highest energy level in the
valence band and the lowest energy level in the conduction band is called the
bandgap.
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It should be noted that the band electrons in crystalline silicon are not tied to or
associated with any one particular atom. On average, one will typically find four
valence electrons being shared between any given Si atom and its four nearest
neighbors (as in the bonding model). However, the identity of the shared electrons
changes as a function of time, with the electrons moving around from point to point
in the crystal. In other words, the allowed electronic states or bands are no longer
atomic states but are associated with the crystal as a whole, independent of the point
examined in a perfect crystal. An electron sees the same energy states wherever it is
in the crystal.

We can therefore say that, for a perfect crystal under equilibrium conditions, a
plot of the allowed electron energies versus distance along any preselected crystal-
line direction (x) is as shown in Fig. 1.17a. This plot is the basic energy band model.
EC introduced in Fig. 1.17a is the lowest possible conduction band energy, EV is the
highest possible valence band energy, and Eg ¼ EC–EV is the bandgap. A more
detailed consideration of the bands and electron states will be given in Chap. 5.

The energy band and the bandgap concepts are at the heart of semiconductor
physics. As the name implies, a semiconductor has an electrical conductivity in
between that of a metal and an insulator. Also, in a semiconductor the electrical
conductivity can be varied by changing the structural properties of the semiconduc-
tor, changing the temperature, or applying external fields. These properties are a
direct consequence of the energy band structure. Understanding and utilizing these
properties of semiconductors is the goal of this book.

Valence band

Conduction band

Interatomic
distance

E

Energy gap

Energy levels of
N isolated atoms

r0

x

E

EC

EV

mostly filled states

mostly empty states

Eg
3p
3s

a b

Fig. 1.17 Illustration of the formation of energy bands in a Si crystal. A system of N isolated Si
atoms has discrete allowed energy levels, all located at the energies of the 3s and 3p orbitals of an
isolated Si atom. When the atoms come into close proximity, the energy levels are modified as
shown in the figure, as a result of the interaction between the atoms. The allowed energy levels start
to form energy bands
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1.8 Summary

In this chapter, the electronic structure of atoms and its implications on the bonding
and the formation of energy bands in solids have been presented. Early experiments
conducted on even the simplest atom that of hydrogen showed that classical
mechanics was insufficient and that a new theory, called wave or quantum mechan-
ics, was necessary in order to understand the observed physical phenomena.

The notion of electron density function and the Bohr radius have been introduced.
The concepts of atomic orbitals and quantum numbers to identify the allowed
discrete energy levels for electrons in an atom have been discussed. The nature of
the bonding between atoms in a solid, be it ionic, covalent, mixed, metallic, or
secondary, has been described by taking into account the interaction of electrons in
the higher energy levels in the atoms in presence. Finally, the formation of energy
bands and the concept of conduction and valence bands have been introduced
through the interaction of multiple atoms.

Problems

1. The size of an atom is approximately 10�8 cm. To locate an electron within the
atom, one should use electromagnetic radiation of wavelength not longer than
10�9 cm. What is the energy of the photon with such a wavelength (in eV)?

2. Using the Rydberg formula, calculate the wavelength and energy of the photons
emitted in the Lyman series for electrons originally in the orbits n ¼ 2, 3, and
4. Express your results in cm, eV, and J. In which region of the electromagnetic
spectrum are these emissions?

3. What are the radii of the orbits and the linear velocities of the electrons when
they are in the n ¼ 1 and n ¼ 2 orbits of the hydrogen atom?

4. Using Bohr’s model, deduce an analytical expression for the Rydberg constant
as a function of universal constants.

5. The He+ ion is a one-electron system similar to hydrogen, except that it has two
protons. Calculate the wavelength of the longest wavelength line in each of the
first three spectroscopic series (n ¼ 1, 2, 3).

6. The human eye is more sensitive to the yellow-green part of the visible spectrum
because this is where the irradiance of the sun is maximum. Since the sun can be
considered as a blackbody with a temperature of approximately 5800 K, use

Planck’s relation for the irradiance of a blackbody I λð Þ ¼ 2πhc2

λ5
1

e
hc

λkbT�1

� 	
to find

the wavelength of the maximum of the sun irradiance. You will come out with a
very simple relation between the peak of the irradiance (λpeak) and T, which is
called Wien’s relation. In Planck’s relation above, h, c, λ, kb, and T are,
respectively, Planck’s constant, the velocity of light in vacuum, the wavelength,
Boltzmann’s constant, and the absolute temperature. You will need the
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following solution for the equation x ¼ 5(1�e-x), x ¼ 4.965. Then use Wien’s
relation to estimate λpeak for a human body.

7. Since an electron on a circular orbit around a proton has a centripetal acc-
eleration, it should radiate energy according to the Larmor relation dE/dt¼�2/3
(q2/4πε0) (a

2/c3) where q, a, ε0, and c are, respectively, the electron charge, its
acceleration, the vacuum permittivity, and the velocity of light in vacuum.
Therefore, in classical mechanics, it should spiral and crash on the nucleus.
How long would this decay take, supposing that the size of the initial orbit is 10
�10 m and the nucleus is a point charge (i.e., radius ¼ 0)?

8. What is Hund’s rule? Show how it is used to specify in detail the electron
configurations of the elements from Li to Ne.

9. What is the full electronic configuration of Li? Since the ionization energy of Li
is 5.39 eV, how much is the effective nuclear charge? What can you say about
the screening of the other electrons?

10. Calculate the total coulombic potential energy of a Na+ in a NaCl crystal by
considering only up to the fourth nearest neighbors of Na+. The coulombic
potential energy for two ions of opposite charges separated by a distance r is
given by:

E rð Þ ¼ � q2

4πε0r
q > 0ð Þ:

11. The interaction energy between Na+ and Cl� ions in the NaCl crystal can be
written as

E rð Þ ¼ � 4:03� 10�28

r
þ 6:97� 10�96

r8

where the energy is given in joules per ion pair and the interionic separation r is
in meters. The numerator unit of the first term is J�m and the second term is J�m8.
Calculate the binding energy and the equilibrium separation between the Na+

and Cl� ions.
12. Consider the van der Waals bonding in solid argon. The potential energy as a

function of interatomic separation can generally be modeled by the Lennard-Jones
6–12 potential energy curve, that is, E(r) ¼ –Ar�6 + Br�12 where A and B are
constants. Given that A ¼ 1.037 � 10�77 J�m6 and B ¼ 1.616 � 10�134 J�m12,
calculate the bond length and bond energy (in eV) for solid argon.

13. Which group of the periodic table would you expect to have the largest electron
affinities?

14. Which atom has the higher ionization energy, zinc or gallium? Explain.
15. Arrange the following groups of atoms in order of increasing size (without

resorting to the tables in the appendices).
a. Li, Na, K
b. P, S, Cl
c. In, Sn, Tl
d. Sb, S, Cl, F
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16. Based on the electronegativities given in Fig. A.1 in Appendix A.3, what groups
of elements would you expect to form ionic compounds? Is this consistent with
reality?

17. Why do none of the noble or inert gases (elements in the rightmost group) have
electron affinity values listed in Appendix A.3 Fig. A.?
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The Carbon Atom 2

2.1 Introduction: The Carbon Atom

Carbon is the 15th most abundant element in the Earth’s crust and the fourth most
abundant element in the universe by mass after hydrogen, helium, and oxygen. It is
present in all known life forms. In the human body, carbon is the second most
abundant element by mass (about 18.5%) after oxygen. This abundance, together
with the unique diversity of organic compounds and their unusual polymer-forming
ability at the temperatures commonly encountered on Earth, makes this element the
chemical basis of all known life [Demarchi, Falkowski, Gruber]. More precisely, the
carbon atom forms a number of components comparable with the total addition of all
the other elements of the periodic table in combination with each other. In particular,
we know more than 1 million organic components formed with only carbon and
hydrogen.

As a member of group 14 in the periodic table (see Fig. 2.1), carbon is nonmetal-
lic and tetravalent – making four electrons available to form covalent chemical
bonds. This property is primordial to describe the resulting characteristics of carbon
components and explain why it is essential to life. Indeed, carbon forms strong single
bonds to itself that are strong enough to resist most of reactions at ambient conditions
giving the carbon the possibility to form long chains of atoms, which are essential for
many compounds in the living cell such as DNA.

2.1.1 Isotopes of Carbon Atom (Fig. 2.2)

There are in total 15 known isotopes of carbon, with varying atomic mass varying
from 8 to 22 (8C to 22C), which differ only in their number of neutrons. 12C and 13C
are the only stable isotopes, while the others are radioactive. The most stable
radioisotope is 14C decaying with a half-life of about 5730 years while all other
isotopes of carbon have half-lives less than 20 s. In this textbook, and unless
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mentioned, the properties given and calculations are assumed to be done for 12C
isotope, which is the most common isotope that can be found in the nature, since
measurements by mass spectroscopy show that about 99% of all carbon atoms are in
12C isotope. Note that 12C single atom’s weight is used in order to define the unified
atomic mass unit or Dalton. More precisely, this unit is defined as one twelfth of the
mass of an unbound atom of 12C and has a value of 1.660538921 � 10�27 kg.

Comparison between isotopes of carbon is given in Table 2.1.

2.1.2 Electronic Configuration

The electronic configuration of carbon is [1s2] 2s2 2p2. This means the n ¼ 1 shell is
full with two electrons and the n ¼ 2 shell has two electrons in the s-state (full) and

Fig. 2.1 The periodic table, carbon is in group 14

Fig. 2.2 The three natural isotopes of carbon. The two left sketches are 12C and 13C, the only two
stable isotopes. 14C is the most stable radioisotope
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two electrons in the p-state which can accommodate up to six electrons. A reminder
of how electronic configuration is obtained can be found in (Appendix 1 – Atomic
Orbital).

The surface shell or n shell of an atom determines its reactivity. For carbon atom,
this surface shell is n ¼ 2 and its study explains the properties of bindings of the
atom. In order to optimize bonding with other carbon atoms and chemicals, one
electron from the 2s2 orbital in the surface n ¼ 2 shell can be promoted to become a
p orbital electron, so that now we have 2s2p3 instead of 2s2 2p2. As shown in
Fig. 2.3, the 2p orbital energies are higher than the energy of 2s orbital; thus this
promotion costs energy, which has to be recouped by the bond it forms.

In a three-dimensional bond like in diamond (see Fig. 2.4), the 2s electron
combines with the three 2p orbitals (Appendix 1 and Fig. 2.4) to form four
directed bonds in a tetrahedral arrangement which can now optimally overlap
with the similarly formed wavefunction of neighboring carbons a shown in
Fig. 2.4. This bonding optimizes the overlap of negative with positive charge
and is called sp3. It lowers the energy much more than the price paid to lift the s to
p from 2s2 2p2 to 2s2p3.

But this is not all; carbon can also link in a planar arrangement forming only
three sp3 bonds in a plane as in graphene and leaving on p orbital standing.
Finally, the sp3 can also link in a linear configuration forming only two linear
bonds with two neighboring atoms, thus leaving 2p orbital standing, and this will
be shown later.

Table 2.1 Some fundamental properties of Carbon

Z N Mass (u) Half-life ( y) Decay mode Nuclear spin
12C 6 6 12 Stable 0+
13C 6 7 13.003355 Stable ½–
14C 6 8 14.003242 5730 β– 0+

[Audi, De Laeter, Wieser]
Atomic mass: 6
Atomic weight: 12C is: 12.0107 � 0.0008 u (1u ¼ 1.66053892 � 10�27 kilograms)
Van der Walls radius: 170 pm

2S

E
N

E
R

G
Y

1S

2px 2py 2pz

Fig. 2.3 The energy level
structure of the carbon atom.
Hund’s rule (see [Razeghi]
page 55) gives a triplet ground
state: when there is space in
the shell, electron/electron
repulsion favors the triplet
state
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In the sp3 tetrahedral bond as in diamond Fig. 2.4, the bond length called the
covalent radius is only 77 pm. It is 73 pm in graphene and 69 pm in a linear polymer.
The first ionization energy of carbon, i.e., the energy required to remove an electron
from carbon atom in the gas phase, is first 1086.5 kJ mol�1.

2.1.3 Binding Energies

This table provides useful constants concerning covalent bindings involving the
carbon atoms: the bonding energy D, which can be interpreted as the energy
necessary to break the bond, and the bonding distance between the two atoms, R
(Table 2.2).

2.2 Covalent Bonding Between Carbon Atoms

In the carbon ground state, the p-shell is doubly occupied 2s22p2 and can acquire an
electron from the filled s-shell below to form covalent bonds which lowers the
energy sufficiently to pay the price for the initial uplift “s to p.” This is similar to
what happens in other materials such as Si, 3s23p2, and Ge, 4s24p2, except that with

diamond unit cell

carbon geometry

Fig. 2.4 The carbon tetrahedral sp3 bonds and the formation of the covalent three-dimensional sp3

covalent diamond lattice; see FSSE [Razeghi] Chap. 1

Table 2.2 Binding energy and other properties of bonds involving Carbon

Bond C–C C¼C C�C C–Si C–Ge C–Sn C–Pb C–N C¼N C�N

D(kJ/mol) 346 602 835 318 238 192 130 305 615 887

R(pm) 154 134 120 185 195 206 230 147 129 116

C–P C–O C¼O C � O C–B C–S C¼S C–F C–Cl C–Br C–I

264 358 799 1072 356 272 573 485 327 285 213

184 143 120 113 182 160 135 177 194 214

[Reference Cottrell, Darwent]
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carbon, the bonding need not be tetrahedral, i.e., to four neighbors involving four sp3

directional covalent bonds as in Si, for example, or diamond. The carbon bonding
can involve three covalent bonds sp2 planar with one extra p orbital perpendicular, or
indeed it can be an s-p bond and linear. We will investigate the consequences of the
different bonding arrangements as we develop the chapter.

A carbon-carbon bond is a covalent bond between two carbon atoms. The most
common form is the single bond: a bond composed of two electrons, one from each
of the two atoms. The carbon-carbon single bond is a sigma bond and is said to be
formed between one hybridized orbital from each of the carbon atoms. In ethane
C2H6, the orbitals are sp3 hybridized orbitals, but single bonds formed between
carbon atoms with other hybridizations do occur (e.g., sp2 to sp2). In fact, the carbon
atoms in the single bond need not be of the same hybridization. Carbon atoms can
also form double bonds in compounds called alkenes (see Fig. 2.5). Alkenes are a
class of hydrocarbons that contain only carbon and hydrogens. They are unsaturated
compounds that contain at least one carbon-to-carbon double bond. Another term
that is often used to describe alkenes is olefins or triple bonds in compounds called
alkynes.

A double bond is formed with a sp2 hybridized orbital and a p orbital that isn’t
involved in the hybridization. In alkynes a triple bond is formed with a sp hybridized
orbital and two p orbitals from each atom (see Fig. 2.6). The use of the p orbitals
forms a pi bond.

Carbon is one of the few elements that can form long chains of its own atoms, a
property called catenation. This coupled with the strength of the carbon-carbon bond
gives rise to an enormous number of molecular forms, many of which are important
structural elements of life, so carbon compounds have their own field of study:
organic chemistry.

Branching is also common in C-C skeletons. Different carbon atoms can be
identified with respect to the number of carbon neighbors.

• Primary carbon atom: one carbon neighbor
• Secondary carbon atom: two carbon neighbors
• Tertiary carbon atom: three carbon neighbors
• Quaternary carbon atom: four carbon neighbors

Fig. 2.5 Alkene flat, the R R00 are any side groups that attach to C with a single bond and fit into
space

Fig. 2.6 4-methyl-2-hexyne molecule, example of a triple carbon bond
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It is this versatility and flexibility shown in Fig. 2.7, its ability to bond in many
different configurations, which makes carbon such a special and unique material and
essential component to life.

In the next section, we will be looking at the structure of the most important
currently known carbon allotropes. This is also the main focus of this review. The
vast field of carbon chemistry and physics in conjunction with carbon compounds
cannot be covered by this review; however when a particular point of scientific
interest arises, it will be mentioned and the reference provided. The emphasis of later
chapters as we proceed is on pure carbon allotropes. We will discover their electronic
and optical properties and investigate what makes them special.

Already now if we ask the question what is the mystery of carbon? Maybe the
answer is it is the mystery of the carbon-carbon bond, sp, and sp2 and sp3 bond.

2.3 Carbon Allotropes

When an element of the periodic table exists in more than one crystalline forms,
those forms are called allotropes.

There are several allotropes of carbon of which the best known are the three
crystalline structures graphite, diamond, and lonsdaleite. The physical properties of
carbon vary dramatically with the allotropic form, which is why recent researches in
materials are mainly focusing in the study of these forms. For example, diamond is
highly transparent, while graphite is opaque and black. Diamond is the hardest
naturally occurring material known, while graphite is soft enough to form a streak
on paper. Diamond has a very low electrical conductivity, while graphite is a very
good conductor. Under normal conditions, diamond, carbon nanotubes, and
graphene have the highest thermal conductivities of all known materials. High
thermal conductivity is crucial in the field of power electronics and also in the area
of big machines for computational science and the trillion dollar personal computer
and laptop industries (Fig. 2.8).

Some Allotropes of Carbon

(a) Diamond, tetrahedral bonding sp3 (discussed in Chap. 3).
(b) Graphite, two-dimensional sp2 bonding, and van der Waals bonded layered

structure (van der Waals bonding is a weak bonding via mutually induced

primary

quaternary

secondarytertiary

H3C

H3C C
H3C CH3

CH3

CH2

CH

Fig. 2.7 Trimethylpentane
example of the versatile way
carbon can bond to itself and
other compounds
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dipole-dipole coupling). The two-dimensional layers can be peeled off to give
grapheme. Full discussion is in Chap. 4.

(c) Lonsdaleite (named in honor of Kathleen Lonsdale), also called hexagonal
diamond in reference to the crystal structure, is an allotrope of carbon with a
hexagonal lattice. In nature, it forms when meteorites containing graphite strike
the Earth. It is translucent, brownish-yellow, and has an index of refraction of
2.40–2.41 and a specific gravity of 3.2–3.3.

(d–f) Fullerenes, C60 ball formed by bonding 60 atoms in a sphere C540, C70 (see
Chap. 4).

Fig. 2.8 Eight of the allotropes (different molecular configurations) that pure carbon can take: (a)
diamond, (b) graphite, (c) lonsdaleite, (d) C60 (buckminsterfullerene), (e) C540 (see fullerene), (f)
C70 (see fullerene), (g) amorphous carbon, (h) single-walled carbon nanotube
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(g) Amorphous carbon, dangling bonds can be saturated by hydrogen, for example.
(h) Carbon nanotube, tubelike bonding of pure carbon discussed in detail in Chap. 5.

This table compares some carbon allotropes and their electronic configuration and
structural properties (Tables 2.3 and 2.4):

This table which only compares some basic properties of graphite and diamond
gives us an idea of how the structural differences of a crystal composed of the same
atom can give rise to dramatic consequences of the crystal’s properties. The exact
reasons of some of these properties remain today unknown, and one may imagine
that newer crystalline structures and those yet to be discovered can give even more
astonishing results, example being graphene, which is today a subject of intensive
research. The following chapters of this textbook will try to analyze the difference of
these structures and properties.

Table 2.3 A comparison of graphite, diamond, and other forms of carbon

Allotrope Hybridization Structure Existence

Graphite sp2 Crystal, 2D hexagonal stacked Natural

Graphene sp2 Crystal, hexagonal stacked Natural or synthetic
(monolayer)

Diamond sp3 Crystal, cubic Natural

Lonsdaleite sp3 Crystal, 3D hexagonal Natural

Fullerene sp2 Cluster Synthetic

Nanotube sp2 With single, double, or multiple walls Synthetic

Amorphous
carbon

sp2–sp3 No crystalline structure or aggregate of
crystals

Natural

Table 2.4 Comparison of graphite and diamond

Graphite Diamond

Mechanical
hardness

Graphite is one of the softest materials
known

Synthetic nanocrystalline diamond is
the hardest material known

Lubricant
properties

Graphite is very good lubricant
displaying super lubricity

Diamond is the ultimate abrasive

Electrical
conduction

Graphite is a conductor of electricity Diamond is an excellent electrical
insulator and has the highest
breakdown electric field of any known
material

Thermal
conduction

Some forms of graphite are used for
thermal insulation but some other
forms are good thermal conductors

Diamond is the best known naturally
occurring thermal conductor

Optical
transparency

Graphite is opaque Diamond is highly transparent

Lattice
structure

Graphite crystallizes in the hexagonal
system

Diamond crystallizes in the cubic
system
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The following Table 2.5 gives some numerical values of these properties,
showing the large range of values that can be expected from allotropes of carbon.

2.4 Carbon Fullerenes

2.4.1 Buckyballs

While the possibility of a stable closed-cage molecular structure for carbon was first
suggested in 1970, the existence of fullerenes was not verified experimentally until
15 years later [Kroto et al.]. Laser ablation of a graphite target was used to create
carbon clusters. Mass spectra of the resultant vapor revealed the synthesis of
molecules in two main groups – rings consisting of 10–30 atoms and larger
molecules with predominantly 60 and 70 member atoms. Researchers soon predicted
that these high-mass molecules possessed a closed-cage configuration. The name
“fullerene” was coined after R. Buckminster Fuller, an architect renowned for his
construction of geodesic domes resembling the structure of these molecules
(Fig. 2.10). The fullerene lattice is similar to the hexagonal graphite lattice in that
it consists of a two-dimensional surface. To create large curvature in a graphene
sheet, the substitution of pentagons for hexagons is required. Geometrically, there
are multiple arrangements that form a closed structure, but Euler’s theory for
polyhedra dictates that exactly 12 faces of the cage must be pentagonal, with any
additional number of hexagonal faces. Thus, the smallest possible fullerene (C20) is
composed solely of 12 pentagons. But the curvature induced by the pentagons comes
with a price in the form of strain energy (the sp2 bonds are bent out-of-plane,
resulting in significant sp3 character). This penalty is minimized by separating the
pentagons in the lattice as much as possible. The smallest fullerene in which no two
pentagons are adjacent is C60. The structural stability of C60 makes it the most
abundant product of any fullerene growth process, typically 3–6 times more likely
than the next most abundant product, C70.

The C60 molecules (often referred to as “buckyballs”) are composed of 12 pen-
tagonal and 20 hexagonal faces in a soccer-ball arrangement. The carbon bonds
come in two varieties: single bonds along the 60 pentagonal edges, which measure
1.46 Å in length, and 30 electron-rich double bonds between adjacent hexagons,
which are 1.40 Å in length. The mean molecular diameter as measured with NMR is
7.10 Å, consistent with the expected geometrical diameter of 7.09 Å when consider-
ing the atoms as points.

Table 2.5 Numerical values of physical properties in different allotropes of carbon

Density
(g.cm-3)

Molar heat capacity
(J.mol-1.K-1)

Thermal conductivity
(W.m-1.K-1)

Mohs
hardness

Electrical
resistivity
(Ω.m)

Graphite 2.267 8.517 119–165 1–2 10�4

Diamond 3.515 6.155 900–2300 10 1011�1018
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The electronic structure of C60 can be accurately approximated by considering its
icosahedral symmetry. Each carbon atom contributes four valence electrons to the
molecular structure. The σ-bonded sp2 electrons can be safely neglected as core-
level molecular states, leaving 60 radially oriented pz orbital electrons to form the
valence states. The irreducible representations of the icosahedral point group are
used to determine the appropriate molecular orbital eigenfunctions. The spherical
shape of C60 suggests an approximation of these molecular orbitals based on
spherical harmonics Y_l,m. Since each angular momentum state l can accommodate
2(2l +1) electrons, the first 50 electrons completely fill all states up to l ¼ 4, leaving
10 electrons for the 22, l ¼ 5 states.

Relative energy splittings within each level can be determined using a variety of
computational methods. The lowest energy l ¼ 5 states belong to the fivefold
degenerate hu representation. These states account for the remaining ten electrons
and are the highest occupied molecular orbitals (HOMOs) in the ground state. The
lowest unoccupied molecular orbitals 5 (Fig. 2.9).

(LUMOs) are t1u states (Fig. 2.10), which are experimentally observed to reside
~1.9 eV above the hu levels in energy [Gunnarson]. The t1u molecular orbitals have
the character of atomic p orbitals in that they are threefold degenerate and transform
into one another under rotations about the [111] axis. In contrast, the hu orbitals have
transformation properties resembling atomic d orbitals.

Fig. 2.9 Diagram of the wavefunction for the t1u (l ¼ 5) molecular orbital calculated using first-
principle molecular dynamics method. Colors denote the sign of the wavefunction from Hornbaker,
Thesis Univ. of Illinois. This is the lowest unoccupied molecular orbital in C60. Its odd parity and
threefold degeneracy make it very similar in character to atomic p orbitals
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In bulk, C60 forms a molecular solid with a face-centered cubic crystal structure
at room temperature held together by van der Waals attraction. The nearest-neighbor
distance is 10.02 Å, with an intermolecular separation (2.92 Å) similar to the spacing
between layers in graphite (3.35 Å). Due to the relatively weak nature of van der
Waals interactions, the constituent molecules rotate freely at room temperature. As
the temperature is lowered below 260 K, rotations begin to freeze out and the
buckyballs orient themselves relative to one another, leading to a lowering of the
crystal symmetry to that of a simple cubic structure. The electronic structure of the
solid is composed of bands derived from the molecular orbitals of the individual
buckyballs. The undoped solid is a semiconductor with a 1.5 eV bandgap between
the hu-derived valence band and the t1u-derived conduction band, which possess
fairly narrow bandwidths of only ~0.4 V. Doping of C60 solids with alkali metal,
alkali earth, or other elements can significantly change the conduction properties and
in some cases even result in the onset of superconductivity.

The “spherical” symmetry leads to a high degree of level degeneracy which can
be seen in Fig. 2.10 with a bandgap of about 1.8 eV.

2.5 Graphene and Nanotubes

Going back to Fig. 2.8 in the previous section, the next task is to obtain the
one-dimensional band structure of an armchair nanotube (NT) (see Fig. 2.11)
using the two-dimensional band structure of graphene. The latter has to be
supplemented with periodic boundary conditions. The armchair NT is obtained by
cutting out a slice from the graphene sheet parallel to the x axis. The slice has a width
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wwhich can be expressed as the length of the so-called wrapping vector w orientated
perpendicular to the tube axis. For an armchair NT, the wrapping vector is of the
formw

!¼ N
�
a
!
1
þ a

!
2

�
in general n1a1 + n2a2 where N is an integer. Usually this is also

denoted as an (N, N ) tube because the wrapping vector is equal N times a1 plus
N Times a2. Due to the periodic boundary condition along the y-direction, the
wavevector component ky is quantized (Fig. 2.12).

The band structure of CNT is shown in Fig. 2.16 in the next section. Graphene is
treated in more detail in Chap. 5.

Fig. 2.11 The three structures of single-walled NT (n1, n2) and the wrapping vectors

Fig. 2.12 SWNT left and MWNT (multiwalled) right; see also multiwalled carbon nanotubes
(MWCNT): production, analysis, and application by AZoNano SouthWest NanoTechnologies
(SWeNT)
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2.6 Definition of Bonding Energy and Energy Bands

When two atoms with single orbitals such as two hydrogen atoms are brought close
together, what happens? We have already touched on this question in the last
chapter. Let us consider it again here and then develop it in a more rigorous platform
in Chap. 5.

For each of the two hydrogen atoms, the lowest energy orbital is the 1s orbital and
the potential energy corresponding decays exponentially in space so that at large
separation almost no interaction between orbital takes place. Thus, the two atoms are
symmetric and the energy level of the bonded electron is the same. As the second
atom approaches to within the decay radius (1A

�
), the two orbitals start overlapping

and the electrons can hop on to the other atom and can return. This redistributes the
charge and gives rise to new energy levels. If the strength of this coupling energy is
denoted by t12, a simple calculation gives us the new levels as the bonding states with
energy 2Es-2 t12 where Es is the energy of the s-orbital and antibonding state with
energy 2Es + 2 t12. The two electrons will enter the lower bonding level and form a
covalent bond. This simple picture is very powerful and is normally the way
chemists look at the coupling of atoms to each other in chemical complexes. The
picture can of course be generalized to different types of bonding orbital and
different types of structures. A chemical compound will then normally have the
highest occupied level called the HOMO level and lowest unoccupied level called
the LUMO level (Fig. 2.13).

Now, if we consider more than two atoms, the effect is similar for a crystalline
structure of hydrogen atoms composed of an array of numerous atoms. A general
coupling between close atomic orbitals will create new energy levels. The more
atoms in the crystalline structure, the more orbital may interact with each other,
causing a raise in the number of energy levels. At the limit, when the number of
atoms involved in the crystalline structure is high enough, the energy is no longer
composed of discrete levels, but forms a quasi-continuum called the energy band.
The subject is treated in detail in Chap. 5 .

r

E E

isolated atoms

solid

E

Fig. 2.13 Change in energy
spectrum from single atoms to
a solid. Each of the discrete
energy levels in two isolated
atoms split into two separate
energy levels when the atoms
are bound in a solid. Razeghi
FSSE [Razeghi]
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In an infinite 3D periodic system of atoms or crystal, the energy band dispersion E
(k) due to one orbital per atom for a cubic lattice can be calculated with the tight
binding method (see Appendix 2):

E
�
k
!� ¼ ε0 � 2 tj j cos kxaþ cos kybþ cos kzc

� � ð2:1Þ

E
�
k
!� ¼ ε0 � 6 tj j 1� k2a2

2

� �
when k ! 0 ð2:2Þ

where
1
m∗

¼ 1

ħ2
d2E

d2kx
so that

1
m∗

¼ 2 j t j a2
ħ2

ð2:3Þ

where a is the lattice spacing, t is the banding energy, k is the Bloch momentum, m*
is the x-effective mass, and ε0 is the orbital level. Basically the energy levels of the
crystal are labeled by the k-vectors, and the reason why a solution is possible in this
neat way is the periodicity. The reader should consult Chap. 5 for a more rigorous
discussion. Here the emphasis is on the atomic orbital starting point.

As we can see in Eq. (2.1), the energy E(k) forms a continuum, meaning that for
an infinite periodic system, the separation between consecutive energy levels is
infinitesimally small. Without electronic correlations, such a solid with the same
orbital on every site, with one electron per orbital, would give rise to a metal,
because an electric field will easily push a charge away from its starting point
without having to surmount a large energy barrier. This is not so for an insulator
or semiconductor. A normal size applied field would not be able to move the charge
across the energy gap or bandgap. Another important concept is the effective mass
m* defined in Eq. 2.3; it is a measure of the efficiency with which an applied field
accelerates an electron if Newton’s law were to apply [see Chap. 5 Razeghi or
standard quality textbooks in solid-state physics listed below].

Different energy shells in atoms when they couple can be thought to generate
their own energy bands. But if in a system with only one orbital per atom, we can still
have bandgaps and energy bands. In this case the bandgap of a periodic system arises
usually when there is more than one atom per unit cell.

To illustrate this we consider a linear chain constituted of two different atoms
alternatively labeled A and B with only one orbital per atom and orbital energies EA

and EB. Assuming the transfer coupling is called t, then a simple tight binding energy
band structure calculation gives us now two energy bands instead of one and given
by (k ¼ kx) (Fig. 2.14).

Fig. 2.14 Linear chain of
two different atoms
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2E kð Þ ¼ EA þ EBð Þ � EA � EBð Þ2 þ 8t2 1þ cos 2kað Þ
h i1=2

ð2:4Þ

The lower band can be identified as emanating from the lower orbital energy, say
EA, the upper from B; electron staring in A has to transfer across the higher orbital B
to reach the next equivalent site. For the higher band, the result is similar. Assuming
one electron per A orbital, and initially none on B, with the Pauli principle, this
density fills the lower band completely and leaves the upper band empty at T ¼ 0 K.
Now we have a semiconductor with a bandgap of 2Eg ¼ [(EA � EB)

2 + 16t2]1/2.
The argument is easily extended to higher dimensions, and in general, in an

infinite lattice, in order to have a bandgap, one has to have more than one atom per
unit cell which periodically repeats itself. Thus silicon and germanium have identical
atoms, but the Bravais lattice structure implies two atoms per unit cell in an FCC
lattice and this gives a semiconductor [see Chap. 5]. If the structure were a simple
cubic with one atomic orbital per cell, then there would be no bandgap.

Band structures can be evaluated in a variety of ways depending on the degree of
accuracy required. The simplest methods are using the linear combination or atomic
orbitals or tight binding method (TBM) or using the free electron representation with
atoms acting as scattering centers (see references below) NFE. In complex materials
such as transition metals or layered compounds and oxides, one has to use more
accurate methods. In so-called ab initio methods, density functional and
pseudopotential methods, the objective is to assume as little as possible about the
system yet to arrive at accurate pictures of the electronic and phononic structures.
The Schrödinger equation SE of the electron (see Chap. 4) is solved in an array of
atomic scatterers defined by the lattice structure, whereby only the outermost valence
electrons are treated, and the scattering potential of the atom is represented by an
effective core due to the non-valence shells and ions. The core is given a radius and
spherical magnitude and form often fitted to experiment. The SE is solved using a
plane wave basis of say 500 plane waves, and the electron-electron interaction is
treated as a self-consistent averaged field using the Hartree or Hartree-Fock theory. It
is now more common to solve for the electron density rather than for the
wavefunction, using the so-called density functional method DFT (Dreizler 1985).

2.7 Band Structure of Fullerenes (Buckyballs) (Fig. 2.15)

2.8 Band Structure of Carbon Nanotubes (Fig. 2.16)
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2.9 Background Needed for Energy Levels and Band Structure

2.9.1 Tight Binding Method

Razeghi M, page 169, Fundamentals of solid state engineering [5]
Peyghambarian N, Koch S and Mysyrowicz A Introduction to semiconductor optics,

page 27

2.9.2 Free Electron Method

Razeghi M, Fundamentals of solid state engineering Chapter 4, or other quality
solid-state textbooks for more information are by Ashcroft and Mermin

Ziman J (1964) An introduction to Solid State Physics, Cambridge University Press
(1964)

Madelung O (1978) Introduction to Solid state theory, Springer Berlin Heidelberg,
New York

Ziman J (1964) An introduction to Solid State Physics, Cambridge University Press
(1964)
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Fig. 2.15 Solid Fcc fullerene
shows the band structure of
solid undoped fullerenes on an
Fcc lattice. This also
corresponds to the structure of
the superconducting K3C60.
See Gunnarsson (1997).
Subbands around the fermi
energy for solid C60 in the
Fm3 structure. The bands at
about �0.5 eV are the hu
bands which are occupied in
solid C60, and the bands at
about 1.5 eV are the t1u bands
which become populated in
AnC60. [From Gunnarsson
(1997); Erwin and Pederson
(1993)]
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Dreizler M (1985) Density functional theory in Physics NATO ASI series vol. 123

*A more complete description of band structure is given in Chap. 5.

2.10 Summary

In this chapter we reviewed the basic properties of carbon as an atom and looked at
the various ways carbon bonds to form chemical complexes and allotropes. This is
an ever-evolving field and the material presented is by no means complete. In the
next few chapters, we will examine each one of these allotropes in turn and investi-
gate their band structure, electronic properties, and applications. The synthesis and
preparation method of each one of these forms is a specialized subject in its own
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Fig. 2.16 Band structure in pristine CNT (a) ACNT (10,10), (b) ZNT (9,0), (c) ZNT (10,10), (d)
DOS. Porous CNT (e) ACNT (10,10), (f) ZCNT (9,0), (g) ZCNT (10,10), (h) DOS. The energy
scales for (b, c) and (f, g) cases are the same. The density of states is shown in the right curves (d, h).
From electronic structure of porous nanocarbons (Artem Baskin and P Kral, Scientific Reports
1:36 https://doi.org/10.1038/srep00036)
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right, and the interested reader should refer to the numerous and detailed literature on
the subject, best done by using Google. In Sect. 2.2 we briefly introduce the reader to
the concept of bonding in periodic systems. This gives the so-called Bloch energy
band structure E(k) and is very rich in new physical concepts. The Bloch bands also
lead us to the concept of holes in the valence bands and the effective mass of the
electrons and holes. In this way, we prepare the reader to understand the material to
come later in the book, but we expect him to follow up each one of these new
concepts in detail with the specialized literature.

2.11 Conclusion: The Future

Carbon atoms exhibit enormous flexibility in the way they bond and form material
complexes. Carbon has given rise to astonishing new structures and lead to great
dazzling discoveries. One of the greatest breakthroughs came with potassium K3C60

electron-doped fullerenes which exhibited superconductivity up to 40 K
[Gunnarsson]. This was an amazing achievement which went above all expectations
and which gave H Kroto the Nobel Prize [Kroto] even though the complete under-
standing of the mechanism has to our knowledge not yet been reached.

Another major success was scored earlier by the work of the Santa Barbara
Group under Alan Heeger [Heeger]. They showed that polyacetylene (PA) could
be considered to be a quasi one-dimensional polymer and that the material (and
many others of this type) could be n and p doped. Su Schrieffer and Heeger
[Su et al. 1979] predicted that theoretically, undoped PA should constitute a
Peierls semiconductor. In other words a semiconductor where the energy gap
forms is a result of a collective relaxation of the backbone into an alternating
“short-long” (or long-short) carbon bond structure. Doping then causes a semicon-
ducting to metal transition which is not just purely an electronic transition, but a
structural transition as well. Here the alternating bond length changes partially
back into the “normally to be expected” (disregarding lattice relaxation) same
bond length structure. This novel and collective interplay between lattice and
electronic structure also gives rise to very exciting new types of elementary
excitations known as “polarons and solitons” [Su et al]. The work on conjugated
polymers and applications then eventually gave A Heeger the nobel Prize in the
year 2000. The most recent and perhaps one of the most promising discoveries
from the point of view of material engineering and applications is the isolation
(exfoliation) of graphene sheets from graphite. This truly amazing discovery has
made it possible to make 2D pristine monolayer “metallic” materials which have
great unprecedented structural stability and therefore technical value. It gave the
discoverers Geim and Novoselov the Nobel Prize in 2010 [Geim]. Graphene also
exists in stable suspended form and exhibits high mobility (100,000 cm2/Vs).
Graphene has given device technology a new class of field-effect transistors and
sensors. It has a zero bandgap not at k ¼ 0 (Γ point) but at the so-called Dirac
points. Here the zero gap makes linear dispersions, and if one insists on pushing
the mass concept to its extreme, we have zero effective mass particles and a square
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root magnetic field dependence of magnetic level splittings. Graphene can be made
into nanoscale ribbons which introduces lateral quantum confinement and brings
back an energy gap which can be adjusted by design. The search for new
applications using graphene and related complexes is by far not over. Many
groups, including the original discoverers, now in Manchester, are looking for
more new science and technical applications. In particular the focus is now on
effects related to interlayer electron-electron coupling. Here one is trying to make
or observe charge polarization and the drag of the polarization induced in the
neighboring layers to form new electronic polarons and bipolarons. There is also
still hope that some topology can be found which will eventually yield very high-
temperature superconductivity, higher than K3C60. Organic high-temperature fer-
romagnetism is still a very sought after target. One of the mysteries of the solid-
state physics of carbon is how far one can go with single particle mean field
theories. A material with the topology of graphene, for example, would seem to
really necessitate a many-body treatment of electronic structures, but apparently
this is not the case, and one-body methods work quite well. Whereas in conjugated
polymers and molecular structures, electron-phonon and lattice relaxation have
been shown to play a serious role in determining energies and structure, the same
is not true for electron-electron coupling. Though we know that Coulomb
correlations are present and non-negligible, the scope, importance, and deep
understanding of correlations are still missing in carbon-based materials. In most
current theoretical treatments, correlations can be incorporated into the redefinition
of one-body parameters. So a lot more needs to be done in order to come to
understand the full potential of “carbon” and related materials. Thus in K3C60

[Gunnarsson], most scientists have been more busy trying to explain away the
electron-electron on-site correlation called Hubbard U. This coupling would, for
example, act on the fullerene balls and is ~1.5 eV [Gunnarsson]. If correlations
could be proven to be instrumental in producing superconductors, as is the case for
magnetism, it would open new avenues for materials research. The research could
focus, it seems, on looking for more exotic topologies, such as nanocrystalline
assemblies quantum dots and crystals and even porous forms. Some of the new
imaginative molecular material designs, which chemists are capable of producing,
may well eventually give the sought after exciting properties such as high-
temperature superconductivity and lightweight magnetism, including both ferro-
and diamagnetism. Luminescent carbon nanodots have already been delivered
[Baker], thanks to the discovery regarding the effect of passivation. This field
still has a lot of potential since the complete mechanisms are still not understood,
and wavelength control may be possible. The search is on and is exciting. But
electronic structure is only one aspect, and carbon allotropes, because of this
unusual structural mechanical strength, are proving extremely valuable in fields
such as civil engineering, aircraft, and car manufacturing. Not all facets and
combinations of properties (e.g., solar cells, thermal and sound conductivity, and
insulation) have been investigated, the potential is enormous, and the development
of these fields is of great value to the manufacturing building and automotive and
transport industries.
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Problems

Q1. Illustrate the various bonding configurations that carbon can adopt and give
examples of materials for each case. Where do you think organic carbon
technology can become superior to inorganic technology?

Q2. Explain how sp3 and sp2 hybridizations work? How does hybridization work in
Si, Ge and in III–V compounds? In an ab initio band structure calculation, the
concept of hybridization does not arise; explain the difference.

Q3. Explain how can we calculate the bonding energy between different atoms
given the atomic orbital energies of each orbitals.

Q4. What is Hund’s rule coupling?
Q5. Calculate the dispersion equation in Appendix 2 example for a 3 dimensional

crystal. This equation is used in this chapter in (2.4).
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Crystalline Properties of Solids 3

3.1 Introduction

This chapter gives a brief introduction to crystallography, which is the science that
studies the structure and properties of the crystalline state of matter. We will first
discuss the arrangements of atoms in various solids, distinguishing between single
crystals and other forms of solids. We will then describe the properties that result
from the periodicity in crystal lattices. A few important crystallography terms most
often found in solid state devices will be defined and illustrated in crystals having
basic structures. These definitions will then allow us to refer to certain planes and
directions within a lattice of arbitrary structure.

Investigations of the crystalline state have a long history. Johannes Kepler (Strena
Seu de Nive Sexangula, 1611) speculated on the question as to why snowflakes
always have six corners, never five or seven (Fig. 3.1). It was the first treatise on
geometrical crystallography. He showed how the close-packing of spheres gave rise
to a six-corner pattern. Next, Robert Hooke (Micrographia, 1665) and Rene Just
Haüy (Essai d’une théorie sur la structure des cristaux, 1784) used close-packing
arguments in order to explain the shapes of a number of crystals. These works laid
the foundation of the mathematical theory of crystal structure. It is only recently,
thanks to x-ray and electron diffraction techniques, that it has been realized that most
materials, including biological objects, are crystalline or partly so (Fig. 3.2).

All elements from the periodic table and their compounds, be they gas, liquid, or
solid, are composed of atoms, ions, or molecules. Matter is discontinuous. However,
since the sizes of the atoms, ions, and molecules lie in the 1 Å (10�10 m or 10�8 m)
region, matter appears continuous to us. The different states of matter may be
distinguished by their tendency to retain a characteristic volume and shape. A gas
adopts both the volume and shape of its container, a liquid has a constant volume but
adopts the shape of its container, while a solid retains both its shape and volume
independently of its container. This is illustrated in Fig. 3.3. The natural forms of
each element in the periodic table are given in Fig. A1 in Appendix A.3.

# Springer International Publishing AG, part of Springer Nature 2019
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_3
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Gases Molecules or atoms in a gas move rapidly through space and thus have a high
kinetic energy. The attractive forces between molecules are comparatively weak and
the energy of attraction is negligible in comparison to the kinetic energy.

Liquids As the temperature of a gas is lowered, the kinetic energies of the molecules
or atoms decrease. When the boiling point (Fig. A.3 in Appendix A.3) is reached, the
kinetic energy will be equal to the energy of attraction among the molecules or
atoms. Further cooling thus converts the gas into a liquid. The attractive forces cause
the molecules to “touch” one another. They do not, however, maintain fixed
positions. The molecules change positions continuously. Small regions of order
may indeed be found (local ordering), but if a large enough volume is considered,
it will also be seen that liquids give a statistically homogeneous arrangement of
molecules and therefore also have isotropic physical properties, i.e., equivalent in all
directions. Some special types of liquids that consist of long molecules may reveal
anisotropic properties (e.g., liquid crystals).

Solids When the temperature falls below the freezing point, the kinetic energy
becomes so small that the molecules become permanently attached to one another.
A three-dimensional framework of net attractive interaction forms among the
molecules and the array becomes solid. The movement of molecules or atoms in
the solid now consists only of vibrations about some fixed positions. A result of these
permanent interactions is that the molecules or atoms have become ordered to some
extent. The distribution of molecules is no longer statistical but is almost or fully
periodically homogeneous, and periodic distribution in three dimensions may be
formed.

The distribution of molecules or atoms, when a liquid or a gas cools to the solid
state, determines the type of solid. Depending on how the solid is formed, a
compound can exist in any of the three forms in Fig. 3.3. The ordered crystalline
phase is the stable state with the lowest internal energy (absolute thermal equilib-
rium). The solid in this state is called the single crystal form. It has an exact periodic
arrangement of its building blocks (atoms or molecules).

Sometimes the external conditions at a time of solidification (temperature, pres-
sure, cooling rate) are such that the resulting materials have a periodic arrangement
of atoms which is interrupted randomly along two-dimensional sections that can
intersect, thus dividing a given volume of a solid into a number of smaller single
crystalline regions or grains. The size of these grains can be as small as several

a bFig. 3.1 (a) Snowflake
crystal and (b) the close-
packing of spheres which
gives rise to a six-corner
pattern. The close-packing of
spheres can be thought as the
way to most efficiently stack
identical spheres
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atomic spacings. Materials in this state do not have the lowest possible internal
energy but are stable, being in so-named local thermal equilibrium. These are
polycrystalline materials.

There exist, however, solid materials which never reach their equilibrium condi-
tion, e.g., glasses or amorphous materials. Molten glass is very viscous and its
constituent atoms cannot come into a periodic order (reach equilibrium condition)
rapidly enough as the mass cools. Glasses have a higher energy content than the
corresponding crystals and can be considered as a frozen, viscous liquid. There is no
periodicity in the arrangement of atoms (the periodicity is of the same size as the
atomic spacing) in the amorphous material. Amorphous solids or glass have the
same properties in all directions (they are isotropic), like gases and liquids.

Therefore, the elements and their compounds in a solid state, including silicon,
can be classified as single crystalline, polycrystalline, or amorphous materials. The
differences among these classes of solids are shown schematically for a
two-dimensional arrangement of atoms in Fig. 3.4.

3.2 Crystal Lattices and the Seven Crystal Systems

Now we are going to focus our discussion on crystals and their structures. A crystal
can be defined as a solid consisting of a pattern that repeats itself periodically in all
three dimensions. This pattern can consist of a single atom, group of atoms, or other

a b c

Fig. 3.3 Illustration of the physical states of water: (a) gas also known as water vapor, (b) liquid or
common water, (c) solid also known as snow or ice

a b c

Fig. 3.4 Arrangement of atoms: (a) a single crystalline, (b) a polycrystalline, and (c) an amorphous
material
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compounds. The periodic arrangement of such patterns in a crystal is represented by
a lattice. A lattice is a mathematical object which consists of a periodic arrangement
of points in all directions of space. One pattern is located at each lattice point. An
example of a two-dimensional lattice is shown in Fig 3.5a. With the pattern shown in
Fig. 3.5b, one can obtain the two-dimensional crystal in Fig. 3.5c which shows that a
pattern is associated with each lattice point.

A lattice can be represented by a set of translation vectors as shown in the

two-dimensional (vectors a
!
, b
!
) and three-dimensional lattices (vectors a

!
, b
!
, c
!
)

in Fig. 3.6a, c, respectively. The lattice is invariant after translations through any of
these vectors or any sum of an integer number of these vectors. When an origin point
is chosen at a lattice point, the position of all the lattice points can be determined by a
vector which is the sum of integer numbers of translation vectors. In other words,

any lattice point can generally be represented by a vector R
!
such that:

R
!¼ n1 a

! þn2 b
!
þn3 c

!
,

n1,2, 3 ¼ 0, � 1, � 2, . . .
ð3:1Þ

where a
!
, b
!
, c
!
are the chosen translation vectors and the numerical coefficients are

integers.
All possible lattices can be grouped in the seven crystal systems shown in

Table 3.1, depending on the orientations and lengths of the translation vectors. No
crystal may have a structure other than one of those in the seven classes shown in
Table 3.1.

a

b

a b c

Fig. 3.5 Example of (a) two-dimensional lattice, (b) pattern, and (c) two-dimensional crystal
illustrating a pattern associated with each lattice point

α

γ

β
a

b

c

Fig. 3.6 Example of a three-
dimensional lattice, with
translation vectors and the
angles between two vectors.
By taking the origin at one
lattice point, the position of
any lattice point can be
determined by a vector which
is the sum of integer numbers
of translation vectors
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A few examples of cubic crystals include Al, Cu, Pb, Fe, NaCl, CsCl, C (diamond
form), Si, and GaAs; tetragonal crystals include In, Sn, and TiO2; orthorhombic
crystals include S, I, and U; monoclinic crystals include Se and P; triclinic crystals
include KCrO2; trigonal crystals include As, B, and Bi; and hexagonal crystals
include Cd, Mg, Zn, and C (graphite form) (Fig. 3.6).

3.3 The Unit Cell Concept

A lattice can be regarded as a periodic arrangement of identical cells offset by the
translation vectors mentioned in the previous section. These cells fill the entire space
with no void. Such a cell is called a unit cell.

Since there are many different ways of choosing the translation vectors, the
choice of a unit cell is not unique and all the unit cells do not have to have the
same volume (area). Figure 3.7 shows several examples of unit cells for a
two-dimensional lattice. The same principle can be applied when choosing a unit
cell for a three-dimensional lattice.

The unit cell which has the smallest volume is called the primitive unit cell. A
primitive unit cell is such that every lattice point of the lattice, without exception, can
be represented by a vector such as the one in Fig. 3.7. An example of primitive unit
cell in a three-dimensional lattice is shown in Fig. 3.6. The vectors defining the unit

cell, a
!
, b
!
, c
!
, are basis lattice vectors of the primitive unit cell.

The choice of a primitive unit cell is not unique either, but all possible primitive
unit cells are identical in their properties: they have the same volume, and each

Table 3.1 The seven crystal systems

Crystal
systems Axial lengths and angles

Cubic Three equal axes at right angles a ¼ b ¼ c, α ¼ β ¼ γ ¼ 90�

Tetragonal Three axes at right angles, two equal a ¼ b 6¼ c, α ¼ β ¼ γ ¼ 90�

Orthorhombic Three unequal axes at right angles a 6¼ b 6¼ c, α ¼ β ¼ γ ¼ 90�

Trigonal Three equal axes, equally inclined a ¼ b ¼ c, α ¼ β ¼ γ ¼ 90�

Hexagonal Two equal coplanar axes at 120�, third axis at right angles a ¼ b 6¼ c,
α ¼ β ¼ 90�, γ ¼ 120�

Monoclinic Three unequal axes, one pair not at right angles a 6¼ b 6¼ c, α ¼ γ ¼ 90� 6¼ β

Triclinic Three unequal axes, unequally inclined and none at right angles a 6¼ b 6¼ c,
α 6¼ β 6¼ γ 6¼ 90�

a

b

Fig. 3.7 Three examples of
possible unit cells for a
two-dimensional lattice The
unit cells are delimited in solid
lines. The same principle can
be applied for the choice of a
unit cell in three dimensions
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contains only one lattice point. The volume of a primitive unit cell is found from
vector algebra:

V ¼ a
! ��b! � c

!����
��� ð3:2Þ

The number of primitive unit cells in a crystal, N, is equal to the number of atoms
of a particular type, with a particular position in the crystal, and is independent of the
choice of the primitive unit cell:

Primitive unit cell volume ¼ Crystal volume
N

A primitive unit cell is in many cases characterized by non-orthogonal lattice
vectors (as in Fig. 3.8). As one likes to visualize the geometry in orthogonal
coordinates, a conventional unit cell (but not necessarily a primitive unit cell) is
often used. In most semiconductor crystals, such a unit cell is chosen to be a cube,
whereas the primitive cell is a parallelepiped and is more convenient to use due to its
more simple geometrical shape.

A conventional unit cell may contain more than one lattice point. To illustrate
how to count the number of lattice points in a given unit cell, we will use Fig. 3.9
which depicts different cubic unit cells.

In our notations ni is the number of points in the interior, nf is the number of points
on faces (each nf is shared by two cells), and nc is the number of points on corners

a

bc

Fig. 3.8 Three-dimensional
lattice and a corresponding
primitive unit cell defined by
the three basis vectors

a
!
, b
!
, c
!

Simple cubic Body-centered cubic Face-centered cubic

Fig. 3.9 Three-dimensional unit cells: simple cubic (left), body-centered cubic (bcc) (middle), and
face-centered cubic (fcc) (right)
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(each nc point is shared by eight corners). For example, the number of atoms per unit
cell in the fcc lattice (Fig. 3.9c) (ni ¼ 0, nf ¼ 6, and nc ¼ 8) is:

nu ¼ ni þ n f

2
þ nc

8
¼ 4 atoms=unit cell ð3:3Þ

3.4 The Wigner-Seitz Cell

The primitive unit cell that exhibits the full symmetry of the lattice is called Wigner-
Seitz cell. As it is shown in Fig. 3.10, the Wigner-Seitz cell is formed by (1) drawing
lines from a given Bravais lattice point to all nearby lattice points, (2) bisecting these
lines with orthogonal planes, and (3) constructing the smallest polyhedron that
contains the selected point. This construction has been conveniently shown in two
dimensions but can be continued in the same way in three dimensions. Because of
the method of construction, the Wigner-Seitz cell translated by all the lattice vectors
will exactly cover the entire lattice.

3.5 Bravais Lattices

Because a three-dimensional lattice is constituted of unit cells which are translated
from one another in all directions to fill up the entire space, there exist only
14 different such lattices. They are illustrated in Fig. 3.11 and each is called a
Bravais lattice after the name of Bravais (1848).

In the same manner, as no crystal may have a structure other than one of those in
the seven classes shown in Fig. 3.11, no crystal can have a lattice other than one of
those 14 Bravais lattices.

3.6 Point Groups

Because of their periodic nature, crystal structures are brought into self- coincidence
under a number of symmetry operations. The simplest and most obvious symmetry
operation is translation. Such an operation does not leave any point of the lattice

a

b

Fig. 3.10 Two-dimensional Wigner-Seitz cell and its construction method: select a lattice point,
draw lines from a given lattice point to all nearby points, bisect these lines with orthogonal planes,
and construct the smallest polyhedron that contains the first selected lattice
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Base-centered
monoclinic

Simple cubic Body-centered cubic Face-centered cubic

Simple tetragonal Body-centered tetragonal

Simple
orthorhombic

Base-centered
orthorhombic

Body-centered
orthorhombic

Face-centered
orthorhombic

Simple
monoclinic

Triclinic

Trigonal

Hexagonal

c

a

Fig. 3.11 The 14 Bravais lattices, illustrating all the possible three-dimensional crystal lattices

3.6 Point Groups 59



invariant. There exists another type of symmetry operation, called point symmetry,
which leaves a point in the structure invariant. All the point symmetry operations can
be classified into mathematical groups called point groups, which will be reviewed in
this section.

The interested reader is referred to mathematics texts on group theory for a
complete understanding of the properties of mathematical groups. For the scope of
the discussion here, one should simply know that a mathematical group is a
collection of elements which can be combined with one another and such that the
result of any such combination is also an element of the group. A group contains a
neutral element such that any group element combined with it remains unchanged.
For each element of a group, there also exists an inverse element in the group such
that their combination is the neutral element.

3.6.1 Cs Group (Plane Reflection)

A plane reflection acts such that each point in the crystal is mirrored on the other side
of the plane as shown in Fig. 3.12. The plane of reflection is usually denoted by σ.
When applying the plane reflection twice, i.e., σ2, we obtain the identity which
means that no symmetry operation is performed. The reflection and the identity form
the point group which is denoted Cs and which contains only these two symmetry
operations (Fig. 3.13).

σ

Fig. 3.12 Illustration of a
plane reflection. The
triangular object and its
reflected image are mirror
images of each other

C

q

Fig. 3.13 Illustration of
rotation symmetry. The
triangular object and its image
are separated by an angle
equal to θ
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3.6.2 Cn Groups (Rotation)

A rotation about an axis and through an angle θ (n is an integer) is such that any point
and its image are located in a plane perpendicular to the rotation axis and the in-plane
angle that they form is equal to θ, as shown in Fig. 3.14. In crystallography, the angle
of rotation cannot be arbitrary but can only take the following fractions of 2π: θ ¼ 2π

1 ,
2π
2 ,

2π
3 ,

2π
4 ,

2π
6 .

It is thus common to denote as Cn a rotation through an angle 2π
n where n is an

integer equal to 1, 2, 3, 4, or 6. The identity or unit element corresponds to n ¼ 1,
i.e., C1. For a given axis of rotation and integer n, a rotation operation can be
repeated, and this actually leads to n rotation operations about the same axis,
corresponding to the n allowed angles of rotation: 1� 2π

n , 2� 2π
n , . . ., n� 1ð Þ � 2π

n ,
and n� 2π

n . These n rotation operations, which include the identity, form a group also
denoted Cn.

One says that the Cn group consists of n-fold symmetry rotations, where n can
be equal to 1, 2, 3, 4, or 6. Figure 3.14 depicts the perspective view of the crystal
bodies with symmetries C1, C2, C3, C4, C6. The rotations are done so that the
elbow pattern coincides with itself. It is also common to represent these symmetry
groups with the rotation axis perpendicular to the plane of the figure, as shown in
Fig. 3.15.

C1 C2 C3 C4 C6

Fig. 3.14 Crystal bodies with symmetries C1, C2, C3, C4, and C6. The elbow patterns are brought
into self-coincidence after a rotation around the axis shown and through an angle equal to 2π/n
where n ¼ 1, 2, 3, 4, or 6

C1 C2 C3 C4 C6

Fig. 3.15 Crystal bodies with symmetries C1, C2, C3, C4, and C6 with the rotation axes perpendic-
ular to the plane of the figure
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3.6.3 Cnh and Cnv Groups

When combining a rotation of the Cn group and a reflection plane σ, the axis of
rotation is usually chosen vertical. The reflection plane can either be perpendicular to
the axis and then be denoted σh (horizontal) or pass through this axis and then be
denoted σv (vertical). All the possible combinations of such symmetry operations
give rise to two types of point groups: the Cnh and the Cnv groups.

The Cnh groups contain an n-fold rotation axis Cn and a plane σh perpendicular to
it. (a) Shows the bodies with a symmetry C4h. The number of elements in a Cnh group
is 2n.

The Cnv groups contain an n-fold axis Cn and a plane σv passing through the
rotation axis. Figure 3.16b shows the bodies with a symmetry C4v. The number of
elements is 2n too.

3.6.4 Dn Groups

When combining a rotation of the Cn group and a C2 rotation with an axis perpen-
dicular to the first rotation axis, this gives rise to a total of n C2 rotation axes. All the
possible combinations of such symmetry operations give rise to the point groups
denoted Dn. The number of elements in this point group is 2n. For example, the
symmetry operations in D4 are illustrated in Fig. 3.17.

3.6.5 Dnh and Dnd Groups

When combining an element of the Cnh group and a C2 rotation which has an axis
perpendicular to the Cn axis, this gives also rise to a total of n C2 rotation axes. All

C4h C4v

a b

Fig. 3.16 Crystal bodies with symmetries (a) C4h where the reflection plane is perpendicular to the
rotation axis and (b) C4v where the reflection plane passes through the rotation axis
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the possible combinations of such symmetry operations lead to the point group
denoted Dnh. This point group can also be viewed as the result of combining an
element of theDn group and a σh (horizontal) reflection plane. This group can also be
viewed as the result of combining an element of the Dn group and n σv (vertical)
reflection planes which pass through both the Cn and the n C2 axes.

The number of elements in the Dnh point group is 4n, as it includes the 2n
elements of the Dn group, and all these 2n elements combined with a plane reflection
σh. For example, the symmetry operations in D4h are illustrated in Fig. 3.18a.

D4Fig. 3.17 Crystal bodies
with symmetry D4. In addition
to the C4 axis, there are four
C2 axes of rotation
perpendicular to the Cn axis

(a) (b)

D4h D4d

Fig. 3.18 Bodies with symmetries (a) D4h and (b) D4d
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Now, when combining an element of the Cnv group and a C2 rotation which has
an axis perpendicular to the Cn axis and which is such that the σv (vertical) reflection
planes bisect two adjacent C2 axes, this leads to the point group denoted Dnd. This
point group can also be viewed as the result of combining an element of theDn group
and n σv (vertical) reflection planes which bisect the C2 axes.

The number of elements in the Dnd point group is 4n as well. For example, the
symmetry operations in D4d are illustrated in 3.18b.

3.6.6 Ci Group

An inversion symmetry operation involves a center of symmetry (e.g., O) which is at
the middle of a segment formed by any point (e.g., A) and its image through
inversion symmetry (e.g., A0), as shown in Fig. 3.19.

When applying an inversion symmetry twice, we obtain the identity which means
that no symmetry operation is performed. The inversion and the identity form the
point group which is denoted Ci and which contains only these two symmetry
operations.

3.6.7 C3i and S4 Groups

When combining an element of the Cn group and an inversion center located on the
axis of rotation, the symmetry operations get more complicated. If we consider the
C1 group (identity), we obtain the inversion symmetry group Ci. In the case of C2

group, we get the plane reflection group Cs. And if we consider the C6 group, we
actually obtain the C3h point group.

When we combine independently elements from the C4 group and the inversion
center, we get the C4h point group. However, there is a subgroup of the C4h point
group which can be constructed by considering a new symmetry operation, the roto-
inversion, which consists of a C4 rotation immediately followed by an inversion
through a center on the rotation axis. It is important to realize that the roto-inversion
is a single symmetry operation, i.e., the rotation is not independent of the inversion.
The subgroup is made by combining roto-inversion operation, is denoted S4, and is
illustrated in Fig. 3.20. Its number of elements is 4.

O
A

A’
B

B’

Fig. 3.19 Illustration of inversion symmetry. Any point of the triangular object and its image are
such that the inversion center is at the middle of these two points
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A similar point group is obtained when considering roto-inversions from the C3

group. The new point group is denoted C3i.

3.6.8 T Group

The tetrahedron axes group T is illustrated in Fig. 3.21. It contains some of the
symmetry operations which bring a regular tetrahedron into self-coincidence. The
tetrahedron and its orientation with respect to the cubic coordinate axes are also
shown.

The number of elements is 12, which includes:

• Rotations through an angle 2π
3 or 4π

3 , about the four C3 axes which are the body
diagonals of a cube (yielding at total of eight elements)

• Rotations through an angle π, about the three C2 axes (x
!
,y
!
,z
!
) passing through the

centers of opposite faces (three elements)
• The identity (one element)

O

S4Fig. 3.20 Bodies with
symmetry S4

C2C3

O

x

y

z
Fig. 3.21 Axes of rotation
for the T group, including four
C3 and three C2 axes. The
orientation of the tetrahedron
with respect to the cubic
coordinate axes is shown on
the right
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3.6.9 Td Group

The Td point group contains all the symmetry elements of a regular tetrahedron.
Basically, it includes all the symmetry operations of the T group in addition to an
inversion center at the center of the tetrahedron (Fig. 3.22).

The number of elements is 24, which includes:

• Rotations through an angle 2π
3 or 4π

3 , about the four C3 axes which are the body
diagonals of a cube (yielding at total of eight elements)

• Rotations through an angle π, about the three C2 axes (x
!
,y
!
,z
!
) passing through the

centers of opposite faces (three elements)

• Rotations through an angle π
2 or 3π

2 (S4), about the three axes ( x
!
, y
!
, z
!
) passing

through the centers of opposite faces, followed by an inversion through the center
point O of a cube, (six elements)

• Rotations through an angle π, about the six C2 axes passing through the centers of
diagonally opposite sides (in diagonal planes of a cube), followed by an inversion
through the center point O (six elements)

• Finally, the identity (one element)

3.6.10 O Group

The cubic axes group O consists of rotations about all the symmetry axes of a cube.
The number of elements is 24, which includes:

• Rotations through the angles 2π
4 ,

4π
4 , or

6π
4 , about the three C4 axes passing through

the centers of opposite faces (yielding a total of nine elements)
• Rotations through the angles 2π

3 or 4π
3 , about the four C3 axes passing through the

opposite vertices (eight elements)
• Rotations through an angle π, about the six C2 axes passing through the midpoints

of opposite edges (six elements)
• Finally, the identity (one element)

C2, S4
C3

O

x

y

z

C2

Fig. 3.22 Axes of rotation
for Td group, including four
C3, three C2 axes passing
through the center of opposite
faces, three S4 axes, and six C2

axes passing through the
centers of diagonally opposite
sides
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3.6.11 Oh Group

The Oh group includes the full symmetry of a cube in addition to an inversion
symmetry. The number of elements is 48, which includes:

• All the symmetry operations of the O group (24 elements)
• And all the symmetry operations of the O group combined with an inversion

through the body-centered point of a cube (24 elements).

3.6.12 List of Crystallographic Point Groups

The point groups previously reviewed are constructed by considering all the possible
combinations of basic symmetry operations (plane reflections and rotations)
discussed in subsections 3.6.1 to 3.6.11. By doing so, one would find that there
exist only 32 crystallographic point groups. Crystallographers normally use two
kinds of notations for these point symmetry groups. Table 3.2 shows the correspon-
dence between two widely used notations.

3.7 Space Groups

The other type of symmetry in crystal structures, (translation symmetry), reflects the
self-coincidence of the structure after the displacements through arbitrary lattice

vectors (R
!
).

These symmetry operations are independent of the point symmetry operations as
they do not leave a point invariant (except for the identity). The combination of
translation symmetry and point symmetry elements gives rise to new symmetry
operations which also bring the crystal structure into self-coincidence. An example
of such new operation is a glide plane by which the structure is reflected through a
reflection plane and then translated by a vector parallel to the plane.

With these new symmetry operations, a larger symmetry operation group is
formed, called space group. There are only 230 possible three-dimensional crystal-
lographic space groups which are conventionally labeled with a number from
No. 1 to No. 230.

3.8 Directions and Planes in Crystals: Miller Indices

In order to establish the proper mathematical description of a lattice, we have to
identify the directions and planes in a lattice. This is done in a crystal using Miller
indices (hkl). We introduce Miller indices by considering the example shown in
Fig. 3.23.
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Figure 3.23 shows a crystal plane which passes through lattice points and

intersects the axes: 2a, 3b, 2c, where a
!
, b

!
, c

!
are basic lattice vectors. To

obtain Miller indices, we form the ratio 1
2 :

1
3 :

1
2 and put the fractions on the smallest

common denominator. The Miller indices are the corresponding numerators. Thus
we obtain the Miller indices for the plane: (hkl) ¼ (323).

It also follows that a lattice plane with Miller indices (hkl) will be intersected by

the axis a
!
, b
!
, c
!
at distances Nah , Nbk , Ncl where N is an integer. The Miller indices for

Table 3.2 List of
the 32 crystallographic
point groups

Crystal system
Schoenflies
symbol

Hermann-Mauguin
symbol

Triclinic C1 1

Ci �1

Monoclinic C2 2

Cs m

C2h 2/m

Orthorhombic D2 222

C2v mm2

D2h mmm

Tetragonal C4 4

S4 �4

C4h 4/m

D4 422

C4v 4 mm

D2d �42m

D4h 4/mmm

Cubic T 23

Th m3

O 432

Td �43m

Oh m3m

Trigonal C3 3

C3i �3

D3 32

C3v 3m

D3d �3m

Hexagonal C6 6

C3h �6

C6h 6/m

D6 622

C6v 6 mm

D3h �6

D6h 6/mmm
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a few planes in a cubic lattice are shown in Fig. 3.23. These Miller indices are
obtained as described above and by using 1

1 ,
1
1 , 1

1 ¼ 1:0:0 ¼ (100).
For a crystal plane that intersects the origin, one typically has to determine the

Miller indices for an equivalent plane which is obtained by translating the initial
plane by any lattice vector. The conventions used to label directions and planes in
crystallographic systems are summarized in Table 3.3.

The notation for the direction of a straight line passing through the origin is [uvw],
where u, v, and w are the three smallest integers whose ratio u:v:w is equal to the ratio
of the lengths (in units of a, b, and c) of the components of a vector directed along the
straight line. For example, the symbol for the a-axis in Fig. 3.23, which coincides
with vector a

!
, is [100].

For the indices of both plane and directions, a negative value of the index is
written with a bar sign above the index, such as (�hkl) or [u�vw].

a-axis

b-axis

c-axis

b

c

a
2a

2b 3b

2c(323)

Fig. 3.23 Example of a plane which passes through lattice points. Its Miller indices are
(hkl) ¼ (323) and are used to identify this plane in the crystal. These indices are obtained as
follows: note where the plane intersects the coordinate axes, it is either an integer multiple or an
irreducible fraction of the axis unit length; invert the intercept values; using the appropriate
multiplier, convert these inverted values into integer numbers; and enclose the integer numbers in
parenthesis

Table 3.3 Conventions
used to label directions and
planes in crystallography

Notation Designation

(hkl) Plane

{hkl} Equivalent plane

[uvw] Direction

<uvw> Equivalent direction

(hkil) Plane in hexagonal systems

[uvtw] Direction in hexagonal systems
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Example

Q Determine the direction index for the lattice vector shown below.

a
b

c

R

A We can decompose the vector R
!
as: R

!¼ 1 a
! þ2 b

!
þ2 c

!
. This corresponds to

u ¼ 1, v ¼ 2, w ¼ 2, and the direction is thus [122].

In cubic systems, such as simple cubic, body-centered cubic, and face-centered
cubic lattices, the axes of Fig. 3.24 are chosen to be orthonormal, i.e., the unit vectors
are chosen orthogonal and of the same length equal to the side of the cubic unit cell.
The axes are then conventionally denoted x, y, and z instead of a, b, and c, as shown
in Fig. 3.24.

In addition, for cubic systems, the Miller indices for directions and planes have
the following particular and important properties:

• The direction denoted [hkl] is perpendicular to plane denoted (hkl).
• The interplanar spacing is given by the following expression and is shown in the

example in Fig. 3.25:

dhkl ¼ a= ffiffiffiffiffiffiffiffiffiffiffi
h2þk2þl2

p ð3:4Þ

• The angle θ between two directions [h1k1l1] and [h2k2l2] is given by the relation:

cos θð Þ ¼ h1h2þk1k2þl1 l2ð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
1
þk2

1
þl2

1ð Þ h2
2
þk2

2
þl2

2ð Þp ð3:5Þ

x
y

z

(100)

x
y

z

(110)

x
y

z

(111)

Fig. 3.24 Miller indices of the three principal planes in the cubic structure. If a plane is parallel to
an axis, we consider that it “intersects” this axis at infinity and we get the Miller indices: 1,1,1
¼ > 1/1:1/1:1/1¼1:0:0 ¼ > (100)
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Example
Q Determine the angle between the two planes shown below (PSR) and (PQR),

in a cubic lattice.

x

y

z

R

P

QS

A The Miller indices for the (PSR) plane are (111), while they are (212) for the
(PQR) plane. The angle θ between these two planes is given by the following

cosine function: cos θð Þ ¼ 1�2þ1�1þ1�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ12þ12ð Þ 22þ12þ22ð Þp ¼ 5

ffiffi
3

p
9 .

The angle between the two planes is therefore 15.8 deg.

In hexagonal systems, the a- and b-axes of Fig. 3.26 are chosen in the plane
formed by the base of the hexagonal unit cell and form a 120 degree angle. They are
denoted a

!
1
and a

!
2
and their length is equal to the side of the hexagonal base. The unit

Adjacent
(233) planes

x

y

22 + 32 + 32
ad233 = �               �

Fig. 3.25 Illustration of the
interplanar spacing in a cubic
lattice between two adjacent
(233) planes

a1

a2
a3

c

120º

Fig. 3.26 Coordinate axes
used to determine Miller
indices for hexagonal systems
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vector perpendicular to the base is still denoted c. In addition, it is also conventional
to introduce a (redundant) fourth unit vector denoted a

!
3
in the base plane and equal to

��
a
!
1
þ a

!
2

�
, as shown in Fig. 3.26. It is then customary to use a four-index system for

planes and directions: (hkil) and [uvtw], respectively, as shown in Fig. 3.26. The
additional index that is introduced for hexagonal systems is such that i ¼ � (h + k)
and t ¼ � (u + v), which is a direct consequence of the choice of the fourth unit
vector a

!
3
.

In modern microelectronics, it is often important to know the in-plane crystallo-
graphic directions of a wafer and this can be accomplished using Miller indices.
During the manufacturing of the circular wafer disk, it is common to introduce a
“flat” to indicate a specific crystal direction. To illustrate this, let us consider the
(100) oriented silicon wafer shown in Fig. 3.27. A primary flat is such that it is
perpendicular to the [011] direction, while a smaller secondary flat is perpendicular
to the [01�1] direction.

3.9 Real Crystal Structures

Most semiconductor solids crystallize into a few types of structures which are
discussed in this section. They include the diamond, zinc blende, sodium chloride,
cesium chloride, hexagonal close-packed, and wurtzite structures.

3.9.1 Diamond Structure

Elements from the column IV in the periodic table, such as carbon (the diamond
form), germanium, silicon, and gray tin, crystallize in the diamond structure. The
Bravais lattice of diamond is face-centered cubic. The basis has two identical atoms
located at (0,0,0) and (¼,¼,¼) in the cubic unit cell, for each point of the fcc lattice.
The point group of diamond is Oh. The lattice constants are a¼ 3.56, 5.43, 6.65, and
6.46 Å for the four crystals mentioned previously in the same order. The conven-
tional cubic unit cell thus contains eight atoms. There is no way to choose a primitive
unit cell such that the basis of diamond contains only one atom.

(100) Si
primary flat

[011]

secondary flat    [011]

Fig. 3.27 Illustration of the use of primary and secondary flats on a (100) oriented silicon crystal
wafer to indicate the in-plane crystallographic orientation of the wafer
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The atoms which are at least partially in the conventional cubic unit cell are
located at the following coordinates: (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (1,0,1),
(0,1,1), (1,1,1), (½,½,0), (0,½,½), (½,0,½), (½,½,1), (1,½,½), (½,1,½), (¼,¼,¼),
(¾,¾,¼), (¾,¼,¾), and (¼,¾,¾).

The tetrahedral bonding characteristic of the diamond structure is shown in
Fig. 3.28a. Each atom has 4 nearest neighbors and 12 s nearest neighbors. For
example, the atom located at (¼,¼,¼) at the center of the cube in Fig. 3.28b has four

a

b

Fig. 3.28 (a) Diamond lattice. The Bravais lattice is face-centered cubic with a basis consisting of
two identical atoms displaced from each other by a quarter of the cubic body diagonal. The atoms
are connected by covalent bonds. The cube outlined by the dashed lines shows one tetrahedral unit.
(b) Tetrahedral unit of the diamond lattice
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nearest neighbors also shown in Fig. 3.28b which are located at (0,0,0), (½,½,0),
(0,½,½), and (½,0,½).

The number of atoms/unit cell for the diamond lattice is found from ni¼ 4, nf¼ 6,
and nc ¼ 8 where ni, nf, and nc are the numbers of points in the interior, on faces, and
on corners of the cubic unit cell shown in Fig. 3.28a, respectively. Note that each of
the nf points is shared between two cells and each of the nc points is shared between
eight cells. Therefore: nu ¼ 4þ 6

6 þ 8
8 ¼ 8 atoms/unit cell. The atomic density or the

number of atoms per cm3, n, is given by n ¼ nu
a3 atoms/unit cell. For example, for

silicon, we have a ¼ 5.43 Å, and n ¼ 8/(0.543 � 10�7)3 ¼ 5 � 1022 atoms/cm3.

3.9.2 Zinc Blende Structure

The most common crystal structure for III–V compound semiconductors, including
GaAs, GaSb, InAs, and InSb, is the sphalerite or zinc blende structure shown in
Fig. 3.29. The point group of the zinc blende structure is Td.

The zinc blende structure has two different atoms. Each type of atom forms a face-
centered cubic lattice. Each atom is bounded to four atoms of the other type. The
sphalerite structure as a whole is treated as a face-centered cubic Bravais lattice with a
basis of two atoms displaced from each other by (a/4)(x + y + z), i.e., one fourth of the
length of a body diagonal of the cubic lattice unit cell. Some important properties of
this crystal result from the fact that the structure does not appear the same when viewed
along a body diagonal from one direction and then the other. Because of this, the
sphalerite structure is said to lack inversion symmetry. The crystal is therefore polar in
its <111> directions, i.e., the [111] and the [�1 �1 �1] directions are not equivalent. When
both atoms are the same, the sphalerite structure has the diamond structure, which has
an inversion symmetry and was discussed previously.

In the case of GaAs, for example, the solid spheres in Fig. 3.29 represent Ga
atoms and the open spheres represent As atoms. Their positions are:

Ga: (0,0,0), (½,½,0), (0,½,½), (½,0,½), (½,1,½), (½,½,1), (1,½,½)
As: (¼,¼,¼), (¾,¾,¼), (¾,¼,¾), (¼,¾,¾)

x

y
z

a

x + y + za
4 �           �

Fig. 3.29 Cubic unit cell for
the zinc blende structure. The
Bravais lattice is face-centered
cubic with a basis of two
different atoms represented by
the open and solid spheres and
separated by a quarter of the
cubic body diagonal. The
crystal does not appear the
same when viewed along a
body diagonal from one
direction or the other
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3.9.3 Sodium Chloride Structure

The structure of sodium chloride, NaCl, is shown in Fig. 3.30. The Bravais lattice is
face-centered cubic and the basis consists of one Na atom and one Cl atom separated
by one half the body diagonal of the cubic unit cell. The point group of the sodium
chloride structure is Oh.

There are four units of NaCl in each cubic unit cell, with atoms in the positions:

Cl: (0,0,0), (½,½,0), (½,0, ½), (0, ½,½)
Na: (½,½,½), (0,0, ½), (0, ½,0), (½,0,0)

3.9.4 Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 3.31. The Bravais lattice is simple
cubic and the basis consists of two atoms located at the corner (0,0,0) and center
positions (½,½,½) of the cubic unit cell. Each atom may be viewed as at the center of
a cube of atoms of the opposite kind, so that the number of nearest neighbors or
coordination number is eight. The point group of the cesium chloride structure is Td.

Cl−

Na+

Fig. 3.30 Sodium chloride
crystal. The Bravais lattice is
face-centered cubic with a
basis of two ions: one Cl� ion
at (0,0,0) and one Na+ ion at
(½,½,½), separated by one
half of the cubic body
diagonal. The figure shows
one cubic unit cell

Cs+

Cl−

Fig. 3.31 The cesium
chloride crystal structure. The
Bravais lattice is cubic with a
basis of two ions: one Cl� ion
at (0,0,0) and one Cs+ ion at
(½,½,½), separated by one
half the cubic body diagonal
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3.9.5 Hexagonal Close-Packed Structure

The simplest way to stack layers of spheres is to place centers of spheres (atoms)
directly above one another. The resulting structure is called a simple hexagonal
structure. There is, in fact, no example of crystals with this structure because it is
unstable. However, spheres can be arranged in a single hexagonal close-packed layer
A (Fig. 3.32) by placing each sphere in contact with six others. A second similar
layer B may be added by placing each sphere of B in contact with three spheres of the
bottom layer, at positions B in Fig. 3.32. This arrangement has the lowest energy and
is therefore stable. A third layer may be added in two different ways. We obtain the
cubic structure if the spheres of the third layer C are added over the holes in the first
layer A that are not occupied by B, as in Fig. 3.32. We obtain the hexagonal close-
packed structure (Fig. 3.33) when the spheres in the third layer are placed directly
over the centers of the spheres in the first layer, thus replicating layer A. The Bravais
lattice is hexagonal. The point group of the hexagonal close-packed structure is D6h.
The fraction of the total volume occupied by the spheres is 0.74 for both structures
(see Problems).

Fig. 3.32 The closed-packed array of spheres. Note the three different possible positions, A, B,
and C for the successive layers. The most space-efficient way to arrange identical spheres or atoms
in a plane is to first place each sphere in contact with six others in that plane (positions A). The most
stable way to stack a second layer of such spheres is by placing each one of them in contact with
three spheres of the bottom layer (positions B). The third stable layer can then either be such that the
spheres occupy positions above A or C

c

a

A

A

B

Fig. 3.33 The hexagonal
close-packed (hcp) structure.
This Bravais lattice of this
structure is hexagonal, with a
basis of two identical atoms.
It is constructed by stacking
layers in the ABABAB. . .
sequence. The lattice
parameters a and c are
indicated
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Zinc, magnesium, and low-temperature form of titanium have the hcp structure.
The ratio c/a for ideal hexagonal close-packed structure in Fig. 3.33 is 3.633. The
number of nearest-neighbor atoms is 12 for hcp structures. Table 3.4 shows the c/a
parameter for different hexagonal crystals.

3.9.6 Wurtzite Structure

A few III–V and several II–VI semiconductor compounds have the wurtzite structure
shown in Fig. 3.34.

This structure consists of two interpenetrating hexagonal close-packed lattices,
each with different atoms, ideally displaced from each other by 3/8c along the z-axis.
There is no inversion symmetry in this crystal, and polarity effects are observed
along the z-axis. The Bravais lattice is hexagonal with a basis of four atoms, two of
each kind. The point group of the wurtzite structure is C6v.

Table 3.4 c/a parameter
for various hexagonal
crystals

Crystal c/a

Be 1.581

Mg 1.623

Ti 1.586

Zn 1.861

Cd 1.886

Co 1.622

Y 1.570

Zr 1.594

Gd 1.592

c

a

c8
3

a3

a2
a1

c

120º

Fig. 3.34 The wurtzite
structure consists of two
interpenetrating hcp
structures, each with a
different atom, shifted along
the c-direction. The bonds
between atoms and the
hexagonal symmetry are
shown
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3.9.7 Packing Factor

The packing factor is the maximum proportion of the available volume in a unit cell
that can be filled with hard spheres. Let us illustrate this concept with a few
examples.

For a simple cubic lattice, the center-to-center distance between the nearest atoms
is a. So the maximum radius of the atom is a=2. Since there is only one atom point per

cubic unit cell in this case, the packing factor is
4
3π

a
2ð Þ3

a3 ¼ 0:52.
The following two examples illustrate the determination of the packing factor for

the other two cubic lattices.

Example

Q Determine the packing factor for a body-centered cubic lattice.
A Let us consider the bcc lattice shown in the figure below and an atom located

at one corner of the cubic unit cell. Its nearest neighbor is an atom which is

located at the center of the cubic unit cell and which is at a distance of
ffiffi
3

p
2 a

where a is the side of the cube. The maximum radius r for the atoms is such that

these two atoms touch and therefore 2r ¼
ffiffi
3

p
2 a. There are two atoms in a bcc

cubic unit cell, so the maximum volume filled by the spheres is 2� 4π
3

ffiffi
3

p
4 a

� �3
.

The packing factor is calculated by taking the ratio of the total sphere volume to

that of the unit cell and yields
2�4π

3

ffiffi
3

p
4 a

� �3

a3 ¼ π
ffiffi
3

p
8 ¼ 0:68.

2r
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Example

Q Determine the packing factor for a face-centered cubic lattice.
A Let us consider the fcc lattice shown in the figure below and an atom located at

one corner of the cubic unit cell. Its nearest neighbor is an atom which is located
at the center of an adjacent face of the cubic unit cell and which is at a distance

of
ffiffi
2

p
2 a where a is the side of the cube. The maximum radius r for the atoms is

such that these two atoms touch and therefore 2r ¼
ffiffi
2

p
2 a. There are four atoms

in a fcc cubic unit cell, so the maximum volume filled by the spheres is

4� 4π
3

ffiffi
2

p
4 a

� �3
. The packing factor is calculated by taking the ratio of the total

sphere volume to that of the unit cell and yields:
4�4

3π
ffiffi
2

p
4 a

� �3

a3 ¼ 0:7405.

2r

The diamond structure has the face-centered cubic structure with a basis of two
identical atoms. The packing factor of diamond structure is only 46 percent of that in
the fcc structure, so diamond structure is relatively empty (see Problems).

3.10 The Reciprocal Lattice

When we have a periodic system, one lattice point is equivalent to another lattice
point, so we expect a simple relation to exist between physical quantities at these
respective lattice points. Consider, for example, the local density of chargeρ

�
r
!�

. We
should expect this quantity to have the same periodicity as the lattice. But it is
mathematically known that any periodic function can be expanded into a Fourier
series. In a crystal lattice, all physical quantities have the periodicity of the lattice, in
all directions. Let us consider the above physical quantity ρ

�
r
!�

. From now, we will
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use a three-dimensional formalism. This function is periodic and can be expanded
into a Fourier series:

ρ
�
r
!� ¼

X

K
!

Ρ
�
K
!�

exp
�
i K
!
r
!� ð3:6Þ

where the vectorK
!
is used to index the summation and the Fourier coefficientsΡ

�
K
!�

.

This vector K
!
has the dimension of an inverse distance and, for a periodic function,

can take on discrete values in a three-dimensional sum. Let us now express that the
function ρ

�
r
!�

is periodic by calculating its value after displacement by a lattice

vector R
!
:

ρ
�
r
!� ¼ ρ

�
r
! þ R

!� ¼
X

K
!

Ρ
�
K
!�

exp i K
! �� r! þ R

!�h i
ð3:7Þ

which becomes

X

K
!

Ρ
�
K
!�

exp
�
i K
! � r!� ¼

X

K
!

Ρ
�
K
!�

exp i K
! �� r! þ R

!�h i
ð3:8Þ

has to be satisfied for any given function which is periodic with the periodicity of the
lattice. This can be satisfied if and only if

exp i K
! �� r! þ R

!�h i
¼ exp

�
i K
! � r!�

or

exp
�
i K
! � R!� ¼ 1 ð3:9Þ

for any lattice vector Eq. (3.9) is the major relation which allows us to introduce the

so-called reciprocal lattice which is spanned by the vectorsK
!
. What follows next is a

pure mathematical consequence of Eq. (3.9) which is equivalent to

K
! � R!¼ 2πm ð3:10Þ

where m ¼ 0, �1, �2,. . . is an integer. Using the expression for R
!
from Eq. (3.1) of

Chap. 3, we obtain

�
K
! � a!�n1 þ

�
K
! � b

!�
n2 þ

�
K
! � c!�n3 ¼ 2πm ð3:11Þ
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where n1, n2, and n3 are arbitrary integers which come from the choice of the vector

R
!
. Because the sum of three terms is an integer if and only if each term itself is

integer leads us to

K
! � a!¼ 2πh1
K
! � b

!
¼ 2πh2

K
! � c!¼ 2πh3

8><
>:

with h1,2, 3 ¼ 0;�1;�2, . . . ð3:12Þ

Here, h1, 2, 3 is not related to Planck’s constant.

Let us now define three basis vectors (A
!
, B
!
, C
!
) in order to expressK

!
in the same

way as we did it for real lattice vectors in Eq. (3.12) of Chap. 3. These basis vectors

define what we call the reciprocal lattice. Any reciprocal lattice vector K
!
can thus be

represented as

K
!¼ h1 A

!
þh2 B

! þh3 C
!
; ð3:13Þ

From (3.12) and (3.11), we have

�
A
!
� a!�h1 þ

�
B
! � a!�h2 þ

�
C
! � a!�h3 ¼ 2πh1�

A
!
� b
!�

h1 þ
�
B
! � b

!�
h2 þ

�
C
! � b

!�
h3 ¼ 2πh2�

A
!
� c!�h1 þ

�
B
! � c!�h2 þ

�
C
! � c!�h3 ¼ 2πh3

8>><
>>:

ð3:14Þ

Equation (3.14) can be satisfied only when

A
!
� a!¼B

! � b
!
¼C

! � c!¼ 2π
and
A
!
� b
!
¼A

!
� c!¼ 0

B
! � a!¼B

! � c!¼ 0

C
! � b

!
¼C

! � a!¼ 0

8>>>>><
>>>>>:

ð3:15Þ

Equation (3.15) defines the relation between the direct (a
!
, b
!
, c
!
) and reciprocal

(A
!
, B
!
, C
!
) basis lattice vectors and gives the means to construct (A

!
, B
!
, C
!
) from (

a
!
, b
!
, c
!
):

3.10 The Reciprocal Lattice 81



A
!
¼ 2π

b
!
� c

!

a
! ��b! � c

!�

B
!¼ 2π

c
! � a

!

a
! ��b! � c

!�

C
!¼ 2π

a
! � b

!

a
! ��b! � c

!�

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:16Þ

These relations are a natural consequence of vector algebra in three dimensions.
The volumes that these basis vectors define in the real and reciprocal lattices satisfy
the relation (see Problems):

A
!
��B! � C

!� ¼ 8π3

a
! ��b! � c

!� ð3:17Þ

We note that the vectors of reciprocal space have the same dimensions as the
wavenumbers and momenta of electromagnetic waves. We also note the direct lattice
is the reciprocal of its own reciprocal lattice. The concept of reciprocal or momentum
space turns out to be extremely important for the classification of electron states in a
crystal in quantum theory.

3.11 The Brillouin Zone

In the reciprocal lattice, we can construct unit cells as we did for the real lattice
earlier in this chapter. The construction of the Wigner-Seitz cell in the reciprocal
lattice follows the same rules as in the real lattice and gives the smallest unit cell in k-
space called the “first Brillouin zone” and shown in Fig. 3.10. Draw the perpendicu-
lar bisector planes of the translation vectors from the chosen center to the nearest
equivalent sites in the reciprocal lattice, and you have formed the first Brillouin zone.

3.12 Summary

In this chapter, the structure of crystals has been described. The concepts of Bravais
lattice, crystal systems, unit cell, point groups, space groups, Miller indices, and
packing factor have been introduced. The symmetry properties of crystals have been
discussed. The most common crystal structures for semiconductors have been
described. We have also introduced the concept of the reciprocal lattice. We have

shown that for every periodic lattice in real space R
!
, it is possible to construct a
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periodic reciprocal lattice in K
!
space. The reciprocal lattice is the lattice in so-called

momentum space. The Wigner Seitz cell of the reciprocal lattice is called the first
Brillouin zone.

Problems

1. Figure 3.6 illustrates the definition of the angles and unit cell dimensions of the
crystalline material. If a unit cell has a characteristic of a ¼ b ¼ c and
α ¼ β ¼ γ ¼ 90�, it forms a cubic crystal system, which is the case of Si and
GaAs.
(a) How many Bravais lattices are classified in the cubic system?
(b) Draw simple three-dimensional unit cells for each Bravais lattice in the

cubic system.
(c) How many lattice points are contained in the unit cell for each Bravais

lattice in the cubic system?
2. Draw the four Bravais lattices in orthorhombic lattice system.
3. Show that the C5 group is not a crystal point group. In other words, show that, in

crystallography, a rotation about an axis and through an angle θ ¼ 2π
5 cannot be a

crystal symmetry operation.
4. Determine if the plane (111) is parallel to the following directions:

[100],
	
�211



, and

	
�1 �10



.

5. For cesium chloride, take the fundamental lattice vectors to be a
!¼ a x

!
, b
!
¼ a y

!
,

and c
!¼ a

�
x
! þ y

! þ z
!�

. Describe the parallelepiped unit cell and find the cell
volume.

6. GaAs is a typical semiconductor compound that has the zinc blende structure.
(a) Draw a cubic unit cell for the zinc blende structure showing the positions of

Ga and As atoms.
(b) Make a drawing showing the in-plane crystallographic directions and the

positions of the atoms for the (111) lattice plane.
(c) Repeat for the (100) plane.
(d) Calculate the surface density of atoms in (100) plane.

7. (a) What are the interplanar spacings d for the (100), (110), and (111) planes of
Al (a ¼ 4.05 Å)?
(b) What are the Miller indices of a plane that intercepts the x-axis at a, the y-axis
at 2a, and the z-axis at 2a?

8. Show that the c/a ratio for an ideal hexagonal close-packed structure is (8/3)1/2

¼ 1.633. If c/a is significantly larger than this value, the crystal structure may be
thought of as composed of planes of closely packed atoms, the planes being
loosely stacked.

9. Show that the packing factor in a hexagonal close-packed structure is 0.74.
10. Show that the packing factor for the diamond structure is 46% of that in the fcc

structure.
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11. Let (a
!
, b
!
, c
!
) be a basis lattice vectors for a direct lattice and (A

!
, B
!
, C
!
) be

the basis lattice vectors for the reciprocal lattice defined by Eq. (3.16). Prove that

the volume defined by these vectors is given by A
!
��B! � C

!� ¼ 8π3

a
! ��b! � c

!�.
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Introduction to Quantum Mechanics 4

4.1 The Quantum Concepts

In Chapter 1 we saw that classical mechanics was incapable of explaining the optical
spectra emitted by atoms or even the existence of atoms. Bohr developed a model for
the atom of hydrogen by assuming the quantization of the angular momentum, which
was an introduction to wave or quantum mechanics. Quantum mechanics is a more
precise approach to describe nearly all physical phenomena which reduces to
classical mechanics in the limit where the masses and energies of the particles are
large or macroscopic.

In this section, we will illustrate the success of quantum mechanics through the
historically important examples of blackbody radiation, wave-particle duality, the
photoelectric effect, and the Davisson and Germer experiment.

4.1.1 Blackbody Radiation

As introduced in Chap. 1, a blackbody is an ideal source of electromagnetic radia-
tion, and the radiated power dependence was depicted as a function of wavelength in
Fig. 1.3 for several temperatures of the blackbody.

When the temperature of the body is at or below room temperature, the radiation
is mostly in the infrared spectral region, i.e., not detectable by the human eye. When
the temperature is raised, the emission power increases, and its peak shifts toward
shorter wavelengths as shown in Fig. 1.3. Several attempts to explain this observed
blackbody spectrum were made using classical mechanics in the latter half of the
nineteenth century, and one of the most successful ones was proposed by Rayleigh
and Jeans.

In their classical model, a solid at thermal equilibrium is seen as consisting of
vibrating atoms which are considered harmonic electric oscillators which generate
standing waves, or modes, through reflections within the cavity. A continuous
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spectrum of vibrational mode frequencies ν ¼ ω/2π ¼ c/λ where c denotes the
velocity of light and λ the wavelength of the oscillations. These atomic vibrations
cause the emission of electromagnetic radiation in a continuous frequency range too.
To determine the power radiated, one has to first determine the energy distribution
for each frequency. According to the classical law of equipartition of energy, the
average energy per degree of freedom for a blackbody in equilibrium is equal to kbT,
where kb is the Boltzmann constant (kb ¼ 8.614 � 10�5 eV�K�1) and T the absolute
temperature in degrees K. The number of modes per unit volume is the number of
degrees of freedom for an electromagnetic radiation.

To calculate this number, a simple model can be used which involves propagating
waves in a rectangular box. Only certain frequencies of waves are allowed as a result
of boundary conditions at the limits of the box. In addition, there are two possible
polarization directions for the waves, corresponding to what are called “TE” and
“TM” propagation modes. The total number of modes per unit volume and per unit
frequency interval is 8πν2

c3 . Therefore, the distribution of energy radiated by a
blackbody per unit volume and per unit frequency interval is u ν; Tð Þ ¼ 8πν2

c3 kbT .
Considering that this energy is radiated at the speed of light, and by expressing this
distribution in terms of wavelength, we get the distribution of power radiated per unit
area and per unit wavelength interval as w λ; Tð Þ ¼ 8πc

λ4
kbT . Both expressions u(ν,T )

and w(λ,T ) are called the Rayleigh-Jeans law. This law is illustrated by a dashed line
in Fig. 1.3 for T¼ 2000 K. It shows that this classical theory was in reasonably good
agreement with experimental observations at longer wavelengths. However, over the
short-wavelength portion of the spectrum, there was significant divergence between
experiment and theory. This is because we assumed the classical law of equipartition
of energy was valid at all wavelengths. This discrepancy came to be known as the
“ultraviolet catastrophe” because the integration of the Rayleigh-Jeans law over all
frequencies or wavelengths would theoretically lead to an infinite amount of radiated
power.

These experimental observations could therefore not be explained until 1901,
when Max Planck provided a detailed theoretical explanation of the observed
blackbody spectrum by introducing the hypothesis that the atoms vibrating at a
frequency v in a material could only radiate or absorb energy in discrete or quantized
packages proportional to the frequency:

En ¼ nhν ¼ nhω n ¼ 0, 1, 2, . . . ð4:1Þ
where n is an integer used to express the quantization, h is Planck’s constant, and
ħ ¼ h/2π is the reduced Planck’s constant, obtained by matching theory to experi-
ment and is called Planck’s constant. This also means that the energy associated
with each mode of the radiated electromagnetic field at a frequency ν did not vary
continuously (with an average value kT) but was an integral multiple of hν. Planck
then made use of the Boltzmann probability distribution to calculate the average
energy associated with each frequency mode. This Boltzmann distribution states
that the probability for a system in equilibrium at temperature T to have an energy
E is proportional to e�E/kT and can be expressed as:
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P Enð Þ ¼ e�En=kbTP
E
e�E=kbT

ð4:2aÞ

and is normalized because the total probability after summation over all possible
values of E has to be unity. Taking into account the quantization condition in
Eq. (4.1), the average energy <E> associated with each frequency mode ν can thus
be written as:

Eh i ¼
X
En

EnP Enð Þ ¼
P1
n¼0

nhνð Þe�nhν=kbT

P1
n¼0

e�nhν=kbT

¼ hν

ehν=kT � 1
: ð4:2bÞ

Therefore, after multiplying by the number of modes per unit volume and
frequency 8πν2

c3 , we obtain the distribution of energy radiated by a blackbody at
frequency of ν in this model:

u ν; Tð Þ ¼ 8πν2

c3
hν

ehν=kbT � 1
ð4:2cÞ

This expression is found to be in good agreement with experimental observations.
Actually, there is apparently no other physical law which fits experiments with a
higher degree of precision. In the limit of small frequencies, or long wavelengths,
this relation simplifies into the Rayleigh-Jeans law because we can make the
approximation:

ehν=kT � 1 � hν kb
T=

We can thus see that the classical equipartition law is no longer valid whenever
the frequency is not small compared with kbT/h. Moreover, this expression shows
that high-frequency modes have very small average energy.

This example of the blackbody radiation already shows that, for atomic dimen-
sion systems, the classical view which always allows a continuum of energies is
incorrect. Discrete steps in energy, or energy quantization, must occur and is a
central feature of the quantum approach to real-life phenomena.

4.1.2 The Photoelectric Effect

In 1902, Philipp Lenard studied the emission of electrons from a metal under
illumination. And, in particular, he studied how their energy varied with the intensity
and the frequency of the light.

A simplified setup of his experiment is schematically depicted in Fig. 4.1. It
involved a chamber under vacuum, two parallel metal plates on which a voltage was
applied. Light was shone onto a metal plate. The electrons in it were then excited by
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this incident light and could gain enough energy to leave the metal surface into the
vacuum. This was called the photoelectric effect. These electrons can then be
accelerated by the electric field between the metal plate and reach the opposite
plate, thus leading to an electrical current that can be measured using a sensitive
ammeter.

It was known at the time that there existed a minimum energy, called the metal
work function and denoted byΦm, which was required to have an electron break free
from a given metal, as illustrated in Fig. 4.2. One had to give an energy E >Φm to an
electron in order to enable it to escape the attraction of the metal ions.

Example
Q: In the photoelectric effect, the stopping potential V0, which is the potential

required to bring the emitted photoelectrons to rest, can be experimentally
determined. This potential is related to the work function Φm through
qV0 ¼ hc

λ �Φm, where λ is the wavelength of the incident photon. For a photon
with a wavelength of 2263 Å, incident on the surface of lithium, we experi-
mentally find V0 ¼ 3.00 V. Determine the work function of Li.

A: Using the above formula, we get:

−
+

I

V

vacuum

Metal
plates

Light

ammeter

Fig. 4.1 Simplified experimental setup used by Lenard. A chamber in vacuum contains two
parallel metal plates on which a voltage is applied. Light shining onto a metal plate gives enough
energy to the electrons of the plate to make them leave the plate and be accelerated by the electric
field

free electrons

metal

E> FmE< Fm

Fm=metal work
function

Fig. 4.2 The work function
of a metal, denoted Φm, is the
minimum amount of energy
that an electron needs to
acquire to leave the metal
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Φm ¼ hc

λ
� qV0

¼ 6:62617 � 10�34
� �

2:99792� 108
� �

2263� 10�10 � 1:60218� 10�19
� �

3ð Þ
¼ 3:97� 10�19 J

¼ 2:48eV

As his light source, Lenard used a carbon-arc lamp emitting a broad range of
frequencies and was able to increase its total intensity a thousandfold. With such a
powerful arc lamp, it was then possible to obtain monochromatic light at various
arbitrary frequencies and each with reasonable power. Lenard could then investigate
the photoelectric effect when the frequency of the incident light was varied. To his
surprise, he found that below a certain frequency (i.e., certain color), no current
could be measured, suggesting that the electrons could not leave the metal any more
even when he increased the intensity of light by several orders of magnitude.

In 1905, Albert Einstein successfully interpreted Lenard’s results by simply
assuming that the incident light was composed of indivisible quanta or packets of
energy, each with an energy equal to hν where h is Planck’s constant and ν is a
frequency. He called each quantum a photon. The electrons in the metal could then
receive an energy E equal to that of a quantum of light or a photon, i.e., E ¼ hν.
Therefore, if the frequency ν was too low, such that E¼ hν was smaller thanΦm, the
electrons would not have enough energy to escape the metal plate, independently of
how high the intensity of light was, as shown in Fig. 4.3. However, if the frequency
was high enough, such that E ¼ hν was higher than Φm, electrons could escape the
metal. Albert Einstein won the Nobel Prize in Physics in 1921 for his work on the
photoelectric effect.

It is interesting to know that an American experimental physicist, Robert
Millikan, who did not accept Einstein’s theory, worked for 10 years to show its
failure. In spite of all his efforts, he found a rather disappointing result as he
ironically confirmed Einstein’s theory by measuring Planck’s constant to within
0.5%. One consolation was that he did get awarded the Nobel Prize in Physics in
1923 for his experiments!

Metal work
function hn

Fm

E=hn<Fm

E=hn >Fm

metal plate

Fig. 4.3 Schematic diagram of the escape mechanism of an electron in the metal plate receiving a
photon with energy hν. If the photon energy is lower than the work function, the electron does not
escape. If the photon energy is higher than the work function, the electron receives enough energy to
reach the vacuum level and leave the metal

4.1 The Quantum Concepts 89



4.1.3 Wave-Particle Duality

The previous discussions on the Bohr atom in Chap. 1, the blackbody radiation and
the photoelectric effect, led to the conclusion that the electromagnetic radiation has a
quantum nature because it exhibits particle-like properties.

In 1925, Louis de Broglie conjectured that, since the electromagnetic radiation
had particle-like properties, particles (e.g., electrons) should have wave-like
properties as well. This was called the wave-particle duality. He postulated that a
particle with a momentum p can be viewed as a wave with a wavelength given by:

λ ¼ h

p
ð4:3Þ

This relation establishes the relationship between a particle and a wave in nature.
This concept, as well as the others introduced in the previous examples, clearly
proves that classical mechanics was limited and that a new theory was required
which would take into account the quantum structure of matter, electromagnetic
fields, and the wave-particle duality. In 1927 such a theory was created and called
wave or quantum mechanics (Liboff 1998; Davydov 1965).

4.1.4 The Davisson-Germer Experiment

The first complete and convincing evidence of de Broglie’s hypothesis came from an
experiment that Clinton Davisson and Lester Germer did at the Bell Laboratories in
1926. Using an electron gun, they directed beams of electrons onto a nickel crystal
plate from where they were then reflected, as schematically depicted in Fig. 4.4.
A sensitive screen, such as a photographic film, was put above the nickel target to get
information on the directions in which the electrons reflected most. On it, they
observed concentric circular rings, showing that the electrons were more likely to
appear at certain angles than others. This was similar to a diffraction pattern and
confirmed that these electrons had a wave-like behavior.

Electron Gun

θ1 θ2

Sensitive screen

Nickel Plate

Fig. 4.4 Schematic of the experimental setup in the Davisson-Germer experiment. A beam of
electrons is directed on a nickel plate from which the electrons are reflected. They then hit a
sensitive screen and create a ring pattern
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Analyzing the resulting pattern and the geometry of the experiment, in particular
the angles of incidence and reflection, they found that the positions of the rings
corresponded to angles such that two waves reflected from different atomic layers in
the crystal were in phase, i.e., had their phases different by an integer multiple of
360�, as shown in Fig. 4.5a. The darkest areas corresponded to the situations when
the reflected waves were out of phase, i.e., their phases were different by an odd
integer multiple of 180�, thus canceling each other, as shown in Fig. 4.5b. By
quantifying the positions of the rings, Davisson and Germer were able to confirm
the de Broglie relation given in Eq. (4.3).

4.2 Elements of Quantum Mechanics

In this section, the essential quantum mechanics formalism and postulates and their
mathematical treatment will be introduced. Their purpose will be to provide a
general understanding of the behavior of electrons and energy band structures in
solids and semiconductors, as discussed in subsequent sections.

4.2.1 Basic Formalism

The contradictions encountered when applying classical mechanics and electrody-
namics to atomic processes, e.g., processes involving particles of small masses and
at small separation from other particles, could only be resolved through a fundamen-
tal modification of basic physical concepts. The formalism which enabled the
combining of the particle-like and wave-like properties of matter was created in
1920s by Heisenberg and Schrödinger and was called quantum mechanics, whose
basic formalism and postulates we will now review.
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Fig. 4.5 (a) Constructive diffraction and (b) destructive diffraction condition for the waves
reflected from a crystal surface. In the constructive diffraction situation, 2d sin (θ) ¼ nλ, where d
is the distance between two planes, λ, θ are wavelength and angle to the normal, respectively, n is an
integer, the waves are in phase, whereas in the destructive diffraction configuration, the waves have
opposite phases
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1. The state of a system can be described by a definite (in general complex)
mathematical function Ψ(x, y, z, t), called the wavefunction of the system, which
depends on the set of coordinates (x, y, z) of the quantum system and time t.

2. The wavefunction is a solution of the time-dependent Schrödinger equation (SE):

ih
∂Ψ x; y; z; tð Þ

∂t
¼ HΨ x; y; z; tð Þ ð4:4aÞ

where the operator H is called the “Hamiltonian” of the system and represents the
total energy of the system in the form of mathematical operators. The sum of the
kinetic and potential energy operator which make up the Hamiltonian are given by:

H ¼ � h2

2m
∇2 þ U x; y; z; tð Þ ð4:4bÞ

Note that the first term represents the kinetic energy of the particle and is a differen-
tial operator which acts on the wavefunction. The second term, the potential
energy, keeps its classical form. One can think of the action of H on the
wavefunction to be one of “measurement” of the total energy of the system.

3. The kinetic energy term is written in terms of the operator∇2 which is called the
Laplacian and is defined in orthonormal coordinates in three dimensions by:

∇2Ψ x; y; zð Þ ¼ ∂2Ψ x; y; zð Þ
∂x2

þ ∂2Ψ x; y; zð Þ
∂y2

þ ∂2Ψ x; y; zð Þ
∂z2

ð4:4cÞ

U(x,y,z,t) is the potential energy of the system considered, h is Planck’s constant, and
i is the complex number such that i2 ¼ � 1.

The next principle of quantum (SE). Having solved the SE and found the
wavefunctions, we have the following properties:

4. The probability that a physical measurement will result in values of the system
coordinates in a volume dxdydz around (x, y, z) at a time t is given by |Ψ(x, y, z, t)|2

dxdydz.
5. The sum of the probabilities of all possible values of spatial coordinates of the

system must be, by definition, equal to unity:Z
Ψ x; y; z; tð Þj j2dxdydz ¼ 1 ð4:5Þ

This equation is the normalization condition for the wavefunction.
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4.2.2 General Properties of Wavefunctions and the Schrödinger
Equation

The wavefunctions solution of the Schrödinger equation must satisfy a few
properties, most of which are direct consequences of the mathematical formalism
from which such functions are constructed.

The main property which will be used in the rest of the text is that the
wavefunction and its first derivative must be finite, continuous, and single-valued
in all space even if the system under consideration contains a surface or interface
where the potential U(x, y, z) has a finite discontinuity. But, in the case when the
potential becomes infinite beyond this surface, the continuity of the derivative of the
wavefunction does not hold anymore. This means that a particle cannot penetrate
into a region where an infinite potential exists and therefore that its wavefunction
becomes zero there.

Note In classical physics the state of a system of particles is known when at any
given time “t”we know all the spatial coordinates of the particles {ri(t)} and all their
momenta {pi(t)}. We can predict completely what is going to happen next when we
know all the forces acting on the particles because we know the particles must obey
Newton’s laws. In principle we can therefore, with the knowledge of an initial state
at time t¼ 0, compute and predict the exact trajectories that the particles will follow
in space and know the momenta at each time. Now consider the difference to
quantum, mechanics. In quantum mechanics, all we can possibly know about the
system is its wavefunctionΨ(x, y, z, t) which is obtainable by solving the Schrödinger
equation (SE) given by Eq. (4.4a). Solving the SE means solving a differential
equation with a given initial condition and only allowing the solutions which satisfy
the differentiability and continuity conditions mentioned above. Now let us consider
the next set of principles.

Physical Observables and Measurement Introduction
The next principal of quantum mechanics is that for any physical variable, for
example, position, momentum energy, etc., one can associate an operator f which
“acts” on a wavefunction, i.e., differentiates, integrates, or simply multiplies it with
another function. This operator represents a physical observable. It is like an act of
measurement on the system. The mathematical operator in quantum mechanics
which represents a physical observable is known and has been extracted by using
a procedure which we do not need to discuss at this stage. The most important ones
are listed in Table 4.1.

Table 4.1 Examples of common physical quantities and their associated operators

Physical quantity Operator Expectation value

x, y, z (coordinates) x, y, z <x > ¼ R
Ψ∗xΨdxdydz

px, py, pz (momentum) h
i
∂
∂x,

h
i
∂
∂y,

h
i
∂
∂z < px >¼ R Ψ∗h

i
∂Ψ
∂x dxdydz

E (energy) ih∂
∂t < E >¼ R Ψ∗ih∂Ψ∂t dxdydz
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Note In order to proceed further, we are first going to consider situations in which
the Hamiltonian of the system does not depend on time. This is the most common
situation encountered in practice. It is the situation where we have a closed system
and the total energy is conserved. Here we will learn how to extract further
information from the solution of the Schrödinger equation and then proceed to
some practical examples. At a later stage in Chap. 10, we will also consider time-
dependent perturbations and return to consider the solutions of the time-dependent
Schrödinger equation.

4.2.3 The Time-Independent Schrödinger Equation

A particular and important situation for the Schrödinger equation is that for a closed
system in a time-independent external field. Then, the right-hand side of Eq. (4.4a)
does not contain time explicitly. In this case, the states of the system which are
described by the wavefunction Ψ(x, y, z, t) are called stationary states, and the total
energy of the system is conserved (in time).

Let us now operate on the wavefunction with the energy operator expressed in
terms of the time derivative. The action of ih∂

∂t on the wavefunction is like asking the
question what is the energy of the system? Since we are assuming that energy is a
constant, we find that the following relation must be satisfied:

ih
∂Ψ x; y; z; tð Þ

∂t
¼ EΨ x; y; z; tð Þ ð4:6Þ

But mathematically this means that the wavefunction Ψ(x, y, z, t) must be a
product of a function φ(x, y, z) which solely depends on coordinates and an expo-
nential function which depends only on time, such that:

Ψ x; y; z; tð Þ ¼ φ x; y; zð Þexp � i

h
Et

� �
ð4:7Þ

This relation follows also directly from the theory of differential equations when

the operator H
_

is independent of time. So inserting this expression into the
Schrödinger equation in Eq. (4.4a) and eliminating the exponential term on both
sides of the equation, we obtain:

� h2

2m
∇2φ x; y; zð Þ þ U x; y; zð Þφ x; y; zð Þ ¼ Eϕ x; y; zð Þ ð4:8Þ

which can be rewritten more concisely as:

H
_
ϕn ¼ Enϕn ð4:9Þ

This last expression is called the time-independent Schrödinger equation. The
label “n” denotes the fact that the differential equation can have a spectrum of
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solutions each corresponding to an allowed energy state of the system En with its
corresponding wavefunction ϕn. When we know all the wavefunctions ϕn, we also
know all the possible allowed energy levels of the system. Now we can say that
when we measure the energy of the system, we must find the system in one of these
eigenstates. We note that when the system is in a stationary state, the time depen-
dence is only a phase factor that means it does not have any effect of the probability
distribution. The spatial density is not changing or evolving in time; this is what one
would expect.

In the time-independent picture, the total energy operator isH
_
which is also called

the Hamiltonian of the system. Even though the total energy of the system does not
change with time, the system can be in many different stationary energy states, called

eigenstates ϕn. Each eigenstate has its own eigenvalue or energy En. The action ofH
_

is again like an act of measurement of the energy state of the system which can
produce, or one also sometimes say forces, the system to adopt an allowed energy
state. Once the system has been prepared in an eigenstate φn with eigenvalue En, it
will stay there forever unless it is disturbed by a perturbation which changes its total
energy. So in quantum mechanics, and this is indeed fascinating, time may elapse,
but the system stays in its eigenstate unless during this elapsing time, it also gets
disturbed. So in quantum mechanics, one can say that when one considers a closed
system in an eigenstate, time does not elapse for that eigenstate; it does not age,
unless something happens which can change the state of the system.

We shall come back to this again later when we consider the “Heisenberg
uncertainty principle.”

Physical Observables and Measurement
What we did with the energy operator, we can now do with other physical
observables. We first recall the following: for any physical variable, for example,
position, momentum energy, etc., one can associate an operator f which “acts” on a
wavefunction, i.e., differentiates, integrates, or simply multiplies it with another
function. Like H the Hamiltonian for the total energy, this operator represents a
physical observable. The most important ones are listed in Table 4.1. Every physical
observable, or what is now operator, has a set of eigenfunctions and corresponding

eigenvalues. Thus the operator f
_
, for example (hat denotes that it is an operator),

acting on the allowed wavefunction produces a number ff or “eigenvalue.” The
eigenvalue corresponds to a possible value of the observable, when the wavefunction
on which it operates is an “eigenstate” or also called “eigenfunction” of this operator,
in other words if it satisfies the so-called eigenvalue equation:

f
⇀
ϕ f ¼ f fϕ f ð4:10Þ

We say ϕf is an eigenfunction of f
_

and ff, the corresponding eigenvalue.
Eigenfunctions belonging to different eigenvalues are orthogonal; this means that
their inner product is equal to 1 when the wavefunctions belong to the same
eigenvalue, and 0 otherwise, or mathematically expressed:
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Z
dxdydzϕ∗

f 1
x; y; zð Þϕf 2

x; y; zð Þ ¼ δf 1f 2 ð4:11Þ

Another property is that eigenfunctions of physical observables form a complete
set. This means that they can be regarded as an infinite set of vectors which span the
so-called Hilbert space such that any function χ can be represented as a linear
combination of these eigenfunctions:

χ x; y; zð Þ ¼
X
f

a fϕ f x; y; zð Þ ð4:12aÞ

Operators which are physical observables must have the property that the expec-
tation value of the operator is a real number. Such operators are called Hermitian
operators. For Hermitian operators it follows that the so-called matrix element of an
operator f taken between two different eigenstates:

f ij ¼
Z

d r
! Φ∗

i fΦ j ð4:12bÞ

satisfies the relation fij ¼ ( fji)
∗.

What we said about physical observables includes of course also the total energy

operator H
_
. The eigenstates of energy φn form a complete set and are orthogonal.

Operators can have simultaneous eigenstates but not always. For example a free
particle moving unhindered in space has eigenstates of momentum and energy which
are the same functions. A particle moving in a box has energy eigenstates, but not
momentum eigenstates. We shall see this later more clearly when we solve these
problems explicitly.

Admixture of States
Let us imagine we have prepared the system in a stationary state or eigenstate. Then
at some time later, it is disturbed by a perturbation which constitutes necessarily a
time-dependent change, for example, a light pulse. The system no longer stays in its
eigenstate but now goes into an admixture of eigenstates such as:

Ψ x; y; z; tð Þ ¼
X
n

anφn x; y; zð Þ:exp � i

h
Ent

� �
ð4:13Þ

6. The system need not be in a pure state anymore or eigenstate of an observable; it
can be in a superposition of such states. In which case if one undertook a
measurement, one would find it in any one of the combination of such states as
in Eq. (4.13). This leads us to the next definition.

7. The mean value or expectation value of a physical quantity represented by an

operator f is what is measured experimentally, is denoted <f
_
>, and is given by:
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<f
_
>¼

Z
Ψ x; y; z; tð Þ∗fΨ x; y; z; tð Þdxdydz ð4:14Þ

where Ψ(x, y, z, t) is the wavefunction of the system considered and (. . .)* stands for
complex conjugate. Thus if:

Ψ x; y; z; tð Þ ¼ c f 1Ψ f 1 x; y; z; tð Þ þ c f 2Ψ f 2 x; y; z; tð Þ ð4:15Þ

the expectation value <f
_
> is given by:

<f
_
>¼ c f 1

�� ��2f 1 þ c f 2

�� ��2f 2 ð4:16Þ
Examples of physical quantities, their associated operators, and expectation

values are given in Table 4.1.
Thus one can interpret |cf1|

2, |cf2|
2 as the probability of finding the particle in the

state f1 and f2, respectively, and indeed we must also have |cf1|
2 + |cf2|

2 ¼ 1.
The problem one is confronted with after the system has been disturbed is to find

the coefficients an of admixtures in the sum given by Eq. (4.13). This is done by
solving the time-dependent Schrödinger equation in the presence of the disturbance
and with given initial conditions as shown in Chap. 10.

4.2.4 The Heisenberg Uncertainty Principle

This very important principle says that one of the consequences of quantum
mechanics is that one cannot have absolute knowledge of time and energy simulta-
neously and that this is not a theoretical abstraction but an experimental fact which is
verified every day. One of the Heisenberg uncertainty principles (HUP) is therefore:

ΔEΔt � h ð4:17Þ
In other words if one knows the energy E to great accuracy, then one has a large

uncertaintyΔt, in time t and vice versa. Let us immediately apply this to a stationary
state in energy, where clearly by definition, we know the energy level of the particle
with absolute accuracy. The meaning of Eq. (4.17) is that in this case, we can say
nothing about the time. Indeed the time dependence of the wavefunction as shown
by Eq. (4.7) is only a phase, which has no consequence on the probability distribu-
tion, for example. Indeed, as we pointed out before, when in an eigenstate of energy,
the particle does not evolve in time. It stays in that same energy level until it is
disturbed by some perturbation. The perturbation makes the Hamiltonian change in
time, and this allows the particle to admix with other eigenstates of different energy,
which is the same thing as saying that the system can now evolve in time. The HUP
also applies to momentum and space. If one knows the absolute position of a particle
in space, then one cannot say anything about its momentum and vice versa, so we
also have:
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ΔpμΔrμ � h ð4:18Þ

where pμ; rμ are x,y,z components of momentum space, respectively. We shall see
later in more detail that one of the consequences of this rule is that a particle which is
confined to a finite size box cannot have zero average momentum or kinetic energy.

4.2.5 The Dirac Notation

A convenient way of writing eigenstates and matrix elements or wavefunction
overlap integrals was invented by Dirac. Here are some examples of the Dirac
notation from which one can deduce the structure:

Ψn

�
r
!�! nj i

Ψn,k
�
r
!�! n; kj iZ1

�1
d r

! Ψ∗
n
bAΨm ¼ n bA��� ���mD E ð4:19Þ

In Eq. (4.19), the right-hand side |mi is called the “Ket vector.” The left-hand side
hn| is called the “Bra vector.” When one considers the expectation value of the
product of two operators, one can expand over a complete set of eigenstates and
write (m,l are arbitrary indices):

n A
_

B
_

���� ����n� �
¼
Z

Ψ∗
n A

_

B
_

Ψnd r
!¼

X
m

n A
_
���� ����m� �

m B
_
���� ����n� �

ð4:20Þ

X
m

mj i mh j ¼ 1 ð4:21Þ

The operator Pm ¼ jmihmj is called a projection operator because it projects a
wavefunction onto a “part” or component of that wavefunction, i.e., it tells us how
much of the state ϕm is in the wavefunction Ψ:

PmΨ ¼ mh j Ψj i mj i ¼ ϕm

�
r
!� Z

d r
!
ϕ∗
mΨ ð4:22Þ

Assuming, as must be generally true, that the wavefunction must be in a linear
combination of a complete set of basis states or eigenvectors:

Ψ ¼
X
l

al lj i ¼
X
l

alϕl ð4:23Þ
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Then it follows by substituting Eq. (4.23) into Eq. (4.22) using the orthogonality of
the ϕm, and taking the sum, that the total projection reproduces the wavefunction
again:X

m

PmΨ ¼
X
m

mh j Ψj i mj i ¼
X
m

ϕm

�
r
!� Z

d r
! Ψ∗ϕm ¼

X
m

amϕm ¼ Ψ ð4:24Þ

4.2.6 The Heisenberg Equation of Motion

There is a way of describing the relationship between operators and the time
dynamics in quantum mechanics which is very elegant and most useful and called
the equation of motion approach. To get there we first recall that the time-dependent
Schrödinger equation can be written as:

ih
∂Ψ x; y; z; tð Þ

∂t
¼H

_
Ψ x; y; z; tð Þ ð4:25Þ

And that the expectation value of an operator A
_
is by definition:

<A
_
>¼

Z
Ψ x; y; z; tð Þ∗ A

_
Ψ x; y; z; tð Þdxdydz ð4:26Þ

Now consider how this expectation value changes with time, i.e., its time
derivative:

d

dt
<A

_
>¼

Z
∂
∂t
Ψ x; y; z; tð Þ∗ A

_
Ψ x; y; z; tð Þdxdydz

þ R Ψ x; y; z; tð Þ∗ A
_∂Ψ

∂t
dxdydz

ð4:27Þ

The right-hand side is also in Dirac notation:

d <A
_
>

dt
¼ i

h
Ψh j H_A_� A

_
H
_

Ψj i ð4:28Þ

	
H
_
; A
_
 ¼H

_
A
_� A

_
H
_ ð4:29Þ

where the last line is, by definition, the commutator and written as:

d < A
⇀
>

dt
¼ i

h
	
H
_
; A
_
 ð4:30Þ

which is called the equation of motion of the operator A
_

and is equivalent to the
statement that if the operator commutes with the Hamiltonian, then it is a constant of
the motion, which means it does not depend on time. The statement is that the
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eigenstates of H
_
are also eigenstates of A

_
. One interesting and very important result

is, also, that one can define the time derivative of an operator by using the commu-
tator with the Hamiltonian. For example, the velocity operator is indeed:

dx
_

dt
¼ i

h
	
H
_
; x
_
 ð4:31Þ

For a free particle Hamiltonian, one can check that the right-hand side of
Eq. (4.31) is indeed �ih1

m
∂
∂x. Equation (4.31) is of great significance in theoretical

physics and has no direct analogy in classical physics; it only has a formal analogue
called the Poisson Bracket. In quantum mechanics, Eq. (4.31) is, in particular, a
statement that the velocity operator depends on the structure of the Hamiltonian and
is not always just given (x-direction) by the operator�ih1

m
∂
∂x. For example, when

there are spin-orbit forces or magnetic fields involved, then the velocity operator
involves also spin-dependent or magnetic field-dependent terms (we shall see this
later in Chap. 5 and also again in Chap. 12). This has no simple analogue in classical

physics. Processes or terms contained in H
_
which act on the position of the particle,

and therefore do not commute with it, do not just give new energy levels but also
give rise to new contributions to the definition of the velocity operator itself. Note
that using Eq. (4.31), we can also define acceleration operators, for example, ax
where ax ¼ i

h H; vx½ �. Equation (4.31) is the right and generally valid way of
identifying the velocity operator in quantum mechanics. We shall see later that in
magnetic field, the velocity operator is different from the free particle form given in
Table 4.1; it has an extra term which depends on the field.

4.3 Discussion

As a first summary we note that whereas in classical mechanics one can in principle
know energy, position, momentum, and time of a system simultaneously and with
absolute accuracy, the same is not true in quantum mechanics. In quantum mechan-
ics one can only at best know the wavefunctions which are the solutions of the
Schrödinger equation (SE). Everything that can be known about the system must be
deduced from the wavefunctions. This includes the probability distribution in space
and the expectation value of the physical observables. Thus in quantum mechanics,
the totality of solutions of the SE as we have seen form a complete set; in other
words, the system can under all circumstances be found in a linear superposition of
this complete set of eigenfunctions, each one belonging to an eigenvalue of energy.

Similarly the thermal average of a physical observable A
_
is given by the generalized

form of the Boltzmann distribution <A
_
>¼

P
n
e�En=kbTAnnP
n
e�En=kbT

which involves the

expectation values of the operator “A
_
” Ann over all the eigenstates of energy labeled

by n. Unlike in classical mechanics where physical variables are defined irrespective
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of the fact that they can be measured or not, in quantum mechanics, only measurable
parameters are meaningful. These are the physical observables, and each one has its
own operator representation. Measuring the value of a physical observable means
calculating the expectation value of the operator, given that one has the
wavefunction of the system. If the system is in a pure state, in other words in an
eigenstate, then the outcome of this operation, or act of measurement, is the
corresponding eigenvalue. In general, however, the system is in a superposition of
eigenstates, and the outcome of the measurement is the weighted superposition as
given by Eq. (4.13).

Note The notion that in quantum mechanics, and thus in natural sciences, only
measurable parameters are meaningful is also of deep philosophical significance,
and the student should think about it carefully.

4.4 Simple Quantum Mechanical Systems

4.4.1 Free Particle

The simplest example of solution of the Schrödinger equation is for a free particle of
massm and energy E, without external field and thus with a constant potential energy
which can then be chosen to be zero U(x, y, z) ¼ 0. For further simplicity, we can
restrict the mathematical treatment to the one-dimensional time-independent
Schrödinger equation. Eq. (4.8) can then be simplified to:

h2

2m
d2Ψ xð Þ
dx2

þ EΨ xð Þ ¼ 0 ð4:32Þ

The solution of Eq. (4.32) which happens to be an eigenstate of both energy and
momentum is:

Ψ xð Þ ¼ Aeikx ð4:33Þ
where A is a constant and k ¼ 2π

λ is the wavenumber. By applying the x-momentum
operator on the right-hand side of Eq. (4.33), one can see that this state corresponds
to a free particle state moving in the positive x-direction with momentum hk.
Replacing the expression of the wavefunctions into Eq. (4.32), one obtains:

� h2k2

2m
Ψ xð Þ þ EΨ xð Þ ¼ 0 ð4:34Þ

which has a nonzero solution for Ψ(x) only if:

E ¼ h2k2

2m
¼ h2k2

8π2m
ð4:35Þ

or conversely:
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k ¼
ffiffiffiffiffiffiffiffiffi
2mE

h2

r
ð4:36Þ

and is plotted in Fig. 4.6. The particle momentum, as defined also by the expectation
value, can be expressed in quantum mechanics as:

ph i ¼ hk ð4:37Þ

The energy of the free particle depends therefore on its momentum as E ¼ ph i2
2m ,

which is analogous to the case in classical mechanics. We can think of the system as
very large and of size 2 L {�L, L ), as L becomes infinite, so that the normalization

constant A is given by A ¼
ffiffiffiffi
1
2L

q
.

4.4.2 Degeneracy

The eigenstates with + and –k have the same energy; one says that the level k is
twofold degenerate. Whenever an energy eigenstate has more than one quantum
number which gives the same energy, one says that the level is degenerate.

4.4.3 Particle in a 1-D Box

Another simple and important illustration of quantum mechanics concepts can be
obtained by considering a particle whose motion is confined in space. For simplicity,
the analysis will be conducted in one dimension. It involves a particle of mass m and
an energy E which evolves in a potential U(x), shown in Fig. 4.7.

This potential can be mathematically expressed such that:

U xð Þ ¼ 1
U xð Þ ¼ 0

�
for x < 0andx > a
for 0 < x < a

ð4:38Þ

In such a potential, the properties of the wavefunctions and Schrödinger equation
lead us to:

k

E

0

Fig. 4.6 The energy-
momentum relationship for a
free particle has a parabolic
shape
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Ψ xð Þ ¼ 0
h2

2m
d2Ψ xð Þ
dx2

þ EΨ xð Þ ¼ 0

8<: for x < 0andx > a
for 0 < x < a

ð4:39Þ

which means that the solution Ψ(x) inside the box has the same expression as for the
free particle in Eq. (4.33) and can be rewritten as the sum of sin and cos functions for
simplification:

Ψ xð Þ ¼ A sin kxð Þ þ B cos kxð Þ ð4:40Þ
but with the boundary conditions:

Ψ 0ð Þ ¼ Ψ að Þ ¼ 0 ð4:41Þ
Expressing these conditions using Eq. (4.40), we get, with k ¼ 2π

λ :

B ¼ 0
A sin kað Þ ¼ 0

�
ð4:42Þ

Since the wavefunction cannot be identically zero in the entire space, the follow-
ing condition must be satisfied:

sin kað Þ ¼ 0 or k ¼ kn ¼ n
π

a
wheren is an integer equal to	 1, 	 2, . . .

Consequently, in contrast to the free particle case, not all values of the
wavenumber k are allowed, but only discrete values are allowed. n can also be
viewed as a quantum number of the system. Using Eq. (4.42), we can see that the
energy of a particle in a 1-D box is also quantized:

En ¼ n2
h2π2

2ma2
ð4:43Þ

One can see that when a ! 1, the spacing between the quantized energy levels
tends toward zero and a quasi-continuous energy spectrum is achieved, as for a free
particle. Nevertheless, the energy levels remain strictly discrete (this is why we talk

0 a

• •

x

EFig. 4.7 Potential energy
corresponding to the 1-D box
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about a “quasi”-continuous energy spectrum). Combining Eq. (4.40) and Eq. (4.42),
we can write the wavefunction as:

Ψn xð Þ ¼ A sin
nπx

a


 �
ð4:44Þ

The value of A can be computed by substituting this expression into the normali-
zation condition expressed in Eq. (4.5). One easily finds that:

A ¼
ffiffiffi
2
a

r
ð4:45Þ

so that the complete analytical expression of the wavefunction solution of the infinite
potential well problem is:

Ψn xð Þ ¼
ffiffiffi
2
a

r
sin

nπx

a


 �
ð4:46Þ

These functions consist of standing waves as depicted in Fig. 4.8b. One can think
of the particle in a 1-D box as bouncing on the walls of the box and the probability of
finding a particle at x in the box is shown in Fig. 4.8c.

* Unlike the free particle case, the eigenstates of energy are no longer eigenstates
of momentum. Operating with �ih ∂

∂x on Eq. (4.46) does not give back the same
function. Classically the particle is bouncing from the sides of the box and keeps on
changing its momentum. The expectation value of the momentum can be evaluated
as usual from Eq. (4.26) and can be verified to be zero.

Example

Q: Find the energy levels of an infinite quantum well that has a width of a¼ 25 Å.
A: The energy levels are given by the expression En ¼ n2 h2π2

2m0a2
, where m0 is the

free electron rest mass. This gives numerically:

En ¼ n2
1:05458� 10�34
� �2

π2

2 0:91095� 10�30
� �

25� 10�10
� �2

¼ 9:63n2 � 10�21 J

¼ 0:060n2 eV

4.4.4 Particle in a Finite Potential Well

The infinite-potential analysis conducted previously corresponds to an unrealistic
situation, and a finite potential well is more appropriate. Under these conditions, the
potential in the Schrödinger equation is shown in Fig. 4.9 and mathematically
expressed as:
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U xð Þ ¼ U0 > 0
U xð Þ ¼ 0

�
for x < 0andx > a
for 0 < x < a

ð4:47Þ

In such a potential, the properties of the wavefunctions and Schrödinger equation
lead us to:

Yn(x)

x = 0 x = a

2ma2
ћ2 p 2

16

2ma2
ћ2 p 2

9

2ma2
ћ2 p 2

4

2ma2
ћ2 p 2

1

n = 4

n = 3

n = 2

n = 1

En

x = 0 x = a

|Yn(x)| 2

a b c

Fig. 4.8 (a) Energy levels, (b) wavefunctions Ψ (x), and (c) |Ψ (x)|2 which is proportional to the
probability of finding a particle at a position x in a 1-D quantum box, for the first four allowed levels

0 a
x

E

U0

Fig. 4.9 Potential energy in a
finite potential well
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h2

2m
d2Ψ xð Þ
dx2

þ E � U0ð ÞΨ xð Þ ¼ 0 for x < 0andx > a

h2

2m
d2Ψ xð Þ
dx2

þ EΨ xð Þ ¼ 0 for 0 < x < a

8>>><>>>: ð4:48Þ

We see that two distinct cases must be considered when solving this system of
equations. The first one is when 0 < E < U0 and the other is when U0 < E.

In the case of 0 < E < U0, Eq. (4.48) can be rewritten as:

d2Ψ xð Þ
dx2

� α2Ψ xð Þ ¼ 0 for x < 0andx > a

d2Ψ xð Þ
dx2

þ k2Ψ xð Þ ¼ 0 for 0 < x < a

8>>><>>>: ð4:49Þ

by defining:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0 � Eð Þ

h2

r
k ¼

ffiffiffiffiffiffiffiffiffi
2mE

h2

r
8>><>>: ð4:50Þ

The general solution to Eq. (4.49) is then:

Ψ� xð Þ ¼ A�eαx þ B�e�αx for x < 0

Ψ0 xð Þ ¼ A0 sin kxð Þ þ B0 cos kxð Þ for 0 < x < a

Ψþ xð Þ ¼ Aþeαx þ Bþe�αx for x > a

8><>: ð4:51Þ

The boundary conditions include the finite nature of Ψ(x) for x ! 1 and x !
�1, the continuity of Ψ(x), and its first derivative dΨ xð Þ

dx at points x ¼ 0 and x ¼ a,
which can all be mathematically summarized as:

Ψ� �1ð Þ ¼ 0 Ψþ þ1ð Þ ¼ 0

Ψ� 0ð Þ ¼ Ψ0 0ð Þ Ψ0 að Þ ¼ Ψþ að Þ
dΨ�
dx

0ð Þ ¼ dΨ0

dx
0ð Þ dΨ0

dx
að Þ ¼ dΨþ

dx
að Þ

8>>><>>>: ð4:52Þ

Utilizing Eq. (4.52), we obtain:

Aþ ¼ B� ¼ 0

A� ¼ B0 A0 sin kað Þ þ B0 cos kað Þ ¼ Bþe�αa

αA� ¼ kA0 kA0 cos kað Þ � kB0 sin kað Þ ¼ �αBþe�αa

8><>: ð4:53Þ
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From these equations, we see that B0 can be easily expressed in terms of A0, and
we thus obtain two equations involving only B+:

A0 sin kað Þ þ k

α
cos kað Þ

� �
� Bþ e�αa½ � ¼ 0

A0 k cos kað Þ � k

α
sin kað Þ

� �� �
þ Bþ αe�αa½ � ¼ 0

8>>><>>>: ð4:54Þ

A nonzero solution for A0 and B+, and thus a nonzero wavefunction, is possible
only if:

k2 � α2
� �

sin kað Þ � 2αk cos kað Þ ¼ 0 ð4:55Þ
This condition can be rewritten into:

tan kað Þ ¼ 2αk

k2 � α2
ð4:56Þ

By introducing the constants:

α0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mU0

h2

r
ζ ¼ E

U0
0 < ζ < 1ð Þ

8>>><>>>: ð4:57Þ

we can first rewrite Eq. (4.50) as:

α ¼ α0
ffiffiffiffiffiffiffiffiffiffiffi
1� ζ

p
k ¼ α0

ffiffiffi
ζ

p
�

ð4:58Þ

and therefore:

tan aα0
ffiffiffi
ζ

p
 �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ 1� ζð Þp
2ζ � 1

ð4:59Þ

The only variable in Eq. (4.58) is ζ, and any value that satisfies leads to a value of
E, k, and α and thus a wavefunctionΨ(x) solution of the Schrödinger equation for the
finite potential well problem in the case 0 < E < U0.

Eq. (4.58) is easiest solved graphically. For example, Fig. 4.10 shows a plot of the
two functions on either side of Eq. (4.58). The intersection points correspond to
values of ζ which satisfy Eq. (4.58), and the number of intersection points is the
number of bound states (i.e., wavefunction and energy level) in the finite potential
well. In the example depicted in Fig. 4.10, there are two solutions. As the well
potential U0 increases, α0 increases as defined by Eq. (4.57), and thus, a higher
number of tangent function branches can be fitted for ζ between 0 and 1 (left-hand
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side of Eq. (4.59)). Consequently, the number of intersections solutions for ζ
increases too, which means that there are more bound states in the well. This is
schematically shown in Fig. 4.11. This can be understood intuitively because one
can “fit” more bound states as the depth of the well increases.

Because there is only a discrete number of values for ζ, there is also a discrete
number of energy values E, i.e., the energy levels are quantized similar to the infinite
well potential case. In addition, the quantized values of energy here are found to be

0.0 0.2 0.4
ς

0.6 0.8 1.0
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

solution

solution

LHS

RHS

Fig. 4.10 Graphical representations of the functions on the left-hand side (LHS) and right-hand
side (RHS) of Eq. (4.59), shown in dashed and solid lines. The intersections between these curves
yield the solutions of the finite potential well problem

Fig. 4.11 Quantized energy
levels in a finite potential well
(solid lines) as a function of
potential well depth. For
comparison, the energy levels
of the infinite well case are
shown in dashed lines for the
quantum well on the left
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lower than those in the infinite well potential case, as shown with the dashed lines in
Fig. 4.11.

In addition to the quantization of energy levels, there is another important
quantum concept illustrated by the finite potential well: the phenomenon of
tunneling. Indeed, a nonzero wavefunction exists in the regions x < 0 and x > a,
which means that the probability of finding a particle there is nonzero. In other
words, even if a particle has an energy E lower than the potential barrier U0, it has a
nonzero probability of being found beyond the barrier. This is schematically shown
in Fig. 4.12.

In the case of E > U0, the solution of Eq. (4.49) can again as before be written as a
sum of a cosine and sine term, for each of the regions defined by Eq. (4.51). Another
more elegant way to represent the solution is as a sum of two plane waves, one going
to the left and the other to the right. The two plane waves have different wavenumber
k. The boundary conditions include the continuity of the wavefunction Ψ(x) and its
first derivative dΨ xð Þ

dx at points x¼ 0 and x¼ a. Along with the normalization condition
expressed in Eq. (4.11), one can analytically determine the wavefunction. This
analysis would lead to the same result as for a free particle, that is, there is a
continuum of energy states E > U0 allowed.

4.5 Discussion

In this chapter, we have shown the limitations of classical mechanics and the success
of quantum mechanics. The basic concepts and formalism of quantum mechanics
have been exposed, including the quantized nature of the electromagnetic field, the
wave-particle duality, the probability of presence of a particle, the wavefunction, and
the Schrödinger equation. Simple quantum mechanical systems have been analyzed
to understand these novel major aspects associated with quantum mechanics have
been discussed, including the quantization of energy levels and momenta and
tunneling effects.

0 a
x

E

U0

Yn(x)  0¹

Fig. 4.12 Illustration of the tunneling effect in a finite potential well. The wavefunction is
nonzero outside the potential well. This means that there exists a nonzero probability of presence
for an electron outside the potential well is even when its energy E is lower than the potential barrier
height U0
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4.6 The Harmonic Oscillator

Recall from classical mechanics the motion of a particle moving in a
one-dimensional force field which is linear in the displacement x with force constant
K. Newton’s law gives:

m
d2x

dt2
¼ �Kx ð4:60Þ

We solve this differential equation by noting that the solution is a simple sine
function where:

x tð Þ ¼ A sinω0t ð4:61Þ

ω2
0 ¼

K

m
ð4:62Þ

The total energy is:

E ¼ 1
2
m _x 2 þ 1

2
Kx2 ð4:63Þ

and constitutes the classical Hamiltonian of the Harmonic oscillator problem. In
quantum mechanics we can rewrite the Hamiltonian by making use of the definition
of the momentum operator and keeping the potential energy as it is, to obtain:

H ¼ � h2

2m
∂2

∂x2
þ K

2
x2 ð4:64Þ

In order to obtain the energy levels and eigenfunctions of the harmonic oscillator,
we have to solve the Schrödinger equation:

HΨn ¼ � h2

2m
∂2

∂x2
þ K

2
x2

( )
Ψn ¼ EnΨn ð4:65Þ

For the mathematician this is a well-known differential equation which was
solved long before the ideas of quantum mechanics were developed. We shall
therefore here also treat it as a mathematical problem. More detailed developments
can be found in specialized textbooks. The solution of Eq. (4.65) can be written with
ς ¼ ffiffiffiffiffiffiffimω0

h

p
x:

Ψn ¼ AnHn ςð Þexp �ς2

2

� �
ð4:66Þ
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En ¼ hω0 nþ 1=2ð Þ ð4:67Þ
where n is an integer which starts at n¼ 0 and An is a normalization constant defined
by the requirement:

Z1
�1

dxΨ∗
n Ψn ¼ 1 ð4:68Þ

and where the Hn are the so-called Hermite polynomials which are tabulated. The
new variable is related to the spatial variable x by:

ς ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mω0

h
x

r
ð4:69Þ

The first few Hermite polynomials are given in Table 4.2 and plotted in Fig. 4.13.
It is interesting to note that in the lowest energy, the ground state is not zero but a
finite number given by hω0/2. This is called “the zero point vibrational energy.” It is
also a consequence of the Heisenberg uncertainty principle, because it is a manifes-
tation of the fact that when a particle is confined in space by a potential, then its
momentum and thus its energy can never be zero. This is one of the truly exciting
features of quantum mechanics. The exact solution of the harmonic oscillator
problem can be extended to the three-dimensional case without difficulty, provided
the potential V(x,y,z) is separable and a sum of the potentials in the three spatial
directions:

V x; y; zð Þ ¼ 1
2

Kxx
2 þ Kyy

2 þ Kzz
2

� � ð4:70Þ

4.7 The Hydrogen Atom

As another most important example of the exact solution of a physical problem in
quantum mechanics is the solution of the hydrogen atom problem, let us write down
the total Hamiltonian of the electron and the proton nucleus with masses m1 and m2,
respectively:

Table 4.2 The first few
wavefunctions and energies
of the harmonic oscillator
problem

n En Ψn

0 hω0/2 A0 exp [�ς2/2]

1 3hω0/2 A12ς exp [�ς2/2]

2 5hω0/2 A2. (4ς
2 � 2) exp [�ς2/2]

3 7hω0/2 A3(8ς
3 � 12ς) exp [�ς2/2]

4 9hω0/2 A4(16ς
4 � 48ς2 + 12) exp [�ς2/2]

5 11hω0/2 A5(32ς
5 � 160ς3 + 120ς) exp [�ς2/2]

An ¼ 2nn!
ffiffiffi
π

pð Þ�1=2
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H ¼ p21
2m1

þ p22
2m2

� q2

4πε0 r
!
1
� r

!
2

���� ���� ð4:71Þ

r1 and r2 and p1 and p2 are the spatial and momentum coordinates of electron and
proton, respectively. The proton mass is 1000 times heavier, and in any case it is
useful to work in the relative coordinate system. Using the quantum mechanics
operators, Eq. (4.71) becomes:

H ¼ � h2

2m1
∇2

1Ψ� h2

2m2
∇2

2Ψ� q2

4πε0 r
!
1
� r

!
2

���� ����Ψ ¼ EΨ: ð4:72Þ

where E is the total energy of the system. Now let us define the new center of mass
variables:
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Fig. 4.13 The first few normalized wavefunctions of the harmonic oscillator with n ¼ 0, n ¼ 1,
n ¼ 2, and n ¼ 3
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R
!¼ X; Y ; Z½ � ¼ m1r1

! þm2 r
!
2

m1 þ m2

r
!¼ r1

! �r2
!

ð4:73Þ

Now we can write for the partial derivatives:

∇1 ¼ ∇þ m

m2
∇R ð4:74Þ

∇2 ¼ �∇þ m

m1
∇R ð4:75Þ

∇R ¼ ∂
∂X

;
∂
∂Y

;
∂
∂Z

� �
ð4:76Þ

∇ ¼ ∂
∂x

;
∂
∂y

;
∂
∂z

� �
ð4:77Þ

m ¼ m1m2

m1 þ m2
ð4:78Þ

Substituting back in terms of the new coordinates into the original Schrödinger
equation, we have:

� h2

2 m1 þ m2ð Þ∇
2
RΨ� h2

2m
∇2Ψ� q2

4πε0 rj jΨ ¼ EΨ ð4:79Þ

Now in this form, we see that the differential equation is separable in terms of the
relative electron-nucleus, and center of mass motion of the atom, so that the total
wavefunction can be written mathematically as a product:

Ψ
�
R
!
; r
!� ¼ Φ

�
R
!�

ψ
�
r
!� ð4:80Þ

Substitute back into Eq. (4.79) and rewrite the total equation in terms of two
separate ones:

� h2

2 m1 þ m2ð Þ∇
2
RΦ
�
R
!� ¼ EcΦ

�
R
!� ð4:81Þ

� h2

2 mð Þ∇
2ψ
�
r
!�� q2

4πεε0r
Ψ
�
r
!� ¼ Erψ

�
r
!�

E ¼ Ec þ Er

ð4:82Þ

The center mass motion is free and can therefore be solved immediately:
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Φ
�
�R
� ¼ Cexp i=hð Þ P! � R!

h i
ð4:83Þ

where P is the center of mass momentum, C the normalization constant, and the
magnitude of P is related to the center of mass energy by the equation:

P
!��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 m1 þ m2ð ÞEc

p
ð4:84Þ

Now let us consider the relative motion of the electron around the nucleus. It is
convenient to work in atomic energy units in which the energy is measured in
multiples of the ionization energy of hydrogen which is the Rydberg unit
R ¼ mq4

2 4πε0ð Þ2h2 and we measure the coordinates, i.e., lengths, in units of the Bohr

radius aB ¼ h2 4πε0ð Þ
mq2 . When working in terms of these units, we can put h¼ 1; q2 ¼ 2;

m¼ /12 in Eq. (4.82) to find the dimensionless form (we have dropped the index r on
the energy for convenience):

∇2ψ
�
r
!�þ E þ 2

r

� �
Ψ
�
r
!� ¼ 0 ð4:85Þ

Equation (4.85) has the special feature that it is now an equation involving a
particle moving in a spherically symmetric potential. We can now solve it as a
mathematical problem by exploiting the spherical symmetry of the problem. In
doing so we will naturally encounter the concept of angular momentum.

4.7.1 Motion in a Spherically Symmetric Potential

Given the symmetry of the problem, it is convenient to work with spherical polar
coordinates. The differential Eq. (4.85) can be rewritten using:

x ¼ r sin θ cosϕ
y ¼ r sin θ sinϕ
z ¼ r cos θ

ð4:86Þ

and thus Eq. (4.85) becomes:

1
r2

∂
∂r

r2
∂ψ
∂r

� �
þ 1
r2

1
sin θ

∂
∂θ

sin θ
∂ψ
∂θ

� �
þ 1

sin 2θ

∂2ψ

∂ϕ2

(
þ E � 2

r

� ��
ψ r; θ;ϕð Þ ¼ 0

ð4:87Þ
Again, this equation has a separable structure, in which the angular part and the
radial part can be considered to vary independently so that:
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ψ ¼ R rð ÞY θ;ϕð Þ ð4:88Þ
Substituting Eq. (4.88) back into Eq. (4.87) allows us to rearrange the equation

into the form:

1
R

d

dr

�
r2
∂R
∂r

� �
þ E � 2

r

� �
r2R rð Þ

� �
¼ �1

Y

1
sin θ

∂
∂θ

sin θ
∂Y
∂θ

� �
þ 1

sin 2θ

∂2Y

∂ϕ2

( )
ð4:89Þ

The left-hand side (LHS) of this equation only depends on r, the right-hand side
(RHS), only on the angles. The equation can be satisfied if each side of it is equal to
the same constant C0, so that:

1
r2

d

dr
r2
dR

dr

� �
þ E � 2

r
� C0

r2

� �
R ¼ 0 ð4:90Þ

1
sin θ

∂
∂θ

sin θ
∂Y
∂θ

� �
þ 1

sin 2θ

∂2Y

∂ϕ2

( )
¼ �C0Y ð4:91Þ

The angular equation for Y can be further separated by writing:

Y θ;ϕð Þ ¼ P θð ÞΦ ϕð Þ ð4:92Þ
and thus by substituting into Eq. (4.90) and Eq. (4.91), we have:

1
P

sin θ
d

dθ
sin θ

dP

dθ

� �� �
þ C0 sin

2θ ¼ �1
Φ

d2Φ
dϕ2 ¼ m2 ð4:93Þ

In anticipation of the mathematical structure, we have introduced a separation
constant which we have called m2, and this allows us to rewrite the right-hand side of
Eq. (4.93) as:

d2Φ
dϕ2 þ m2Φ ¼ 0 ð4:94Þ

which has a simple solution of the form (normalization will be handled later):

Φ ¼ exp 	imϕ½ � ð4:95Þ
The LHS of Eq. (4.93) can be conveniently written in terms of a new variable

μ ¼ cos θ giving us:
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d

dμ
1� μ2
� �dP

dμ
þ C0 � m2

1� μ2

� �
P ¼ 0

� �
ð4:96Þ

This equation is well known to mathematicians, and, indeed, it is one of those
fortunate facts that they had looked at this type of equation long before they were of
relevance to quantum mechanics and studied them in detail. The scientific commu-
nity would be very much worse off if these solutions had not be found before, and we
had to compute the results numerically. In any case, as it happens, this equation is
known as Legendre’s equation, and it was discovered that it only had bounded and
differentiable solutions if the constant:

C0 ¼ l lþ 1ð Þ ð4:97Þ
where l is a positive integer and the values ofm are also restricted to the range {�l,�
l + 1, .. . . .l, l + 1}. Combining Eq. (4.97) and Eq. (4.96), we can now write down the
complete solution of the angular part of the Schrödinger equation as:

Y m
l θ;ϕð Þ ¼ Am

l e
imϕPm

l cos θð Þ ð4:98Þ
The Pl

m are called the Legendre polynomials, they are tabulated as special functions,
and Al

m are normalization constants which we will now give as the final form:

Y m
l θ;ϕð Þ ¼ �ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
4π

l� mð Þ!
lþ mð Þ!

s
eimϕPm

l cos θð Þ ð4:99Þ

In order to complete the solution of the hydrogen atom, we still need the solution
to the radial part R(r). But before doing that, let us first understand the significance of
the angular part.

4.7.2 Angular Momentum

When a system is rotationally invariant, we expect on grounds of symmetry theory,
and classical physics, that the particle moving in such a spherically symmetric field
should have a well-defined angular momentum. So we ask: What is the angular
momentum of an electron moving in the orbital of a hydrogen atom? In order to

answer this question, we first have to find the angular momentum operator L
_

in
quantum mechanics. We do this as with other operators, we use the classical
correspondence principle which says that if:

L
!
_

¼ r
! � p

!¼ � p
! � r

! ð4:100Þ
is the classical angular momentum, then the quantum mechanical operator is simply
given by replacing the r and p by the corresponding values based on quantum
mechanics. Thus, for example:
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Lz ¼ xpy � ypx ¼ x
h
i

∂
∂y

� �
� y

h
i

∂
∂x

� �
ð4:101Þ

Then we note that the angular momentum operators in all three directions
commute with the Hamiltonian of the hydrogen atom, i.e., the operators satisfy:

H; Lx½ � ¼ H; Ly
	 
 ¼ H; Lz½ � ¼ 0 ð4:102Þ

Equation (4.102) implies that eigenfunctions of H
_

are simultaneous eigen-

functions of L
_
. An electron which is in an eigenstate of the Hydrogen atom is also

in an eigenstate of angular momentum. In other words, the particle has both a well-
defined energy and angular momentum. So we ask the question what is the angular
momentum of the electron in the state Y m

l cos θð Þ since we know this to be an
eigenfunction? To answer this question, we make a measurement or apply the

operator L
_
on the wavefunction. It is convenient and easier to work with the square

of the angular momentum rather than the angular momentum itself. So we consider
the operator:

L2 ¼ L2x þ L2y þ L2z ð4:103Þ

and note that:

L2; Lx
	 
 ¼ L2; Ly

	 
 ¼ L2; Lz
	 
 ¼ 0 ð4:104Þ

Also we have that:

H; L2
	 
 ¼ 0 ð4:105Þ

It now follows that the energy eigenstates are simultaneous eigenstates of both Lz
and L2, but from vector algebra, it follows also that:

L2Ψ ¼ �h2
1

sin θ
∂
∂θ

sin θ
∂Ψ
∂θ

� �
þ 1

sin 2θ

∂2Ψ
∂θ

" #
ð4:106Þ

and this is exactly the same differential form as Eq. (4.91). So from Eq. (4.91) and
Eq. (4.99), it follows that a measurement of the squared angular momentum on the
state Y m

l must give the output h2l(l + 1) or in other words:

L2Y m
l ¼ �h2

1
sin θ

∂
∂θ

sin θ
∂Y m

l

∂θ

� �
þ 1

sin 2θ

∂2Y m
l

∂θ

" #
¼ l lþ 1ð Þh2Y m

l ð4:107Þ

with the amplitude L
!��� ��� ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þ

p
. Also a measurement of the z-component

gives:
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LzY
m
l ¼ h

i

∂
∂ϕ

Y m
l ¼ mhY m

l ð4:108Þ

so that a measurement of the projection of the angular momentum in the z-direction
of the state Y m

l

� �
gives an eigenvalue mh.

Now we understand the physical significance of the solutions that we derived in
Sect. 4.7.1, and we also note the generality of the result. The eigenfunctions of
angular momentum are the functions Y m

l

� �
and this is true in general. It happens to be

true for the hydrogen atom too because the potential is spherically symmetric. So in
any state with spherical symmetry, angular momentum is well defined, and the Y m

l

� �
constitutes the angular part of the wavefunction.

In this section we have tackled the solution of the hydrogen atom problem in
quantummechanics. We showed that the wavefunction can be written as a product of
an angular and radial part. Now we can turn to studying the radial part R(r) for this
particular Coulomb potential.

4.7.3 The Radial Wavefunction of the Hydrogen Atom

Returning to face the solution of the radial part, we first note that a more convenient
way of writing this equation is to transform:

u rð Þ ¼ rR rð Þ ð4:109Þ

d2u rð Þ
dr2

þ E þ 2
r
� l lþ 1ð Þ

r2

� �
u rð Þ ¼ 0 ð4:110Þ

Now we note that differential equations involve the angular momentum integers l,
so it follows that the eigenstates u(r) must also have the label l, u ¼ ul, but there is
also an energy variable E. So what happens to the energy E? Are all values allowed?
It turns out not surprisingly that the answer is no! Again the mathematicians saw
that long before the physicist used these solutions for the hydrogen atom.
Mathematicians found that in order to have bounded and differentiable solutions,
only discrete values of E were allowed. These carry the label n, and we have En as
eigenvalues of energy and thus unl(r), as eigenstates. The solution of this class of
differential equation is a nontrivial exercise in mathematics, so we will only give the
final answer here. The normalized solutions can be written as:

un, l ¼
ffiffiffiffiffi
2r
n3

r
Λ2lþ1
n�l�1

2r
n

� �
ð4:111Þ

so that the complete solution is:
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Ψn, l,m ¼ 1
r
un, lY

m
l cos θð Þ ð4:112Þ

with energy eigenvalues:

En ¼ � mq4

2n2 4πε0ð Þ2h2 ð4:113Þ

The functions Λ are related to the so-called Laguerre functions where with the
variable t ¼ 2r/n, we have:

Λα
k tð Þ ¼ Γ αþ 1ð Þ k þ α

k

� �� ��1=2

e�t2=2tα=2Lα
k tð Þ ð4:114Þ

where now Lα
k is a solution of Laguerre’s differential equation:

t
d2Lα

k

dt2
þ αþ 1� tð ÞdL

α
k

dt
þ kLα

k ¼ 0 ð4:115Þ

where α is a constant and Γ is the Gauss gamma-function with:

k þ α
k

� �
¼ Γ k þ αþ 1ð Þ

Γ k þ 1ð ÞΓ αþ 1ð Þ ð4:116Þ

The first few radial functions in atomic units are given by:

u10 ¼ 2re�r ð4:117Þ

u20 ¼ 1ffiffiffi
8

p e�r=2r 2� rð Þ ð4:118Þ

u21 ¼ 1ffiffiffiffiffi
24

p e�r=2r2 ð4:119Þ

u30 ¼ 2

81
ffiffiffi
3

p e�r=3r 27� 18r þ 2r2
� � ð4:120Þ

In real units the ground-state radial part is R rð Þ10 ¼ u10=r ¼ 1ffiffiffiffi
8π

p 2
aB


 �3=2
e�r=aB

where aB is the Bohr radius. The first few angular functions are (Fig. 4.14):

Y0
0 ¼

1ffiffiffiffiffi
4π

p ð4:121Þ
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Fig. 4.14 Illustrates the
particle density in the first few
levels of the hydrogen atom.
These are the 2S (l ¼ 0), 2P
(l ¼ 1) and 3D(l ¼ 2) and 4F
(l ¼ 3) orbitals to the with the
m, projections along the z-axis
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Y0
1 ¼

ffiffiffiffiffi
3
4π

r
cos θ ð4:122Þ

Y0
2 ¼

ffiffiffiffiffiffiffiffi
5

16π

r
3 cos 2θ � 1
� � ð4:123Þ

Y1
1 ¼ �

ffiffiffiffiffi
3
8π

r
sin θexpiφ ð4:124Þ

Y1
2 ¼ �

ffiffiffiffiffi
15
8π

r
sin θ cos θexp iφ½ � ð4:125Þ

4.7.4 The Unbound States

The above solutions encompass the region E < 0, i.e., where the electron is bound to
the nucleus. One can also solve for the wavefunctions and energies of eigenstates
which are free particle-like (only energies) in the region E > 0. The reader is referred
to the book by L. Chuang in the references for a complete analytical description.

4.7.5 The Two-Dimensional Hydrogen Atom

Another interesting limit is the two-dimensional hydrogen atom which, even though
it strictly speaking does not exist, is almost realizable using quantum well
technology (see Chap. 15). One can, with atom-by-atom deposition techniques,
molecular beam epitaxy (MBE), for example, place a hydrogenic atom in a thin
atomic layer sandwiched between barrier layers so that the electronic motion is free
in the plane and highly confined in the direction perpendicular to the plane. The
analytical solution for the two-dimensional hydrogen atom problem is known
mathematically, and the bound states are given by (Chuang 1995):

En ¼ � Ry

n� 1=2ð Þ2 ; n ¼ 1, 2, 3: . . . ð4:126Þ

Ry ¼ Rydberg ¼ mq4

2 4πε0ð Þ2h2 ð4:127Þ

Comparing with the 3D solution Eq. (4.113), it is interesting to note that the
binding energy is stronger in 2D than in 3D, a factor of 4 for the ground state. The
wavefunctions only depend on one angle and have the simpler structure:
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Ψnm

�
r
!� ¼ Rnm rð Þe

imφffiffiffiffiffi
2π

p ð4:128Þ

Again we refer the reader to the book by L. Chuang in the references for the
complete analytical formulae of the radial part and a discussion of the unbound
solutions.

4.7.6 The Electron Spin

It was pointed out at the beginning of this chapter that in order to explain the
structure of the atom, very early on after the discovery of quantum physics,
W. Pauli introduced the concept of the electron spin. He observed that if he assumed
that an electron had an extra quantum number which he called spin and if he assumed
that the spin is like an angular momentum and can have two values “up or down”
with values 	1

2 h and, further, assumed that two electrons cannot be in exactly the
same eigenstate, then he could account for the so-called Aufbau principle i.e.,
explain the structure of the atoms with quantum mechanics.

So we have learned already that the electron must have a quantum number called
spin, which is like an angular momentum and can have two values of its projection in
the z-direction Sz ¼ 	 1/2. In other words if we make a measurement of the electron
spin in a given direction which we call z, then we will find the values Sz¼ 	 1/2 with
equal probability. Once the electron has been prepared in a given spin state, it will stay
in it unless disturbed. The electron spin is like an angular momentum in the sense that
it carries also a magnetic moment as a classical rotating charge would do in principle.
The magnitude of the magnetic moment was postulated and then measured by Stern
and Gerlach to be μB ¼ qh

m0
(m0 is the rest mass) which is called the Bohr magneton.

The projection along the z-axis is mz ¼ 	 1/2μB.
Now the next question that arises is: where does the spin come from? Is it really

due to a kind of zero point rotation of the electron in space, a rotating charge as one
would think classically? Zero point meaning that according to Heisenberg’s uncer-
tainty principle, and as shown explicitly for the harmonic oscillator, when a degree
of freedom is allowed, it has to have a “minimum value” associated with
it. Otherwise one would know the position of a point on the surface with certainty.
However classical rotation, it turns out, cannot be the reason for the electron spin and
magnetic moment, because if one calculates the speed at which the charge would
have to rotate to give this value of magnetic moment, one would find that the speed
of rotation would be greater than the speed of light and therefore contrary to the rules
of special relativity.
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4.8 Relativity and Quantum Mechanics

The explanation for the electron spin came much later and was given by Paul A. M.
Dirac in 1927. Dirac set himself the task of including special relativity into quantum
mechanics and used the classical correspondence principle. Using Einstein’s
formula, gives the energy of the particle as:

E ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

0c
2

q
ð4:129Þ

where m0 is the rest mass and c the velocity of light. In this form, substituting in the
Schrödinger momentum, operators would lead to a Hamiltonian which depends on
the square root of differential operators. This is awkward to handle and is not
evidently Lorentz invariant. Invariance under a Lorentz transformation is essential
for special relativity to be satisfied. Of course one can develop the square root using
the Taylor expansion assuming that the kinetic energy is small compared to the rest
mass. The first two terms then together give back the usual result with a constant rest
mass as first term. One can also write down the entire series, as an expansion in p2:

H ¼ m0c
2 þ p2

2m0
� 1
8

p4

m3
0c

2
þ . . . ð4:130Þ

Then using the quantum mechanical operators, assume that the eigenfunctions are
plane waves as free particles and then every term in the series is a simple number
with p2 ! (hk)2. Resuming the series then gives the energy levels:

Ek ¼ c hkð Þ2 þ m2
0c

2
h i1=2

ð4:131Þ

with a group velocity:

vk ¼ 1
h
∂Ek

∂k
¼ hkð Þc

m2
0c

2 þ hkð Þ2
h i1=2 ð4:132Þ

which saturates at the speed of light when the momentum becomes infinite. But this
solution is not complete, and in order to ensure Lorentz invariance, Klein-Gordon
and Dirac noted that one should consider the square of the operator and then replace
the momentum and energy using the corresponding Schrödinger operators to find:

∇2 � 1
c2
∂2

∂t2

( )
Ψ ¼ m0c2

h2

� �
Ψ ð4:133Þ

This equation is known as the Klein-Gordon equation. It is second order in the
time derivative as is Maxwell’s equation (ME) and indeed is a wave equation as ME,
when the particle has zero rest mass. The important observation is that this equation
as is ME is relativistically invariant, i.e., it satisfies the Lorentz transformation
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symmetry. This by the way also shows that special relativity is naturally true for
electromagnetism and is thus an experimental law. Going back to Eq. (4.133), we
note that we had to take the square or complex conjugate to arrive at Eq. (4.133), and
therefore it will have more solutions than we may need. However it will certainly
have all the solutions that we need. The energy operator is now as one can see
quadratic in structure and no longer linear as in the nonrelativistic Schrödinger
theory. The Klein-Gordon equation for free particles will also have the plane wave
solutions discussed in the square expansion form, with the same energy-momentum
relations, as can be easily verified by substituting:

Ψ
�
r
!
; t
� ¼ Aexp i k

!
� r! �iEt=h

� � ð4:134Þ

Dirac’s brilliant observation, which is the starting point of all modern quantum
field theories and elementary particle descriptions until today, was to note that
maybe one could go back to a linear form in terms of time and write this equation
as the product of two linear differential equations. Let us write (Dirac PAM 1967):

∇2 � 1
c2

∂2

∂t2
¼ A

∂
∂x

þ B
∂
∂y

þ C
∂
∂z

þ i

c
D
∂
∂t

� �
A
∂
∂x

þ B
∂
∂y

þ C
∂
∂z

þ i

c
D
∂
∂t

� �
ð4:135Þ

In order for this differential operator relation to be satisfied, we need:

ABþ BA ¼ 0
AC þ CA ¼ 0
ADþ DA ¼ 0
BC þ CB ¼ 0
BDþ DB ¼ 0
CDþ DC ¼ 0

ð4:136Þ

A2 ¼ B2 ¼ C2 ¼ D2 ¼ 1 ð4:137Þ
Dirac observed that this decomposition is possible provided that we do not look at

these {A,B,C,D} quantities as simple numbers but as matrices. He then solved the
matrix problem to find:

A;B;Cð Þ ¼ iβαk ð4:138Þ

D ¼ β ð4:139Þ

β ¼ I, 0
0, � I

� �
ð4:140Þ
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αk ¼ 0, σk
σk , 0

� �
ð4:141Þ

σk ¼ 0, 1
1, 0

� �
;

0, � i
i, 0

� �
;

1, 0
0, � 1

� �
ð4:142Þ

where I is the unit matrix. Note that A, B, and C are 4 � 4 matrices. With the above
matrix form, the Klein-Gordon equation can be rewritten:

A
∂
∂x

þ B
∂
∂y

þ C
∂
∂z

þ i

c
D
∂
∂t

� �
A
∂
∂x

þ B
∂
∂y

þ C
∂
∂z

þ i

c
D
∂
∂t

� �
� m2

0c
2

h2
I ¼ 0

ð4:143Þ
The linearized form is thus:

A
∂
∂x

þ B
∂
∂y

þ C
∂
∂z

þ i

c
D
∂
∂t

� �
� m0c

h
I ¼ 0 ð4:144Þ

One can also rewrite these equations as the Dirac equation pair:

m0c2, c σ
! � p!

c σ
! � p! , � m0c2

 !
ϕþ

ϕ�

� �
¼ ih

∂
∂t

ϕþ

ϕ

� �
: ð4:145Þ

Note that these are two distinct coupled 2 � 2 differential equations. One has
positive, the other negative energy solutions. Each component is itself a 2 � 2
matrix. The φ+ component is connected to the φ� component by a relativistic
coupling. In the nonrelativistic limit, the two are not coupled anymore, but the
2 � 2 matrix structure of each remains. The 2 � 2 matrix form implies that the
particle, apart from its usual spatial degrees of freedom, must also have acquired an
additional two-valued degree of freedom. This new degree of freedom is exactly the
spin which had been earlier postulated by Pauli to also have exactly this matrix
representation. What it means is that the wavefunction of a particle which satisfies
the linear Dirac equation has two components, a component with an internal degree
of freedom which can be called spin up and the other one spin down. This internal
degree of freedom turns out to have the same properties as an angular momentum
with the two possible values 	1

2 h as discussed earlier.
This is a remarkable achievement indeed and shows that the symmetry associated

with special relativity in quantum mechanics has important consequences on the
structure of the basis states of space, on the “fabric of space time,” (Wilczek 2006)
making the wavefunction 4 component with an extra two-valued degree of freedom.
In relativity, space and time are connected, but the time derivative still measures the
energy. So to be in an eigenstate of energy, has implications for the spatial
coordinates. But this is not all; Dirac’s equation implies that along with positive
energy solutions, there are also negative energy solutions which at first seems absurd
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and artificial until further examination shows that the negative energy solutions can
be interpreted as “antiparticles.” So Dirac’s discovery also leads to the discovery of
antiparticles. A further consequence is that the vacuum is not empty but that for short
times, when, according to Heisenberg, energy does not have to be conserved, there
can be fluctuations in which particles and antiparticles spontaneously emerge out of
the vacuum and recombine again. The “pair production” can become long lived and
real when a photon of sufficient energy, a gamma ray, decomposes into an electron-
positron pair. This is indeed observed experimentally. The photon energy needed
twice the rest mass energies and the kinetic energies of decomposition. So the logic
seems to make sense: Maxwell’s equations satisfy the relativity principle by them-
selves, without further assumptions, but light can break up into matter and form
particle-antiparticle pairs; this is also an experimental observation. But these
particles must therefore necessarily also obey the relativity principle, which means
they must obey the Dirac equation, when they have spin ½.

So what does this have to do with spin? It means that as the particle moves, it can
for short times follow paths which are different to the normal space trajectories that
we are used to. The particle can merge into an antiparticle which was spontaneously
created as a quantum fluctuation and reappear as the particle component of that pair
in another location. Indeed it has to do that, since for short enough time intervals, the
particle still exists, but the vacuum it moves through has structure fluctuates, breaks
up into matter and antimatter and reforms. Thus new pathways or “points” or space-
time realizations are created and can and indeed must be passed through. For very
short time intervals, the particle can visit antimatter points and form closed loops,
i.e., come back again to where it was having visited antimatter points. The new
“vacuum paths” look as if they are orbits and have spin angular momentum. The
solutions of the Dirac equation are called fermions and have spin ½ as we have seen.
The remarkable property is that even though energy corrections can disappear in the
nonrelativistic limit, the spin remains, which shows that the matter-antimatter
property of the vacuum still has an effect on the electron which it cannot escape.
This new fabric of space time discovered by Dirac exists whether the particle has a
low- or high-average velocity. In the short enough time evolution, the new space-
time configurations can and are always visited. Dirac showed that the velocity of the
particle is actually indeterminate; the instantaneous velocity of the particle is actually
the speed of light! Then he found the reason for this strange and novel behavior by
calculating the time dependence of the velocity. He discovered that the particle is
undergoing an ultrafast, order of speed of light, trembling like motion with fre-
quency >2m0c

2/h, which is more than twice the rest mass frequency, and with spatial
amplitude of order h/m0c ~10�15 cm. We tentatively interpret these trembling
motions as precisely the visits and returns into and from antiparticle space.

The solution of the Klein-Gordon equation in the simple form has apparently no
spin. But it turns out that they can, and indeed, and must also have spin. They too
move in a vacuum which, as Dirac showed, is not just empty space. In particular they
have solutions of integer spin, the so-called bosons, for which there is no Pauli
principle, but the proof which has to do with “quantum field theory” is not the
subject of this book spin as an internal fabric of space time was just the beginning
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elementary particle physics. Other symmetries, combined with special relativity,
some intuitive others not, turn out to have similar consequences in quantum
mechanics. Particles now have spin, color, charm, etc. This is the subject of the
modern field of quantum chromodynamics and string theory which strive to explain
the origin of mass and of gravitation in terms of the vibrational excitations of zero
mass vacuum entities and then the coupling of these excitations in vacuum.

The positive energy free particle solutions to Dirac’s equation are given by:

Ψ ¼ exp
��iEt=hþ i p

! � r!�
1
0 cp

E þ m0c2
0

0BB@
1CCA ð4:146Þ

Ψ ¼ exp
��iEt=hþ i p

! � r!�
0
1
0
� cp

E þ m0c2

0BBB@
1CCCA ð4:147Þ

E ¼ m2
0c

4þ p
! � p!

n o1=2
ð4:148Þ

Note that the Pauli spin matrix form survives the nonrelativistic limit. Note also
the fascinating fact that despite the time linearization, the time oscillations of the
velocity, the overall wavefunction time is again only a phase! The particle once in an
eigenstate stays there until disturbed. The density is again as in the nonrelativistic
Schrödinger equation time independent. The connection to antiparticle space is
reduced to just another angular momentum like quantum number the “spin.”

4.8.1 The Electron Spin Operator

Now we know where the spin of the electron comes from, we can proceed to
formulate the Pauli Dirac spin operators. The wavefunction of a fermion, i.e., a
particle which obeys the Dirac equation, can be treated as a vector in a
two-dimensional space so that in addition to its spatial component it also has a
spin component, so that:

Ψμ

�
r
!� "j i ¼ ϕμ

�
r
!� 1

0

" #

Ψμ

�
r
!� #j i ¼ ϕμ

�
r
!� 0

1

" # ð4:149Þ

Top one has spin up, and lower one has spin down. The operator which measures
the z-component of the spin is:
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sz ¼ h
2

1, 0
0, � 1

� �
: ð4:150Þ

The x and y components are:

sx ¼ h
2

0, 1
1, 0

� �
ð4:151Þ

sy ¼ h
2

0, � i
i, 0

� �
ð4:152Þ

The quantities in the matrix bracket are called the Pauli spin matrices.
Experimentally it was discovered that an electron also has a spin magnetic

moment. The Dirac equation knows nothing about charge, so it cannot give a
magnetic moment. But if we include the charge and let it move in an electromagnetic
field, then one also obtains the spin magnetic moment, so that a measurement of
magnetic moment corresponds to the operator:

mz ¼ q

m0
sz ð4:153Þ

giving the values mz ¼ 	 qh
2m0

in MKS units. The energy of a spin in magnetic field

B is the spin Zeeman coupling and is described by the term:

HZ ¼ �m
!
s
: B
! ð4:154Þ

where:

mz ¼ 	 qh
2m0

¼ 	1
2
μB ð4:155Þ

The quantity μB is, as mentioned already, called the Bohr magneton.

4.9 The Addition of Angular Momentum

Consider an electron, in, for example, a state of angular momentum l, in an atomic
orbit n > 1. The spin also has an effective angular momentum, so the electron now
has a total angular momentum J where we can write:

J
!¼L

! þ s
! ð4:156Þ

In order to see how to add angular momentum, let us consider the addition of the
angular momentum of two particles with magnitudes l1 and l2. We write l ¼ l1 + l2:
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L
!¼ L

!
1
þ L

!
2

L
! � L!¼ L2 ! hl lþ 1ð Þ

ð4:157Þ

The allowed values of total angular momentum are given by:

l ¼ l1 þ l2j j, l1 þ l2 � 1j j, :: . . . l1 � l2j j: ð4:158Þ
So, for example, with l1¼ 1 and l2¼ 2, the allowed values are l¼ 3, l¼ 2, and l¼ 1.
Each total angular momentum state has (2 l + 1) projections along the z-axis. Thus
the combination l ¼ 3 has the projections:

lz ¼ 3, 2, 1, 0, � 1, � 2, � 3 ð4:159Þ
The same rule applies to the spin, with l ¼ 1 and s ¼ 1/2; the possible states of

total angular momentum are J ¼ 3/2, 1/2 with projections, Jz¼ 3/2,1/2,�1/2,�3/
2 and J ¼ 1/2 which gives Jz ¼ 1/2,�1/2.

The addition of spins follows a similar rule. For example, two electron spins s1
and s2 can combine to form S ¼ s1 + s2 with possible total spin states S ¼ 1 and
S ¼ 0. The former is called the triplet combination and the latter the singlet. The
triplet has three projections along the z-axis with Sz ¼ (1,0,�1).

4.10 The Pauli Principle Applied to Many-Electron Systems:
The Slater Determinant

We have seen what the Pauli principle implies in terms of filling the energy levels of
many-electron atoms and solids, but now let us consider the formal mathematical
representation. The Pauli principle requires that whenever two electrons occupy the
same spatial and spin eigenvalues, then the wavefunction cannot exist, i.e., it must
vanish. In order to implement this rule, and in all cases where the many-electron
system is not interacting, and thus wavefunctions of many electrons can be written as
products of single-particle states, there is a simple and elegant representation that
satisfies this condition. This representation is called the Slater determinant. The
Slater determinant representation ensures that the wavefunction is antisymmetric
under exchange of electron coordinates, and this in turn ensures that it vanishes when
two electrons are in the same eigenstate. So let an eigenstate, for example, for the
free particle system, be written as ϕk(rn)α(n) for particle rn with spin up (α) and
ϕk(rn)β(n) particle rn with spin down (β). Then a pair in k1 and k2 can be represented
by the linear combination of eigenstates: (i) both particles have the same spin:

Ψ1,1
�
r
!
1
; r
!
2

� ¼ 1ffiffiffi
2

p ϕk1 r1ð Þϕk2 r2ð Þ � ϕk2 r1ð Þϕk1 r2ð Þ� �
α 1ð Þα 2ð Þ: ð4:160Þ

As one can see, the wavefunction has total spin ¼ 1, i.e., is in a triplet state with
Sz ¼ 1 and vanishes if the spatial quantum numbers are identical. A similar state
exists with both spins down corresponding to Sz ¼ �1.
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When the spins are opposite, we have two possible antisymmetric combinations:
the state with S ¼ 1, Sz ¼ 0 is:

Ψ1,0
�
r
!
1; r

!
2

� ¼ 1ffiffiffi
2

p �
ϕk1 r1ð Þϕk2 r2ð Þ � ϕk2 r1ð Þϕk1 r2ð Þ α 1ð Þβ 2ð Þ þ α 1ð Þβ 2ð Þ½ �

ð4:161Þ
and the state with S ¼ 0, Sz ¼ 0 is:

Ψ0,0
�
r
!
1; r

!
2

� ¼ 1ffiffiffi
2

p �
ϕk1 r1ð Þϕk2 r2ð Þ þ ϕk2 r1ð Þϕk1 r2ð Þ α 1ð Þβ 2ð Þ � α 1ð Þβ 2ð Þ½ �

ð4:162Þ
All these four combinations are antisymmetric under exchange of coordinates.

We can extend this rule for any number of electrons, and if we combine the spin (γ)
and spatial quantum number kn for particle rn into one, and call it qn¼ (kn, γ), we can
write for an N-particle system the determinant:

Ψ ¼ 1ffiffiffiffiffi
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q
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q
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!
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�
���������

��������� ð4:163Þ

When we use Slater determinants instead of simple product of wavefunctions, we
include the fact that even though the electrons are to this order strictly speaking not
interacting, there is an implicit correlation in their spatial distribution which is
caused by the Pauli principle. For example, same-spin electrons cannot penetrate
each other; opposite spins can. This spatial correlation, in conjunction with
perturbations on the system, gives rise to the so-called exchange corrections.

4.11 Summary

This completes the chapter on the principles of quantum mechanics. We have visited
some of the most important and practical application of the Schrödinger equation
(SE) to real physical systems. We have shown how to solve the SE for the hydrogen
atom which forms the basis for the understanding the structure of all atoms. It is an
amazingly powerful result even though it involves a one-electron theory. It turns out
that one can use these solutions for many electrons as well, provided one allows for
the screening of the nuclear charge by the presence of the other charges in some
averaged way. This is the so-called mean field or self-consistent field approach, and
one can and must include the antisymmetric nature of the many-electron
wavefunction as expressed by the Slater determinant of Eq. (4.163). We saw how
spherical symmetry gives rise to the conservation of angular momentum and how
this evolves naturally out of the hydrogen atom solutions. We discussed the origin of
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the electron spin and showed how that is an internal coordinate which results from
the requirement of special relativity when applied to quantum mechanics. The spin
quantum number brilliantly follows from the Dirac equation or what is the linearized
form of the Klein-Gordon equation, a manifestation of the fact that the “empty
vacuum” is only a time averaged concept. That the vacuum can, for short times,
spontaneously break up into matter and antimatter and thus allow nonintuitive
quantum or quantized pathways of propagation through four-dimensional space
time. The “nonintuitive” pathways, symmetries, and quantum numbers are far
more numerous today in modern elementary particle physics.

4.12 The Electron in a Magnetic Field

Consider what happens to the motion of an electron in a magnetic field. We will only
consider the orbital motion because in the absence of spin-orbit coupling, spin and
orbit motion can be treated independently. Classically the charge is subject to the
electric (E) and the Lorentz force as given below, which makes the electron follow a
curved path in an electric and magnetic field (B):

F
!¼ �q

�
E
! þ v

! ��B
� ð4:164Þ

where v is the velocity. Quantum mechanically we first have to derive the new
Hamiltonian. We make the following observation. A classical charged particle in an
electromagnetic field obeys the Hamiltonian:

H ¼ 1
2m

�
p
! þq A

!�2 ð4:165Þ

where A is the vector potential. For a magnetic field B, the vector potential is:

B
!¼∇

!
� A

!
ð4:166Þ

and

A
!
¼ �yB; 0; 0ð Þ ð4:167Þ

Giving a field in z-direction:

B
!¼ 0; 0;Bð Þ: ð4:168Þ

In quantum mechanics we generate the correct Hamiltonian simply by using the
corresponding momentum operators to obtain:
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H ¼ 1
2m

px þ qyBð Þ2 þ p2y
2m

þ p2z
2m

( )
Ψ ¼ EΨ ð4:169Þ

The momenta in x- and z-direction are not coupled, so they have plane wave
solutions which allow us to simplify the Schrödinger equation to the form:

Ψn kx; kzð Þ ¼ ei kxxþkyyð Þφn yð Þ ð4:170Þ
where:

�h2

2m
∂2ϕn yð Þ
∂y2

þ qBð Þ2
2m

 !
y� y0ð Þ2ϕn ¼ E � h2k2z

2m

� �
ϕn ð4:171Þ

y0 ¼ � hkx
qB

ð4:172Þ

We call:

ωc ¼ eB

m
ð4:173Þ

the cyclotron frequency and note that Eq. (4.171) is an equation describing a
one-dimensional harmonic oscillator with the origin shifted by y0 and for which
the eigenvalues and wavefunctions are known from Sect. 4.6. The energy levels of
the electron in a magnetic field are:

En ¼ hωc nþ 1=2ð Þ þ h2k2z
2m

ð4:174Þ

The magnetic levels classified under the quantum number n are called the Landau
levels. The corresponding eigenstates are:

Ψn kx; kzð Þ ¼ AnHn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωc

h
y� y0ð Þ

r� �
exp �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωc

h
y� y0ð Þ2

r
þ i kxxþ kzzð Þ

� �
ð4:175Þ

where the Hn as before in Sect. 4.6 are the Hermite polynomials and the An the
normalization factors. Consider now the question of the degeneracy of each Landau
level.

* Note that if we defined the new velocity operator in the presence of a magnetic
field via the Heisenberg equation of motion and with the Hamiltonian Eq. (4.169),
which is the right way to define the new operator, then we would get the result:
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px ¼ �ih
∂
∂x

! �ih
∂
∂x

þ qBy ð4:176Þ

which shows that the correct velocity operator is now B-field dependent. This has no
classical analogue. The acceleration operator can similarly be obtained by applying
the Heisenberg equation of motion with the velocity operator instead of the position
operator.

4.12.1 Degeneracy of the Landau Levels

We note that the energies Eq. (4.174) do not depend on the value of kx. This implies
that to every Landau level, there are many values of kxmomentum eigenstates which
give the same energy. How many are there? In order to count the degeneracy, it is
convenient to assume that the system is in a cubic box of size L, with periodic
boundary conditions such thatΨ(x + L, y + L, z + L )¼Ψ(x, y, z). This condition gives
rise to the momenta kxwhich are quantized according to the rule
kx ¼ 2πnx

L , nx ¼ 0, 	 1, 	 2, : . . .. Going back to Eq. (4.171), we note that the
coordinate y0 is now also limited to be in the range [0, L]. This in turn implies that
the range of values:

y0 ¼
hkx
qBz

¼ hnx
qBL

¼ L ð4:177Þ

so that the number of values of kx with the same energy or degeneracy of the Landau
level is gL:

gL ¼ L2
qB

h
ð4:178Þ

In a two-dimensional x, y system with B in z-direction, we will see that for Bz¼ 0,
the density of states is a constant (see Chap. 14). The crossover from the
two-dimensional Bz ¼ 0 spectrum to the discrete and gL fold degenerate Landau
spectrum is shown in Fig. 4.15.
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Fig. 4.15 Shows the level
structure of a two-dimensional
free electron system in a
magnetic field. The constant
density of states becomes
discrete Landau levels. As the
B-field increases, the
degeneracy of the levels
increases, and the Fermi level
for a fixed electron number
moves down
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4.13 Discussion

In the above sections, we have considered situations where the Schrödinger equation
(SE) is exactly solvable. We solved the SE in a magnetic field for spinless electrons.
Let us now consider examples where an exact solution is not easily derivable
analytically and where one has to resort to approximation methods. We start by
formulating the very powerful Wentzel Kramer Brillouin (WKB) method.

4.14 The Wentzel Kramer Brillouin Approximation

Consider the situation where the electron moves over an arbitrary potential form V(x)
in the x-direction, but the motion in z and y is nearly free electron like. The
wavefunction will be as:

Ψ x; y; zð Þ ¼ Aϕ xð Þexp i kyyþ kzz
� �	 
 ð4:179Þ

where A is the normalization constant and φ satisfies the one-dimensional
Schrödinger equation:

d2ϕ xð Þ
dx2

þ 2m

h2
E � V xð Þ½ �ϕ ¼ 0 ð4:180Þ

d2ϕ xð Þ
dx2

þ p2

h2
ϕ ¼ 0 ð4:181Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � V xð Þð Þ

p
ð4:182Þ

where the general solution is of the form:

ϕ xð Þ ¼ s xð Þexp 	 i

h

Zx
dx

0
p x

0

 �8<:

9=;
¼ s xð Þexp 	 i

ffiffiffiffiffiffi
2m

p

h

Zx
dx

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � V x0ð Þ

q8<:
9=; ð4:183Þ

s xð Þ ¼ Kp�1=2 ! K ¼ const: ! normalisation ð4:184Þ
The above is called the Wentzel Kramer Brillouin (WKB) approximation and is

valid when:
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h ∂p
∂x
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�����
����� << 1 ð4:185Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � V xð Þ½ �

p
ð4:186Þ

In other words, when the variation of p(x) or V(x) is slow enough to satisfy the
above condition (which is true for most situations of interest in engineering
applications). In order to construct the entire solution, one considers the solution
piecewise over regions of space. The most general solution in each region is of the
form:

ϕ xð Þ ¼ A
1

p1=2
exp þ i

h

Zx
p x

0

 �

dx
0

8<:
9=;þ B

1

p1=2
exp � i

h

Zx
p x

0

 �

dx
0

8<:
9=; ð4:187Þ

The singular behavior at turning points when p(E,x) ¼ 0 is of no serious
consequence because the singularity is integrable so the wavefunction is normaliz-
able in a finite interval.

Now one looks at a particular interval and notes that in regions where the energy
E of the particle is E > V(x), the function p(x) is real, and the solution is a linear
combination of two oscillatory waves, one going to the right and the other to the left.
In regions where E < V(x), p(x) is complex, and the wavefunction is exponentially
decaying in space in the direction against the potential barrier. The wavefunctions
are multiplied by arbitrary constants A, B which have to be determined by the
boundary conditions. In order to get the full solutions, one connects the different
regions defined above by requiring the continuity of the wavefunction and its
derivative. Consider, for example, the potential V(x) in Fig. 4.16; the energy E is
shown by the solid line. In region II, the energy of the particle is smaller than
the potential barrier, so the wavefunction must decay exponentially as a function of
(x–x1) and behave as:

ϕ xð Þ ¼ A2
1

jpj1=2
exp þ1

h

Zx2
x1

jp x
0


 �
jdx0

8<:
9=;� ð4:188Þ

In region I, between 0 and x1, the energy E is larger than V(x), so p(x) is real, the
phase oscillatory, and the wavefunction is of the form Eq. (4.187). In the region III,
for x > x2, here E > V(x), and the wave has again an oscillatory structure as in
Eq. (4.187):
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ϕ xð Þ ¼ A
1

p1=2
exp þ i

h
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x2

p x
0


 �
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9=;þ B

1

p1=2
exp � i

h
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p x
0
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dx

0

8<:
9=; ð4:189Þ

The constants A, B, A2, can be determined by using the boundary conditions as
explained above. One can in principle also determine the eigenvalues using the
Wentzel Kramer Brillouin (WKB) method which is also a piecewise solution of the
one-dimensional Schrödinger equation. The approximate eigenvalues can be
generated by using the Bohr Sommerfeld condition which requires that the integral
of p(x) over the classical domain where p(x, E) is real and satisfies the quantization
condition: Z

p xð Þ>0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
�
E � V xð Þ

q
¼ nþ 1

2

� �
h ð4:190Þ

Though useful for finding the approximate eigenvalues of electrons confined
between barriers higher than their energies, with unusual potential wells, for exam-
ple, this is not the main application of WKB. The main application is when one
knows the energy and one wants to know how the particle behaves in a given
potential region. For example, consider the tunnel barrier as in Fig. 4.17, which is
a rectangular barrier lowered by an applied field. The particle is assumed to have
energy E; the question is what is the amplitude lowering when the particle has
tunneled to the right to the point p¼ 0, after which it becomes an oscillatory function
again. The potential in the tunnel region is {V(x) ¼ V0�qFx}, so we have:

ϕ xð Þ ¼ A3
1

jV0 � qFx� Ej1=2
exp � 2m∗

h2

� �1=2 Zx
x2

V0 � qFx0 � E½ �1=2dx0

8<:
9=;

ð4:191Þ

V(x)

x

E

x1 x2

I II III

Fig. 4.16 illustrates the
example treated in the text.
Region II is the quantum
mechanical tunneling region
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The upper limit of the integral is set by the condition E ¼ V0 � qFx', so that the
decay in amplitude from the starting point of the barrier at the point x to the critical
turning point is:

jϕ xcð Þj2 � ϕ x ¼ 0ð Þj j2exp �4
3

2m∗

h2

� �1=2 V0 � Eð Þ
qF

3=2
( )

ð4:192Þ

This then also gives us a measure of the transmission coefficient into the free carrier
region beyond the critical point xc ¼ (V0 � E)/qF:

T Eð Þ ¼ T0exp �4
3

2m∗

h2

� �1=2 V0 � Eð Þ
qF

3=2
( )

ð4:193Þ

This is called the Fowler-Nordheim tunneling structure and is encountered
whenever a constant barrier is lowered by an applied electric field.

4.15 Quantum Mechanical Perturbation Theory

4.15.1 Time-Independent Perturbation

One of the most powerful results and methods of quantum mechanics is Perturbation
theory. Very often one is confronted with a situation where a system is subject to an
interaction or several interactions for which the complete Hamiltonian has no
analytic solutions. Very frequently these interactions are also small compared to
the main effect which determines the system properties. Consider, for example,
a hydrogen atom in an electric field. An applied electric field of even as high as 107

V�cm�1 represents a tiny effect when compared to the electric field of the proton

V

x
x = 0 x =V0 /qF

V=V0 +Ef -qFxFilled 
electron 

states

V0

Ef

Fig. 4.17 illustrates the constant barrier in the presence of an electric field: the Fowler-Nordheim
limit
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nucleus. It is therefore very important to be able to include the effect of such new
interactions, at least to some degree, and study what they do to the wavefunctions and
energy levels of the system.

The procedure is as follows. We consider a starting Hamiltonian H0 of which we
assume we have the normalized eigenfunctions Φn and energy levels En. Now
consider the full Hamiltonian in the presence of a perturbationV, given byH¼H0 +V,
and we generate the solutions of this new Hamiltonian as a power series expansion,
both for the energies and the wavefunctions. The expansion of energy levels and
wavefunctions can be usually stopped in second order, giving us a powerful way of
estimating changes in energies and wavefunctions and of course of all the relevant
physical properties.

4.15.2 Nondegenerate Perturbation Theory

We first consider the situation where no two energies of the unperturbed system have
the same value. Or in this particular application, we assume that the ground state is
nondegenerate. In many situations of interest such as, for example, treating the effect
of static electric fields on the electronic system, we can work with the time-
independent Schrödinger equation and perturbation theory. The time-dependent
perturbation expansion is considered in Chap. 10. We write for the new ground-
state wavefunction energy the perturbation expansion:

Φg ¼ Φ0
g þΦ1

g þΦ 2ð Þ
g

Eg ¼ E0
g þ E 1ð Þ

g þ E 2ð Þ
g

ð4:194Þ

The admixtures are as before linear combinations of the unperturbed eigenstates,
in this case excited states, so that:

Φ nð Þ
g ¼

X
l6¼g

a nð Þ
lg Φ0

l ð4:195Þ

and where the time-independent Schrödinger equation with perturbation V is
given by:

H0 þ Vð ÞΦg ¼ EgΦg ð4:196Þ
Substituting Eq. (4.194) in Eq. (4.196), and comparing coefficients of the same

order, then gives to the zeroth order the obvious result:

H0Φ0
g ¼ E0

gΦ
0
g ð4:197Þ

First order we have:
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H0Φ1
g þ VΦ0

g ¼ E0
gΦ

1
g þ E1

gΦ
0
g ð4:198Þ

In second order we have:

H0Φ 2ð Þ
g þ VΦ1

g ¼ E0
gΦ

2ð Þ
g þ E1

gΦ
1
g þ E 2ð Þ

g Φ0
g ð4:199Þ

In order to obtain the zeroth order solution, we substitute the expansion
Eq. (4.195) into the first-order equation Eq. (4.198), multiply the left hand on both

side by Φ0
g


 �
∗ and integrate over all space, and use the orthogonality condition:Z

d r
! Φ∗nΦm ¼ δmn ð4:200Þ

to find:

E1
g ¼

Z
d r

! Φ0
g


 �
∗V
�
r
!�Φ0

g ð4:201Þ

We carry on the procedure to calculate the first-order change in the wavefunction
by multiplying Eq. (4.199) this time on both sides with Φ0

l

� �
∗ and integrating while

using the orthogonality again and the relation:

H0Φ0
m ¼ E0

mΦ
0
m ð4:202Þ

to find the coefficient:

a 1ð Þ
lg ¼ V lg

Eg � El
ð4:203Þ

and after multiplying and integrating again with Φ0
g


 �
∗ on the second-order

Eq. (4.199) and some algebra, we find the second-order energy shift:

E 2ð Þ
g ¼

X
l6¼g

VglV lg

Eg � El
ð4:204Þ

With the wavefunction given to first order by:

Φg ¼ Φ0
g þ

X
l6¼g

V lg

Eg � El
Φ0

l ð4:205Þ

whereas before the matrix element of the potential is defined by:

Vls ¼
Z

Φ∗0
sV
�
r
!�Φ0

l d r
! ð4:206Þ

4.15 Quantum Mechanical Perturbation Theory 139



Knowing the unperturbed wavefunctions and energy levels allows us to compute
the perturbed ones. Equation (4.201), Eq. (4.204), and Eq. (4.205) are, though
simple, some of the most useful results of quantum mechanics.

If, for example, we consider the particle in the one-dimensional box problem of
Sect. 4.4.3, with confinement in z-direction, and we apply a perturbation which is
due to an applied electric field in the z-direction, then V ¼ �qzE z

0, and we can
compute the energy’s shift to a good approximation with the box wavefunctions
given by Eq. (4.46). If the origin is chosen as z ¼ L/2 so that the box extends in the
range [�L/2 < z < L/2], it follows by symmetry that the first-order shift Vgg ¼ 0, and
we have only the second-order term given by:

E 2ð Þ
g ¼

X
l6¼g

qE0z

� �2 zgl
�� ��2

Eg � El
ð4:207Þ

If on the other hand we choose the origin to be at z ¼ 0 so that the range is
[0 < z < L], then the expansion to second order is:

Eg ¼ E0
g þ

ZL
0

dz
2
L
Sin 2 πz

L


 �
�qzE z

0

� �þX
l 6¼g

RL
0
dz2L sin

πz
L

� � �qE z
0z

� �
sin lπz

L

� �
Eg � El

ð4:208Þ
In summary, we have shown that to second order, the new perturbed energy levels

for general perturbation V is given as:

Eg ¼ E0
g þ

Z
d r

! Φ∗
g VΦg þ

X
l6¼g

Vgl

�� ��2
Eg � El

ð4:209Þ

where Vls is defined by Eq. (4.206). It is interesting to note that the second-order term
is for the ground-state energy, always an energy lowering term irrespective of the
nature of the perturbation.

4.15.3 Degenerate-State Perturbation Theory to Second Order

When two or more energies states of the unperturbed system can have the same
value, we may bypass the difficulty by using the renormalized or so-called Brillouin
Wigner expansion, which to second order is the same as Eq. (4.204) except that the
energy denominator contains the exact final energy and not the unperturbed ground
state:
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Eg ¼ E0
g þ

Z
d r

! Φ∗
g VΦg þ

X
l6¼g

Vgl

�� ��2
Eg � El

ð4:210Þ

If the dominant term is due to coupling with the degenerate levelE0
g1
¼ E0

g then to

second order, the sum can be separated into the degenerate term with l ¼ g1, and the
rest can stay un-renormalized to second order to give:

Eg ¼ E0
g þ Vgg þ

Vgg1

�� ��2
Eg � E0

g1

þ
X
l6¼g, g1

Vgl

�� ��2
E0
g � E0

l

ð4:211Þ

where Vgg ¼
Z

d r
! Φ∗

g VΦg and we have a simple quadratic equation to solve.

Putting E0
g ¼ E0

g1
by definition of degeneracy:

Eg � E0
g


 �2
� V t Eg � E0

g


 �
� Vgg1

�� ��2 ¼ 0 ð4:212Þ

Vt ¼ Vgg þ
X
l6¼g, g1

Vgl

�� ��2
E0
g � E0

l

ð4:213Þ

The quadratic has two distinct roots, and the degeneracy of the ground state is
now lifted by the perturbation. The two roots are:

Eg ¼ E0
g þ

1
2

Vt 	 V2
t þ 4V2

gg1

h i1=2� �
ð4:214Þ

Vgg1 ¼
Z

d r
! Φ∗

g V
�
r
!�Φg1 ð4:215Þ

Vgl ¼
Z

d�rΦ∗
g V
�
r
!�Φl ð4:216Þ

The result is very simple if we can neglect the admixture to the nondegenerate
excited level or Vgl ¼ 0; l 6¼ g, g1.

The time-dependent perturbation method is treated in Chap. 10, in the context of
optical properties, but the method presented in Chap. 10 is quite general and can be
used for any time-dependent perturbation.
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4.16 Final Summary

In the first part of this chapter, we introduced the principles of quantum mechanics.
Then we applied the method to a number of exactly solvable problems of great
physical significance: the particle in the box, the harmonic oscillator, and the
hydrogen atom. We encountered angular momentum and spin. In the final parts of
the chapter, we considered simple Hamiltonians which are not exactly solvable
analytically and which need approximate treatments. We introduced the so-called
Wentzel Kramer Brillouin (WKB) method which is a powerful method by which one
can estimate the wavefunction in quasi-one-dimensional irregular potentials. We
applied it to a simple but very important example with many applications: the
constant potential barrier in an electric field.

In the last part of this chapter, we demonstrated how one can calculate the effect
of small perturbations on quantum mechanical systems. The energy corrections were
evaluated up to second order in powers of the disturbance Hamiltonian for the
energy, and the corrections to the wavefunction were developed up to first order.
The method was formulated for the case when the ground state is nondegenerate, and
it was shown how to extend it to the case when the ground state is degenerate.

Problems

1. According to the quantum mechanics, electromagnetic radiation of frequency ν
can be regarded as consisting of photons of energy hν where h¼ 6.626 � 10�34

J�s is the Planck’s constant.
(a) What is the frequency range of visible photons (400 nm to 700 nm)? What

is the energy range of visible photons (both in J and in eV)?
(b) How many photons per second does a low power (1 mW) He-Ne laser

(336¼ λ nm) emit? A cell phone that emits 0.4 W of 850 MHz radiation? A
microwave oven operating at 2.45 GHz generating a microwave power of
750 W? How many photons of the latter frequency have to be absorbed to
heat up a glass of water (0.2 L, heat capacity of water 4.18 kJ�kg�1�K�1) by
10 �C?

At a given power of an electromagnetic wave, do you expect a classical
wave description to work better for radio frequencies or X-rays? Why? At
what He-Ne laser power do you expect quantum effects to become
important?

2. An adapted human eye (person that has spent 30 min in the dark) can see 1 ms
flashes of power 4 � 10�14 W at 510 nm with 60% reliability. Assuming that
10% of the incident power reaches the retina, how many photons at the receptors
generate the signal that the test person recognizes as flash of light?

3. (a) The thermal energy scale is kbT, where kb ¼ 1.38 � 10�23 J/K is the
Boltzmann constant and T is the absolute temperature. What energy does
room temperature correspond to? What would be the frequency and wavelength
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of the corresponding photons? Is it reasonable that a hot body starts to glow
around 1000 �C?
(b) What is the photon flux (rate of arriving photons per unit area) at 1 m distance
from a 60 W light bulb, if you assume that the bulb conversion efficiency
(electrical power to light bulb) is 10% and take the photon wavelength as
500 nm?
(c) A photodiode measures light power by converting incident photons into
electron-hole pairs, such that the electron current is proportional to the incident
light power. The quantum efficiency is defined as the probability that an incident
photon generates an electron. If a typical photodiode has a responsivity of 0.5
A/W for infrared light at 850 nm, what is the quantum efficiency of the device?
If the quantum efficiency is independent of frequency, what responsivity do you
expect for blue light at 400 nm?

Student can find a simulation of black body radiation and related topics
(Planck’s law, Wien’s law) at http://csep10.phys.utk.edu/guidry/java/planck/
planck.html.

4. From the expression of the distribution of energy radiated by a blackbody,
Eq. (4.2c) shows that the product λMT is a constant, where λM is the wavelength
of the peak of distribution at the temperature T (see Fig. 1.3).

5. Ultraviolet light of wavelength 350 nm falls on a potassium surface. The
maximum energy of the photoelectrons is 1.6 eV. What is the work function
of potassium? Above what wavelength will no photoemission be observed?

6. What is the deBroglie wavelength of an automobile (2000 kg) traveling at
25 miles per hour? A dust of radius 1 μm and density 200 kg�m�3 being jostled
by air molecules at room temperature (T¼ 300 K)? An 87Rb atom that has been
laser cooled to a temperature of T ¼ 100 μK? An electron and a proton
accelerated to 100 eV?

Assume that the kinetic energy of the particle is given by (3/2)kbT.
7. Reflection high-energy electron diffraction (RHEED) has become a common-

place technique for probing the atomic surface structures of materials. Under
vacuum conditions an electron beam is made to strike the surface of the sample
under test at a glancing angle (θ < 10�). The beam reflects off the surface of the
material and subsequently strikes a phosphorescent screen. Because of the
wave-like nature of the electrons, a diffraction pattern characteristic of the first
few atomic layers is observed on the screen if the surface is flat and the material
is crystalline. With a distance between atomic planes of d ¼ 5 Å, a glancing
angle of 1�, and an operating de Broglie wavelength for the electrons of 2dsinθ,
compute the electron energy employed in the technique.

8. (a) Confirm, as pointed out in the text, that <px > ¼ 0 for all energy states of a
particle in a l-D box.
(b) Verify that the normalization factor for wavefunctions describing a particle
in a l-D box is An ¼ (2/a)1/2.

9. A particle with mass 6.65 � 10�27 kg is confined to an infinite square well of
width L. The energy of the third level is 2.00� 10�24 J. Calculate the value of L.
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10. A particle of mass m is prepared in the ground state of an infinite-potential box
of size a extending from x ¼ 0 to x ¼ a. Suddenly, the wall at x ¼ a is moved to
x ¼ 2a within a time Δt doubling the box size. You may assume that the
wavefunction is the same immediately after the change, if the change happens
fast enough.
(a) How fast is fast enough?
(b) What is the probability that the particle is in the second (n ¼ 2) state of the

new well, immediately after the change? Note that the wavelength within
the well, and hence the energy, for this state is the same as for the
initial state in the old well. Make sure that you properly normalized
wavefunctions for your calculations.

(c) What is the probability that the particle would be found in the ground state
of the sudden expansion?

(d) What is the expectation value of the energy of the particle before and after
the sudden expansion?

11. An electron is confined to a 1 micron layer of silicon. Assuming that the
semiconductor can be adequately described by a one-dimensional quantum
well with infinite walls, calculate the lowest possible energy within the material
in units of electron volt. If the energy is interpreted as the kinetic energy of the
electron, what is the corresponding electron velocity? The effective mass of
electrons in silicon is 0.26 m0, where m0 ¼ 9.11 � 10�31 kg is the free electron
rest mass.

12. In examining the finite potential well solution, suppose we restrict our interest to
energies where ζ ¼ E/Uo < 0.01 and permit “a” to become very large such that in
Eq. (3.61), α0aζmax

½ > > π. Present an argument which concludes that the
energy states of interest will be very closely approximated by those of the
infinitely deep potential well.

13. In this exercise, we will apply the material in Sect. 4.4.4 (page144) to calculate
the factor of confinement of a particle in a finite well. For convenience we
consider symmetric case, we will translate the x-axis so that the potential equals
to 0 in the region: �a/2 < x < a/2.
(a) Rewrite the Eq. (4.57) in this new coordinate system. Use the boundary

condition to eliminate some trivial constants. By symmetry, we search for
solutions in two families of functions: even and odd function. Show that the
even solutions satisfy two equations:

tan
ka

2

� �
¼ α

k

k2 þ α2 ¼ 2mU0

h2

8>><>>:
while the odd solutions satisfy:
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� cot
ka

2

� �
¼ α

k

k2 þ α2 ¼ 2mE

h2

8>><>>:
How can you resolve these equations graphically?

(b) The particle is in the ground state, which is even, of energy E. Find the
probability for the particle to stay in the well. This quantity is defined as the
confinement factor (or coefficient of confinement).

Student can find a simulation of this problem at http://www.sgi.com/fun/
java/john/wave-sim.html.

14. Consider a particle of mass m moving in the potential:

V xð Þ ¼ � h2a2

m

1

cosh2 axð Þ
(a) Show that this potential has a bound eigenstate described by the

wavefunction:

ψ0 xð Þ ¼ A

cosh axð Þ
and find the corresponding eigenenergy. Normalize ψ0 and sketch it. This
turns out to be the only bound state for this potential.

(b) Show that the wavefunction is:

ψ k xð Þ ¼ B ik�atanh axð Þ
ikþa


 �
eikx

where hk ¼ ffiffiffiffiffiffiffiffiffi
2mE

p
, solves the Schrödinger equation for any positive energy E and

near 	1 the asymptotic of ψk(x) has the plane wave form. Determine the transmis-
sion coefficient if it is defined as the square of the ratio between the amplitude of the
coming wave (at �1) and that of the going out wave (at +1). What physical
situation does ψk represents?

Student can find a simulation of this problem at http://www.kfunigraz.ac.at/
imawww/thaller/visualization/vis.html.

15. Using the Heisenberg equation of motion Eq. (4.30) and the Hamiltonian of a
free particle in a magnetic field given by Eq. (4.171), evaluate the velocity
operators vx, vy, and vz. Note how the magnetic field has modified one of the
velocities. How does the presence of an electric field, if at all, modify the
velocity operators?

As a consequence of relativity, the spin magnetic moment of an electron is
coupled to its own orbit via the interaction:
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Hso ¼ h
4m2c2

∇
!

V
�
r
!�� p

!
� �

� s!

whereV
�
r
!�

is the total potential seen by the electron and s
!
is the spin operator. What

is the effect of the spin-orbit interaction on the quantum mechanical definition of the
velocity operator (use the Heisenberg equation of motion Eq. (4.30)). What is the
dependence of the spin-orbit coupling on the orbital angular momentum L, ifV

�
r
!�

is
the Coulomb potential of the hydrogen atom?

16. A particle of energy E traveling from the left hits a barrier of height U > E and
thickness L. Calculate the transmission coefficient.

incident wave

reflected wave

transmitted waveU

L

x

U(x)

Student can find a simulation of this problem at http://www.kfunigraz.ac.at/
imawww/thaller/visualization/vis.html http://www.sgi.com/fun/java/john/
wave-sim.html.

17. The one-dimensional harmonic oscillator Eq. (4.62) is subject to an electric field
F which produces an extra term qFx in the Hamiltonian. Calculate the new
wavefunctions and energy levels using the zero field solutions. How does the
field affect the symmetry of the charge distribution in the ground state?

18. Explain the Wentzel Kramer Brillouin (WKB) approximation. Why is it impor-
tant and when would you use it? Using Eq.(4.183) verify the estimate of Eq.
(4.185).

19. We have seen that in a magnetic field, the magnetic moment of an electron
couples to an external magnetic field B to give the so-called Zeeman term
HZ ¼ � gμB. Bzsz where for free electrons the factor g we have introduced is
called the g-value and is given without quantum field corrections by g¼�2 and
with corrections by g ¼ �2.0023. In a medium the spin-orbit coupling can
change the effective value of g called also the Lande’s g-value. In an electron
spin resonance experiment (ESR), the spins of electrons in a magnetic field can
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be flipped by photon absorption. Calculate the energy of a photon needed to
change the spin direction of an electron from down to up in a magnetic field of
0.3 T and a g-value of 2.35.

20. Calculate the first-order correction to the energy of an electron in electron
volts eV, in the ground state of hydrogen due to the gravitational potential of
the nucleus given by VG ¼ � m1m2G

r where m1 and m2 are electron and
proton masses, respectively, and G is the gravitational constant given by
G ¼ 6.672.10�11N�m2�kg�2.
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Electrons and Energy Band Structures
in Crystals 5

5.1 Introduction

In Chap. 4, we introduced quantum mechanics as the proper alternative to classical
mechanics to describe physical phenomena, especially when the dimensions of the
systems considered approach the atomic scale. The concepts we learned will now be
applied to describe the physical properties of electrons in a crystal. During this
process, we will make use of the simple quantum mechanical systems which were
mathematically treated in the previous chapter. This will lead us to the description of
a very important concept in solid-state physics, namely, that of the “energy band
structures.”

5.2 Electrons in a Crystal

So far, we have discussed the energy spectrum of an electron in an atom, and more
generally in a one-dimensional potential well. Modeling an electron in a solid is
much more complicated because it experiences the combined electrostatic potential
of all lattice ions and all other electrons. Nevertheless, the total potential acting on
the electrons in a solid shares the symmetry of the lattice and thus reflects the
periodicity of the lattice in the case of a crystal. This simplifies the mathematical
treatment of the problem and allows us to understand how the energy spectrum,
wavefunctions, and other dynamic characteristics (e.g., mass) of electrons in a solid
are modified from the free particle case.

5.2.1 Bloch Theorem

The Bloch theorem provides a powerful mathematical simplification for the
wavefunctions of particles evolving in a periodic potential. The solutions of the
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Schrödinger equation in such a potential are not pure plane waves as they were in the
case of a free particle (Eq. (4.33)) but are waves which are modulated by a function
having the periodicity of the potential or lattice. Such functions are then called Bloch
wavefunctions and can be expressed as:

Ψ
�
k
!
; r
!� ¼ exp

�
i k
!
: r
!�

:u
�
k
!
; r
!� ð5:1Þ

where k
!

is the wavenumber vector (in three dimensions) or wavevector of the

particle, r
!

its position, and u
�
k
!
; r
!�

a space-dependent amplitude function which
reflects the periodicity of the lattice:

u
�
k
!
; r
! þ R

!� ¼ u
�
k
!
; r
!� ð5:2Þ

The expression in Eq. (5.1) means that the Bloch wavefunction is a plane wave,
given by the exponential term in Eq. (5.1), which is modulated by a function which
has the periodicity of the crystal lattice. An illustration of this is shown in Fig. 5.1 in
the one-dimensional case.

Combining Eqs. (5.1) and (5.2) leads us to the form:

Ψ
�
k
!
; r
! þ R

!� ¼ exp
�
i k
!
: R
!�

Ψ
�
k
!
; r
!� ð5:3Þ

for any lattice vector R
!
. In a one-dimensional case, d being the period of the potential

or lattice, this can be written as:

exp(ikx)

u(k,x)

Ψ(k,x)

= exp(ikx)u(k,x)

Fig. 5.1 One-dimensional
illustration of a Bloch
wavefunction (bottom) as a
plane wave (top) modulated
by a periodic function which
has the period of the lattice
(middle)
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Ψ k; xþ dð Þ ¼ exp ikdð ÞΨ k; xð Þ ð5:4Þ
This shows that the wavefunction is the same for two values of k which differ by

integral multiples of 2πd . We can therefore restrict the range of allowed values of k to
the interval �π

d < k � π
d.

Another important limit of the Bloch theorem is for non-infinite crystals. In this
case, it is common to use the periodic boundary conditions for the Bloch
wavefunction, i.e., the wavefunction is the same at opposite extremities of the
crystal. Assuming a linear periodic chain of N atoms (period d ), the periodic
boundary condition can be written as:

Ψ k; xð Þ ¼ Ψ k; xþ Ndð Þ ¼ exp ikNdð ÞΨ k; xð Þ ð5:5Þ
which means that:

exp ikNdð Þ ¼ 1 ð5:6Þ
or:

k ¼ 2πn
Nd

ð5:7Þ

where n is an integer. Since we restricted the range of k between�π
d and

π
d, n can only

take integer values between�N
2 and

N
2. There are thus only N distinct values for n and

thus k.

5.2.2 One-Dimensional Kronig-Penney Model

In addition to the Bloch theorem, which simplified the wavefunction of a particle,
there is a further simplification of the periodic potential, which is often used and is
referred to as the Kronig-Penney model. We will continue with the one-dimensional
formalism started in the previous section. In the Kronig-Penney model, the crystal is
assumed to be infinite. In this model, the real crystal potential experienced by an
electron is shown in Fig. 5.2a and is approximated by the one depicted in Fig. 5.2b.

The solution of the Kronig-Penney model partially utilizes the results from the
finite potential well problem discussed in Sect. 4.4.4, and the same notations have
therefore been used in Fig. 5.2b. The mathematical analysis will first be conducted
locally, in the region –b < x < a, where the potential can be approximated by
Eq. (4.48) except that there is a new limit for the variable x.

The wavefunction solution of the Schrödinger equation thus has two distinct
components, Ψ1(x) and Ψ2(x), in different regions of space which must satisfy:
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d2Ψ1 xð Þ
dx2

þ α2Ψ1 xð Þ ¼ 0 for � b < x < 0

d2Ψ2 xð Þ
dx2

þ β2Ψ2 xð Þ ¼ 0 for 0 < x < a

8>>><
>>>:

ð5:8Þ

by defining:

α ¼
iα�, withα� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0 � Eð Þ

h2

r
when 0 < E < U0

αþ, withαþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � U0ð Þ

h2

r
when U0 < E

8>>><
>>>:

β ¼
ffiffiffiffiffiffiffiffiffi
2mE

h2

r

8>>>>>>>><
>>>>>>>>:

ð5:9Þ

The general solution to Eq. (5.8) can be expressed as:

Ψ1 xð Þ ¼ A1 sin αxð Þ þ B1 cos αxð Þ
Ψ2 xð Þ ¼ A2 sin βxð Þ þ B2 cos βxð Þ

(
ð5:10Þ

with the understanding that sin(αx) and cos(αx) become -isinh(α�x) and cosh(α�x),
respectively, when the quantity α ¼ iα is imaginary.

The boundary conditions imply the continuity of Ψ(x) and its first derivative dΨ xð Þ
dx

at point x ¼ 0 and include the periodicity condition of the wavefunction expressed
through the Bloch theorem in Eq. (5.4) between points x ¼ a and x ¼ �b:

U(x)

x

U(x)

0

U0

a0

d=a+b

-b

a

b

Fig. 5.2 (a) Real crystal
potential experienced by
electrons in a crystal and (b)
simplified crystal potential
used in the Kronig-Penney
model
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Ψ1 0ð Þ ¼ Ψ2 0ð Þ
dΨ1

dx
0ð Þ ¼ dΨ2

dx
0ð Þ

8<
:

eik aþbð ÞΨ1 �bð Þ ¼ Ψ2 að Þ

eik aþbð Þ dΨ1

dx
�bð Þ ¼ dΨ2

dx
að Þ

8<
:

ð5:11Þ

Utilizing Eq. (5.10), we obtain:

B1 ¼ B2

αA1 ¼ βA2

eik aþbð Þ �A1 sin αbð Þ þ B1 cos αbð Þ½ � ¼ A2 sin βað Þ þ B2 cos βað Þ
eik aþbð Þ αA1 cos αbð Þ þ αB1 sin αbð Þ½ � ¼ βA2 cos βað Þ � βB2 sin βað Þ

8>>>><
>>>>:

ð5:12Þ

which can be simplified by expressing A2 and B2 in terms of A1 and B1:

A1 eik aþbð Þ sin αbð Þ þ α

β
sin βað Þ

� �
þ B1 cos βað Þ � eik aþbð Þ cos αbð Þ� � ¼ 0

A1 αeik aþbð Þ cos αbð Þ � α cos βað Þ� �þ B1 β sin βað Þ þ αeik aþbð Þ sin αbð Þ� � ¼ 0

8><
>:

ð5:13Þ
This system of two equations with two unknowns has a nonzero solution (i.e., A1

and B1 not both zero) if the determinant of the system is zero (for more details on the
mathematics, the reader is referred to any introductory book on linear algebra). This
means that the product of the first bracket in the top equation by the second bracket in
the bottom equation minus the product of the second bracket in the top equation by
the first bracket in the bottom equation is zero:

eik aþbð Þ sin αbð Þ þ α

β
sin βað Þ

� �
β sin βað Þ þ αeik aþbð Þ sin αbð Þ� �

� cos βað Þ � eik aþbð Þ cos αbð Þ� �
αeik aþbð Þ cos αbð Þ � α cos βað Þ� � ¼ 0

ð5:14Þ

or after simplification:

cos k aþ bð Þ ¼ � α2 þ β2

2αβ
sin αbð Þ sin βað Þ þ cos αbð Þ cos βað Þ ð5:15Þ

Using the same constants as in Eq. (4.57), we can rewrite Eq. (5.9) as:
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α ¼ iα�, withα� ¼ α0
ffiffiffiffiffiffiffiffiffiffiffi
1� ζ

p
when0 < E < U0

αþ, withαþ ¼ α0
ffiffiffiffiffiffiffiffiffiffiffi
ζ � 1

p
whenU0 < E

(

β ¼ α0
ffiffiffi
ζ

p

8>><
>>: ð5:16Þ

Therefore, Eq. (5.15) can be simplified into:

cos k aþ bð Þ ¼ 1� 2ζ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ 1� ζð Þp sin α0a

ffiffiffi
ζ

p	 

sinh α0b

ffiffiffiffiffiffiffiffiffiffiffi
1� ζ

p	 

þ cos α0a

ffiffiffi
ζ

p� �
cosh α0b

ffiffiffiffiffiffiffiffiffiffiffi
1� ζ

p� �
for 0 < ζ < 1

cos k aþ bð Þ ¼ 1� 2ζ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ ζ � 1ð Þp sin α0a

ffiffiffi
ζ

p	 

sin α0b

ffiffiffiffiffiffiffiffiffiffiffi
ζ � 1

p	 

þ cos α0a

ffiffiffi
ζ

p� �
cos α0b

ffiffiffiffiffiffiffiffiffiffiffi
ζ � 1

p� �
for 1 < ζ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5:17Þ

In these equations, the only variable in the right-hand side functions is the energy
E, while the only variable in the left-hand side is the wavenumber k. Similar to the
finite potential well case, a solution in ζ of Eq. (5.17) allows us to determine the
values of the energy as well as the wavefunctions (after normalization).

5.2.3 Energy Bands

In the Kronig-Penney model, the crystal is assumed to be infinite. Therefore, the
periodic boundary condition of the Bloch wavefunction is unnecessary, and the
wavenumber k can take a continuous range of values and is real (i.e., not complex).
Equation (5.17) is most easily solved graphically. The shape of the right-hand side
function of Eq. (5.17), which we will call f(ζ), can be visualized in Fig. 5.3.

Because of the cosine on the LHS of Eq. (5.17), only values of f(ζ) that are
between �1 and +1 lead to allowed (real) values for k. The areas where this occurs
are shaded in Fig. 5.3. Because k is determined through a cosine function, two
opposite values of k are possible for the same value for f(ζ). In these shaded areas,
there is a continuous range of values for ζ (or E), corresponding to allowed energy
bands. Some values of ζ, however, occur in non-shaded areas in Fig. 5.3 and are thus
“forbidden,” meaning that there is no possible state corresponding to these values of
energy. Such regions are called regions of forbidden energy, or energy gaps. An
illustration of these energy bands is given in Fig. 5.4.

Furthermore, as we can see from Fig. 5.3, for every given value of k between� π
aþb

and π
aþb, several values of ζ (thus E) are possible. An actual plot of the E–k

relationship is given in Fig. 5.5 and is called the energy spectrum, the band diagram,
or band structure. This type of diagram is very important in determining the
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properties of an electron in a crystal. A noteworthy feature, which is true for real
crystals and which can easily be seen in this diagram, is that the slope of the energy
band, i.e. dEdk , is equal to zero at the center (k ¼ 0) and extremities (k ¼ � π

aþb). This
diagram, in which the value of k is restricted in the interval between� π

aþb and
π

aþb, is

b
an

d
 1

b
an

d
 2

b
an

d
 3

b
an

d
 4

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

f(
ζ)

ζ

Fig. 5.3 Plot of the right-hand side of Eq. (5.17), showing the graphical determination of the E–k
relationship. There exists a solution to Eq. (5.17) only when the right-hand side of the equation is
between �1 and +1, which correspond to the shaded areas

E
U(x)

band 1

band 2

band 3

band 4

Fig. 5.4 Illustration of the concept of energy bands in the crystal
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often referred to as the reduced-zone representation of the energy versus k dispersion
relation, as opposed to the extended-zone representation which we will now briefly
discuss.

Because the energy is a periodic function of k, the reduced-zone scheme is the
right way to think about the band structure of the system. All the information about
the allowed energy bands is contained in the first Brillouin zone. Going outside the
Brillouin zone simply repeats the same information; it does not add anything new to
our knowledge. In the extended-zone representation, one can lift the previous
restriction on the k-values and instead of being restricted to the values in the interval
� π

aþb and
π

aþb, k is allowed to have any (larger) values. This however does not change
the wavefunction because of the Bloch theorem: the k-values outside the first
Brillouin zone can be reduced to ones inside the first Brillouin zone by “subtracting”

a reciprocal; lattice vectorK
!
. One can if one wishes unfold the band diagram into the

diagram shown in Fig. 5.6, but the larger values of k can be reduced to equivalent
values of k inside the first zone. Unlike for free particles, in a crystal subject to
Bloch’s theorem the higher values of k do not signify a higher value of momentum.
Indeed, values of momentum differing from each other exactly by a reciprocal lattice

vector are indistinguishable. This does not mean that k
!

has nothing to do with
momentum, it is related to the particle momentum, but it is defined and conserved

only up to a reciprocal lattice vector: If one adds a reciprocal lattice vector to k
!
, the

k
0

E

a+b
−p p

a+b

Band 1

Band 2

Band 3

Band 4

Fig. 5.5 One-dimensional
E–k relationship in the
reduced-zone representation
in the Kronig-Penney model
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energy in the same band remains the same. The expression hk, which corresponded
to the particle momentum in the free particle case (hpi ¼ hk), is now referred to as the
quasi-momentum of the electron or the crystal momentum because it includes the
interaction of the electron with the crystal. This explains why one can add integral
multiples of 2π

aþb to the wavenumber without changing the band structure of the
crystal, while this would be meaningless if it was a particle momentum. The reason
why this quasi-momentum is not absolutely conserved in a lattice, and only
conserved up to a reciprocal lattice vector, is ultimately connected to the fact that
the Hamiltonian in a lattice is not translationally invariant over any arbitrary
displacement as it would be in a space with no external forces, but it is only invariant
when displaced by a lattice vector.

5.2.4 Nearly Free Electron Approximation

The Kronig-Penney model discussed previously is not the only method to determine
the band structure in crystals, but it is the simplest and leads to a complete analytic
solution. Many other methods have been developed which can be methodologically
divided into two groups: one that uses the nearly free electron method and the other
the tight-binding method (to be discussed below). Nevertheless, they all lead to
similar results as they are merely different descriptions of the same phenomena. Here
we have approximately described the band structure using the Kronig-Penney

k

E

0

Free particle

Kronig-Penney

Model

a+b
− 4p

a+b
3p

a+b
4p

a+b
− 3p

a+b
2p

a+b
− 2p

a+b
p

a+b
−p

Fig. 5.6 One-dimensional E–k relationship in the extended-zone representation in the Kronig-
Penney model. The parabolic relation for the free particle is shown in dotted lines for comparison.
The deviation from a parabolic shape occurs mainly at the Brillouin zone boundaries
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model. In this subsection, we will briefly discuss the principle of the nearly free
approximation (see Appendix A.7 for the pseudopotential approach).

This method is based on the assumption that the periodic potential introduces a
small perturbation to the free electron state, i.e., a perturbation term is added to the
potential energy in the Schrödinger equation, wavefunctions, and energy of the free
particle to reflect this effect. Although these perturbations are small, the mathemati-
cal computation results in significant changes in the energy spectrum of a free
electron. The reason is that the periodic potential scatters the electrons, and
only the constructive interference of the waves survives and can propagate in the
lattice as a Bloch function. The resulting band diagram in the extended-zone
representation is depicted in Fig. 5.7 (solid line) and compared with that of a free
electron (dashed lines).

The discontinuous curve results from the “reflections” that the electron waves
with momenta of �hK/2 experience at atomic lattice planes, where K is a reciprocal
lattice vector (see Chap. 3 for reciprocal lattice). In the simple cubic lattice, Kj j ¼ 2π

d

where d is the lattice constant. These locations correspond to the boundaries of the
Brillouin zones defined in the previous subsection.

The energy difference between branches at points A1 and B1 (A2 and B2) is the
energy gap that appears as a result of the periodic potential in the lattice. The value of
the energy gap depends on the amplitude of the periodic potential. When the periodic
potential reduces to be zero, the energy gaps close, and the spectrum becomes that of
a free particle as shown in Fig. 4.5.

The band diagram can also be plotted in the reduced-zone representation where
the energy spectrum is reduced to the smallest first Brillouin zone of range �K

2;þK
2

� �
as shown in Fig. 5.8.

k
K/2-K/2 0

E

A2 A1

B1B2

Fig. 5.7 Electron energy in a
lattice (solid curve) and
energy spectrum of free
electrons (dashed curve). The
deviation from the parabolic
shape occurs at the Brillouin
zone boundaries
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5.2.5 Tight-Binding Approximation

The other method commonly used to determine the band structure in a crystal, the
tight-binding approximation, employs atomic wavefunctions as the basis set for the
construction of the real wavefunction of an electron.

When initially isolated atoms with discrete electron energy levels are brought
together and arranged in a lattice with small interatomic distances (typically �
3–6 Å), the potential of each atom will be distorted due to the influence of other
atoms. At the same time, the wavefunctions of electrons from different atoms will
overlap, i.e., the probability of the presence of electrons from different atoms will be
nonzero in the same position in space. These result in a nonzero probability for an
electron to escape from one atom to the nearest neighbor. This causes a broadening
of the initially discrete energy spectrum and creates energy bands of finite width
instead. In other words, an electron does not live at a certain atomic energy level for
an infinite time but travels from site to site which is equivalent to the movement of
electrons in an energy band. Expressed mathematically, the Bloch superposition of
localized orbitals gives us the tight-binding wavefunction:

Ψ
k
!
�
r
!� ¼X

j, n
β jΦ j

�
r
! �R

!
n

�
exp
�
i k
!
�R!
n

� ð5:18Þ

where βj are the admixture coefficients of the jth orbital and Φ j

�
r
! �R

!
n

�
is the jth

orbital itself on the atom located at R
!
n
, respectively. Substituting Eq. (5.18) into the

time-independent Schrödinger equation allows us to calculate the energy bands. One
does this to a good approximation by noting that the atomic problem (kinetic energy
plus the potential of a given atom) is solved by the given orbital function, and the
energy is known, i.e., using:

� h2

2m
▽2 þ V

�
r
! �R

!
i

�� �
Φα

�
r
! �R

!
i

� ¼ EαΦα

�
r
! �R

!
i

�

k
K/2-K/2 0

E

A1
B1

A2
B2

Fig. 5.8 Electron energy in
the reduced-zone scheme
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where Eα is the energy of the atomic level and then multiplying both sides of
the Schrödinger equation with a complex conjugate orbital state and then
assuming the orthogonality of the orbitals centered on different sites. Normally,
it is sufficient to keep only the nearest neighbor overlap terms

tlþ1, l ¼
ð
d r

! Φ∗
�
r
! �R

!
lþ1
�
V
�
r
! �R

!
l

�
Φ
�
r
! �R

!
l

�
. This quantity is the so-called

two-center integral, and this simplification makes the tight-binding method a good
starting point for an approximate band structure calculation.

For the outer valence electrons which are usually of interest to us, the overlapping
of wavefunctions is large, so the width of the energy band reaches several eV, i.e., is
of the order of and even exceeds the spacing between the successive energy levels of
an isolated atom. For electrons of the inner atomic shell, the level broadening is
smaller, so the energy levels remain essentially sharp. The level broadening, which
can be estimated to be zt where z is the number of nearest neighbors, and we take
tij~t, is illustrated in Figs. 5.9 and 5.10.

Interatomic

distance

E Two energy levels

of N isolated atoms

E1

E2

Energy states

in N tightly-bound atoms

bands

Fig. 5.9 Broadening of the
atomic energy levels in a
solid. When the atoms are
isolated, they all have the
same allowed discrete energy
levels (e.g., E1 and E2). When
the interatomic distance
decreases, the atoms interact
with one another and the
allowed energy levels split:
some increase while some
others decrease

r

E E

isolated atoms

solid

E

Fig. 5.10 Change in energy
spectrum from single atoms to
a solid. Each of the discrete
energy levels in two isolated
atoms split into two separate
energy levels when the atoms
are bound in a solid
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Bringing atoms together and modifying their energy levels is the methodology of
the “tight-binding approximation” because we start from tightly bound electrons in
the atoms. This is in contrast with the previous nearly free electron approximation
approach where we began with the free electron model and progressed by adding a
periodic potential as a perturbation. With the tight-binding model, one arrives to a
qualitatively similar band picture as that obtained from the nearly free electron
model.

5.2.6 Dynamics of Electrons in a Crystal

The dynamics of electrons in a crystal can now be analyzed by considering an
electron as a wavepacket. We will continue with the one-dimensional formalism of
previous subsections.

Assuming that a wavepacket is centered on a frequency ω and a wavenumber k,
the electron can be considered to be moving at a velocity vg, called group velocity,
which characterizes the speed of propagation of the energy that it transports. This
velocity is defined by classical wave theory to be:

vg ¼ dω

dk
ð5:19Þ

In quantum mechanics, this would correspond to the velocity of the electron.
From the wave-particle duality, the frequency of the wave is related to the energy of
the particle by E ¼ hω and Eq. (5.19) thus becomes:

vg ¼ 1
h
dE

dk
ð5:20Þ

When an external force F acts on the wavepacket or electron so that a mechanical
work is induced, it changes the energy E by the amount:

dE ¼ Fdx ¼ Fvgdt ð5:21Þ
where dx is the distance over which the force is exerted during the interval of time dt.
The force F can then be successively expressed as:

F ¼ 1
vg

dE

dt
¼ 1

vg

dE

dk

dk

dt
ð5:22Þ

or:

F ¼ h
dk

dt
¼ d hkð Þ

dt
ð5:23Þ

after using Eq. (5.20). On the other hand, differentiating Eq. (5.20) with respect to
time leads to:
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dvg
dt

¼ 1
h
d

dt

dE

dk


 �
¼ 1

h
d2E

dk2
dk

dt

or:

dvg
dt

¼ 1

h2
d2E

dk2
d hkð Þ
dt

ð5:24Þ

Eliminating d hkð Þ
dt in Eqs. (5.23) and (5.24), we find:

F ¼ 1
1
h2

d2E
dk2

 !
dvg
dt

ð5:25Þ

This expression resembles Newton’s law of motion when rewritten as:

F ¼ m∗dvg
dt

ð5:26Þ

where we have defined m* as:

m∗ ¼ h2

d2E
�

dk2

ð5:27Þ

m* is called the electron effective mass and has a very significant meaning in solid-
state physics. Equation (5.26) shows that, in quantum mechanics, when external
forces are exerted on the electron, the classical laws of dynamics can still be used if
the mass is changed in the mathematical expressions for the effective mass of the
electron.

Unlike the classical definition of mass, the effective mass is not a constant but
depends on the band structure of the electron. The effective mass expresses a
relationship between the band structure found in previous subsections and the
dynamics of an electron in a solid. This shows us how important it is to determine
the band structure in the first place and that an electron in a solid is very unlike an
electron in vacuum.

For example, in the case of a free electron, the energy spectrum is parabolic
(Eq. (4.35)):

E kð Þ ¼ h2k2

2m

where m is the mass of the electron. Using Eq. (5.27), the effective mass can be
found to be m∗ ¼ m, which means that the effective mass of a free electron is equal
to its classically defined mass.

However, when the energy spectrum is not parabolic with respect to the
wavenumber k anymore, as, for example, depicted in Fig. 5.7, the effective mass
differs from the classical mass. We thus see that the presence of a periodic potential
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results in a value of effective mass different from the classical mass. The effective
mass reflects the inverse of the curvature of the energy bands in k-space (i.e., d2E

dk2
).

Where the bands have a high curvature, m* is small, while for bands with a small
curvature (i.e., almost flat bands) m* is large.

It is also worth noticing that since d2E
dk2

can be negative, m* can also be negative,
although it is not interpreted so, as we will see later by considering holes (Sect.
5.3.3). A negative effective mass means that the acceleration of the electron is in the
direction opposite to the external force exerted on it, as shown in Eq. (5.26). This
phenomenon is possible because of the wave-particle duality: an electron has wave-
like properties and can therefore be reflected from the lattice planes when its
wavevector satisfies the Bragg condition. Experimentally, if the momentum given
to an electron from an external force is less than the momentum in the opposite
direction given from the lattice (reflection), a negative electron effective mass will be
observed.

Finally, it should also be noted that experiments conducted to measure the mass
of an electron only lead to an estimate of its effective mass, or at least “components”
of it.

Example

Q Assuming that the energy dispersion of a band in a semiconductor can be
expressed as E ¼ Ak2, where A ¼ 84.67 Å2�eV, calculate the electron effective
mass in this band, in units of free electron rest mass m0.

A We make use of the formula: m∗ ¼ 1
1
h2

d2E
dk2

¼ 1
1
h2

d2 Ak2ð Þ
dk2

¼ h2
2A. In units of free

electron mass, we get:

m∗

m0
¼ h2

2Am0

¼ 1:05458� 10�34
� �2

2� 84:67� 10�20 � 1:60218� 10�19
� �

0:91095� 10�30
� �

¼ 0:045

5.2.7 Fermi Energy

We have seen so far that the electron energy spectrum in a solid consists of bands.
These bands correspond to the allowed electron energy states. Since there are many
electrons in a solid, it is not enough to know the energy spectrum for a single
electron, but the distribution of electrons in these bands must also be known to
understand the physical properties of a solid. Similar to the way the electrons fill the
atomic orbitals with lower energies first (Chap. 1), the electrons in a crystal fill the
lower energy bands first while satisfying the Pauli exclusion principle.
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Let us consider a solid where there are m energy levels and n electrons, at
equilibrium. Usually these numbers are extremely large, and the number m of
allowed energy levels (taking into account the spin degeneracy) in a solid is much
larger than the number n of electrons (m 	 n): for instance, an iron metal with a
volume of 1 cm3 will have approximately 1022 atoms and 1024 electrons. At
equilibrium, when no electron is in an excited state (e.g., at the absolute zero
temperature, 0 K), the lowest n energy levels will be occupied by electrons, and
the next remaining m-n energy levels remain empty.

If the highest occupied state is inside a band, the energy of this state is called the
Fermi level and is denoted by EF. That band is therefore only partially filled. This
situation usually occurs for metals and is depicted in Fig. 5.11b. In the case of
semiconductors, at T ¼ 0 K, all bands are either full or empty. The Fermi level thus
lies between the highest energy fully filled band (called valence band) and the lowest
energy empty band (called conduction band), as shown in Fig. 5.11a. The energy gap
between the valence band and the conduction band is called the bandgap and is
denoted Eg.

The location of the Fermi level relative to the allowed energy bands is crucial in
determining the electrical properties of a solid. Metals have a partially filled free
electron band, since the Fermi level lies inside this band, which makes metals good
electrical conductors because an applied electric field can push electrons easily into
empty closely lying higher energy levels and in this way make them move in space
and contribute to electrical conduction. By contrast, at 0 K, most semiconductors
have completely filled or completely empty electron bands, which means that the
Fermi energy lies inside a forbidden energy gap, and consequently the electric field
cannot displace them from where they are in energy and therefore also not in space.
Intrinsic semiconductors are poor electrical conductors at low temperatures. They

Fig. 5.11 Bands in (a)
semiconductors and (b)
metals. In most
semiconductors, EF is in the
bandgap. In semiconductors,
there is an energy region that
does not contain allowed
energy levels, and the Fermi
energy is located in it. In
metals, the Fermi energy is
located inside an allowed
energy band
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only conduct when carriers are thermally excited across the bandgap. The same can
be said about insulators. Insulators differ from semiconductors in that their energy
gap is much larger than kbT, where kb(kb ¼ 1.38066 � 10�23 J�K�1 ¼ 0.08625
meV�K�1) is the Boltzmann constant and T is the temperature in degrees K.

5.2.8 Electron Distribution Function

When the temperature is above the absolute zero, at thermal equilibrium, the
electrons do not simply fill the lowest energy states first. We need to consider
what is called the Fermi-Dirac statistics which gives the distribution of probability
of an electron to have an energy E at temperature T:

f e Eð Þ ¼ 1

exp E�EF
kbT

	 

þ 1

ð5:28Þ

where EF is the Fermi energy and kb is the Boltzmann constant. This distribution is
called the Fermi-Dirac distribution and is plotted in Fig. 5.12 for various values of
temperatures. This distribution function is obtained from statistical physics. In this
description, the interaction between electrons is neglected, which is why we often
talk of an electron gas.

In fact, a more general formulation of the Fermi-Dirac statistics involves a
chemical potential μ instead of the Fermi energy EF. This chemical potential depends
on the temperature and any applied electrical potential. But in most cases of
semiconductors, the difference between μ and EF is very small at the temperatures
usually considered.

At T¼ 0 K, the Fermi-Dirac distribution in Eq. (5.28) is equal to unity for E < EF

and zero for E > EF. This means that all the electrons in the crystal have their energy
below EF. At a temperature T > 0 K, the transition from unity to zero is less sharp.
Nevertheless, for all temperatures, fe(E) ¼ ½ when E ¼ EF.

0

1

E

fe(E)

T3

T2 T1

EF

T0

Fig. 5.12 Fermi-Dirac
distribution function at
different temperatures:
T3 > T2 > T1,T0 ¼ 0 K. At the
absolute zero temperature, the
probability of an electron to
have an energy below the
Fermi energy EF is equal to
1, whereas its probability to
have a higher energy is zero
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To determine the Fermi energy, we must first introduce the concept of density of
states. So far, we have somewhat indexed energy states individually, each having a
certain energy. It is often more convenient to index these states according to their
energy and determine the number of states which have the same energy.

5.3 Density of States (3D)

The concept of density of electronic states, or simply density of states, corresponds
to the number of allowed electron energy states (taking into account spin degener-
acy) per unit energy interval around an energy E. Most properties of crystals and
especially semiconductors, including their optical, thermodynamic and transport
properties, are determined by their density of states. In addition, one of the main
motivations for considering low-dimensional quantum structures is the ability to
engineer their density of states. In this section, we will present the calculation of the
density of states in a bulk three-dimensional crystal, which will serve as the basis for
that of low-dimensional quantum structures.

An ideal crystal has a periodic structure, which means that it has to be infinite
since a surface would violate its periodicity. However, real crystals have a finite
volume. We saw in Sect. 5.2 that one way to reconcile these two apparently
paradoxical features in crystals was to exclude surfaces from consideration by
using periodic boundary conditions (Born-von Karman). This allows us to just
consider a sample of finite volume which is periodically repeated in all three
orthogonal directions. A very important consequence of this was the quantization
of the wavenumber k of the electron states in a crystal, as expressed through
Eq. (5.7).

The analysis in Sect. 5.2 was primarily conducted in one spatial dimension (x) for
the sake of simplicity. Here, it will be more appropriate to consider all three
dimensions, i.e., to use r

!¼ x; y; zð Þ.

5.3.1 Direct Calculation

Let us assume that the shape of the crystal is a rectangular parallelepiped of linear
dimensions Lx, Ly, and Lz and volume V¼ LxLyLz. The periodic boundary conditions,
similar to Eq. (5.5), require the electron quantum states to be the same at opposite
surfaces of the sample:

Ψ xþ Lx; y; zð Þ ¼ Ψ x; yþ Ly; z
� � ¼ Ψ x; y; zþ Lzð Þ ¼ Ψ x; y; zð Þ ð5:29Þ

Using the Bloch theorem, these conditions mean that:

exp ikxLxð Þ ¼ exp ikyLy
� � ¼ exp ikzLzð Þ ¼ 1 ð5:30Þ

or:
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kx ¼ 2π
L1

nx

ky ¼ 2π
L2

ny

kz ¼ 2π
L3

nz

8>>>>><
>>>>>:

ð5:31Þ

where nx, ny, nz ¼ 0, � 1. . . are integers, while kx, ky, and kz are the wavenumbers
in the three orthogonal directions. These are in fact the coordinates of the electron

wavenumber vector or wavevector k
!
¼ kx; ky; kz
� �

. Therefore, the main result of the

periodic boundary conditions is that the wavevector k
!
of an electron in a crystal is

not a continuous variable but is discrete. Equation (5.31) actually defines a lattice for

the wavevector k
!
, and the space in which this lattice exists is in fact the k-space or

reciprocal space.

The volume of the smallest unit cell in this lattice is then 2πð Þ3
LxLyLz

¼ 2πð Þ3
V . From

Chap. 3, we know that there is exactly one lattice point in each such volume, which

means that the density of allowed k
!

is uniform and equal to V
2πð Þ3 in k-space.

Moreover, from Chap. 3, we recall that the wavevector k
!
was used to index electron

wavefunctions and therefore allowed electron states. The density of electron states
per unit k-space volume is therefore equal to:

g
�
k
!� ¼ 2

V

2πð Þ3 ð5:32Þ

where the extra factor of 2 arises from the spin degeneracy of electrons.

Example

Q Calculate the density of states in k-space for a cubic crystal with a side of only
1 mm. Is the density of state in k-space too low?

A
The density of states in k-space is given by: g

�
k
!� ¼ 2

V

2πð Þ3 ¼

2� 1mm3

8π3 ¼ 8:063� 10�3 mm3. This number may look small, but if we com-
pare with the volume of the first Brillouin zone, we will find that this density of
states is actually very high. For example, for a face-centered cubic lattice with a
lattice constant of a ¼ 5.65325 Å (e.g., GaAs), the volume of its first Brillouin

zone in k-space is given by: Vk ¼ 32 π
a

� �3 ¼ 5:492 Å�3. Therefore, the total
number of possible states in this first Brillouin zone is:

N ¼ Vkg
�
k
!� ¼ 5:492� 1021mm�3

� �
8:063� 10�3mm3
� �

� 4:43� 1019
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The density of states g(E) as defined earlier is therefore related to its counterpart

in k-space, g
�
k
!�

, by:

g Eð ÞdE ¼ g
�
k
!�

d k
!

ð5:33Þ

where dE and d k
!

are unit interval of energy and the unit volume in k-space,

respectively. In order to obtain g(E), one must first know the E
�
k
!�

relationship,
which is equivalent to the E–k relationship in one dimension and which gives the

number of wavevectors k
!

associated with a given energy E. This is a critical step
because the differences in the density of states of a bulk semiconductor crystal, a
quantum well, a quantum wire, and a quantum dot arise from it.

For a bulk semiconductor crystal, the electron density of states is calculated near
the bottom of the conduction band because this is where the electrons which give rise
to the most important physical properties are located. Furthermore, we choose the
origin of the energy at the bottom of this band, i.e., EC ¼ 0. Extrapolating from the

results of Sect. 5.2, the shape of the E
�
k
!�

relationship near the bottom of the
conduction band can generally be considered parabolic:

E
�
k
!� ¼ h2k2

2m∗
ð5:34Þ

where k is the norm or length of the wavevector k
!
, and m* is the electron effective

mass as defined in Sect. 5.2.6. Using this expression, we can express successively:

dE ¼ h2

2m∗
2kð Þdk ð5:35Þ

When considering orthogonal coordinates, the unit volume in k-space is defined
given by:

d k
!
¼ dkxdkydkz ð5:36Þ

which is equal, when using spherical coordinates, to:

d k
!
¼ d

4π
3
k3


 �
¼ 4πk2dk ð5:37Þ

Therefore, by replacing into Eq. (5.35), we get:

dE ¼ h2

2m∗

1
2πk


 �
d k

!
ð5:38Þ

Using Eq. (5.34) to express k in terms of E, and replacing into Eq. (5.38):
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dE ¼ h2

2m∗

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
h2

2m∗E

s0
@

1
Ad k

!

¼ 1
2π

h2

2m∗


 �3=2
1ffiffiffiffi
E

p d k
!

ð5:39Þ

Now, by replacing into Eq. (5.33), we obtain successively:

g Eð Þ ¼ 2π
2m∗

h2


 �3=2 ffiffiffiffi
E

p
g
�
k
!�

Finally, using Eq. (5.32), we get:

g3D Eð Þ ¼ V

2π2
2m∗

h2


 �3=2 ffiffiffiffi
E

p
ð5:40Þ

where a “3D” subscript has been added to indicate that this density of states
corresponding to the conduction band of a bulk three-dimensional semiconductor
crystal. This density of states is shown in Fig. 5.13.

Note that, if the origin of the energies has not been chosen to be the bottom of the
band (i.e., Ec 6¼ 0), then

ffiffiffiffi
E

p
would be replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Ec

p
.

Example

Q: Calculate the number of states from the bottom of the conduction band to 1 eV
above it, for a 1 mm3 GaAs crystal. Assume the electron effective mass is
m* ¼ 0.067m0 in GaAs.

A: The number of states from 0 to 1 eV above the bottom of the conduction band
is obtained by integrating the three-dimensional density of states g3D(E):

E

g3D(E)

Fig. 5.13 Energy
dependence of density of
states for a three-dimensional
semiconductor conduction
band. The density of states
follows a parabolic
relationship
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N ¼
ð1 eV
0

g3D Eð ÞdE. Since the expression for g3D(E) is given by:

g3D Eð Þ ¼ V
2π2

2m∗

h2

	 
3=2
ffiffiffi
E

p
, we obtain:

N ¼
ð1 eV
0

g3D Eð ÞdE ¼ V

2π2
2m∗

h2


 �3=2
ð1 eV
0

ffiffiffiffi
E

p
dE

¼ V

3π2
2m∗ � 1eV

h2


 �3=2

¼ 10�3
� �3
3π2

2 0:067∗0:91095� 10�30
� �� 1:60218� 10�19

� �
1:05458� 10�34
� �2

 !3=2

� 7:88� 1016

5.3.2 Other Approach

Amore elegant approach, but more mathematically challenging way, to calculate the
density of states is presented here. This method will prove easier when calculating
the density of states of low-dimensional quantum structures. The density of states g
(E) as defined earlier can be conceptually written as the sum: g(E)¼ 2� (number of

states which have an energy E
�
k
!�

equal to E) which can be mathematically
expressed as:

g Eð Þ ¼ 2
X
k
!

δ E
�
k
!�� E

� �
ð5:41Þ

where the summation is performed over all values of wavevector k
!
, since it is used to

index the allowed electron states. δ(x) is a special even function, called the Dirac
delta function, and is defined as:

δ xð Þ ¼ 0 for x 6¼ 0ðþ1

�1
δ xð Þdx ¼ 1

8>><
>>: ð5:42Þ

Some of the most important properties of the Dirac delta function include:
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ðþ1

�1
δ xð ÞY xð Þdx ¼ Y 0ð Þ

ðþ1

�1
δ x� x0ð ÞY xð Þdx ¼ Y x0ð Þ

8>>>>>>><
>>>>>>>:

ð5:43Þ

In addition, in crystals of macroscopic sizes, the differences between nearest

values of k
!
are small, as they are proportional to 1

Lx
, 1Ly, or

1
Lz
. Therefore, in practice, the

discrete variable k
!

can be considered as quasi-continuous. For this reason, the

summation of a functionY
�
k
!�

over all allowed states represented by a wavevector k
!

in k-space can be replaced by an integration over a continuously variable k
!
such that:

X
k
!

Y
�
k
!� 
 V

2πð Þ3
ððð

k
!

Y
�
k
!�

d k
!
¼ V

2πð Þ3
ð1

�1

ð1
�1

ð1
�1

Y kx; ky; kz
� �

dkxdkydkz

ð5:44Þ
The factor V

2πð Þ3 is the volume occupied by a reciprocal lattice point in k-space.

Eq. (5.41) can therefore be rewritten into:

g Eð Þ ¼ 1
4π3

ððð
k
!

δ E
�
k
!�� E

� �
d k

!
ð5:45Þ

Now, we need to use the expression of d E
�
k
!�� �

as a function of d k
!

found in

Eq. (5.39):

d E
�
k
!�� �

¼ 1
2π

h2

2m∗


 �3=2 1ffiffiffiffiffiffiffiffiffiffiffi
E
�
k
!�q d k

!
ð5:46Þ

Equation (5.45) therefore becomes:

g Eð Þ ¼ 2πV
4π3

2m∗

h2


 �3=2
ð1
0

δ E
�
k
!�� E

� � ffiffiffiffiffiffiffiffiffiffiffi
E
�
k
!�r

d E
�
k
!�� �

ð5:47Þ

and after the change of variable E
�
k
!�! x:
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g Eð Þ ¼ V

2π2
2m∗

h2


 �3=2
ð1
0

δ x� Eð Þ ffiffiffi
x

p
dx ð5:48Þ

Using Eq. (5.43), and because E > 0:

g Eð Þ ¼ V

2π2
2m∗

h2


 �3=2 ffiffiffiffi
E

p
ð5:49Þ

which is the same expression as Eq. (5.40) for g3D(E).
Therefore, the knowledge of the Fermi-Dirac distribution, which gives us the

probability of the presence of an electron with energy E, and the density of states,
which tells how many electrons are allowed with an energy E, together permit the
determination of the distribution of electrons in the energy bands. The total number
of electrons in the solid, ntotal, is therefore obtained by summing the product of the
Fermi-Dirac distribution and the density of states over all values of energy:

ntotal ¼
ð1
0
g Eð Þf e Eð ÞdE ð5:50Þ

Because EF is embedded into the function fe(E), this equation shows us how the
Fermi energy can be calculated.

One important parameter for semiconductor devices is the concentration or
density of electrons n in the conduction band. The following discussion provides a
simplified overview of the formalism commonly used for this parameter and
illustrates well the use of the Fermi-Dirac distribution. A more detailed analysis
will be provided in Chap. 7 in which we will discuss the equilibrium electronic
properties of semiconductors. Here, the density of electrons n, with effective mass
mc, in the conduction band is given by:

n ¼ 1
V

ð1
EC

g Eð Þf e Eð ÞdE ð5:51Þ

where the integration starts from EC which is the energy at the bottom of the
conduction band. In a bulk semiconductor, the density of states g(E) in the conduc-
tion band is, as derived above, given by:

g Eð Þ ¼ V

2π2
2me

h2


 �3=2

E � ECð Þ1=2 ð5:52Þ

Combining this expression with Eq. (5.28), the density of electrons becomes:
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n ¼ 1
2π2

2mc

h2


 �3=2
ð1
EC

E � ECð Þ1=2
1

exp
E � EF

kbT


 �
þ 1

dE ð5:53Þ

or:

n ¼ NcF1
2

EF � EC

kbT


 �
ð5:54Þ

where:

Nc ¼ 2
2πkbTme

h2


 �3=2

ð5:55Þ

is the effective density of states in the conduction band, and:

F1
2
xð Þ ¼ 2ffiffiffi

π
p

ð1
0

y1=2

1þ exp y� xð Þ dy ð5:56Þ

is the Fermi-Dirac integral. A more detailed discussion on the effective density of
states and the Fermi-Dirac integral will be given in Chap. 7.

5.3.3 Electrons and Holes

We have seen that when the curvature of the E–k energy spectrum is positive, such as
near point O in the bottom band in Fig. 5.8, the electron effective mass is positive.

However, when the curvature is negative, such as near point A1 in this same band,
the effective mass of the electron as calculated in Sect. 5.2.6 would be negative. In
this case, it is more convenient to introduce the concept of holes. A hole can be
viewed as an allowed energy state that is non-occupied by an electron in an almost
filled band. Figures 5.14a, b are equivalent descriptions of the same physical
phenomenon. In Fig. 5.14a, we are showing the energy states occupied by electrons.
In Fig. 5.14b, we are showing the energy states in the valence band which are
occupied by holes, i.e., vacated by electrons.

Electrons can move in such a band only through an electron filling this
non-occupied state and thus leaving a new non-occupied state behind. By doing
so, it is as if the vacated space or hole had also moved, but in the opposite direction,
which means that the effective mass of the hole is therefore opposite that of the
electron that would be at that same position, in other words, the effective mass of the
hole is positive near point A1 in Fig. 5.8 and is computed as:
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m∗ ¼ � h2

d2E=dk2
ð5:57Þ

A hole can be viewed as a positively charged particle (energy state vacated by an
electron). Holes participate in the electrical charge transfer (electrical current) and
energy transfer (thermal conductivity).

Let us consider the concept of holes in more details. The probability of the state
k to be occupied by an electron is fe(k). The probability of the state not to be occupied
is the probability to find hole in the state k and can be written as:

f h kð Þ ¼ 1� f e kð Þ ð5:58Þ
The electrical current from the electrons in the band is:

j ¼ �2q
X
k

f e kð Þvk ð5:59Þ

where νk is the electron velocity at state k, q is the electron charge (q > 0) and the
summation is performed over all states with wavenumber k in the first Brillouin
zone. This can be rewritten as:

j ¼�2q
X
k

f e kð Þvk ¼ �2q
X
k

1� f h kð Þ½ �vk
¼�2q

X
k

vk þ 2q
X
k

f h kð Þvk
ð5:60Þ

We can now use the fact that the electron energy spectrum is always symmetrical,
i.e., E(k) ¼ E(�k); hence vk ¼ � v‐k from Eq. (5.20), and the sum of velocities over
the entire first Brillouin zone is zero. The first sum in Eq. (5.60) is thus equal to zero
and we obtain:

k0

E

k0

E

valence

band

conduction

band

a+b
−p

a+b
−p

a+b
p

a+b
p

a b

Fig. 5.14 Electron energy states in the reduced-zone scheme. In (a), the solid circles show the
states occupied by electrons. In (b), the closed circles show the states in the conduction band which
are occupied by electrons, and the open circles the states in the valence band occupied by holes
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j ¼ þ2q
X
k

f h kð Þvk ð5:61Þ

Therefore, the electrical current in a band incompletely filled with electrons
moving at speed vk is equivalent to the current of positively charged holes moving
at speed vk. We thus see that in a band incompletely filled with electrons, the
electrical current can be represented by flow of positively charged particles-holes.

5.4 Band Structures in Real Semiconductors

In three-dimensional crystals with three-dimensional reciprocal lattices, the use of a
reduced-zone representation is no longer merely a convenience. It is essential;
otherwise, the representation of the electronic states becomes too complex. How
then can we display the band structure information from a three-dimensional crystal,
which needs of course four dimensions (E, kx, ky, and kz) to describe it? The answer is
to make representations of certain important symmetry directions in the three-
dimensional Brillouin zone as one-dimensional E versus k plots. Only by doing so
can we get all the important information onto a two-dimensional page. Therefore,
when looking at an E–k diagram, one is looking at different sections cut out of the k-
space. In addition, to simplify the diagram, we consider that k varies continuously.
Indeed, the difference between two values of k is Δk ¼ 2π

Na, where the lattice
parameter a is around several angstroms and the order of magnitude of N is 108.
And the length of the side of the Brillouin zone is
2π
a � 6:28∗1010 m�1 	 2π

Na � 6:28∗1010 m�1. As a result, at the scale of the recip-
rocal lattice, the wavenumber can be considered to vary continuously.

5.4.1 First Brillouin Zone of an fcc Lattice

The first Brillouin zone of an fcc lattice is shown in Fig. 5.15. Certain symmetry
points of the Brillouin zone are marked. Roman letters are mostly used for symmetry
points and Greek letters for symmetry directions, specifically the Γ, X, W, K, and L
points and the directions Δ, Λ, and Σ. The following is a summary of the standard
symbols and their locations in k-space, with a the side of the conventional cubic unit
cell:

Γ
2π
a

0; 0; 0ð Þ

X
2π
a

0; 0; 1ð Þ
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W
2π
a

½; 0; 1ð Þ

K
2π
a

¾;¾; 0ð Þ

Note that there may be several equivalent positions for each of these points. For
example, there are six equivalent X symmetry points, located at coordinates 2π

a

(0,0,�1), 2πa (0, �1,0), and 2π
a (�1,0,0).

Using Miller indices, the symmetry directions can be denoted as:

Δ : Γ ! X parallel to < 100 >ð Þ
Λ : Γ ! L parallel to < 111 >ð Þ
Σ : Γ ! K parallel to < 110 >ð Þ:

These notations come from the crystal group theory where they are used to label
the symmetry operation groups at those particular high-symmetry points and

directions. For example, Γ is the symmetry group at the zone center ( k
!
¼ 0; 0; 0ð Þ)

and is isomorphic to the lattice point group.

Example

Q: Determine the coordinates of the L point in the first Brillouin zone of a face-
centered cubic lattice.

A: The first Brillouin zone of a face-centered cubic lattice with side a is
body-centered cubic with a side equal to 4π

a in the kx, ky, and kz directions, as
shown in the figure below. Let us take the Γ point at the center of the first
Brillouin zone. The L point is exactly at the bisection point of Γ and the lattice
point at (2πa ,

2π
a ,

2π
a ). Its coordinates are thus: (

π
a,
π
a,
π
a).

W

Δ

Λ
Σ

Γ

X

kz

ky

kx

L
U

K

Fig. 5.15 First Brillouin
zone of an fcc lattice
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2p
a

2p
a

2p

Γ

5.4.2 First Brillouin Zone of a bcc Lattice

Similarly, the first Brillouin zone of a bcc lattice can be described in terms of its
principal symmetry directions as it is shown in Fig. 5.16.

The symmetry points are conventionally represented as Γ, H, P, and N, and the
symmetry directions as Δ, Λ, D, Σ, and G. The various symmetry points are:

Γ
2π
a

0; 0; 0ð Þ

H
2π
a

0; 0; 1ð Þ

P
2π
a

½;½;½ð Þ

N
2π
a

½;½; 0ð Þ:

H

G

P

D

N

kz

ky

kx

ΛΓ

Δ

Fig. 5.16 First Brillouin
zone of a bcc lattice
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Using Miller indices for the directions:

Δ : Γ ! H parallel to < 100 >ð Þ
Λ : Γ ! P parallel to < 111 >ð Þ
D : N ! P parallel to < 100 >ð Þ
Σ : Γ ! N parallel to < 110 >ð Þ
G : N ! H

�
parallel to < 1�10 >

�
:

5.4.3 First Brillouin Zones of a Few Semiconductors

As discussed in Chap. 3, many semiconductors have the diamond or zinc blende
lattice structures. In these cases, the extrema in the E–k relations occur at the zone
center or lie, for example, along the high-symmetry Δ (or <100>) and Λ (or <111>)
directions. The important physical properties involving electrons in a crystal can thus
be derived from plots of the allowed energy E versus the magnitude of k along these
high-symmetry directions.

Figure 5.17 depicts the E–k diagrams characterizing the band structures in Ge
(Fig. 5.17a), Si (Fig. 5.17b), and GaAs (Fig. 5.17c). The lines shown here represent
bands in the semiconductor. The three lower sets of lines correspond to the valence
band, while the upper bands correspond to the conduction bands. Note that the
energy scale in these diagrams is referenced to the energy at the top of the valence
band, EV is the maximum valence band energy, EC the minimum conduction-band
energy, andEg ¼ EC–EV the bandgap. This is only a conventional choice, and the
origin of energy can be chosen elsewhere.

The plots in Fig. 5.17 are two-direction composite diagrams. The <111> direction
is toward point L, and the <100> direction is toward point X. Because of crystal

symmetry, the � k
!

portions of the diagrams are just the mirror images of the

corresponding þ k
!

portions. It is therefore standard practice to delete the negative
portions of the diagrams. The left-hand portions(Γ ! L) of the diagrams are shorter
than the right-hand portions (Γ ! X) as expected from the geometry of
Brillouin zone.

Valence Band
In all cases, the valence band maximum occurs at the zone center, at k ¼ 0. The
valence band in each of the materials is actually composed of three subbands. Two of
the bands are degenerate (have the same energy) at k¼ 0, while the third band is split
from the other two. In Si, the upper two bands are almost indistinguishable in
Fig. 5.17b and the maximum of the third band is only 0.044 eV below EV at k ¼ 0.
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The degenerate band with the smaller curvature about k ¼ 0 is called the heavy-
hole band, and the other with larger curvature is called the light-hole band. The band
maximizing at a slightly reduced energy is called the spin-orbit split-off band (see
the Kane effective mass method in Sect. 5.6).

Conduction Band
There are a number of subbands in each of the conduction bands shown in Fig. 5.17.
These subbands exhibit several local minima at various positions in the Brillouin
zone. However – and this is very significant – the position of the conduction band

Fig. 5.17 E–k diagram of a few semiconductor crystals: (a) Ge, (b) Si, and (c) GaAs. The
structures of the conduction and valence bands are plotted. The origin of the energy is chosen to
be at the top of the valence band. (Reprinted figure with permission from Chelikowsky and Cohen
(1976). Copyright 1976 by the American Physical Society)
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absolute minimum in k-space, which is the lowest minimum among all these
subbands and which is where the electrons tend to accumulate, varies from material
to material.

In Ge the conduction band (absolute) minimum occurs right at point L, the zone
boundary along the Λ or <111> direction in Fig. 5.17a. Actually, there are eight
equivalent conduction band minima since there are eight equivalent <111>
directions. However, each minimum is equally shared with the neighboring zone,
and there is therefore only a fourfold degeneracy or a multiplicity of four. The other
local minima in the conduction band occurring at higher energies are less populated
and are therefore less important.

The Si conduction band absolute minimum occurs at k� 0.8(2π/a) from the zone
center along theΔ or <100> direction. The sixfold symmetry of the <100> directions
gives rise to six equivalent conduction band minima within the Brillouin zone. The
other local minima in the Si conduction band occur at considerably higher energies
and are typically not important as they would only have a negligible electron
population unless some very strong force could activate carriers to these higher
extrema or if the temperature is much higher.

Among the materials considered in Fig. 5.17, GaAs is unique in that the conduc-
tion band minimum occurs at the zone center directly over the valence band
maximum. Moreover, the L-valley minimum at the zone boundary along the
<111> directions lies only 0.29 eV above the absolute conduction band minimum
at Γ. Even in thermal equilibrium at room temperature, the L-valley contains a
non-negligible electron population. The transfer of electrons from the Γ-valley to
the L-valley can, for example, happen at high electric fields when electrons are
heated up to high velocity. The transfer keeps the high energy but gives them a high
effective mass which slows them down in space. When they slow down, they force
the new electrons coming in to slow down too, until they, the transferred valley
charge has exited. This results in a self-oscillating current state and is an essential
feature for some device operations such as in charge-transferred electron devices
(e.g., Gunn diodes, etc.).

Having discussed the properties of the conduction and valence bands separately,
we must point out that the relative positions of the band extreme points in k-space are
in itself an important material property. When the conduction band minimum and the
valence band maximum occur at the same value of k, the material is said to be direct-
gap type. Conversely, when the conduction band minimum and the valence band
maximum occur at different values of k, the material is called indirect-gap type.

Of the three semiconductors considered, GaAs is an example of a direct-gap
material, while Ge and Si are indirect-gap materials. The direct or indirect nature of a
semiconductor has a very significant effect on the properties exhibited by the
material, particularly its optical properties. The direct nature of GaAs, for example,
makes it ideally suited for use in semiconductor lasers and infrared light-emitting
diodes.
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5.5 Two-Dimensional Semiconductors and Transition Metal
Dichalcogenides “TMDC”

5.5.1 Examples: Graphene (G) and TMDC

One of the great discoveries of recent times is the exfoliation of the material which
has been named graphene (G) [ Geim, Castro, Avouris]. It was fabricated initially by
exfoliation from graphite and consists ideally of a single carbon sheet. The good
news is that this monolayer of carbon is strong enough to survive experimental
manipulation and temperature, even in suspension, and can therefore be used in
making devices. Graphene turned out to be so interesting that the discoverers
Novoselov and Geim were awarded the Noble prize. The literature on graphene is
now huge, and we will here only focus on a few noteworthy aspects which have
enriched semiconductor science. The interested reader is strongly urged to consult
the vast literature.

The structure of G is hexagonal two-dimensional carbon and shown in Fig. 5.18.

5.5.2 Graphene Band Structure: Nearest Neighbor Tight Binding

The simplest and most popular way of deriving the graphene band structure is to use
the tight-binding method described in our Appendix 2 in Chap. 2. Using A and B to
denote the two types of atoms which form the hexagonal lattice (see Fig. 5.18), we
can assign a valence orbital to every carbon atom and allow these orbitals to couple
to generate the graphene energy bands. Consider the t-b (tight-binding) Hamiltonian
for this lattice and drop the Coulomb interaction between the electrons, steps which
can be justified later. Using second quantization, and the creation cþiσ and annihilation
ciσ operators for electrons at atomic orbitals at a given site “i” [Da Sarma et al, Castro
et al] [see Chap. 16 electron phonon interaction for second quantization]:

Fig. 5.18 Hexagonal lattice
of a 2D material
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He ¼
X
i, σ

εiσc
þ
iσciσ þ

X
i6¼j, σ

tijc
þ
iσc jσ ð5:62Þ

εiσ are the atomic orbital energies with spin index σ, and “t” is the tight-binding
coupling matrix element linking two neighboring orbital orbitals.

Now let us set up the Heisenberg equation of motion [see FSSE Chap. 4] for the
amplitude of the wavefunction at atomic sites or corresponding operator with atom
of type “a,” for example, E ¼ energy:

E � εiσð Þcaiσ ¼
X
j

tijc
b
jσ ð5:63Þ

The sum j goes over the n.n and we note that the neighboring atoms a, b are not
equivalent by translational symmetry, though apparently physically completely
equivalent, so that the Bloch periodicity argument cannot be used straight away.
In order to recover an equivalent atom and solve the equations by symmetry, we
have to go one step further and set up a similar relation for the b-sites as we did for
the a-sites with Eq. 5.63, thus we have:

E � εiσð Þcbiσ ¼
X
j

tijc
a
jσ ð5:64Þ

Now, we substitute Eq. (5.64) in Eq. (5.63) and relate two equivalent a or b atoms at
distance R by the Bloch’s phase factor exp(ik.R) in the usual way we can solve the
problem. The unusual linear dispersion at the points in k spaceK and K0 as shown in
Fig. 5.19 now called Dirac points, where the gap is zero, is due to the fact that the
two sets of lattice points “a and b” are completely equivalent apart from the fact that
they are mirror symmetrical not translationally symmetrical. This topological restric-
tion, analogous to the restriction of having to move below light speed at all times,
then gives rise to space splitting and a new pseudo spin-like quantum number. One
can see that this notion can be generalized to an infinity of topologies, which could
have this, and indeed far more complex chiral symmetries. Energies can be degener-
ate, but one level can be “hole like” and the other “particle like.”

Another way to derive the band structure is to use the real spatial wavefunction ψ
and then the Wallace expectation value and optimization process [P R Wallace Phys
Rev. 71, 622, (1947)]:

ψk rð Þ ¼
X
A

exp ik � RAð ÞX r� RAð Þ þ λ
X
B

exp ik � RBð ÞX r� RBð Þ, ð5:65Þ

r is the particle coordinate, RA and RB are position of the two types of atoms (see
Fig. 4.7), and k is the Bloch wavevector:
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ti ¼
Ð
X∗ r� RAð ÞHX r� RB, ið Þdr,

Ek ¼ E0 �
X
i

tiexp �ik � ρið Þ
�����

�����, ð5:66Þ

λ ¼ 1 or �1
Band structure of graphene plotted in 3D to exhibit the zero gap or Dirac points

K,K0.
Analytic tight-binding band structure is:
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Fig. 5.19 From Phaedon Avouris. “Graphene electronic and photonic properties and devices”
Nanoletters vol 10, p. 4285, (2010)
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E kð Þ ¼ �γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

3
2
kxa


 �
cos

ffiffiffi
3

p

2
kya


 �
þ 4 cos 2

ffiffiffi
3

p

2
kya


 �s
, ð5:67Þ

where γ0 is the banding energy t (atom to atom overlap) (Fig. 5.20).
The honeycomb structure can be thought of as a triangular lattice with a basis of

two atoms per unit cell with 2D lattice vectors A0 ¼ (a/2)(3,
ffiffiffi
3

p
) and B0 ¼ (a/2)(3, –ffiffiffi

3
p

), where a ¼ 0.142 nm is the carbon-carbon distance, and K ¼ (2π/(3a),2π/(3
ffiffiffi
3

p
a)) and K0 ¼ (2π/(3a), �2π/(3

ffiffiffi
3

p
) a) as the inequivalent corners of the BZ and are

called “Dirac points.” The Dirac points play a role similar to the role of Γ points in
direct bandgap semiconductors.

Relative to the Dirac point, the dispersion is:

E� qð Þ ¼ �hvFqþ O q=kð Þ2 ð5:68Þ
The dispersion depends on the Fermi velocity vF. In tight binding vF can be
expressed in terms of the nearest neighbor hopping integral t so that:

hvF ¼ 3ta
2

a ¼ 0:14 nm, t ¼ 2:5 eV, vF ¼ 108 cm=s
ð5:69Þ

The linear dispersion is like the dispersion of light or photons with:

E ¼ chq ð5:70Þ
where c is the velocity of light. But there are here two sublattices A, B in the structure
of G which allows us to write the Hamiltonian on the two sides of the bandgap as a
relativistic Dirac-like Hamiltonian:

H ¼ vFσ • hq ð5:71Þ
where σ is a spinor-like wavefunction, vF is the Fermi velocity of G, and q is the
wavevector of the electron. Linear dispersion can be thought of as zero effective
mass. The spinor nature of the wavefunction is not a consequence of electron spin as
in the Dirac equation, but rather from the fact that there are two atoms per unit cell A,

Graphene lattice and 1st BZ

a b

Dirac equation

ky

kx

K

K�

M
BA

a1

a2

Fig. 5.20 Near the K K’s
points, shown above, now
called Dirac points, the
dispersion (energy
momentum relation) is linear
implying a zero effective mass
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B, and the electron can be thought of as jumping between the components A, B
which is then analogous to having a pseudo spin coordinate (in the Dirac equation,
the electron can be thought of as hopping into its antiparticle and back again on the
time scale short enough that it is allowed by Heisenberg uncertainty principle).
Whereas in the latter case, the energy to be overcome is the energy to create a
particle-hole pair (2mc2) in empty space, the great new effect here is that the bandgap
is zero, so that the particle and hole can be created with zero energy cost. This
exciting property implies that one can think of the electron as moving not into empty
space but into the “graphene vacuum” of virtual electron-hole pairs and thus
oscillating back and forth into the hole component of these virtual pairs created
around as the particle moves. This is very much like a photon which moves by
alternatively going from electric field (A) to magnetic field excitation (B) . The
analogy with relativistic quantum mechanics now also follows by noting that in
relativity, the energy of a particle is given by ( p-momentum):

E ¼ mcð Þ2 þ pcð Þ2
h i1=2

ð5:72Þ

so that the linear dispersion follows in the limit of zero mass.
Remember from Chap. 4 that in the Dirac equation, the spin does not disappear in

the nonrelativistic limit but remains a fundamental property of quantum particles in a
four-dimensional quantum space time. In other words, even when the mean particle
velocity is slow, the short-time (light speed) visits into the antiparticle space which is
the origin of the spin, are always allowed by Heisenberg’s uncertainty principle.
Now one can understand why the zero gap nature of semiconductors, graphene being
an example, can be so exciting. The visits into hyperspace are now zero energy visits
into the valence holes and back (A, B sublattices) and giving rise to a new pseudo
spin quantum number. If we now generate a gap, then this can change the quantum
dynamics and properties drastically. This is in principle relatively straightforward to
produce by external means (gate, multilayer, doping, etc.). Finally, we note that
whereas parabolic electrons have constant density of state in 2D, graphene electrons
will have linearly increasing density of states with energy (Fig. 5.21).

The short section here does not do justice to the enormously interesting field. The
reader is advised to consult the excellent reviews in the literature and in particular
see, for example, the excellent review by Phaedon Avouris “Graphene Electronic
and Photonic Properties and Devices” Nanoletters vol 10, p4285, (2010).

5.5.3 Two-Dimensional Metal-Dichalcogenide TMDC: Electronic
Structures

Introduction
After Graphene, researchers tried to find new types of graphene like 2D layered
materials in order may be to discover some of the exciting photonic like electron
band structures. Various groups around the world have found out how to make
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freestanding barrier layers like h-BN, and then finally more recently, they discovered
how to exfoliate 2D layers of the transition metal dichalcogenides TMDs [Manish
Chewola] . Artificial multilayer fabrication technology is now a very active and
popular field of science and technology. Notable discoveries are the ultrathin film
transparent high ratio field-effect transistors TFT which exhibit a high degree of
plasticity and are promising for tattoo electronics and many other highly commercial
applications. Examples of TMD are given in Table 5.1 (Fig. 5.22).

Making nanosheets: description
The TMD sheets have so far been made in several ways described in the work of

Chhowalla et al.

1. Scotch tape exfoliation
2. Liquid exfoliation with selected surfactant with right surface energy penetrating

the layers and dissolving them
3. Chemical vapor deposition CVD (Figs. 5.23 and 5.24)

5.5.4 Example: Fabrication of Flexible Transistors

Ten atomic thick high-mobility transparent TFTs with ambipolar device
characteristics fabricated on both conventional silicon platform and on a flexible
substrate have been demonstrated by Saptarshi Das et al. Nano Letters Vol.14,

Fig. 5.21 From
“Temperature-Dependent
Transport in Suspended
Graphene” Bolotin et al.
(2008). “Temperature
dependence of resistance of
suspended graphene device
before and after current
annealing. Inset sketch of gate
voltage dependence of the
carrier density in clean and
charge inhomogeneous
graphene”
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Table 5.1 Electronic character of different layered TMDs25

Group M X Properties

4 Ti, Hf, Zr S, Se, Te Semiconducting (Eg ¼ 0.2 � 2 eV). Diamagnetic

5 V, Nb, Ta S, Se, Te Narrow band metals (ρ � 10�4 Ω.cm) or semimetals.
Superconducting. Charge density wave (CDW).
Paramagnetic, antiferromagnetic, or diamagnetic

6 Mo, W S, Se, Te Sulfides and selenides are semiconducting (Eg � 1 eV).
Tellurides are semimetallic (ρ � 10�3 Ω cm). Diamagnetic

7 Tc, Re S, Se, Te Small-gap semiconductors. Diamagnetic

10 Pd, Pt S, Se, Te Sulfides and selenides are semiconducting (Eg ¼ 0.4 eV)
and diamagnetic. Tellurides are metallic and paramagnetic.
PdTe2 is superconducting

ρ, in-plane electrical resistivity

Fig. 5.22 Structure of monolayered TMD. About 40 different layered TMD compounds exist. The
transition metals and three chalcogen elements predominantly crystallize in those layered structures.
From Chhowalla et al. (2013) [9]

Fig. 5.23 Illustration of the
quality achievable for
heterostructures MoS2 on
graphene
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p. 2861, (2014). Monolayer graphene was used as gate electrode and 3–4 atomic
layers thick h-BN was used as the gate dielectric, and finally bilayers of WSe2 were
used as the semiconducting channel material for the TFT. The active device stack
was found to be 88% transparent over the entire visible spectrum. On to off ratios of
107 were observed in all the two-dimensional TFTs.

5.5.5 Summary: Discussion

The atomically thin 2D nanosheets of TMD derived from layered materials exhibit
excellent electronic properties, exceptional mechanical flexibility, and partial optical
transparency. Beyond the typical semiconducting properties, the various 2D layered
materials can also exhibit superconductivity (NbSe2) magnetic (CrSe2) insulating
(InN) and thermoelectric (Bi2Te3). The 2D sheets can be grown on top of each other
to build superlattices with van der Waals bonded layers with exciting new prospects;
see the excellent review by Xidong Duan et al.

Xidong Duan et al. review Chem Soc Rev. Vol. 44 p. 8859 (2015): “Two-
dimensional transition metal dichalcogenides as atomically thin semiconductors:
opportunities and challenges.”

Previously in this chapter, we investigated the new “wonder material” called
graphene. We described its band structure and explained why this two-dimensional
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Fig. 5.24 Qualitative schematic illustration showing the progressive filling of d-orbitals that are
located within the bandgap of bonding and antibonding in groups 4,5,6,7, and 10 TMDs. The D3h

and D3d refer to the point groups associated with the trigonal prismatic and the octahedral coordi-
nation of the transition metal oxides. (From Chhowalla et al. (2013))
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perfect semimetal with high electron mobility is expected to, and indeed shows, new
physical properties which can have serious technical applications. There is by now a
massive literature on this subject; indeed, both G and TMD sheets and the interested
reader are encouraged to consult some of this material.

5.6 Band Structures in Metals

Although this chapter was primarily devoted to the band structures of
semiconductors, which is of great importance in solid-state devices, it would not
be complete without a few words on the band structures of metals. Figures 5.25 and
5.26 are examples of electron band structures of two such metals, aluminum and
copper.

As mentioned earlier in this chapter, very different behaviors can be seen between
the band structures of metals and semiconductors. First of all, there is no forbidden
energy region (bandgap) in metals. All the energy range drawn in these diagrams is
allowed in metals, which is the most critical difference between metals and
semiconductors. Even at a temperature of zero K, a metal has a band which is
partially filled with electrons and its Fermi level thus lies within this band. There is
no such distinction as valence and conduction bands as encountered in a
semiconductor.

Fig. 5.25 Electron band structure diagram of aluminum. The energy is expressed in units of
Rydberg. The dashed lines show the energy bands for a free electron (Reprinted figure with
permission from Segall B The Physical Review, vol. 124, p. 1801, Fig. 3, Copyright 1961 by the
American Physical Society)
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The band structures in the Γ!X, Γ!K, and Γ!L directions are nearly parabolic
and are therefore similar to the free electron case. Electrons in aluminum thus behave
almost like free electrons.

The dashed lines in Figs. 5.25 and 5.26 are the E–k relation for a free electron.
One can see that the band structure in aluminum is very close to that of free electrons.
The energy spectrum of copper has less resemblance to the free electron E–k
parabolic relation. The major difference between copper and aluminum is the
presence of a number of narrow bands below EF in copper. These narrow bands
are attributed to the 4d-orbitals of copper atoms. The presence of these d-orbital-
originated bands is a common feature of most transition metals (such as iron and
nickel) and noble metals (such as copper, gold, and silver). These provide a degree of
screening effect for electrons. The absence or presence of these d-band electrons is
also at the origin of the gray and red color appearance of aluminum and copper,
respectively. Indeed, when there is a d-band, as in copper, not all the photons
reaching the metal surface are reflected, but those photons with sufficient energy
can be absorbed by the d-electrons (see Chapter 0). As a result of this “deficiency” of
photons with certain energies, the copper appears red. A similar explanation is valid
for the yellow color of gold.

Fig. 5.26 Electron band structure diagram of copper. The energy is expressed in units of Rydberg.
There are a few narrow bands located just below the Fermi energy, corresponding to the 4d orbitals
in copper (Reprinted figure with permission from Segall B The Physical Review, vol. 125, p. 113,
Fig. 5, Copyright 1962 by the American Physical Society)
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There are always many nearly free electrons in metals that contribute to the
electrical and thermal conduction. On the contrary, semiconductors do not have
many free electrons when they are intrinsic (i.e., without impurities), and carriers
must be provided by a process called doping. The controllability of the doping level
in semiconductors is one of the most important reasons why semiconductors are
useful in making electronic and optoelectronic devices and will be discussed later in
this textbook.

5.7 The Kane Effective Mass Method

In the chapter on band structure, we made the observation, and indeed used this later
also throughout the book, that the band dispersion in the majority of semiconductors
near k¼ 0 could be approximated as a parabola in k but with an effective mass which
is determined by rigorous band structure computation. One finds in practice that the
scheme works very well and that the true effective masses can be very different from
the free electron masses. From the “exact results” shown in this chapter, one cannot
easily understand why the effective mass behaves in the way it does, and one cannot
see how it would correlate with the other features of the material, such as its band
gap, for example. Also it would be nice to have a scheme which could predict the
effective mass, was versatile, and could be applied to confined and multilayer
structures as well. Some years ago, Evan O. Kane discovered that it was possible,
with rather simple mathematical methods, to shed light on this question. He worked
out a scheme with which it is possible to obtain a good approximation to the effective
mass near the k¼ 0 points in semiconductors, and a correlation between the effective
mass and the band gap.

Kane’s method is a brilliant example on how one “piece of information,” nor-
mally obtained by experiment, can be used to derive another piece of information
using the logical structure of a theory. The Kane argument goes as follows.

Consider the full Hamiltonian and Schrödinger equation (SE) of the electron in
the periodic potential V

�
r
!�

of the lattice. Now assume that the wavefunction is a
Bloch wave and must mathematically have the structure:

ψ
nk
!
�
r
!� ¼ u

nk
!
�
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!�

eik
!
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with energy En
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we know that this must be true, so we substitute it in the SE
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differentiate, collect the terms, and find
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This is now an equation for the unknown modulating part of the wavefunction
u
nk
!
�
r
!�

. The known part has been incorporated and has given an energy shift and a

new term in the Hamiltonian. We can rewrite Eq. (5.64) as:
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and taking the limit k ¼ 0, we have the eigenvalue equation:

H0un
�
r
!� ¼ En 0ð Þ½ �un

�
r
!� ð5:66Þ

for the k ¼ 0 envelope. So now one can ask what is the gain in all this, since we are
back at the usual Schrödinger equation for the band? There are two observations to
be made: the wavefunctions un

�
r
!�

only have band indices n, there are as many of
them as we have energy bands in the semiconductors. In particular, there are valence
band functions and conduction band functions. There is a finite energy difference
between each band. We could use these functions even though we do not know
them, as basis functions, and expand the k-dependent term of the Hamiltonian
Eq. (5.65) as a perturbation near k ¼ 0. In this way, we derive the additional k-
dependence of the energy and the k-dependence of the core wavefunctionu

nk
!
�
r
!�

. In

this way, we also automatically get an expression for the effective mass in terms of
the matrix elements of these basis functions and the energy difference. Thus apply-
ing second-order perturbation theory from Chap. 4 to the k-dependent term in
Eq. (5.65), we have for the energy and wavefunction:
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Remember that the complete wavefunction is of the form of Eq. (5.62). Now, we
see that progress has indeed been made. When we look at Eq. (5.67), then indeed

Eq. (5.67) with E
nk
! � En 0ð Þ þ h2k2

2m∗
and the observation that by symmetry p

!
nn
¼ 0

tells us that the effective mass near k ¼ 0 is given by (i, j denote the x,y,z
components)):
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1
m∗


 �
ij

¼ 1
m0

δij þ
X
n0 6¼n

p i
nn0p

j
n0n þ p j

nn0p
i
n0n

En 0ð Þ � En0 0ð Þ ð5:69Þ

The inverse of the effective mass is a sum of the free electron mass and term
which depends on the momentum matrix elements of the k ¼ 0 envelope but is also
dependent on the energy difference between the bands. If for simplicity, we now
consider just two bands, namely, the conduction and valence band, then to a good
approximation, we see that the inverse effective mass scales as the inverse of the
energy gap of the semiconductor. In other words, we have the result that
semiconductors with smaller band gaps should have the lower effective mass. If
this statement turns out to be generally true, then it helps to establish an important
principle and correlation between band gap and effective mass (see the data in
Appendix A4).

At this stage, the most important unknown is the momentum matrix element. The
next step is therefore to establish empirically that the momentum matrix elements are
not strongly dependent on the band gap and to include the other bands when
necessary. Here one also uses the fact that the exact wavefunctions are s-like near
the bottom of the conduction band and p-like near the top of the valence band. This is
known from first principle and tight-binding band structure theories. This interplay
between theory and experiment then gives us useful and simple empirical rules and
numbers for the above matrix element in Eq. (5.69). For example, one finds that the

Kane parameter EP ¼ 2m0

h2 P2 where P ¼ h
m0

pz
cv is roughly 20–25 eV for most

semiconductors of interest, where the subscripts c and v denote the conduction and
valence band, respectively. The Kane method of expanding around the k ¼ 0
envelope states can be extended to treat also the spin-orbit interaction. The spin-
orbit coupling is of the form:

Vso ¼ h
4m2

0c
2
σ
! � ▽V

�
r
!�� p

!	 

ð5:70Þ

where σ is the electron spin operator and V
�
r
!�

is the total potential experienced by
the electrons. The spin-orbit interaction is a small but non-negligible effect in
semiconductors. It is ideally treated using the Kane model because the energy shifts
up to second order in perturbation theory and involved the same type of matrix
elements of the momentum as before. Indeed, one can say that the Kane method
provides a very natural way to treat the spin-orbit interaction. The method can be
extended to also treat confined systems. The results can at the end be expressed as
functions of Eg and P. The first of which, Eg, is known, and the second of which, P,
can be estimated to good accuracy.

Kane theory tells us that the effective mass is related to the structure of the
envelope momentum matrix elements. These as it happens do not change all that
much from one system to another system. The band gap which also enters the
formula, however, changes quite a lot. If for some reason, such as strain or
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confinement, the band gap changes, even locally, then we can expect the effective
mass also to change locally. The changes in P or wavefunction shapes are of lower
order than the band gap changes, and this is why the Kane method is so useful. The
Kane method is therefore a very practical way of handling strain effects in semicon-
ductor interfaces. This happens when there is lattice mismatch forcing the top grown
lattice to adopt the lattice parameters of the substrate. The mismatch can force the top
layer bonds to be stretched or compressed. Compression or dilation affects both
Kane parameters Eg and P locally. But the gap is more sensitive than P to first order.
In quantum dots strain, one also has strain which can vary locally and give rise to
local effective mass. The reader is referred to the book by L Chuang for a detailed
treatment of the Kane model and its applications.

5.7.1 The Effect of the Spin-Orbit Coupling

Let us now consider the effect of the spin-orbit coupling explicitly. Let us go back to
Eq. (5.63) and include the spin-orbit interaction:

p2

2m0
þ V

�
r
!�þ h

4m2
0c

2

�
▽
!

V� p
!�� σ!� �

Ψ
nk
!
�
r
!� ¼ E

nk
!Ψ

nk
!
�
r
!� ð5:71Þ

Substituting the Bloch function then gives:

p2

2m0
þ h
m0

k
!
� p! þV

�
r
!�þ h

4m2
0c

2

�
▽
!

V� p
!�� σ!�

þ h2

4m2
0c

2

�
▽V� k

!! �� σ! �u
nk
!
�
r
!�) ¼ E

nk
! � h2

2m0
k2

� �
u
nk
!
�
r
!�
ð5:72Þ

Following the book by L. Chuang (see references list), we will define:

E
0 ¼ E � h2k2

2m0
ð5:73Þ

The last term in Eq. (5.72) depends on the Bloch wavevector k and is much
smaller than the term which involves the momentum operator. The reason is that the
momentum around the nucleus is much larger than the band momentum k so that we
can neglect the last term to obtain

p2

2m0
þ h2

m0
k
!
: p
! þV

�
r
!�þ h

4m2
0c

2

�
▽
!

V� p
!�� σ! �� �

u
nk
!
�
r
!�� ¼ E

0
h i

u
nk
!
�
r
!�
ð5:74Þ

In order to solve this equation in the k�p approach, we assume as before that the
wavefunction can be written as a superposition of the k ¼ 0 subbands:
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u
nk
! ¼

X
n0

a
n0 k

!un00 rð Þ ð5:75Þ

The un00
�
r
!�

are chosen to roughly correspond to what one knows about the
system from first principle band structure techniques, namely, that for the eigenstate
near the conduction band edge, the wavefunctions have S symmetry. Those near the
top of the valence band have p-symmetry so that

Conduction bands S "j i, S #j i
Valence bands X "j i, Y "j i, Z "j i, X #j i, Y #j i, Z #j i

Also these wavefunctions satisfy the conditions H0|S"i ¼ ES|S"i without a
magnetic field, and the two spin states have the same energy, and H0|X"i ¼ Ep|
X"i, H0|Y"i ¼ Ep|Y"i, and H0|Z"i ¼ Ep|Z"i. For practical purposes, it is convenient
to choose the basis states for spin and angular momentum raising and lowering
operators:

S "j i, 1ffiffiffi
2

p X � iYð Þ "
����

�
, Z #j i, � 1ffiffiffi

2
p X þ iYð Þ "

����
�

ð5:76Þ

S #j i, � 1ffiffiffi
2

p X þ iYð Þ #
����

�
, Z "j i, 1ffiffiffi

2
p X � iYð Þ #
����

�

The valence band basis states can be selected from the eigenstates of angular
momentum L in Chap.4. So a p-state corresponds to l ¼ 1 and we have:

Y1,�1 ¼ ∓
1ffiffiffi
2

p X � iYj i and Y10 ¼ Zj i ð5:77Þ

Now we can generate the matrix representation of the Hamiltonian Eq. (5.74)
using this basis set to find an 8 � 8 matrix which as a result of spin degeneracy
reduces to a 4 � 4 matrix:

Es 0 kP 0

0 Ep � Δ
3

ffiffiffi
2

p

3
Δ 0

kP

ffiffiffi
2

p
Δ

3
Ep 0

0 0 0 Ep þ Δ
3

0
BBBBBBB@

1
CCCCCCCA

ð5:78Þ

where the Kane parameter is defined as:

P ¼ �i
h
m0

Sh jpz Zj i

Δ ¼ 3hi
4m2

0c
2

Xh j∂V
∂x

py �
∂V
∂y

px Yj i
� � ð5:79Þ
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Let us measure the eigenvalues of this system such that the conduction band Es is at
Eg and the top of the valence band is at 0. The solutions are the roots of the equation:

E
0
E

0 � Eg

	 

E

0 þ Δ
	 


� k2P2 E
0 þ 2

3
Δ


 �
¼ 0 ð5:80Þ

which we can solve analytically if we expand to first order in k2. The result, for the
energy and effective mass in the conduction band, is:

Ec kð Þ ¼ Eg þ h2k2

2m0
þ k2P2

3

3Eg þ 2Δ
� �
Eg Eg þ Δ
� � ð5:81Þ

1
m∗

c
¼ 1

m0
þ 2P2

3h2
3Eg þ 2Δ
� �
Eg Eg þ Δ
� � ð5:82Þ

For the heavy-hole valence states, we have:

Ehh kð Þ ¼ h2k2

2m0
ð5:83Þ

1
m∗

hh

¼ 1
m0

ð5:84Þ

For the light hole:

Elh kð Þ ¼ h2k2

2m0
� 2k2P2

3
1
Eg

ð5:85Þ

1
m∗

lh

¼ 1
m0

� 4P2

3h2
1
Eg

ð5:86Þ

For the spin orbit shifted band:

Eso kð Þ ¼ �Δþ h2k2

2m0
� k2P2

3
1

Eg þ Δ
� � ð5:87Þ

1
m∗

so

¼ 1
m0

� 2P2

3h2
1

Eg þ Δ
� � ð5:88Þ

To zero order in k2, the conduction band wavefunctions are unchanged at |S"i and
|S#i. The valence light-hole states have a spin-orbit shift even to this order. So we
have for the heavy hole the two states:
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and the light holes:

1ffiffiffi
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The k�p perturbation result can be generated as in Eqs. (5.67) and (5.68). The

exact result can be obtained by solving for the eigenvalues E
0
n ¼ En � h2k2

2m0
, as done

above, then substituting back to solve the linear equations. The matrix is effectively
3 � 3 so that:

Eg � E0
n 0 kP

0 � 2Δ
3

� E
0
n

ffiffiffi
2

p

3
Δ

kP

ffiffiffi
2

p
Δ

3
�Δ
3
� E

0
n

0
BBBB@

1
CCCCA

an
bn
cn

0
@

1
A ¼ 0 ð5:93Þ

with

anj j2 þ bnj j2 þ cnj j2
n o1=2

¼ 1 ð5:94Þ

Note that the present approach neglects the remote band effects, and it does not
reproduce the correct heavy-hole mass. In order to do that, one has to go further and
consider the Luttinger-Kohn model which is similar in spirit but takes into account
remote energy bands and will not be considered here.

The k-dependence of the wavefunctions has not been studied here. They can be of
great interest in doped magnetic semiconductors and magnetic metals where in the
presence of a finite spin polarization, they can give rise to the so-called anomalous
Hall effect and spin Hall effect (see Jungwirth et al. 2006). But again here, one would
go further and use the Luttinger-Kohn model which includes the remote band effects.
The magnetism can then be treated as an effective uniform self-consistent Curie field
which acts on the spin system (see Jungwirth et al. reference).
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5.7.2 Summary

In this chapter, using simple quantum mechanical concepts and methods, we have
described the energy states of electrons in a periodic potential. We have modeled the
crystal using the Kronig-Penney model. Nearly free electron and the tight-binding
approximations were briefly introduced. We familiarized the reader with the notion
of band structure, band gap, Bloch wavefunction, effective mass, Fermi energy, and
Fermi-Dirac distribution and holes. The band structures for the common
semiconductors, including Si, Ge, and GaAs, have been illustrated after first describ-
ing the conventionally used high-symmetry points and orientations. The main
features in these band structures have been outlined. The band structures of a few
metals, including aluminum and copper, have also been presented, and the main
features were described and compared to those of semiconductors. We have shown
how one can evaluate the Bloch wavefunctions and effective masses of
semiconductors near k ¼ 0 using a scheme called the k�p method. The method is
simple and very powerful. It was applied to derive the effective mass including the
spin-orbit coupling.

Problems

1. Equations of motion of an electron in the presence of an electric field.

Assuming a dispersion relation : ε ¼ εC þ h2

ma2
1� cos kað Þ½ �

(a) Calculate the velocity of the electron at k ¼ π/a.
(b) If the electric field E is applied in the �x direction, derive the time

dependence of k for an electron initially at k ¼ π/a and position x ¼ 0.
(c) Derive the time dependence of the electron velocity, v(t), and the time

dependence of the electron position, x(t).
(d) For a ¼ 5 nm, E ¼ 104 V�cm�1, and m ¼ 0.2 m0, what are the

maximum and minimum values of x that the electron will reach?
(e) What is the period of the oscillation?
(f) For the parameter of part (e), derive an expression for the effective mass

as a function of k. Sketch the function.
2. The period of the Bloch oscillations.

Consider an electron that is subjected to an electric field. The electric field
exerts a force F ¼ �qE on the electron. Assume that the electron is initially not
in motion, i.e., k ¼ 0. Upon application of the electric field, the k value of the
electron increases from 0 to π/a. At this value of k, Bragg reflection occurs, and
the electron assumes a k value of –π/a. Then, the electron is again accelerated to
k ¼ π/a. At this point, the electron again undergoes Bragg reflection, and the
cycle starts from the beginning. The process described above is called the Bloch
oscillation of the electron in an energy band of the solid-state crystal.
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(a) Show that the period of the Bloch oscillation is given by τ ¼ 2πh
qEa,

where a is the periodicity of a one-dimensional atomic chain.
(b) Calculate the period of the Bloch oscillations for a¼ 4 Å and E¼ 1250

V�cm�1. Compare the period of the Bloch oscillations with a typical
inelastic scattering times. What conclusions do you draw from the
comparison? Are the Bragg reflections important scattering events for
the movement of electrons in a crystal? Typical inelastic scattering
times are 10�11 s for low fields and 10�13 s for high fields.

3. Idealized electron dynamics.
A single electron is placed at k¼ 0 in an otherwise empty band of a bcc solid.

The energy versus k relation of the band is given by:

ε
�
k
!� ¼ �α� 8γ cos

kxa

2


 �
:

At t ¼ 0, a uniform electric field E is applied in the x-axis direction. Describe
the motion of the electron in k-space. Use a reduced-zone picture. Discuss the
motion of the electron in real space assuming that the particle starts its journey at
the origin at t¼ 0. Using the reduced-zone picture, describe the movement of the
electron in k-space. Discuss the motion of the electron in real space assuming
that the particle starts its movement at the origin at t ¼ 0.

4. Effective mass.
For some materials, the band structure of the conduction band around k ¼ 0

can be represented by ε
�
k
!� ¼ h2

2m
A k2x �

a2

2π2
k4x


 �
.

What is the effective mass of a free electron under these conditions?
On the figure, name the different bands and point out which one of the two in

the lower band has the higher effective mass.

1

3 2

5. Calculate the coordinates of the high-symmetry point U in Fig. 5.15.
6. Origin of electronic bands in materials.

Explain how electronic energy bands arise in materials.
The periodic potential in a one-dimensional lattice of spacing a can be

approximated by a square wave which has the value U0 ¼ �2 eV at each
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atom and which changes to zero at a distance of 0.1a on either side of each atom.
Describe how you would estimate the width of the first energy gap in the
electron energy spectrum.

7. Position of the Fermi level in intrinsic semiconductors.
Assume that the density of states is the same in the conduction band (NC) and

in the valence band (NV). Then, the probability p that a state is filled at the
conduction band edge (EC) is equal to the probability p that a state is empty in
the valence band edge (EV). Where is the Fermi level located?

8. Plot of the Fermi distribution function at two different temperatures.
Calculate the Fermi function at 6.5 eV if EF¼ 6.25 eV and T¼ 300 K. Repeat

for T ¼ 950 K assuming that the Fermi energy does not change. Plot the energy
dependence of the electron distribution function at T ¼ 300 K and at T ¼ 950 K
assuming EF ¼ 6.25 eV.

9. Numerical evaluation of the effective densities of states of Ge, Si, and GaAs.
Calculate the effective densities of states in the conduction and valence bands

of germanium, silicon and gallium arsenide at 300 K. Note in analogy to

Eq. (5.55) we have NV ¼ 2 2πkbTmh

h2

	 
3=2
10. Density of states of a piece of Si.

Calculate the number of states per unit energy in a 100 by 100 by 10 nm piece
of silicon (m* ¼ 1.08 m0) 100 meV above the conduction band edge. Write the
results in units of eV�1.

11. Number of conduction electrons in a Fermi sphere of known radius.
In a simple cubic quasi-free electron metal, the spherical Fermi surface just

touches the first Brillouin zone. Calculate the number of conduction electrons
per atom in this metal as a function of the Fermi-Dirac integral. Consider the
energy at the bottom of the conduction band to be EC ¼ 0 eV.
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Phonons and Thermal Properties 6

6.1 Phonons and Thermal Properties

6.1.1 Introduction

In the previous chapters, we have considered the electrons in a crystal that consisted
of a rigid lattice of atoms. This represented a good approximation because the mass
of an atom is more than 2000 of the mass of an electron. However, such assumptions
founder when considering specific heat, thermal expansion, the temperature depen-
dence of electron relaxation time, and thermal conductivity. In order to interpret
these phenomena involving electrons and atoms, a more refined model needs to be
considered, in which the atoms are allowed to move and vibrate around their
equilibrium positions in the lattice. In this chapter, we will present a simple yet
relatively accurate mathematical model to describe the mechanical vibrations of
atoms in a crystal. We will first cover one-dimensional monatomic and diatomic
crystals followed by three-dimensional crystals. We will then consider the collective
movement or excitations of the atoms in a crystal, the so-called phonons, and
conclude with a section on the velocity of sound in a medium.

6.1.2 Interaction of Atoms in Crystals: Origin and Formalism

We saw in Sect. 1.5, when discussing the formation of bonds in solids, that these
equilibrium positions were achieved by balancing attractive and repulsive forces
between individual atoms. We assumed that the attractive and repulsive forces
always canceled each other and that the masses were infinite. The resulting potential
U(R) curve for an atom as a function of its distance R from a neighboring atom is
shown in Fig. 6.1. This figure shows a minimum energy for a specific atomic
separation, which we understood was true at all time.
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The origin of these forces lies in the electrostatic interaction between the electrical
charges (nuclei and electron clouds) in the two neighboring atoms. Classically, the
electrons are constantly moving in an atom, in a non-deterministic manner (thus the
name “cloud”). One can easily understand that the attractive and repulsive forces do
not balance each other at all times but rather the attractive force would be stronger
than the repulsive force at a certain time and then weaker shortly afterward. On
average, a balance of forces is still achieved. We therefore realize that the positions
of atoms in a lattice are not fixed in time but that small deviations do occur around
the equilibrium positions. Such vibrations are also more intense at higher
temperatures. Note that this is a fully classical analysis of why these lattice vibrations
exist. The quantum mechanical description is quite different. In quantum mechanics,
the electrons do not move about the lattice in a cloud but occupy energy levels inside
allowed energy bands. The lattice atoms have kinetic and potential energy, and the
wavefunction for lattice vibrations must also obey Schrödinger equation. The
solutions to Schrödinger equation give one the eigenfunctions and allowed energy
levels of the lattice vibrations. These allowed energy levels of lattice vibrations are
called phonons. In the quantum mechanical description, the lattice is never at rest,
even at 0 K. The atoms always move, or oscillate, because the Heisenberg uncer-
tainty principle does not allow the atoms to have a definite position in space. If the
atoms were stationary, then their momentum would be indeterminate. The quantum
compromise for this scenario is called the zero-point energy which naturally derives
from Schrödinger equation and gives the lattice vibrational modes a minimum
amount of spatial uncertainty called the zero-point motion. To this zero-point
motion, there is a zero-point energy. This observation is already true for the simple

U(R)

R0

−U0

0
R

R=R0 R=∞

Fig. 6.1 Potential energy of two neighboring atoms in a crystal as a function of the interatomic
spacing. When the two atoms are very far away from each other, they do not interact, and the
interaction potential energy is near zero. When they get closer to one another, they are attracted to
each other to form a bond, which leads to a lowering of the potential energy. However, when they
are very close, the electrostatic repulsion from the nuclear charge of each atom leads to a repulsive
interaction and an increase in the potential energy
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diatomic molecule, for which the vibrational modes are the solutions of the harmonic
oscillator problem in quantum mechanics. Instead of solving Schrödinger equation
for lattice vibrations, it is much easier and more convenient to first study the allowed
classical modes of vibration. It turns out that the classical treatment survives the
quantum treatment. The classical bands change into the true quantum lattice energy
bands through a simple transformation. We will therefore continue with the more
intuitive classical description knowing that the classical results can be taken over in
the quantum limit.

Let us now develop a simple mathematical model for such atomic vibrations and
introduce the formalism that will be used in the rest of the text. We start by
considering the two neighboring atoms, one at the origin (R ¼ 0) and the other at
a distance R, while its equilibrium position is at R ¼ R0. A one-dimensional analysis
will be considered at this time. The potential energy U(R) in Fig. 6.1 of the second
atom can be conveniently expressed with respect to the equilibrium values at R0

through what is called the Taylor expansion (see Appendix A.5):

U Rð Þ ¼ U R0ð Þ þ dU

dR

� �
R0

R� R0ð Þ

þ 1
2

d2U

dR2

� �
R0

R� R0ð Þ2 þ 1
6

d3U

dR3

� �
R0

R� R0ð Þ3 þ . . . ð6:1Þ

where dU
dR

� �
R0
, d2U

dR2

� �
R0

, d3U
dR3

� �
R0

are the first, second, and third derivatives of U(r),

respectively, evaluated at r ¼ R0. (R�R0) is called the displacement. The first
derivative dU

dR

� �
R0

is in fact equal to zero, because it is calculated at the equilibrium

position r ¼ R0, which is where the potential U(r) reaches a minimum. Therefore,
only the displacement terms (R�R0)

n with an exponent n larger than or equal to 2 are
left. The usefulness of the Taylor expansion resides in the fact that at small
deviations from equilibrium, i.e., (R�R0) << R0, it is reasonable to approximate U
(R) with only the first few terms of the expansion in Eq. (6.1).

By denoting U0 ¼ � U(R0) and x ¼ R � R0 the displacement, Eq. (6.1) can be
rewritten as:

U xð Þ þ U0 ¼ 1
2
C1x

2 þ C2x
3 þ . . . ð6:2Þ

where C1 ¼ d2U
dR2

� �
R0

and C2 ¼ 1
6

d3U
dR3

� �
R0

are constants of the model, determined by

the nature of the atoms considered. The first term in the right-hand side of Eq. (6.2),
1
2C1x2, is in fact the potential energy associated with an elastic force equal to
F ¼ � d

dx
1
2C1x2
� � ¼ �C1x, where C1 is the elastic force constant. The negative

sign means that F acts as a restoring force, i.e., in the direction opposite to the
displacement u of the atom.

In the following sections, we will limit the analysis to the first term in the
expansion in Eq. (6.2) and denote C ¼ C1:
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U xð Þ þ U0 � 1
2
Cx2 ð6:3Þ

Because the atomic vibrations described by this potential only involve second-order
displacements, such a solid is generally referred as a harmonic crystal in which the
interactions between atoms can be modeled by a spring. This formalism is valid in
solids up to all reasonable temperatures. We will apply this formalism to two cases of
one-dimensional lattice, extend it to a three-dimensional lattice, and derive a few
macroscopic physical properties of crystals.

6.1.3 One-Dimensional Monatomic Harmonic Crystal

In this simple model, we consider a one-dimensional (linear) lattice with a period
a and with identical atoms of massM, vibrating around each lattice point, as depicted
in Fig. 6.2. Each atom is indexed by an integer n, and its displacement from its
equilibrium position is denoted un. The atoms are taken to oscillate in the same
direction as the lattice (i.e., longitudinal vibration). All the results obtained for this
artificial one-dimensional model prove to be true for three-dimensional lattices as
well.

Traveling Wave Formalism
In this one-dimensional case, we will take into account only the interaction between
nearest neighbors, an assumption that has little effect on the final results. When
considering two neighboring atoms, the forces that are exerted on each one can be

(n−2)a (n−1)a na (n+1)a (n+2)a
equilibrium positions

un−1 un un+1

x

C

M

Fig. 6.2 Model for the interaction of identical atoms in a harmonic crystal. The relative movement
of the atoms is modeled by a spring such that atoms displaced from their equilibrium positions
are forced back by the neighboring atoms. The displacement can travel like a wave throughout
the lattice
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modeled as resulting from a spring which links the interacting atoms, as the one
shown in Fig. 6.2. In other words, the force acted on the nth atom:

• By the (n-1)th atom is Fn, n � 1 ¼ � C(un � un � 1)
• By the (n + 1)th atom is Fn, n + 1 ¼ � C(un � un + 1)

where C is the quasi-elastic force constant, a characteristic of the spring. Although
this spring formalism is obviously crude, it nevertheless describes the interaction
between atoms rather well. This is because the elastic force constant C arises from
Eq. (6.3) and corresponds to the first level of approximation for the interactions
between atoms. The resultant force acting on the nth atom is therefore:

Fn ¼ Fn,n�1 þ Fn,nþ1 ¼ �C 2un � un�1 � unþ1ð Þ ð6:4Þ
The equation of motion for the nth atom is then expressed using classical

mechanics like Newton’s law:

M
d2un
dt2

¼ Fn ¼ �C 2un � un�1 � unþ1ð Þ ð6:5Þ

whereM is the mass and d2un
dt2

is the acceleration of the nth atom. We thus obtain a large

number of coupled differential equations, where the unknown functions are the
displacements un(t). We seek solutions to the Eq. (6.5) in the form of traveling
waves such as:

un tð Þ ¼ Aexp i kan� ωtð Þ½ � ð6:6Þ
where A is the amplitude of the displacement, k is the wavenumber of the wave, and
ω its angular frequency. This expression is typical of a traveling wave because it
satisfies the relation:

unþ1 tð Þ ¼ Aexp i ka nþ 1ð Þ � ωtð Þ½ � ¼ Aexp i kan� ω t � ka

ω

� �� �� 	

¼ un t � ka

ω

� � ð6:7Þ

which shows that the value of the displacement un + 1(t) at the (n + 1)th atom at a time
t is the same as the displacement un(t) at the n

th atom at an earlier time t � ka
ω

� �
. This

means that the magnitude of the displacement is like a wave that is traveling a
distance a in space during a time ka

ω . The velocity at which the wave is traveling is
therefore equal to:

a
ka=

ω

¼ ω

k
ð6:8Þ
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The wavelength λ and frequency υ of the traveling wave are related to the
wavenumber or angular frequency through the defined relations:

λ ¼ 2π
k

υ ¼ ω

2π

8><
>: ð6:9Þ

Boundary Conditions
Before solving the equation of motion in Eq. (6.5), we must introduce the boundary
condition that the linear array of atoms is finite and consists of N atoms with the first
and last atoms being equivalent, i.e., un + N(t) ¼ un(t). This is the periodic or Born-
von Karman boundary conditions which we have already encountered in Sect. 5.3.
This is a reasonable assumption because macroscopic crystal specimens consist of a
very large number of atoms. And since the interaction forces are significant only
between neighboring atoms, the motion of boundary atoms on the “surface” of the
specimen does not affect the motion of all other atoms inside the sample.

Because of the general exponential expression of un(t) (Eq. (6.6)), these
conditions lead to the discretization of the wavenumber k, similar to what was
obtained in Chap. 5:

k ¼ km ¼ 2π
a

m

N
ð6:10Þ

where m ¼ 0, � 1. . . is an integer. In fact, only N different values of wavenumber
k are necessary. Indeed, if two wavenumbers k and k’ differ from each other by an
integer times 2πa (e.g., k

0 ¼ k þ 2π
a ), which is equivalent to say that their corresponding

integersm andm0 differ by an integer times N (e.g.,m0 ¼m + N), then they lead to the
same function un(t) as seen through the simple calculation:

un0 tð Þ ¼ Aexp i k
0
an� ωt

� �
 �
¼ Aexp i2πnþ i kan� ωtð Þ½ � ¼ un tð Þ ð6:11Þ

which is valid for any point (na) and any time (t). This means that k and k0 are
physically indistinguishable. In other words, the basic interval of variation of k can
be chosen as:

1
2

� 2π
a

� �
� k � 1

2
2π
a

� �
ð6:12Þ

And all the physical properties of our one-dimensional crystal that depends on the
wavenumber k must be periodic with a period 2π

a . Again, we arrive at the concept of
the first Brillouin zone introduced in Chap. 5 and Sect. 5.4.1 for electronic states.
And the quantity 2π

a is a reciprocal lattice period. Of course, we can (and must) always
choose the number of atoms N so large that the variation of k could be considered as
quasi-continuous.
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Phonon Dispersion Relation
Now we can solve the equation of motion in Eq. (6.5), by substitutingEq. (6.6) into
it:

�Mω2Aexp i kan� ωtð Þ½ � ¼ �C 2� e�ika � eika
� �

Aexp i kan� ωtð Þ½ �
which successively becomes, after simplification of the exponential and the constant
A:

�Mω2 ¼ �C 2� e�ika � eika
� �

or:

ω2 ¼ 2C
M

1� cos kað Þ ¼ 4C
M

sin 2ka

2
ð6:13Þ

where we have made use of the trigonometric relation: 1� cos x ¼ 2 sin 2x
2. This last

expression can also be rewritten as:

ω ¼ ωmax sin
ka

2

����
���� ð6:14Þ

where ωmax ¼
ffiffiffiffiffi
4C
M

q
. This relation is called the phonon dispersion relation and is

plotted in Fig. 6.3.
We see that the solutions of Eq. (6.5) of the traveling wave type exist only if the

relation in Eq. (6.14) is satisfied by the wavenumber k and the angular frequency ω
of the traveling wave. The frequency and wavenumber of the traveling wave

0

1

2π/aπ/a−π/a 0 k

w
/w

m
ax

Fig. 6.3 Phonon dispersion relation in a one-dimensional monatomic harmonic crystal, expressed
through the dependence of the angular frequency as a function of the wavenumber k
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characterizing the lattice vibrations are not specific to one particular atom but are
rather a property of the entire lattice. As such, the term phonon is used to designate
lattice vibrations, and a frequency and a wavenumber are associated with each
phonon. A more detailed discussion on phonons can be found in Sect. 6.1.6.

For a small wavenumber (k! 0), i.e., in the long wave limit, Eq. (6.14) becomes:

ω ¼ ωmax
a

2
k ð6:15Þ

where we have used the approximation for the sine function, sin(x) � x, for x ! 0,
which is in fact the Taylor expansion of the sine function near zero (see Eq. (6.1)).
Equation (6.15) means that the angular frequency ω is proportional to the
wavenumber k in the long wave limit. Neighboring atoms have similar
displacements in this region.

In the short wavelength limit, as k increases, the slope of ω decreases and
becomes flat at the zone boundaries k ¼ �π/a. At this point, the atoms in adjacent
cells are vibrating with opposite phase. In other words, alternate springs are com-
pressed and stretched, giving rise to maximum atomic displacement and frequencies
of vibration.

6.1.4 One-Dimensional Diatomic Harmonic Crystal

Formalism
In the previous sections, we have discussed the motion of atoms in a
one-dimensional monatomic crystal where all the atoms are identical, with a mass
M, and their equilibrium positions are equally spaced (spacing a). In crystallography
terms, we considered a basis of one atom per unit cell. A more general description of
atomic motion in a crystal involves a basis with more than one atom.

In this section, we will consider a one-dimensional diatomic harmonic crystal.
Ionic crystals such as NaCl and CsCl, atomic crystals such as Si and Ge, and binaries
such as GaAs and InP are examples of lattices whose unit cells contain two atoms
each. The following parameters need to be introduced for a complete diatomic
model. The masses of the two different atoms (labeled 1 and 2) in a unit cell will
be denoted M1 and M2, respectively, with M1 > M2. The equilibrium distance
between the two atoms in a unit cell is generally arbitrary, but we will choose it to
be half the primitive unit cell length for simplicity, i.e., a/2. In addition, the elastic
force constant C, as defined inEq. (6.2), should be different depending on if an atom
interacts with its front or its back neighbor. But for simplicity, we will consider only
one force constant C. In spite of these simplifications, the discussion and the results
will not lose their generality, even if the mathematical steps will be significantly
simpler.

Each diatomic basis will be indexed by an integer n. The displacement of atom
1 from its equilibrium position will be denoted un(t), while the displacement of atom
2 will be denoted vn(t). The atoms are taken to oscillate in the same direction as the
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lattice (i.e., longitudinal vibration). All these parameters and their simplifications are
summarized in Fig. 6.4.

Two coupled sets of equations of motion, similar to Eq. (6.5), need to be
considered; one for the displacement of the nth atom 1 and one for the displacement
of the nth atom 2:

M1
d2un
dt2

¼ �C 2un � vn�1 � vnð Þ

M2
d2vn
dt2

¼ �C 2vn � un � unþ1ð Þ

8>><
>>: ð6:16Þ

Here again, we seek solutions to the set of Eq. (6.16) in the form of traveling
waves with the same wavenumber k and angular frequency ω:

un tð Þ ¼ Aexp i kan� ωtð Þ½ �
vn tð Þ ¼ Bexp i ka nþ 1=2Þ � ωtð Þð �½

(
ð6:17Þ

where A and B are the amplitude of the displacements.

Phonon Dispersion Relation
Substituting these traveling wave expressions into Eq. (6.16), we obtain:

�M1ω2Aexp i kan� ωtð Þ½ �
¼ �C 2Aexp i kan� ωtð Þ½ � � B exp i ka n� 1=2ð Þ � ωtð Þ½ � � B exp i ka nþ 1=2ð Þ � ωtð Þ½ �ð Þ
�M2ω2Bexp i ka nþ 1=2ð Þ � ωtð Þ½ �
¼ �C 2Bexp i ka nþ 1=2Þ � ωtð Þð � � A exp i kan� ωtð Þ½ � � A exp i ka nþ 1ð Þ � ωtð Þ½ �½ Þð

8>>>><
>>>>:

(n−1)a na (n+1)a

equilibrium positions

un−1 un vn

x

un+1vn−1

Atom 1:

(n−1/2)a (n+1/2)aAtom 2:

M2M1

C C

Fig. 6.4 One-dimensional model for the interaction of atoms in a diatomic harmonic crystal
structure with atom massesM1 andM2. It is assumed here that all the springs have the same constant
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Dividing by exp[i(kan � ωt)] the first expression and exp i ka nþ 1=2Þ � ωtð Þð �½ the
second expression, we get:

�M1ω2A ¼ �C 2A� Bexp �ika

2

� �
� Bexp þika

2

� �� �

�M2ω2B ¼ �C 2B� Aexp �ika

2

� �
� Aexp þika

2

� �� �
8>><
>>:

After rearranging the terms with A and those with B:

A 2C �M1ω2½ � � BC exp �ika

2

� �
þ exp þika

2

� �� 	
¼ 0

�AC exp �ika

2

� �
þ exp þika

2

� �� 	
þ B 2C �M2ω2½ � ¼ 0

8>><
>>:

Expressing the sum of exponentials with trigonometric functions, we get:

A 2C �M1ω2½ � � B 2C cos
ka

2

� �� 	
¼ 0

�A 2C cos
ka

2

� �� 	
þ B 2C �M2ω2½ � ¼ 0

8>><
>>: ð6:18Þ

This system of equation has a nonzero solution, i.e., A and B not both equal to
zero, if and only if the determinant of the system is zero:

2C �M1ω
2


 �
2C �M2ω

2

 �� 2C cos

ka

2

� �� 	
2C cos

ka

2

� �� 	
¼ 0 ð6:19Þ

which, after developing the products, becomes:

M1M2ω
4 � 2C M1 þM2ð Þω2 þ 4C2 � 4C2 cos 2

ka

2

� �
¼ 0

or:

M1M2ω
4 � 2C M1 þM2ð Þω2 þ 4C2 sin 2 ka

2

� �
¼ 0 ð6:20Þ

This equation is of the form αω4� 2βω2 + γ ¼ 0, with α, β, and γ > 0, and has two
solutions for ω2, denoted ω2

þ, and ω2
� such that:

ω2
� ¼ β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � αγ

p
α

ð6:21Þ

Therefore, the solutions of Eq. (6.20) are:
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ω2
� kð Þ ¼

C M1 þM2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 M1 þM2ð Þ2 � 4C2M1M sin 2 ka

2

� �q
M1M2

which can be simplified into:

ω2
� ¼ C

M1 þM2

M1M2

� �
� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þM2

M1M2

� �2

� 4 sin 2 ka
2

� �
M1M2

s

Using the trigonometric identity cos(2x) ¼ 1 � 2sin2(x), this equation becomes:

ω2
� kð Þ ¼ C

M1 þM2

M1M2

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M1M2

M1 þM2ð Þ2 1� cos kað Þð Þ
s" #

ð6:22Þ

which constitutes the phonon dispersion relation in the model considered, similar to
that obtained in Eq. (6.14). This expression always has a meaning since the argument
of the square root is always positive because we have, for any value of masses M1

and M2 and value of wavenumber k:

0 � 1� cos kað Þð Þ � 2

and therefore:

0 � 2M1M2

M1 þM2ð Þ2 1� cos kað Þð Þ � 4M1M2

M1 þM2ð Þ2 � 1

There are thus two possible dispersion relations, denoted ω+(k) and ω�(k),
relating the angular frequency to the wavenumber. Both are plotted in the first
Brillouin zone in Fig. 6.5. These plots represent the so-called phonon spectrum of
a one-dimensional diatomic harmonic crystal.

The values for ω+(k) and ω�(k) at k¼ 0 and k ¼ �π
a can be easily calculated from

Eq. (6.22) (note that we have chosenM1 >M2). The top curve in Fig. 6.5 corresponds
to ω+(k) and is called the optical phonon branch or simply optical phonon, while the
bottom branch corresponds to ω�(k) and is called the acoustic phonon branch or
simply acoustic phonon.

Now, for small values of wavenumber (k! 0), an approximate expression can be
derived from Eq. (6.22). To do so, we start by using an approximate expression for
the cosine function in the Eq. (6.22):

cos kað Þ � 1� 1
2

kað Þ2

This approximation is in fact the Taylor expansion of the cosine function near
zero (see Eq. (6.1)). We therefore obtain successively:
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1� cos kað Þ � 1
2

kað Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M1M2

M1 þM2ð Þ2 1� cos kað Þð Þ
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M1M2

M1 þM2ð Þ2 kað Þ2
s

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M1M2

M1 þM2ð Þ2 1� cos kað Þð Þ
s

� 1� M1M2

2 M1 þM2ð Þ2 kað Þ2

by using the approximation
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p � 1� 1
2 x for x ! 0 (again this comes from the

Taylor expansion of
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
for small values of x). Equation (6.22) can then be

approximated by the following expression:

ω2
� kð Þ � C

M1 þM2

M1M2

� �
1� 1� M1M2

2 M1 þM2ð Þ2 kað Þ2
 !" #

ð6:23Þ

Consequently, in the long wave limit, the angular frequency of the acoustic
phonon branch can be written as:

ω2
� kð Þ � C

M1 þM2

M1M2

� �
M1M2

2 M1 þM2ð Þ2 kað Þ2
" #

[2C/M1]1/2

[2C/M2]1/2

acoustic branch, w-

optical branch, w+

[2C(M1+M2)/M1M2]1/2

π/a−π/a 0
k

Fig. 6.5 Optical and acoustic branches in the dispersion relation
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ω� kð Þ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2

2 M1 þM2ð Þ

s
ð6:24Þ

which means that the angular frequency ω�(k) in the acoustic phonon branch is
proportional to the wavenumber k, similar to the result obtained in Eq. (6.15). The
shape of the acoustic branch is similar, but the increased mass lowers the frequency.
For the acoustic branch in the long wave limit, the traveling wave is equivalent to the
elastic wave of a one-dimensional atomic chain regarded as a continuous media. The
nature of the vibrations in this region is just like sound waves. The two atoms in the
unit cell move in the same direction, and over a small region, it seems as if the entire
crystal has been compresses or stretched. This is why the ω�(k) branch is called the
acoustic branch.

In the same limit (k! 0), the angular frequency of the optical phonon branch can
be expressed from Eq. (6.23):

ω2
þ kð Þ � C

M1 þM2

M1M2

� �
1þ 1½ � ¼ 2C

M1 þM2

M1M2

� �
ð6:25Þ

which shows that the angular frequency ω+(k) in the optical phonon branch is
constant in the long wave limit. The nature of the vibrations in this region is that
the two atoms in the unit cell move in opposite directions. This is similar to the top of
the band in the monatomic case, where there is maximum distortion and frequency of
vibration. The angular frequency in the limit (k ! π/a) for the optical and acoustic
branches is left as an exercise at the end of the chapter.

Furthermore, the ratio of the displacement amplitudes A and B defined in
Eq. (6.17) can be taken for two different values, depending on the branch chosen,
calculated from either one of Eq. (6.18):

B

A

� �
�
¼ 2C �M1ω2

�
2C cos ka

2

� � ð6:26Þ

Again, in the long wave limit (k ! 0) and for the acoustic phonon branch, we
have ω�(k) ! 0 as seen from Eq. (6.24) and cos ka

2

� �! 1 so that:

B

A

� �
�
! 2C

2C
¼ 1 ð6:27Þ

which demonstrates that, in this case, the vibrations of the two atoms in one primitive
unit cell have exactly the same amplitude and phase (i.e., direction), as shown in
Fig. 6.6.

In the long wave limit (k ! 0) for the optical phonon branch, we have ωþ

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C
M1M2
M1þM2

� �s
from Eq. (6.25), and therefore, by substituting into Eq. (6.):
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B

A

� �
þ
!

2C �M1
2C

M1M2
M1þM2

� �
2C

¼ �M1

M2
ð6:28Þ

which shows that, in the long wave limit of the optical branch, the vibrations of the
two atoms in one primitive unit cell have a specific amplitude ratio and opposite
phases (i.e., directions), as shown in Fig. 6.7. Thus, optical phonons are described by
the oscillations of two atoms about a center of mass, while acoustic phonons are
described by the movement of the two atoms center of mass. The amplitude ratio in
the limit (k ! π/a) is left as an exercise at the end of the chapter.

Actually, the ratio of the amplitudes is such that the vibrations of the two atoms in
a primitive unit cell leave the position of their center of gravity unchanged. There-
fore, if the two atoms are ions of opposite charges, such as in the case of GaAs or
NaCl, these oscillations result in a periodic oscillation of the amplitude of the dipole
moment formed by these two charged ions, as discussed in Sect. 1.5.6. Such
oscillations of the dipole moment are frequently optically active, i.e., are involved
in the absorption or emission of electromagnetic (infrared mostly) radiation. This
explains the use of the term “optical” for the ω+(k) branch of lattice vibrations.

One can use the dispersion relation for phonons and photons to examine the
conservation of energy and momentum that applies to the interaction of phonons and

un vn
x

M1 M2

Fig. 6.6 Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding to the
acoustic phonon branch. In this configuration, the two atoms forming the unit cell move in the same
direction at the same time

un vn
x

M1 M2

Fig. 6.7 Atomic vibrations in a one-dimensional diatomic harmonic crystal, corresponding to the
optical phonon branch. In this configuration, the two atoms forming the unit cell move in opposite
directions at the same time
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photons. Figure 6.8 shows the crossing of the dispersion relation for both acoustic
and optical phonons with a photon. Because the photon and optical phonon curves
cross, energy and momentum can be exchanged. An optical phonon can be created
or annihilated with a photon. Since the acoustic mode never crosses the photon
dispersion, they cannot interact. For example, in NaCl, its optical mode is excited by
light because an electric field can displace the two oppositely charged ions in
different directions. In a Ge crystal, the two atoms in the unit cell have similar
charges and cannot be excited by an electric field.

6.1.5 Extension to Three-Dimensional Case

Formalism
So far, we have only considered a one-dimensional atomic crystal. A real crystal
expands in all three dimensions of space, and lattice vibrations are more compli-
cated. For example, the vibrations can occur in all three directions, regardless of the
equilibrium position alignment of the atoms, and need to be expressed using a

displacement vector u
R
!
!

tð Þ. Moreover, a wavevector k
!

must be used, similarly to

the way it was done in Chap. 5 for three-dimensional electronic band structures. This

wavevector k
!
also indicates the direction of propagation of the traveling wave. The

expression of the displacement, given for the one-dimensional case in Eq. (6.6),
becomes in the three-dimensional case now:

photon dispersion

acoustic branch, w-

optical branch, w+

0 π/a
k

Fig. 6.8 The dispersion
curves for a photon and an
acoustic and optical phonon.
The optical branch crosses
with the photon branch,
allowing for energy and
momentum conservation
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u
R
!
!

tð Þ ¼A
!
exp i

�
k
!
� R! �ωt

�� 	
ð6:29Þ

where A
!

is the amplitude vector of the displacement and k
!
� R! is the dot product

between the wavevector and the equilibrium position R
!
of the atom considered.

In spite of this increased complexity, all the features obtained in the present
simplified study remain valid. In particular, there still exist two types of phonons, as
shown in the example of dispersion spectrum in Fig. 6.9: acoustic phonons, for

which the vibration frequency goes to zero in the long wave limit ( k
!��� ��� ! 0), and

optical phonons, for which the frequency goes to a nonzero finite value in the long
wave limit. Each type of phonons is further divided into two main categories:
transversal and longitudinal phonons. The terms “transversal” and “longitudinal”
refer to the direction of atomic displacements u

!
tð Þ with respect to direction of

propagation k
!
: perpendicular for transversal and parallel for longitudinal. There are

generally two transverse and one longitudinal branch for each optical and acoustic
phonons. Furthermore, the dispersion relations are not always isotropic, meaning
that the phonon dispersion relations are different for different symmetry directions
within the crystal.

For example, in Fig. 6.9, the transversal acoustic (TA), longitudinal acoustic
(LA), transversal optical (TO), and longitudinal optical (LO) phonon branches are
shown. Notice that the longitudinal branches are higher in energy than the transverse
branches. In general, for a three-dimensional crystal with s atoms per unit cell, there
are always three acoustic branches, two transversal and one longitudinal. There are
also 3s�3 optical branches. Figure 6.9 shows a typical example for s ¼ 2. A
monatomic Bravais lattice (s ¼ 1) can only have acoustic phonon branches.

0

k/kmax
1

E

TO

TO
LO

TA
TA

LA

Fig. 6.9 Typical phonon
dispersion spectrum for a
three-dimensional diatomic
lattice (s ¼ 2)
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Figure 6.10 shows the movement of (a) transverse optic (TO), (b) longitudinal
optic (LO), (c) transverse acoustic (TA), and (d) longitudinal acoustic (LA) phonons
in a lattice. The black circles represent the atoms with smaller mass, such as the
gallium atoms in gallium arsenide. The white circles represent the heavier atoms,
such as the arsenic atoms in gallium arsenide.

TO phonons propagate by the lighter atoms (black) being displaced perpendicular
to the direction of the wave traveling. The heavier atoms (white) remain somewhat
stationary within the lattice. For LO phonons, the heavier atoms remain somewhat
stationary within the lattice, while the lighter atoms move parallel to the propagation
of the traveling wave. As you can see, both optic modes produce a change in dipole
movement, or the movement of the atoms about their center of mass. The heavier
atoms remain fixed in the lattice, while the lighter atoms move and carry the wave
through the medium. TA modes propagate similar to a pulse moving along a string
after it has been jerked. The wave propagates through the movement of both the
heavier and lighter atoms. Lastly, LA phonons propagate through the movement of a
pair of atoms toward and away from another pair of atoms. Both acoustic modes
correspond to the movement of the center of mass of two atoms. The distance
between a heavier and lighter atoms remains fixed, while the pair as a whole is
displaced relative to other atom pairs.

a b

c d

Fig. 6.10 The propagation of the four different phonon modes through a lattice: (a) transverse
optic, (b) longitudinal optic, (c) transverse acoustic, and (d) longitudinal acoustic
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Silicon
Silicon crystals only have two identical atoms in their unit cell and bonds in the
diamond structure. This results in the LO and TO energies being degenerate at the
zone center. Since both atoms are identical, the bonds do not carry any electronega-
tivity, and there is no restoring force like that in GaAs (Fig. 6.11).

Gallium Arsenide
In GaAs, the LO phonons have higher energy than the TO phonons near the zone
center. This results from the ionic nature of the bonding in zinc-blende crystals. In
GaAs, the arsenic atoms contribute five electrons to the bonds compared to gallium
atoms, which contribute three. Consequently, the electrons spend on average more
time near the arsenic atoms resulting the arsenic atoms to be slightly more negative,
while the gallium atoms are slightly positive. This difference in electronegativity
produces a restoring force for a propagating LO mode but not a TO mode. This
increase in energy gives the LO modes a higher frequency (Fig. 6.12).

6.1.6 Phonons

In Chap. 5, the treatment of the electrons in a crystal led to energy levels and
momenta that do not correspond to those of individual atoms but are properties of
the lattice as a whole. Earlier in this chapter, we have hinted that the characteristics of
the traveling waves arising from lattice vibrations are not specific to one particular

Fig. 6.11 Phonon dispersion relation for silicon in three crystal directions. Solid lines are
calculated. Data points: open circles represent transverse (T) modes, open triangles longitudinal
(L) modes, and solid points undetermined polarization modes (Reprinted with permission from
Dolling 1963, Fig. 1. Copyright 1963, International Atomic Energy Association)

220 6 Phonons and Thermal Properties



atom but are rather a property of the entire lattice too. We thus have to consider the
collective excitation of the crystal as a whole and talk about a lattice wave. Each type

of vibration is called a vibrational mode and is characterized by a wavevector k
!
and a

frequency ω
�
k
!�

.
The previous sections of this chapter dealt with a classical analysis of lattice

vibrations. In a quantum mechanical treatment, especially when lattice waves inter-
act with other objects (e.g., electrons, electromagnetic waves, or photons), it is
convenient to regard a lattice wave as a quasiparticle or phonon with a momentum
and a (quantized) energy such that:

p
!¼ h k

!

E ¼ hω
�
k
!�

(
ð6:30Þ

This is analogous to the quantization of the electromagnetic field discussed in
Chap. 4. The energy in Eq. (6.30) is the quantum unit of vibrational energy at that
frequency. Because phonons involve vibrational energy stored in the crystal,
phonons can interact with other waves or particles such as electrons, photons, and
phonons. These types of interactions lead to the experimentally observable physical
properties of crystals.

Fig. 6.12 Phonon dispersion relation for gallium arsenide in three crystal directions. Dotted and
solid lines denote calculated values. Solid points denote undetermined polarization modes
(Reprinted figure with permission from Waugh and Dolling 1963, Fig. 1. Copyright 1963 by the
American Physical Society)
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The velocity of a phonon is given by the group velocity of the corresponding
traveling wave, defined as the gradient of the frequency with respect to the
wavevector:

vg
! ¼ ∂ω

�
k
!�

∂ k
! ¼ ∇

k
!ω
�
k
!� ð6:31Þ

In Cartesian coordinates with unit vectors
�
x
!
; y
!
; z
!�

, this relation can be written
as:

vg
! ¼ ∂ω kx; ky; kz

� �
∂kx

x
! þ∂ω kx; ky; kz

� �
∂ky

y
! þ∂ω kx; ky; kz

� �
∂kz

z
! ð6:32Þ

In this quantum picture, the propagation of harmonic lattice waves, i.e., up to the
second-order term in Eq. (6.2), is equivalent to the free movement of non-interacting
phonon quasiparticles, also called “phonon gas,” and their description is similar to
that of photons.

In particular, any number of identical phonons may be present simultaneously in

the lattice, in any of the phonon mode characterized by a wavevector k
!
for a given

temperature. A phonon gas thus obeys the Bose-Einstein statistics which says that

the average number of phonons in a given mode (k
!
) is then determined by:

N
k
! ¼ 1

exp
hω
�
k
!�

kbT

� �
� 1

ð6:33Þ

where kbis the Boltzmann constant and T is the absolute temperature. At high

temperatures, i.e., kbT >> hω
�
k
!�

, the exponential in Eq. (6.33) can be
approximated by:

exp
hω
�
k
!�

kbT

0
@

1
A � 1þ hω

�
k
!�

kbT
ð6:34Þ

where we have used the approximation exp(x) � 1 + x for x ! 0 (again this comes
from the Taylor expansion of exp(x) � 1 + x for small values of x). Therefore,

N
k
! � kbT

hω
�
k
!�, which expresses that the average number of phonons in a given mode

is proportional to the temperature, at high temperatures.
As mentioned earlier, phonons can interact with other phonons. Such interaction

would correspond to anharmonic vibrations in the classical wave picture, which arise
from cubic and higher order terms in Eqs. (6.1 and 6.2).
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Example

Q Estimate the average number of phonons in a given mode at low temperatures.
A The average number of phonons N(E) with an energy E is given by:

N Eð Þ ¼ 1

exp E
kbT

� �
�1
. At low temperatures, we have exp E

kbT

� �
>> 1, and the

expression for N(E) can be simplified into: N Eð Þ � exp � E
kbT

� �
.

6.1.7 Sound Velocity

It is known that a solid can transmit sound. This is in fact accomplished through the
vibrations of atoms similar to the ones discussed in earlier sections. The sound
velocity is the speed at which sound propagates and is related to velocity of a
traveling wave as discussed below.

In Sect. 6.1.3, we have already hinted that the velocity of the traveling wave was
given by the ratio of the angular frequency to the wavenumber in Eq. (6.8):

vph ¼ ω

k
ð6:35Þ

Using Eqs. (6.13 and 6.14), we obtain:

vph ¼
ffiffiffiffiffiffi
4C
M

r
sin ka=2ð Þ

k

����
���� ¼ a

ffiffiffiffiffi
C

M

r
sin ka=2ð Þ

ka=2

����
���� ¼ v0

sin ka=2ð Þ
ka=2

����
���� ð6:36Þ

where:

v0 ¼ a

ffiffiffiffiffi
C

M

r
ð6:37Þ

Therefore:

vph ¼ v0
sin ka=2ð Þ

ka=2

����
���� ð6:38Þ

This quantity is called the phase velocity because it represents the velocity of the
phase of the wave or, in other words, the speed at which the peak of the wave travels
in space. The phase velocity is plotted in Fig. 6.13, and we see that it never reaches
zero.

There is another quantity of interest which is the group velocity of a traveling
wave which represents the velocity of a wave packet and therefore of the wave
energy and is defined as:
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vg ¼ dω

dk

����
���� ð6:39Þ

Using Eqs. (6.13 and 6.14), we obtain:

vg ¼
ffiffiffiffiffiffi
4C
M

r
a

2
cos ka=2Þð j ¼ a

ffiffiffiffiffi
C

M

r
cos ka=2Þð jj

����� ð6:40Þ

and therefore:

vg ¼ v0 cos ak=2Þð jj ð6:41Þ
The group velocity is also plotted in Fig. 6.6. We see that this quantity drops to

zero when k ! π
a, i.e., at boundary of the first Brillouin zone.

Example

Q Estimate the order of magnitude for the elastic constant C of silicon, given that
the sound velocity in silicon is 2.2 � 105 cm�s-1.

A Starting from the expression for the sound velocity, v0 ¼ a
ffiffiffi
C
M

q
, where a¼ 5.43

Å and M ¼ 28Mp are the lattice constant and mass of a silicon atom, respec-
tively. We thus have:

C ¼ M
v20
a2

¼ 28� 1:67264� 10�27
� �� 2:2� 103

� �2
5:43� 10�10
� �2

� 0:77N:m�1

0

1

vph
vg

π/a−π/a 0

v g
/v

0 a
nd

 v
ph
/v

0

k

Fig. 6.13 Phase and group
velocities versus
wavenumber k

224 6 Phonons and Thermal Properties



From Eq. (6.37), we see that the speed of sound in a medium is proportional to the
inverse square root of M, the atomic mass, and the square root of C, the elastic
constant of the material. A generalized form for the speed of sound in a medium is:

vs ¼
ffiffiffi
B

ρ

s
ð6:42Þ

where B is the bulk modulus of the material and ρ is the density, given by its mass
divided by its volume.

The bulk modulus is the property that determines the extent to which a medium
changes its volume in response to an applied pressure. A generalized expression for
the bulk modulus of a material is given by:

B ¼ �Δp
ΔV
V

ð6:43Þ

where p is an applied pressure and V is the medium’s volume. ΔV/V is the percent
change in volume produced by a change in pressure Δp. The minus sign is included
because whenever we increase the pressure, the volume decreases and vice versa.
The minus sign allows what is under the radical in Eq. (6.42) to be positive.

Just as phonon modes can be anisotropic in a crystal, the bulk modulus is also
directional within a crystal, and the velocity of sound is dependent upon what
direction the sound is traveling in a material. A medium’s bulk modulus generally
takes on a tensor form and can be significantly different in the Γ, X, and L directions.
This results from the crystal structure (e.g., cubic, tetragonal, orthorhombic, etc.)
having different bonding lengths on different sides of each atom.

6.1.8 Summary

In this chapter, we have described the basic formalism for treating the interaction
between atoms in a crystal, through the simple examples of one-dimensional mon-
atomic and diatomic harmonic lattices. Several important concepts have been
introduced such as the lattice vibrational modes, traveling waves, dispersion
relations, acoustic and optical branches, longitudinal and transversal branches, and
sound velocity. We realized that these lattice vibrations could be quantized in the
same manner as the electromagnetic field and can thus be considered as
quasiparticles, or phonons, with a momentum and energy and which obey Bose-
Einstein statistics.

6.1 Phonons and Thermal Properties 225



6.2 Thermal Properties of Crystals

6.2.1 Introduction

In Chap. 6 Part 1, we built simple mathematical models to describe the vibrations of
atoms, first in a one-dimensional system and then extended to a three-dimensional
harmonic crystal. These models, in the quantum description, led us to introduce a
quasiparticle called the phonon, with an associated momentum and energy spectrum.
Many of the phenomena measured in crystals can be traced back to phonons.

In this chapter, we will employ the results of the phonon formalism used in
Chap. 6 to interpret the thermal properties of crystals, in particular their heat
capacity, thermal expansion, and thermal conductivity.

6.2.2 Phonon Density of States (Debye Model)

Debye Model
The Debye model was developed in the early stages of the quantum theory of lattice
vibration in an effort to describe the observed heat capacity of solids (Sect. 6.1.3).
The model relies on a simplification of the phonon dispersion relation (see, e.g.,
Eq. (6.22), Fig. 6.5, or Fig. 6.8). In the Debye model, all the phonon branches are
replaced with three acoustic branches, one longitudinal (l ) and two transversal (t),
with corresponding phonon spectra:

ωn

�
k
!� ¼ vn k

!��� ��� ¼ vnk ð6:44Þ

where n (¼ l or t) is an index, k is the norm or length of the wavevector k
!
, and vl and

vt are the longitudinal and transversal sound velocities, respectively. This model
corresponds to a linearization of the phonon spectrum as shown in Fig. 6.4. But this
linearization implies that the phonon frequencies depend solely on the norm of the
wavevector. Some boundary conditions therefore need to be changed in this model
(Fig. 6.14).

Indeed, we remember that the range for the wavevector was restricted to the first
Brillouin zone in the real phonon dispersion relation. The Born-von Karman bound-

ary conditions of Sect. 5.3 limited the total number of allowed values for k
!

to the
number N of atoms in the crystal of volume V considered. We saw in Sect. 5.3 that

the volume occupied by each wavevector was 2πð Þ3
V . The volume of the first Brillouin

zone is then 2 πð Þ3N
V and must be equal to

4π
3
k3D where kD is the Debye wavenumber

such that the relation (7.1) is valid in the range 0 � k � kD. We thus obtain:
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k3D ¼ 6π2N
V

ð6:45Þ

This wavenumber corresponds to a Debye frequency ωD defined by:

hωD ¼ hν0kD ð6:46Þ
where ν0 is the sound velocity in the material. The Debye frequency is characteristic
of a particular solid material and is approximately equal to the maximum frequency
of lattice vibrations. It is also useful to define the Debye temperature ΘD such that:

kbΘD ¼ hωD ¼ hν0kD ð6:47Þ
The significance ofΘDwill become clear in the following discussion. However, it

follows that every solid will have its own characteristic phonon spectrum and
therefore its own Debye temperature. The Debye temperatures for a few solids are
listed in Table 6.1.

Example

Q Calculate the Debye wavelength for GaAs, given that the density of GaAs is
d ¼ 5.32 � 103 kg�m-3.

A We make use of the expression giving the Debye wavenumber k3D ¼ 6π2N
V

,

which is related to the Debye wavelength through λD ¼ 2π
kD

¼ 2π 6π2N
V

� ��1=3

,

where N is the number of atoms in the volume V. By definition of the density,

w(k)

kD0 2π/aπ/a

k

Debye approximation

real phonon
spectrum

Fig. 6.14 Illustration of the
Debye model in the phonon
dispersion curve. In the Debye
model, all the phonon
branches are replaced with
three acoustic branches. This
corresponds to a
simplification of the phonon
dispersion spectrum, through
a linearization of the phonon
branches. A sphere is defined
in momentum space with
radius kD, the Debye
wavevector, such that the total
number of modes inside the
Debye sphere now matches
the total number of modes in
the real system
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we have d ¼ 1
V
N
2 MGa þMAsð Þ, where M

Ga
and M

As
are the masses of a Ga and

an As atom, respectively. The factor 2 arises from the fact that half of the atoms
in the volume are Ga atoms and the other half are As atoms.

Therefore, we can write:

λD ¼ 2π 6π2 2d
MGaþMAsð Þ

� ��1=3

¼ 2π 6π2 2�5:32�103

69:7þ74:9ð Þ�1:67264�10�27

� ��1=3

or λD ¼ 4:57Å:

Phonon Density of States

The phonon density of states g(ω) is the number of phonon modes k
!

per unit

frequency interval which have a frequency ω
�
k
!�

equal to a given value ω. It can be
calculated in a way similar to that used for the electron density of states in Sect.
6.1.3:

g ωð Þ ¼
X
k
!
, n

δ ωn

�
k
!�� ω

� �
ð6:48Þ

where the summation is performed over all phonon modes k
!
and phonon branches

labeled n. Because the crystal has macroscopic sizes, the strictly discrete wavevector

k
!

can be considered quasi-continuous, as was done in Chap. 6 Eq. 6.44, and the
discrete summation can be replaced by an integral:

Table 6.1 Debye
temperatures of a few solids
(Grigoriev and Meilikhov
1997)

Material ΘD (K)

Pb 105

Au 162

Ag 227

NaCl 275

GaAs 345

Cu 347

Ge 373

W 383

Al 433

Fe 477

Si 650

BN 1900

C (diamond) 2250
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X
k
!

Y
�
k
!� 	 V

2πð Þ3
ðð
k

ð
Y
�
k
!�

d k
!
¼ V

2πð Þ3
ð1

�1

ð1
�1

ð1
�1

Y kx; ky; kz
� �

dkxdkydkz ð6:49Þ

where V is the volume of the crystal considered. The summation here is actually

performed over all values of k
!

in the first Brillouin zone. Equation (6.48) then
becomes:

g ωð Þ ¼ V

2πð Þ3
X
n

ð ð
k

ð
δ ωn

�
k
!�� ω

� �
d k

!
ð6:50Þ

We now make use of Eq. (5.37):

d k
!
¼ d

4π
3
k3

� �
¼ 4πk2dk

where k is the norm or length of the wavevector k
!
. Therefore, Eq. (6.50) becomes:

g ωð Þ ¼ 4πV

2πð Þ3
X
n

ðkD
0

δ ωn

�
k
!�� ω

� 	
k2dk ð6:51Þ

where the integration is now from 0 to the Debye wavenumber kD, in agreement with
the Debye model described earlier. Substituting (6.46), we get successively:

g ωð Þ ¼ V

2π2
X
n

ðkD
0

δ νn k � ω½ �k2dk ð6:52Þ

or:

g ωð Þ ¼ V

2π2
X
n

ðkD
0

δ x� ω½ �x
2

v3n
dx ð6:53Þ

after the change of variable x¼ vnk (and thus dx¼ vndk). There is a nonzero solution
only if there is a wavenumber k between 0 and kD such that x ¼ vnk ¼ ω, and:

g ωð Þ ¼ V

2π2
X
n

ω2

v3n
for 0 � ω � ωD

g ωð Þ ¼ 0 forωD � ω

8<
: ð6:54Þ

Remembering that the Debye model takes into account one longitudinal (l ) and
two transversal (t) modes, we obtain:
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g ωð Þ ¼ V

2π2
ω2

v3l
þ 2

ω2

v3t

� �
for 0 � ω � ωD

g ωð Þ ¼ 0 forωD � ω

8<
: ð6:55Þ

which can also be rewritten as:

g ωð Þ ¼ 3Vω2

2π2v30
for 0 � ω � ωD

g ωð Þ ¼ 0 forωD � ω

8<
: ð6:56Þ

where:

1

v30
¼ 1

3
1

v3l
þ 2
v3t

� �
ð6:57Þ

is the inverse average sound velocity. This phonon density of states is illustrated in
Fig. 6.15 where we have a parabolic relation. Although the Debye model is a simple
approximation, the choice of kD ensures that the area under the curve of g(ω) is the
same as for the real curve for the density of states. Moreover, this expression is
precise enough to determine the lattice contribution to the heat capacity both at high
and low temperatures.

a b

0
wD

g(w) g(w)

0

w w

Fig. 6.15 (a) Illustration of the phonon density of states in the Debye model, where the relation-
ship is parabolic until the Debye frequency is reached, after which the density of states is equal to
zero. (b) Illustration of a typical phonon spectrum of a real crystal with discontinuities due to
singularities in the spectrum. The singularities are due to zeroes in the group velocity
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Heat Capacity

Lattice Contribution to the Heat Capacity (Debye Model)
When heat is transferred to a solid, its temperature increases. Heat has a mechanical
equivalent which is an energy and is generally expressed in units of calorie with
1 calorie corresponding to 4.184 joules. Different substances need different amounts
of heat energy to raise their temperature by a set amount. For example, it takes
1 calorie to raise 1 g of water by 1 degree K. The same amount of energy, however,
raises 1 g of copper by about 11 K.

The heat capacity, C, of a material is a measure of the ability with which a
substance can store this heat energy and is described by the ratio of the energy dE
transferred to a substance to raise its temperature by an amount dT. The greater a
given material’s heat capacity, the more energy must be added to change its
temperature. The heat capacity is characteristic of a given substance, and its units
are cal�K�1 or J�K�1. The heat capacity is defined as:

Cv ¼ dE

dT

� �
v

ð6:58Þ

subscripts denoting which variable (volume or pressure) is held constant.
The specific heat capacity, often known simply as the specific heat and denoted

by a lowercase c, of a material is the heat capacity per unit the mass. The specific heat
of a given substance has units or cal�g�1�K�1 or J�kg�1�K�1 and is thus specific to a
particular material and independent of the quantity of material. A few values of
specific heat for elements in the periodic table are given in Fig. A. in Appendix A.3.

Both heat capacity and specific heat phenomena are closely related to phonons
because, when a solid is heated, the atomic vibrations become more intense and
more phonons or vibrational modes are accessible. A measure of the heat energy
received by a solid is therefore the change in the total energy carried by the lattice
vibrations. This total energy E can be easily expressed using the following integral,
knowing the average number of phonons N(ω)) (Eq. 6.33), the phonon density of
states g(ω), and that a phonon with frequency ω has an energy hω (Eq. 6.30):

E ¼
ð1
0

N ωð Þg ωð Þhωdω ð6:59Þ

In the Debye model, we can use Eq. (6.56) for g(ω) and rewrite Eq. (6.59) as:

E ¼
ðωD

0

1

exp hω
kbT

� �
� 1

3Vω2

2π2v30
hωdω

or:
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E ¼ 3Vh
2π2v30

ðωD

0

ω3

exp hω
kbT

� �
� 1

dω ð6:60Þ

Note that the previous integral is performed only up to the Debye frequency, as
the phonon density of states is equal to zero beyond that point. Using the change of
variable x ¼ hω

kbT
(and thus dx ¼ h

kbT
dω), this equation becomes:

E ¼ 3Vh
2π2v30

kbT

h

� �4 ðhωDkbT

0

x3

ex � 1
dx ð6:61Þ

Let us now make use of the Debye temperature ΘD defined in Eq. (6.46) and the
Debye wavenumber kD in Eq. (6.47) to express:

1

ΘDð Þ3 ¼
1

k3D

kb
hν0

� �3

¼ V

6π2N
kb
hν0

� �3

Using Eq. (6.46) for the boundary of the integral, Eq. (6.61) can then be rewritten
as:

E ¼ 9Nkb
1

ΘDð Þ3 T
4
ðΘDT
0

x3

ex � 1
dx ð6:62Þ

For high temperatures, where kbT 
 hωD or simply T 
 ΘD, the integral in
Eq. (6.62) is evaluated close to zero, i.e., 0 < x < ΘD

T << 1. The function in the
integral can thus be approximated as follows:

x3

ex � 1
� x3

1þ xð Þ � 1
¼ x2

where we have used the approximation exp(x) � 1 + x for x ! 0. As a result,
Eq. (6.62) becomes successively:

E� 9Nkb
1

ΘDð Þ3 T
4
ðΘDT
0

x2dx

¼ 9Nkb
1

ΘDð Þ3 T
4 x3

3

� 	ΘD
T

0

¼ 3Nkb
1

ΘDð Þ3T
4 ΘD

T

� �3

and finally:
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E � 3NkbT ð6:63Þ
The heat capacity is thus obtained after differentiating this expression with

respect to the temperature as in Eq. (6.63):

Cv ¼ dE

dT

� �
v

¼ 3Nkb ð6:64Þ

This relation shows that, for high temperatures, i.e., T 
ΘD, the heat capacity is
independent of temperature. In fact, this could have been easily calculated using
classical theory. Indeed, in classical statistical thermodynamics, each mode of
vibration is associated with a thermal energy equal to kbT. Therefore, for a solid
with N atoms, each having three vibrational degrees of freedom, we get 3 N modes;
the total thermal energy is then 3NkbT, as derived in Eq. (6.63); and the heat capacity
is found to be equal to Eq. (6.64). This is known as the law of Dulong and Petit,
which is based on classical theory. The molar heat capacity, that is, the value of the
heat capacity for 1 mole of atoms, is calculated for N equal to the Avogadro number
NA ¼ 6.02204 � 1023 mol�1 and is Cv ¼ 3N Akb ¼ 24.95 J�mol�1�K�1 ¼ 5.96
cal�mol�1�K�1.

This shows that, at high temperatures T
 ΘD, the Debye model fits the classical
model. For low temperatures, however, where kbT � hωD or simply T � ΘD, the
heat capacity is not constant with temperature anymore. This is where the quantum
theory of phonons is needed and where the accuracy of the Debye model is best
appreciated. In this case, the integral in Eq. (6.61) can be extended up to infinity
without much error. Moreover, the exponential fraction in the integral can be
expressed as:

1
ex � 1

¼ 1
ex

� �
1

1� e�x

� �

¼ 1
ex
X1
n¼0

e�xð Þn ¼
X1
n¼1

e�xð Þn ¼
X1
n¼1

e�nx
ð6:65Þ

because x > 0 and e�x < 1. Therefore, the integral in Eq. (6.61) becomes:

ðΘDT
0

x3

ex�1
dx�

ð1
0

x3

ex�1
dx

¼
ð1
0

X1
n¼1

x3e�nx

 !
dx

¼
X1
n¼1

ð1
0

x3e�nxdx

0
@

1
A

¼
X1
n¼1

In

ð6:66Þ

6.2 Thermal Properties of Crystals 233



where the integral In can be simplified after the following successive integration by
parts:

In ¼
ð1
0

x3e�nxdx

¼ �x3e
�nx

n


 �1
0 þ

ð1
0

3x2
e�nx

n
dx ¼ 0þ 3

n

ð1
0

x2e�nxdx

¼ 3
n

�x2
e�nx

n

� 	1
0

þ 3
n

ð1
0

2x
e�nx

n
dx ¼ 0þ 6
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Thus, Eq. (6.66) can be rewritten as:

ðΘDT
0

x3

ex � 1
dx � 6

X1
n¼1

1
n4

ð6:67Þ

The sum in this expression corresponds to ζ(4), which is called the Riemann zeta
function evaluated at 4, and is equal to:

ζ 4ð Þ ¼
X1
n¼1

1
n4

¼ π4

90
ð6:68Þ

And Eq. (6.62) becomes:

E ¼ 9Nkb
1

ΘDð Þ3 T
4 6π

4

90

or:

E ¼ 3π4

5
Nkb

T4

ΘDð Þ3 ð6:69Þ

To determine the heat capacity, we must differentiate this expression with respect
to the temperature as in Eq. (6.69):
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Cv ¼ dE

dT

� �
v

¼ d

dT

3π4

5
Nkb

T4

ΘDð Þ3
 !

or:

Cv ¼ 12π4

5
Nkb

T

ΘD

� �3

ð6:70Þ

where N is the number of atoms in the crystal. This relation shows that, for low
temperatures, i.e., T < < ΘD, the heat capacity is proportional to T

3. The experimen-
tally measured molar heat capacity is shown in Fig. 6.16 for a few solids as a
function of temperature.

The figure shows that the Debye model is in good agreement with experimental
observations, both in the high-temperature and the low-temperature regions.

Example

Q Calculate the Debye temperature for InP, given that the vl ¼ 4.594�103 m�s-1,
vt ¼ 3.085�103 m�s-1, and the mass density of InP is d ¼ 4.81�103 kg�m-3.

A We make use of the expression giving the Debye temperature, ΘD ¼ hωD
kb
, where

the Debye frequency ωD ¼ v0kD is calculated knowing
1

v30
¼ 1

3
1

v3l
þ 2
v3t

� �
and

6

CV

Cal
mol·K

Pb

Cu

AI

Carbon

0 100 200 300 400 500 (K)
T

Fig. 6.16 Temperature dependence of the molar heat capacity Cv of some materials. At low
temperatures, the heat capacity follows a T3 relation (Hummel 1993, Fig. 19.1. # 1985, 1993 by
Springer-Verlag Berlin Heidelberg. With kind permission of Springer Science and Business Media)

6.2 Thermal Properties of Crystals 235



k3D ¼ 6π2N
V

¼ 6π2
2d

MIn þMP

� �
similarly to the previous example. Numeri-

cally, we successively obtain:

v0 ¼ 1
3

1
v3l
þ 2

v3t

� �h i�1=3

¼ 1
3

1

4:594�103ð Þ3 þ
2

3:085�103ð Þ3
� �� 	�1=3

or:

v0 ¼ 3:37� 103m � s�1:

In addition, we have:

kD ¼ 6π2
2� 4:81� 103

114:8þ 31ð Þ � 1:67264� 10�27

� �� �1=3

or

kD ¼ 1:33� 1010m�1

which leads to:

ωD ¼ 4:47� 1013 Hzand

ΘD ¼ 1:05458� 10�34
� �

4:47� 10�13
� �

1:38066� 10�23 ¼ 341:5K

Throughout this discussion, we realized that the Debye temperature ΘD played a
significant role in the heat capacity of a material. It indicates the separation between
the high-temperature region where classical theory is valid and the low-temperature
region where quantum theory is needed. The Debye temperature can be measured by
fitting the experimental data of Fig. 6.16 to Eq. (6.70).

Electronic Contribution to the Heat Capacity
The previous discussion has considered the contribution of lattice vibrations or
phonons to the heat capacity. This is valid for dielectric, i.e., insulating, materials.
But, unlike dielectric materials, metals have a large number of free electrons, Nf,
which can also absorb thermal energy, thus increasing the overall heat capacity of
the metal. The contribution of electrons to the total heat capacity, denotedCel

v , can be
found as:

Cel
v ¼ π2

2
N f k

2
b

EF
T ð6:71Þ

Cel
v ¼ γT

where Nf is the total number of free electrons in the crystal, EF is the Fermi energy, kb
the Boltzmann constant, and T the absolute temperature. The mathematical steps
involved in the calculation of Cel

v are quite challenging and are beyond the scope of
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this textbook. Only a few defining equations will be listed here. The heat capacityCel
v

is defined by:

Cel
v ¼ dE

dT

� �
N f

ð6:72Þ

where E is the energy of all the electrons in the crystal and is given by:

E ¼
ð1
0

εg3D εð Þf e εð Þdε ð6:73Þ

where fe(ε) is the Fermi-Dirac distribution defined in Eq. (5.28) and g3D(ε) is the
three-dimensional electronic density of states of free electrons given by:

g3D εð Þ ¼ 1
2π2

2m∗

h2

� �3=2 ffiffiffiffiffiffi
εð Þ

p
ð6:74Þ

with m* being the electron effective mass. The temperature dependence of E is
included in the Fermi-Dirac distribution function.

We can see from Eq. (6.71) that the electronic contributionCel
v to the heat capacity

depends linearly on temperature and thus can be discriminated from the T3 depen-
dence of the lattice or phonon contribution denoted Cph

v (Eq. 6.70) at low
temperatures. It is interesting to consider the ratio of Cel

v to Cph
v :

Cel
v

C ph
v

¼
π2

2
N f k

2
b

EF
T

12π4
5 Nkb T

ΘD

� �3 ¼ 5
24π2

N f

N

kb
EF

Θ3
D

T2 ð6:75Þ

where ΘD is the Debye temperature. By introducing the Fermi temperature TF such
that:

EF ¼ kbTF ð6:76Þ
And Eq. (6.75) becomes:

Cel
v

C ph
v

¼ 5
24π2

N f

N

Θ3
D

T2TF
ð6:77Þ

The ratio N f

N expresses the average number of free electrons that each atom
contributes to the crystal. Equation (6.77) shows that, as the temperature is increased,
the contribution of the lattice to the heat capacity exceeds that of electrons. This
occurs at a temperature T0 such that Cel

v ¼ Cph
v or:

6.2 Thermal Properties of Crystals 237



T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

24π2
N f

N

Θ3
D

TF

s
ð6:78Þ

Numerically, one can find that this temperature is only a few percent of the Debye
temperature, i.e., a few degrees K (Table 6.1). This means that the contribution of
electrons to the heat capacity can only be observed at very low temperatures.

Example

Q Calculate the ratio of C el
v

�
C
v ph at 4.2, 30, 77, and 296 K for Cu (assume

ΘD ¼ 340K and EF ¼ 7 eV).
A

We start from the expression for the above ratio:
Cel
v

C ph
v

¼ 5
24π2

N f

N

kb
EF

Θ3
D

T2 . Since

Cu has two free electrons per atom, we can write N f

N ¼ 2. This leads to:

Cel
v

C ph
v

¼ 5
24π2

� 2� 1:38066� 10�23

7� 1:60218� 10�19

3403

T2 ¼ 20:43

T2

which gives:

Cel
v

C ph
v

¼ 1:16 4:2Kð Þ, 0:023 30Kð Þ, 0:034 77Kð Þ, 0:00023 296Kð Þ:

6.2.3 Thermal Expansion

Beside a few notable exceptions, it is commonly known that the volume of a heated
solid increases. This phenomenon is called thermal expansion.

If a material of length L is heated through a small temperature change ΔT, the
change in length ΔL is proportional to the original length and to the change in
temperature. The coefficient of linear expansion αL is called the thermal expansion
coefficient and is defined by the following relationship:

ΔL
L

¼ αLΔT ð6:79Þ

The linear expansion coefficients of a few solids are shown in Table 6.2.
As Eq. (6.79) describes, an isotropic material exhibits equal thermal expansion in

all directions. Some cases in the real world, however, can be more complex than
implied by Eq. (6.79). The coefficient α L can vary with temperature, so that the
amount of expansion not only depends upon the temperature change but also upon
the absolute temperature of the material.

Some materials are not isotropic and have a different value for the coefficient of
linear expansion dependent upon the axis along which the expansion is measured.
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For instance, with increasing temperature, calcite (CaCO3) crystals expand along
one crystal axis and contract (αL < 0) along another axis.

Engineers in the semiconductor field are often extremely concerned about the
thermal expansion rate of a material when designing a device or system that must
operate over a range of temperatures. Improperly packaging a semiconductor device
without giving careful consideration to the thermal expansion properties of the
materials can result in reliability problems and reduced lifetime of the device. As a
result, most companies perform thermal cycling tests of their devices to determine
whether or not thermal expansion is a possible failure mechanism.

The problems associated with thermal expansion are most severe when two
materials of different thermal expansion coefficients are permanently bonded
together, such as in integrated circuits. For example, if the thermal expansion
properties of a metal heat sink are not properly matched to the thermal expansion
properties of the semiconductor material, the brittle semiconductor can crack as the
device is heated and cooled. In fact, copper and other metals exhibit thermal
expansion properties that are an order of magnitude greater than that of
semiconductors such as Si and GaAs, making it very problematic to attach these
materials directly. In order to address this issue, many semiconductor devices are
packaged using intermediate die attachment materials as well as advanced solder
alloys and optimized package materials as illustrated in Fig. 6.17. Some examples of
advanced packaging processes that rely on optimizing the coefficient of thermal
expansion are high-power RF-electronics and lasers (Fig. 6.17).

Table 6.2 Thermal
expansion coefficients of a
few solids (Chemical
Rubber Company 1997;
Grigoriev and Meilikhov
1997)

Solid αL (�10�5 K�1)

NaCl 3.96

Pb 2.89

Al 2.31

Ag 1.89

Cu 1.65

Au 1.42

Fe 1.18

C (diamond) 1.18

Ordinary glass 0.90

Ge 0.582

GaAs 0.54

InSb 0.47

Si 0.468

AlAs 0.35

Si3N4 0.27

Pyrex glass 0.32

Invar 0.07

Quartz glass 0.05
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Example

Q A semiconductor laser is affixed to a copper heat sink and sealed into a package
inside of a factory clean room environment where the ambient temperature is
20 �C. The lasers are then installed in scientific equipment monitoring gas
emissions from a volcano in Hawaii.

The package also contains a collimating lens that is fixed in place and aligned
with the central axis of the laser beam. If the ambient temperature in Hawaii is48 �C,
how far off axis will the laser be when the device is in operation? (Assume that
thermal expansion has a negligible effect on the in-plane expansion of the heat sink.
Also assume that the heat sink is 3 mm long on each side and 1 mm tall).
A Equation (6.79) describes the linear expansion of a material: ΔL

L ¼ αLΔT . Cu
has a coefficient of linear expansion, αL, equal to 1.67� 10-5 K-1

. The heat sink
is originally 1mm tall (L ), and the temperature difference, ΔT, is equal to
48 �C�20 �C ¼ 28 �C ¼ 28 K.

Thus, the change in length of the heat sink is equal to:ΔL ¼ (1.67 � 10�5K�1)
(28K )(1 mm) ¼ 4.68 � 10�4mm

or 0.468 μm.

Thermal expansion means that the average distance between atoms increases
when the temperature goes up and is therefore related to atomic vibrations or

Die Attachment Material

Lead
Frame

External
Plating
(solder)

Mold Resin

Chip

Glass Epoxy/
Polyimide Layers

(Au) Bonding Wire

Internal Plating (Au)

(Si)

Fig. 6.17 Cutaway
illustration of an advanced
semiconductor device
package. To avoid cracking
and stresses and for devices
where alignment is critical,
packaging materials must be
chosen with compatible
thermal expansion coefficients
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phonons in a solid. It can be easily understood that at a higher temperature, the
atomic vibrations will be more intense, the distances between atoms will be higher,
and therefore the overall solid volume will be larger. The mathematical treatment of
this relationship is beyond the scope of the discussion. We will merely give a brief
and simple description of the phenomenon.

We saw in Sect. 6.1.2 that the equilibrium interatomic distance r ¼ R0 is
determined by the minimum of the atomic interaction potential energy U(r).
In thermodynamics, for such a system at thermal equilibrium at a temperature T,
the average interatomic distance is denoted <R> and is given by the Maxwell-
Boltzmann distribution:

Rh i ¼

Ð1
�1

Re�
U Rð Þ
kbT dR

Ð1
�1

e�
U Rð Þ
kbT dR

ð6:80aÞ

By introducing the displacement x¼ R� R0 and expressing U(R) as a function of
x as was done in Sect. 6.1.2 (Eq. 6.2), we can rewrite this equation as:

Rh i ¼

Ð1
�1

R0 þ R� R0ð Þð Þe�
U Rð Þ
kbT dR

Ð1
�1

e�
U Rð Þ
kbT dR

¼ R0

Ð1
�1

e�
U Rð Þ
kbT dR

Ð1
�1

e�
U Rð Þ
kbT dR

þ

Ð1
�1

xe�
U xð Þ
kbT dx

Ð1
�1

e�
U xð Þ
kbT dx

or:

Rh i ¼ R0 þ

Ð1
�1

xe�
U xð Þ
kbT dx

Ð1
�1

e�
U xð Þ
kbT dx

ð6:80bÞ

For low temperatures and thus small vibrational amplitudes (x < <R0), one can
approximate the potential energy U(x) with terms up to the second order in x (i.e., x2)
as was done in Eq. (6.3). This is the harmonic approximation. In this case, the

exponential e�
U xð Þ
kbT is an even function of x,xe�

U xð Þ
kbT is an odd function of x, and thereforeð1

�1
xe�

U xð Þ
kbT dx ¼ 0 and hRi ¼ R0. This means that, in the harmonic case, the average

interatomic distance <R> is exactly R0, the distance corresponding to the potential
energy minimum.

At higher temperatures, the atomic displacement x is large enough so that higher
order terms in Eq. (6.2) need to be included (e.g., x3), causing anharmonic effects. In

this case, the exponential e�
U xð Þ
kbT is not an even or odd function of x anymore, and the

integral fraction in Eq. (6.38) is strictly positive. As a result, hRi > R0 which means
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that the average interatomic distance becomes larger than R0, i.e., there is thermal
expansion. We see that thermal expansion is a direct result of anharmonic effects in
the atomic interaction potential.

6.2.4 Thermal Conductivity

In the previous few sections, we saw that a lattice could receive and store thermal
energy, heat through lattice vibrations, i.e., by creating more phonons, or through
free electrons in a metal by gaining more kinetic energy. The lattice vibrations
generate waves that can propagate, while free electrons can move in a metal. The
thermal energy can thus be transported from one end of the solid to another. This
characteristic is called thermal conductivity and is also an important parameter when
designing a device or system.

Depending on the thermal conductivity of the materials used, heat may build up
from the operation of the device and lead to failure of the device or system. Removal
of excess heat has become a very critical issue in semiconductor design in recent
years, especially in the design of modern high-density computer chips and high-
power optoelectronic semiconductors. In the semiconductor industry, Moore’s law
has predicted that the number of transistors on a chip doubles every 18 months. This
has led to both a reduction of the size of transistors and an increase in the packing
density. The increase in transistor density has also lead to a significant increase in the
power density (heat) in the same area that needs to be removed from the chip.

The thermal conductivity of a solid is quantified through a positive parameter
called the thermal conductivity coefficient K (read “kappa”) which is defined as:

JT ¼ �κ
dT

dx
ð6:81Þ

where JT is the thermal current density, i.e., the thermal energy transported across a
unit area per unit time. This is expressed in units of J�cm�2�s�1 or W�cm�2. dTdx is the
temperature gradient, which is the rate at which the temperature changes from one
region of the solid to another. The thermal conductivity coefficient thus has the units
of W�cm�1�K�1 (or W�m�1�K�1). Values of the thermal conductivity of a few
materials are given below in Table 6.3 and Fig. A. in Appendix A.3.

Equation (6.81) expresses that there is a flux of thermal energy within the solid as
a result of a difference of temperature between two regions. The minus sign means
that the thermal energy flows from the higher-temperature region to the lower-
temperature region. This relation is analogous to the electrical current which
originates from a difference in electrical potential. In Eq. (6.39), we assumed that
the thermal current and the temperature gradient occurred along one direction. In a
three-dimensional case, the current and the gradient would be simply replaced by
vectors. The simplification here does not reduce the generality of the physical
concepts which will be derived. Moreover, in this section, we will only be interested
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in the qualitative properties of the thermal conductivity. An exhaustive mathematical
treatment can therefore be avoided.

Copper has become the material of choice for most heat-spreading applications in
microelectronics because it is a material with one of the highest thermal
conductivities and affordable costs. In some cutting edge devices, however, even
copper is falling short of adequately removing heat from semiconductor devices, and
the engineers and materials scientists have had to think of alternative approaches.
One such approach has been to use diamond because it has a thermal conductivity
several times larger than that of copper. Commercial manufacturing of diamond
heat-spreading materials through the use of chemical vapor deposition (CVD) has
reduced the material’s cost and improved availability and made diamond heat
spreaders a viable solution for high-heat load applications, such as power laser
diodes.

Thermal conductivity can be viewed as the result of phonons (quasiparticle)
moving from a hotter to a colder region and undergoing collisions with one another
or against material imperfections (defects, boundaries) so that their energy can be
transferred in space. These collisions are also often referred to by using the more
general term scattering. The mathematical model commonly followed makes use of
the kinetic theory of gases, in which (i) each quasiparticle is modeled as a free
moving particle in space with a momentum and an energy, (ii) each quasiparticle is
subject to instantaneous collision events with other particles, (iii) the probability for
a collision to occur during an interval of time dt is proportional to dt, and (iv) the
particles reach thermal equilibrium only through these collisions.

Similar to the heat capacity, there are two contributions to the thermal conductiv-
ity: a lattice contribution (phonons) denoted κph and an electronic contribution
(electrons) denoted κe.

Table 6.3 Thermal
conductivities of a few
solids (Chemical Rubber
Company 1997; Adachi
2004)

Solid κ (W�m�1�K�1)

Pyrex glass 1.1

NaCl 6.4

Pb 35

GaAs 56

Ge 64

GaP 77

Fe 80

AlN 82

InP 68

Si 124

BeO 210

Al 237

Au 317

Cu 401

Ag 429

C (diamond) 1000
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The lattice contribution κph can be regarded as the thermal conductivity of a
phonon gas. Using the kinetic theory of gases, the following expression can be
derived for the lattice contribution:

κph ¼ 1
3

Cph
v

V

� �
v0Λ ð6:82Þ

where
Cph
v

V

� �
is the heat capacity per unit volume of the solid considered and v0 is

the average phonon velocity. The parameter Λ is the mean free path of a phonon
between two consecutive collisions and is central to the thermal conductivity
process.

There are two types of phonon-phonon interactions in crystals. The first one
involves what is called normal processes which conserve the overall phonon

momentum, k1
!

þ k2
!

þ k3
!

¼ 0, but not phonon number (phonons are bosons and

are not subject to particle number conservation) where k1
!

, k2
!

, and k3
!

are the
momenta of three interacting phonons. The second type is called umklapp processes

and is such that k1
!

þ k2
!

þ k3
!

¼ n K
!
, where n ¼ 1, 2, 3. . . is an integer and K

!
is a

reciprocal lattice vector. We recall from Chaps. 4 and 5 that electron and lattice
momentum in a crystal is only conserved give or take a reciprocal lattice vector.
Equation (6.40) was first applied by Debye to describe thermal conductivity in
dielectric (insulating) solids.

At very low temperatures, i.e., T � ΘD, the average number of phonons given in
Eq. (6.33) tends toward zero. The phonon-phonon scattering becomes negligible,
and the mean free path Λ is determined by the scattering of phonons against the solid
imperfections or even the solid boundaries. Λ thus increases until it is equal to the
geometrical size of the sample. Then, the thermal conductivity behaves as the heat
capacityCph

v and has a T3 dependence (Eq. (6.80)). In particular, κph! 0 when T!0.
These are shown in Fig. 6.18a for Λ and Fig. 6.18b for κph.

For higher temperatures, i.e., T 
 ΘD, we saw in Sect. 6.1.6 that the average
number of phonons is proportional to T. Thus, phonon-phonon interactions become
increasingly dominant as the temperature increases. Since the collision frequency
should be proportional to the number of phonons with which a phonon can collide, Λ
ends up being proportional to 1/T at higher temperatures, as shown in Fig. 6.18a. At
the same time, we saw that in the heat capacity Cph

v saturates at high temperatures
(Eq. 6.71). The thermal conductivity κph therefore has a 1/T dependence in this
regime, as shown in Fig. 6.18b.

Another contribution to the thermal conductivity arises from electrons and mainly
concerns metals which have a large concentration of free electrons. Here, again, the
kinetic theory of gases leads to an expression of the electronic contribution κel
similar to Eq. (6.82):
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κel ¼ 1
3

Cel
v

V

� �
veΛe ð6:83aÞ

where
Cel
v

V

� �
is the electronic contribution to the heat capacity per unit volume of the

solid considered and ve is the average electron velocity. The parameter Λe is the
mean free path of an electron and describes how far an electron can travel on average
between two consecutive collisions. We will not in this chapter discuss the various
scattering mechanisms for an electron because of their large number and complexity.
Electronic transport and relaxation times will be discussed in more details in Chap. 8.
An interesting relationship can be derived linking the thermal conductivity and
electrical conductivity (σel) of the free electron gas using Eqs. 6.71 and 6.83. This
is known as the Wiedemann-Franz law and can be written as:

κel ¼ π2k2b
3q2

Tσel ð6:83bÞ

The electrical conductivity σel has not yet been discussed and is treated in detail in
Chap. 8, Sect. 8.2. It is measured in units of siemens/m or S/m.

We will conclude by providing a numerical estimate of this contribution and
compare it to the lattice contribution. At room temperature, on the one hand, a
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Fig. 6.18 Variation of (a) phonon mean free path and (b) lattice thermal conductivity as a
function of temperature. At low temperatures, as the phonon-phonon interaction and scattering
decrease, the phonon mean free path is determined by crystal imperfections which are independent
of temperature, and the thermal conductivity follows a T3 dependence. At high temperatures,
phonon-phonon scattering increases, and both the phonon mean free path and the thermal conduc-
tivity decrease as T�1
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typical phonon has a mean free path of 3 � 10�6 cm, a velocity of 105 cm�s�1,
and a heat capacity of 25 J�K�1�mol�1, yielding a thermal conductivity of κph�2.5
W�cm�1�K�1. On the other hand, for a pure (perfect) metal, an electron has a
mean free path of 10�5 cm, a velocity of 108 cm�s�1, and a heat capacity of 0.5
J�K�1�mol�1, yielding a thermal conductivity of κph � 250 W�cm�1�K�1. This
clearly shows that the electrons in a pure metal are responsible for almost all the
heat transfer. However, if the metal has many defects, the phonon contribution
may be comparable with the electron contribution.

6.2.5 Summary

In this chapter, we have shown that phonons in solids are responsible for important
contributions to the thermal properties of crystals. This includes heat capacity,
thermal expansion, and thermal conductivity. The Debye model of phonons was
presented, and it was shown that, despite the considerable simplifications made to
the spectrum, the model still accurately describes the temperature dependence of the
heat capacity and the thermal conductivity coefficients as measured experimentally
in crystals. The subject of thermal conductivity has acquired more importance
recently in view of the work on thermoelectricity and heat energy harvesting.
Thermal transport and how to control it are treated in detail in Chap. 12 of this book.

Problems for Phonons and Thermal Properties

1. Explain why there is no optical phonon in the dispersion curve for the
one-dimensional monatomic chain of atoms.

2. Explain why there is a forbidden range of vibration energies between the optical
and acoustic phonon branches. Solve Eq. (6.22) for the case when k ¼ π/a.

3. The one-dimensional monatomic harmonic crystal (Sect. 6.1.3) is in fact a
particular case of the diatomic model described in Sect. 6.1.4, for which the
two atoms are identical. To prove this, show that the expression for the diatomic
harmonic crystal can be transformed into an expression similar to the mon-
atomic crystal. Solve Eq. (6.22) in the limitM1 ¼M2 ¼M. What considerations
do you have to take into account to do this?

4. In the chapter, the phonon frequencies at the center of the zone k ¼ 0 were
determined for the diatomic molecule. Calculate the phonon frequencies at the
zone boundary k ¼ π/a.

5. Plot the shapes of the optical and acoustic branches in the dispersion relation for
four different ratios of masses:M1

M2
¼ 10, 5, 2, and 1. Show that, in the case of two

identical atoms, there is actually only one acoustic branch and no optical branch
for the dispersion relation.

6. In Sect. 6.1.4, we calculated the ratio of the displacement amplitudes A and B for
the long wave limit (k ! 0) for both the optical and acoustic phonon branches
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and then determined the displacement of the atoms with respect to each other.
Calculate Eq. (6.26), the ratio of the displacement amplitudes, in the short wave
limit (k ! π/a), and draw the displacement of the atoms with respect to each
other.

7. Suppose that a light wave of wavelength 3 μm is absorbed by a one-dimensional
diatomic harmonic chain with atoms of mass 4 � 10�26 kg and 5 � 10�26 kg
and atomic spacing of 4.5 Å. What is the force constant in MKS units?

8. From the figures for the phonon dispersion curves for Si and GaAs plus the
equations for optical and acoustic phonons, explain why the energy for the Si
curves is higher in energy than the curves for GaAs? Assume that the elastic
constant is about the same for both materials. Also, why do the optical and
acoustic phonon branches cross at the zone boundary for Si but not for GaAs?

9. Plot the average number of phononsN ωð Þ ¼ 1

exp hω
kbT

� �
�1

for at least five values of

T to show its evolution with increasing temperatures. For each one, plot the
function F ωð Þ ¼ kbT

hω , and show that it is a good approximation for N(ω) for high
temperatures, i.e., kbT > > hω.

10. Let us model a rigid bar as a linear monatomic chain of atoms, as in Sect. 6.1.3
with the same notations. We further assume that the equilibrium interatomic
separation is a and that its cross section is a2. Its Young’s modulus EY is defined
as the ratio of the stress applied in one direction divided by the relative
elongation in this same direction. The stress is the ratio of the interatomic
force (Fn,n�1) divided by the cross-sectional area (a2) on which this force is
applied. The relative elongation is the interatomic displacement divided by the
equilibrium separation. The Young’s modulus has the dimension of a pressure
and is expressed in Pa (Pascal). The solid density MV is the ratio of the mass of
the solid to its volume. Here, we assume that the mass of an atom is M and that
there is only one atom in a volume of a3.

Show that the sound velocity, defined in Sect. 6.1.7, is equal to the ratio:
ffiffiffiffiffi
EY
MV

q
.

11. From the speed of sound equation, ν ¼ (B/ρ)½, calculate the speed of sound in
silicon and compare with the speed of sound in gallium arsenide. Assuming that
the largest effect on the velocity comes from the density, why is this result
expected?

Problems for Thermal Properties of Crystals

1. In your own words, describe the meaning of the phonon density of states.
2. In your own words, describe the meaning of the Debye frequency and the Debye

temperature. Develop a simple equation relating the Debye frequency, Debye
temperature, and Debye wavelength.

3. Determine the Debye temperature ΘD, Debye wavelength, and the Debye
frequency ωD for diamond given that the lattice constant for this material is
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3.56 Å, the density of diamond is 3.52 � 103 kg�m�3, and the speed of sound in
diamond is 12,000 m�s�1.

4. In your own words, describe the meaning of heat capacity. How is heat capacity
related to specific heat?

5. Starting from the expression of the total energy carried by the lattice vibrations
in Eq. (6.60), show that the heat capacity Cv ¼ dE

dT

� �
v
can be written as:

Cv ¼ 9Nkb
T

ΘD

� �3 ðΘDT
0

x4ex

ex � 1ð Þ2 dx

6. It takes 450 cal to raise the temperature of a metallic sample from 20 to 35 �C.
What is the heat capacity of the metal sample? If the sample has a mass of 78 g,
what is the specific heat of the sample?

7. The specific heat of metals is dominated by the electronic contribution at low
temperatures and by phonons at high temperatures. At what temperature are the
two contributions equal in rubidium? Note that γ ¼ 2.41 mJ/(mole K2) for
rubidium. Briefly describe your thinking.

8. The figure below illustrates measurements of the specific heat (plotted as C/T
versus T2) for a crystalline element. Use what you know about the origins and
temperature dependence of the specific heat capacity to determine whether the
element is Na or Si. Discuss both possibilities.
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Experimental data of the specific heat of an unknown element.
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9. In your own words, describe the meaning of thermal expansion in solid-state
engineering.

10. Look up in tables or reference books the room temperature lattice constants for
the following crystals: aluminum, copper, iron, silicon, germanium, and dia-
mond. Using the coefficients of linear expansion, plot the values of the lattice
constants up to a temperature of 1000 �C.

11. In your own words, briefly describe the meaning of thermal conductivity and the
physical processes that influence the thermal conductivity.

12. Diamond is an electrical nonconductor; however, the thermal conductivity of
diamond is greater than the thermal conductivity of copper for T > 40 K. How
can this be explained?

References

Adachi S (2004) Handbook on physical properties of semiconductors Volume 2-III-V compound
semiconductors. Kluwer Academic, Boston

Chemical Rubber Company (1997) CRC handbook of chemistry and physics. CRC Press,
Cleveland

Grigoriev IS, Meilikhov EZ (1997) CRC handbook of physical quantities. CRC Press, Boca Raton
Hummel RE (1993) Electronic properties of materials. Springer, New York, p 335
Dolling G (1963) Lattice vibrations in crystals with the diamond structure. In: Inelastic scattering of

neutrons in liquids and solids, vol 2. International Atomic Energy Agency, Vienna, p 41
Waugh JLT, Dolling G (1963) Crystal dynamics of gallium arsenide. Phys Rev 132:2411

Further Reading

Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York
Cochran W (1973) The dynamics of atoms in crystals. Edward Arnold Limited, London
Cohen MM (1972) Introduction to the quantum theory of semiconductors. Gordon and Breach,

New York
Ferry DK (1991) Semiconductors. Macmillan, New York
Ibach H, Lüth H (1990) Solid-state physics: an introduction to theory and experiment. Springer,

New York
Kasap SO (1997) Principles of engineering materials and devices. McGraw-Hill, New York
Kittel C (1976) Introduction to solid state physics. Wiley, New York
Maxwell JC (1952) Matter and motion. Dover, New York
Peyghambarian N, Koch SW, Mysyrowicz A (1993) Introduction to semiconductor optics.

Prentice-Hall, Englewood Cliffs
Reissland JA (1973) Physics of phonons. Wiley, London
Sapoval B, Hermann C (1995) Physics of semiconductors. Springer, New York
Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York
Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford
Cochran W (1973) The dynamics of atoms in crystals. Edward Arnold Limited, London
Cohen MM (1972) Introduction to the quantum theory of semiconductors. Gordon and Breach,

New York
Ibach H, Lüth H (1990) Solid-state physics: an introduction to theory and experiment. Springer,

New York
Kasap SO (1997) Principles of engineering materials and devices. McGraw-Hill, New York

References 249



Kittel C (1976) Introduction to solid state physics. Wiley, New York
Ferry DK (1991) Semiconductors. Macmillan, New York
Maxwell JC (1952) Matter and motion. Dover, New York
Peyghambarian N, Koch SW, Mysyrowicz A (1993) Introduction to semiconductor optics.

Prentice-Hall, Englewood Cliffs
Sapoval B, Hermann C (1995) Physics of semiconductors. Springer, New York

250 6 Phonons and Thermal Properties



Equilibrium Charge Carrier Statistics
in Semiconductors 7

7.1 Introduction

In Chap. 4, we discussed the quantum mechanical states of electrons in a periodic
crystal potential and the resulting formation of energy bands. We also introduced the
concept of effective mass, that of holes, and the Fermi energy which provides an
easy way to differentiate a semiconductor from a metal.

In semiconductor devices, most of the properties of interest have their origins in
the electrons in the conduction band and the holes in the valence band. Two major
functions are important in understanding the behavior of these electrons and holes:
the density of states and the Fermi-Dirac distribution function, both of which have
been discussed in Chaps. 4 and 5. In this chapter, we will establish the basic relations
and formalism for the distribution of electrons in the conduction band and holes in
the valence band at thermal equilibrium. We will also introduce the notion of doping
and extrinsic semiconductors, in contrast to pure or intrinsic semiconductors.

7.2 Density of States

In Chap. 5, we calculated the density of states of electrons of the conduction band in
a three-dimensional semiconductor to be:

gc Eð Þ ¼ V

2π2
2me

h2

� �3=2

E � ECð Þ1=2 ð7:1Þ

where me is the electron effective mass in the conduction band, EC is the bottom of
the conduction band, and V is the volume of the crystal considered. The subscript “c”
in gc indicates that we are considering the conduction band. This expression was
calculated for a single band minimum and is valid for direct-gap semiconductors,
such as GaAs, where the conduction band minimum occurs at the zone center.
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However, in the case of many other semiconductors, one has to take into account the
degeneracy or number gd of equivalent conduction band minima in the first
Brillouin zone.

For example, we saw in Fig. 5.17a that the conduction band minimum in Ge
occurred along the <111> direction. As there are eight equivalent <111> directions,
there are eight equivalent conduction band minima in Ge. However, because the
minima occur exactly at the boundary of the first Brillouin zone, each minimum is
shared with two neighboring zones and therefore only contributes one half to the
density of states. Thus gdeg ¼ 4, i.e., the expression in Eq. (5.52) needs to be
multiplied by a factor 4. In addition, we also saw in Fig. 5.17b that the conduction
band minimum in Si occurs at k � 0.8(2π/a) in the first Brillouin zone along the
<100> direction. Since the <100> direction has a sixfold symmetry, this gives rise to
six equivalent conduction band minima within the first Brillouin zone, and gd ¼ 6
because the minimum is strictly inside the first Brillouin zone. The expression in
Eq. (7.1) then needs to be multiplied by 6. Finally, for GaAs, as shown in Fig. 5.17c,
the conduction band minimum occurs at the zone center, and the expression in
Eq. (7.1) remains unchanged, i.e., gd ¼ 1.

In other words, the full density of states of electrons in the conduction band is
(E > EC):

gc Eð Þ ¼ V

2π2
gd

2me

h2

� �3=2

E � ECð Þ1=2 ð7:2Þ

Example

Q GaN has the wurtzite crystal structure. The first Brillouin zone is shown in the
figure below. From the calculation of the band structure of GaN, it can be seen
that there is a shallow conduction band minimum at the symmetry point K in the
reciprocal lattice. To calculate the density of states given by the expression

gc Eð Þ ¼ V
2π2 gd

2me

h2

� �3=2

E � ECð Þ1=2 , what is the degeneracy factor gd which

should be used?

k

ky
Γ

kz

K
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A The point K is equally shared by three adjacent Brillouin zones. Because the
first Brillouin zone has sixfold symmetry, there are six equivalent points K in
the zone. This leads to a total degeneracy of : 6� 1

3 ¼ 2:

The value of the electron effective mass me was determined in Eq. (5.27), in the
simple case of a one-dimensional crystal, as the curvature of the conduction band or,
in other words, the second derivative of the energy spectrum E(k) such that E(k) can
be approximated as:

E kð Þ � h2

2me
k2 ð7:3Þ

In the more general case of a three-dimensional crystal, the effective mass is a
3 � 3 matrix, and each element is a function of the direction in which the two

derivatives of the energy spectrum E
�
k
!�

are performed, kx, ky, or kz.
If the energy spectrum can be approximated as:

E
�
k
!� � h2

2
k2x
mxx

þ k2y
myy

þ k2z
mzz

 !
ð7:4Þ

where mxx, myy, and mzz correspond to the values of the second partial derivatives in
the kx, ky, and kz directions, respectively; then the electron effective mass me that is
considered in Eq. (7.3) is the average of these three masses and is given by:

me ¼ mxxmyymzz
� �1=3 ð7:5Þ

In the particular case when the energy spectrum can be approximated as:

E
�
k
!� � h2

2

k2x þ k2y

� �
mt

þ k2z
ml

0
@

1
A ð7:6Þ

where mt and ml are customarily called the transverse electron effective mass and the
longitudinal electron effective mass, respectively; then the electron effective mass
me that is considered in Eq. (7.5) is the average of these three masses and is given by:

me ¼ m2
tml

� �1=3 ð7:7Þ
A similar relation can be obtained for the electronic density of states in the

valence band (EV < E):

gv Eð Þ ¼ V

2π2
2mh

h2

� �3=2

EV � Eð Þ1=2 ð7:8Þ
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where mh is the hole effective mass which accounts for the curvature of the valence
band and EV is the top of the valence band. In this expression, there is no degeneracy
factor from crystal symmetry because the top of the valence band is unique and
always occurs at the center of the first Brillouin zone.

We saw in Sect. 5.4 that the valence band of a semiconductor is composed of two
main subbands, the heavy-hole and light-hole bands, each with a different curvature
and thus with their own hole effective masses: mhh and mlh, for the heavy-hole
effective mass and light-hole effective mass, respectively. As a result, the hole
effective mass mh that is considered in Eq. (7.7) is the following average of these
two masses:

mh ¼ m
3=2
hh þ m

3=2
lh

� �2=3

ð7:9Þ

7.3 Effective Density of States (Conduction Band)

As discussed in Sub-sect. 5.2.8, the density of states merely provides information
about the allowed energy states. To obtain the concentration of electrons in the
conduction band, we must multiply this density of states with the Fermi-Dirac
distribution (Eq. (5.28)) which gives the probability of occupation of an energy state:

n ¼ 1
V

ð1
EC

gc Eð Þf e Eð ÞdE ð7:10Þ

Expanding this expression using Eq. (5.52) and Eq. (5.28), we get:

n ¼ gd
2π2

2me

h2

� �3=2
ð1
Ec

E � ECð Þ1=2

exp E�EF
kbT

� �
þ 1

dE ð7:11Þ

Making the change of variable y ¼ E�EC
kbT

, and thus dy ¼ 1
kbT

dE, the previous

integral becomes:

ð1
EC

E � ECð Þ1=2

exp E�EF
kbT

� �
þ 1

dE ¼ kbTð Þ3=2

ð1
0

y
1=2

exp y� EF�EC
kbT

� �
þ 1

dy ð7:12Þ

We can define the Fermi-Dirac integral as in Eq. (5.56):

F1
2
xð Þ ¼ 2ffiffiffi

π
p

ð1
0

y1=2

1þ exp y� xð Þ dy ð7:13Þ

using:
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x ¼ EF � EC

kbT
ð7:14Þ

Equation (7.12) can be rewritten as:

ð1
EC

E � ECð Þ1=2

exp E�EF
kbT

� �
þ 1

dE ¼ kbTð Þ3=2

ffiffiffi
π

p
2

F1
2

EF � EC

kbT

� �
ð7:15Þ

and therefore Eq. (7.11) becomes:

n ¼ gd
2π2

2me

h2

� �3=2

kbTð Þ3=2

ffiffiffi
π

p
2

F1
2

EF � EC

kbT

� �
ð7:16Þ

Remembering that h ¼ h
2π, this can be simplified as:

n ¼ 2gd
2πkbTme

h2

� �3=2

F1
2

EF � EC

kbT

� �
ð7:17Þ

or:

n ¼ NcF1
2

EF � EC

kbT

� �
ð7:18Þ

with:

Nc ¼ 2gd
2πkbTme

h2

� �3=2

ð7:19Þ

Nc is called the effective conduction band density of states. The Fermi-Dirac integral
defined in Eq. (7.13) is often approximated with simpler expressions. One com-
monly encountered situation is when EC � EF >> kbT. A semiconductor in this
situation is called a non-degenerate semiconductor. Let us give a numerical example.
At room temperature (T ¼ 300 K), we have kbT ¼ 25.9 meV. Therefore, we can
consider that we are in the presence of a non-degenerate semiconductor when the
Fermi energy EF is away from the bottom of the conduction band EC by a few times
25.9 meV. This is illustrated in Fig. 7.1a. For most of the practical calculations, a
distance of 3kbT or more, i.e., EC � EF � 3kbT, is sufficient.

This approximation means that the Fermi energy is rather far from the bottom of
the conduction band and inside the bandgap and that x << �1 in Eq. (7.13).
Therefore, the exponential function dominates in the denominator for all positive
values of y > 0, i.e., 1 + exp (y � x) � exp (y � x). Thus:
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F1
2
xð Þ � 2ffiffiffi

π
p

ð1
0

y1=2dy

exp y� xð Þ ¼
2ffiffiffi
π

p ex
ð1
0

y1=2e�ydy ð7:20Þ

The integral on the right hand side can be transformed by integrating by parts:

ð1
0

y1=2e�ydy¼ �y1=2e�y
	 
1

0 þ 1
2

ð1
0

y�1=2e�ydy

¼ 1
2

ð1
0

y�1=2e�ydy

Making now the change of variable Y ¼ y1/2, and thus dY ¼ 1
2 y

�1=2dy, we get the
well-known integral:

1
2

ð1
0

y�1=2e�ydy ¼ 1
2

ð1
0

e�Y2
dY ¼

ffiffiffi
π

p
2

Substituting in Eq. (7.20), we obtain for a non-degenerate semiconductor:

F1
2
xð Þ � ex

and from Eqs. (7.18) and (7.20):

n � Ncexp
EF � EC

kbT

� �
ð7:21Þ

This expression is much simpler than Eq. (7.16) and is more amenable for
calculations. However, when the Fermi energy is close to or even higher than the

E

EF

Conduction band
EC

<< kbT

b
E

EF

Conduction band
EC

>> kbT

a

Fig. 7.1 Illustration of the position of the Fermi level with respect to the conduction band (a) in a
non-degenerate n-type semiconductor: The Fermi energy is far from the edge of the conduction
band. (b) In a degenerate semiconductor n-type semiconductor, the Fermi energy is close to the
edge of the conduction band
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bottom of the conduction band, we have a so-called degenerate semiconductor, we
cannot make this approximation anymore, and the Fermi-Dirac integral has to
be used.

An extreme case is when EF � EC >> kbT, corresponding to highly degenerate
semiconductors, in which the Fermi level lies deeply inside the conduction band.
Electrical properties of such semiconductors are similar to those of metals. At this
condition, the Fermi-Dirac integral can be approximated as:

F1
2
xð Þ � x3=2

Figure 7.2 shows the plots of the Fermi integral and the two approximations
mentioned above. The exponential approximation or the 3/2 power approximation
agrees very well with the Fermi integral when x << �1 or x >> �1. However, when
x ~ 0, the Fermi-Dirac integral has to be used.

Fortunately, we are almost exclusively concerned with non-degenerate
semiconductors. For example, InSb has a bandgap of 0.17 eV at 300 K, which is
one of the smallest bandgaps among all the semiconductors. Assume InSb is pure
and perfect (or so-called intrinsic, see Sect. 7.6), the Fermi energy is approximately
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Fig. 7.2 The Fermi integral of order one half and its approximations
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in the middle of the bandgap, EC � EF � Eg/2, which is about 85 meV at 300 K.
Note that kbT ¼ 25.9 meV; the condition EC � EF � 3kbTis satisfied. Thus the
exponential form can be used. Most of the semiconductors have a larger bandgap,
which means the 3kbT condition is valid at room temperature.

7.4 Effective Density of States (Valence Band)

A similar derivation can be performed for the concentration or density of holes p in
the valence band:

p ¼ 1
V

ðEV

�1
gv Eð Þf h Eð ÞdE ð7:22Þ

which we obtained from Eq. (7.10) after replacing the density of states with that in
the valence band and the limit of integration for an energy below the top of the
valence band EV. Moreover, the Fermi-Dirac distribution fe(E) has been replaced
with (see Eq. (5.58)):

f h Eð Þ ¼ 1� f e Eð Þ½ � ¼ 1

exp EF�E
kbT

� �
þ 1

ð7:23Þ

which gives the probability of the state at energy E not to be occupied by an electron
and thus to be occupied by a hole.

Expanding Eq. (7.22) using Eqs. (7.8) and (7.23), we get:

p ¼ 1
2π2

2mh

h2

� �3=2 ðEV

�1

EV � Eð Þ1=2

exp EF�E
kbT

� �
þ 1

dE ð7:24Þ

Using the change of variable y ¼ EV�E
kbT

, thus dy ¼ � 1
kbT

dE, and:

x ¼ EV � EF

kbT
ð7:25Þ

in the previous integral and identifying it with the Fermi-Dirac integral, we obtain a
relation similar to Eq. (7.17) for p:

p ¼ 2
2πkbTmh

h2

� �3=2

F1
2

EV � EF

kbT

� �
ð7:26Þ

or:

p ¼ NvF1
2

EV � EF

kbT

� �
ð7:27Þ
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where:

Nv ¼ 2
2πkbTmh

h2

� �3=2

ð7:28Þ

is called the effective valence band density of states.

Example

Q Find the ratio of the heavy-hole concentration to the light-hole concentration
for GaAs.

A We know that the hole concentration is related to the hole effective mass
through:

p ¼ 2
2πkbTmh

h2

� �3=2

F1
2

EV � EF

kbT

� �
:

The Fermi-Dirac integral is the same for the heavy-hole and light-hole bands, and
the only difference comes from the effective masses. Therefore, we can write:

phh
plh

¼ mhh
mlh

� �3=2

. In GaAs, this ratio is: phhplh
¼ 0:45

0:082

� �3=2 ¼ 12:86

Similar to what we saw in Sect. 7.3, the general expression in Eq. (7.24) can be
simplified in the case of a non-degenerate semiconductor for which EF � EV >> kbT.
This situation is of most interest and is illustrated in Fig. 7.3a. It corresponds to the
one where the Fermi energy is rather far from the valence band and inside the
bandgap.

In this situation, the concentration of holes has a simplified expression similar to
Eq. (7.18):

Valence band

EF

E

>> kbT

EV

Valence band

E

EV
<< kbT

EF

ba

Fig. 7.3 Illustration of the position of the Fermi level with respect to the valence band (a) in a
non-degenerate p-type semiconductor: The Fermi energy is far from the edge of the valence band.
(b) In a degenerate p-type semiconductor, the Fermi energy is close to the edge of the valence band
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p � Nvexp
EV � EF

kbT

� �
ð7:29Þ

7.5 Mass Action Law

We saw that a non-degenerate semiconductor has its Fermi energy far away from
both the bottom of the conduction band and the top of the valence band, by about a
few times kbT (25.9 meV at room temperature). This situation is more often
encountered in practice than one may believe, and most of the discussion from
now will therefore be in this approximation unless stated otherwise.

An important parameter is the product of n and p given in Eqs. (7.21) and (7.29)
by:

np ¼ Ncexp
EF � Ec

kbT

� �
Nvexp

EV � EF

kbT

� �

¼ NcNvexp
EV � Ec

kbT

� �

or:

np ¼ NcNvexp � Eg

kbT

� �
ð7:30Þ

where Eg ¼ EC � EV is the bandgap energy of the semiconductor. This relation is
very important, as it is valid for any value of n or p. This relation is usually called the
mass action law. However, it does not hold in the degenerate semiconductor case. It
is common practice to introduce the intrinsic carrier concentration, ni, which is
defined as:

n2i ¼ np ¼ NcNvexp � Eg

kbT

� �
ð7:31Þ

This parameter is a function of the semiconductor effective masses and the
temperature. This concentration is qualified as “intrinsic” because for an intrinsic
semiconductor, the number of electrons and holes are equal, i.e., n ¼ p, and we thus
have from the previous relation:

n ¼ p ¼ ni ¼
ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kbT

� �
ð7:32Þ

Example

Q Calculate the intrinsic electron concentration for undoped GaAs at room tem-
perature (300 K).
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A For a homogeneous non-degenerate semiconductor, like undoped GaAs, the
mass action law gives the intrinsic electron concentration as:

ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gd

2πkbTme

h2

� �3=2 2πkbTmh

h2

� �3=2

r
exp � Eg

2kbT

� �

¼ 2
2πkbTm0

h2

� �3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd

me

m0

mh

m0

� �3=2
s

exp � Eg

2kbT

� �

where Eg is the bandgap of GaAs (1.424 eV). For GaAs, the degeneracy factor gd is
equal to 1 because the conduction band minimum is at the center of the Brillouin
zone. In addition, the hole effective mass mh is calculated from the heavy-hole and

light-hole effective masses: m
3=2
h ¼ m

3=2
hh þ m

3=2
hl . We therefore get:

ni ¼ 2
2π� 1:38066�10�23ð Þ�300� 0:91095ð Þ�10�30

6:62617�10�34ð Þ2
� �3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:067ð Þ3=2 0:45

3=2 þ 0:082
3=2

� �r

�exp � 1:424� 1:60218 � 10�19

2� 1:38066� 10�23
� �� 300

 !

¼ 2:06� 1012m�3

¼ 2:06� 106cm�3

7.6 Doping: Intrinsic Versus Extrinsic Semiconductor

The energy band structures of the semiconductors that have been discussed so far
corresponded to those of an intrinsic semiconductor, which is a pure and perfect
semiconductor crystal. At a temperature equal to the absolute zero (0 K), the valence
band of such a crystal is completely filled with electrons, and there is no electron in
the conduction band. Indeed, we saw that the Fermi energy of a semiconductor lies
within a forbidden energy gap (Sub-sect. 5.2.7). Since the Fermi-Dirac distribution
function has an exact step shape at T ¼ 0 K (Fig. 5.12), there is no electron with an
energy E > EF, including the conduction band, and all the electrons are located at an
energy E < EF.

This phenomenon directly results from the fact that the outer shell of each
constituent atom of a semiconductor is fully filled with four electrons. Counting
the number in the four shared bonds then gives a total of eight electrons. For
example, in the case of a silicon crystal, illustrated in Fig. 7.4, each Si atom is
bonded to four neighboring Si atoms. A Si atom originally has four electrons in its
outer shell (it is in the column IV of the periodic table), each of which is shared with
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one different neighboring atom. Every Si atom has therefore a total of eight
electrons: Its original four electrons and one electron from each of the four neigh-
boring Si atoms.

We thus see that all the outer shell electrons are shared into bonds, and thus there
is no extra free electron which can move. Moreover, all the outer shell “spots” are
filled with electrons; therefore there is no room for an electron to move to if
displaced by a field. As a result, the electrical conductivity of a pure semiconductor
is “low” (only excited states can conduct). This is why a pure semiconductor is an
insulator at the absolute zero temperature.

In order to either increase the number of free electrons or increase the number of
“spots” (empty energy levels) where a potential electron can move into, we need to
replace some of the Si atoms with other elements, called dopants, which are not
isoelectronic to it, i.e., not with the same number of outer shell electrons. This
process is called doping, which results in an extrinsic semiconductor. A dopant is
thus an impurity added to the semiconductor crystal. Because the dopant replaces or
substitutes a Si atom, it is called a substitutional dopant. The concentration of such
dopants typically introduced in a semiconductor is in the range of 1015–1019 cm�3,
which is low in comparison with the concentration of atoms in a crystal (typically
~1022 cm�3). There are two types of doping, n-type doping and p-type doping,
depending on the nature of the dopant introduced. Such a dopant can be introduced
intentionally or unintentionally during the synthesis of the semiconductor crystal.

The n-type doping is achieved by replacing a Si atom with an atom with more
electrons in the outer shell. This can be achieved, for example, by using phosphorus
(P), an element from the column V of the periodic table, which has five electrons in
its outer shell. The result is shown in Fig. 7.5.

As we can see, four of the electrons in the outer shell of the P atom are involved in
covalent bonds with its four neighboring Si atoms. The fifth electron is therefore free
to move in space. The P atom is therefore called a donor in silicon because it can give
away an electron which can in turn participate in electrical conductivity phenomena.
Once an electron is given away, the phosphor atom becomes a positively charged ion
and is then called an ionized donor. This ionization process is generally achieved
through thermal excitation of an electron from the outer shell of the donor atom.

Because the dopant creates a perturbation to the periodicity of the crystal lattice, it
gives rise to additional energy levels in the bandgap. When the dopant concentration

Si Si Si

Si Si Si

Si Si Si

Fig. 7.4 Schematic of a Si
semiconductor crystal
showing the distribution of
electrons in the outer shell of
each Si atom. Each Si atom
has eight electrons in this
shell: four from its own outer
shell and one from each of the
four nearest Si atoms to which
it is covalently bonded to
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is low in comparison with the density of crystal atoms, the dopant energy level can
be considered as isolated, i.e., there is no energy band associated with it. We can then
talk about a donor energy level Ed, as shown in Fig. 7.6a. Moreover, because the
extra electron around the P atom is easily ionized, it has a small binding energy, with
respect to the conduction band. The energy of the donor electron Ed is closer to the
conduction band than the valence band. The ionization energy of the dopant is the
difference EC � Ed.

The other type of doping, p-type doping, is achieved by replacing a Si atom with
an atom with fewer electrons in the outer shell. This can be achieved, for example, by
using gallium (Ga), an element from the column III of the periodic table, which has
three electrons in its outer shell. The result is shown in Fig. 7.7.

As we can see, all three electrons in the outer shell of the Ga atom are involved in
covalent bonds with three of its four neighboring Si atoms. There thus remains an
open location that can be filled with an electron. The Ga atom is therefore called an
acceptor in silicon because it can “accept” or “capture” an extra electron from a

Si Si Si

Si P Si

Si Si Si

Fig. 7.5 Schematic of a Si semiconductor crystal with one Si atom replaced by a P atom to achieve
n-type doping. The dotted circle symbolizes the outer shell of the P atom which contains five
electrons. Because the fifth electron does not contribute to the bonding, it can be free (ionized) to
move inside the crystal. P is thus called a donor

E

Conduction band

Valence bandValence band

Conduction band

E

Ea
EVEV

Ed

EC EC

ba baFig. 7.6 Schematic of the
energy levels introduced by
(a) a donor or (b) an acceptor
dopant in a semiconductor
crystal. The energy level of a
donor is closer to the edge of
the conduction band, whereas
that of an acceptor is closer to
the edge of the valence band
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neighboring covalent bond, thus leaving a new available location for electron
capture. Once an electron is captured, the gallium atom becomes a negatively
charged ion and is then called an ionized acceptor. This movement of electrons is
involved in electrical conductivity phenomena. Remembering the concept of holes
discussed in Sub-sect. 5.3.3, we can see that this electron movement is equivalent to
the movement of a hole in the opposite direction, as illustrated in Fig. 7.8. The Ga
atom, an acceptor (of electrons) in silicon, can then be also considered as a donor of
holes.

Here again, the p-type dopant is a perturbation of the periodicity of the crystal
lattice and leads to additional localized energy levels (i.e., not bands) in the bandgap
at Ea, which is called acceptor energy level, as shown Fig. 7.6b. Because the Ga atom
easily captures an electron, Ea is closer to the valence band than the conduction band.
The ionization energy of the p-type dopant is the difference Ea � EV.

A semiconductor may contain donors (with a concentration ND) and acceptors
(with a concentration NA) at the same time. We then talk about compensation and say
that the semiconductor is compensated. The overall behavior of this semiconductor
depends on the relative difference between ND and NA. In either case of n-type

Si Si Si

Si Ga Si

Si Si Si

Fig. 7.7 Schematic of a Si semiconductor crystal with one Si atom replaced by a Ga atom to
achieve p-type doping. The dotted circle symbolizes the outer shell of the Ga atom which contains
three electrons. The Ga atom can accept one more electron from a neighboring bond. Ga is thus
called an acceptor

Si Si Si

Si Ga Si

Si Si Si

Fig. 7.8 Schematic showing
the movement of a hole in a Si
semiconductor crystal doped
p-type using a Ga atom. The
hole is represented by an open
circle. When the Ga atom
accepts an electron, the
process can be equivalently
viewed as the Ga atom
releasing a hole inside the
crystal
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and/or p-type doping, the mass action law expressed in Eq. (7.30) remains valid as
long as we have a non-degenerate semiconductor.

Table 7.1 lists the most common dopants with their ionization energies for the
following semiconductors: Si, Ge, GaAs, and InP.

7.7 Charge Neutrality

A semiconductor crystal, be it intrinsic or extrinsic, must be electrically neutral at a
macroscopic scale. Indeed, even if dopants are introduced, they are electrically
neutral, and therefore the semiconductor crystal remains globally neutral too. As
the dopants get ionized, they create mobile electrons and holes in the crystal. But,

Table 7.1 Dopants and
ionization energies for
(a) Si, (b) Ge, (c) GaAs (Sze
1981; Wolfe et al. 1989),
and (d) InP (http://www.
ioffe.ru/SVA/NSM/
Semicond/InP/index.html)

(a) Si

Impurity Type Ionization energy (meV)

P Donor 45.31

As Donor 53.51

Sb Donor 42.51

B Acceptor 45

Al Acceptor 57

Ga Acceptor 65

(b) Ge

Impurity Type Ionization energy (meV)

P Donor 12.76

As Donor 14.04

Sb Donor 10.19

B Acceptor 10.47

(c) GaAs

Impurity Type Ionization energy (meV)

Si Donor 5.854

Ge Donor 5.908

S Donor 5.89

Be Acceptor 30

Mg Acceptor 30

Zn Acceptor 31.4

C Acceptor 26.7

(d) InP

Impurity Type Ionization energy (meV)

Si Donor 5.7

S Donor 5.7

Sn Donor 5.7

Be Acceptor 30

Mg Acceptor 30

Zn Acceptor 35
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there is no persistent accumulation of electrical charges. Even in a compensated
semiconductor, overall charge neutrality remains.

Before mathematically expressing the electrical neutrality condition, we must first
count all the electrical charges present in the crystal. The negative charges include
the electrons in the conduction band, with a concentration n, and the ionized
acceptors with a concentration NA

�. The positive charges include the holes in
the valence band, with a concentration p, and the ionized donors with a concentration
ND

+. The charge neutrality relation can then be written as:

nþ N�
A ¼ pþ Nþ

D ð7:33Þ
For a given semiconductor crystal, the concentrations n and p solely depend on

the Fermi energy EF through Eqs. (7.21) and (7.29) in the non-degenerate case or
Eqs. (7.18) and (7.27) in the general case. The concentrations of ionized donors ND

+

and acceptors NA
� depend also on the Fermi energy for a given dopant nature, the

temperature T, and total concentration as follows:

Nþ
D

ND
¼ 1

2exp EF�Ed
kbT

� �
þ 1

ð7:34Þ

N�
A

NA
¼ 1

4exp Ea�EF
kbT

� �
þ 1

ð7:35Þ

where EF is the Fermi energy, Ed and Ea are the donor and acceptor energy levels in
the bandgap, respectively, and ND and NA are the total donor and acceptor
concentrations, respectively. The factor 2 in Eq. (7.34) arises because the donor
atom can in practice only be singly occupied by an electron (electron-electron
repulsion will prevent double occupation), and the factor 4 in Eq. (7.35) arises for
the same reason and the fact that there are two degenerate subbands in the valence
band at the center of the Brillouin zone: the heavy-hole band and the light-hole band
(Sub-sect. 5.4.3). Similar to the Fermi-Dirac distribution, Eqs. (7.34) and (7.35) are
derived from statistical physics.

The charge neutrality equation is a very important property because it gives an
implicit equation which can be used to determine the Fermi energy. Once the Fermi
energy is determined, the concentration of electrons in the conduction band and that
of holes in the valence band can be readily calculated through Eqs. (7.21) and (7.29)
in the non-degenerate case or Eqs. (7.18) and (7.27) in the general case.

7.8 Fermi Energy as a Function of Temperature

An example of such calculation is given here, first for an intrinsic and then for an
n-type extrinsic and non-degenerate semiconductor.
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In the intrinsic case, we assume there is no dopant, i.e., the total concentration of
dopant is ND ¼ NA ¼ 0. Substituting in Eq. (7.33), we therefore obtain Eq. (7.32)
again. Now, by identifying n in Eqs. (7.21) and (7.32), we can write an expression
for the Fermi energy:

n ¼ ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kbT

� �
¼ Nc exp

EF � EC

kbT

� �

which becomes, knowing that Eg ¼ EC � EV:

exp
EF

kbT

� �
¼

ffiffiffiffiffiffi
Nv

Nc

r
exp

EC þ EV

2kbT

� �
ð7:36Þ

After taking the logarithm of this relation:

EF

kbT
¼ EC þ EV

2kbT
þ ln

ffiffiffiffiffiffi
Nv

Nc

r� �

or:

EF ¼ EC þ EV

2
þ 1
2
kbT ln

Nv

Nc

� �
ð7:37Þ

This equation shows that the Fermi energy in an intrinsic semiconductor lies near
the middle of the bandgap and is offset by an amount that varies with temperature. At
the absolute zero temperature, the Fermi energy is exactly at the middle of the
bandgap.

Example

Q Determine how far the Fermi energy is from the middle of the bandgap of GaAs
at 296 K.

A The Fermi energy is given the expression: EF ¼ ECþEV
2 þ 1

2 kbT ln Nv
Nc

� �
. The

energy difference between the Fermi energy and the middle of the bandgap is

therefore given by the logarithm function, EF � ECþEV
2 ¼ 1

2 kbT ln Nv
Nc

� �
, which is

given by the ratio: 1
2 kbT ln 1

gd
mh
me

� �3=2

Þ
�

. In GaAs, the degeneracy factor gd is

equal to 1 because the conduction band minimum is at the center of the
Brillouin zone. In addition, the hole effective mass mh is calculated from the

heavy-hole and light-hole effective masses: m
3=2
h ¼ m

3=2
hh þ m

3=2
lh . This leads to:

7.8 Fermi Energy as a Function of Temperature 267



EF � EC þ EV

2
¼ 1

2
kbT ln

m
3=2
hh þ m

3=2
lh

m
3=2
e

 !
¼ 1

2

�1:38066� 10�23 � 296� ln 0:45
3=2 þ 0:082

3=2

0:067
3=2

 !

¼ 6:00� 10�21J ¼ 37:4meV

For an extrinsic semiconductor, an expression similar to Eq. (7.37) cannot be
easily obtained, because one needs to estimate the concentrations of ionized donors
(ND

+) or acceptors (NA
�) as a function of the total concentrations, which is beyond

the scope of this textbook. Nevertheless, the following discussion will enable us to
qualitatively understand the variation of the Fermi energy as a function of
temperature.

We know that, at the absolute zero temperature (T¼ 0 K), the Fermi energy EF is
such that all the electrons have an energy below EF and no electron has an energy
higher than EF.

Therefore, in an n-type doped semiconductor at T ¼ 0 K, the Fermi energy is
located between EC and Ed, as illustrated in Fig. 7.9a, which means that the Fermi
energy is much closer to the bottom of the conduction band than in the case of an
intrinsic semiconductor. This proximity has the very important consequence that the
concentration of electrons in the conduction band is much larger than for an intrinsic
semiconductor, as a result of the shape of the Fermi-Dirac distribution shown in
Fig. 5.12, when the temperature is raised. These electrons can easily participate in
electrical conduction phenomena.

By contrast, in a p-type doped semiconductor at T ¼ 0 K, the Fermi energy EF is
located between EV and Ea, as illustrated in Fig. 7.9b, which means that the Fermi
energy is much closer to the top of the valence band than in the case of an intrinsic

E

Conduction band

Valence band

EVEV

EF

EF

Ea

Ed

Valence band

Conduction band
ECEC

E
baFig. 7.9 Position of the

Fermi energy at T¼ 0 K in (a)
an n-type semiconductor is
located between the donor
energy level and the bottom of
the conduction band, and (b)
in a p-type semiconductor, it
is located between the
acceptor energy level and the
top of the valence band

268 7 Equilibrium Charge Carrier Statistics in Semiconductors



semiconductor. This proximity also has the very important consequence that the
concentration of holes in the valence band is much larger than for an intrinsic
semiconductor, as a result of the shape of the Fermi-Dirac distribution shown in
Fig. 5.12, at room temperature. And these holes can easily participate in electrical
conduction phenomena.

For very high temperatures, all the donors or acceptors are ionized, and we have
ND

+ ¼ ND or NA
+ ¼ NA. Thus, the contribution from dopants to the charged carriers

is limited, which is typically to a maximum of 1019 cm�3. At the same time, the
intrinsic contribution to the concentrations of electrons and holes, given by
Eq. (7.32), is such that (take T ! 1):

n ¼ p ¼ ni ¼
ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kbT

� �
� ffiffiffiffiffiffiffiffiffiffiffi

NcNv
p ð7:38Þ

Moreover, from Eqs. (7.19) and (7.28), we saw that the effective density of states

Nc and Nv both increase as T
3=2 . Therefore, the intrinsic contribution to n and p also

increases as T
3=2 , i.e., is not limited when the temperature increases, unlike the

contribution from dopants. The charge neutrality relation in Eq. (7.33) then
becomes:

n � p ð7:39Þ
This means that at very high temperatures, the charge carriers in an extrinsic

semiconductor behave as in an intrinsic semiconductor. This also means that the
Fermi energy tends to the expression given in Eq. (7.37). From these qualitative
arguments, we can schematically illustrate the evolution of the Fermi energy as a
function of temperature in Fig. 7.10 for an n-type and a p-type semiconductor.

E

Conduction band

Valence band
T

ND>NA NA>ND

E

EF

Conduction band

Valence band
T

EC EC
Ed

Ea
EV

EF

EV

ba

Fig. 7.10 Evolution of the Fermi energy as a function of temperature in a (a) n-type or (b) p-type
semiconductor crystal. As the temperature is raised, the position of the Fermi energy shifts from its
position in Fig. 7.9 to the position for an intrinsic semiconductor
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7.9 Carrier Concentration in an n-Type Semiconductor

Before concluding this section on the electrical charge distribution at equilibrium, let
us consider the example of a non-degenerate, n-type doped semiconductor. Here
again, we will not go in a detailed numerical analysis but will provide the main
qualitative results. The total dopant concentration will be denoted ND. Assuming
there is no acceptor (NA ¼ 0), the charge neutrality relation in Eq. (7.33) is now:

n ¼ pþ Nþ
D ð7:40Þ

Several levels of approximations, corresponding to several temperature regimes,
can be considered to further simplify this expression. But before continuing the
discussion, we should point out that holes in this semiconductor can only originate
from the intrinsic contribution, not an extrinsic source such as a dopant (we chose
NA ¼ 0).

The first regime corresponds to high temperatures. As discussed in the previous
subsection, all the donors are ionized ( Nþ

D ¼ ND
� �

). However, the concentrations of
electrons n and holes p are much higher than the total concentration of donors (n,
p >> ND), and they therefore obey the expressions derived for the intrinsic case, i.e.:

n � p � ni ¼
ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kbT

� �
ð7:41Þ

As the temperature is lowered, while the donors remain ionized Nþ
D ¼ ND

� �
, the

intrinsic contribution to the concentrations of electrons and holes diminishes. Below
a certain temperature, these contributions become negligible in comparison toNþ

D or
ND. In this second temperature regime, p can be neglected (p � Nþ

D ) because the
only contribution to p is the intrinsic contribution. Therefore, Eq. (7.40) becomes:

n � ND ð7:42Þ
This is the most interesting characteristic of an extrinsic semiconductor. Indeed, if

the concentration of donors can be intentionally controlled in the crystal during the
synthesis, the concentration of electrons in the conduction band is precisely
determined.

Specifically, the temperature at which the carrier concentration from thermal
generation becomes equal to the background carrier concentration is called the
intrinsic temperature Ti. Below Ti the carrier concentration is relatively temperature
independent. Above Ti it increases exponentially with temperature.

As the temperature is further lowered, we reach a third regime where all the
donors are not ionized anymore (Nþ

D < ND). At the same time, we still havep � Nþ
D.

In this case, Eq. (7.40) becomes:

n � Nþ
D ð7:43Þ
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At low temperatures, the Fermi energy EF lies between the bottom of the
conduction band EC and the donor level Ed. Therefore, EF � Ed > 0 and the
expression for Nþ

D in Eq. (7.34) can be simplified to become:

Nþ
D

ND
¼ 1

2exp EF�Ed
kbT

� �
þ 1

� 1

2exp EF�Ed
kbT

� �
or:

Nþ
D � ND

2
exp �EF � Ed

kbT

� �
ð7:44Þ

Let us now calculate the product nNþ
D. On the one hand, it is equal to n2 from

Eq. (7.43). On the other hand, it is equal to:

Ncexp
EF � EC

kbT

� �
ND

2
exp �EF � Ed

kbT

� �
ð7:45Þ

after using Eqs. (7.21) and (7.44). We then obtain:

n2 � NcND

2
exp �EC � Ed

kbT

� �
ð7:46Þ

which yields:

n �
ffiffiffiffiffiffiffiffiffiffiffiffi
NcND

2

r
exp �EC � Ed

2kbT

� �
ð7:47Þ

The three expressions of n in Eqs. (7.41), (7.42), and (7.47) provide good
approximations of the concentration of electrons in the conduction band as a
function of temperature. It is customary to plot this concentration in a logarithmic
scale for n and as a function of inverse temperature (i.e., 1

kbT
), so that the slopes of the

curve can be directly correlated to the bandgap energy Eg in Eq. (7.47) and the
ionization energy EC� Ed in Eq. (7.47)). This is very simply shown in the schematic
diagram in Fig. 7.11. Here, the temperature dependence of Nc (T

3/2) from Eq. (7.19))
has been neglected in comparison to the temperature dependence of the exponential
terms.

In the case of a p-type semiconductor, with an acceptor concentration NA, the
following hole concentrations for the various regimes discussed previously can be
determined.

In the first regime, at high temperatures, the concentrations of holes p and
electrons n are much higher than the total concentration of acceptors (n, p >> NA)
and thus follow their expressions for the intrinsic case, as in Eq. (7.41):
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n � p � ni ¼
ffiffiffiffiffiffiffiffiffiffiffi
NcNv

p
exp � Eg

2kbT

� �
ð7:48Þ

In the second regime, Eq. (7. 42) can be transformed for a p-type semiconductor
into:

p � NA ð7:49Þ
In the third regime, as the temperature is further lowered, Eq. (7.43) can also be

transformed for a p-type semiconductor into:

p � N�
A ð7:50Þ

From Eq. (7.35), using the same derivation as between Eqs. (7.44) and (7.47),
we get:

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
NvND

4

r
exp �Ea � EV

2kbT

� �
ð7:51Þ

7.10 Summary

In this chapter, we have first described the equilibrium properties of charge carriers
in a semiconductor. We introduced the concepts of effective density of states, mass
action law, and intrinsic and extrinsic semiconductor. The n-type and p-type doping
of semiconductors has been discussed, taking into account the charge neutrality of
the solid. We also discussed the importance of the Fermi energy.

ln(n)

ND

kbT
1

high
temperature

low
temperature

slope:
-Eg/2

slope:
-(EC -Ed)/2

Fig. 7.11 Simple schematic
diagram of the dependence of
the electron concentration in
the conduction band as a
function of temperature in a
typical n-type semiconductor
crystal. At low temperatures,
the carrier concentration
follows a relation dependent
on the donor energy inside the
bandgap. At moderate
temperatures, the electron
concentration is nearly
constant equal to the donor
concentration. At high
temperatures, the carrier
concentration approaches that
of an intrinsic semiconductor
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Problems

1. Calculate the conduction band effective density of states for Si, Ge, and GaAs at
300 K. Plot it in logarithmic scale as a function of the logarithm of the
temperature.

2. Calculate the valence band effective density of states for Si, Ge, and GaAs at
300 K. Plot it as a function of temperature, in logarithmic scale. We know that
the valence band is degenerate at the center of the Brillouin zone as there is a
heavy-hole band (with effective mass mhh) and a light-hole band (with effective
mass mhh). The effective mass to be used in Eq. (7.28) is then:

mh ¼ m
3=2
hh þ m

3=2
lh

� �2=3:

3. Find the energies at which the distribution of electrons in the conduction band
and the distribution of holes in the valence band have maxima, if distributions
are governed by Maxwell-Boltzmann statistics.

4. Estimate relative errors in the calculation of free carrier concentration when the
Maxwell-Boltzmann statistics is applied for semiconductors with Fermi energy
within the energy gap, if the Fermi level is 3kbT, 2kbT, and kbT away from the
bandgap edge or if it coincides with the edge. Use the given table of the exact
value of the Fermi integral (F1/2) for the comparison.

5. Calculate the intrinsic carrier concentrations for Si, Ge, GaAs, and GaN at
300 K, in the non-degenerate case. Plot their evolution as a function of temper-
ature, in logarithmic scale.

6. From the periodic table, give examples of n-type and p-type dopants for Ge and
GaAs. Is silicon an n-type or a p-type dopant in GaAs? Interpret.

7. As we know P is an n-type dopant for Si and Ge. Nitrogen is in the same column
as P in the periodic table. Will N be a good dopant? Why?

8. Give an expression for the charge neutrality relation when double acceptors are
present with a concentration NAA. Double acceptors accept one or two electrons.
Use the same notations as those in Sect. 7.3.

9. Plot the evolution of the Fermi energy as a function of temperature in
intrinsic GaAs.

10. Consider a p-type doped GaAs semiconductor at 300 K with an experimentally
measured hole concentration of 1.5 � 1017 cm�3. The p-type dopant has an
energy level such that ΔEa ¼ Ea � EV ¼ 125meV. Assuming there is no donor,
determine the proportion of ionized acceptors. Determine the total concentration
of acceptors.

11. Consider an n-type doped GaAs semiconductor at 300 K with an experimentally
measured electron concentration of 3 � 1017 cm�3. The n-type dopant has an
energy level such that ΔEd ¼ EC � Ed ¼ 25meV. Assuming there is no
acceptor, determine the proportion of ionized donors. Determine the total
concentration of donors.
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12. Derive expressions for concentrations of free carriers in a semiconductor doped
with both, donor and acceptor impurities. Determine the conductivity type and
calculate the concentrations of carriers in silicon at T ¼ 300 K, if it is doped
with:

(a) NA ¼ 1016 cm�3> > ND.
(b) ND ¼ 1016 cm�3> > NA.
(c) ND ¼ NA ¼ 1016 cm�3.

Assume that all impurities are ionized and ni ¼ 1.38 � 1010 cm�3 at 300 K.
13. Calculate the concentration of acceptor impurities in silicon, and determine the

type of semiconductor, if at T¼ 300 K the concentration of electrons is 5� 1011

cm�3 and the concentration of donor impurities is 1015 cm�3. Assume
ni ¼ 1.38 � 1010 cm�3 at 300 K.

14. Calculate concentrations of carriers in silicon doped by acceptors NA ¼ 10 l4

cm�3 at:
(a) 27 �C
(b) 175 �C
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Non-equilibrium Electrical Properties
of Semiconductors 8

8.1 Introduction

In the previous chapter, we established the basic relations and formalism for the
distribution of electrons in the conduction band and holes in the valence band at
thermal equilibrium.

Although the equilibrium state for electrons and holes in a semiconductor is the
result of interactions between carriers or between carriers and phonons, it does not
depend on the way this state is reached. The knowledge of the equilibrium properties
is therefore not sufficient, and this is all the more true since semiconductor devices
usually work under non-equilibrium conditions. In this chapter, we will thus discuss
the dynamics of electrons and holes, including electrical conductivity, Hall effect,
diffusion, as well as recombination mechanisms.

8.2 Electrical Conductivity

8.2.1 Ohm’s Law in Solids

Because electrons and holes are charged particles, they can move in an orderly
manner in a semiconductor under the influence of an electric field, for example. This
motion generates an electrical current, called drift current, which is at the origin of
the electrical conductivity phenomenon of certain solids. The magnitude of this
current determines whether a solid is a “good” or a “bad” conductor and is directly
related to the density of mobile electrical charge carriers in the solid. In this section,
we will try to model the electrical conductivity in solids starting from the Drude
model, which is a general model and is valid for any solid which contains mobile
charge carriers. This model is based on the kinetic theory of gases which was briefly
mentioned in Sect. 6.11.
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In this model, an electron from the gas of electrons is considered as (i) a free
moving particle in space with a momentum and an energy, (ii) which is subject to
instantaneous collision events (e.g., with other particles such as electrons or atom
cores or with irregularities in the crystal), (iii) the probability for a collision to occur
during an interval of time dt is proportional to dt, (iv) and the particles reach their
thermal equilibrium only through these collisions (see the Monte Carlo method in
Appendix A.8).

Let us start by conceptually considering an electron with an electrical charge �q

in a uniform electric field strength E
!
. The force exerted on this electron is constant

and equal to �q E
!
(q > 0). Newton’s action mass law is such that:

m
d v

!

dt
¼F

!¼ �q E
! ð8:1Þ

where v
!
is the velocity of the electron and m is its mass (in a semiconductor m¼ me,

the effective mass). This relation means that the acceleration of the electron is
constant and therefore that its velocity increases linearly with time. In practice the
velocity does not increase indefinitely, because collisions, which change the energy
and or scatter the momentum, prevent the electron velocity from reaching extremely
high values.

The current density vector J
!
is a vector which is parallel to the flow of charge and

whose magnitude is equal to the amount of electrical charge (in Coulomb) that
passes per unit time through a unit area surface perpendicular to the flow of charges,
as shown in Fig. 8.1a. The current density is expressed in units of A�cm�2.

The current density can be determined by calculating the number of electrons
which will traverse the surface S, during a time interval dt. Such electrons are in fact
located in the volume defined between the surfaces denoted by S and S0 in Fig. 8.1b.
This volume is equal to A v

!��� ���dt, where A is the area of the surface S.

a b

electrons
(m,-q)

v S

E

J
dtv

E

S

J

S’

Fig. 8.1 Schematic diagrams showing (a) the flow of electrons and current density vector in a
uniform electric field, (b) the displacement of the surface area A after a time dt at a velocity equal to
that of the flowing electrons
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Assuming that there is a concentration n of electrons in this region of space and
that all of them have a velocity v

!
, the total amount of electrical charge traversing the

surface S with area A, during a time interval dt, is:

nqA v
!��� ���dt ð8:2Þ

The magnitude of the current density is thus the expression in Eq. (8.2) divided by
the area and the time interval. Because the current density vector is parallel and in
opposite direction to the flow of electrons, we obtain:

J
!¼ �nq v

! ð8:3Þ
In reality, the electrons are subject to collisions and do not all have the same

velocity v
!

individually, but they can be considered to have the same averaged
velocity, and the expression in Eq. (8.3) remains valid by considering that v

!
is the

average velocity of the electron gas as a whole. Indeed, if there were no electric field,
because collisions are a statistical process, the electrons are as likely to move in one
direction in space as in another after a collision. The average velocity vector of the
electron gas is thus zero, and there would be no electrical current, as expected (see
the Monte Carlo method in Appendix A.8).

In order to calculate the average velocity of the electron gas that results from the
electric field, we have to introduce, as was done earlier in Chap. 6, a characteristic
time called electron relaxation time τ, which is the average duration between two
consecutive collisions or scattering events. Such durations typically range on the
order of 10�12

–10�14 s for electrons in metals. The probability of a collision to occur
is in fact proportional to 1

τ. The average velocity is then called drift velocity and is

denoted vdrift
!
. This quantity can be estimated by integrating Eq. (8.1) over time from

t ¼ 0 and t ¼ τ:

m vdrift
!

¼ �qτ E
!
or vdrift

!
¼ �qτ

m
E
! ð8:4Þ

We see that the drift velocity is proportional to the electric field strength and this
proportionality factor is called the mobility of electrons in the solid:

vdrift
!

¼ �μ E
!

μ ¼ qτ

m

8<
: ð8:5Þ

This quantity is expressed in units of cm2�V�1�s�1, and it represents the velocity
that an electron gains per unit electric field strength (velocity (cm�s�1) divided by
electric field strength (V�cm�1)). This parameter is not used often in metals but will
be most useful to characterize semiconductors. The drift current density, which
results from the drift of electrons in the electric field, can then be written using
Eq. (8.3):
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vdrift
!

¼ �nq vdrift
!

¼ nqμ E
!¼ nq2τ

m
E
! ð8:6Þ

A “drift” superscript has been added to emphasize that this is the drift current
density. Here again, we see that the current density is proportional to the electric field
strength. This proportionality factor is called the conductivity, is denoted σ, and is
expressed in units of S�cm�1 (Siemens per cm) or inverse (Ω�cm):

Jdrift
!

¼ σ E
!

σ ¼ nqμ ¼ nq2τ

m

8<
: ð8:7Þ

It is also a common practice to consider the inverse of the conductivity which is
called the resistivity of the material:

ρ ¼ 1
σ
¼ 1

nqμ
ð8:8Þ

The linear relation in Eq. (8.7) is called Ohm’s law. In strong electric fields,
deviations from this linear dependence may occur, but one can keep the general
expression for the current density in Eq. (8.7) by considering a field-dependent
conductivity σ. In this case, the relation is called the generalized Ohm’s law.

Example

Q Estimate the electron mobility in Cu.
A The charge carriers in Cu are electrons, and their mobility μ is related to the

resistivity ρ of Cu through μ ¼ 1
nq ρ, where n is the electron concentration

participating in the conduction. Since there are two electrons in the valence
shell of copper, this concentration can be determined by the concentration of
Cu atoms or the density of Cu (d ¼ 8.92 g�cm�3) through n ¼ 2� d

mCu
, where

mCu is the mass of a Cu atom. Assuming the resistivity of Cu is about
ρ ¼ 1.7 � 10�6 Ω�cm, we get the mobility:

μ¼ mCu

2dqρ

¼ 63:55� 1:67264� 10�27

2� 8:92� 10�3
� �� 1:60218� 10�19

� �� 1:7� 10�6
� �

¼ 21:9cm2=Vs

For many, Ohm’s law is more commonly recognized through the relation “I ¼ V
R,”

where I is the current, V the voltage, and R the resistance of an electrical component.
Indeed, let us consider a parallelepiped-shaped solid, as depicted in Fig. 8.2. We
assume the electric field in the solid is uniform and that the electrical current flows
perpendicularly to a side of the parallelepiped with surface area WH, as shown in
Fig. 8.2.
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In this configuration, the electrical current I is equal to the magnitude of the
current density multiplied by the area WH, i.e., I ¼ WHJdrift. The voltage V is equal

to the magnitude of the electric field strength E
!��� ��� multiplied by the length L of solid

considered, i.e., V ¼ L E
!��� ���. We therefore get successively:

I ¼ WHJdrift ¼ WHσ E
!��� ���

¼ WH
L

σL E
!��� ��� ¼ WH

L
σV

ð8:9Þ

We thus recognize the relation:

I ¼ V

R
ð8:10Þ

where:

R ¼ L

WH
1
σ
orR ¼ L

A
ρ ð8:11Þ

and A¼WH is the area of the surface perpendicular to and traversed by the electrical
current flow. The quantity R is called the resistance of slab of solid considered. This
expression relates a macroscopic quantity (resistance) to an internal property of the
solid (resistivity).

8.2.2 The Case of Semiconductors

So far, the discussion has been general and valid for any solid that contains mobile
charge carriers. In the case of semiconductors, a few modifications to the previous
results need to be made.

A semiconductor has two types of charge carriers which can contribute to the
electrical conduction: electrons in the conduction band and holes in the valence
band. There are thus two separate contributions to the drift current:

E
J

L

H

W

V

I

Fig. 8.2 Schematic diagram
illustrating the geometry used
to illustrate Ohm’s law. A
voltage is applied across two
opposite faces of a rectangular
solid and separated by a
distance L. This results in an
electric field and a current
density perpendicular to these
two faces
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Jdrift
!

¼Jdrifte

!
þ Jdrifth

!

where each of the Jdrifte

!
and Jdrifth

!
is expressed through Eq. (8.7) using the carrier

concentrations n and p, mobilities μe and μh, and effective masses me and mh of the
electron and the hole, respectively, in the semiconductor considered. Note that,
unlike electrons, the holes flow in the same direction as the electric field, because
of their positive charge. We thus obtain:

vdrifte

!
¼ �μe E

!

vdrifth

!
¼ þμh E

!

8<
: and

Jdrifte

!
¼ �nq vdrifte

!

Jdrifth

!
¼ þpq vdrifth

! :

8<
: ð8:12Þ

The total drift current density can then be written as:

Jdrift
!

¼ σ E
!

σ ¼ q nμe þ pμhð Þ

(
ð8:13Þ

The typical room temperature conductivity in metals is (0.1 ~ 3) � 104 S�cm�1,
while the conductivity in semiconductors depends on the carrier concentrations and
therefore the doping level, as discussed in Chap. 7.

The conductivity in semiconductors depends much more strongly on the temper-
ature than that in metals. This is because in semiconductors, at a temperature of 0 K,
the Fermi energy lies within the forbidden gap (Fig. 5.11) and there is no electron in
the conduction band (and thus no hole in the valence band) as the Fermi-Dirac
distribution is strictly equal to zero there (Fig. 5.12). Remember that a full band does
not carry current. By increasing the temperature, it is therefore possible to increase
the concentrations of electrons in the conduction band, holes in the valence band,
and enhance electrical conductivity as the Fermi-Dirac distribution is not strictly
equal to zero any more. By contrast, in metals, the Fermi energy lies within the
conduction band which is thus partially filled (Fig. 5.11), and an increase in
temperature will not significantly affect the concentration of electrons in it.

8.3 Carrier Mobility in Solids

The mobility of electrons is controlled by two physical parameters: one is the
effective mass and the other is the relaxation time. In Chap. 5, we have seen what
determines the effective mass of a charge. Let us now consider the momentum
lifetime. The scattering processes which determine the momentum lifetime of solids
can be classified into two categories: (a) elastic scattering processes and (b) inelastic
scattering processes. In category (a), the carrier changes its momentum but not its
energy. Any break in the translational symmetry of the solid will give rise to elastic
scattering, and in particular this includes the presence of impurity potentials, defects
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interfaces, and dislocations, but there are also the deviations from periodic order
caused by lattice vibrations: the electron-phonon interactions. The former contribute
to category (a), and the latter involve energy exchange with the lattice and are in
category (b). In category (b) the carrier changes both momentum and energy. An
inelastic phonon-induced scattering process is allowed if it satisfies both the momen-
tum and energy conservation conditions which are, respectively:

k0
!
¼k

!
� q

!

E
�
k0
! � ¼ E

�
k
!�� hω

�
q
!�

whereE
�
k0
! �

is the energy of the particle after the scattering process and hω
�
q
!�

is the
energy of the phonon absorbed or emitted.

We have seen in Chap. 6 that a solid will in general have two types of phonons, so
there are also two types of electron-phonon scattering processes. These are the
electron-acoustic and electron-optical phonon scattering processes. The acoustic
scattering occurs in all solids, but optic phonon scattering can only take place
when there are optic modes in the system. The strength of the electron-acoustic
and electron-optical coupling determines the efficiency, or the rate at which a carrier

with a given momentum k
!
is scattered into a momentum state k0

!
via a phonon. In III–

V semiconductors with polar modes, the electron optic coupling is an efficient
process and is the most important mechanism by which hot carriers relax their
excess energy when they have enough energy to emit an optic phonon. An electron
can also absorb an optic phonon, but this is only possible if a sufficient number is
thermally excited. The rate of optic phonon absorption increases therefore with
temperature, following essentially the Bose-Einstein distribution law of phonon
occupation. When more than one scattering process is contributing, the sum must
be taken. This is done by summing the lifetimes in parallel so that the shortest time
dominates. The total lifetime τ is thus given by the sum 1

τ ¼ 1
τel
þ 1

τop
þ 1

τac
where the

terms denote the inverse of the elastic, optic, and acoustic scattering lifetimes,
respectively. The temperature dependence of the mobility in different materials is
not simple to summarize, and the reader is referred to the specialized textbooks by
Ridley and Sze. The physics of the situation however is as follows: at very low
temperatures, the phonon modes freeze out and thermal velocities are low, the
inelastic lifetimes therefore increase as we go down in temperature, and eventually
elastic processes dominate. Elastic scattering processes can however be weakly
dependent on temperature and will remain finite even at zero temperature creating
a finite resistance unless the material becomes a superconductor at some stage.
Elastic scattering can take place from neutral defects, and most effectively also
from charged ionized defects and impurities. The state of ionization of an impurity
will in general be a function of temperature, as we saw when we discussed doped
semiconductors (see Sect. 7.6). This means that elastic scattering processes in doped
semiconductors will in general have both strong temperature-dependent and weak
temperature-dependent components. Here are a few typical measured bulk values
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(see also Appendix A4) of the room temperature (T ¼ 300 K) mobilities of some
important semiconductors: Si electrons, 1500 cm2/Vs; Si holes, 450 cm2/Vs; GaAs
electrons, 8500 cm2/Vs; GaAs holes, 400 cm2/Vs; InAs electrons, 33,000 cm2/Vs;
and InAs holes, 460 cm2/Vs. From the example in the text, we calculated the
mobility of Cu, which is a good metal, to be ~20 cm2/Vs. This is typical for good
metals and interestingly lower than for many semiconductors.

8.4 Hall Effect

At the end of the nineteenth century, physicists knew that if a metal wire carrying an
electrical current was placed in a magnetic field, it experienced a force. The origin of
this force was not known. In 1879, E.H. Hall tried to prove that this force was exerted
only on the mobile charges (electrons) in the wire. By doing so, he conducted an
experiment where an electrical current was run through a fixed conductor perpen-
dicularly to a magnetic field.

Let us consider the Hall effect experiment geometry illustrated in Fig. 8.3. An

electrical current, with current density J
!

in the x-direction, is run through a

parallelepiped-shaped solid. A magnetic induction or flux density B
!

is directed
perpendicularly to the current, in the z-direction. The movement of holes and
electrons is shown in Fig. 8.3 as well.

8.4.1 P-Type Semiconductor

Let us now assume that the solid only contains one type of charge carriers and that
they are holes. With the electrical current in the (+x)-direction, a hole moves also in
the x-direction with a velocity vh

!
, as shown in Fig. 8.3 . At the same time, it is

subject to the Lorentz force equal to:

E

J = Jx x

z
x

y

ve
vh

−q
+q

B = Bzz

Fig. 8.3 Geometry used for a Hall effect experiment. A uniform electric field strength is applied
inside a solid in the x-direction (e.g., by applying a voltage across the solid), which results in an
electric current in the same direction. The movement of holes and electrons in the solid is shown.
The solid is immersed in a magnetic induction which is directed in the z-direction, perpendicularly
to this electric field
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FLorentz

! ¼ q vh
! � B

! ð8:14Þ
which is in the y-direction. If the sample was without limits, the hole would exhibit a

cyclotron (circular) motion around an axis parallel to B
!
. In the case of a finite size

solid as the one shown in Fig. 8.4, holes would accumulate on one of its sides to
create a surplus of positive charges. At the same time, negative charges would appear
on the opposite side from the deficiency of holes there. This separation of charges

results in an electric field strength EHall

!
, called Hall electric field and shown in

Fig. 8.4, which drives holes in the y-direction and is opposite to the Lorentz force.
At equilibrium, the Lorentz force and the force due to the Hall electric field must

balance each other. This can be expressed mathematically as:

0
!
¼h,Lorentz! þ FHall

! ¼ q vh
! � B

! þq EHall

! ð8:15Þ
The Hall electric field strength is thus:

EHall

! ¼ � vh
! � B

! ð8:16Þ

The component of the Hall electric field strength in the y-direction (i.e., EHall

!

¼ EHallð Þy y
!
) in the geometry shown in Fig. 8.4 is:

EHallð Þy ¼ vhð ÞxBz > 0 ð8:17Þ

From Eq. (8.12), we get:

Jx ¼ pq vhð Þx
where p is the hole concentration in the solid, and we can rewrite Eq. (8.18) as:

FLorentz = qvh × B

B = Bz z
z

x

y

vh
+q

+ + + + + +

− − − − − −
FHall = qEHall

Fig. 8.4 Motion of a hole in the Hall effect experiment. Under the influence of the Lorentz force,
the motion of holes is deviated in the y-direction toward one side of the solid which then becomes
positively charged through the accumulation of holes. The opposite side of the solid therefore
becomes negatively charged. This gives rise to an additional electric field which is directed in the
y-direction
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EHallð Þy ¼
Jx
pq

Bz ð8:18Þ

This expression contains macroscopic quantities which are characteristic of the
material ( p), parameters of the experiments (J and B), and quantities which are
experimentally measured (EHall). Through this relation, we can easily extract
properties characteristic of the materials from experiments. It is a common practice
to introduce the Hall constant given by:

RH ¼ EHallð Þy
JxBz

¼ 1
pq

> 0 ð8:19Þ

The Hall constant therefore yields a direct measure of the hole concentration in
the solid. We can define a hole Hall mobility as:

μH,h ¼ σRH ð8:20Þ
This Hall mobility has the same units as the drift mobility encountered in

Eq. (8.12) in Sect. 8.2, i.e., cm2�V�1�s�1. However, it differs from the drift mobility
by a factor, called the Hall factor, which is determined by the temperature and the
types of scattering involving the charge carriers. Experimentally, this factor is taken
to be equal to unity and only one mobility is considered. This can be illustrated by
the fact that one can arrive at Eq. (8.20) from Eq. (8.19) by using the expression in
Eq. (8.13) applied to holes only.

8.4.2 N-Type Semiconductor

In the case of a solid which contains only electrons as the mobile charge carriers, a
similar analysis can be conducted. The motion of an electron in the Hall effect
experiment is shown in Fig. 8.5. We can see that the electrons are deflected in the
same direction as the holes in Fig. 8.6.

However, because electrons have a negative charge, the Hall electric field is in the
opposite direction in comparison to the one from holes:

0
!
¼Fe,Lorentz

! þ FHall

! ¼ �q ve
! � B

! �q EHall

! ð8:21Þ

The Hall electric field strength is thus:

EHall

! ¼ � ve
! � B

! ð8:22Þ

The component of the Hall electric field strength in the y-direction (i.e., EHall

!

¼ EHallð Þy y
!
) in the geometry shown in Fig. 8.5 is:

284 8 Non-equilibrium Electrical Properties of Semiconductors



EHallð Þy ¼ veð ÞxBz < 0 ð8:23Þ

because (ve)x < 0. From Eq. (8.12), we have:

Jx ¼ �nq veð Þx
and we can rewrite Eq. (8.23) as:

EHallð Þy ¼ �Jx
nq

Bz ð8:24Þ

This expression is similar to Eq. (8.18), and the Hall constant defined in
Eq. (8.19) becomes:

z

x

+ + + + + +

− − − − − −

y

B = Bz z

FLorentz = −qve × B
FHall = −qEHall

ve

−q

Fig. 8.5 Motion of an electron in the Hall effect experiment. Under the influence of the Lorentz
force, the motion of electrons is deviated in the y-direction toward one side of the solid which then
becomes negatively charged through the accumulation of electrons. The opposite side of the solid
therefore becomes positively charged. This gives rise to an additional electric field which is directed
in the y-direction

particles
(e.g. electrons)

x

n(x1)>n(x2)

x1 x2

< 0
dx
dn

> 0= −DnΦdiff
dx
dn

e

flux of particlesFig. 8.6 Diffusion of
particles (e.g., electrons) in a
one-dimensional model. An
imaginary surface with a unit
area is considered, such that
the concentration of particles
on one side is larger than on
the other side. The diffusion
process is characterized by the
flux of particles spontaneously
passing through the imaginary
surface per unit time
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RH ¼ EHallð Þy
JxBz

¼ � 1
nq

< 0 ð8:25Þ

Here again, we see that the Hall constant yields the electron concentration in the
solid. Moreover, it is negative, whereas it was positive when holes were the only
charge carrier. The Hall constant is therefore a good method to determine if a
semiconductor is p-type or n-type. The electron Hall mobility given by Eq. (8.20)
is now transformed into:

μH,e ¼ σ RHj j > 0 ð8:26Þ
Similar to the previous case, the electron Hall mobility is usually taken equal to

the electron drift mobility.

8.4.3 Compensated Semiconductor

In a compensated semiconductor, both types of dopants are simultaneously present
in the material. Since the electrons and holes released by the doping can recombine, a
decrease of the free carriers’ concentration can be observed. Adding p-type
impurities to an n-doped system will therefore reduce the electron concentration
and vice versa. The charged impurities are still there, having transferred the charge to
each other (donor to acceptor) rather than to the bands. It is possible in this way to
increase the resistance of doped systems by adding the opposite type of dopant. This
can be very useful when ion implantation is used to dope a material, because with
ions, one can in principle achieve a high degree of spatial resolution and select the
depth of implantation. The ion beam can also be focused to compensate the local
doping and thus produce submicron devices.

8.4.4 Hall Effect with Both Types of Charge Carriers

When both electrons and holes are contributing to the transport process, the calcula-
tion of the Hall coefficient is somewhat more complicated. Both types of carriers will
contribute to the Hall effect in an intrinsic material, for example, or when light is
photo-exciting pairs, or when electrons and holes are injected using different types of
source drain electrode materials. The derivation of RH is however straightforward
and can be done by using the Newton law with the Lorentz force for both carriers:

me
dvx
dt

þ mevx
1
τ
¼ �qEx � qvyB

me
dvy
dt

þ mevy
1
τ
¼ �qEy � qvxB

ð8:27Þ
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in the presence of electric fields, Ex, Ey, and a magnetic field B. Similar equation can
be written down for holes, except that q ! � q. The steady-state velocities are
obtained by assuming that the velocity no longer changes with time, i.e., by putting
the acceleration term equal to zero. The products μB are very small under typical
measurement conditions, so if we ignore even smaller terms of order B2, we can
write Eq. (8.27) as:

v ey ¼ �μeEy � μ2eBEx

vhy ¼ μhEy � μ2hBEx

ð8:28Þ

The above equations can be related to the total current Jy giving:

Jy ¼ nqμe Ey þ μeExB
� �þ pqμh Ey � μhBEx

� � ð8:29Þ
Under equilibrium condition, i.e., when the current Jy ¼ 0, the ratio of the

components of the electric field is such that:

Ey

Ex
¼ pμ2h � nμ2e

nμe þ pμh

� �
B ð8:30Þ

and the Hall constant is now given by:

RH ¼ 1
q

pμ2h � nμ2e
pμh þ nμeð Þ2 ð8:31Þ

where p and n are the hole and electron concentrations and μh and μe are the hole and
electron mobilities, all of which are positive parameters. The Hall mobility is the
combination of the mobilities of the electrons and holes and given by:

μH ¼ σ RHj j ¼ pμ2h � nμ2e
pμh þ nμe

����
���� ð8:32Þ

8.5 Charge Carrier Diffusion

In an inhomogeneous solid, certain regions may exhibit more electrons or holes than
other regions. These will then migrate from the high concentration areas to the low
concentration areas. This is a universal and natural phenomenon, called diffusion.
This process is due to an imbalance in the thermodynamic chemical potential. One
may picture the diffusion process as a drop of ink in a glass of clear water which
slowly spreads in the entire volume of water. Because electrons and holes are charge
carriers, their diffusion generates an electrical current, which is very important in
many semiconductor devices.
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8.5.1 Diffusion Currents

In this section, we will describe a simple one-dimensional model for the diffusion of
electrons and holes in a semiconductor. Let us assume the electron concentration n
(x) is not uniform in the x-direction, as schematically illustrated in Fig. 8.6 .

The diffusion process is mathematically described by Fick’s first law of diffusion
which says that the flux, i.e., the number of electrons passing per unit time a unit area
surface perpendicular to the x-direction, is given by:

Φdiff
e ¼ �Dn

dn

dx
ð8:33Þ

whereDn is called the diffusion coefficient or diffusivity and has the units of cm
2�s�1

. We use the subscript “n” to identify that this is the diffusivity for electrons. The
negative sign in this expression means that the flux of electrons is in the direction
opposite to the gradient (or slope) of concentration, as illustrated in Fig. 8.6.

Using a similar approach as for the electrical drift process in Sect. 8.2 to count the
number of electrons that pass the unit area surface in Fig. 8.6 per unit time, we can
extract the electron diffusion velocity vdiffh :

Φdiff
e ¼ nvdiffe ð8:34Þ

which leads to the relation:

vdiffe ¼ �Dn
1
n

dn

dx
ð8:35Þ

The movement of these electrons creates an electrical current. The diffusion
current density of electrons is then determined from Eq. (8.12):

Jdiffe ¼ �nqvdiffe ¼ þqDn
dn

dx
ð8:36Þ

Similar relations to Eqs. (8.35) and (8.36) can be obtained for the diffusion of
holes:

vdiffh ¼ �Dp
1
p

dp

dx
ð8:37Þ

Jdiffh ¼ �pqvdiffh ¼ �qDp
dp

dx
ð8:38Þ

where p is the concentration of holes. Note that there is a sign change from
Eqs. (8.36), (8.37), and (8.38) which is due to the positive charge of the hole.
There is no such sign change from Eqs. (8.35), (8.36), and (8.37), because the origin
of the diffusion process is not dependent on the electrical charge.
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8.5.2 Einstein Relations

The drift and the diffusion of electrons and holes are intimately related processes,
because both contribute to the observed electrical current in a semiconductor.

Let us continue on our simple one-dimensional model and consider a finite size

solid onto which a uniform external electric field of strength E
!¼ E x

!
is applied. As a

result, the electrons will be drifting to one side of the solid, and a concentration
gradient will be achieved. These electrons will then start to diffuse in the direction
opposite to this electrical drift until a balance is reached.

The drift current density is given by Eq. (8.12) Jdrifte ¼ nqμeE, while the electrical

diffusion current density is given by Eq. (8.36) Jdrffe ¼ þqDn
dn

dx
. At the thermal

equilibrium of this system, the sum of these two current densities:

Jdrifte þ Jdiffe ¼ nqμeE þ qDn
dn

dx
ð8:39Þ

must be equal to zero, i.e.:

nqμeE þ qDn
dn

dx
¼ 0 ð8:40Þ

This first-order differential equation can be rewritten as:

dn

dx
þ μeE

Dn
n ¼ 0 ð8:41Þ

which leads to the solution:

n xð Þ ¼ n 0ð Þexp � μeEx

Dn

� �
ð8:42Þ

where n(0) is the electron concentration at x ¼ 0. We see that we obtain an
exponential-like distribution for this concentration. However, at thermal equilib-
rium, this quantity also obeys Boltzmann statistics, which is analogous to the
Boltzmann probability distribution we encountered in Chap. 5. For a nondegenerate
semiconductor, the electron concentration according to Boltzmann statistics should
be given by:

n xð Þ ¼ n 0ð Þexp �qEx

kbT

� �
ð8:43Þ

because qEx is the potential energy of the electron in an electric field strength of
magnitude E. Comparing Eqs. (8.42) and (8.43), we obtain the relation:
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μeE

Dn
¼ qE

kbT

or:

Dn

μe
¼ kbT

q
ð8:44Þ

A similar relation can be obtained for holes:

Dp

μh
¼ kbT

q
ð8:45Þ

Equations (8.44) and (8.45) are called the Einstein relations and are valid only for
nondegenerate semiconductors. For degenerate semiconductors, we first need to
specify the amount of charge in the bands, and a factor involving the Fermi-Dirac
integral Eq. (7.13) needs to be included in the above expressions. These relations are
important because they provide a mathematical link between the drift and diffusion
processes. They are however not always valid. They apply only when there is a small
amount of charge in the band edges, which is the most interesting situation in
semiconductor technology.

8.5.3 Diffusion Lengths

In the diffusion model considered so far, an electron or a hole can diffuse indefinitely
in space. However, in most real case situations, the diffusion range is much more
limited.

Let us consider the diffusion of electrons in a one-dimensional semiconductor
model, where excess carriers are continuously generated at x ¼ 0 and are then
allowed to diffuse toward x ! 1. By the term “excess carriers,” we mean that an
amount of electrons in addition to the thermal equilibrium concentration n0 is
injected into the semiconductor. The mechanisms by which this is achieved will
be discussed later in the text. We will denote:

Δn xð Þ ¼ n xð Þ � n0 ð8:46Þ
the excess electron concentration which is a function of position. A possible shape
for Δn(x) is shown in Fig. 8.7.

During the diffusion process, an electron will experience recombination, i.e., they
will not travel in space indefinitely but will be stopped, for example, when it
encounters a hole (remember that a hole is an allowed state vacated by an electron)
or when it gets trapped by a defect in the semiconductor crystal (e.g., an ionized
donor which is positively charged).

The recombination mechanisms are numerous and diverse. However, it is possi-
ble to mathematically express their effects in a simple manner. For this, we introduce

290 8 Non-equilibrium Electrical Properties of Semiconductors



a characteristic time, τn, called the electron recombination lifetime, such that the
recombination rate of an electron at a location where there is an excess Δn(x) of
electrons is given by:

R xð Þ ¼ Δn xð Þ
τn

ð8:47Þ

This quantity has the units of cm�3�s�1 and expresses the change in the excess
carrier concentration per unit time.

Let us now consider an infinitesimal region of space, located between x0 and
x0 + dx, as illustrated in Fig. 8.8. This region experiences an influx and an outflux of
electrons, denoted, respectively, Φdiff

e

� �
in and Φdiff

e

� �
out and shown in Fig. 8.8.

If Φdiff
e

� �
in > Φdiff

e

� �
out, there is a net influx or accumulation of electrons, but if

Φdiff
e

� �
out > Φdiff

e

� �
in, there is a net outflux or depletion of electrons in this region.

Under steady-state conditions, there must not be a never-ending accumulation or
depletion of electrons. The influx of electrons must therefore be equal to the sum of
the outflux of electrons and the number of electrons recombining within this region.
The later quantity is equal to R(x0) multiplied by the width of the region dx, because
we can assume that the function R(x) does not vary too much over a narrow width dx
around the point x0. Numerically, this translates into:

Φdiff
e

� �
in ¼ Φdiff

e

� �
out þ R x0ð Þdx ð8:48Þ

From Eq. (8.33), we can write:

Φdiff
e

� �
in ¼ �Dn

dn

dx

� �
x¼x0

and Φdiff
e

� �
out ¼ �Dn

dn

dx

� �
x¼x0þdx

But, from Eq. (8.46), we easily see that dndx ¼ d Δnð Þ
dx and therefore:

Φdiff
e

� �
in ¼ �Dn

d Δnð Þ
dx

	 

x¼x0

Φdiff
e

� �
out ¼ �Dn

d Δnð Þ
dx

	 

x¼x0þdx

8><
>: ð8:49Þ

Equation (8.48) becomes then:

x

Δn(x)

Δn(0)

0

Fig. 8.7 Excess electron
concentration in a
one-dimensional model. The
excess concentration
decreases, as it gets deeper
into the material as a result of
recombination. The decrease
has an exponential
dependence
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�Dn
d Δnð Þ
dx

� �
x¼x0

¼ �Dn
d Δnð Þ
dx

� �
x¼x0þdx

þ R x0ð Þdx

which can be rewritten as:

Dn

d Δnð Þ
dx

	 

x¼x0þdx

� d Δnð Þ
dx

	 

x¼x0

dx
¼ R x0ð Þ

At the limit of dx ! 0, i.e., an infinitesimal region, the left-hand side expression
becomes the derivative of d Δnð Þ

dx evaluated at x ¼ x0, i.e.:

Dn
d2 Δnð Þ
dx2

� �
x¼x0

¼ R x0ð Þ ð8:50Þ

This relation is valid for any arbitrarily chosen position x0, which means that the
following equation must be satisfied:

Dn
d2 Δnð Þ
dx2

¼ R xð Þ

Equating to Eq. (8.47), we get the differential equation that governs the shape of
the excess electron concentration Δn(x):

Dn
d2 Δnð Þ
dx2

¼ Δn
τn

ð8:51Þ

This equation can be rewritten as:

d2 Δnð Þ
dx2

� Δn
Dnτn

¼ 0 ð8:52Þ

electrons

x

x0 x0 + dx

out)( eΦdiff
in)( eΦdiff

Fig. 8.8 Schematic of the influx and outflux of electrons in a region of space, in a one-dimensional
model. In this experiment, the region between the two surfaces located at x0 and x0 + dx is
considered. This experiment is aimed at determining the net change in carrier concentration in it
as a result of the diffusion of particles and their recombination
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From this expression, we can easily see that the quantity Dnτn has the same
dimension as the square of a distance. We can then define a distance Ln, called
diffusion length, for electrons, given by:

Ln ¼
ffiffiffiffiffiffiffiffiffiffi
Dnτn

p ð8:53Þ
The solution to Eq. (8.52) then has the general form:

Δn xð Þ ¼ Ae
x
Ln þ Be

�x
Ln ð8:54Þ

Here A and B are constants and are determined from boundary conditions. For
example, let us assume the sample is delimited by x¼ 0 and x!1, and that is thick
enough so that all the excess electrons have been recombined before they reach its
limit: Δn ! 0 when x ! 1 as shown in Fig. 8.7. We thus have:

Δn xð Þ ¼ Δn 0ð Þe� x
Ln ð8:55Þ

From this expression, we see the significance of the diffusion length in determin-
ing the spatial distribution of the electrons in the diffusion process as the character-
istic length of path that a particle travels before recombining.

A similar diffusion length can be determined for holes and is given by:

Lp ¼
ffiffiffiffiffiffiffiffiffiffi
Dpτp

p ð8:56Þ
where τp is the hole recombination lifetime.

Example

Q Assuming that in n-type silicon the characteristic time for the minority carriers
(holes) is τp ¼ 2 � 10�10 s, estimate the diffusion length of these minority
carriers at 300 K.

A The diffusion length is given by Lp ¼
ffiffiffiffiffiffiffiffiffiffi
Dpτp

p
. From the Einstein relations, we

can determine the diffusion coefficient Dp ¼ kbTμh
q . With the hole mobility in

silicon being about μh ¼ 450 cm2/Vs, we get:

Lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbTμh
q

τp

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:38066� 10�23
� �� 300� 450� 10�4

� �
1:60218� 10�19 � 2� 10�10

s

¼ 0:48μm
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8.6 Carrier Generation and Recombination Mechanisms

In the previous section, we briefly talked about excess carriers and their recombina-
tion. We also introduced a single recombination lifetime τ in order to avoid a detailed
description of all the recombination processes.

Excess of carriers can exist when the semiconductor is not in its equilibrium state,
as a result of additional energy that it received from phonons (heat), photons (light),
or an electric field, for example. In a recombination process, the amount of excess
carriers is reduced, and the excess energy is transferred or released.

In this section, we will discuss the four most important recombination
mechanisms encountered in semiconductors, including direct band-to-band,
Shockley-Read-Hall, Auger, and surface recombination. We will also attempt to
express the recombination lifetime in each case in terms of known semiconductor
parameters.

We will denote by:

Δn tð Þ ¼ n tð Þ � n0
Δp tð Þ ¼ p tð Þ � p0

�
ð8:57Þ

the excess electron and hole concentrations, respectively, where n0 and p0 are the
equilibrium electron and hole concentrations.

It is important, at this time, to clearly distinguish equilibrium state from steady
state. A system is said to be under equilibrium if it is not subject to external fields or
forces. A system under the influence of external fields or forces is under steady state
if the parameters that describe it (e.g., carrier concentrations) do not vary with time.

8.6.1 Carrier Generation

Before discussing the various recombination mechanisms, we must first review how
carriers are generated in the first place. There are essentially two major types of
generation.

The first one corresponds to the thermal generation of carriers and exists under all
conditions, whether in equilibrium or non-equilibrium. The thermal generation rate
will be denoted Gt(T ) and is expressed in units of cm�3�s�1.

The other type is the generation resulting from external factors, such as optical
absorption, electrical injection, etc. This process occurs only in non-equilibrium
situations, and the associated generation rate, denoted G, is called the excess
generation rate.

For each generation mechanism, there exists a recombination mechanism which
is its counterpart. The generation and recombination of carriers are inverse processes
to each other.
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8.6.2 Direct Band-to-Band Recombination

In this type of recombination, an electron from the conduction band recombines with
a hole in the valence band. This process is best pictured in the E-k diagram shown in
Fig. 8.9 .

This recombination can be equivalently viewed as an electron which goes from a
state in the conduction band to an allowed state in the valence band. This seems
natural if we remember that a hole in the valence band is in fact an allowed electronic
state that has been vacated by an electron. The energy that the electron thus loses is
most often released in the form of a photon or light as shown in Fig. 8.9. We say that
this is a radiative recombination.

This process is most likely to occur between the minimum of the conduction band
and the maximum of the valence band and at the center of the first Brillouin zone
where the momenta of the recombining electron and hole are both zero. Direct band-
to-band radiative recombination is therefore most likely to occur in direct bandgap
semiconductors, such as GaAs.

Let us look at this recombination mechanism in more detail. In the present case,
the recombination rate, first introduced in Eq. (8.47), is proportional to both the
concentration of electrons in the conduction band n and that of holes in the valence
band p because these are the particles that are recombining. We can then write:

R ¼ r Tð Þn tð Þp tð Þ ð8:58Þ
where r(T ) is the recombination coefficient, which is expressed in units of cm3�s, and
T is the temperature.

In a non-equilibrium situation when the excess generation rate is nonzero, the net
change in the electron and hole densities is given by:

�dn

dt
¼ � d Δnð Þ

dt
¼ R� G� Gt ð8:59Þ

k

E

hν

Fig. 8.9 Schematic E-k
diagram of a direct band-to-
band recombination process.
The recombining electron and
hole have the same
wavevector
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where we used the fact that the equilibrium concentration n0 does not vary with time.
At equilibrium, the excess generation rate G is equal to zero; thus the recombination
rate must balance the thermal generation rate: R ¼ Gt. Since at equilibrium we have
n ¼ n0 and p ¼ p0, we can write from Eq. (8.58):

Gt ¼ r Tð Þn0p0 or simply Gt ¼ r Tð Þn2i ð8:60Þ
where ni is the intrinsic carrier concentration given in Eq. (7.31). From now, we will
also omit the temperature dependence of r(T ) to simplify the equations.

Let us now consider the relaxation process, which occurs after the external source
of generation is removed (G ¼ 0). Taking into account Eqs. (8.58) and (8.60),
Eq. (8.59) becomes:

� d Δnð Þ
dt

¼ r np� n2i
� 
 ð8:61Þ

Using Eq. (8.57), we can expand this expression into:

� d Δnð Þ
dt

¼ r n0 þ Δnð Þ p0 þ Δpð Þ � n2i
� 


i.e.:

� d Δnð Þ
dt

¼ r n0p0 þ n0Δpþ p0Δnþ ΔnΔp� n2i
� 
 ð8:62Þ

One obvious simplification can be immediately made in the previous expression
as n0p0 ¼ n2i from Eq. (7.31). For further simplicity, we can assume Δn ¼ Δp, i.e.,
the concentration of excess electrons is equal to the concentration of excess holes,
which seems natural in order to ensure charge neutrality locally in the semiconductor
at all times. Equation (8.62) then becomes:

� d Δpð Þ
dt

¼ � d Δnð Þ
dt

¼ r n0 þ p0ð Þ þ Δn½ �Δn ð8:63Þ

We can successively transform Eq. (8.63) into:

�
d Δnð Þ=dt

n0 þ p0ð Þ þ Δn½ �Δn ¼ r

1
n0 þ p0ð Þ

d Δnð Þ=dt

n0 þ p0ð Þ þ Δn
�

d Δnð Þ=dt

Δn

� �
¼ r

Each of the terms in the left-hand side is a logarithmic derivative. By integrating
with respect to time from 0 to t, we get successively:
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1
n0 þ p0ð Þ ln n0 þ p0ð Þ þ Δnð Þ � ln Δnð Þ½ � t0 ¼ rt

1
n0 þ p0ð Þ ln

n0 þ p0ð Þ þ Δn
Δn

� �� � t
0

¼ rt

ln
n0 þ p0ð Þ þ Δn tð Þ

Δn tð Þ
� �

� ln
n0 þ p0ð Þ þ Δn 0ð Þ

Δn 0ð Þ
� �

¼ r n0 þ p0ð Þt

Taking the exponential on both sides of this last equation, we obtain:

n0 þ p0ð Þ þ Δn tð Þ
Δn tð Þ ¼ n0 þ p0ð Þ þ Δn 0ð Þ

Δn 0ð Þ exp r n0 þ p0ð Þt½ �

and solving for Δn(t), we get:

Δp tð Þ ¼ Δn tð Þ ¼ n0 þ p0ð ÞΔn 0ð Þ
n0 þ p0ð Þ þ Δn 0ð Þ½ �exp r n0 þ p0ð Þt½ � � Δn 0ð Þ ð8:64Þ

This shows the general form for the change in the excess electron concentration as
a function of time. The only parameters of the variation are the equilibrium
concentrations n0 and p0, the initial excess electron concentration Δn(0), and the
recombination coefficient r(T ). This complicated expression can be drastically
simplified in some cases.

For weak excitation levels, i.e., Δn(0) < < (n0 + p0), Eq. (8.64) becomes:

Δn tð Þ � n0 þ p0ð ÞΔn 0ð Þ
n0 þ p0ð Þexp r n0 þ p0ð Þt½ � � Δn 0ð Þ

� n0 þ p0ð ÞΔn 0ð Þ
n0 þ p0ð Þexp r n0 þ p0ð Þt½ �

or simply:

Δn tð Þ � Δn 0ð Þexp �r n0 þ p0ð Þt½ � ð8:65Þ
and similarly for Δp(t):

Δp tð Þ � Δp 0ð Þexp �r n0 þ p0ð Þt½ � ð8:66Þ
By defining a direct band-to-band recombination lifetime for electrons and holes

as:

τp ¼ τn ¼ 1
r n0 þ p0ð Þ ð8:67Þ
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we obtain:

Δn tð Þ � Δn 0ð Þe�
t
τn

Δp tð Þ � Δp 0ð Þe�
t
τ0

(
ð8:68Þ

This is the same lifetime introduced in Eq. (8.47). Indeed, in the current
conditions, we have by using Eqs. (8.59) and (8.68):

R� Gt ¼ � d Δnð Þ
dt

¼ 1
τn
Δn 0ð Þe� t

τn

or:

R� Gt ¼ Δn tð Þ
τn

ð8:69Þ

which is analogous to Eq. (8.47).

8.6.3 Shockley-Read-Hall Recombination

The previous band-to-band recombination most often occurs in pure semiconductor.
When defects or impurities are present in the crystal, which is nearly always the case
to some extent, energy levels appear in the bandgap and may participate in the
recombination mechanisms. These are called Shockley-Read-Hall (SRH)
recombinations, and the energy is not released in the form of a photon but is rather
given to the crystal lattice in the form of phonons. Such processes are also sometimes
called band-to-impurity recombinations. This is therefore normally a non-radiative
recombination step.

In the present model, we consider the steady-state generation and recombination
of electrons and holes involving an impurity level, also called recombination center,
with an energy ET in the bandgap, as shown in Fig. 8.10 . Let us assume that
electrons and holes are generated at a rate equal to G, which is the excess generation
rate of Subsect. 8.6.1.

a b c d

Rc Gc

Rv Gv

EC

EV

ET

G

Fig. 8.10 The four possible transitions for an electron involving a recombination center in the
bandgap: (a) capture of an electron from the conduction band by the center, (b) emission of an
electron from the center into the conduction band, (c) emission of an electron from the center into a
vacant state in the valence band, and (d) capture of an electron from the valence band by the center
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There are four possible electron transitions which can involve this level: (a) the
capture of an electron from the conduction band by the center, (b) the emission of an
electron from the center into the conduction band, (c) the emission of an electron
from the center into a vacant state in the valence band, and (d) the capture of an
electron from the valence band by the center. The transition (c) can be equivalently
viewed as the capture of a hole by the center and (d) as the emission of a hole from
the center into the valence band. Each of these transitions is illustrated in Fig. 8.10.

The recombination of electrons or holes is enhanced by the presence of the
impurity level if the probability of transitions (a) and (c) is higher than that of
(b) and (d).

If the probability of (a) and (b) is higher than (c) and (d), the impurity level plays
more the role of an electron recombination center. If the probability of (c) and (d) is
higher than (a) and (b), the impurity level plays more the role of a hole recombina-
tion center.

Before analyzing each transition in more detail, let us first assume there is a
density NT of impurity-related states at an energy ET. At thermal equilibrium, the
density of the recombination center states which are occupied by electrons is then
given by:

NTf e ETð Þ ¼ NT

exp ET�EF
kbT

	 

þ 1

ð8:70Þ

where fe is the Fermi-Dirac distribution given by Eq. (5.28). The density of the
recombination center states which are empty of electrons at equilibrium is given by:

NT 1� f e ETð Þ½ � ¼ NT

1þ exp � ET�EF
kbT

	 
 ð8:71Þ

However, when carriers are transiting through the recombination centers in
Fig. 8.10, the density of occupied and empty center states is different from their
equilibrium values. We thus introduce a non-equilibrium distribution function f such
that the densities of occupied and empty center states are NTf and NT(1 � f ),
respectively. Knowledge of the exact value of this function is not important in
analyzing each of the transitions illustrated in Fig. 8.10.

Transition Rates
Let us first discuss the transition (a), i.e., the capture of an electron from the
conduction band by the center. The capture rate, or concentration of electrons
captured by the center per unit time, is denoted Rc and is expressed in units of cm
�3�s�1. It must be proportional to the density of electrons in the conduction band
n and the density of empty centers NT(1 � f ).

In addition, Rc should also depend on a parameter which describes “how often an
electron encounters the recombination center.” This parameter is the product νthσn of
two quantities: the electron thermal velocity νth (in units of cm�s�1) and the capture
cross section σn of electrons for this particular recombination center (in units of cm2).
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These two parameters can be better understood by considering the illustration in
Fig. 8.11. It shows that the electrons which have a velocity νth and which will reach a
surface of area σn are located in a volume equal to the product νthσn during a unit
time.

The electron thermal velocity in a nondegenerate semiconductor is given by:

νth ¼
ffiffiffiffiffiffiffiffiffiffi
3kbT
m

r
ð8:72Þ

where m is the mass of the electron. The thermal velocity is on the order of 107

cm�s�1 at room temperature.
The capture cross section of electrons for a recombination center characterizes the

interaction between an electron and this center. It corresponds to the effective area
around the center that an electron experiences when it is approaching the center. The
cross section depends on the type of interaction involved between the electron and
the center: the stronger the interaction is, the larger the influence of the capture cross
section is. σn is usually determined empirically and is on the order of 10�15 cm2. The
capture rate Rc in the transition (a) is therefore equal to:

Rc ¼ νthσnnNT 1� fð Þ ð8:73Þ
The emission of an electron from the center into the conduction band,

corresponding to transition (b) in Fig. 8.10, is characterized by an emission rate Gc

which has the same units as Rc. This quantity is equal to the density of occupied
center states NTf multiplied by the electron emission probability en which is a
parameter characteristic of the recombination center in the semiconductor:

Gc ¼ enNTf ð8:74Þ
Because the transitions (c) and (d) are analogous to (a) and (b) but involve holes

instead of electrons, we can easily determine the hole capture rate Rv and the hole
emission rate Gv from those for electrons Eqs. (8.73) and (8.74).

Indeed, Rv must be proportional to the density of holes in the valence band p, the
density of centers which are occupied (by electrons) NTf, the thermal velocity of

vth

"σn"vth

Fig. 8.11 Schematic illustration of the concepts of electron thermal velocity and capture cross
section. Using ballistic terminology, the electrons moving with the thermal velocity which would
collide with an object having a cross section equal to σn are located in the volume delimited by the
two shaded surfaces in this figure
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holes which is the same as that of electrons given in Eq. (8.72), and the capture cross
section of holes σp for the center considered:

Rv ¼ νthσppNTf ð8:75Þ
Gv must be equal to the density of center states which are empty (of electrons)

NT(1 � f ) multiplied by the hole emission probability ep:

Gν ¼ epNT 1� fð Þ ð8:76Þ
All these expressions for the recombination and emission rates are not indepen-

dent but must satisfy a number of equations arising from the conservation of
electrons and holes. The total number of electrons (or holes) recombined must be
equal to the number of electrons (or holes) generated; thus, we can write:

Rc ¼ Gc þ G
Rv ¼ Gv þ G

�
ð8:77Þ

Emission Probabilities en and ep
At equilibrium, the excess generation rate G is equal to zero. Moreover, the electron
and hole densities are equal n0 and p0, respectively, and the distribution function f is
equal to fe ¼ fe(ET). All the other parameters remain unchanged. Therefore, by
expressing Eq. (8.77) at equilibrium using Eqs. (8.73), (8.74), (8.75), and (8.76), we
get:

νthσnn0NT 1� f eð Þ ¼ enNTf e

νthσpp0NTf e ¼ epNT 1� f eð Þ

(

which allow us to extract the electron and hole emission probabilities:

en ¼ νthσnn0
1� f e
f e

ep ¼ νthσpp0
f e

1� f e

8>><
>>: ð8:78Þ

This last set of equations can be simplified by using the expression for the Fermi-
Dirac distribution in Eq. (5.28) to obtain:

1� f e
f e

¼ exp
ET � EF

kbT

� �
ð8:79Þ

and by using the expressions of n0 and p0 given in Eqs. (7.21) and (7.29) for a
nondegenerate semiconductor:
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n0
1� f e
f e

¼ Ncexp
EF � EC

kbT

� �
exp

ET � EF

kbT

� �

¼ Ncexp
ET � EC

kbT

� �

This last quantity can be denoted nT and would correspond to the electron density
in the conduction band if the Fermi energy was equal to the recombination center
energy level (EF ¼ ET):

nT ¼ n0
1� f e
f e

¼ Ncexp
ET � EC

kbT

� �
ð8:80Þ

A similar expression can be derived for:

pT ¼ p0
f e

1� f e
¼ Nvexp

EV � ET

kbT

� �
ð8:81Þ

Therefore, Eq. (8.78) is simplified into:

en ¼ vthσnnT
ep ¼ vthσppT

�
ð8:82Þ

The Non-equilibrium Distribution Function f
The non-equilibrium distribution function, included in the expressions of the transi-
tion rates in Eqs. (8.73), (8.74), (8.75), and (8.76), can be determined by eliminating
the excess generation rate G in Eq. (8.77). For this, we first calculate the difference
between the two expressions in Eq. (8.77):

Rc � Rv ¼ Gc � Gv

which becomes:

νthσnnNT 1� fð Þ � νthσppNTf ¼ enNTf � epNT 1� fð Þ
Using Eq. (8.82), we obtain:

νthσnnNT 1� fð Þ � νthσppNTf ¼ νthσnnTNTf � νthσppTNT 1� fð Þ
and, after simplifying by vth and NT:

σnnþ σppT ¼ f σnnþ σppþ σnnT þ σppT
� �

Thus finally we have:

f ¼ σnnþ σppT
σn nþ nTð Þ þ σp pþ pTð Þ ð8:83Þ
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Recombination Lifetimes
The net recombination rate of electrons from the conduction band is given by the
difference between the recombination rate Rc and the generation rate Gc, i.e.:

� d Δnð Þ
dt

¼ Rc � Gc ð8:84Þ

This quantity is also equal to the net recombination rate of holes from the valence
band in view of Eq. (8.77):

� d Δpð Þ
dt

¼ Rv � Gv ð8:85Þ

Using the non-equilibrium distribution function (Eq. 8.83) and the expressions
for Rc, Gc, and en in Eqs. (8.73), (8.74) and (8.82), we can calculate successively:

Rc � Gc ¼ vthσnnNT 1� fð Þ � eNNTf

¼ vthσnNT n� nþ nTð Þf½ �

¼ vthσnNT n� nþ nTð Þ σnnþ σppT
σn nþ nTð Þ þ σp pþ pTð Þ

� �

¼ vthσnNT

σn nþ nTð Þ þ σp pþ pTð Þ nσp pþ pTð Þ � nþ nTð ÞσppT
� 


¼ vthσnNT

σn nþ nTð Þ þ σp pþ pTð Þ σp np� nTpT½ �

From the definitions of nT and pT in Eqs. (8.80) and (8.81), we have nTpT ¼ n2i
where ni is the intrinsic carrier concentration. The previous equation can then be
simplified into:

Rc � Gc ¼ vthσnσpNT
np� n2i
� �

σn nþ nTð Þ þ σp pþ pTð Þ ð8:86Þ

Introducing the excess carriers Δn and Δp as in Eq. (8.57), and still assuming
Δn ¼ Δp, we get:

Rc � Gc ¼ vthσnσpNT
n0 þ p0 þ Δnð ÞΔn

σn n0 þ nT þ Δnð Þ þ σp p0 þ pT þ Δnð Þ ð8:87Þ

Here we have also used the relation n0p0 ¼ n2i . This expression can be further
simplified by first considering two particular cases.

(i) For low excess carrier concentrations, i.e., weak excitation levels where
Δn << n0, p0, and for an n-type semiconductor, where we can assume that n0
is much higher than p0, nT, and pT, Eq. (8.87) becomes:
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Rc � Gc � vthσnσpNT
n0ð ÞΔn
σn n0ð Þ

which can be rewritten, by taking into account Eq. (8.84):

� d Δnð Þ
dt

¼ Rc � Gc � vthσpNTΔn ð8:88Þ

From this last expression, we can introduce a recombination lifetime τp0 such that:

� d Δnð Þ
dt

� Δn
τp0

i.e.:

τp0 ¼
1

vthσpNT
ð8:89Þ

Note that the subscript “p” has been used for this lifetime, because it depends on
the capture cross section of holes. This corresponds to a lifetime of holes. Therefore,
in an n-type semiconductor, the excess carrier lifetime approaches that of holes.

(ii) In the second case, still Δn << n0, p0; but for a p-type semiconductor this time,
where we can assume that p0 is much higher than n0, nT, and pT, Eq. (8.87)
becomes:

Rc � Gc � vthσnNTΔn

Here again, we can rewrite this as:

� d Δnð Þ
dt

� Δn
τn0

with:

τn0 ¼
1

vthσnNT
ð8:90Þ

Here, the suffix “n” has been used, because the lifetime depends on the capture
cross section of electrons. This corresponds to a lifetime of electrons. Therefore, in a
p-type semiconductor, the excess carrier lifetime approaches that of electrons. Using
the expressions in Eqs. (8.89) and (8.90), we can simplify Eq. (8.87):
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Rc � Gc ¼ n0 þ p0 þ Δnð ÞΔn
τp0 n0 þ nT þ Δnð Þ þ τn0 p0 þ pT þ Δnð Þ ð8:91Þ

From Eqs. (8.84) and (8.85), we can write:

� d Δnð Þ
dt

¼ � d Δpð Þ
dt

¼ n0 þ p0 þ Δnð ÞΔn
τp0 n0 þ nT þ Δnð Þ þ τn0 p0 þ pT þ Δnð Þ ð8:92Þ

We can now introduce the Shockley-Read-Hall recombination lifetime τn ¼ τp
such that:

� d Δnð Þ
dt

¼ � d Δpð Þ
dt

¼ Δp
τp

¼ Δn
τn

i.e.:

τn tð Þ ¼ τp tð Þ ¼ τp0 n0 þ nT þ Δnð Þ þ τn0 p0 þ pT þ Δnð Þ
n0 þ p0 þ Δnð Þ ð8:93Þ

which becomes independent of time for weak excitation levels Δn << n0, p0:

τn ¼ τp ¼ τp0 n0 þ nTð Þ þ τn0 p0 þ pTð Þ
n0 þ p0ð Þ ð8:94Þ

From this relation, we can easily find the two previous particular cases, i.e., for an
n-type semiconductor, τn ¼ τp ¼ τp0 , and for a p-type semiconductor, τn ¼ τp ¼ τn0 .

8.6.4 Auger Band-to-Band Recombination

Unlike the direct band-to-band or the SRH processes, in the Auger band-to-band, or
simply Auger recombination, the energy that is released when an electron
recombines with a hole is transferred to a third particle, an electron in the conduction
band or a hole in the valence band. This carrier particle is called an Auger electron or
Auger hole. The energy that this third particle acquires is subsequently released in
the form of heat or phonons into the lattice. Auger recombination is an intrinsic
non-radiative mechanism which is more effective at higher temperatures and for
smaller bandgap semiconductors. This recombination mechanism occurs most often
in doped direct bandgap semiconductors.

There are three possible Auger recombination mechanisms, depending on what
type of Auger carrier is excited and where it is excited. These are illustrated in
Fig. 8.12.

The first process, shown in Fig. 8.12a, is called a CHCC process to indicate that
an electron from the conduction band (C) recombines with a hole in the valence band
(H) to lead to the excitation of another electron which remains in the conduction
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band (CC). In the case of an Auger hole, the valence band structure is more complex
than the conduction band, as we saw in Subsect. 5.4.3. We must then distinguish
whether this hole is excited into the light-hole band (CHLH process, Fig. 8.12b) or
the spin-orbit split-off band (CHSH process, Fig. 8.12c).

In all three cases, the total energy and the total momentum (i.e.,h k
!
) of the system

constituted by the three particles must be conserved.
Similar to the direct band-to-band recombination, the Auger recombination rates

are expressed in units of cm�3�s�1 and are proportional, in all three processes, to the
density of electrons in the conduction band n and that of holes in the valence band p,
because these are the particles which are recombining.

In the CHCC case, this rate is also proportional to the density of electrons which
are susceptible to be excited, i.e., n again. The recombination rate in the CHCC
process is therefore given by:

RCHCC ¼ r1n
2p ð8:95Þ

where r1 is the Auger recombination coefficient for this case and is expressed in units
of cm�1.

For the CHLH and CHSH processes, the same argument leads to a compounded
recombination rate equal to:

RCHLHþCHSH ¼ r2np
2 ð8:96Þ

where r2 is the Auger recombination coefficient when Auger holes are excited.

k

E

(a) CHCC

conduction
band

heavy-hole
band

light-hole
band

spin-orbit
split-off band

k

E

(b) CHLH

k

E

(c) CHSH

Fig. 8.12 Auger recombination process semiconductors. The energy released through the recom-
bination of an electron in the conduction band and a hole in the valence band is yielded to: (a)
another electron in the conduction band which is then excited to a higher state in the band, (b) an
electron in the LH band which is excited to a vacant electronic state in the HH band, (c) an electron
in the split-off band which is excited to a vacant electronic state in the HH band

306 8 Non-equilibrium Electrical Properties of Semiconductors



The total Auger recombination rate is therefore:

R ¼ RCHCC þ RCHLHþCHSH ¼ r1n
2pþ r2np

2 ð8:97Þ
We can now follow the same analysis as the one conducted for the direct band-to-

band recombination in order to determine the Auger recombination lifetime. We start
from the rate Eq. (8.59). At equilibrium, dn

dt ¼ 0 and G ¼ 0, and the thermal
generation rate is thus equal to:

Gt ¼ R ¼ r1n
2
0p0 þ r2n0p

2
0 ð8:98Þ

Let us now consider the relaxation process, which occurs after the external source
of generation is removed (G ¼ 0). Taking into account Eqs. (8.97) and (8.98),
Eq. (8.59) becomes:

� d Δnð Þ
dt

¼ R� Gt ¼ r1 n2p� n20p0
� �þ r2 np2 � n0p0

2
� � ð8:99Þ

where Δn ¼ Δp is the excess electron and hole concentrations defined in Eq. (8.61).
This expression can be expanded using Eq. (8.61), and we obtain:

� d Δnð Þ
dt

¼ �r1 n20p0 � n0 þ Δnð Þ2 p0 þ Δnð Þ
h i

� r2 n0p
2
0 � n0 þ Δnð Þ p0 þ Δnð Þ2

h i
¼ r1 n20 þ 2n0p0

� �
Δnþ 2n0 þ p0ð Þ Δnð Þ2 þ Δnð Þ3

h i
þr2 p20 þ 2n0p0

� �
Δnþ 2p0 þ n0ð Þ Δnð Þ2 þ Δnð Þ3

h i
We can now introduce the Auger recombination lifetime τn ¼ τp such that:

� d Δnð Þ
dt

¼ � d Δpð Þ
dt

¼ Δp
τp

¼ Δn
τn

τn tð Þ ¼ τp tð Þ ¼ 1
r1 n20 þ 2n0p0
� �þ 2n0 þ p0ð ÞΔnþ Δnð Þ2
h i

þr2 p20 þ 2n0p0
� �þ 2p0 þ n0ð ÞΔnþ Δnð Þ2
h i ð8:100Þ

which becomes independent of time for weak excitation levels Δn << n0, p0:

τn ¼ τp ¼ 1

r1 n20 þ 2n0p0
� �þ r2 p20 þ 2n0p0

� � ð8:101Þ

8.6.5 Surface Recombination

The surface of a semiconductor is a violation of the crystal periodicity and therefore
gives rise to energy levels near the surface which lie within the bandgap. These
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correspond to surface traps. However, unlike the previously discussed carrier
recombination mechanisms which occur in the bulk solid, surface recombination
occurs at the surface of the solid. Moreover, the surface recombination takes place
even in pure materials. Such processes play an important role in semiconductor
device technology.

The energy levels introduced by the surface traps can be considered as a special
case of recombination centers in Shockley-Read-Hall recombination mechanism.
The same analysis as in Subsect. 8.6.4 can be conducted here for surface recombi-
nation, provided a surface density of recombination centers (NT)s is used instead of
the bulk density of centers NT. All the other parameters would keep the same
meaning.

The excess surface recombination rate is the number of electrons or holes which
are recombined per unit area of the surface and per unit time. It is thus expressed in
units of cm�2�s�1 and can be obtained by analogy with the SRH recombination in
Eq. (8.87):

R� Gtð Þs ¼ vthσnσp NTð Þs
n0 þ p0 þ Δnð ÞΔn

σn n0 þ nT þ Δnð Þ þ σp p0 þ pT þ Δnð Þ ð8:102Þ

Here, Δn is the excess electron concentration near the surface considered. We can
rewrite this relation as:

� d Δnð Þ
dt

¼ R� Gtð Þs ¼ SnΔn ð8:103Þ

where:

Sn ¼ vthσnσp NTð Þs
n0 þ p0 þ Δnð Þ

σn n0 þ nT þ Δnð Þ þ σp p0 þ pT þ Δnð Þ ð8:104Þ

This quantity is expressed in units of cm�s�1 and has thus the same dimension as a
velocity. It is called the surface recombination velocity.

8.7 Quasi-Fermi Energy

In Sect. 7.5, we calculated the equilibrium electron concentration in the conduction
band n0 and the hole concentration in the valence band p0 using the Fermi-Dirac
distribution and arrived at Eqs. (7.18) and (7.27) in the general case and Eqs. (7.21)
and (7.29) in the nondegenerate. For a given semiconductor material, these
concentrations depended solely on a single parameter, the Fermi energy EF.

Under non-equilibrium conditions, where the electron and hole concentrations in
their respective bands are given by:
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n ¼ n0 þ Δn
p ¼ p0 þ Δp

�
ð8:105Þ

the Fermi-Dirac distribution is not valid any more. However, it is convenient to
maintain the mathematical formalism of the equations mentioned previously, and
this is most often done for a nondegenerate semiconductor only.

Therefore, by analogy with Eq. (7.21), the non-equilibrium electron concentra-
tion in the conduction band is given by:

n ¼ Ncexp
EFn � EC

kbT

� �
ð8:106Þ

where the quantityEFn is used instead of the Fermi energy EF. This quantity is called
the electron quasi-Fermi energy. Using this expression, Eqs. (7.21) and (8.105), we
can write:

Δn
n0

¼ n

n0
� 1 ¼ exp

EFn � EF

kbT

� �
� 1 ð8:107Þ

Therefore, under non-equilibrium conditions, the difference between the quasi-
Fermi level and the Fermi level determines the relative excess electron concentration
with respect to the equilibrium concentrations.

Using this quasi-Fermi energy, it is possible to define a quasi-Fermi-Dirac
distribution for electrons, which is analogous to Eq. (5.28) with EF replaced by
EFn :

f en Eð Þ ¼ 1

exp E�EFn
kbT

	 

þ 1

ð8:108Þ

A similar concept can be introduced for holes in the valence band. The hole quasi-
Fermi energy EFp is defined such that:

p ¼ Nvexp
EV � EFp

kbT

� �
ð8:109Þ

A quasi-Fermi-Dirac distribution for holes can also be defined by analogy with
Eq. (7.23):

f hp Eð Þ ¼ 1

exp
EFp�E
kbT

	 

þ 1

ð8:110Þ

The quasi-Fermi-Dirac distributions allow separate mathematical computations
for electrons and holes in an easier manner. At equilibrium, the electron and hole
quasi-Fermi energies are both equal to the Fermi energy, i.e., EFn ¼ EFp ¼ EF.
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Example

Q Estimate the difference between the quasi-Fermi energies EFn and EFp and the
Fermi energy EF in an intrinsic semiconductor, given that the excess carrier
concentration Δn ¼ Δp is 1% of n0.

A The quasi-Fermi energies EFn and EFp are related to the excess carrier concen-

tration through the expression EFn � EF ¼ kbT ln Δn
n0

	 

and

EF � EFp ¼ kbT ln Δp
p0

	 

, where n0 and p0 are the equilibrium electron and

hole concentrations and are both equal to the intrinsic carrier concentration ni
since the semiconductor is assumed intrinsic at equilibrium. Therefore Δn

n0
¼ Δp

p0

¼ 0:01 and we obtain: EFn � EF ¼ EF � EFp ¼ 0:0095kbT .

8.8 Transport Theory: Beyond Drude

In this chapter we derived the electrical conductivity of materials using a very simple
classical Newton’s laws approach. We did this because the so-called Drude theory of
conductivity is surprisingly powerful and useful. But it does not include the Pauli
principle, for example, and does not incorporate the concept of the Fermi distribution
and the Fermi level. There are many situations in which the simple Drude theory is
not adequate. So we will here derive a more rigorous transport theory based on the
work of Ludwig Eduard Boltzmann, and we will show how it differs from Drude,
and in what special limits it reduces to the Drude theory.

8.8.1 The Boltzmann Equation

Wemust start with the concept of the distribution function of electrons f
k
!
�
r
!
; t
�
. This

quantity is the probability of an electron occupying the Bloch state k in the solid at
position r at time t. Note that this is not the equilibrium Fermi distribution function

f k
!

0 from Eq. (5.28) which only depends on the energy and Fermi energy. The new
non-equilibrium distribution f

k
!
�
r
!
; t
�
tells us how many particles there are in this

region of space at time t and with momentum k. In a steady-state situation, the total
rate of change with time of the distribution function must be zero. Specifically, there
are changes in the function f

k
!
�
r
!
; t
�
caused by specific processes. Thus the distribu-

tion changes because:
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1. The particles in the material are diffusing in space.
2. Electric and magnetic fields are accelerating the particles.
3. There are scattering processes which change the momentum and energies of the

particles. These processes include scattering from impurities, defects, phonons,
etc., all processes which break the Bloch symmetry of the crystal.

The information we seek is in f
k
!
�
r
!
; t
�
. Knowing this function we can compute

the current via

J
!¼ �

Z
d k

!
qv

k
!f
�
k
!
; r
!
; t
� ð8:111Þ

where v
k
! is the velocity. To calculate the distribution function, we now examine each

of the above processes in turn. First we note that because the particles diffuse in
space, one source of time variation is “diffusion”which is described by the variation:

∂ f

∂t

����
diffusion

¼ � v
!

k
!:∇f

k
! ! ∂ f

∂t
¼ ∂ r

!

∂t
:
∂f

k
!

∂ r
! ð8:112Þ

Then there is the influence of external fields. To proceed we remember from
Eqs. (8.1) and (8.14) that with Bloch states, the Newton laws act on the pseudo
momentum parameter k as:

d k
!

dt
¼ �q

h
�
E
!
a
þ v

!
k
!� B

!�! MKS ð8:113Þ

where Ea is the applied field. Thus it follows that the field variation is:

∂ f

∂t

����
field

¼ � d k
!

dt
:
∂ f
�
k
!
; r
!
; t
�

∂ k
! ¼ q

h
�
E
!
a
þ v

! � B
!�

:
∂ f
�
k
!
; r
!
; t
�

∂ k
! ð8:114Þ

v
k
! ¼ 1

h
∇
!

E
k
! ð8:115Þ

Finally the change due to collisions can be written in terms of a generalized rate
equation:

∂ f

∂t

����
collisons

¼
Z

f
k
!
�
1� f

k0
!
�� f

k0
!
�
1� f

k
!
�n o

W
�
k
!
; k0
! �

d k0
!

ð8:116Þ

where W
�
k
!
; k0
! �

is the rate at which electrons are scattered from k to k0.
In the steady state, the sum of all variations must add up to zero:
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∂f
k
!

∂t

�����
field

þ
∂f

k
!

∂t

�����
diffusion

þ
∂f

k
!

∂t

�����
collisions

¼
df

k
!

dt
¼ 0 ð8:117Þ

So we have:

∂ f

∂t
¼
Z

f
k
!
�
1� f

k0
!
�� f

k0
!
�
1� f

k
!
�n o

W
�
k
!
; k0
!�

d k0
!

þq

h
�
E
!
aþ v

! � B
!�

:
∂ f
�
k
!
; r
!
; t
�

∂ k
! � v

!
k
!: ∇

!
f
k
! ¼ 0

ð8:118Þ

In principle if one knows the scattering rates, then one can compute the result by
following the trajectory of the particles in space and time. The Boltzmann equation
can also be solved numerically using the Monte Carlo Method. Let us consider the
simple first-order solution in an electric field using the relaxation time approxima-
tion. So one says the following: the field produces a small change in the distribution
function which we call:

f ¼ f 0 þ f 1
�
k
!
; r
!
; t
� ð8:119Þ

This deviation from the steady state must return to zero when the system has had
time to relax or reach a steady state, so we can write:

�∂f k
∂t

¼ 1
τ
f 1
�
k
!
; r
!
; t
� ð8:120Þ

f 1 ¼ f 1
�
k
!
; r
!
; 0
�
e�t=τ ð8:121Þ

It is also useful to write:

∂ f

∂ k
! ¼

∂E
k
!

∂ k
!

∂ f

∂E�k
ð8:122Þ

Substituting back into the Boltzmann equation and including only the electric
field term, we have:

�q
df

dE
k
!
v
!

k
!:E

!
a ¼ �f 1

τ
ð8:123Þ

f 1 ¼ q
df

dE�k

�
v
!

k
!:E

!
a
�
τ ð8:124Þ

This actually already gives us the first-order solution in an electric field.
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Note that in Drude theory we say that in the steady state, the field force balances
the frictional force. Here it is the population which reaches a steady state, not the
individual particles. Another way of looking at it is to go back to Eq. (8.119) and
allow the electron momentum to be increased by the field up to a relaxation time τ,
after which it is interrupted and has to start accelerating again. Thus in the steady
state, δkx ¼ � qτEax/h which gives a concomitant change in the energy to E(ky, kz,
kx � qEaxτ/h). The change in the energy gives rise to a steady-state change in the
distribution function f as in Eq. (8.119), Ea is the applied field, and:

f
k
! ¼ f k

!
0 þ ∂f 0k

�
E�k

�
∂E

k
!

∂E
�
k
!�

∂ k
! � qτ

h
E
!
a

ð8:125Þ

Substituting Eq. (8.125) back into the expression for the current, we have:

J
!¼ � 1

4π3

Z
d k

!
qv

k
!f
�
k
!
; r
!
; t
� ¼ � 1

4π3

Z
d k

!
qv

k
!f 1
�
k
!
; r
!
; t
� ð8:126Þ

J
!¼ 1

4π3
q2
Z

d k
!
τ
�
E

k
!
�
v
!

k
!
�
v
!

k
!:E

!
a

� �
∂f 0

k
!

∂E
k
!

 !
ð8:127Þ

Write the volume integral as an integral over energy and surface of constant
energy:

d k
!
¼ k2dk sin ϑð Þdθdϕ

k2 ¼ 2mE=h2

d k
!
¼ m3=2E1=2dE sin ϑð Þdθdϕ ¼ dEdSF=hv

k
!

ð8:128Þ

So that:

J ¼ 1
4π2

Z
d k

!
q2τ
�
E

k
!
�
v
!

k
!
�
v
!

k
!E
!
a

� �
∂f 0

k
!

∂E
k
!

 !
ð8:129Þ

J ¼ 2q2
Z

dEkgV Ekð Þτ Ekð Þ v!
k
!
�
v
!

k
!E
!
a

� �
∂f 0

k
!

∂Ek

 !
ð8:130Þ

EKE ¼ 1=2mv2 ð8:131Þ

v
k
!v

k
!E
!
a
! v2xEa,x ¼ 2E

3m
Ea, x ð8:132Þ
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where in order to avoid confusion, we use Ea for applied field and we use gV to
denote the density of states per unit volume. With the low-temperature form:

� ∂ f

∂E
¼ δ E � EFð Þ ð8:133Þ

The current density reduces to the form (where �d is the dimensionality of the
system):

J ¼ q2τ EFð Þ
�d

v2FgV EFð ÞEa, x ð8:134Þ

8.8.2 Connection to Drude Theory

In order to relate this expression to the familiar Drude result from Eq. (8.7), we
consider three dimensions and also assume that the relaxation time is energy
independent and that we are dealing with nearly free electrons:

J ¼ q2τ

3
v2Fg EFð ÞEa, x � 1

3
m∗v2Fg EFð Þ q

2τ

m∗
ð8:135Þ

J ¼ n
q2τ

m∗
Ea, x ! n ¼ 1

3
m∗v2Fg EFð Þ ð8:136Þ

σ ¼ q2τ EFð Þ
3

v2Fg EFð Þ ! n
q2τ

m∗
ð8:137Þ

Here n is the effective carrier density.
The connection is made and we see why Drude represents a serious

approximation:

(i) The more correct i.e, Boltzmann form of the conductivity scales with the
density of states at the Fermi level. So that if there is no free charge that
responds to an applied field, there is no conduction.

(ii) The Boltzmann equation includes the Fermi distribution, so the Pauli principle
is obeyed.

(iii) The Boltzmann equation result allows the relaxation time to be energy depen-
dent. This energy dependence enters the result via the integral Eq. (8.130)
which then also takes care of the temperature dependence.

(iv) The Boltzmann equation result allows the group velocity to deviate from the
nearly free electron law.

In general we see therefore that the Boltzmann equation conductivity is far
superior to the Drude theory and is really the right way to proceed in a Bloch solid.
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8.9 Summary

In this chapter, we have covered a few important non-equilibrium transport phenom-
ena involving charge carriers. Firstly, we discussed the electrical conductivity
(Ohm’s law) in the presence of an external electric field. There, we introduced the
concepts of conductivity, resistivity, as well as carrier collision or scattering. Then,
secondly we described the Hall effect for an n-type and then a p-type semiconductor
in the presence of perpendicular electric and magnetic fields. There, we introduced
the notion of carrier mobility. Thirdly, we discussed the diffusion of charge carriers
in an inhomogeneous semiconductor, leading to the concepts of diffusion length and
the Einstein relations.

The recombination mechanisms of charge carriers in a semiconductor have been
described, including the direct band-to-band, Shockley-Read-Hall, Auger, and sur-
face recombination processes. The concepts of recombination lifetime and capture
cross section were introduced.

We introduced the notion of quasi-Fermi energy to describe the electron and hole
distribution under non-equilibrium conditions while at the same time maintaining the
same mathematical formalism as under equilibrium conditions.

In the last part of the chapter, we introduced the reader to a more powerful
transport description known as the Boltzmann equation approach. We derived a
more general formula for the conductivity, and we showed why it is superior to the
Drude method.

Problems

1. Consider the semiconductor slab shown in the figure below with dimensions
L ¼ 1 cm, W ¼ 0.2 cm, and H ¼ 0.25 cm and with a resistivity of 0.01 Ω�cm.
What would be the resistance one would measure across opposite faces in all
three directions (x, y, and z)? Knowing there is a uniform concentration n ¼ 1016

cm�3 of electrons in this semiconductor (and no holes), calculate the mobility of
these electrons.

L

H

Wr

z
x

y

2. Consider the semiconductor block with a resistivity of 0.01 Ω�cm as shown in the
figure below. The width of this block is constant but follows the relation
W ¼ 1 + 2(L � x) cm when x is varied from 0 to L. The other dimensions are
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L ¼ 1 cm and H ¼ 0.25 cm. Calculate the resistance in the x-direction. For this,
you may consider the semiconductor block as a series of parallelepiped slabs next
to one another.

r

L

H

W(x)

x

y

L 0

z

3. Do the same as in Problem 2, but in the y-direction.
4. Consider the Hall effect measurement experiment depicted in the figure below.

The dimensions of the semiconductor slab are L ¼ 2 mm, W ¼ 1 mm, and
H¼ 2 μm.Assume the current Ix¼ 10mA, the voltages Vx¼ 10V andVy¼�4V,
and a magnetic induction Bz ¼ 0.05 T.

Determine if the semiconductor is n-type or p-type, the Hall constant, the
carrier concentration, the Hall mobility, the conductivity, and the resistivity of
the semiconductor (assumed uniform).

Ix

Vx

B = Bz z

L

H W

Vy
+

+−

−

5. Consider an experiment where excess electrons are generated in a “burst” at t¼ 0
and x¼ x0 in a semiconductor, resulting in the concentration profile n(x) shown in
the figure below.
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x
x0

n(x)

Draw the shape of the concentration profile n(x) as a result of the
one-dimensional diffusion in the x-direction. No other external forces are present.
Draw several shapes corresponding to several times after the initial “burst.”

6. Do the same as in Problem 5, but consider, in addition, that there is an electric

field strength E
!
in the direction as shown in the figure below.

x
x0

n(x)
E

7. The electron mobility in a Ge crystal is experimentally found to be proportional
to T�1.66 (i.e., the mobility decreases with increasing temperature). Knowing
that this mobility is 4000 cm2/Vs at 300 K, determine the electron diffusion
coefficient at 300 K and 77 K. Compare.

8. Consider an n-type Si semiconductor at room temperature with an excess electron
concentration which decreases from 4 � 1016 cm�3 to 1 cm�3 (practically zero)
over a distance of 1 mm. Determine the diffusion length of these electrons.

9. Assume a one-dimensional model in which holes are generated at a rate of G(x,t).
Let τp be the recombination lifetime for holes and p0 be the equilibrium

hole concentration. Give an expression for ∂p x;tð Þ
∂t , i.e., the rate of change for the

hole concentration at position x, as a function of the diffusion current Jdiffh x; tð Þ
and the parameters defined previously. This relation is called a continuity equa-
tion and states that the total number of holes must be accounted for.
Using Eq. (8.42), rewrite this relation such that it involves the hole concentration
p(x,t) as the only unknown.
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Semiconductor p-n and Metal-
Semiconductor Junctions 9

9.1 Introduction

Until now, our discussion was based solely on homogeneous semiconductors whose
properties are uniform in space. Although a few devices can be made from such
semiconductors, the majority of devices and the most important ones utilize nonho-
mogeneous semiconductor structures. Most of them involve semiconductor p-n
junctions, in which a p-type doped region and an n-type doped region are brought
into contact. Such a junction actually forms an electrical diode. This is why it is usual
to talk about a p-n junction as a diode. Another important structure involves a
semiconductor in intimate contact with a metal, leading to what is called a metal-
semiconductor junction. Under certain circumstances, this configuration can also
lead to an electrical diode.

The objective of this chapter will first be to establish an accurate model for the p-n
junction which can be at the same time mathematically described. This model will be
the ideal p-n junction diode. The basic properties of this ideal p-n junction at
equilibrium will be described in detail. The non-equilibrium properties of this p-n
junction will then be discussed by deriving the diode equation which relates the
current and voltage across the diode. Deviations from the ideal diode case will also
be described. Finally, this chapter will also discuss the properties of metal-
semiconductor junctions and compare them with those of p-n junctions.

9.2 Ideal p-n Junction at Equilibrium

9.2.1 Ideal p-n Junction

The ideal p-n junction model is also called the abrupt junction or step junction
model. This is an idealized model for which we assume that the material is uniformly
doped p-type with a total acceptor concentration NA on one side of the junction (e.g.,
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x < 0), and the material is uniformly doped n-type with a total donor concentration
ND on the other side (e.g., x > 0). For further simplicity, we will consider a
homojunction, i.e., both doped regions are of the same semiconductor material.
We will restrict our analysis to the one-dimensional case, as illustrated in Fig. 9.1.

In the p-type doped region far from the junction area, the equilibrium hole and
electron concentrations are denoted pp and np, respectively. In the n-type doped
region far from the junction area, the hole and electron concentrations are denoted pn
and nn, respectively. These carrier concentrations satisfy the mass action law in
Eq. (7.31):

ppnp ¼ pnnn ¼ n2i ð9:1Þ

where ni is the intrinsic carrier concentration in the semiconductor material consid-
ered. We further assume that all the dopants are ionized, which leads to the following
carrier concentrations for the p- and n-type regions, respectively:

pp ¼ NA 1016cm�3
� �

np ¼ n2i
NA

105cm�3
� �

8<
: and

nn ¼ ND 1017cm�3
� �

pn ¼
n2i
ND

104cm�3
� �

8<
: ð9:2Þ

A few typical values for these concentrations are given in parenthesis. It is
important to remember that both a p-type, and an n-type, isolated semiconductors
are electrically neutral.

9.2.2 Depletion Approximation

However, when bringing a p-type semiconductor into contact with an n-type semi-
conductor, the material is not electrically neutral everywhere anymore. Indeed, on
one side of the junction area, for x < 0, there is a high concentration of holes, whereas
on the other side there is a low concentration of holes. This asymmetry in carrier
density results in the diffusion of holes across the junction as shown in Fig. 9.1. By
doing so, the holes leave behind uncompensated acceptors (x < 0) which are
negatively charged. A similar analysis can be carried out for electrons as there is
also an asymmetry in the density of electrons on either side of the p-n junction. This
leads to their diffusion and makes the material positively charged for x > 0 as the
electrons leave behind uncompensated donors, as shown in Fig. 9.2.

x

p-type n-type

NA
pp, np pn, nn

ND

0

Fig. 9.1 Ideal p-n junction
model, in which one side of
the junction is a purely p-type
semiconductor and the other a
purely n-type semiconductor.
Both materials are uniformly
doped
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This redistribution of electrical charge does not endure indefinitely. Indeed, as
positive and negative charges appear on the x > 0 and x < 0 sides of the junction,
respectively, an electric field strength E(x), called the built-in electric field, will result
and is shown in Fig. 9.3 As discussed in Chap. 8, this electric field will generate the
drift of the positively charged holes and the negatively charged electrons. By
comparing Figs. 9.2 and 9.3, we can see that the drift of these charge carriers
counteracts the previous diffusion process. An equilibrium state is reached when
the diffusion currents Jdiffusion and drift currents Jdrift are exactly balanced for each
type of carrier, i.e., holes and electrons taken independently:

Jdiffh þ Jdrifth ¼ 0

Jdiffe þ Jdrifte ¼ 0

(
ð9:3Þ

There is a transition region around the p-n junction area with a widthW0 in which
the electrical charges are present. This region is called the space charge region and is
schematically shown in Fig. 9.4a. The charge distribution within this region is
modeled as follows: we consider that there is a uniform concentration of negative
charges for �xp0 < x < 0 equal to Q(x) ¼ �qNA (where NA is the total concentration
of acceptors in the p-type region) and a uniform concentration of positive charges for
0 < x < xn0 and equal to Q(x) ¼ +qND (where ND is the total concentration of donors

p-type n-type

hole diffusion:
hole diffusion current:

x

electron diffusion:
electron diffusion current:

electrical charge: − − − + + +

pJdiff

nJdiff

0
pp >> pn

np << nn

Fig. 9.2 Hole and electron diffusion across a p-n junction. The holes diffuse from the left to the
right, which leads to a diffusion electrical current from the left to the right as well. By contrast, the
electrons diffuse from the right to the left, but this leads to a diffusion electrical current from the left
to the right because of the negative charge of electrons. The diffusion process leaves uncompen-
sated acceptors in the p-type region and donors in the n-type regions, i.e., a net negative charge in
the p-type region and a net positive charge in the n-type region. The presence of these charges
results in a built-in electric field
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in the n-type region). The quantities xp0 and xn0 are positive and express how much
the space charge region extends on each side of the junction, as illustrated in
Fig. 9.4b. The width of the space charge region, also called depletion width, is
then given by:

− − − + + +

pJdrift

nJdrift

pp pn

np nn

electric field: E

hole drift:
hole drift current:

x

electron drift:
electron drift current:

electrical charge:

>> 

<< 

0

p-type n-type
Fig. 9.3 Hole and electron
drift across a p-n junction.
Under the influence of the
built-in electric field, the holes
drift from the right to the left,
which leads to a drift electrical
current from the right to the
left as well. By contrast, the
electrons drift from the left to
the right, but this leads to a
drift electrical current from the
right to the left because of the
negative charge of electrons.
The drift process
counterbalances the diffusion
of charge carriers in order to
bring the system into
equilibrium

Fig. 9.4 (a) Space charge
region in a p-n junction. Near
the junction area, the p-type
region is negatively charged
as a result of the diffusion of
charge carriers. (b) Electrical
charge density in a p-n
junction. To keep the overall
charge neutrality, the total
number of negative charges in
the p-type region is equal to
the total number of positive
charges in the n-type region.
In the depletion
approximation, the charges
are assumed uniformly
distributed in space, within the
depletion region delimited by
�xp0 and xn0
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W0 ¼ xn0 þ xp0 ð9:4Þ
Outside of this space charge region, we assume that the semiconductor is electri-

cally neutral without any charge depletion and that the hole and electron
concentrations are given by Eq. (9.2). These regions will be called the bulk p-type
and bulk n-type region. The carrier concentrations must therefore somehow go from
a high value on one side of the junction to a low value on the other side, and this
occurs within the space charge region, as illustrated in Fig. 9.4 In particular, we have
(Fig. 9.5):

p �xp0
� � ¼ pp and p xn0ð Þ ¼ pn

n �xp0
� � ¼ np and n xn0ð Þ ¼ nn

�
ð9:5Þ

This model is called the depletion approximation. In this model, there are no free
holes or electrons in the space charge region: the depletion of carriers is complete.
The electric field exists only within this space charge region.

Because the entire p-n structure must globally remain electrically neutral, and
therefore the space charge region must be neutral as a whole, we must equate the
total number of negative charges on one side of the junction to the total number of
positive charges on the other side, i.e.:

qANAxp0 ¼ qANDxn0

where A is the cross-section area of the junction, and after simplification:

NAxp0 ¼ NDxn0 ð9:6Þ

xxn0−xp0

p(x)
pp

pn

a
p-type n-type

xn0−xp0
x

n(x)

nn

np

b
p-type n-type

Fig. 9.5 (a) Hole and (b)
electron concentrations in a
p-n junction. In the depletion
approximation, the hole and
electron concentrations are
assumed to be constant and
equal to their equilibrium
values outside of the depletion
region
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Combining Eqs. (9.4) and (9.6), we can express the quantities xp0 and xn0 as a
function of the depletion width W0:

xp0 ¼ ND

NA þ ND
W0

xn0 ¼ NA

NA þ ND
W0

8><
>: ð9:7Þ

These show that the space charge region extends more in the p-type region than in
the n-type region when ND > NA and reciprocally.

Example

Q Estimate the thickness ratio of the depletion region in the p-type side (NA ¼ 10
18 cm�3) and the n-type side (ND ¼ 1017 cm�3) for an abrupt p-n junction in the
depletion approximation.

A The thicknesses of the depletion region in the p-type side and the n-type side are
denoted xp0 and xn0, respectively. Their ratio is such that:

xp0
xn0

¼ ND
NA

¼ 1017

1018
¼ 0:1�

9.2.3 Built-In Electric Field

The built-in electric field strength can be calculated using Gauss’s law which can be
written in our one-dimensional model as:

dE xð Þ
dx

¼ Q xð Þ
ε

ð9:8Þ

where ε is the permittivity of the semiconductor material and Q(x) is the total charge
concentration. This relation can be rewritten for either sides of the junction:

dE xð Þ
dx

¼ �qNA

ε
for � xp0 < x < 0

dE xð Þ
dx

¼ qNE

ε
for 0 < x < xn0

8>><
>>: ð9:9Þ

From these relations we see that the electric field strength varies linearly on either
side of the junction. By integrating Eq. (9.8) using the boundary conditions assumed
in the depletion approximation:

E �xp0
� � ¼ E xn0ð Þ ¼ 0 ð9:10Þ

that the electric field strength is equal to zero at the limits of the space charge region
(x ¼ �xp0 and x ¼ xn0), we obtain successively:
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E xð Þ ¼
Zx

�xp0

dEdx ¼
Zx

�xp0

� qNA

ε
dx for � xp0 < x < 0

E xð Þ ¼
Zx
xn0

dEdx ¼
Zx
xn0

qND

ε
dx for 0 < x < xn0

8>>>>>><
>>>>>>:

E xð Þ ¼ �qNA

ε
xþ xp0
� �

for � xp0 < x < 0

E xð Þ ¼ qND

ε
x� xn0ð Þ for 0 < x < xn0

8><
>: ð9:11Þ

For x ¼ 0, we obtain two expressions for the electric field strength from the two
previous expressions for E(x):

E 0ð Þ ¼ �qNA

ε
xp0
� �

E 0ð Þ ¼ qND

ε
�xn0ð Þ

8><
>: ð9:12Þ

And these expressions are equal, according to Eq. (9.6). Therefore, the global
electrical neutrality of the p-n structure ensures the continuity of the built-in electric
field strength. A plot of E(x) is shown in Fig. 9.6.

9.2.4 Built-In Potential

As a result of the presence of an electric field, an electrical potential V(x) also exists
and is related to the electric field strength through:

E xð Þ ¼ � dV xð Þ
dx

ð9:13Þ

xxn0−xp0

E(x)

xn0
qNDxp0

qNA− = −e e

0

p-type n-type

Fig. 9.6 Built-in electric field strength profile across a p-n junction. In the depletion approxima-
tion, the electric field strength is zero outside the depletion region because there is no net electrical
charge. Within the depletion region, the electric field strength varies linearly with distance
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The potential is constant outside the space charge region because the electric field
strength is equal to zero there. An analytical expression for the electrical potential
can be obtained by integrating Eq. (9.11):

V xð Þ ¼ qNA

ε

x2

2
þ xp0x

� �
for � xp0 < x < 0

V xð Þ ¼ �qND

ε

x2

2
� xn0x

� �
for 0 < x < xn0

8>>><
>>>:

ð9:14Þ

where we chose the origin of the potential at x ¼ 0 and applied the continuity
condition of the potential at x ¼ 0. This potential is plotted in Figs. 9.6 and 9.7.

The total potential difference across the p-n junction is called the built-in potential
and is conventionally denoted Vbi or V0. It can be obtained by evaluating the
potential difference between x ¼ �xp0 and x ¼ xn0:

V0 ¼ V xn0ð Þ � V �xp0
� � ð9:15Þ

This can be rewritten as:

V0 ¼ qND

ε

x2n0
2

þ qNA

ε

x2p0

2
ð9:16Þ

Expressing �xp0 and xn0 as a function of the depletion width given in
Eq. (9.7), we obtain:

V0 ¼ q

2ε
NAND

NA þ NDð ÞW
2
0 ð9:17Þ

Another independent expression of the built-in potential can be obtained by
expressing the balancing of the diffusion and drift currents. In Chap. 8 we deter-
mined analytical expressions for these currents in Eqs. (8.12) and (8.38) for holes
and Eqs. (8.12) and (8.36) for electrons. The total current from the motion of holes
and that from the motion of electrons are given by:

x
xn0

−xp0

V(x)

2e
qND

2e p0x2

n0x2

qNA−

V0

p-type n-typeFig. 9.7 Built-in potential
profile across a p-n junction.
In the depletion
approximation, there is no
variation of the potential
outside the depletion region
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Jdiffh þ Jdrifth ¼ �qDp
dp xð Þ
dx

þ qμhp xð ÞE xð Þ

Jdiffe þ Jdrifte ¼ qDn
dn xð Þ
dx

þ qμen xð ÞE xð Þ

8>><
>>: ð9:18Þ

In these expressions, p(x) and n(x) represent the hole and electron concentrations
at a position x. Taking into account the condition of Eq. (9.3) stating the exact
balancing of the diffusion and drift currents for holes and electrons, we can write:

Dp
dp xð Þ
dx

¼ μhp xð ÞE xð Þ

Dn
dn xð Þ
dx

¼ �μen eð ÞE xð Þ

8>><
>>: ð9:19Þ

which can be rewritten using Eq. (9.19) as:

Dp

μh

1
p xð Þ

dp xð Þ
dx

¼ � dV xð Þ
dx

Dn

μe

1
n xð Þ

dn xð Þ
dx

¼ dV xð Þ
dx

8>>><
>>>:

By integrating these equations, we get successively:

Dp

μh

Zxn0
�xp0

1
p xð Þ

dp xð Þ
dx

dx ¼ �
Zxn0

�xp0

dV xð Þ
dx

dx

Dn

μe

Zxn0
�xp0

1
n xð Þ

dn xð Þ
dx

dx ¼
Zxn0

�xp0

dV xð Þ
dx

dx

8>>>>>>><
>>>>>>>:

Using Eqs. (9.5) and (9.15), and by taking into account the Einstein relations
Dp

μh
¼ Dn

μe
¼ kbT

q obtained from Eqs. (8.44) and (8.45), we get:

kbT

q

Zpn
pp

dp

p
¼ �

ZV0

0

dV

kbT

q

Znn
np

dn

n
¼
ZV0

0

dV

8>>>>>>>><
>>>>>>>>:

which integrates easily into:
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kbT

q
ln

pn
pp

 !
¼ �V0

kbT

q
ln

nn
np

� �
¼ V0

8>>>><
>>>>:

i.e.:

V0 ¼ kbT

q
ln

pp
pn

� �
¼ kbT

q
ln

nn
np

� �
ð9:20Þ

This can be rewritten into the form:

pp
pn

¼ nn
np

¼ exp
qV0

kbT

� �
ð9:21Þ

Using the expressions in Eq. (9.21), we can write the built-in potential as a
function of the doping concentrations:

V0 ¼ kbT

q
ln

NAND

n2i

� �
ð9:22Þ

This potential exists at equilibrium and is a direct consequence of the junction
between dissimilarly doped materials. However, it cannot be directly measured using
a voltmeter because voltmeters measure the chemical potential difference, and the
chemical potential is the same throughout the device since it is at thermal equilib-
rium with balanced drift and diffusion currents everywhere.

9.2.5 Depletion Width

It is now possible to relate the width W0 of the space charge region, as well as its
extent on either side of the p-n junction, with the built-in potential. From the
expression of the built-in potential in (Eq. 9.22), we can express the depletion
width as:

W0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA þ ND

NAND

� �
V0

s
ð9:23Þ

which becomes, after considering Eq. (9.22):

W0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εkbT
q2

NA þ ND

NAND

� �
ln

NAND

n2i

� �s
ð9:24Þ

The extent of the depletion width into each side of the p-n junction can then be
determined by replacing W0 from Eq. (9.23) into Eq. (9.7):
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xp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

ND

NA NA þ NDð Þ
� �

V0

s

xn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA

ND NA þ NDð Þ
� �

V0

s
8>>>>><
>>>>>:

ð9:25Þ

These last two expressions show that the space charge region extends more into
the region of lower doping, in accordance with Subsect. 9.2.2.

Example

Q Consider a GaAs abrupt p-n junction with a doping level on the p-type side
of NA ¼ 2 � 1017 cm�3 and a doping level on the n-type side of ND ¼ 1 � 1017

cm�3. Estimate the depletion region widths on the p-type side and the n-type
side at 300 K.

A The depletion region widths sought are given by the following expressions:

xp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

ND

NA NA þ NDð Þ
� �

V0

s

xn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA

ND NA þ NDð Þ
� �

V0

s
8>>>>><
>>>>>:

where ε is the dielectric constant of GaAs

(ε ¼ 13.1ε0) and V0 is the built-in potential. The latter is calculated from:

V0 ¼ kbT

q
ln

NAND

n2i

� �

¼ 1:38066� 10�23
� �� 300

1:60218� 10�19 ln
2� 1017
� �

1� 1017
� �

1:79� 106
� �2

 !

¼ 1:297 V

because the intrinsic carrier concentration in GaAs at 300 K is ni¼ 1.79� 106 cm�3.
The widths can then be calculated as:

xp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

ND

NA NA þ NDð Þ
� �

V0

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 13:1� 8:85418� 10�14

� �
1:60218 � 10�19

� 1� 1017

2� 1017
� �

2� 1017 þ 1� 1017
� �

 !
� 1:297

vuuuuuut
xp0 ¼ 5:6� 10�6cm

xp0 ¼ 56 nm
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and

xn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA

ND NA þ NDð Þ
� �

V0

s

¼ NA

ND
xp0

¼ 2� 1017

1� 1017
5:6� 10�6

¼ 11:2� 10�6cm
xn0 ¼ 112 nm

9.2.6 Energy Band Profile and Fermi Energy

Because of the presence of a built-in potential, the allowed energy bands in the
semiconductor, e.g., the conduction and the valence bands in particular, are shifted
too. The resulting energy band profile is obtained by multiplying the potential by the
charge of an electron (�q). This is shown in Fig. 9.10e, where it is conventional to
plot the bottom of the conduction band (EC) and the top of the valence band (EV)
across the p-n structure.

The reason why we must multiply by the negative charge of an electron is because
the resulting band diagram corresponds to the allowed energy states for electrons.
This is intuitively understandable because the electrons are more likely to be where
there is a higher positive electrical potential; thus the energy band for electrons will
be lower there.

We therefore see that the conduction and valence bands are “bent” from the
p-type to the n-type regions. Moreover, the amount of band bending is directly
related to the built-in potential:

EVp � EVn ¼ ECp � ECn ¼ qV0 ð9:26Þ

Example

Q Estimate the energy band bending from the p-type side to the n-type side in a
GaAs abrupt p-n junction with a doping level on the p-type side of NA¼ 2� 10
17 cm�3 and a doping level on the n-type side of ND ¼ 1� 1017 cm�3 at 300 K.

A From the previous example, we know that the built-in potential is V0 ¼ 1.297
V. The band bending is therefore equal to qV0 ¼ 1.297 eV.

Away from the space charge region, the Fermi energies in the p-type and n-type
regions are denoted EFp and EFn, respectively, as shown in Fig. 9.8 . At equilibrium,
these quantities must be equal. Indeed, the hole density in the p-type and n-type
regions is given by Eq. (7.29) in the nondegenerate case:
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pp ¼ Nvexp
EVp � EFp

kbT

� �

pn ¼ Nvexp
EVn � EFn

kbT

� �
8>><
>>: ð9:27Þ

Utilizing Eq. (9.25), we get:

exp
qV0

kbT

� �
¼ pp

pn
¼

exp EVp�EFp

kbT

� 	
exp EVn�EFn

kbT

� 	

exp
qV0

kbT

� �
¼ exp

EVp � EVn

kbT

� �
exp

EFn � EFp

kbT

� �
ð9:28Þ

In addition, by using Eq. (9.26) in this expression, we get:

1 ¼ exp
EFn � EFp

kbT

� �

which means that EFn¼ EFp, i.e., the Fermi energies in the p-type and n-type regions
are equal, and this has already been anticipated in Fig. 9.8 . In fact, this is a general
and important property that, at thermal equilibrium, the Fermi energies of dissimilar
materials must be equal. This physically means that there must not be a net flow of
holes or electrons across the structure at equilibrium.

9.3 Non-equilibrium Properties of p-n Junctions

The most interesting and practical properties of a p-n junction are observed under
non-equilibrium conditions, such as when a voltage is applied across it and/or when
it is illuminated. Because of its nonsymmetrical nature, a p-n junction will exhibit
different properties depending on the polarity of the external voltage or bias applied.

xxn0−xp0

ECn

qV0

EVp

ECp

EVn

p-type n-type

EFn

EFp

Fig. 9.8 Energy band profile
across a p-n junction. This
profile is obtained by
multiplying the potential in
Fig. 9.6 by �q, the electrical
charge of electrons
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The sign convention used for the external voltage and the current in a p-n junction is
shown in Fig. 9.9: the voltage will be positive if the applied potential on the p-type
side is higher than that applied on the n-type. Note that the built-in voltage V0 has
been taken to be positive.

When an external bias is applied, the diffusion and drift currents do not balance
each other anymore. This imbalance results in a net flow of electrical current in one
or the other direction. In addition, the internal electric field and voltage across the p-n
junction, the depletion width, and the energy band profile will all be changed. In this
section, we will review how these parameters are modified.

9.3.1 Forward Bias: A Qualitative Description

When an external bias V is applied to the p-n structure depicted in Fig., there is
usually some voltage drop across both the neutral bulk p-type and the n-type regions
(i.e., outside the space charge region) due to Ohm’s law (Sect. 8.2). In other words,
the entire external bias is not applied across the transition region because part of it
would be “lost” across the neutral regions due to their electrical resistance.

However, in most semiconductor devices which use p-n junctions, the length of
these neutral regions which the electrical current would have to flow through is
small, and any voltage drop would thus be negligible compared to the voltage
change across the transition region. In our discussion, for now we will assume that
the external bias is applied directly to the limits of the space charge region.

According to the sign convention in Fig. 9.10d, the total voltage across the
transition region is now given by V0-V. There are typically two regimes which
need to be considered for the non-equilibrium conditions of a p-n junction: forward
bias and reverse bias.

In the forward bias regime, corresponding to V > 0, the total voltage or potential
barrier across the transition region is actually reduced from V0 to V0�V, which has a
number of consequences. First, the strength of the internal electric field associated
with the lower potential barrier is reduced as well, as shown in Fig. 9.10c. This in
turn means that the width of the space charge region is reduced because fewer
electrical charges are needed to maintain this electric field, as shown in Fig. 9.10b.
In other words, W0 is reduced and is now denoted W, xn0 becomes xn, and xp0
becomes xp, as illustrated in Fig. 9.10a. As the internal voltage is reduced from its

p n

V

I

− V0 +

Fig. 9.9 Convention for the
polarity of the external voltage
and current
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Fig. 9.10 (a) Space charge
region width, (b) electrical
charge density, (c) electric
field strength, (d) potential
profile, and (e) energy band
profile of a p-n junction under
forward bias (V > 0). The thick
dashed curves represent the
equilibrium case for
comparison
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equilibrium value by an amount equal to V, the energy band profile is changed,
and the amount of band bending is reduced by qV, as depicted in Fig. 9.10e.
This means that:

EVp � EVn ¼ ECp � ECn ¼ q V0 � Vð Þ ð9:29Þ
instead of Eq. (9.26). Furthermore, we can still consider that the Fermi energy levels
outside the space charge region, i.e., in the neutral bulk p-type (EFp) and n-type (EFn)
regions, are located at their equilibrium positions because we assumed no voltage
drop in these regions. Therefore, because the band bending has been reduced by qV,
according to Fig. (e), we must have:

EFp � EFn ¼ �qV ð9:30Þ
This means that the Fermi energy is not constant throughout the p-n junction

structure, but the Fermi energy levels in the neutral p-type and the n-type regions are
separated by qV, where V is the applied external bias. This is a direct consequence of
a non-equilibrium condition.

Let us now qualitatively examine the effects of a forward bias on the diffusion and
drift currents across the space charge region of a p-n junction. As we saw in the
previous section, the diffusion current arises from the difference between the
densities of charge carriers on either side of the junction area. It corresponds to the
motion of electrons from the n-type region toward the p-type region, and conversely
for holes. This means that, at its origin, the diffusion current is related to the motion
of majority carriers (e.g., electrons in the n-type region). However, as soon as these
carriers reach the other side of the junction, they become minority carriers. There-
fore, the diffusion current acts as if it injects minority carriers into one side of the
junction by pulling them from the other side of the junction where they are majority
carriers.

At equilibrium, the diffusion process is stabilized when the built-in electric field
exerts a force that exactly counterbalances the diffusion of these charge carriers.
Under a forward bias, as we just saw in Fig. 9.10c, this electric field strength is
reduced. Therefore, each type of charge carriers can diffuse more easily, whichmeans
that the diffusion currents for both types of carrier increase under a forward bias.

This can also be understood by examining the energy band profile. For example,
when the electrons in the n-type region, on the right-hand side of Fig. 9.10c where
they are more concentrated, diffuse toward the p-type region where they are less
concentrated, the allowed energy states are located at higher energies. This means
that the diffusion electrons have to cross a high-energy barrier. Under a forward bias,
this energy barrier is reduced, as shown in Fig. 9.10e, and more electrons can thus
participate in the diffusion toward the p-type region. A similar argument is valid for
holes. As a result, the diffusion currents for both types of carrier increase under a
forward bias.

By contrast, the drift current does not change with an external bias, although this
may seem contradictory with the fact that the internal electric field is weaker. This
can be understood by examining the drift current in more detail. We saw in Sect. 9.2
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that the drift current counterbalanced the diffusion of charge carriers and thus
consisted of electrons moving toward the n-type region and holes moving toward
the p-type region. This means that, at its origin, the drift current is related to the
motion of minority carriers, such as electrons in the p-type region which drift toward
the n-type region under the influence of the electric field. The drift current thus plays
the converse role of the diffusion current. The drift current acts as if it extracts
minority carriers from one side of the junction to send them to the other side of the
junction where they are majority carriers. Because the concentrations of minority
carriers are very small (see Eq. (9.2)), the drift currents are mostly limited by the
number of minority carriers available for drift (i.e., electrons on the p-type region
and holes on the n-type region) rather than by the speed at which they would drift
(i.e., the strength of the electric field). We then understand why the drift current does
not change significantly when an external bias is applied, in comparison to the
diffusion current.

9.3.2 Reverse Bias: A Qualitative Description

By contrast, in the reverse bias regime, corresponding to V < 0, the total voltage or
potential barrier across the transition region is actually increased from V0 to V0�V,
which also has the opposite effects of a forward bias. The strength of the internal
electric field is increased, as shown in Fig. (c). This enlarges the width of the space
charge region from W0 to W (with xn0 becoming xn, and xp0 becoming xp, as
illustrated in Fig. 9.11a) because more electrical charges are needed to maintain
this electric field, as shown in Fig. 9.11b. As the internal voltage is increased from its
equilibrium value by an amount equal to�V, the energy band profile is changed, and
the amount of band bending is increased by�qV, as depicted in Fig. 9.11e. The total
amount of band bending is still given by the expression in Eq. (9.29). The difference
between the Fermi energy levels outside the space charge region is also still given by
Eq. (9.30).

In addition, by contrast with the forward bias case, the diffusion currents for both
types of carrier decrease under a reverse bias. However the drift current still does
not change significantly in comparison to the diffusion current when a reverse bias is
applied, for the same reason as discussed previously.

9.3.3 A Quantitative Description

In the previous subsections, we have expressed quantitatively the amount of band
bending and the difference between the Fermi energy levels of the neutral p-type and
n-type regions as a function of the applied external bias (Eqs. (9.29) and (9.30),
respectively).

In fact, most of the relations that were derived in Sect. 9.2 for the equilibrium case
are valid when an external bias voltage V is applied, provided we make the following
transformations:
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Fig. 9.11 (a) Space charge
region width, (b) electrical
charge density, (c) electric
field strength, (d) potential
profile, and (e) energy band
profile of a p-n junction under
reverse bias (V < 0). The thick
dashed curves represent the
equilibrium case for
comparison
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W0 ! W
xp0 ! xp
xn0 ! xn
V0 ! V0 � V

8>><
>>: ð9:31Þ

This statement is justified by the fact that most of the expressions in Sect. 9.2 have
been obtained without invoking the equilibrium condition of Eq. (9.3) but by using
the electrical charge neutrality principle and Gauss’s law instead which are valid at
all times.

The following few relations will be important for future discussions. The deple-
tion width can be obtained from Eq. (9.23) by using Eq. (9.31):

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA þ ND

NAND

� �
V0 � Vð Þ

s
ð9:32Þ

for V < V0. We clearly see that the depletion width shrinks when a forward bias is
applied (V > 0), whereas it expands when a reverse bias is applied (V < 0). This
confirms the qualitative discussion of the previous subsection.

Example

Q Calculate the ratio of the depletion region widthW under a forward bias of 0.3 V
to the equilibrium widthW0, for a GaAs abrupt p-n junction with a doping level
on the p-type side of NA ¼ 2� 1017 cm�3 and a doping level on the n-type side
of ND ¼ 1 � 1017 cm�3 at 300 K.

A The depletion width W under a bias V is given by the expression:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NAþND
NAND

� 	
V0 � Vð Þ

r
, where the built-in potential is V0 ¼ 1.297 V, as

determined in earlier examples. The ratio sought is therefore:

W

W0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � Vð Þ
V0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:297� 0:3ð Þ

1:297

r
¼ 0:877

The depletion width is then:
W ¼ 0:877W0 ¼ 0:877 xp0 þ xn0

� �
¼ 0:877 56þ 112ð Þ

¼ 147 nm

The extent of the space charge region inside the p-type and n-type regions, as
shown in Figs. 9.9a and 9.10a, can be obtained from Eq. (9.25):
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xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

ND

NA NA þ NDð Þ
� �

V0 � Vð Þ
s

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε
q

NA

ND NA þ NDð Þ
� �

V0 � Vð Þ
s

8>>>><
>>>>:

ð9:33Þ

Similarly, the non-equilibrium hole and electron concentrations at the edges of
the space charge region, denoted p(�xp), p(xn), n(�xp), and n(xn), can be obtained by
considering Eq. (9.21):

p �xp
� �
p xnð Þ ¼ n xnð Þ

n �xp
� � ¼ exp

q V0 � Vð Þ
kbT

� �
ð9:34Þ

In addition, following our previous discussion, we realize that the majority
carrier concentrations are little changed under a moderate forward or a reverse
bias, i.e., p(�xp) ¼ pp and n(�xn) ¼ nn, which after replacing in Eq. (9.34) to:

pp
p xnð Þ ¼

nn
n �xp
� � ¼ exp

q V0 � Vð Þ
kbT

� �

and by using Eq. (9.21) to eliminate pp and nn from this latest equation:

p xnð Þ
pn

¼ n �xp
� �
np

¼ exp
qV

kbT

� �
ð9:35Þ

These expressions are important as they show that, when an external bias voltage
is applied, the minority carrier concentrations at the boundary of the space charge
region, p(xn) and n(xp), are directly and simply related to the equilibrium minority
carrier concentrations pn and np, and the applied bias voltage V. All these relations
will prove important in the derivation of the diode equation for an ideal p-n junction
which will be the topic of the next subsection.

Example

Q Calculate the minority carrier concentrations at xn and �xp for the GaAs p-n
junction described in the previous example.

A The minority carrier concentrations at xn and �xp are given by:
p xnð Þ
pn

¼ n �xpð Þ
np

¼ exp qV
kbT

� 	
, where pn and np are the minority carrier

concentrations in the neutral n-type side and p-type side, respectively, at
equilibrium. These are given by the action mass law:

pn ¼
n2i
ND

¼ 1:79� 106
� �2

1� 1017
¼ 3:20� 10�5cm�3and
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np ¼ n2i
NA

¼ 1:79� 106
� �2

2� 1017
¼ 1:60� 10�5cm�3:.

In addition, the exponential is numerically equal to:

exp qV
kbT

� 	
¼ exp

1:60218�10�19ð Þ�0:3

1:38066�10�23ð Þ�300

� �
¼ 1:1� 105. Thus, we get:

p xnð Þ ¼ 3:20� 10�5
� �

1:1� 105
� �

� 3:5 cm�3 and

n xp
� � ¼ 1:60� 10�5

� �
1:1� 105
� �

� 1:76cm�3

9.3.4 Depletion Layer Capacitance

The depletion layer is relatively devoid of mobile carriers and can therefore be
thought of as somewhat similar to the dielectric in a capacitor. Positive and negative
charges are separated by this depletion layer, and this leads to a capacitance
associated with the p-n junction. This capacitance can be thought of as like that of
a parallel plate capacitor and expressed as:

Cdep ¼ εA

W
ð9:36Þ

However rather than being constant, the capacitance of a p-n junction varies with
the reverse bias via the voltage dependence of the depletion width as shown in
Fig. 9.12.

More formally, the capacitance of the p-n junction can be derived starting from
the definition of capacitance:

Cdep ¼ dQ

dV










 ð9:37Þ

Reverse Bias

0 V0

C
ap

ac
it

an
ce

External Bias

Fig. 9.12 Depletion layer
capacitance as a function of
bias voltage, showing the
increase in capacitance with
forward bias and the decrease
with reverse bias
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where dQ is the incremental change in charge stored on either side of the junction for
an incremental increase in voltage of dV. For the abrupt junction, the charge stored
on either side of the junction can be expressed as:

Qdep ¼ qANDxn ¼ qANAxp ð9:38Þ
where xn and xp are given by Eq. (9.33). Substituting in Eq. (9.38) for either term
gives the equation:

Qdep ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qε

NAND

NA þ NDð Þ V0 � Vð Þ
s

which can then be differentiated with respect to V to yield:

Cdep ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � Vð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qε

2
NAND

NA þ NDð Þ

s
ð9:39Þ

which we can see reduces to Eq. (9.36) above when V ¼ 0.
The voltage dependence of the p-n junction capacitance is used in varactor diodes

or varicaps, in tuning circuits where the diode is reverse-biased to prevent forward
conduction, and a small DC tuning voltage is applied to vary the capacitance.
Additionally, measuring the capacitance of a diode as a function of bias can be
used to extract information about the built-in voltage and the doping profile. This can
be done by plotting 1/Cdep vs. applied voltage:

V ¼ A2 qε NANDð Þ
2 NA þ NDð Þ
� �

1

C2
dep

� Vo ð9:40Þ

In the case of an abrupt one-sided junction (such as a p+n� or a metal-
semiconductor Schottky diode (see Sect. 9.5)), this equation reduces further, and
the carrier concentrations can be extracted more directly:

V ¼ A2qε

2
NA

1

C2
dep

� Vo, ND >> NAð Þ

V ¼ A2qε

2
ND

1

C2
dep

� Vo, NA >> NDð Þ
ð9:41Þ

9.3.5 Ideal p-n Junction Diode Equation

The diode equation refers to the mathematical expression which relates the total
electrical current I through an ideal p-n junction to the applied external bias voltage
V. It is also referred as the current-voltage or I-V characteristic of the diode. To
determine it, we must focus our analysis on the minority carriers, i.e., holes in the n-
type region and electrons in the p-type region.

In addition to the depletion approximation model considered so far, a few more
assumptions need to be considered:
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(i) First, we assume that there are no external sources of carrier generation.
(ii) No recombination of charge carriers occurs within the space charge region.
(iii) We assume that the applied biases are moderate enough to ensure that the

minority carriers remain much less numerous than the majority carriers in the
neutral regions.

(iv) Finally, we assume that the change in minority carrier concentrations in the
neutral regions does not result in a non-negligible electric field.

In virtue of assumptions (i) and (ii), any hole or electron that has diffused across
the space charge region must be present at its boundaries, i.e., at �xp and xn,
respectively. When a bias V is applied, the concentrations of these holes and
electrons, which are in excess of their equilibrium concentrations, are given by:

Δpn ¼ p xnð Þ � pn
Δnp ¼ n �xp

� �� np

�

This becomes after using Eq. (9.35):

Δpn ¼ pn e
qV
kbT � 1

� 	
Δnp ¼ np e

qV
kbT � 1

� 	
8<
: ð9:42Þ

Here, and in the rest of the text, we will use the extended meaning of the term
“excess carrier.” For example, ifΔpn andΔnp are positive, i.e., V > 0 or forward bias,
then there are net real excesses of holes and electrons at the space charge boundaries,
and we talk about minority carrier injection. This is shown in Fig. 9.13.

But if Δpn and Δnp are negative, i.e., V < 0 or reverse bias, then there are net real
deficiencies of holes and electrons, and we talk about minority carrier extraction. In
this case, the minority carriers at the boundaries of the space charge region are less
numerous than in the bulk neutral material; therefore there is a diffusion of minority
carriers from the bulk neutral region toward the edges of the space charge region.
This is illustrated in Fig. 9.14.

Returning to the forward bias case, the excess holes, present at x ¼ xn with a
concentration Δpn, will be diffusing deeper into the neutral n-type region where their
equilibrium concentration is only pn. As they diffuse, they will experience recombi-
nation as discussed in Chap. 8, with a characteristic diffusion length Lp in the steady-
state regime. The excess hole concentration is therefore reduced as we advance
deeper in the material. This situation has already been encountered in Chap. 8 and
the analytical expression for δpn(x1), the excess hole concentration at a position x1, is
obtained for Eq. (8.55):

δpn x1ð Þ ¼ Δpne
�x1

Lp ð9:43Þ
where Lp is the hole diffusion length in the n-type region. In this expression, we
chose another axis, denoted x1, oriented in the same direction as the original axis
x and with its origin at x ¼ xn. It is important to remember that the excess
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concentration of holes at x¼ xn remains constant at Δpn given by Eq. (9.42) because
holes are continuously injected or extracted through the space charge region into or
from the n-type region due to the application of the external bias voltage. We can
make use of Fig. 8.7 to plot the spatial profile of the excess hole concentration in
Fig. 9.13a for the forward bias case and Fig. 9.14a for the reverse bias case.

Conversely, the excess electrons present at x¼�xp with a concentration Δnp will
diffuse deeper into the neutral p-type region, with a diffusion length Ln. This leads to
the spatial profile δnp(x2) shown in Fig. 9.13b for the forward bias case and
Fig. 9.14b for the reverse bias case, and it is analytically given by:

δnp x2ð Þ ¼ Δnpe�
x2
Ln ð9:44Þ

where Ln is the electron diffusion length in the p-type region. It is important to note
that, here, we chose the sign convention for the axis x2 in the opposite direction of the
original axis x because the electrons diffuse in this opposite direction.

There are essentially two methods to compute the diode equation. The first one
consists of analyzing the diffusion currents in the p-n junction. From our discussion
in Subsect. 9.3.1, we understand that, when an external bias is applied, the drift
currents across the space charge region do not vary, whereas the diffusion currents
change. The sum of the increments in the hole and the electron diffusion currents
across the space charge region is thus a direct measure of the net electrical current
through the p-n junction since no net current is originally present at equilibrium,

Fig. 9.13 (a) Excess hole concentration profile in the n-type region, and (b) excess electron
concentration profile in the p-type region, under a forward bias. The excess carrier concentrations
decrease, following an exponential decay, as they go further from the edges of the depletion region
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because we have assumed there are no external sources of carrier generation and
because the total electrical current is constant throughout a two-terminal device, such
as the p-n junction earlier shown in Fig. 9.8.

The incremental diffusion currents are the diffusion currents which result from
the excess carriers in the material. The diffusion current densities for electrons and
holes can be obtained from Eqs. (8.36) and (8.38) and are given by:

Jdiffh x1ð Þ ¼ �qDp
d δpn x1ð Þð Þ

dx1

Jdiffe x2ð Þ ¼ qDn

d δnp x2ð Þ� �
dx2

8>>><
>>>:

ð9:45Þ

Using the expressions of the excess carrier concentrations in Eqs. (9.43) and
(9.44), we get:

Jdiffh x1ð Þ ¼ þq
Dp

Lp
Δpne

�x1
Lp

Jdiffe x2ð Þ ¼ �q
Dn

Ln
Δnpe

�x2
Ln

8>><
>>: ð9:46Þ

Fig. 9.14 (a) “Excess” hole concentration profile in the n-type region, and (b) “excess” electron
concentration profile in the p-type region, under a reverse bias. These carrier concentrations change
following an exponential dependence as they go further away from the edges of depletion region
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In order to obtain the total current through the p-n junction, we must evaluate the
diffusion current densities for holes and electrons at the limits of the space charge
region at x ¼ xn and x ¼ �xp, respectively, or equivalently at x1 ¼ x2 ¼ 0:

Jdiffh 0ð Þ ¼ þq
Dp

Lp
Δpn

Jdiffe 0ð Þ ¼ �q
Dn

Ln
Δnp

8>><
>>: ð9:47Þ

Example

Q Estimate the ratio of the diffusion current densities of holes and electrons for the
GaAs p-n junction described in the previous example.

A The ratio of the diffusion currents is given by:
Jdiffh 0ð Þ
Jdiffe 0ð Þ










 ¼ Dp

Dn

Ln
Lp

Δpn
Δnp

, where

Δpn and Δnp are the excess minority carrier concentrations at the limits of the

depletion region. These quantities are given by: Δpn ¼ pn e
qV
kbT � 1

� 	
and

Δnp ¼ np e
qV
kbT � 1

� 	
. Their ratio is then:

Δpn
Δnp

¼ pn
np

¼
n2
i



ND

n2
i



NA

¼ NA

ND
. In addition,

the diffusion lengths can be expressed as a function of the minority carrier
lifetime on the n-type and the p-type sides. These lead to the ratio:
Jdiffh 0ð Þ
Jdiffe 0ð Þ










 ¼ Dp

Dn

ffiffiffiffiffiffiffiffiffiffi
Dnτn

p ffiffiffiffiffiffiffiffiffiffi
Dpτp

p NA

ND
. Assuming that the minority carrier lifetimes are

the same for holes and electrons, we get:
Jdiffh 0ð Þ
Jdiffe 0ð Þ










 ¼

ffiffiffiffiffiffi
Dp

Dn

r
NA

ND
. The ratio of

the diffusion coefficients can be calculated using the majority carrier mobilities

through the Einstein relations and we obtain:
Jdiffh 0ð Þ
Jdiffe 0ð Þ










 ¼

ffiffiffiffiffi
μh
μe

r
NA

ND
and

Jdiffh 0ð Þ
Jdiffe 0ð Þ










 ¼

ffiffiffiffiffiffiffiffiffiffi
400
8500

r
2� 1017

1� 1017

� 0:43

In all these expressions of current densities, it is important to remember that the
sign convention for the current density Jdiffh x1ð Þ is the same as the axis x, whereas for
Jdiffe x2ð Þ it is opposite that of axis x. The total current density is the sum of the hole
and electron diffusion currents, with however a sign difference:

J total ¼ Jdiffh 0ð Þ � Jdiffe 0ð Þ ð9:48Þ
The minus sign for Jdiffe 0ð Þ accounts for the sign convention chosen for axis x2.

Inserting Eq. (9.47) into this relation, we get:
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J total ¼ q
Dp

Lp
Δpn þ

Dn

Ln
Δnp

� �
ð9:49Þ

and using Eq. (9.42), we finally obtain:

J total ¼ q
Dp

Lp
pn þ

Dn

Ln
np

� �
e

qV
kbT � 1

� 	
ð9:50Þ

The total current is given by the total current density multiplied by the area of the
p-n junction. If we assume a uniform area A, we get:

I total ¼ AJ total ¼ qA
Dp

Lp
pn þ

Dn

Ln
np

� �
e

qV
kbT � 1

� 	
ð9:51Þ

By introducing a new term I0, this can be rewritten as:

I total ¼ I0 e
qV
kbT � 1

� 	
ð9:52Þ

with:

I0 ¼ qA
Dp

Lp
pn þ

Dn

Ln
np

� �
ð9:53Þ

Equations (9.52) and (9.53) represent the diode equation for an ideal p-n junction.
This function is plotted in Fig. 9.15.

We see that under a forward bias, the current increases exponentially as a function
of applied voltage. By contrast, under reverse bias, the current rapidly tends toward
�I0. The value of the current I0 is therefore called the reverse saturation current. The
physical meaning of this current can be understood as follows. When a strong
reverse bias is applied (V < 0), the density of minority carriers at the boundary of
the space charge region quickly falls to zero according to Eq. (9.35). This means that,
inside the depletion region, there is no diffusion of carriers, but only drift currents are

V0

I

−I0

Fig. 9.15 Current-voltage
characteristic for an ideal p-n
junction diode. The
dependence of the current on
the voltage follows an
exponential expression. The
current is zero when the
voltage is zero, without
external excitation
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present. Outside the depletion region however, the only charge motion is the
diffusion of minority carriers from the neutral regions toward the depletion region,
as illustrated by the block arrows in Fig. 9.14. We can therefore say that the
saturation current in Eq. (9.53) corresponds to the total drift, across the space charge
region, of minority carriers which have been extracted or able to reach the limits of
the space charge region through diffusion from the neutral regions.

The p-n junction diode acts like a one-way device: when it is forward-biased,
current can flow from the p-type to the n-type region without much resistance,
whereas when it is reverse-biased, a very large resistance prevents the current from
flowing in the opposite direction from the n-type to the p-type region.

The second method which can be used to determine the diode equation consists of
calculating the total charge accumulated on each side of the junction area. This
second method is called the charge control approximation. Let Qp be the steady-state
excess positive charge in the n-type region which is given by integrating Eq. (9.43):

Qp ¼ qA

Z1
0

δpn x1ð Þdx1 ¼ qAΔpn
Z1
0

e�
x1
Lpdx1

i.e.:

Qp ¼ qALpΔpn ð9:54Þ

where A is the area of the p-n junction. This excess charge is illustrated in Fig. 9.16a,
in the forward bias case. The hole diffusion current must then be able to maintain this
excess positive charge, even though the holes are recombining. As the average
lifetime of holes in the n-type region is the recombination lifetime τp defined in
Subsect. 8.5.3, the hole diffusion current must be able to supply Qp positive charges
during a time equal to τp. This current must therefore be Ip ¼ Qp

τp
.

Similarly, the excess negative charge in the p-type region is given by:

Qn ¼ qALnΔnp ð9:55Þ
and is shown in Fig. 9.16b. The electron diffusion current into the p-type region is
�In ¼ �Qn

τn
. In this last expression, we made use of the same sign convention as for

axis x2. The total current is therefore given by:

I total ¼ Ip þ In ¼ qA
Lp
τp

Δpn þ qA
Ln
τn

Δnp

or:

I total ¼ qA
Lp
τp
Δpn þ

Ln
τn
Δnp

� �
ð9:56Þ
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Using the definition of the diffusion lengths given in Eqs. (8.53) and (8.56), and
using Eq. (9.42), we can transform this last expression into:

I total ¼ AJ total ¼ qA
Dp

Lp
pn þ

Dn

Ln
np

� �
e

qV
kbT � 1

� 	

and thus get the diode equation obtained in Eq. (9.51).

9.3.6 Minority and Majority Carrier Currents in Neutral Regions

In the previous discussion, we saw that the total electrical current through a p-n
junction device was determined by the diffusion currents across the space charge
region which result in minority carriers being injected into or extracted from the
neutral regions under the influence of an applied external bias.

For the sake of clarity, let us consider the example of a forward-biased p-n
junction, as the one shown in Fig. 9.13. We saw that the excess minority carriers
diffuse into the neutral regions following an exponential decay given in Eqs. (9.43)
and (9.44). This leads to diffusion currents which also follow an exponential decay,
as obtained in Eq. (9.46). However, we know that the total electrical current
throughout a two-terminal device is constant. Therefore, the decrease in diffusion
current, for example, that of holes in the right-hand side of the figure, as we move
away from the space charge region has to be compensated by another current. This is
achieved through the drift of majority carriers, for example, electrons in the neutral
n-type region. Indeed, through their diffusion and recombination, the minority

Fig. 9.16 (a) Excess positive charge in the n-type region and (b) excess negative charge in the p-
type region, under a forward bias. The total excess charges are calculated by integrating the excess
carrier concentrations over the volume of the regions outside the depletion region
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carriers “consume” majority carriers (e.g., electrons). There thus must be a flow of
majority carriers (e.g., electrons) in the opposite direction to resupply those lost in
the recombination process. This flow of majority carriers generates a drift current.

Therefore, in the neutral regions, there are two components which make up the
total electrical current: the diffusion current of minority carriers and the drift current
of majority carriers. These are shown in Fig. 9.17 . This means, in particular, that
there must be an electric field present in the neutral regions; otherwise there would
not be any drift current. This apparently contradicts our assumption at the beginning
of Subsect. 9.3.1 that there was no potential drop within the neutral regions. In fact,
the potential drop is very small in comparison with any applied external bias voltage
and therefore can be neglected in our model.

An analytical expression for the drift current can be easily determined, on each
side of the p-n junction. Indeed, the total hole and electron current densities must be
constant at the values given by the diode equation in Eq. (9.47). As we know the
expression for the diffusion current densities Jdiffh x1ð Þ and Jdiffe x2ð Þ from Eq. (9.46),
the drift current densities will be the difference:

Jdrifth x2ð Þ ¼ Jdiffe 0ð Þ � Jdiffe x2ð Þ
Jdrifte x1ð Þ ¼ Jdiffh 0ð Þ � Jdiffh x1ð Þ

(
ð9:57Þ

Recalling Eqs. (9.46) and (9.49), we get successively:

Fig. 9.17 Diffusion current of minority carriers and drift current of majority carriers in the (a) n-
type region and (b) p-type region, under a forward bias. As the minority carriers diffuse further
away from the edges of the depletion region, they recombine with majority carriers. The diffusion
current of minority carriers is therefore reduced. But, this process also results in the flow of majority
carriers in the opposite direction, which compensates the decrease in diffusion current with a drift
current in the same proportion
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Jdrifth x2ð Þ ¼ �q
Dn

Ln
Δnp þ q

Dn

Ln
Δnpe

�x2
Ln

Jdrifte x1ð Þ ¼ q
Dp

Lp
Δpn � q

Dp

Lp
Δpne

�x1
Lp

8>><
>>:

Jdrifth x2ð Þ ¼ q
Dn

Ln
Δnp e

�x2
Ln � 1

� �

Jdrifte x1ð Þ ¼ q
Dp

Lp
Δpn 1� e

�x1
Lp

� �
8>>><
>>>:

ð9:58Þ

It is important to remember that the sign convention chosen for Jdrifth x2ð Þ is
opposite that of axis x.

9.4 Deviations from the Ideal p-n Diode Case

Before deriving the ideal diode equation in the previous section, it was necessary to
make several assumptions. In reality, these assumptions are not necessarily valid,
and the ideal diode equation gives only qualitative agreement with actual
measurements of the I-V characteristics of real p-n junction diodes. This deviation
from the ideal case is mainly due to (a) generation of carriers in the depletion region,
(b) surface leakage effects at the periphery of a real junction, (c) recombination of
carriers in the depletion region, (d) the high-injection condition (when the injection
of minority carriers exceeds the doping density), and finally (e) all the applied bias
not being dropped across the depletion region due to series resistance effects. The
above deviations are illustrated in the figure below. The special case of reverse
breakdown will be discussed in Subsect. 9.4.3 (Fig. 9.18).

9.4.1 Reverse Bias Deviations from the Ideal Case

Part of the deviation of the leakage current from the ideal reverse saturation current
arises from the thermal generation of electron-hole pairs within the space charge
region. The built-in electric field separates these carriers and they drift toward the
neutral regions of the diode. This drift results in an excess current that is in addition
to the diffusion of minority carriers, discussed in the ideal case. Section 8.6
introduced the concept of thermal generation of carriers, and along with it a thermal
generation rate per unit volume Gt(T ), expressed in cm�3�s�1. Since the volume of
the depletion region is equal to WA, assuming no recombination occurs, the current
due to generation in the depletion region can be expressed as:
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Igen ¼ qWAGt Tð Þ ð9:59Þ
Under reverse bias the current can then be expressed as the sum of the diffusion

and generation components:

Irev ¼ qA
Dp

Lp
pn þ

Dn

Ln
np

� �
þ qWAGt Tð Þ: ð9:60Þ

Since the depletion layer width (W ) depends upon the applied bias, the reverse
current of the diode now shows a bias dependence: as the reverse bias is increased,
the depletion width widens, and hence this increases the generation current leading
to a corresponding increase in the reverse leakage current as a function of applied
bias. In addition to excess carriers arising from thermal generation, it is possible for
external photoexcitation to create carriers in the depletion region – this is the case of
a photodiode.

This leakage current is further compounded by the surface leakage. Surface
leakage effects are due to the finite extent of the p-n junction area and the
characteristics of the junctions that occur at the periphery of the diode. This is due
primarily to ionic charges on or outside the semiconductor that induce corresponding
image charges within the semiconductor. These charges create their own surface

Reverse Bias

abs(I)

Ideal Reverse 

Ideal Forward

Recombination

Diffusion

High-Injection

Series
Resistance

Generation

Forward Bias

Fig. 9.18 The current-voltage characteristic for a real Si p-n junction diode (solid) does not exactly
match the behavior of a Si junction diode predicted by the ideal diode model (dotted), both shown
above in semilog scale. A real Si diode shows the following deviations from the ideal (diffusion
limited) case: reverse leakage current due to thermal generation and surface leakage effects,
recombination in the depletion region, high-injection deviation, and series resistance effects
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depletion region that acts as a parallel conduction channel that bypasses the p-n
junction and allows current to flow along the surface of the diode. Typically this
leakage current increases with reverse bias.

9.4.2 Forward Bias Deviations from the Ideal Case

Under forward bias recombination dominates over the generation processes. In order
to supply the carriers lost to recombination, the net external current flowing
through the diode is increased. This current is called the recombination current
(Irec). The recombination rate is at its maximum near the center of the depletion
region, where nearly equal number of electrons and holes are available to contribute
to recombination. Assuming a linear variation of the potential across the depletion
region, the potential at the center can be taken as V0�V

2 . In this case the carrier

concentration at the center of the depletion region depends upon exp � q V0�Vð Þ
2kbT

� 	
rather than exp q V0�Vð Þ

kbT

� 	
. The rate at which electrons and holes are recombining is

then proportional to exp qV
2kbT

� 	
. By introducing a material constant (IR0) dependent

upon the minority carrier recombination lifetimes in the respective halves of the
depletion layer, and the overall depletion layer width, it becomes possible to arrive at
an expression for the recombination current (IR):

IR � IR0exp
qV

2kbT

� �
ð9:61Þ

Combining this new equation for the recombination current together with the
existing minority carrier diffusion current yields a new expression for the total
current though the diode:

I ¼ I0exp
qV

kbT

� �
þ IR0exp

qV

2kbT

� �
ð9:62Þ

In working with real diodes, this equation is generally represented in an empirical
form by introducing a new factor n called the ideality factor:

I � I0exp
qV

nkbT

� �
ð9:63Þ

In this combined equation, the ideality factor n tends toward 2 when recombina-
tion current dominates and tends toward 1 when diffusion current dominates and
varies from 1 to 2 when both currents are comparable. In the case of silicon diodes
operating at room temperature, both processes can be seen to operate as the current
injection is increased from low to moderate levels.

Under higher levels of current injection (under forward bias), the diode enters the
high-injection regime where the injected minority carrier density becomes
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comparable or greater than the majority carrier density. In this case the current

becomes proportional to exp qV
2kbT

� 	
, as is shown in Fig. 9.19.

Under higher reverse bias, the contact potentials and the potential drop across the
bulk regions of the semiconductor cease to be negligible, and the series resistance of
the p-n diode no longer dominates. At this point the exponential increase in current
begins to subside in favor of a more linear increase, limited by the series resistance of
the diode. The empirical diode equation introduced above can be modified to take
this behavior into account, by introducing a term (RS) for the series resistance. Thus
the equation becomes:

I � I0exp
q V � IRSð Þ

nkbT

� �
ð9:64Þ

9.4.3 Reverse Breakdown

In the ideal p-n junction diode model, we saw that the current through a p-n junction
diode was limited by the saturation current �I0 when a reverse bias was applied.
Even in the non-ideal case the reverse current was seen to increase slowly. In reality,
this model holds only up to a certain value of reverse bias �Vbr, called the
breakdown voltage. At that point, the current suddenly increases dramatically as
shown in Fig. 9.19 . This phenomenon is called reverse breakdown. The peak value
for the internal electric field strength (i.e., at x ¼ 0) corresponding to this applied
reverse bias is called the critical electric field.

This situation is not necessarily a damaging one for the p-n junction and is
reversible, as long as the current can be limited to prevent too much power from
being dissipated inside the device. Otherwise, parts of the device can be physically
destroyed (e.g., melted).

There are two major mechanisms for the reverse breakdown: avalanche break-
down which occurs at higher reverse biases as a result of impact ionization and Zener
breakdown which occurs at lower reverse biases as a result of tunneling across the
junction.

V0

I

−I0

−Vbr

Fig. 9.19 Current-voltage
characteristic for an ideal p-n
junction diode showing a
reverse breakdown. When the
voltage across the p-n junction
is equal to the reverse
breakdown voltage, the
current increases dramatically.
If it is not limited, this current
can damage the diode through
heating
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9.4.4 Avalanche Breakdown

As a stronger reverse bias is applied, the electric field strength across the space
charge region increases. The charge carrier particles, holes, and electrons which drift
across the depletion region can therefore achieve higher velocities.

When the reverse bias is strong enough, typically higher than 6Eg/q and can even
go up to 1000 V, the electric field strength can become so large that a hole or an
electron can gain sufficient kinetic energy to impact on a semiconductor lattice atom
and ionize it, or even break a chemical bond. This phenomenon is called impact
ionization. It may seem conceptually difficult to envision a hole impacting on the
crystal lattice, but this can be better understood when we realize that when a hole
moves in one direction, it in fact corresponds to the motion of an electron in the
opposite direction with the same velocity. An accelerated particle must typically
acquire energy at least equal to the bandgap energy Eg in order to break a chemical
bond, because this corresponds to the energy required to excite an electron from the
valence band to the conduction band. Therefore, for wider bandgap semiconductors,
higher electric field strength is necessary to ensure impact ionization.

As a result of impact ionization, an electron-hole pair (EHP) is created within the
space charge region in addition to the impacting particle. The electron and the hole
from the pair will then be spatially separated by the electric field present at that
location: the electron drifting toward the n-type side and the hole toward the p-type
side, as illustrated in Fig. 9.20.

The electrons and holes thus generated can themselves be further accelerated by
the electric field. If they reach a sufficient high kinetic energy within the space
charge region, they can in turn contribute to create additional EHPs through ionizing
collisions. This results in a cascade or avalanche effect. One initial charge carrier
thus has the potential to create many additional carriers, and a dramatic increase in
current is achieved as the one shown in Fig. 9.19.

It is possible to characterize the avalanche breakdown quantitatively by
introducing a multiplication factor M such that the reverse current near breakdown
is given by MI0 where I0 is the saturation current. This factor actually means that an
incident electron results in a total ofM electron-hole pairs. This factor is empirically
given by:

M ¼ 1

1� V r
Vbr

� 	n ð9:65Þ

where Vr is the reverse bias, Vbr is the breakdown voltage, and n is an exponent in the
range 3~6. From this expression, we clearly see that the reverse current, MI0,
increases sharply when Vr nears Vbr as depicted in Fig. 9.19.

The avalanche process is more likely to occur when a wide enough space charge
region can be sustained to ensure sufficient acceleration. This can be more easily
achieved by using lightly doped p-n junctions because, if heavily doped junctions are
used, another phenomenon can more easily occur: the tunneling of charge carriers
from one side of the junction to the other.
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Example

Q A voltage-stabilizing diode takes advantage of the steep slope in the breakdown
regime to clamp the voltage. For such a kind of diode with Vbr ¼ �14 V,
estimate how many times the current will increase when the reverse bias goes
from �13.990 to �13.995 V. Assume n ¼ 6.

A The multiplication factor if given by: M ¼ 1

1� V r
Vbr

� 	n. For the two reverse biases

mentioned, we get the ratio of the multiplication factor:

M1

M2
¼

1� V2
Vbr

� 	n
1� V1

Vbr

� 	n
¼ 1� 13:990

14

� �6
1� 13:995

14

� �6
¼ 2

The current will thus increase by a factor 2 when the voltage is reduced by
0.005 V.
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Fig. 9.20 Impact ionization
process: under strong reverse
bias, electrons and holes are
injected into the depletion
region; when they gain
enough kinetic energy, they
impact on the semiconductor
lattice to create electron-hole
pairs. These newly created
carriers can then lead to the
same impact ionization
process if they can gain
enough kinetic energy within
the space charge region
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9.4.5 Zener Breakdown

Under a more moderate reverse bias, typically less than 6Eg/q, the top of the valence
band in the p-type side EVp is already higher than the bottom of the conduction band
in the n-type side EVc. This situation is illustrated in Fig. 9.21. This means that the
electrons at the top of the valence band in the p-type side have the same or higher
energy than the empty states available at the bottom of the conduction band in the n-
type side.

This staggering of the energy bands also results in a reduced spatial separation
between the conduction and valence bands, as shown by d in Fig. 9.21 .Moreover, in
heavily doped p-n junctions, the space charge region is already narrow (with a width
W ) and does not expand much under a moderate reverse bias.

The staggered alignment of the energy bands and their spatial proximity favor the
tunneling of electrons from the valence band in the p-type side into the conduction
band in the n-type side, as shown in Fig. 9.21. This leads to a negative current. This
process is called the Zener effect. As there are many electrons in the valence band
and many empty available states in the conduction band, the tunneling current can be
substantial.

The Zener tunneling probability TZ is strongly field dependent on the applied bias
V and the bandgap Eg. It can be written as:

TZ ¼ exp � 4
ffiffiffiffiffiffiffiffiffi
2m∗

p

3qVh
E3=2
g

( )
ð9:66Þ

Fig. 9.21 Zener breakdown
mechanism involving
electrons tunneling from the
valence band of the p-type
side to the conduction band of
the n-type side
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9.5 Metal-Semiconductor Junctions

As we have already mentioned in Subsect. 9.2.6 and illustrated in the case of a p-n
junction, two dissimilar materials in contact with each other and under thermal
equilibrium must have the same value of Fermi energy.

When a metal is brought into contact with a semiconductor, a certain amount of
band bending occurs to compensate the difference between the Fermi energies of the
metal and that of the semiconductor. In fact, this difference in Fermi energy means
that electrons in one material have a higher energy than in the other. These will
therefore tend to flow from the former to the later material. There is thus a transfer of
electrons across the metal-semiconductor junction in a similar way as the charge
transfer in the case of a p-n junction. Such a junction is also often called a metallurgic
junction or a metal contact because metals are commonly used in semiconductor
industry to connect or “contact” a semiconductor material to an external electrical
circuit.

The charge transfer can be readily achieved because, as we saw in Fig. 5.11 in
Subsect. 5.2.7, the Fermi energy in a metal lies within an energy band, which makes
it easy for electrons to be emitted from or received by a metal. This charge
redistribution gives rise to a local built-in electric field which counterbalances this
redistribution. When sufficiently large electric field strength is established around the
metallurgic junction, the redistribution stops.

Since the overall charge neutrality must be maintained, the excess electrical
charges inside the semiconductor and that inside the metal must be of an equal
amount but with opposite signs. However, because a metal has a much higher charge
density than a semiconductor, the width over which these excess charges spread
inside the metal is negligibly thin in comparison to the width inside the semiconduc-
tor. This is somewhat similar to the case of a p-n junction with one side heavily
doped. As a result, the built-in electric field and the band bending are primarily
present inside the semiconductor as well. The following section aims at giving a
quantitative description of the physical properties of a metal-semiconductor
junction.

9.5.1 Formalism

The physical parameters which need to be considered in this description are depicted
in Fig. 9.22. For the metal, these include its Fermi energy EFm and work function
Φm > 0. As we saw when discussing the photoelectric effect in Chap. 4, the work
function of a metal is the energy required to extract one electron from the metal
surface and pull it into the vacuum. In a more quantitative manner, the work function
is the energy difference between the Fermi energy and the vacuum level as shown in
Fig. 9.22. For the semiconductor, the parameters of interest also include its Fermi
energy EFs, its work function Φs > 0, and also its electron affinity χ > 0. The latter is
the energy required to extract one electron from the conduction band of the semi-
conductor into the vacuum and is given by the energy difference between the bottom

356 9 Semiconductor p-n and Metal-Semiconductor Junctions



of the conduction band and the vacuum level. A few values of electron affinity for
elements in the periodic table are given in Fig. A.12 in Appendix A.3.

The amount of band bending and the direction of electron transfer depend on the
difference between the work functions of the metal and the semiconductor. When
these materials are isolated, their vacuum levels are the same, as illustrated in
Fig. 9.22. But, when these materials come into contact, the Fermi energy must be
equal on both sides of the junction. The vacuum level is at an energy Φm above the
top of the metal Fermi energy, while it is Φs above the semiconductor Fermi energy.
This means that the energy bands in the semiconductor must shift upward by an
amount equal to Φm�Φs in order to align the Fermi energy on both sides of the
junction.

On the one hand, ifΦm >Φs, the energy bands of the semiconductor actually shift
downward with respect to those of the metal, and electrons are transferred from the
semiconductor into the metal, as shown in Fig. 9.23. The signs of the charge carriers
which appear on either side of the junction and the direction of the built-in electric
field, also shown in Fig. 9.23, are determined from the analysis conducted for a p-n
junction. On the other hand, if Φm < Φs, the energy bands in the semiconductor shift
upward with respect to those of the metal, and the electrons are transferred from the
metal into the semiconductor.

9.5.2 Schottky and Ohmic Contacts

The electrical properties of a metal-semiconductor junction depend on whether a
depletion region is created as a result of the charge redistribution. This phenomenon
in turn depends on the difference in work function Φm-Φs, and on the type of the
semiconductor (n-type or p-type).

Indeed, we know that when Φm > Φs, electrons are extracted from the semicon-
ductor into the metal.

If the semiconductor is n-type, then this process depletes the semiconductor of its
electrons or majority charge carriers. A depletion region thus appears near the
junction, and we obtain a diode-like behavior similar to a p-n junction when an

EC

EV

EFs

Fs
c

Fm

EFm

Metal Semiconductor

Vacuum
level

Fig. 9.22 Fermi energies,
work functions in a metal and
a semiconductor, when
considered isolated from each
other. The vacuum level is the
same for both materials, but
the Fermi energies are
generally different
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external bias is applied. This is shown in Fig. 9.24a. This situation is often called a
rectifying contact or Schottky contact.

However, if the semiconductor is p-type, the electrons which are extracted from
the semiconductor are taken from the p-type dopants which then become ionized.
This process thus creates more holes or majority charge carriers. In this case, there is
no depletion region, but rather majority carriers are accumulated near the junction
area, and we do not observe a diode-like behavior. Majority carriers are free to flow
in either direction under the influence of an external bias. This is shown in Fig. 9.25a.
This situation is often called an ohmic contact and the current-voltage characteristics
are linear.

If we now consider Φm < Φs, electrons are extracted from the metal into the
semiconductor. The previous analysis needs to be reversed. In other words, for an n-
type semiconductor, the junction will be an ohmic contact, while for a p-type
semiconductor, the junction will be a Schottky contact.

These four configurations are shown in Figs. 9.23 and 9.24 and summarized in
Table 9.1.

In the case of a Schottky contact, the existence of the depletion region means that
there is a potential barrier across the junction which can be shifted by an amount
equal to -qV when an external voltage V is applied between the metal and the
semiconductor. This in turn influences the current flow in a similar way as for a
p-n junction. This is shown in Fig. 9.26 for the case of an n-type semiconductor. It is
however important to understand that majority carriers are responsible for the current
transport in a metal-semiconductor junction, whereas in a p-n junction, it is due to
the minority carriers.

The sign convention for a metal-semiconductor junction is the same as for a p-n
junction by considering the type of the semiconductor. Although the current
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Fig. 9.23 Energy levels,
accumulated charge carriers,
and built-in electric field in a
metal-semiconductor
junction. When the metal and
the semiconductor are brought
into contact, at equilibrium,
the energy band profile of the
semiconductor near the
junction is modified so that
the Fermi energies become
equal in both materials
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transport mechanism in a Schottky contact is somewhat different from that in a p-n
junction, the current-voltage relation for an ideal Schottky contact has a similar
expression as for an ideal p-n junction:

I ¼ I0 e
qV
kbT � 1

� 	
ð9:67Þ

where I0 is the reverse saturation current and is exponentially proportional to the
difference between the metal work function Φm and the semiconductor electron
affinity χ:

I0 ¼ ABeT
2e

� Φm�χð Þ
kbT

� 	
ð9:68Þ
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Fig. 9.24 These two of the four possible metal-semiconductor junction configurations lead to a
Schottky contact: (a)Φm >Φs and n-type, (b)Φm <Φs and p-type. A Schottky contact is obtained in
each case because the majority carriers in the semiconductor experience a potential barrier which
prevents their free movement across the metal-semiconductor junction, and therefore as shown at
the bottom of the figure, the I-V characteristic shows rectifying behavior
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Be is the effective Richardson constant, and for most metal-semiconductor
Schottky junctions, it varies from 10 to 100 K�2 cm�2. The quantity (Φm�χ) is
often denoted qΦB, where ΦB is called the Schottky potential barrier height. For a
real Schottky contact, one needs to take into account thermionic emission (Appendix
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Fig. 9.25 These two of the four possible metal-semiconductor junction configurations lead to an
ohmic contact: (a)Φm >Φs and p-type, (b)Φm <Φs and n-type. Unlike the configurations shown in
Fig. 9.24, the energy band profiles here are such that the majority carriers in the semiconductor can
move across the metal-semiconductor junction without experiencing a potential barrier, and there-
fore as shown at the bottom of the figure, the I-V characteristic shows ohmic behavior

Table 9.1 Four possible
metal-semiconductor
junction configurations and
the resulting contact types

Semiconductor Junction

Φm > Φs n-type Schottky

Φm < Φs p-type Schottky

Φm > Φs p-type Ohmic

Φm < Φs n-type Ohmic
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A.9), as well as impurity and interface states. In this case, the current-voltage relation
is given by:

I ¼ I0 e
qV

nkbT � 1
� 	

ð9:69Þ

where n is the ideality factor as mentioned before and is typically between 1 and 2.

9.6 Summary

In this chapter, we have presented a complete mathematical model for an ideal
p-n junction, based on an abrupt homojunction model and the depletion approxima-
tion. We introduced the concepts of a space charge region, built-in electric field,
built-potential, and depletion width at equilibrium. We have discussed the balance of
electrical charges, as well as that of the diffusion and drift currents within the space
charge region.

The non-equilibrium properties of p-n junctions have also been discussed. The
forward bias and reverse bias conditions were examined. We emphasized the
importance of minority carrier injection and extraction. We derived the diode
equation and understood the nature of the currents outside the space charge region.
We have discussed the avalanche and Zener breakdown mechanisms as deviations
from the ideal p-n junction diode behavior under strong reverse bias conditions.

Finally, we presented the electrical properties of metal-semiconductor junctions
and introduced the concepts of Schottky and ohmic contacts.

Problems

1. A p-n junction diode has a concentration of NA ¼ 1017 acceptor atoms per cm3

on the p-type side and a concentration of ND donor atoms per cm3 on the n-type
side. Determine the built-in potential V0 at room temperature for a germanium
diode for values of ND ranging from 1014 to 1019 cm�3. Also determine the peak

W W
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EFs

EFmEFm

a b

EC
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EFs
EC

Fig. 9.26 Band alignment in a Schottky metal-(n-type) semiconductor contact under (a) forward
bias where the potential barrier is reduced, and under (b) reverse bias where the potential barrier is
increased, thus reducing the tunneling of carriers
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value of the electric field strength for this same range, and plot both of these
values as a function of ND on a semilog scale.

2. Consider a GaAs step junction with NA ¼ 1017 cm�3 and ND ¼ 5 � 1015 cm�3.
Calculate the Fermi energy in the p-type and n-type regions at 300 K. Draw the
energy band diagram for this junction. Determine the built-in potential from the
diagram and from Eq. (9.22). Compare the results.

3. Consider an asymmetric p+-n junction, which has a heavily doped p-type side
relative to the n-type side, i.e., NA> > ND. Determine a simplified expression for
the width of the space charge region given in Eq. (9.23).

4. Calculate the depletion width for a Si p-n junction that has been doped with 1018

acceptor atoms per cm3 on the p-type side and 1016 donor atoms per cm3 on the
n-type side. Compare this depletion width to the width of the depletion region on
the n-side (from Eq. (9.33)). What percentage of the width lies within the n-type
semiconductor. T ¼ 300 K.

5. A silicon p-n diode with NA ¼ 1018 cm�3 has a built-in voltage of 0.814 eV and
capacitance of 10�8 F�cm�2 at an applied voltage of 0.5 V. Determine the donor
density. A ¼ 1 cm2.

6. Plot the diode equation for an ideal Si p-n junction diode with an area
50 μm2, an acceptor concentration NA ¼ 1018 cm�3, a donor concentration

ND ¼ 1018 cm�3, recombination lifetimes equal to τn ¼ τp ¼ 1 μs, and diffusion
coefficients equal to Dn ¼ 35 cm2�s�1 and Dp ¼ 12.5 cm2�s�1.

7. Consider a Si p-n step junction with NA ¼ 1017 cm�3 and ND ¼ 1016 cm�3, with
recombination lifetimes τp ¼ 0.1 μs and τn ¼ 0.01 μs and carrier mobilities
μh ¼ 450 cm2/Vs and μe ¼ 800 cm2/Vs at 300 K.

8. Determine the total reverse saturation current density, the reverse saturation
current density due to holes and that due to electrons.

9. Assume a forward bias equal to V0/2 is applied, where V0, the built-in potential,
is equal to 0.7546 V. Calculate the injected minority carrier currents at the edges
of the space charge region.

10. Assume a reverse bias equal to -V0/2 is applied. Calculate the minority carrier
currents at the edges of the space charge region.

11. A Si p-n junction is doped with an acceptor concentration NA ¼ 5 � 1018 cm�3

and a donor concentration ND ¼ 5 � 1015 cm�3. The critical electric field
strength for breakdown is equal to 105 V�cm�1. Determine the breakdown
voltage and the corresponding depletion width. Do the same for a donor
concentration ND ¼ 5 � 1017 cm�3.

12. Consider an ideal metal-semiconductor junction between p-type silicon
and polycrystalline aluminum. The Si is doped with NA ¼ 5 � 1016 cm�3.
The metal work function is 4.28 eV and the Si electron affinity is

4.01 eV. Draw the equilibrium band diagram and determine the barrier
height ϕB.

13. Consider the same silicon-aluminum metal-semiconductor junction. The cross-
sectional area of the junction is 10 μm2. Assume that Be is 30 AK�2 cm�2

and the ideality factor n is 1. Calculate the reverse saturation current and plot
the I-V curve as a function of applied bias.
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Optical Properties of Semiconductors 10

10.1 Introduction

In previous chapters, we introduced the reader to the fundamental concepts of
quantum mechanics, band structure, and semiconductor physics. In this chapter we
have the opportunity to apply this acquired knowledge of the electronic structure of
solids to understand the optical properties. We do this by modeling the optical
response properties, in particular the permittivity of the solid. We present the
formalism which allows one to calculate the permittivity and then study how this
permittivity affects the light penetrating the solid. We shall demonstrate how band
structure and free electrons determine the permittivity, and therefore the way light
propagates in a solid, and how much of this light gets absorbed. We shall investigate
under what circumstances the lattice can couple to photons and how this coupling
can affect the velocity of light in a medium. But we shall see in the next chapters that
band structure depends on the dimensionality of the system, and we have already
seen in Chaps. 8 and 9 that carriers can be added or neutralized in semiconductors.
So it turns out that just in the same way that the energy bands can be engineered, so
can the optical properties. Atom by atom growth and miniaturization are modern key
engineering tools, but so is the application of external electric and magnetic fields. In
the last sections of this chapter, we therefore investigate how an electric or a
magnetic field modifies the band structure and how this reflects on the optical
properties. The fundamental concepts developed in this chapter are a necessary
prerequisite to understand the way optical methods can be used to characterize the
electronic structure of semiconductors as is described in Chap. 15.

Maxwell showed many years ago that light is an electromagnetic wave which
travels in space and in media and interacts with the medium because the electric field
vector of the light can polarize the medium and move the free charges about and
produce a time-dependent current. The field changes the medium which acts back on
the wave, becomes the wave, and affects its speed and amplitude.
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Quantum theorists, as we have seen in Chap. 4, have shown that electromagnetic
waves can also be viewed as moving vibrations which consist of bundles of energy,
as particles called photons, which each carry a specific quantum of energy propor-
tional to the frequency of the vibration ν; the energy is hν ¼ hω where ω is the
angular frequency. In analogy to phonons, the quantum of lattice vibrations, it turns
out in practice that for most purposes, the classical description of light (photons) is
quite adequate, and we shall therefore continue our study of optical properties using
Maxwell’s equations. When necessary we will change to quantum mechanics, but
throughout we shall also freely use the term photons to describe the particles which
constitute a beam of light.

10.2 The Complex Refractive Index of a Solid

10.2.1 Maxwell’s Equations

In order to understand how light interacts with a semiconductor, we need to say a few
words about light propagation in a given medium. Consider a medium which has
both bound electrons and free electrons. The propagation of light in this medium is
described by Maxwell’s equations. Maxwell’s equations can be written in a form
which from the very beginning distinguishes a conducting medium from a noncon-
ducting medium, by writing:

—
!

� E
!¼ �∂ B

!

∂t
ð10:1Þ

—
!

� H
!¼ σ ωð Þ E! þ∂ D

!

∂t
ð10:2Þ

—
!

� D!¼ ρ ð10:3Þ

—
!

� B!¼ 0 ð10:4Þ
where σ(ω) is the complex frequency-dependent conductivity of the medium with a

density of ρ mobile charges, and E
!
, D

!
, H

!
, and B

!
are the electric field,

displacement, magnetic field, and magnetic flux, respectively.
We are mainly interested in neutral media, so we shall put ρ ¼ 0 and assume that

the relative permittivity εb of a medium with bound charges in D
!¼ ε0εb E

!
is time

independent andD
!¼ ε0 E

! þ P
!
where P

!
is the bound polarization vector which gives

the electric dipole moment per unit volume and ε0 is the permittivity of free space.

We also assume that the medium is not magnetic so that B
!¼ μμ0 H

!
, μ ¼ 1,

the permeability of free space. Using the fact that the velocity of light in free
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space is c2 ¼ (μ0ε0)
�1, one can combine Eqs. (10.1 and 10.2) by taking the “curl”

(or “rot”) of Eq. (10.1) to give the wave equation for an EM wave as:

— 2 E
!¼ 1

c2
εb

∂2 E
!

∂t2
þ σ

ε0

∂ E
!

∂t

 !
ð10:5Þ

As we will see, this equation describes a traveling wave that can be solved by
assuming that the electric field of the light is of the form:

E
!¼ E

!
0 exp i

�
k
!
� r! �ωt

�� �
ð10:6Þ

The substitution of Eq. (10.6) into Eq. (10.5) then gives rise to the requirement

that to be a solution; the length of the vector k
!

(the wavevector) must satisfy the
complex equation:

k ¼ ω

c
εb þ iσ

ε0ω

� �1=2

ð10:7Þ

since the wavevector k ¼ k0 ¼ ω
c in free space, we can interpret the square root factor

in Eq. (10.7) as the complex refractive index of the material �N:

�N ¼ εb þ iσ

ε0ω

� �1=2

ð10:8Þ

We recall that in this representation, εb refers to the (relative) bound electron
permittivity and is itself normally a complex quantity. This is why some authors
prefer to work with a total relative complex permittivity ( εt ωð Þ ¼ εb þ iσ

ε0ω
) and

define D
!¼ ε0εt E

!
, which includes both the complex free and the complex bound

electron permittivities. In the notation that we have chosen, the conductivity of the
medium is made explicit, and σ(ω) is the complex frequency-dependent conductivity
of the system, the real part of which is the AC conductivity or, with geometry factor
(area /length), the “conductance” of the system. The imaginary part then corresponds
to ωC where C is the capacitance. Indeed if we separate the bound electron
permittivity into real εr and imaginary parts εi, we have:

�N2 ¼ εr þ i εi þ σ

ε0ω

� �
ð10:9Þ

The free electron contribution to the permittivity is now by definition:

ε f ωð Þ ¼ i
σ ωð Þ
ε0ω

ð10:10Þ
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We can now rewrite the complex refractive index and complex wavevector as:

�N ¼ �nþ iκ ð10:11Þ

k ¼ �nω

c
þ iκω

c
¼ �Nk0 ð10:12Þ

The imaginary part of Eq. (10.11) acquires physical significance as soon as we
substitute Eq. (10.12) back into the wave solution Eq. (10.6) and for simplicity
assume propagation in the z-direction only, then we have:

E
!¼ E

!
0 exp iω

�nz

c
� t

� �� 	
exp �ωκz

c


 �
ð10:13Þ

For E
!
0
¼ Ex

0 x
!
the corresponding Hy

0 is given by Hy
0 ¼ �N

ffiffiffiffiffi
ε0
μ0

r
Ex
0 where we also

have from Eq. (10.9) and σ ¼ σr + iσi:

�n2 � κ2 ¼ εr � σi
ωε0

2�nκ ¼ εi þ σr
ε0ω

ð10:14Þ

The medium has modified the electromagnetic wave or photon, in two ways. It
has changed the velocity of propagation from c to c=�n, and it has given rise to
damping. The damping is due to the imaginary part of k and is caused by the
absorption of electromagnetic energy in the medium. From Eq. (10.14) it follows
that one principal source of absorption is the conductivity term. But loss of ampli-
tude can also be caused by the bound electrons absorbing light energy and getting
excited into higher-energy levels in the solid. Bound electron absorption happens at
relatively high frequencies, so that in practice, as we shall see later, the
low-frequency damping is mainly due to free charges, and the high-frequency
damping is mainly due to band-to-band absorption. Noting that the energy density
is proportional to the square of the electric field amplitude, we recover the Beer-
Lambert law:

Ej j2 ¼ E0j j2e�αz

α ¼ 2κ
ω

c

ð10:15Þ

where α is the absorption coefficient and measured in units of m�1 in the MKS units
as used here.

A word of caution as to the definition of the absorption coefficient. In the
transmission of light through a material, the electric field amplitude can decay not
just because of absorption. The decay may be due to a disorder, i.e., scattering, and
this is why some authors prefer to compute the power dissipated per unit length.
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The optical power density of the electromagnetic wave in units of W/m2 is given by
the time averaged Poynting vector:

S
!
¼ 1=2Re

�
E
! �H

!
∗
� ¼ �nc

2
ε0 Ex

0

� �2
e�αz z

! ð10:16Þ

10.2.2 Reflectivity

Before getting on with the evaluation of the complex permittivities and conductivity,
it is convenient to investigate what happens when photons, or in other words the light
beam, are incident onto a medium with complex refractive index coming from free
space. Consider for simplicity normal incidence as shown in Fig. 10.1.

The wavevector k¼ k0z has a z-component only and is traveling in the z-direction.
We assume that the wave is polarized with its Ex vector lying in the x-y plane and
pointing in the x-direction. The boundary of the two media is at z ¼ 0, so in the
region z > 0, i.e., in the medium, the EM wave is traveling in one direction only and
given by:

Ex t; zð Þ ¼ E0 exp iω
�Nz

c
� t

� �
ð10:17Þ

We are assuming that the medium is thick, so that there is no back reflected wave
from a second interface. In the z < 0 region, free space, we have both the incoming
wave Ei and the reflected wave Er:

Ex t; zð Þ ¼ Ei exp iω
z

c
� t


 �h i
þ Er exp �iω

z

c
þ t


 �h i
ð10:18Þ

The continuity requirement of the electric field at the boundary z ¼ 0 gives us:

E0 ¼ Ei þ Er ð10:19Þ
Knowing the electric field allows us to deduce the magnetic field using Maxwell’s

equation so that, for z > 0:

Ei

k0

Er

k0

E0

N k0

z0Fig. 10.1 The reflection and
transmission process
expressed in terms of a
diagram
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Hy ¼ �1
ωμ0

�
�Nk0
�
Ex ð10:20Þ

and then use the continuity condition for H at the boundary, which gives:

�NE0 ¼ Ei � Er ð10:21Þ
Note the magnetic field at z ¼ 0 depends on the direction of propagation.
From this pair of equations, we can deduce the relation:

Er

Ei
¼ 1� �N

1þ �N
ð10:22Þ

The ratio of reflected to incident power is the reflectivityR ¼ Er
Ei




 


2 of the medium,

and the squared of the absolute value of Eq. (10.22) gives:

R ¼ 1� �N

1þ �N











2

¼
�
�n� 1

�2 þ κ2�
�nþ 1

�2 þ κ2
ð10:23Þ

Thus knowing the complex refractive index as a function of frequency allows us
to immediately calculate the reflectivity of a medium. One should note that there is,
at this stage, no simple intuitive way of seeing from Eq. (10.23) when a medium is
highly reflective or not. One has to calculate the equation. In order to develop this
intuition, we need to go one step forward and actually derive explicit expressions for
the refractive index in limiting situations of interest. Before that, it is useful and
instructive to also consider the optical transmission and reflection through a slab of
finite thickness d.

10.2.3 Transmission Through a Thin Slab

If R is the reflectivity, A the absorbance, and T the transmissivity, for a slab of finite
thickness d, we must, by energy conservation, haveR + T + A¼ 1. In the region z < 0,
we have two waves as before, the incoming and reflected waves Ei and Er1. In region
z > 0, inside the medium, the EM wave now also consists of two components, one
moving forward as before Et1 and one back reflected from the second interface Er2.
The second interface is at z ¼ d. The waves Et1 and Er2 are traveling inside the
medium and are therefore simply related via Eq. (10.6) to the corresponding waves at
z ¼ d, E’t1, and E’r2 by a phase factor e�dk0N . Outside, we have the outgoing
transmitted wave into free space Et2. The boundary condition for the electric and
magnetic field must be taken at z ¼ 0 and at z ¼ d and give four equations for four
unknowns (Er1, Et1, Er2, Et2) and allow an explicit solution of this problem as before.

The transmissivity T defined as Et2
Ei




 


2 becomes:
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T ¼
1� r01j j2

 �2

e�αd

1� r01j j2e�αd

 �2

r01j j2 ¼ 1� �N
1þ �N




 


2
ð10:24Þ

where α ¼ 2ωc κ is the absorption coefficient in the medium and |r01|
2 can be

recognized to be from Eq. (10.23) the reflectivity of the slab if it were very thick.

The reflectivity of the slab R is given by the ratio Er1
Ei




 


2 and correspondingly:

R ¼ r01j j2 1� e�αd
� �2

1� r01j j2e�αd

 �2 ð10:25Þ

From Eqs. (10.24 and 10.25), one can now deduce the absorbance A� 1� R� T.
In the limit of a very thick slab, e�αd ! 0and R reduces to the previous expression.

10.3 The Free Carrier Contribution to the Complex
Refractive Index

10.3.1 The Drude Theory of Conductivity

In Chap. 7 we calculated the conductivity of a nearly free electron gas in a dc field
using a very simple relaxation time model also called the Drude model. We now
consider the same model but allow the electric field to be time dependent. In
particular, this can be the electric field vector of an impinging light (EM) wave as
considered above.

Newton’s law for carriers of effective mass m* in a time-dependent field E0e
�iωt

and subject to the frictional force (Chap. 8) can be written as:

m∗ d2x

dt2
þ m∗dx

dt

1
τ
� qE tð Þ ð10:26Þ

The displacement x(t) of the particle is also expected to oscillate in time and
follow the field, so that a solution to this equation could be x(t) ¼ x0e

�iωt. Substitute
this trial function into Eq. (10.26) and differentiate in time. The condition that this
can be a solution to Eq. (10.26) is that:

�m∗ω2x0 � m∗iω

τ
x0 ¼ �qE0 ð10:27Þ

which immediately allows us to extract the amplitude x0 as:
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x0 ¼ qτ

m∗iω

1
1� iωτ

� �
E0 ð10:28Þ

When negative charges move against a positive background, they produce a
dipole. The polarization density produced by the time-varying field is the next
quantity of interest. Thus the polarization density produced by a density nc of
displaced electronic charges is given by:

P ¼ �ncqx tð Þ ¼ � ncq2τ

m∗iω

1
1� iωτ

� �
E0e

�iωt ð10:29Þ

from which we can now also deduce the polarizability or optical susceptibility as the
ratio:

αp ωð Þ ¼ Pc tð Þ
E0e�ωt

ð10:30Þ

and write:

αp ωð Þ ¼ � ncq2τ

m∗iω

1
1� iωτ

� �
ð10:31Þ

And for the complex conductivity we have, from the current:

� ncqdxdt
E0e�iωt

¼ σ ωð Þ ¼ ncq2τ

m∗

1
1� iωτ

� �
ð10:32Þ

From the polarizability, we can deduce the relative permittivity produced by

nearly free electrons, in the usual electrodynamic way (ε f ¼ 1þ αp
ε0


 �
):

ε f ¼ 1� ncq2τ

ε0m∗iω

1
1� iωτ

� �
ð10:33Þ

It is convenient and useful to rewrite the relative permittivity in a form which
involves the plasma frequency ωp and rewrite it as:

ε f ¼ 1� ω2
p

ω2

ωτ ωτ � ið Þ
1þ ωτð Þ2

 !
ð10:34Þ

ω2
p ¼

ncq2

m∗ε0
ð10:35Þ

The plasma frequency is the frequency at which the electron gas would oscillate
as a whole if the electrons were collectively displaced and released from their
equilibrium position. This can happen as follows: the electrons (nc per unit volume)
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are all displaced by a field by a distance x. This displacement causes a polarization
P ¼ ncqx, which produces an electric field and restoring force¼�ncq

2x/ε0. The
restoring force acting on each electron is proportional to the displacement, and we

thus have simple harmonic motion with frequency ωp ¼
ffiffiffiffiffiffiffiffi
ncq2

m∗ε0

q
.

Now that we have the permittivity, we can apply it to find out a bit more about the
optical properties of systems with free charge: metallic systems. Assume that the
solid in question is a pure nearly free electron gas embedded in a jellium. A real
metal will have both free and bound electron contributions, but the free electron
responds strongly, and this term is often dominant. We will consider the bound
electrons in the next section. There are two interesting limits for the refractive index.

First, when ωτ << 1, the second complex term on the right-hand side of
Eq. (10.34) dominates and εf(ω) reduces to:

ε f ωð Þ � i
ncq2τ

ε0m∗ω
ð10:36Þ

the permittivity is purely imaginary, and the square root of i has an equal real and
imaginary part of cos(π/4) and sin(π/4), giving:

n ωð Þ ¼ ncq2τ

2ε0m∗ω

� 	1=2

ð10:37Þ

and which via Eq. (10.27) gives rise to a high reflection coefficient for small
frequencies.

Secondly, in the limit that ωτ � 1, the relative permittivity is dominated by the
real part and reduces to the form:

ε f ωð Þ � 1� ω2
p

ω2

( )
ð10:38Þ

In this limit the permittivity is purely real, which means that there is no absorp-
tion. It is also negative when the frequency is smaller than the plasma frequency.
This implies that in this region, the refractive index is purely imaginary, and
according to Eq. (10.23), we have perfect reflectance. Perfect reflectance means
that the wave is not allowed to travel inside the medium. It can just tunnel in a little
and go back out again. The fact that the permittivity can become less than 1, and
even negative, turns out to be one of the most significant properties of metallic
systems. It gives rise to the phenomenon of surface plasmon excitations at metal-
dielectric interfaces and in metal particles. These are collective charge oscillations
which can be excited by light, are mobile, and absorb the light very efficiently when
the energy momentum conservation laws for their production are satisfied. Indeed
when ε(ω) ¼ 0, a transverse wave can excite a longitudinal wave. The topic of
surface plasmons is outside the scope of this textbook, but the reader can consult the
textbook by Peyghambarian et al. (1993).
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When the frequency is above the plasma frequency, the permittivity is real and
when ε < 1, it vanishes at the plasma frequency. The refractive index in this limit
becomes:

�n ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

p

ω2

� �s
ð10:39Þ

and gives rise to an unattenuated wave which is part reflected and part transmitted.
The bulk reflectivity of a metal can be evaluated numerically and is given by
substituting Eq. (10.33) into Eq. (10.23). The result is shown in Fig. 10.2.

10.3.2 The Classical and Quantum Conductivity

One question the reader may ask at this stage is, how come it is possible to describe
the optical properties of an electron gas with classical methods and get the right
answers? The answer to this question is that if one carries through the fully quantum
mechanical derivations of the above results, one arrives in the limit of weak
scattering, to essentially the same answers. The quantum mechanical derivation
does however tell us two new important things: (1) that the lifetime τ entering the
Drude theory is not classical friction, but the quantum mechanical coherence time of
electrons. It is the average time a particle stays in an eigenstate before it is scattered
out of it by a phonon or an impurity potential, defect, etc. and (2) that true quantum
effects become important when the electron gas is not treatable in the nearly free
electron approximation anymore. If the metallic system is an alloy, or a liquid metal,
or an amorphous medium, for example, then the quantum description matters very
much. Indeed in this limit, the improved quantum mechanical theory tells us that
there is a serious modification which has to be made to the Drude result. The
necessary change is to replace the carrier density nc with the expression:
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Fig. 10.2 The reflectivity and transmissivity of an electron gas (thin film) (Peyghambarian et al.
1993, p. 62, Fig. 3., Reprinted with permission)
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nc ! 1
2
g E f

� �
m∗ v f



 

2
σ 0ð Þ ¼ g E f

� �
EFq2τ=m∗

ð10:40Þ

The above new equation for the conductivity signifies that the carrier density in
the Drude formula is in reality the density of states at the Fermi level times the Fermi
energy (Fermi velocity squared times ½ effective mass). In the nearly free electron
gas, the two are identical and the right-hand side of Eq. (10.40) is exactly nc. But in a
more complex metal, the density of states at the Fermi energy can be very different
from the free electron form, both in its energy dependence and its value. Indeed if the
density of states at the Fermi level is zero, or below a “minimum number,” then the
electron gas has no mobile carriers which can respond to a field, and the system does
not conduct at all! In classical physics, electrons do not obey Fermi statistics, and all
carriers can participate in conduction. Not so in quantum physics, Eq. (10.39) says
that only the ones near the Fermi level can respond to a small electric field. Changing
the density of states at the Fermi level therefore strongly affects the transport
properties and consequently also the optical properties. This observation is particu-
larly important for low-dimensional systems, where it is possible to engineer and
externally manipulate the band structure and therefore the density of states at Ef.

The reader is referred to Madelung’s (1978) and Ziman’s (1964, 1969) books in
the further reading section for a more detailed discussion of quantum transport.

10.4 The Bound and Valence Electron Contributions
to the Permittivity

10.4.1 Time-Dependent Perturbation Theory

Consider now the influence of bound electrons on the optical properties. When
bound charges are subject to an electric field, they will also be displaced, but not
freely, and not to “infinity,” as the frequency tends to zero. For bound electrons, the
external field is only a small perturbation, which gives rise to polarization of the
bonds and orbits, and we can apply methods of quantum mechanical perturbation
theory. We consider therefore the effect of the time-dependent external field as an
additional new term in the total energy or Hamiltonian of the system:

V tð Þ ¼ �q E
!
: r
! ð10:41Þ

The next step is to solve the time-dependent Schrödinger equation in Chap. 4 in
the presence of this new term. Previously the Hamiltonian was time independent,
and we could therefore write the unperturbed solutions in the usual way as shown in
Chap. 4, namely, as the set:
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Ψn

�
r
!
; t
� ¼ Φn

�
r
!�

e�iEnt=h ð10:42Þ
with energy eigenvalues En. In the presence of the perturbation, the electrons are no
longer in their stationary sates but can now admix with other, higher-lying excited
states and change their orbital configurations and in principle also undergo
transitions into these excited states. The change of spatial configuration is just
what polarization is in the classical sense, and the transition into excited states is
what we call absorption of energy from the light beam. We shall now see how
polarization and absorption can be computed in quantum mechanics. We do this by
assuming without loss of generality that the system was in its ground state g for t < 0,
and then the effect of the perturbation applied at t¼ 0 is to generate a new electronic
configuration which is a superposition of the ground state and all the other excited
states of the system. The new wavefunction is a solution of the time-dependent
Schrödinger equation in the presence of the coupling term described in Eq. (10.41).
We emphasize that the principle of superposition is rigorously true and part of the
principles of quantum mechanics we discussed in Chap. 4. So we can write for t > 0:

Ψ
�
r
!
; t
� ¼ Φge

�iEgt=h þ
X
n 6¼g

cn tð ÞΦne
�iEnt=h ð10:43Þ

where g denotes the ground state and n the excited states. The next step is to
determine the new admixture coefficients cn(t). We do this by substituting
Eq. (10.43) into the time-dependent Schrödinger equation (see Eq. 4.4a)). On one
side we take the derivative with respect to time to obtain:

ih
∂Ψ
∂t

¼ EgΦge
�iEgt=h þ

X
n6¼g

Encn tð ÞΦne
�Ent=h þ

X
n6¼g

ih
∂cn
∂t

Φne
�iEnt=h ð10:44Þ

On the other side of the Schrödinger equation, we have:

H0 þ V tð Þf gΨ� r!; t� ¼ EgΦge
�iEgt=h þ

X
n 6¼g

Encn tð ÞΦne
�iEnt=h � q

r
! �E!

0
e�iωt þ e�iωt
� �

Ψ
�
r
!
; t
� ð10:45Þ

We now equate Eqs. (10.44 and 10.45) and cancel the common terms. This leaves
the last terms of the right-hand side of Eqs. (10.44 and 10.45) as equal to each other.
Now we multiply the new equation on both sides with Φ∗

j e
iE jt=h and integrate over

space. This operation eliminates all orthogonal terms, because we are using the fact
that states belonging to different eigenvalues are orthogonal to each other (see
Eq. 4.6). We also drop all terms which involve the product of the perturbation V(t)
and a coefficient cl(t) because such terms are necessarily of second order or above in
the strength of the perturbation. The orthogonality rule, and the first-order
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perturbation approximation, only leaves one term in the sum of the last term on the
right-hand side of Eq. (10.45) which now gives:

ih
∂c j

∂t
¼ �

Z
d r

! Φ∗j

�
r
!�

q r
!

E
!
0
eiωt þ e�iωt
� �

ei E j�Egð Þt=hΦg

�
r
!� ð10:46Þ

This can be integrated to give:

c j tð Þ ¼ �qE
!
0
� r!
jg

1� ei hωþE j�Egð Þt=h
hωþ E j � Eg

� � � 1� ei �hωþE j�Egð Þt=h
hω� E j � Eg

� �
" #

ð10:47Þ

where the position matrix element is:

r
!
jg
¼
Z

d r
! Φ∗j

�
r
!�

r
! Φg

�
r
!� ð10:48Þ

For simplicity we assume that the wave is polarized in the x-direction so the first
factor reduces to qE x

0x jg. Equation (10.48) is, apart from a factor q, the matrix
element of the dipole moment of the electron; it is a measure of how much the
excited state j has ground state g character mixed into it when acted on by the
position coordinate. The matrix element of an operator Eq. (10.48), in this case the

displacement, r
!
αβ
, is sometimes also written in the Dirac notation α r

!


 


βD E
.

The above results now allow us to compute how the applied field polarizes the
bound electron system. By definition the induced time-dependent dipole moment
Px(t) is given by the charge q times the expectation value of the position operator:

Px tð Þ ¼ �q

Z
d r

! Ψ∗
�
r
!
; t
�
xΨ
�
r
!
; t
� ð10:49Þ

Substitute the solution from the wavefunction, and keep only the linear terms in
the coefficients which immediately give us:

Px tð Þ ¼ �
X
j

q xgjc j tð Þe�iω j t þ x jgc j
∗ tð Þe�ω j t

� � ð10:50Þ

Px tð Þ ¼
X
j

q2 xgj


 

2 1

E j0 � hω
þ 1
E j0 þ hω

� �
Ex
0 e�iωt þ e�iωt
� � ð10:51Þ

From the dipole moment induced by the field, we can now deduce the polariz-
ability in the usual way:

αp ωð Þ ¼
X
j

q2 xgj


 

2 2E j0

E2
j0 � hωð Þ2 ð10:52Þ

and by introducing the oscillator strength Fj:
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F j ¼ 2m0

h2
E jg xgj


 

2 ð10:53Þ

We can rewrite the ground state polarizability in an elegant form:

αp ωð Þ ¼ q2

m0

X
j

F j

ω2
jg � ω2

ð10:54Þ

with ωjg ¼ (Ej � Eg)/h. The significance of this expression becomes clear when we
note that the oscillator strengths obey a simple sum rule:X

j

F j ¼ 1 ð10:55Þ

This sum rule is important. It is a check of consistency and follows from two
quantum mechanical identities. The momentum position commutation relation:

xpx � pxx ¼ ih ð10:56Þ
and taking the expectation value of this equation and expanding over a complete set
of intermediate states:

ih ¼
X
l

xilpli,x � pil,x xli
� � ð10:57Þ

and using an identity from Heisenberg equation of motion which reads:

pij,x ¼ xij E j � Ei

� �
m0=ih ð10:58Þ

Substituting Eq. (10.58) into Eq. (10.57) gives the sum rule. Now that we know
the bound electron polarizability, we can compute the relative permittivity by
considering the polarizability of Nb of such atoms or molecules per unit volume.

ε ωð Þ ¼ 1þ Nbq2

ε0m0

X
j

F j

ω2
j � ω2

ð10:59Þ

The sum now runs over the eigenstates of one such elementary unit, i.e., an atom
or a molecule. In the zero frequency limit, we have:

ε 0ð Þ ¼ 1þ
X
j

F jω2
p

ω2
j

ð10:60Þ

And in the high-frequency limit, when the light energy exceeds all bound-to-bound
transitions, we recover the corresponding Drude result:
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ε ωð Þ ¼ 1� ω2
p

ω2
ð10:61Þ

which also implies that close to the plasma frequency, the permittivity can be
negative, and the refractive index is purely imaginary implying from Eq. (10.23)
perfect reflection.

10.4.2 Real Transitions and Absorption of Light

So far we have not considered what happens when the energy of the photon matches
the energy difference between two bound levels. From Eq. (10.49), we should expect
an infinite response. But what does this mean? When we have matching of energies,
we should expect the electron to reach the excited state and the photon to be
absorbed. In order to track such a transition mathematically, we go back to
Eq. (10.47) and evaluate the probability that the particle is in the excited state j at
time t having started at t¼ 0 in the ground state. From Eq. (10.47) we note that in the
expression for cj(t), there are two terms, one corresponding to the possibility of
absorption, namely, a resonance when hω¼ hωj, and one corresponding to emission.
For simplicity we keep the absorption term only so we have:

c j tð Þ


 

2 � qxgj

h
Ex
0




 


2 sin 2 ω j � ω
� �

t=2

ω j � ω
� �2 ð10:62Þ

The right-hand term or sine function is strongly peaked at ωj ¼ ω and decays
strongly with frequency; it is a well-known function of mathematical physics and is
best analyzed if, instead of the probability, we consider the probability per unit time
of finding the particle in the excited state j that is divided by time t to study Wgj ¼ |
cj(t)|

2/t. Dividing the right-hand side of Eq. (10.62) by t, and letting time go to
infinity, gives us a function which we recognize to be the well-known Dirac delta
function:

t ! 1 ) sin 2 hω j � hω
� �

t=2h
� �

t h2 ω j � ω
� �2

=4
¼ 2π

h
δ hω j � hω
� � ð10:63Þ

The Dirac delta function δ(x) has the property that:

Z1
�1

dxδ xð Þ ¼ 1 ð10:64Þ

And also as the imaginary part of the fraction:
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Im
1

x� iη

� �
¼ πδ xð Þ ð10:65Þ

with infinitesimal η. So basically Eq. (10.62) contains the statement that the particle
can end up in an excited state if energy is conserved in the long time limit. Although
the Heisenberg uncertainty relation allows energy not to be conserved at short times,
to complete the transition, and to make a temporary admixture real, energy conser-
vation must be satisfied in the long time limit.

We can summarize this result in the form known as the Fermi’s golden rule which
states that if a particle is subject to perturbation of the form 2V(r) cos ωt, then the
probability per unit time of finding it in an eigenstate j given that it started in g at
t ¼ 0 is given by the formula:

Wgj ¼ 2π
h

Z
d r

! Φ j
∗V
�
r
!�Φg











2

δ hω� E j þ Eg

� � ð10:66Þ

Now we can understand the meaning of the resonances in the permittivity
expression Eq. (10.59). They do indeed indicate absorption processes, and the way
to take care of the singularity is to introduce the notion of a lifetime. Clearly when
excited, the electron can recombine back down again so it has a finite lifetime in the
excited state, and by Heisenberg uncertainty principle, because of this time uncer-
tainty, it has a finite energy uncertainty or energy broadening. There is a broadening
associated with each level j, and the lifetime is measured in Hz. The broadening
introduces a complex number in the denominators of Eq. (10.47) so that the relative
permittivity becomes the complex function (T ¼ 0 K):

εb ωð Þ ¼ 1þ Nbq2

ε0m0

X
j

F j

ω2
j � ω2 � iωΓ j

ð10:67Þ

This function has a real and an imaginary part. The imaginary part, we know, is
related to the absorption coefficient, and this time it is not the joule heating of free
electrons as in Drude theory but the absorption of photons by bound electrons in the
solid. We are now in the position to write down an expression for the relative
permittivity of the solid including both bound Nb and free electrons nc:

ε ωð Þ ¼ 1þ Nbq2

ε0m0

X
j

F j

ω2
j � ω2 � iωΓ j

� ncq2

εom∗

ωτ � i

ω2τ2 þ 1

� �
ð10:68Þ

At this stage it is also useful to generalize the bound relative permittivity to finite
temperatures, allowing the light to admix bound levels up and admix thermally
excited levels down in energy, to find (Γij largest of the two widths and fl is the
Fermi-Dirac function):

εb ωð Þ ¼ 1þ Nbq2

h2ε0

X
i6¼j

h xij


 

2 f i � f j

� �
ω j � ωi

� �
ω j � ωi

� �2 � ω2 � iωΓij

ð10:69Þ
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10.4.3 The Permittivity of a Semiconductor

We can apply these results to a semiconductor. Consider a direct bandgap semicon-
ductor with no free carriers for the sake of simplicity. In this case the bound electrons

are in the valence band, and the quantum label j becomes a Bloch k
!
-state, and the

number of orbital Nb/volume falls under the Bloch integral k
!
. The transitions that the

light can induce are from valence to conduction band and involve a negligible
momentum of the light wave. For band-edge absorption, this is only possible with
direct bandgap materials (see Fig. 5.17). The indirect bandgap systems will be
discussed later on in this chapter. In direct bandgap materials, or for sufficiently
high photon energy, Eq. (10.67) means that the permittivity involves to a good

approximation only the vertical k
!
-valence to same k

!
-conduction band admixtures.

We also assume that the valence band is full and the conduction band is empty so
that we have (T ¼ 0 K):

εs ωð Þ � 1þ q2

ε0m0

X
k
!
F

k
!

1�
ω

k
!
,c
� ω

k
!
,v

�2 � ω2
ð10:70Þ

where the Bloch sum over the occupied states is normalized by the volume and
defined as:

X
k
!
v

¼ Nb ð10:71Þ

with Nb denoting the effective number of bound eigenstates per unit volume. At
ω ¼ 0, the largest contributions in this sum are from the band-edge states, so the
denominator can be replaced by the bandgap Eg/h, and the oscillator strength for the
vertical band-to-band transition F

k
! is to a good approximation reducible under the

sum to give the total valence band electron density and therefore the expression:

q2

m0ε0

X
k

F
k
! � Nbq2

ε0m0
¼ ωb

p


 �2
ð10:72Þ

εs 0ð Þ � 1þ hωb
p

Eg

 !2

ð10:73Þ

where ωb
p is the effective bound electron plasma frequency and can be obtained by

comparison with the experiment. It should be roughly a factor Eg

EB,v
(EB,v is the valence

band width) smaller than the absolute valence band plasma frequency. This expres-
sion is valid for the low-frequency permittivity of a semiconductor of energy gap Eg.
Given that a bandgap can typically be ~ 3 � 1014 Hz, we see that the low-frequency
limit can go a long way. So in the range 0~1011 Hz, for example, the zero frequency
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form is quite adequate, and for a doped semiconductor, the bound valence band
contribution can be combined with the free electron contribution.

At finite temperature, the above expression is still a good approximation in a
wider gap semiconductor, but the full generalization for finite temperature,
substituting for the oscillator strength, and including the broadening, is in fact:

εs ωð Þ � 1þ q2

hε0

X
k
!

x
k
!
c, k

!
v




 


2
�
ω� ω

k
!
c
þ ω

k
!
v

�� iγ�
ω� ω

k
!
,c
þ ω

k
!
,v

�2 þ γ2
f
�
E

k
!
v

�� f
�
E

k
!
c

�h i

ð10:74Þ

where the sum is now over the k
!
index normalized per unit volume. The x-position

matrix element has to be evaluated using the valence and conduction band Bloch
functions. Fortunately and to a good approximation, this matrix element can be
calculated using Kane theory to give us the result (Rosencher and Vinter 2002):

xkvkcj j2 ¼
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ð10:75Þ

where EP is the Kane parameter and a number which varies only slightly between
20 and 25 eV in most semiconductors (see also Sect. 5.7). This powerful last
equation now allows us to compute the permittivity for most situations of interest
in semiconductor physics. All we need for Eq. (10.74) is the density of band states
which as we know is usually well described in the nearly free electron
approximation.

10.4.4 The Effect of Bound Electrons on the Low-Frequency Optical
Properties

We have seen that bound electrons usually contribute frequency dependence to the
permittivity only at high frequencies. When we consider both free and bound
carriers, we must go back and see how one affects the other. One of the important
consequences of εb on the free carrier response is in the regime ωτ � 1 discussed
previously for free carriers only. The combined permittivity in this regime is
approximately real, but the bound electron contribution is significant, so that the
refractive index now becomes:

�n ωð Þ ¼ 1þ εbð Þ 1� ω2
p

ω2 1þ εbð Þ

 ! !1=2

ð10:76Þ

or as is the notation of some other authors, one can also replace:

ε 1ð Þ ¼ 1þ εb ð10:77Þ
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One can think of Eq. (10.76) as a renormalization of the plasma frequency of the
electrons to ω2

p ! ω2
p= 1þ εbð Þ. This is a real effect because the electrons are now

oscillating in a medium in which the electric field of the restoring force is screened
by the permittivity of the bound carriers. The low-frequency permittivities of some
important semiconductors are given in Appendix 4, for example, GaAs, εb ¼ 13.1;
Si, εb ¼ 11.9; and C, εb ¼ 5.7. From Eq. (10.73), it follows that the large bandgap
materials are expected to have the lower permittivity, and this is in general observed.

10.5 The Optical Absorption in Semiconductors

10.5.1 Absorption Coefficient

The optical absorption of a direct bandgap semiconductor is given by the imaginary
part of the permittivity Eq. (10.67) (Fig. 10.3).

This is a sum of energy-conserving transitions described by matrix elements

which take an electron from the valence band vertically up (i.e., same k
!

value) to
the conduction band. The number of such terms is therefore directly proportional to
the number of available band states. Thus the optical absorption properties of
semiconductors are intimately related to the density of allowed states in the conduc-
tion and valence bands.

The absorption process is characterized by the absorption coefficient, α(ω), which
is usually expressed in units of cm�1 or m�1 in MKS, as used in this book. This
quantity depends on the incident photon energy hω and expresses the ratio of the
number of photons actually absorbed by the crystal per unit volume per second, to
the number of incident photons per unit area per second. The calculation of the
absorption coefficient for a direct bandgap material resembles that of the density of

states but takes into account the E� k
!
relationships in both the conduction band for

electrons (with effective mass me) and the valence band for holes (with effective
mass mh). This consideration results from two important conservation laws that rule

E

EC

EV

hn hn

a bFig. 10.3 Electronic
transition, (a) from the
valence band to the
conduction band resulting
from the absorption of a
photon, (b) from the
conduction band to the
valence band resulting into the
emission of a photon
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the optical absorption process: (i) the total energy (electron+hole+photon) must be
conserved and (ii) the total momentum or wavevector must also be conserved.
Assuming that in Eq. (10.70), the oscillator strength F

k
! is only a weak function of

k
!
which allows us to take the imaginary part of the permittivity as the delta function

sum to obtain for absorption, with:

Im
1
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�
k
!�þ EV

�
k
!�� iη

0
@

1
A ¼ πδ hω� EC

�
k
!�þ EV

�
k
!�� �

ð10:78Þ

and therefore having split up the expression in Eq. (10.70), we have:

2�nκ ¼ h2q2

m0ε0
Fvc

Z
1

2hω
d k

!
δ hω� EC

�
k
!�þ EV

�
k
!�� �

ð10:79Þ

The delta function sum is called the joint density of states per volume and can be
evaluated as the ordinary density of states by introducing the reduced mass via
(remember the valence band energy is defined negative):

hω ¼ h2k2

2me
þ h2k2

2mh
¼ h2k2

2
1
mr

� �
ð10:80Þ

The absorption coefficient can then be found to be proportional to the density of
states, with the effective mass m* replaced by the reduced effective mass defined as:

m∗
r ¼ memh

me þ mh
ð10:81Þ

For example, in a three-dimensional bulk semiconductor structure with direct
bandgap:

2�nκ ¼ hq2

2ωm0ε0
Fvc

1
2π2

2m∗
r

h2

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω� Eg

p( )
ð10:82Þ

where by definition, the absorption coefficient is α ¼ ω

�nc
2�nκ and where hω is the

incident photon energy, Eg is the energy gap of the semiconductor, and Fvc can be
evaluated using Kane theory Eq. (10.75) (see also Sect. 5.6).

A word of caution: when using approximation methods such as Kane theory, it
can happen that the oscillator strength defined using the bare mass as in Eq. (10.53)
exceeds 1, which is inconsistent with the sum rule. This is because the sum rule
should really be evaluated within the same scheme so that m0 in Eq. (10.53) should
be replaced by the Kane m* (see Sect. 5.7). The expression in the curly bracket on
the right-hand side of Eq. (10.82) is called the electron-hole or joint density of states
because it takes into account the density of states in both the conduction and valence
bands.
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In reality, the absorption spectra do not reproduce exactly the joint density of
states because there are other processes which contribute to absorption as well.
These are due to photons coupling to lattice vibrations, i.e., electron-phonon
interactions and also excitonic effects. Let us first consider the excitonic
contribution.

10.5.2 Excitonic Effects

Let us now consider excitonic effects. An electron excited into the conduction band
is a negatively charged particle in a neutral medium which will interact with the
resulting hole created in the valence band (positively charged particle). In other
words when light creates an e-h pair, it is not yet a free pair. This pair of charged
particles is created locally, and they attract each other by the Coulomb force. They
form a unit called the exciton. In an exciton, the electron and the hole attract each
other and move together as a single particle consisting of a coupled (i.e., not free)
electron-hole pair. This pair resembles a hydrogen atom where the role of the nucleus
is played by the hole.

An exciton has two degrees of freedom: the relative motion of the electron and the
hole and the motion of the exciton as a single unit. As in the case of the hydrogen
atom, the relative motion is quantized, and the energy spectrum of an exciton
consists of discrete energy levels in the bandgap corresponding to the ground state
and the excited states of an exciton. But unlike in hydrogen, the pair is moving in a
medium which has a finite polarizability as we have just seen above. So the Coulomb
potential is screened by the medium. Using the results of section 0 for the hydrogen
atom, we obtain the energy associated with the relative motion of an exciton:

En ¼ �ERy

n2
ð10:83Þ

where n ¼ 1,2,. . . is an integer and ERy is the exciton Rydberg energy. This shows
that, similarly to the hydrogen atom, the energy spectrum of the relative motion of an
exciton consists of discrete levels. Each level is indexed by a main quantum number
n, and the wavefunctions are characterized by orbital quantum numbers l¼ 0, 1, . . .,
n � 1 and magnetic quantum numbers m ¼ � l, � l + 1, . . ., l. The Rydberg energy
is given by:

ERy ¼ m∗
r q

4

8 εrε0hð Þ2 ð10:84Þ

with εr is the real part of the zero-frequency relative permittivity or the dielectric
constant of the material and ε0 is the permittivity of free space and h is Planck’s
constant. Furthermore, by defining an exciton Bohr radius, aB, derived from
Eq. (1.3) such that:
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aB ¼ εrε0h
2

πm∗
r q

2
ð10:85Þ

we can rewrite the Rydberg energy as:

ERy ¼ q2

8πεrε0aB
¼ h2

2m∗
r aB

2
ð10:86Þ

The first fraction is similar to Eq. (1.5) and expresses the hydrogen atom analogy
for the exciton. The energy spacing between the ground state exciton level and the
bottom of the conduction band is called the exciton binding energy and physically
represents the energy needed to separate the electron and the hole into two free
particles. We note that because of the permittivity of the host εr ¼ εb(0) > 1, the
binding energy is considerably reduced compared to the hydrogen atom. Given that
for a semiconductor like silicon, εs ~ 10, and this is true for most semiconductors of
interest (εb ~ 10 � 15), we have a reduction of energy of ~100–300 from 13 to
~0.13 eV and less.

Excitons can be efficient absorbers of light. When excitons are involved in the
optical absorption process, the absorption spectrum exhibits additional sharp peaks
within the energy gap, near the bandgap energy (Eg), corresponding to the excitonic
energy levels. This is illustrated in Fig. 10.4 for a bulk semiconductor (3D). In
addition, even at higher energies, deep inside the conduction band where excitons
are typically not encountered, the absorption coefficient is still influenced by the
Coulomb interaction between electrons and holes.

It should be noted that in bulk semiconductors, the presence of excitons has been
verified only at cryogenic temperatures. This is because an exciton has a small
binding energy, and electron-phonon interactions can, at higher temperatures, easily
break up the exciton into free electrons and holes, i.e., the lifetime of an exciton is
very short at high temperatures.

However, in low-dimensional structures, one can observe excitonic effects at
much higher temperatures because the spatial confinement reduces the screening

n=1

hn -Eg•

n=2

n=3

hn

without Coulomb interaction

with Coulomb interaction

( )na hFig. 10.4 Excitonic
absorption peaks (n ¼ 1,2,3)
in the optical absorption
spectra of a bulk
semiconductor (3D). These
peaks are located inside the
energy gap. In addition, the
effect of coulombic
interaction between electrons
and holes on the absorption
coefficient is shown
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efficiency and enhances the binding of the pair; they have a smaller chance to escape
and thus a larger exciton binding energy. We shall see this in Chap. 12.

10.5.3 Direct and Indirect Bandgap Absorption

The formalism for the optical permittivity of semiconductors above applies mainly
for the direct bandgap materials because it assumes transitions with zero momentum
exchange. This includes the important class of materials such as GaAs and InAs.
Now let us consider the indirect bandgap systems.

In the chapter where we discussed the band structure of semiconductors, recall
Fig. 5.17 in Chap. 5; we encountered two distinct classes of materials: the direct and
indirect bandgap materials. Semiconductors like Si and Ge have indirect bandgaps.
That means that the lowest photon energy that can be absorbed necessarily involves
a change of momentum, and this process is not included in the formalism of
Eq. (10.74).

From Fig. 5.17 for Ge, we see that the lowest-energy absorption is one where an
electron is taken out of the top of the valence band at the Γ point and put into the
lowest energy in the conduction band at the X point. The momentum change is
substantial and cannot be supplied by the photon; it must come from another source.
The most obvious one is the phonon bath. Phonons can couple to the photons and
make the transition happen. They can do this in absorption or in emission of a
phonon. Energy and momentum can be satisfied in particular with optical phonons
where the energy dispersion with momentum is weak and can be neglected for most
purposes. Energy conservation gives:

Ec

�
k
!
þ Q

!� ¼ Ev

�
k
!�� hΩþ hω ð10:87Þ

where the required momentum Q
!
is fixed by the band structure. The process can be

one of the emissions in which case the photon needs more energy than the indirect
bandgap. The emission process is weakly dependent on temperature and involves the
factor 1= ehΩ=kbT � 1

� �þ 1 ¼ N ωð Þ þ 1. Phonon absorption, on the other hand, can
happen with photon energies less than the indirect bandgap, but only if such phonons
are excited, so here we have a Bose factor N(ω) which is temperature dependent. In
summary after doing the integrations in the corresponding Fermi’s golden rule
formulae, one arrives at the two indirect absorption coefficients which have the
form (assisted with the emission and absorption of an optical phonon, respectively):

αep ¼ Ae
hω� Eg

ind � hΩ
� �2

1� e�hΩ=kbT
θ hω� Eg

ind � hΩ
� �

αep ¼ Aa
hω� Eg

ind þ hΩ
� �2

�1þ ehΩ=kbT
θ hω� Eg

ind þ hΩ
� � ð10:88Þ
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The A's are constants, and the theta function θ is zero when the argument is less
than zero and one otherwise (Peyghambarian et al. 1993). Note the different
(squared) behaviors of the band-edge absorption Eq. (10.88) with photon energy
when compared with the direct bandgap case Eq. (10.82) (square root).

Figures 10.5 and 10.6 illustrate the absorption edges of GaAs and Ge. The GaAs
data is plotted on a linear scale and the Ge data logarithmically so that one can see the
crossover from indirect to direct absorption at the inflection point of the curve.

When a phonon is needed, the transition is more complex, involves three bodies,
and is therefore also less efficient. When an electron is excited in the conduction

band with high energy, so that the direct k
!
¼0

!
transition is possible, it will in general

thermalize down very quickly to the indirect band edge, and light emission will only
take place at the final recombination step at the lowest bandgap. In an indirect
bandgap system, a phonon is needed, and therefore materials such as Ge and Si
will be poor light-emitting systems (Fig. 10.6).

10.6 The Effect of Phonons on the Permittivity

10.6.1 Photon Polar Mode Coupling

We have so far included free and bound electrons contributions in the permittivity.
We have discussed the effect of excitons, so now we must ask: what other processes
can affect the optical response of a solid? Clearly at finite temperatures, the lattice
atoms are thermally excited and vibrate. We have seen that the atomic bonds can be
polar, and the lattice dipoles can vibrate and be stimulated to vibrate by light waves.
This means that in particular, it is also possible for such polar lattice vibrations to

Fig. 10.5 Band-edge absorption of GaAs showing also the evolution of the exciton absorption for
different temperatures left to right: 294 K;186 K; 90 K; 21 K (Reprinted figure with permission from
Sturge 1962, p. 768, Fig. 3. Copyright 1962 by the American Physical Society)
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absorb energy from the light passing through the medium. The effect of light
coupling to atomic motion is not negligible in semiconductors with polar modes
and needs special treatment. The general treatment of photon-phonon coupling, i.e.,
including acoustic coupling and many phonon effects, is beyond the scope of this
textbook. In this chapter, we will develop the methodology for the strongest interac-
tion, namely, for the polar lattice.

To investigate the influence of atomic vibrations on the permittivity, we consider
the two-atom model of lattice vibrations from Chap. 6. If the bond is polar, then the
atoms in the bond carry a net charge and couple to the light wave. Furthermore
the vibrating atoms or charge can reemit light and also give up its extra energy to
other phonon modes. So we also introduce a damping term γ to take care of this
effect. The equation of motion Eq. (6.5) now becomes:
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Fig. 10.6 The band-edge absorption of Ge on a logarithmic scale. Note the change of behavior at
102 cm�1 from indirect to direct band-to-band transitions (Reprinted from Newman and Tyler
(1959), p. 58, Fig. 1. Copyright (1959), with permission from Elsevier)
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M1
d2un
dt2

þM1γ
dun
dt

� C vnþ1 þ vn�1 � 2unð Þ ¼ �qE0e
�iωt

M2
d2vn
dt2

þM2γ
dvn
dt

� C unþ1 þ un�1 � 2vnð Þ ¼ qE0e
�iωt

ð10:89Þ

where we have assumed that the M1 mass is negatively charged and M2 positively
charged. The damping term is here, as before, proportional to the velocity.

We are not interested in the complete solution of this problem, so we focus only
on those modes which could result in absorption or strong scattering of light, and we
know that this is only possible when momentum is conserved. Since the photon only
has negligible momentum to exchange, light can only excite or absorb phonons with
a small momentum. It can absorb or emit acoustic and optical modes with small
momentum exchange. With optical modes it is possible to excite relatively high-
energy phonons with almost zero momentum. Indeed energy exchange can take
place with optical modes near k ¼ 0. So we focus only on those solutions to
Eq. (10.89), namely, the ones at or near k ¼ 0. The k ¼ 0 optical phonon modes
are the ones where the two sublattices move in phase relative to each other. We try a
k ¼ 0 mode:

un tð Þ ¼ A1e�iωt

υn tð Þ ¼ A2e�iωt
ð10:90Þ

and find from Eq. (10.89):

2C �M1 ω2 þ iγωð Þ½ �A1 � 2CA2 ¼ �qE0

2C �M2 ω2 þ iγωð Þ½ �A2 � 2CA2 ¼ �qE0

ð10:91Þ

The solution is:

A1 ¼ �qE0

M1 Ω2
þ � ω2 þ iγωð Þ� �

A2 ¼ qE0

M2 Ω2
þ � ω2 þ iγωð Þ� � ð10:92Þ

Ω2
þ k ¼ 0ð Þ ¼ 2C M1 þM2ð Þ

M1M2
ð10:93Þ

Using this result we can now go back and compute the polarization induced by
the light wave. Given Nl ion pairs per unit volume, we have the volume dipole
moment:

Pl ¼ �qNl un � vnð Þ ð10:94Þ
or:
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Pl ¼ qNl A2 � A1ð Þe�iωt ð10:95Þ
which then using Eq. (10.92) reduces in the limit of the pure ionic permittivity to:

εl ωð Þ ¼ 1þ qNl

E0ε0
A2 ωð Þ � A1 ωð Þð Þ ð10:96Þ

εl ωð Þ ¼ 1þ q2Nl

ε0Mr

1

Ω2
þ � ω2 þ iγωð Þ ð10:97Þ

Mr ¼ M1M2

M1 þM2
ð10:98Þ

The optical phonon contribution to the permittivity has a real and imaginary part,
from which one can evaluate the effect of optical phonons on light dispersion and
absorption. We are now at last in a position to write down all the important
contributions to the relative permittivity of a doped polar semiconductor as:

ε ωð Þ ¼ 1þ ε f ωð Þ � 1
� �þ εb ωð Þ � 1ð Þ þ εl ωð Þ � 1ð Þ ð10:99Þ

where the polarizability contributions are added to give Eqs. (10.34, 10.67, and
10.97) and where it is understood that in a semiconductor, the bound contribution is
the same as the formula in Eq. (10.69). With this theory we now can handle most
situations of interest in semiconductor physics.

10.6.2 Application to Ionic Insulators

In this limit we neglect the free electrons, and it is again convenient to lump together
all other lattice contributions into anε(1)term and write the ion permittivity as being
due to the transverse optical active mode denoted with frequency ΩT:

�n2 � κ2 ¼ ε 1ð Þ þ q2Nl

ε0Mr

Ω2
T � ω2

Ω2
T � ω2

� �2 þ ω2γ2

2�nκ ¼ q2Nl

ε0Mr

γω

Ω2
T � ω2

� �2 þ ω2γ2

ð10:100Þ

Figure 10.7 shows the reflectivity R of an ionic insulator. The effect of the
resonance on the reflectivity is to produce a sharp crossover from high to low
reflectance as the photon energy is changed.
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10.6.3 The Phonon-Polariton

The real part of the refractive index due to the coupling with ions has a strong
frequency dependence as can be seen in the previous figure and strongly modulates
photons with frequencies in the neighborhood of the optical modes. Indeed the
photon dispersion relation relating photon frequency and momentum k is:

ω2 kð Þ ¼ ck

�n ωð Þ
� �2

ð10:101Þ

where �n ωð Þis given by the pair of Eq. 10.100. One can see that the refractive index
changes with frequency so that the allowed frequencies of propagation of photons in
the medium are solution of this equation, which can have several branches. Let us
assume the damping is weak so that κ(ω)¼ 0 in Eq. 10.100, and one has �n ωð Þonly so
Eq. 10.101 becomes:

ω2 kð Þ ε 1ð Þ þ q2Nl

ε0Mr

1

Ω2
T � ω2 kð Þ� �

( )
¼ c2k2 ð10:102Þ

which is a quadratic equation in ω2 with two branches.
The frequency versus momentum of the physical roots is shown in Fig. 10.8

where ΩL ¼ ΩT

ffiffiffiffiffiffiffiffi
ε 0ð Þ
ε 1ð Þ

q
turns out to be the longitudinal phonon frequency, and the

zero frequency limit ε(0) includes the zero frequency limit of the lattice term.
The excitation can be understood to be part photon and part phonon in its

structure. Near k ¼ 0 and at low frequency, it is mainly photon-like and basically
follows the photon dispersion curve slowed down by the mainly bound electron
refractive index

ffiffiffiffiffiffiffiffiffiffiffi
ε 1ð Þp

of course. Then, when the light energy reaches the optical
mode energy of the phonon, a strong mixture of the two excitations takes place.

Fig. 10.7 Lattice reflection
spectrum of AlSb. Points are
experimental data; line is fit
using the single oscillator
model (Reprinted figure with
permission from Turner and
Reese (1962), p. 126, Fig. 4.
Copyright 1962 by the
American Physical Society)
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Here, the photon becomes a mixed state, part phonon and part photon; it gets slowed
down in the process because the phonon is slow and almost localized. The group
velocity of this combined particle can be much slower than light as one can see from
the dispersion curve. At higher frequencies the two states demit because their
energies no longer match, and the excitation acquires its photonic character again.
This happens as we go up the k-axis and up in frequency. This photon which is
crossing into a phonon-like mode is called a phonon-polariton. It is of great
conceptual importance, as it allows regions of energy where photons can propagate
at a much lower speed.

Photon-phonon coupling has many other very subtle aspects which we have not
covered in this chapter. The reader is referred to the book by Seeger (1997) for a
more specialized treatment. For example, whereas in III–V compounds, one does
have polar bonds, the same is not true of other important classes of semiconductors
such as silicon and germanium. Here phonon-phonon coupling and absorption are
more subtle and involve higher-order processes. Whereas single-phonon excitations
are forbidden by symmetry, higher order processed involving two and more phonons
are allowed and give rise to rich absorption spectra.

10.7 Free Electrons in Static Electric Fields: The Franz-Keldysh
Effect

So far we have assumed that the system in question is itself not subject to a strong
electric or magnetic field. In this and the next sections, we consider the effect of an
electric and magnetic field on the optical properties. Much of modern technology is

w

ΩL

ΩT
P

upper polariton

longitudinal phonon

lower polariton

k

w = ck ⁄ √e•Fig. 10.8 The dispersion
curve for a phonon-polariton
(Peyghambarian et al. 1993,
p. 98, Fig. 4.11. Modified with
permission)
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devoted to making optical systems for communication, displays, wavelength trans-
formation, and computing. Optoelectronics is a very lively and exciting field and has
acquired even more importance with the advent of nanotechnology. The basic
element of all optical technology is the optical switch or optical transistor. How
can one make a medium change its transparency or absorption properties by a simple
low power electronic or magnetic switch? In order to understand how to design such
a system using the right material, engineers need to understand what external fields
do to the electronic structure of materials, and in particular they need to know how
the optical properties of semiconductors behave when subjected to external fields.

Consider therefore a band of nearly free electrons in an electric field. We assume
that we can use the effective mass approximation. When we previously considered
the action of the electric field, it was in the context of electrical conduction, and it
was good enough to treat the problem using a semiclassical approach. This is
because the electric fields were small, and the dipoles generated were calculated to
first order in field. Now we are looking at the effect of light on systems subject to
strong electric fields, and we ask: what is new and important about strong electric
fields? To answer this question, we first note that the external field is no longer a
small perturbation on the wavefunctions. So we cannot use Drude-type theories but
need to go back and solve the time-independent Schrödinger equation in the
presence of an external electric field Ez

0 applied in the z-direction, for example. It
is understood that the motion in the x- and y-directions is nearly free electron-like, so
that the total wavefunction and energy of the charge are separable:

ΨE x; y; zð Þ ¼ eikxxeikyyΦ zð Þ ð10:103Þ

E ¼ h2

2m∗
k2x þ k2y


 �
þ Ez ð10:104Þ

The Schrödinger equation in the field direction becomes:

� h2

2m∗

∂2Φ zð Þ
∂z2

� qE z
0zΦ zð Þ ¼ EzΦ zð Þ ð10:105Þ

Note that in the current formalism, the electric field is denoted E z
0, while the

energy associated with the wavefunction is denoted Ez. The wavefunctions which are
solutions to these equations are called the Airy functions Aiv(z) with energy Ev and
given by an integral representation:

Aiv zvð Þ ¼ 1
π

Z1
0

cos
s3

3
þ szv

� �
ds ð10:106Þ
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zv ¼ 2m∗qE z
0

h2

� �1=3

z� Ev

qE z
0

� �
ð10:107Þ

The normalized eigenstates of Eq. (10.105) labeled with their energies are:

ΦEv ¼
2m∗

h2

� �1=3 1
qE z

0

� �1=6

Ai
2m∗qE z

0

h2

� �1=3

z� Ev

qE z
0

� �" #
ð10:108Þ

The eigenfunctions can be thought of as starting at each lattice site, one for each
site, at a distance a along the z-axis, so that Ev=qE

z
0 ¼ avwhere v is an integer in the

range {1, � 1}, and av defines the origin of the vth Airy state. The Airy function
decays asymptotically as e�zv3=2 for z > 0 against the potential of the field, where the
particle encounters a triangular barrier starting from the origin. In the direction
(z < 0), moving with the potential of the field, the wavefunction is that of an
accelerating particle and oscillates with increasing frequency as it moves:

Ai zð Þ ¼ 1ffiffiffi
π

p 1

�zvð Þ1=4
sin

2
3
�zvð Þ3=2 þ π

4

� �
ð10:109Þ

In a semiconductor, both valence band k
!
-states and conduction band k

!
-states will

turn into Airy functions when a strong field is applied. So the optical admixtures and
optical transitions will now be between these new Airy functions labeled c and
v rather than the Bloch states considered earlier. In particular it is now possible for a
photon to excite any valence band Airy electron state into any conduction band Airy
state. Momentum conservation no longer applies because the electrons in a field are
not in a well-defined momentum state anymore. Indeed they are constantly
accelerated, and this is why the oscillations in shape Eq. (10.109) are getting faster
and faster as the electrons move in the direction of decreasing potential energy. The
rate at which a charge will be excited from the valence Airy set to the conduction
Airy state by the action of a light field is given by Fermi’s golden rule:

Wvv0 ¼ 2π
h

Z
Φv,v

∗ zð ÞqE z
0zΦv0,c zð Þdz











2

δ Ev0,v � Ev,v � hωð Þ ð10:110Þ

Here the momentum rule reappears as a reduction in the overlap integral
Eq. (10.110) between levels which are not vertically above each other, i.e., differ
by the v index of the valence to the v

0
index of the conduction band Airy states. So we

see that non-diagonal transitions v 6¼ v
0
are possible, but less likely. Thus a useful

quantity for characterizing optical absorption is the local density of states, which, for
vertical transitions, is apart from a constant, also the joint density of states discussed
before. Remember that the sum of vertical transitions is directly proportional to the
joint density of states. The density of states is conveniently expressed using the local
density of states which in one dimension is:
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n E; zð Þ ¼
X
n

Φn zð Þj j2δ E � Enð Þ ð10:111Þ

where here, Φn are the energy eigenstates Eq. (10.108) and the En are the
eigenvalues. The local density of states say at z ¼ 0 gives us a measure of how
many eigenstates exist in an energy interval in a given locality. The total density of
states g(E) is obtained by integrating the local density of states over all space:Z X

n

Φn zð Þj j2δ E � Enð Þdz ¼
X
n

δ E � Enð Þ ¼ g Eð Þ ð10:112Þ

The local density of states, assuming for convenience that the hole electron
masses are the same, is a measure of the optical absorption and can be calculated
in this case by substituting in the Airy functions Eq. 10.109) and eigenvalues into
Eq. (10.112) and doing the sum at z ¼ 0. The integrations are straightforward but
lengthy. The reader is referred to the details in the books by Chuang (1995) and
Davies (1998) for more details. The Franz-Keldysh oscillations in the density of
states of free electrons are shown in Fig. 10.9 for a one-dimensional band and also
for the two- and three-dimensional systems. Figure 10.9 shows the predicted Franz-
Keldysh oscillations in the joint density of states, at the band edge of a semiconduc-
tor when an electric field is applied.

When excitons are present in the absorption spectrum, we would expect the
electric field to help ionize the excitons and change the absorption spectrum toward
the free electron system again. This is indeed observed experimentally at very low
temperatures in bulk and at higher temperatures in semiconductor quantum wells as
we shall see in Chap. 13 (Fig. 10.10).

Fig. 10.9 The density of states from left to right for a one-, two-, and three-dimensional free
electron system in the presence of an electric field (Davies (1998), p. 211, Fig. 6.2. # Cambridge
University Press 1998. Reprinted with the permission of Cambridge University Press)
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10.8 Nearly Free Electrons in a Magnetic Field

We now consider the effect of a DC magnetic field on the nearly free electron states

of a solid. In order to do this, we write down the Hamiltonian in a field B
!
applied in

the z-direction. To do this we need to introduce the vector potential A
!
and note that in

quantum mechanics, the effect of the B
!
-field is to replace the electron momentum

operator p
!

with the new operator ( p
! þq A

!
) in the Schrödinger equation. In the

so-called Landau gauge, the vector potential is given by A
!
¼ 0;Bx; 0ð Þ and B

!

becomes:

B
!¼—

!
� A

!
ð10:113Þ

and consequently the time-independent Schrödinger becomes:

1
2m∗

�h2
∂2

∂x2
þ �ih

∂
∂y

þ qBx

� �2

� h2
∂2

∂z2

" #
Ψ x; y; zð Þ ¼ EΨ x; y; zð Þ ð10:114Þ

From Eq. (10.114) it follows that in the z-direction, the Hamiltonian is that of the
free particle, and in the y-direction, the interaction is an x-y product term so we try
the solution:

Fig. 10.10 Franz-Keldysh oscillations in the absorption of bulk semiconductors. The dashed line
is the spectrum without a field (Chuang (1995), page 549, Fig. 13.2b, Copyright # 1995 by John
Wiley & Sons, Inc. Reprinted with permission of Wiley-Liss Inc., a subsidiary of John Wiley &
Sons, Inc.)
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Ψ x; y; zð Þ ¼ u xð Þeikyyeikzz ð10:115Þ
with:

E ¼ h2k2z
2m∗

þ En== ð10:116Þ

Including the spin degree of freedom s ¼ � 1/2, we also have the Zeeman
splitting in a magnetic field:

Enkzs ¼ En== þ
h2k2z
2m∗

� sgμBB ð10:117Þ

where g is the Lande factor and μB ¼ qh
2m0

is the Bohr magneton.

Substituting the trial function given in Eq. (10.115) into Eq. (10.114), we find that
the function u(x) must satisfy:

� h2

2m∗

d2

dx2
þ m∗ω2

c

2
xþ hky

qB

� �2
" #

u xð Þ ¼ εu xð Þ ð10:118Þ

This equation is similar to the one of the harmonic oscillator where:

ωc ¼ qB

m∗
ð10:119Þ

is the cyclotron frequency and hky
qB is a length which we shall denote with �xky

� �
.

Equation (10.118) is a standard differential equation of mathematical physics which
has the Hermite polynomials Hn as solutions. We can therefore now write the
complete wavefunction as:

Ψ x; y; zð Þ ¼ AeikyyeikzzHnky

x� xky
lB

� �
exp � x� xky

� �2
2l2B

" #
ð10:120Þ

where n are integers, A is the normalization constant, and lB ¼
ffiffiffiffi
h
qB

q
is called the

magnetic length that is typically ~25 nm for B ¼ 1 T. The first few normalized
Hermite polynomials are tabulated and given by:

H0 sð Þ ¼ 1

H1 sð Þ ¼ 2s

H2 sð Þ ¼ 4s2 � 2

ð10:121Þ

The corresponding x-y energy levels are independent of the index ky and given
by (n is an integer including 0):
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E== ¼ εn ¼ nþ 1=2ð Þhωc ð10:122Þ
These levels are called the Landau levels. Each Landau level is highly

degenerated because there are many ky levels in each Landau level. In fact there
are exactly LxLyqB

h states in each Landau level, apart from spin which is another factor
2. Thus the degeneracy grows with B because the separation of the levels also grows
with B. When we include the spin, the Landau spin up and spin down bands are
shifted relative to each other by the Zeeman energy gμBB. The collapse of the x-y
spectrum into discrete Landau levels is a novel phenomenon with strong con-
sequences for the transport and optical properties of systems with free carriers.
The condition for observing subtle effects in transport and optical spectra which
are caused by the magnetic field is that the energy levels should have long relaxation
times, so that the broadening of the levels should satisfy the condition that hτ < hωc.
This condition is difficult to satisfy in practice because in a metal τ~10�13 � 10�14,
which gives a much larger uncertainty ΔE~h/τ than the typical Landau level
separation which is hωc~10

�4eVat B ¼ 1 T. To observe the effect of Landau levels
experimentally, one has to work with very high-quality and low effective mass
semiconducting materials and preferably quantum wells that are systems composed
of a thin lower bandgap semiconductor layer sandwiched between two higher
bandgap materials (see Chap. 15 for details).

Normally, one also has to work at very low temperatures. Good materials for
large Landau level separations are, for example, GaAs and InAs and InSb
which would enhance the B ¼ 1 T splitting by a factor 40 (InAs: m∗

e =m0 ¼ 0.023)
to 4 � 10�3 eV or 70 (InSb: m∗

e =m0 ¼ 0.0145) to 7 � 10�3 eV which is ~70 K. We
will come back to this topic when we discuss the low-dimensional semiconducting
systems in Chap. 15. As before, the easiest way to study the effect of Landau levels
on optical absorption theoretically is to evaluate the local density of states by
substituting the wavefunctions and energies into Eq. (10.111) and carry out the sum.

In a two-dimensional system, for example, which one can engineer with a
quantum well structure, the free electron density of states can be computed in the
same way as we did for the three-dimensional case (Chap. 5 replace 4πk2dk! 2πkdk
in Eq. (5.37)). It is constant for the two-dimensional case and given by g2 Eð Þ ¼ Sm∗

πh2

where S is the area of the system. When subject to a B field, we see from the above
solution that we now only have the Landau spectrum, and the Landau level density
of states now consists of sharp delta function peaks for each Landau level. The sharp
delta function peaks are of course unrealistic, and one has to evaluate the sum by
including a finite level broadening before plotting the function.

Figure 10.11 illustrates how the two-dimensional constant density of states
collapses into Landau levels which are not ultrasharp delta functions but broadened
by disorder or phonon scattering processes. Thus in a two-dimensional system, the
electrons would fill the Landau levels up to the Fermi energy. The Fermi energy can
then be in the Landau band or in a gap, depending on the electron concentration and
the magnitude of the magnetic field. Such quasi-two-dimensional systems can be
made using multilayers and quantum wells as we shall see in detail in Chap. 15.
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By changing the magnetic field, it is therefore possible to move the Fermi energy
inside the Landau bands, and from inside the band to the gap between adjacent
bands, when the bands are full. In Eq. (10.40) we made the observation that when the
density of states at the Fermi level is zero, there is no conduction. By changing the
magnetic field, it is therefore possible to make the two-dimensional system undergo
a transition from a conducting to a nonconducting state. This happens because by
changing the level density in each Landau subband, one can move the Fermi level
from inside a Landau band to a gap. Thus the resistance of a two-dimensional gas is
expected to oscillate with magnetic field, a phenomenon known as Shubnikov
de-Haas effect, and this is indeed observed in high-quality semiconducting quantum
wells. This is discussed in more detail in Chap. 15.

In a three-dimensional system, the kz degree of freedom broadens the Landau
bands, and we have (spinless case):

g Eð Þ ¼ qBLxLy
h

X
n, kz

δ E � εn �
h2k2z
2m∗

� �
ð10:123Þ

g Eð Þ ¼ qVB
ffiffiffiffiffiffiffiffiffi
2m∗

p

2πhð Þ2
Xnmax

n¼0

E � nþ 1=2ð Þhωc½ ��1=2 ð10:124Þ

where nmaxis the highest allowed subband index below the given energy E.
The conductivity is included in the total permittivity, so the magnetic field can in

principle strongly change the refractive index of the system. The key factor in
magneto-optics is however the broadening, which is, as we have seen, in most
systems, larger than the Landau level separation. In practice one cannot go to fields

Fig. 10.11 The density of states of a two-dimensional electron gas in a magnetic field for two
different values of broadening. As the broadening is reduced, the Landau levels become delta
function like peaks. With increased broadening, the trend is to a constant density of states as in the
B ¼ 0 limit (Davies (1998), p. 225, Fig. 6.7b and 6.7c. # Cambridge University Press 1998.
Reprinted with the permission of Cambridge University Press)
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much higher than about 17 T, and this therefore severely limits possible technical
applications of orbital magnetism to optoelectronics.

The permittivity of free electrons in a magnetic field can be computed using
the wavefunctions we obtained Eq. (10.120) and substituting them into Eq. (10.11);
however, it is often adequate to compute the optical spectra of materials within a

semiclassical treatment. This can be done by adding the Lorentz force FL ¼ �q
d r

!

dt
� B

!
to the right-hand side of Eq. (10.69), the Newton equation of motion, and

evaluating the magneto-Drude polarization response just as we did before. With the
B field in z-direction, the Lorentz force makes the problem necessarily
two-dimensional in the x-y plane, because it introduces a transverse Hall velocity,
so that now we have two equations for the two velocities vx and vy in response to the
x-electric field. Assuming that the light vector is polarized in the x-direction as in
Eq. (10.18), we can solve for the permittivity as we did before, but now including the
Lorentz force and neglecting the phonon contribution, we find from Eq. (10.26):

m∗ d2x

dt2
þ m∗dx

dt

1
τ
¼ �qE tð Þ � q

dy

dt
B

m∗ d2y

dt2
þ m∗dy

dt

1
τ
¼ q

dx

dt
B

ð10:125Þ

These equations are solved by making the same assumption as before for the
displacements x(t) ¼ x0e

�iωt and y(t) ¼ y0e
�iωt. We find the new B field-dependent

free carrier relative permittivity contribution and add it to the bound relative permit-
tivity to obtain:

ε ωð Þ ¼ εb ωð Þ þ i

ωε0
σ B;ωð Þ ð10:126Þ

where the complex conductivity now is dependent on the B field via the cyclotron
frequency:

σ B;ωð Þ ¼ ncq2τ

m∗

1
τ

� �
1=τ � iω

iω� 1=τð Þ2 þ ω2
c

( )
ð10:127Þ

Equation (10.127) reduces to the usual result Eq. (10.30) when the magnetic field
B goes to 0.

Since absorption is related to the imaginary part of the permittivity, and the bound
term can be treated as real for frequencies below 1013 Hz, the absorption coefficient
is proportional to the real part of the conductivity. Indeed we have from Eqs. (10.130
and 10.15):
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α ωð Þ ¼ ω

c

1=τð Þ2 þ ω2
c þ ω2


 �
1=τð Þ2 þ ω2

c � ω2
h i2

þ 4ω2=τ2

8><
>:

9>=
>;

ncq2

ε0m∗

1
ωτ

� �
ð10:128Þ

The absorption exhibits resonance absorption at light frequencies which match
the cyclotron frequency ωc shifted by the relaxation broadening. This resonance is
called the cyclotron resonance and is most important for measuring the cyclotron
frequency or what in other words is the effective mass of the electrons. The
resonance can be understood immediately in the quantum mechanical picture as
the absorption of a photon when an electron goes from one Landau level to the next.
The semiclassical result suggests that most of the oscillator strength is indeed
associated with a transition from one to the next adjacent Landau level, as is the
case in the harmonic oscillator problem.

The full quantum mechanical treatment of magneto-optics is very rich in infor-
mation. The formalism gives rise to complex expressions which are sometimes
difficult to handle analytically. The full treatment is normally not necessary unless
one is truly in the limit of long coherence lengths, or small broadening, i.e.,
broadening smaller than the Landau level spacing. This is achievable with very
high-quality semiconductors at low temperatures, but almost never in a metal.
Figure 10.12 shows the change in the optical absorption edge of InSb caused by a
magnetic field. The reader should also refer to the discussion presented in Chap. 15.
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Fig. 10.12 The band-edge absorption of InSb with magnetic field at room temperature (Reprinted
figure with permission from Burstein et al. (1956), p. 827, Fig. 1. Copyright 1956 by the American
Physical Society)
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10.9 Nonlinear Optical Susceptibility

We have seen how a medium affects light and how this can be described by the
concept of permittivity and complex refractive index. Throughout however, we
assumed that the light wave constituted only a weak perturbation on the electronic
and lattice coordinates. It was therefore sufficient to allow the light vector to couple
with these modes and consider the response of these modes to first order in the light
electric field. The dipole moment that the light induced was evaluated in linear
response only. Even though we did allow other external electric and magnetic fields
of arbitrary magnitude to act on the system, this was not the electric field of the
photon. One may therefore ask: what happens when the photonic field is so strong
that higher-order processes in the optical permittivity or susceptibility become
important? The first thing we note is that in this case, we need to compute the

polarization P
!
to higher orders in the electric light field E

!
, so we write in the usual

tensor notation:

P
!¼ χ 1ð Þ E

! þχ 2ð Þ E
! � E! þχ 3ð Þ E

! � E! � E! þ . . . ð10:129Þ
or equivalently:

Pi ¼
X
l

χ 1ð Þ
il El þ

X
l, k

χ 2ð Þ
ilk ElEk þ

X
lks

χ 3ð Þ
ilksElEkEs þ . . . ð10:130Þ

where χ(n) are the susceptibility tensors.
When the field is time dependent, the susceptibilities can be evaluated by the

same method as used in Eq. (10.43) for the first-order term, i.e., by using time-
dependent perturbation theory and going to higher orders. When the electric field
frequency is not monochromatic, i.e., if E tð Þ ¼P

ωμ

Eμeiωμt, the susceptibilities will

depend on two frequencies for the second-order term, on three frequencies for the
third-order term, etc., and the sums in Eq. (10.129) will run over frequencies as well.

The physical significance of the higher-order terms will now be explained. The
first-order term contains the one-photon absorption or emission process which is
what we have discussed until now, having specialized the analysis to a polarized
electric field and the term χxx(ω) ¼ αp(ω) only. Similarly, the second-order term
describes processes which allow two photons to be absorbed or emitted simulta-
neously. It includes also the process in which a photon is converted into a lower-
or higher-energy one (with phonon absorption or emission). The second-order
term only exists in crystals which have no center of inversion symmetry. When
they do, then this term vanishes by symmetry. The third-order term is always
there, but the second-order term can sometimes be induced by applying a strong
additional static external field which breaks the symmetry of the crystal. The third-
order term involves three-photon processes, for example, two absorbed and one
emitted or vice versa. It is clearly highly desirable to be able to do that kind of
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photon-to-photon energy conversion with high efficiency and reproducibly many
times over. Unfortunately, the higher-order susceptibilities get progressively
weaker with order, and such conversions are normally inefficient and require
high laser power. The high laser power then damages the material with time,
and this constitutes a serious problem. The field of nonlinear optics is therefore
very well developed. Many materials including organic and inorganic ones have
been studied, and the reader is referred to the specialized literature on the subject
(Peyghambarian et al. 1993).

Let us return to the first-order term in the above expansion and now allow an
external say static field to modify the permittivity. This is a most important scenario
and gives rise to the so-called electro-optic and magneto-optic effect. It allows us to
change the complex permittivity of a medium by applying an external field. The
basic theory for evaluating the electro- and magneto-optical effects was developed
above. The “ease” with which a medium changes its permittivity under the action of
such a field is measured by the so-called electro-optic coefficients. These can be
obtained as the coefficients of the expansion of the permittivity with the external
applied fields. The refractive index of materials such as LiNbO3 (one of the best),
KH2PO4, and even GaAs responds relatively strongly to an applied electric field. In
the material which we are familiar with, namely, GaAs, the applied electric field will,
for example, change the band structure and bandgap by replacing the Bloch states
with Airy functions and in this way give rise to a new refractive index. This
refractive index can be calculated by first evaluating the field-dependent polarization
using the above formalism. For more details and a more quantitative analysis, the
reader is referred to the book by Chuang (1995).

10.10 Summary

In this chapter we have presented a detailed and reasonably complete treatment of
the optical permittivity of a solid. We have shown how one can relate absorption,
refraction, reflection, and transmission of light to the real and imaginary parts of
the complex refractive index. Then we showed how the refractive index has to be
computed in different types of solids. We started with the free electron contribu-
tion, then added the bound electrons, and finally included the photon-phonon
coupling. Only polar optical phonon modes were included, which of course covers
only a very small part of the field. It was shown how photon-phonon coupling can
lead to the formation of a new type of particle called the polariton. The polariton is
“part photon part phonon” and is a very beautiful effect. We also mentioned, but
did not develop, the science of the surface plasmon. We showed how absorption
could be related to quantum transitions. For this we had to derive the important
rule called Fermi’s golden rule which gives us the rate of transfer from one
eigenstate to another under the action of a time-dependent perturbation. We
specialized the permittivity calculation to the case of semiconductors and
introduced a very elegant way of computing the Bloch matrix elements known
as the Kane parameter method derived from the Kane effective mass method.
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We introduced the reader to the quantum mechanics of nearly free electrons
subjected to the effect of strong electric and magnetic fields. The corresponding
Franz Keldysh and Landau wavefunctions and energy levels were derived, and we
showed how electric and magnetic fields changed the density of states of electrons.
The new quantum energy spectra affect both transport properties and optics, but
these are highly specialized themes which need detailed focused treatment. We
introduced the reader to the fundamental new science, the new concepts, and the
methodology needed to compute the optical permittivities with some simple
examples. Magnetic and electric fields can be very effective tools for the modula-
tion of optical properties, with a strong impact on technology. This is especially
true in low-dimensional systems, so we defer the discussion on some of the
applications to the chapter on low-dimensional solids. One problem is that mag-
netic and electric fields, however weak, can never be treated mathematically in
perturbation theory using the unperturbed Schrödinger equation, when we have an
infinite unbounded system. The magnetic perturbation involves a term ~�x2

which binds electrons in one direction and the electric field a term ~�qE z
0z

which is unbounded as z ! 1. The quantum treatment can be technically tedious
because we are forced to use the exact wavefunctions derived above; however, it
weaks the perturbation. These exact wavefunctions are, as one can verify, not at all
simply related to the free electron-like waves. In this context it is therefore
noteworthy that the semiclassical methods, when applicable, can be very useful.
This was shown here in the magneto-optical example. In finite quantum confined
systems on the other hand, the wavefunctions are bounded and normalized in a
finite volume. Here one can treat electric and magnetic fields using second-order
perturbation theory and get good results. This then also allows one to evaluate the
electro-optic coefficients using perturbation theory. We shall look at this in more
detail in Chap. 15.

Problems

1. Calculate the real and imaginary part of the frequency-dependent admittance of
a wire as a function of frequency, if the area is 1 cm2, the length 0.1 cm, the
charge density 1021 cm�3, and the relaxation time τ ¼ 10�13s and effective mass
0.1m0. Write down the results as a function of frequency. What are the conduc-
tance and the capacitance?

2. Calculate the oscillator strength F12 linking the ground state n ¼ 1 and first
excited state n¼ 2 of box eigenstates with box size L¼ 1 nm and effective mass
m* ¼ 0.023 m0.

3. Calculate the reflectivity of a metal as a function of frequency using the Drude
permittivity formula with free carrier concentration nc ¼ 1022 cm�3, relaxation
time τ¼ 10�12 s, andm*¼ 0.045m0. Plot the result and compare with Fig. 10.2.

4. Explain the difference between direct and indirect bandgap materials. Sketch the
two situations. If phonons were not allowed to provide the necessary momentum
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in an indirect bandgap excitation, what other mechanisms can you think of
which could make the absorption process happen in another way?

5. Calculate the density of states per unit volume of a three-dimensional nearly free
electron gas with effective mass m* in a magnetic field Bz perpendicular to the
x-y plane including spin. Remember that the number of allowed ky states per
Landau level is given byLxLyqB/h for an area of size LxLz and that there is
another (free electron) z-degree of freedom in the z-direction.

6. What is meant by the permittivity of a solid? How is it calculated? How is it
related to the refractive index? What does the real and imaginary part of the
refractive index signify? How would you design a material which is a perfect
reflector?

7. Using the definition of the complex refractive index given by Eq. (10.9), derive
the pair of equations given by Eq. (10.14) which show that this leads to a
quadratic equation from which the real and imaginary part of the complex
refractive index �n and κ can be computed.

8. What is a phonon-polariton? Write down the explicit algebraic solutions which
give the two branches of the dispersion relation ω2(k) for the phonon-polariton
equation using Eq. (10.102). Explain how and why the group velocity of this
new particle changes with wavenumber.

9. What is an exciton? In GaAs the effective mass of an electron is me ¼ 0.067m0,
and the effective mass of the hole is mh ¼ 0.082m0. The relative static permit-
tivity εr is 13.1. Using Eq. (10.85) and Eq. (10.86), calculate the exciton radius
and binding energy. At what temperatures would you expect the excitons to be
detectable by experiment?

10. With the help of Eq. (10.125), derive the magnetic field-dependent complex
conductivity of an electron gas as given by Eq. (10.127):

σ B;ωð Þ ¼ nq2τ

m∗

1
τ

� �
1=τ � iω

iω� 1=τð Þ2 þ ω2
c

( )
. Discuss the behavior of the real

part as a function of the magnetic field. What happens when the magnetic
field becomes very large? Give a physical interpretation. How does a magnetic
field affect the reflectivity of a free electron gas?
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Solar Energy Harvesting 11

11.1 Photovoltaic Cells (PVC) Introduction

The sun is a serious and vital source of energy, without which there would be no life
on the planet. Plants get most of their energy from the sun by a process called
photosynthesis (Jordan et al. 2001). Though fascinating and beautiful, the mecha-
nism of photosynthesis is beyond the scope of this book, and the interested reader is
advised to follow up the vast literature on this subject which encompasses physics,
chemistry, and biology. But a part of the sun’s energy can also be harvested
artificially using photoconductive devices (Pohlman, Heeger). This subject and
technology has become of supreme importance since the realization that fossils
fuels are slowly but surely destroying our planet. The sun emits light over a broad
spectrum of frequencies as shown in Fig. 11.1.

The process of photon harvesting is illustrated in Fig. 11.2, and one can see that
semiconducting p-n junctions (Chap. 6, this book) are the ideal way to collect the
photonic power. But there are restrictions here too. One can see from the diagrams
that the photon energy must exceed the bandgap of the material to be absorbed
efficiently. So depending on the semiconductor in question, “all” the photons above
the bandgap can be harvested, but this also means that the solar photons below the
bandgap are not harvested. The latter constitutes in general a non-negligible amount.
This implies that semiconducting solar cells are not as efficient as they could be
if they collected the entire spectrum. Si or GaAs, which are some of the best PVCs,
leave out the photons below 1 eV (> 1200 nm), and this is an important loss
limiting efficiency to ~20%. Indeed, combination cells which are designed to collect
a wider range of wavelengths can nowadays reach efficiencies of 45% (see below);
the problem is that they are still too expensive for large-scale commercial
application.

Long-wavelength collection can be done with type II semiconducting devices
(Delaunay et al. 2008), which are also used for long-wavelength photodetection.
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Figure 11.3 is a beautiful illustration of a device which can be used for long
wavelength (>3 μm; the same geometry is used for making top of the scale
photodetectors operating currently at 200 K).

11.2 Examples of Photodiodes

*For commercial use of PVC devices, efficiency is not the only criterion. Many
applications require mechanical flexibility and thus polymer cells or biocompatibil-
ity (plastic electronics implants into the body) (Figs. 11.4, 11.5, and 11.6).

11.3 The Current Voltage Characteristic of a Solar Cell
(Figs. 11.7 and 11.8)

L ¼ width
vd ¼ drift-velocity
τ ¼ recombination-time

η ¼ vdτ

L
1� exp �L=vdτ½ �½ � ð11:1Þ

Fig. 11.1 The most important range is in the UV to visible to near-infrared range (300–1000 nm).
The total solar power reaching the surface is roughly 1000 W/m2 on average, a non-negligible
amount. The mentioned photon range is ideal for the application of semiconducting p-n junction
technology. Remember Fig 9.2 from Chapter 9
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Let us now consider the limit in which charges generated in the cell can only drift
and are collected at the perfect absorbing electrode, or they recombine in the material
with lifetime τ.

η ¼ quantum� efficiency ¼
charge� collected � per � photogenerated� charge

η ¼ vdτ

L
1� exp �L=vdτ½ �½ � 1ð Þ

L ¼ width

vd ¼ drift� velocity

τ ¼ recombination� time
Equation 11.1 is the expression for the QE (quantum efficiency) η in the drift limit

(no back diffusion) (called the Hecht formula).

11.3.1 Solar Cell IV Characteristic Curve

It explains how much power can be extracted for a given photogenerated current IV.

Fig. 11.4 Schematic
representation of a photo-
harvesting device
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11.4 General Expression for the Quantum Efficiency

Let us consider the semiconductor channel in a p-n junction and model it as a
one-dimensional system since the planar motion is uniform. Light impinges from
the left a shown in Fig. 11.10 and creates e-h pairs which drift diffuse into the
electrodes. This time the electrodes are not considered a being totally absorbing, but
they have finite surface recombination velocities s1 and s2. The width of the
depletion layer is taken as w and t + w is the total length.

Fig. 11.5 (a) (top figures ¼ example of multijunction cell structure (left) and harvesting ranges
(right), lower figure corresponding band structure) Combination cells which harvest a wider region
of the sun’s spectrum. Note how the interfacial barrier is designed to be thin enough for carriers to
tunnel through, lower figure. (b) Band structure of a multijunction cell showing the way the two
modules work together. Electrons generated in one module recombine with holes through thin
barrier in the other to produce a current (Yamaguchi et al. 2005)
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11.5 Some Definitions, Power Collected

Consider Λ ¼ power collection efficiency (not to be confused with quantum
efficiency for charge collection η); Voc ¼ open circuit voltage, or forward bias at
which the bias produced current cancels photocurrent. FF ¼ fill factor of IV curve,
deviation of IV curve from perfect rectangular shape; Isc maximum photocurrent at
zero bias; see Fig. 11.9.

Λ ¼ VocIscFF=Pin ð11:2Þ
FF ¼ Fill� factor ð11:3Þ
Isc ¼ sat� current ð11:4Þ

Pin ¼ total� power � incident ð11:5Þ

Fig. 11.7 Current voltage characteristic under simulated light of 1.5 suns or 100mw/cm2 solar
irradiation of the best performing perovskite solar cells (η ¼ 12.3%) (From Bail JM, Leed M,
Hey A, Henry J Snaith Energy Envir. Sc. Vol.6, p 1739 (2013) “Low-temperature processed meso-
superstructured to thin-film perovskite solar cells”)
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In the limit of no back diffusion, all carriers generated by light drift into the
electrode or recombine in the bulk unless they recombine in the bulk with lifetime τ.
From Fig. 11.10 which explains what is meant by power collection efficiency, we
note that if a semiconductor has a low bandgap and thus high dark current at room
temperature, then the Voc is small and the IV area is reduced and thus of lower
efficiency. Let us now cone the complete formula for the quantum efficiency η in a
p-n junction such as in Fig. 11.1. The saturation current is just the product of the
number of photons absorbed and efficiency η.

Fig. 11.8 Top diagram,
simple semiconductor bands
connected to two electrodes
where the Fermi energies are
roughly matched to the
conduction and valence band,
respectively, and diagram
below the band alignment that
follows on contact
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Fig. 11.9 Illustration of the ideal situation with corresponding definitions (Credgington &
Durrant 2012)
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11.6 Complete Mathematical Expression for the Quantum
Efficiency

The quantum efficiency (charge collected per charge created) η is divided in three
contributions: the n-region, the high-field region DR, and the p-region.

The theoretical evaluation, which involves solving the diffusion equation with
boundary conditions, is given below noting that (Movaghar & Schirmacher 1981):

r ¼ reflection coefficient, α ¼ absorption coefficient, and γ1 ¼ s1Lh/Dh,
γ2 ¼ s2Le/De.

Le and Lh are the electron and hole diffusion length, respectively. De and Dh are
the electron and hole diffusion coefficient; s1 and s2 are the surface recombination
velocities at the illuminated and back photodiode surface, respectively.

η ¼ ηe þ ηDR þ ηp

Respectively, n-region, high-field region DR, and p-region:

ηp ¼
1� rð ÞαLe
α2L2e � 1

e�α xnþwð ÞS ð11:7Þ

S¼ γ2�αLeð Þe�α tþd�xn�wð Þ�sh tþd�xn�wð Þ=Le½ ��γ2ch tþd�xn�wð Þ=Le½ �
ch tþd�xn�wð Þ=Le½ �þγ2sh tþd�xn�wð Þ=Le½ � þαLe

ð11:8Þ

ηn ¼
1� rð ÞαLh
α2L2h � 1

αLh þ γ1 � e�αxn γ1ch xn=Lhð Þ þ sh xn=Lhð Þð Þ
γ1sh xn=Lhð Þ þ ch xn=Lhð Þ

� �
� αLhe

�αxn

� �

ð11:9Þ

ηDR ¼ 1� rð Þ e�αxn � e�α xnþwð Þ
h i

ð11:10Þ

γ1 ¼ s1Lh=Dh, γ2 ¼ s2Le=De ð11:11Þ

Fig 11.10 

0 xn t     xn+w t+w

photon
n p

Fig. 11.10 Rosencher & de
Vinter (2005)
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The regions xn, t, and w are defined in the figure; see A Rogalski ad J Rutkowski
Infrared Phys Vol 22 p199 (1982).

This is the complete mathematical expression for the number of carriers collected
per photon when we allow for both diffusion and drift and the fact that the carriers
are not necessarily collected with unit absorbing efficiency when they reach the
electrode boundaries, but that there can be back reflection expressed by the finiteness
of the so-called surface recombination velocities s1 and s2. Note that there are three
regions of charge generation n,p and depletion region DR. The simple Eq. (11.1)
called also the Hecht formula (Hecht 1932) is recovered in the limit that the γ’s are
infinite, and we only have one carrier type r ¼ 0 and only n-region.

11.7 Summary: Discussion

We have given in this chapter a brief description of the semiconducting solar cell
used for light harvesting. The focus is on inorganic materials. The subject in general
is a vast one with colossal importance to society in view of the gigantic damage
being caused by fossil fuels and global warming. Work is going on all over the world
in trying to still raise the efficiencies of solar cells. Electric cars and trains will be the
dominant form of transport for sure, and the target of getting rid of fossil fuels is now
very near. The combination devices illustrated in Fig. 11.5 exhibit great values, and,
were it not for the high production cost and maintenance charges, one could consider
the problem as almost solved. The difficulty is to harvest a larger part of the solar
radiation than, for example, silicon or GaAs (>1 eV), without too many expensive
processing and manufacturing steps. Scientists are working to solve this problem by
tackling the problem from many directions: new materials and new geometries. We
also reported on the important breakthrough made recently in making polymer solar
cells such as the system P3HT/PCBM (Polman et al. 2016; Street & Schoendorf
2010; Sariciftci et al. 1992) which have reached power efficiencies ηsp of ~ 10%.
This is a very great success for an organic system, but not good enough yet for mass
commercialization which needs ~18%. Polymers can be made plastic, and even
woven into garments, and made biocompatible, and this creates a wide range of new
applications; for example, in biomedicine,“tattoo electronics” are already in use
now. Building electronic circuits in the body and brain, self-powering these devices
with PVC, is a great challenge, which is being pursued vigorously with recent
applications to making wireless wifi brain to spine communication (Capogrosso
et al. 2016), in order to cure paralysis and maybe blindness.

In the next chapter, we shall focus on another very exciting topic which is the
harvesting of heat, either directly from the sun’s infrared rays or from hot bodies
created in, for example, “motors,” friction, nuclear plants, or even geothermal
processes. The heat ray part of the light spectrum is in the wavelength range longer
than 5 μm; see Figure 1. Though one could in principle use semiconductors with
very low bandgaps, the problem is that such devices would have a huge dark current
for a given load which would swamp the photocurrent and deform the ideal square-
shaped IV curve into a triangle with smaller fill factor.
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Problems

1. Using the Hecht formula Eq. 11.1, calculate the carrier collection efficiency η
given that the width of the device is 5 μm, the drift velocity is 105 cm/s, and the
recombination time is 1 ns.

2. In your own words, explain how the multijunction cell illustrated in Fig. 11.5 a
works. How do the two absorbing junctions cooperate to optimize the collection
of light over a wider spectrum?

3. Define the power collection efficiency Λ in terms of its components and explain
why a square-shaped IV curve is better than a triangular one.

4. If the carrier collection efficiency is 1, what is the single most important factor
which limits the solar cell performance in a single junction system?
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Thermal and Photothermal Energy
Harvesting 12

12.1 Introduction

Turning away from fossil fuel to green energy is one of the most important targets for
the world and critical to the survival of our way of life this century. Wind and solar
energy are being developed in almost every country on the globe. They provide
some relief but at this time fossil fuel is still the dominant source of energy. One way
forward is to try to minimize the loss and wastage of energy, specially where fossil
fuel is inevitable. Generally speaking one can summarize present-day wastage cycles
as unused heat which is an inevitable component of most power sources: automobile
engines, power stations, and solar radiation, just to mention a few examples. The
reader is referred to the widely available literature on green energy and global for
detailed descriptions of this cycle. Here we shall, as solid-state physicists, concen-
trate on two examples: (1) heat harvesting from hot surfaces or hot sources via the
thermoelectric effect and (2) harvesting the sun’s heat rays, i.e., the energy of the
longer-wavelength part of the spectrum which is not routinely collected by commer-
cial solar cells (Fig. 12.1).

This we call thermophotovoltaics as opposed to normal photovoltaics. Both these
topics are very much part of solid-state discipline and involve the most modern
nanotechnological considerations, with materials and material growth and
structurization forming the key ingredients.

12.1.1 Power Generation

Approximately 90% of the world’s electricity is generated by heat energy, typically
operating at 30–40% efficiency, losing roughly 15 terawatts of power in the form of
heat to the environment. Thermoelectric devices could convert some of this waste
heat into useful electricity. Thermoelectric efficiency depends on the figure of merit,
ZT. This will be discussed in a later section. There is no theoretical upper limit to ZT,
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and as ZT approaches infinity, the thermoelectric efficiency approaches the Carnot
limit. However, no known thermoelectrics have a ZT > 3. As of 2010, thermoelectric
generators serve application niches where efficiency and cost are less important than
reliability, light weight, and small size.

Internal combustion engines capture 20–25% of the energy released during fuel
combustion. Increasing the conversion rate can increase mileage and provide more
electricity for onboard controls and creature comforts (stability controls, telematics,
navigation systems, electronic braking, etc.). It may be possible to shift energy draw
from the engine (in certain cases) to the electrical load in the car, e.g., electrical
power steering or electrical coolant pump operation.

12.1.2 The Thermoelectric Effect

Consider a piece of material, metal, semiconductor, glass, alloy, etc., and keep one
end at a high-temperature Th and the other end at a lower-temperature Tc. If a
conducting wire is connected across the hot and cold ends, then a voltage will
develop across the terminal, and power can be generated (Figs. 12.2 and 12.3).

The voltage or current generated by temperature differences is called the “ther-
moelectric voltage and due to the thermoelectric effect.” The power extracted is
called “thermoelectric power.” Before proceeding to analyze the amount and effi-
ciency of heat extraction, and the materials to be used, we need to recall some basic

Fig. 12.1 A schematic diagram of how the energy from a combustion engine in a car is distributed
Twenty-five percent of the energy produces motion and through the alternator generates electricity
to power accessories including the electrics, the air conditioning, and the hifi system. Seventy-five
percent of the energy from the fuel is lost mostly through friction and heat; 40% of the fuel energy
disappears though the exhaust system; hence, there is interest in using thermoelectrics to harvest
some of the waste energy (From Douglas Paul Book chapter http:dx.doi.org/10.5772/57092)
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principles of transport theory. Let us start with heat transport. In the illustration
shown, heat flows from hot to the cold end.

The amount of heat flowing Q is given by:

Q ¼ �Aκ—T ð12:1Þ
where κ is the thermal conductivity in units of watts/Km and A the area with —T,
denoting the temperature gradient. Along a wire of length L, the expression for the
heat transferred Q is:

Q ¼ �Aκ Th � Tcf g=L ð12:2Þ

Fig. 12.2 In the above diagram, an electrical current I is generated as well as a heat currentQ . As a
result of this geometry, a temperature gradient T(x) develops along the specimen so that the
temperature difference depends on the position x along the specimen wire

Fig. 12.3 (a) The
thermocouple system between
two heat reservoirs required to
demonstrate the Peltier effect.
(b) The thermocouple system
between two heat reservoirs
required to demonstrate the
Seebeck effect (From Douglas
Paul, Book chapter, http:dx.
doi.org/10.5772/57092)
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The thermal conduction efficiency plays a critical role in thermal harvesting; we
shall see how later. Let us now define the electrical conductance G:

G ¼ A

Z
dE �δf

δE

� �
ρ Eð Þσ Eð Þ

� �
=L ð12:3Þ

I ¼ GδV ð12:4Þ
where σ(E) is the energy-dependent electrical conductivity, ρ(E) the density of
states, and δV the voltage drop. The energy-dependent conductivity σ for bulk
materials can be written (q is the electrical charge):

σ Eð Þ ¼ q2 < v2 Eð Þ > τ Eð Þ ð12:5Þ
with <v2(E) > denoting the mean squared velocity at energy E and τ(E) the effective
carrier relaxation time. To recover the Drude theory at T ¼ 0, one has to neglect all
energy dependences and put m* < V2 > ~ 2E the carrier energy, and then put ρE~
n the carrier density, and replace the Fermi function derivative with a delta function.

In the limit of diffusive or hopping transport, it is convenient to introduce the
carrier diffusivity D(E) such that now:

D Eð Þ ¼< v2 Eð Þ > τ Eð Þ ð12:6aÞ
In the limit of quantum transport on the other hand, in short low-dimensional

systems, it is more convenient to work with the Landauer transport formalism (see
Razeghi Fundamentals Chap. 16). Here one works with the transmission coefficient
T(E) so that:

I ¼ Aq2
Z

dE �δf

δE

� �
ρ Eð ÞT Eð ÞV Eð Þ

� ��
V ð12:6bÞ

T(E) is calculated by considering the transmitted and reflected waves incident on the
material; V(E) is the velocity at energy E (2E/m∗)1/2, and V the external bias A is the
area .

Finally the first principle expression for conductivity which can be reduced to
Eq. (12.5) in the limit of bulk transport and scattering is the Kubo-Greenwood
formula [Madelung, Solid-state physics] with the energy-dependent diffusivity
given by:

Dα ¼ h
X
β

δ εα � εβ
� �

α vxj jβh ij j2 ð12:6cÞ

where vx is the velocity operator in x-direction (same for y and z) and the matrix
element is taken between the exact eigenstate of the system. Correlation effects if
any are partially taken care of in the computation of the matrix element and appear as
self-energy terms in the Green functions.
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12.1.3 The Thermoelectric Voltage

The heat generated electrical current IT can be calculated by envisaging the follow-
ing scenarios: carriers in the hot region are excited to higher energies; they will have
higher average velocities and will move, and delocalize, toward the cold terminal in
order to equilibrate the slab. Similarly the fewer excited colder carriers will also
delocalize toward the hotter terminal. The two constitute opposing currents which
would exactly cancel if the temperatures were the same. But this is not the case, so
there will be a net current flowing from hot to cold given by:

IT ¼ ΔVtG ¼
Z

dE f T þ ΔT;Eð Þ � f T;Eð Þð Þρ Eð Þσ Eð Þ
�

ð12:7Þ

f T þ ΔT;Eð Þ ¼ f 0 þ ΔT
δf

δT
ð12:8Þ

δf

δT
¼ δf

δE

E � E f

� �
T

� ∂E f

∂T

� �
ð12:9Þ

The derivative term involving the Fermi energy is neglected unless we are dealing
with a strongly correlated system. So it follows that the voltage drop generated by the
temperature difference can be written:

qΔVt ¼ Th � Tc

T

Z
dE �δf

δE

� �
E � E f

� �
ρ Eð Þσ Eð Þ

� �
=G ð12:10Þ

The Seebeck coefficient α is defined by the ratio of the voltage generated to the
temperature difference:

α ¼ ΔV
ΔT

ð12:11Þ

We note that the magnitude of α depends on the product of the energy from the
Fermi level times the density of states times the conductivity. It is in effect the
effective energy or entropy (times T ) transported by the carrier as it moves from hot
to cold. The Peltier coefficient is defined by:

Π ¼ αT ð12:12Þ
The units for the Seebeck coefficient are V/K. The Seebeck coefficient is 1/q times

the entropy (Q/T ) transported with each electron charge. Hence the Peltier effect is
just due to electrons transferring heat from one reservoir to the other.

Note that a symmetrical density of states about the Fermi level gives zero net
energy transfer and is therefore to be avoided by the designers.

It is instructive to examine some typical cases.
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12.2 Seebeck Coefficient of a Free Electron Gas

This is given by:

α ¼ kB
q

kBT

E f
ð12:13Þ

which is the classical energy per carrier kBT reduced by the effective number of
carriers participating in the transport process, and the classical value of kB /q is
86 μV/K.

12.3 The Seebeck Coefficient of an Undoped Semiconductor

In the nondegenerate limit where carriers have to be excited above the bandgap Eg of
the semiconductor, the Seebeck coefficient is:

α ¼ kB
q

kBT

E f
ð12:14aÞ

The thermoelectric efficiency to be developed in Section 3.0 is given by the
product ZT:

ZT ¼ α2σ

κ
T ð12:14bÞ

where κ is the thermal conductivity (Figs. 12.4 and 12.5).

12.4 Doped Semiconductors

The doping of semiconductors gives one a method of making conducting wires such
that the charge transporter can be electrons or holes. This is beautifully illustrated in
the device of Fig. 12.6, where electrons are the transporter of charge in the n-wire,
but holes are the transporters in the p-wire. In this way it is possible to harvest heat
into electricity or alternatively to transfer heat from the cold side to the heat sink and
cool the material.

12.5 Seebeck Coefficient and Conductivity of a Hopping
Conductor, i.e., Amorphous Silicon

The hopping transport limit is of some interest and importance because so many
disordered materials exist which are hopping conductors. Amorphous silicon is a
famous hopping conductor with considerable commercial significance. Its
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conductivity exhibits the famous Mott T1/4 law, and theoretician has been able to
rigorously derive such laws and explain Mott’s variable-range hopping (VRH)
mechanism (see Mott and Davis Oxford Uni Press) (Fig. 12.7).
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Fig. 12.4 Plot of achieved values of ZT versus year, defined in Section 3

Fig. 12.5 Left: a comparison of ZT for p-type material as a function of temperature. Right: a
comparison of ZT from n-type material as a function of temperature (See Douglas Paul book chapter
(http:dx.doi.org/10.5772/57092 school of engineering Glasgow UK for original references))
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Fig. 12.6 Heat harvesting:
electrons flow down the
n-doped wire and are
replenished by holes injected
down the p-doped wire. The
hot end helps to inject the
carriers over the barriers
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Fig. 12.7 Top curves: The
log of the conductivity plotted
against 1/T (left curve) and T
�1/4 (right curve). Lower: The
hopping thermopower eS/kb
plotted against 1/T (left curve)
and T1/2 (right curve). The
density of states used in the
calculation is described in
detail in Movaghar et al. and is
linearly increasing in E from
the Fermi energy (From
Movaghar and Schirmacher)
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12.6 Polaron Hopping

In the limit of strong electron-phonon interaction, the carriers will dig in and deform
the lattice to lower the energy; the thermopower will now in general involve the
transfer of both activation energy and vibrational energy. The latter depends on
whether the sites are equivalent or not and on temperature. The details are beyond the
scope of this article, and the reader is referred to the book by Emin or Boettger and
Bryskin for a more complete discussion of this interesting subject.

In the following chapter, we consider the power that can be extracted from a
thermoelectric circuit (Boettger and Bryskin (n.d.), Emin 1985).

12.6.1 Thermoelectric Efficiency

Let use imagine that we want work to be extracted from a heat engine; to analyze this
we can go back to the basic principle of thermodynamics and consider the Carnot
engine. Carnot showed a century ago that there is a maximum amount of work that
can be extracted from a hot reservoir in a cycle of work such as a steam engine.
Indeed this efficiency can be written:

η ¼ 1� Tc

Th
ð12:15Þ

where Th is the temperature of the hot and Tc of the cold reservoir. This is related to
the Kelvin statement of the second law of thermodynamics which states that no
system operating in a closed cycle can convert all the heat absorbed from a heat
reservoir into the same amount of work. Another way of saying the same thing is that
no thermodynamic heat engine is 100% efficient.

Now one can think of the thermoelectric power generator as an engine and takes
into account all gains and losses of energy in a complete cycle. Carriers are heated at
the hot terminal, move to the cold terminal, and produce a voltage or current, but in
the process they also dissipate joule heat because there is a current flowing. The
inevitable heat flowing between the hot and cold reservoirs tends to equalize the
temperatures. The heat reaching the cold terminal is not collected and therefore lost
as far as the power generator is considered. When adding all gains and losses, one
arrives at an efficiency equation which now looks as (Paul):

η ¼ 1� Tc

Th

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zT

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zT

p þ Tc
Th

ð12:16Þ

where ZT is called the ZT factor and given by:
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ZT ¼ α2σ

κ
T ð12:17Þ

from which it follows that the thermoelectric efficiency is smaller than the Carnot
efficiency and increases with the ZT factor of the material in question. In order to be
of practical use the material must have a ZT of at least ~1. Figure 12.8 shows the
connection between ZT and η .

Figure 12.8 data is from a dissertation presented by Xin Liang in Applied Physics,
Harvard University, August 2013. Figure 12.8 shows calculation and plot of power
generation efficiency with the figure of merit ZT; calculations were done using
Eq. (12.16) with Th ¼ 1273 K and Tc ¼ 500 K. The energy conversion efficiency
corresponding to a ZT value of 1.0 is indicated on the plot.

The next observation is that in order to have a high ZT, a material must satisfy a
number of conditions. First we note that the electrical conductivity and Seebeck
coefficient αmust be as high as possible. This must be achieved in combination with
a thermal conductivity which is as low possible. Looking at the α for a semiconduc-
tor, one can conclude that this corresponds to a good value compared to a metal. This
would be true except for the fact that a semiconductor with a high bandgap has a low
conductivity which in turn lowers ZT and more than makes up for the gain in α. But
as a rule one can see that materials with an asymmetric density of states around Ef

which increases rapidly with a high value around 2 or 3 kBT and covers delocalized
conductive eigenstates are good for α.

The plot in Fig. 12.9 is very instructive and shows us how carrier density n,
conductivity σ, and ZT scale. Surprisingly ZT seems to be best around a Mott
transition, i.e., a metal to insulator transition triggered by correlations. But ZT
also involves thermal conductivity κ in a significant way, so if we find a material
with a good σ and α, for example, with Mott-like transition as shown, then we could
proceed to lower its thermal conductivity by nanomaterial engineering. One way is
to punch holes and make defects, cavities, and holes into the structure as shown in
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generation versus ZT as
calculated from Eq. 12.16
using Th ¼ 1273 K and
Tc ¼ 500 K. The energy
conversion efficiency for
ZT ¼ 1 is indicated by the
dashed line
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Fig. 12.11 which illustrates how strongly the thermal conductivity can be made to
vary using structural engineering. This kind of engineering will of course also
change the conductivity, so in order to optimize ZT, the multifunctionality of the
process has to be carefully considered. It is an exciting challenge for material
engineering. In Sect. (12.7) we look at some actual values for ZT and see which
ones are best. Let us now focus on one of the key properties, namely, the thermal
conductivity.

12.6.2 Thermal Conductivity

The thermal conductivity of a material consists in general in two parts. It is the
sum of the phonon or lattice contribution κph and the electronic contribution
κe (Keivan and Chen 2011).

The phonon thermal conductivity κph can be calculated using the expression:

κph ¼ 1
3
C ph
v

V
vpΓ ð12:18Þ

where Cph is the phonon contribution to the heat capacity, V the volume, vp a typical
phonon velocity (velocity of sound), and Γ the phonon mean free path.

In a Bloch crystal at any temperature T, a more fundamental first principle
expression is:
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Fig. 12.9 A semi-schematic diagram of the thermoelectric properties using reasonable Seebeck
coefficients S is here used to denote α the Seebeck coefficient (From “Ferroelectric thermoelectric-
ity andMott transition of ferroelectric oxides with high electronic conductivity,” by Soonil Lee et al.
Journal of the European Ceramic society vol.32, p3971 (2012))
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κph ¼ 1
3ΩNk

X
kλ

v2kλτkλhωkλ
∂nkλ
∂T

ð12:19Þ

where τkλ is the phonon relaxation time in a state k, with λ denoting the mode index
and Ω the unit cell volume, also is nkλ the Bose distribution function and ωk the
phonon frequency with vk the corresponding velocity (Figs. 12.10, 12.11, 12.12, and
12.13).

Note: Just as the electrical conductivity, which was analyzed by Movaghar and
Schirmacher, the thermal conductivity with disorder also increases with frequency
until saturation sets in. Going up in frequency means sampling over smaller and
smaller regions of the material and consequently more and more order. The heat
diffusion theory presented below can offer an explanation of this behavior.

12.6.3 Thermal Conduction in the Diffusive Limit of Phonon
Transport

In the incoherent propagation limit (short mean free path), heat transport can be
described as an excitation diffusion process. We can apply the standard temperature
diffusion equation given by:
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Fig. 12.10 Left axis: thermal conductivity variations of a mesoporous germanium thin film with a
uniform pore diameter d ¼ 6 nm as a function of the porosity; blue dots correspond to Monte Carlo
simulations and red triangles correspond to the kinetic theory model. Right axis: nanoporous
phonon mean free path as a function of the porosity for a uniform pore diameter d ¼ 6 nm green
dashed line (From “Thermal conductivity of meso-porous germanium” by M Isaiev et al. APL vol
105, 031912, (2014))
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Fig. 12.11 The cross section of the modeled crystalline core/amorphous shell germanium
nanoparticles with molecular dynamics is depicted. The characteristic lengths of the geometry are
given. Gray atoms indicate four coordinated atoms, blue with one, yellow with two, and green with
three (From “Thermal conductivity of meso-porous germanium” by M Isaiev et al. APL vol
105, 031912, (2014))

Fig. 12.12 Structure of nanoscale 3D Si PnCs . The period length of 3D PnCs is 8 units and the
side length of simulation cell is 16 units. The periodic boundary condition is applied in simulation.
The lattice constant is 0.543 nm of Si, and 1 unit represents 0.543 nm: (a) porosity is 50%, (b) has
90%, (c, d) normalized energy distribution on the PnC at 300 K with porosity of 70% and 90%,
respectively (From: Extreme low thermal conductivity in nanoscale 3D Si Phononic Crystal with
spherical Pores by Lina Yang et al. Nanoletters vol 14, 1734 (2014))
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δT
�
r
!�

δt
¼

_Q

ρCρ
þ Dp∇2T � sT ð12:20Þ

where T(r,t) is the local temperature at time t and where “s” is a uniform heat loss
rate, dQ/dt is the rate of heating in a given region or point, ρ is density, Cρ is specific
heat capacity, and Dp is the thermal diffusion rate. In this limit it is the heat which is
diffusing not the phonons. In the percolation or highly disordered limit, see
Fig. 12.11; this equation can be discretized and turned into a hopping or random
walk problem as done in Movaghar and Schirmacher for charge transport. The
discretization can be done on a lattice for which the cell length is roughly the
mean free path of the dominant phonons. We can Laplace transform Eq. (12.20)
with “p” replacing “t” and solve this equation by Laplace transform on a lattice
with constant Dp the (extra) temperature at “j” at time t given that the heat pulse

was started at r ¼ 0 at t ¼ 0 is in Laplace space, with Dp
_

denoting the diffusion
propagator matrix:

T0 j pð Þ ¼ j
1

pþ s� Dp
_

=a2
j0







+

0
_Q i

ρCρ
pð Þ










0

� �
¼

Z1
0

dte�ptToj tð Þ
*

ð12:21Þ

Fig. 12.13 (a) shows the strong connection between porosity and thermal conduction with (b)
showing the temperature dependence, and the fact that when the disorder is strong, and the mean
free path short, temperature or phonon-phonon scattering no longer matters. (c) Importantly the
figure also shows the frequency-dependent thermal conductivity
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_Q i

ρCρ
pð Þ ! g0=p ð12:22Þ

For Eq. 12.22 it is assumed that the heating source has constant power where D
_

“D- hat” is the diffusion matrix and “a,” a cell-to-cell distance. On a periodic lattice
with Bloch dispersion εk, the diffusion propagator is:

Gij ¼ j
1

pþ s� Dp
_

=a2
ji







+

¼ Gij pð Þ ¼
X
k

1
pþ sþ ε0 � ε

k
!
exp



i k
!
:R
!
ij

�*

ð12:23Þ
and represents the probability of a temperature shift “T” at the point Rj. It is in fact
the (extra) temperature of the system at a point R in space given that the pulse was
created at the point Ri at t ¼ 0. Given a constant point power source generating heat
at “0” with intensity g0 in Hz, we have been using the standard diffusion solution in
3D (a ¼ lattice spacing):

T t;Rð Þ ¼ g0

Z t

0

dτ
a2

4πDpτ

� �3=2

exp � R2

4Dpτ

� �
exp �sτ½ � ð12:24Þ

The dispersion ε(k) in Eq. 12.23 applies to a periodic lattice and represents the
tight-binding-like energy versus k relation for the lattice in question; see Chaps. 2
and 5, Eq. 2.1 . For 3D cubic we recall (t ¼ Dp /a

2):

ε kð Þ ¼ 2 tj j cos kxaþ cos kybþ cos kzc
� �

The case with disordered and spatially variable Dp can be solved like the
corresponding hopping charge transport problem, in the same way. Here we use
the effective phonon (heat) transfer rates from cell i to cell j, Dij/<a

2 > rather than the
charge hopping rates from site to site. The self-consistency relation involving the
effective frequency-dependent heat diffusivity Dp(ω) for the “heat transfer rate” and
the distribution function for the actual local transfer rates Dij/<a

2> will lead to an
equation for the effective frequency-dependent phonon diffusion propagator Dp(ω)
which contains the information on the thermal conductivity.

Given by:

Dp ωð Þ ¼<
X
j

1

1=D0 j þ 1= iωþ Dp ωð Þ� � > ð12:25aÞ

where Dp(ω) is the complex self-consistent average diffusivity, the average <>:

< Q >¼
Z 1

0
dWijχ Wij

� �
Q ð12:25bÞ
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goes over the distribution χ of transfer bonds W0j, “j” is the sum index over the
number of “transfer bonds” (heat hopping links) emanating from a given site “0”,
and < a2 > is the mean squared distance between the transfer cells. The calculation of
Dp is completely analogous to the one for charge diffusion as given in ref Movaghar
et al. The zero frequency thermal conductivity κph is:

κph ¼ 1
3
Cp

V
Dp 0ð Þ ¼ 1

3
Cp

V
vpΛp ð12:26Þ

where vp is the dominant phonon velocity (velocity of sound) and Λp the mean free
path. The frequency diffusion rate Dp (ω) is complex, but the zero frequency ω ¼ 0
(long time) value is real. From the corresponding analysis of the ac hopping and
percolation conduction, one can infer that with a suitable distribution function of
phonon-hopping rates, Eq. (12.25) will be able to explain the behavior shown in
Fig. 12.13c. At long times the diffusivity is lower because the phononic excitations
have encountered the worse possible scenarios. At high frequencies the diffusivity
reflects the well-connected and ordered domains where heat or phonon transport is
highest.

In metallic materials we have conductivity contributions both from electrons and
from phonons; here we show an example.

12.6.4 Phonon Contribution to Thermal Transport at Room T

Λp ¼ 3:10�6cm; vp ¼ 105cm=s;Cp=V ¼ 25J=K Mol

κphonon ¼ 1
3
Cp

V
vpΛp ¼ 2:5 W=cm=K ð12:27Þ

12.6.5 Electron Contribution for a Metal at Room T (Cp,e Is
the Electronic Specific Heat)

Λe ¼ 10�5cm; ve ¼ 108cm=s;Cp,e=V ¼ 0:5 J=K Mol

κe ¼ 1
3
Cp,e

V
veΛe ¼ 250 W=cm=K ð12:28Þ

In materials with low electrical charge density, only the lattice or phonon thermal
conductivity matters.
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12.7 Summary: Typical Thermoelectric Generator

Using n- and p-doped semiconductors as charge/heat transporters, the common
device structure for power generation is shown below (Figs. 12.14 and 12.15).

12.8 Application to Cooling

To cool a surface, we have to reverse the process and use electrical power to drag
carriers from the side to be cooled to the heat sink; see Fig. 12.16 right. Best
thermoelectric cooling at present works down to roughly 200 K which is impressive
when taking into account the simplicity of the set up.

Fig. 12.14 Schematic energy
diagram of a basic
thermocouple unit made with
doped semiconductors for
harvesting heat

generated current ceramic substrate

p -type material

n -type material

conductive metal
applied heat

Schematic diagram of a typical thermoelectric module (SIGMA-ALDRICH, 2015)

Fig. 12.15 Schematic diagram of a typical thermoelectric module (Sigma-Aldrich) (Sigma-
Aldrich (2015) Materials for advanced thermoelectrics. Retrieved from http://www.sigmaaldrich.
com/materials-science/metal-and-ceramic-science/thermoelectrics.html)
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Fig. 12.16 The cold surface is cold because carriers absorb heat energy in order to transfer into the
n-wire from the metal surface assisted by a bias. The electrons are replenished by cold electrons
which are emitted by activated hole injection down the p-wire (From Paul). Both carriers in the top
layer need heat in order to transfer along the circuit which is powered by a voltage source
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12.9 Materials Old and New (Figs. 12.17 and 12.18)

From Douglas Paul’s review, some of the original work comes from:

Dismukes JP et al (1964) Thermal electrical properties of heavily doped ge-si alloys
up to 1300 K”. J Appl Phys 35:2899

Venkatasubramanian R et al (2001) Thin film thermoelectrics devices with high
room temperature figures of merit. Nature 413:597.

Boukai AI et al (2008) Silicon nanowires as efficient thermoelectric materials.
Nature 451:168.

A more complete list of references is given in the review by D Paul.

12.9.1 Properties Which Make a Thermoelectric Material Efficient

The bismuth telluride (Bi2Te3)-type compounds are narrow gap layered
semiconductors. The gap is ~0.2 eV with asymmetric density of states around Ef,
making it ideal for carrier excitation at room temperature and high conductivity.
Also, the van der Waals bonded layered structure is good for lowering the thermal
conductivity. At all times one has to remember that electrical and thermal
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Fig. 12.17 From J P Heremans, M S Dresselhaus, L E Bell D T Morelli, “When thermoelectrics”
reached the nanoscale” Nature Nanotechnology vol 8, p471, (2013)
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conductivity of electrons in the relaxation time approximation are related to each
other by the Wiedemann-Franz law which states that:

κe ¼ π2k2b
3q2

σ ð12:29Þ

κ ¼ κe þ κp ð12:30Þ
This implies that the electronic part of the thermal conductivity is intimately

linked to the electrical conductivity so that the two cannot be independently
engineered. The total thermal conductivity is a sum of the electronic and phononic
components, and the phononic component can be engineered independently. Also in
semiconductors, usually κe < κp, lowering the phononic thermal conductivity is
relatively straightforward because one can do that by lowering the crystal quality
or dimensionality of the material.

12.9.2 Low-Dimensional Structures

Low-dimensional structures such as nanowires or quantum wells and superlattices
can sometimes be used to optimize ZT. We saw, for example, how porosity helps to
lower κp without necessary altering too much the electronic contributions.
Superlattices can be made by depositing one material on top of the other, doping
layers, forming minibands for electron transport, and indeed making phonon filters
(Fig. 12.19).

Fig. 12.18 Shows that one can achieve a few very good values of ZT with suitable material design.
The inclusion of Te or Se seems to be particularly helpful. These alloys produce a high density of
states just above the Fermi level which enhance α
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A system may be designed and fabricated which optimizes ZT to the extent
allowed by material properties. Phonon transport and electron transport in
superlattices (SL) and superlattice wires are normally studied separately. The science
of thermoelectric engineering of SL is relatively new. Samarelli et al. have shown
that the expensive Te in BiTe materials can be replaced by SiGe modulation-doped
superlattices with ZT reaching respectable values of ZT~0.15 (Fig. 12.20).

Fig. 12.19 The electron density of state as a function of energy for (a) 3D, (b) 2D, and (c) 1D
semiconductor systems. The best position of the Fermi level for Seebeck coefficient is also shown
(note the asymmetry) by the dashed line (see Dresselhaus et al. book for ZT “Recent trends in
thermoelectric power conversion”)

Fig. 12.20 Left figure shows theoretical estimates for the figure of merit as a function of well or
wire width, from Dresselhaus; right figure shows the density of states and Fermi energy assumed
(see Dresselhaus et al. book for ZT “Recent trends in thermoelectric power conversion”)
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12.9.3 Advantages of Lower Dimensionality

These are associated with the lower thermal conductivity by enhanced phonon
scattering and the strong asymmetry of the density of states about the Fermi level
when strategically doped (Figs. 12.21 and 12.22).

Fig. 12.21 Left: a cross-sectional TEM image of Ge quantum wells with Si0.2 Ge0.8 barriers
forming a 2D thermoelectric system. Middle: a SEM image of etched 50-nm-wide nanowire of Ge/
Si0.2 Ge0.8 material forming 1D thermoelectric systems. Right picture: a TEM image of a Ge
quantum dot grown on a silicon substrate forming a 0D thermoelectric system for scattering
phonons

Fig. 12.22 The ZT value plotted for a number of alloys as a function of temperature (“Thermo-
electric performance of metal semiconductor superlattice nanowires” from Sajid Kabeer. Online)
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ZnO has a number of advantages (high bandgap, stability dopability) which can
be exploited in thermoelectrics as well as shown by the Al-doped material in
(Figs. 12.23 and 12.24)).

Thermal conductivity of mesoporous germanium by M Isaev et al. APL, vol 105, p
031912 (2014) (Fig. 12.25).

12.9.4 Summary

Low-dimensional structures such as nanowires can be beneficial because they can
combine high electrical conductivity with low thermal conductivity using surface
scattering of phonon heat carriers. Nanoparticle lattices are very versatile, and one
has now learned how to generate assemblies with wide enough energy bands for high
electrical conductivity, and soon one will learn how to concomitantly lower the
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Fig. 12.23 Dimensionless
figure of merit at elevated
temperature using thermal
conductivity at 300 K for
AZO thin film deposited at
400C compared with previous
material (see Shrikant Sani
et al. Japanese Journal of
applied Physics vol53
p 060306 (2014) “Enhanced
thermoelectric performance of
Al-doped ZnO films on
amorphous substrates”)
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thermal conduction. Metallic nanoparticles can be used as high absorbers of photons
via surface plasmon excitations and hence used for nanoscale local heating. This can
be integrated into nanotechnology to focus light, achieve strong absorption, and
heating, and then hopefully high ZT value. There is a lot of scope in the nanoparticle
material technology area, and there are some good prospects both for heat and light
harvesting.

See Jong Soo Lee et al. (2011) Bandlike transport high electron mobility and high
photoconductivity in all inorganic nanocrystal arrays. Nature Nanotechnology letters
6:348.

M P Bonechanscher et al. (2014) Long range orientation and atomic attachment
of nanocrystals in 2D honeycomb superlattices. Science 344:1377.
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Photo-thermovoltaics 13

The other and more common strategy for harvesting energy from heat and light is to
use PVC devices (see the previous chapter on light harvesting). The PVC devices are
very well documented and constitute a mature technology that utilizes solar cells
which the reader can access in the literature and books and buy in shops. The
problem with current PVC technology is that it is mostly geared to the harvesting
of shorter-wavelength region of the sun’s spectrum; see Fig. 12.32. Silicon is
currently still the typical and best material class; the lowest-energy photons collected
have energies around 1 eV or 1.2 μm (Figs. 13.1 and 13.2, 13.3).

C Ferrari et al. “Overview and Status of Thermophotovoltaic Systems” Energy
Procedia Vol 45, p160, (2014) 68th Conference of the Italian Machines Engineering
Association ATI 2013

13.1 Photothermal Harvesting Using Photonic
Crystal Conversion of Blackbody Heat
into High-Energy Photons

The objective and design are illustrated in the diagram in Fig. 13.3. The idea is to
harvest the long-wavelength light emitted by a hot body, not just the shorter
wavelengths. Here, one designs an absorber of, for example, sunlight, the absorber
gets hot, and now this absorber will also act as an emitter. Normally, it would emit in
the blackbody spectrum. The point is to modify it in such a way so that its light
emission now covers a smaller wavelength range than the whole blackbody spec-
trum and shifted to higher energies. In this way, the longer wavelengths can ideally
be reemitted in a shorter wavelength range, and one can then proceed to harvest the
heat rays emitted using conventional highly efficient semiconducting photovoltaic

# Springer International Publishing AG, part of Springer Nature 2019
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_13
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cells such as silicon cells. These cells operate above the bandgap of Si and thus cover
the higher part of the bb spectrum.

In the proposed design shown in Fig. 13.5, the absorber and emitter consist of
tungsten photonic crystals whose properties can be tailored to provide broadband
absorption of light over the entire solar spectrum. The emission spectrum can be
adjusted to match, at least in part, the absorption characteristics of a silicon photo-
voltaic cell. The absorber and emitter are integrated within the intermediate wave-
length range to optimize thermal transfer. The bb light emitted which is below the
absorption band of the photocell is designed to reflect back into the emitting material
again; in this way it gets recycled into heat and is not lost. In this way, the conversion
of long-wavelength light to shorter-wavelength light is done by the “emitter” itself,
by way of raising the temperature of the emitter. This conversion does not explicitly

Fig. 13.1 Illustration of the sun spectrum
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involve exploiting any nonlinear processes, though these can indeed be involved as
well (Fig. 13.4).

*The design and fabrication of photonic crystals transformers is a highly non-
trivial task. The interference of light is used to narrow down the spectrum like Bragg
reflection. This is in contrast to photonic conversion using the nonlinear optical
effects, see the work of Fan et al. The net photon power emitted from a body at a
given temperature T and emissivity σe is given by the Stefan-Boltzmann law:
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Pout ¼ Aεσe T4 � T4
0

� � ¼ Pin ð13:1Þ
The trick is to keep the temperature high in the emitter using the recycled photons

which are back-reflected into it. Photons can ideally only leak out through the
allowed window and then into the photovoltaic device. The conversion to shorter
wavelength is done by using the entropic pressure which makes a hotter body emit
in a different (wider and shorter) spectrum with photons occupying higher energy
modes with higher probabilities. The extra temperature is acquired by absorbing
reflected photons from the photonic crystal filter.

13.2 Dichalcogenides: From Monolayers to Nanotubes

Layered compounds transition metal dichalcogenides TMD exhibit quite a good
figure of merit as can be seen from Fig. 13.6, but they will, because of the high
crystal quality, have high thermal conductivities which is a disadvantage. The latter
needs to be reduced to enhance the ZT further.

Flexible n-type thermoelectric materials can be made by organic intercalation
of layered transition metal dichalcogenide TiS2 (Chunlei Wan et al. Nature materials
vol 14 p 622 (2015)). Flexible n-type thermoelectric materials by organic intercala-
tion of layered transition metal dichalcogenides with ZT of 0.28 at 338 K have been
recently discovered; see above reference. The injection of organic layers consider-
ably reduces the thermal conductivity.

*Organic layers were externally injected into the inorganic layers and then
stabilized by organic cations, providing n-type carriers for current and energy
transport. An electrical conductivity of 790 S cm(�1) and a power factor of
0.45 mW m(�1) K(�2) was obtained for a hybrid superlattice of TiS2/
[(hexylammonium)x(H2O)y(DMSO)z], with an in-plane lattice thermal conductiv-
ity of 0.12 � 0.03 W m(�1) K(�1), which is two orders of magnitude smaller than
the thermal conductivities of the single-layer and bulk TiS2. High power factor and

Fig. 13.5 Scanning electron
microscope picture of a
representative nickel photonic
crystal fabricated by
electrodeposition using a self-
assembled polystyrene opal
template
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low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of
0.28 at 373 K, which might find application in wearable electronics.

13.3 Special Case: Graphene

Thermoelectric properties of graphene are described in the paper by Yong Xu et al.
Condensed matter Science Feb 2015 published online. “Thermal and Thermoelectric
properties of graphene.”

The investigated thermoelectric properties on graphene suspended and on a
substrate all demonstrate that high electrical conductivity is accompanied by high
thermal conductivities as well, so that the ZT value is not very high. But individual
properties are of great interest especially in view of the fact that a gate voltage can be
used to control the carrier density, mobility, and conductivity and thus also the
electronic thermal contribution. Researchers will eventually also find a way to also

Fig. 13.6 (a) Electrical conductance G and (b) thermopower (α) TEP of a graphene sample as a
function of back-gate voltage Vg for T ¼ 300 K (square) 150 K (circle), 80 K (up triangle) 40 K
(down triangle), and 10 K (diamond). Upper inset: SEM image of a typical device for thermoelectric
measurements; scale bar is 2 μm. Lower inset: TEP values taken at Vg ¼ -30 V (square) and �5 V
(circle); dashed lines are linear fits to the data (From Y M Zuev et al. PRL vol 102 p 096807 (2009)
Published on line Feb.5 (2014)) (From “Thermoelectric Properties of Transition Metal
Dichalcogenides: From Monolayers to Nanotubes”, Kai-Xuan Chen, Xiao-Ming Wang, Dong-
Chuan Mo, and Shu-Shen Lyu. J. Phys. Chem. C, 2015, 119 (47), pp. 26706–26711)
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control the lattice heat conduction by engineering defects and interfaces,
superlattices, and heterojunctions in combination with TMDC, making graphene a
uniquely versatile system.

13.4 Thermoelectric Mapping Graphene

Recently, researchers have managed to combine STM and thermal scanning to
obtain atomic scale temperature images and have applied the technique to graphene.
This is shown in Fig. (13.7); the temperature scan gives one yet another handle on
the local properties of surfaces which can be combined with the STM and or AFM
information to complete the picture. This is especially valuable for the study of
systems which are highly correlated, such as magnetic layers or ferroelectrics, and
materials which exhibit a metal insulator transition such as VO2. One can in this way
go some way toward disentangling the one-body from the many-body effects. But
this type of work is very new, and a lot more needs to be done on measurement and
modeling.

See “Atomic scale mapping of thermoelectric power on graphene: Role of defects
and boundaries” Jewook Park et al., Nanoletters vol 13, p 3269 (2013).

Fig. 13.7 Structure and thermovoltage measurement of graphene with an STM at the atomic
resolution on epitaxial graphene on SiC. (a) Schematic diagram of measurement technique. Atomic-
resolution images of topography (b) and thermovoltage (c) for the epitaxial graphene acquired
simultaneously at 130 K (image size 7.5 nm� 7.5 nm). The temperature at STM tip is 298.5 K with
an applied temperature difference delta T ¼ 168.5 K. “Atomic scale mapping of thermoelectric
power on graphene: Role of defects and boundaries” (Jewook Park et al., Nanoletters vol 13, p 3269
(2013))
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13.5 Phononic Crystals

Another class of materials which is currently arousing great interest are the phononic
crystals. Similar to photonic crystals, phononic crystals can be engineered with
superlattices or other forms of topological complexity to form materials with
phononic bandgaps. The field is relatively new and is very promising for application
to green energy management and harvesting. It could well provide us with a highly
desirable class of thermal diodes and selective frequency sound insulators or
blockers. The reader is referred to the review by Martin Maldovan in Nature vol
53 p 209 (2013).

13.6 Organic Materials: Single Molecule Junctions (Fig. 13.8)

Researchers have investigated structural, electrical, thermal, and thermopower
properties of molecular junctions, down to single molecules; see Fig. 13.9. This is
by now a vast field of research, with many interesting results (Reddy) published in
the literature. Voltage generation is shown for a series of molecules in Fig. (13.9).
Most work on molecule junctions at present targets, quite understandably sensoric
applications for single molecule detection. As an engineering discipline, this subject
is still in its infancy, but it is not too difficult to envisage the great potential that this
type of approach has to offer. It must be put in conjunction and combined with
nanoparticle surface plasmon technology, excitons, energy and charge transport
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along DNA strands, muscle fiber, photosynthesis, nerve cells, tattoo electronics,
animal hibernation, and information storage in biological materials. For transfer
across a molecular bridge, see also D Segal et al. (J Phys Chem B vol 104 p3814
(2000)) and A B Butler Ricks et al. (JACS vol 132 p15427 (2010)).

13.7 Many-Electron Thermopower: The Effect of Electron
Correlations

13.7.1 Kondo Systems

Up to now, we focused on materials which can be described by effective single
particle physics. This includes the vast majority of useful semiconductors. The
question is what happens when electron correlations get involved. This is an exciting
subject in its own right. Though the Seebeck term can be large, useful thermoelectric
performances are normally limited to low temperatures, because that is where
correlations play a major role. Thus, this type of material technology is not currently
pursued for large-scale energy harvesting and cooling. But in this category, we
encounter a particularly interesting and topical class of materials, namely, solids,
where narrow, strongly coulomb-correlated “d and f” electron bands are present
which mix with broader s-like bands. The Hubbard energy U acts to oppose the
filling of the atomic d or f shell leaving a net paramagnetic spin on the atoms. The
localized spin strongly scatters the electrons in the s-bands, raising the energy of the
electrons in such a way that the system prefers to screen this localized spin and form
a singlet combination involving quasi-free “s”-like states and the more localized
d-levels. The screened spin is then made invisible to the sea of other electrons
roaming in the bands of the system, and this helps lower the total energy of the
electrons. The localized singlet is called a “Kondo resonance” or Kondo bound state.
This Kondo resonance produces a peak in the density of states for the excited
spectrum which in turn leads to a high Seebeck coefficient. The problem is that
the Kondo bound states are low temperature (<200 K) phenomena, and the
thermopower is only enhanced typically at low temperatures, mostly below
T ¼ 200 K. Cooling and heat harvesting applications could indeed be envisaged at
low T. For a comprehensive and up-to-date theoretical review, the reader is referred
to the book by Zlatic. The Kondo systems FeSb2 (see Fig) and FeAs2 exhibit what
can be termed a giant thermopower. The reason is that the s-d coupling or Kondo
resonance generates a large density of states which peaks near the Fermi level.
Looking at the formula (12.10), we note that this implies that excitation above Ef can
lead to the transport of a large number of electrons which then gives rise to a large
entropy per carrier. Kondo materials have a high and strongly temperature-
dependent resistance (minimum structure) caused by the strong scattering of the
nearly free electrons with the local bound state. It turns out that when magnetic
impurities are used to dope nonmagnetic semiconductors giving rise to a Kondo
resistivity, a similar peak in the density of states and similar enhanced value of the
thermopower are recovered (Fig. 13.10).
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Qing Jie et al. “Electronic thermoelectric power factor and metal insulator
transition in FeSb2” PRB Vol 86 p115121 (2012), and references cited.

*Although small in comparison to α in FeSb2, exceptionally large Seebeck
coefficients are found in metals containing dilute magnitude impurities and in
semiconductors containing resonant-level dopants and highly degenerate electronic
bands. Among all these systems including FeSb2, there is a shared commonality that
plays a role in the large α, namely, large peak in the electronic density of states
(DOS) near the Fermi level Ef. However, only in the former class of materials where
magnetic interactions between localized and itinerant electrons take place are spins
also suggested to play a role. Observation of this same effect, i.e., Kondo effect in
semiconductors, has led to the term Kondo insulators. Examples of the anomalous
peaks in α for these materials occur in FeSi, Ce3 Pt3 Sb4, and CeFe4 P12 reaching
about 500, 350, and 800 μV/K, respectively (Fig. 13.11).

Tetsuro Saso “Thermoelectric Power and electronic structures of Kondo
insulators” Physica B vol 328 p58 (2003)

“Correlated evolution of colossal thermoelectric effect and Kondo insulating
behavior” by MK Fuccillo et al... APL Vol 1 062102 (2013)

JM Tomczak et al. “Thermopower of correlated semiconductors” Applications to
FeAs2 and FeSb2 PRB Vol 82, p085104 (2010)

“Modern theory of Thermoelectrics” by Vejko Zlatic and Rene Monnier Oxford
University press May 2014

Peijie Sun et al. Huge thermoelectric power factor: FeSb2 versus FeAs2 and
RuSb2, Applied Physics Express Vol 2 p 091102 (2009).
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13.8 Material with Metal Insulator MI Transitions, Example VO2
Phase (Fig. 13.12)

In Fig. 13.13, we exhibit the evolution of the resistivity and Seebeck coefficients
with temperature in VO2.

A light beam applied to the material can switch the material from below to above
the percolation threshold of conduction, and this gives a giant gain. Light can induce
an MI transition in island networks. Understandably, this material is one of the best
existing and useful bolometers because the MI transition is just above room temper-
ature. For other examples, where collective effects give MI transitions, see also
Fig. 12.9.

Takayaoshi Katase et al. “Thermopower analysis of metal insulator transition
temperature modulation in vanadium dioxide films with lattice distortion.”

*The conductivity can jump in the critical region when the gap decreases sharply
with T.

*Movaghar-Schirmacher’s method allows frequency-dependent thermal diffu-
sion to be computed as well.

*Positive bias gate controlled metal insulator transition in ultrathin VO2 channels
with TiO2 gate dielectrics by Yajima et al. DOI 10.1038 /ncomms10104

50

40

FeSb2

FeSb2

FeAs2

FeAs2

RuSb2

RuSb2

30

20

10

0

104

102

100

10−2

10−4

1 10 100 400

T (K)

T (K)

0 10

−S
 (

m
V

/K
)

r 
(Ω

 c
m

)

20 30 40 50 60

Fig. 13.11 Thermoelectric power S (α in our notation) for FeSb2, FeAs2, and RuSb2 which all
have a similar carrier concentration below 30 K; inset shows the electrical resistivity ρ as vs T. The
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Eg ¼ 0.29 eV (for original data, see Peijie Sun et al. Peijie Sun et al. Huge thermoelectric power
factor: FeSb2 versus FeAs2 and RuSb2, Applied Physics Express vol 2 p 091102 (2009))
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13.9 Summary: Conclusion

Thermoelectric generators are already used in car exhausts and power stations and
constitute now well-established technologies. But despite all the research, there are
until now only a few materials which satisfy the efficiency criterion ZT > 1 criterion.
Work is still in progress with new materials being designed and investigated every
day using the most modern nanotechnology growth methods. The research program
is exciting, and this applies in particular to the field of photothermal harvesting from
blackbody sources.

In this chapter, we have shown the reader how to model thermoelectric efficiency,
even, and in particular, in the presence of disorder. The chapter covered electric and
thermal conductivity as well as the Seebeck effect.

Fig. 13.12 Thermoelectric power S (α in our notation) for FeSb2, FeAs2, and RuSb2 which all
have a similar carrier concentration below 30 K; inset shows the electrical resistivity ρ as vs T. The
resistance is thermally activated in certain T ranges. For FeSb2 Eg ¼ 0.20 eV. For FeAs2 and RuSb2
Eg ¼ 0.29 eV (for original data, see Peijie Sun et al. Peijie Sun et al. Huge thermoelectric power
factor: FeSb2 versus FeAs2 and RuSb2, Applied Physics Express vol 2 p 091102 (2009))
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For the materials physicists and theorists, the challenge is to identify, then model,
and then fabricate the materials with a high Seebeck coefficient and high electrical
conductivity yet low thermal conductivity. The effect of many-body interactions has
also been considered. It turns out that Kondo insulators have high Seebeck
coefficients, but their exploitation can at present only be envisaged at low
temperatures. The physics of thermoelectric response in correlated materials such
as ferromagnets is a subject of great interest in its own right because temperature
gradients can produce ferromagnetic polarization and spin gradients without charge
currents. Internal spin gates can be generated from regions of varying spin polariza-
tion, which seriously modify the internal carrier and phonon dynamics of the
problem. This is especially true in ferromagnetic multilayers and nanowires. This
subject is relatively new and as yet relatively unexplored. Applications are to be
expected in the field of spintronics rather than energy harvesting (Nakano, Setsuro).

The fields of ordinary and giant magnetoresistance, magnetism and Hall effect,
anomalous magnetoresistance, and spin Hall effect are by now vast and important
fields of research and development in the category of spintronics. This book
specializes in one-body quantum phenomena; spintronics involves collective effects
and, like superconductivity, ferromagnetism, ferrimagnetism, and ferroelectrics, is
beyond the scope of this book. The interested reader should consult some excellent

Fig. 13.13 Color online schematic illustration of metallic and insulating domain configuration at
each temperature (a–d) around MI transition and corresponding changes in p-T and S-T Majority
phase changes from Takayaoshi Katase et al. “Thermopower analysis of metal insulator transition
temperature modulation in vanadium dioxide films with lattice distortion.” Metallic domains are
shown in red and grow as the T is increased until they form a connected percolation path. The
thermopower and resistivity weigh in differently in this percolation transition, and the ensuing
information is thus very useful. Thermal conductivity evolution will add yet another angle
(Takayaoshi Katase et al., “Thermopower analysis of metal insulator transition temperature modu-
lation in vanadium dioxide films with lattice distortion” transition in FeSb2” PRB vol 86 p 115121
(2012))
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reviews, namely, by A Fert and P Gruenberg in Nature Physics vol 3 p 754 (2007); I
Zitic, J Fabian, and S Das Sarma in Rev Mod phys vol 76, p323 (2004); and Thomas
Dietl in Nature Materials vol 9 p 965 (2010) for the magnetically doped
semiconductors. Albert Fert was awarded the Nobel Prize for his work on ferromag-
netic interfaces and transport in 2007.

13.10 Discussion

In this chapter, we examined how electrical energy can be harvested from heat
sources, for example, hot surfaces or substrates, and we did this in the context of
solid-state electronics. The basic principle of thermoelectricity was explained, and it
was shown how the thermally induced voltage could be calculated. As in a Carnot
engine, some loss is inevitable, and the efficiency of a thermoelectric generator is
lower than the Carnot efficiency. It was shown how the efficiency is calculated, and
the figure of merit or ZT value was derived. The remainder of the chapter was
devoted to studying particular examples. In particular, we discussed the effect of
dimensionality, layered structures, molecular devices, and briefly also photothermal
systems. It is still very difficult even now to generate useful systems with a ZT > 1,
and the field is researched into with endeavor.

Problems

1. Calculate the thermoelectric efficiency ZT for a device for which the conductivity
is 105 siemens/cm, the thermal conductivity is κ ¼ 5 W/Km, and the Seebeck
coefficient α is

200 μV/kb, T ¼ 300 K.

ZT ¼ α2σ

κ
T

Write down the formula for the Seebeck coefficient of a free electron system and a
wide bandgap semiconductor.

Calculate it for crystalline Al metal and semic. AlAs at T ¼ 300 K, extract
parameters from Google.

2. (a) How does the spectrum of blackbody radiation scale with the temperature of a
body? Make a typical sketch.
(b)What is the photothermal effect? Explain how one can use the long-wavelength
induced heating in a solid to harvest higher-energy photons in a
conventional PVC.

3. Use your own ingenuity to design a thermoelectric material of high ZT. You can
use any material and composition, drill holes, etc. Explain your choices. Plastic
polymers are mechanically ideal, but what is the drawback in this context?

Problems 459



4. The Wiedemann-Franz law connects the thermal and electrical conductivity of a
free electron gas in the Drude or nearly free electron gas approximation. The
statement is (Eq. 6.38b):

κel ¼ π2k2b
3q2

Tσel where κel is the thermal and σel the electrical conductivity.

From this law, it follows that one cannot expect a good simple metal to be a good
ZT material because the thermal conductivity must be also high.

Calculate the thermal conductivity if the σel ¼ 104 S/m at T ¼ 300 K.
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Electron-Electron Interactions: Screening 14

14.1 Introduction

In this chapter we will investigate how the presence of other charges and dipoles
influences the charge-charge interaction.

Consider, for example, a net charge introduced into a semiconductor, and con-
sider how the electrons in the conduction band react to it. The net charge could be,
for example, the charge of the ionized Si impurity in GaAs or P impurity in Si. One
can ask what is the electric field that the carriers see? Do they see the full Coulomb
field of the ionized impurity or a reduced field? We know from elementary electro-
magnetic theory that the presence of an insulating medium around a charge partially
screens the charge and introduces the bound electron permittivity term εb in the
Coulomb potential, for example. We also saw in Chap. 10 how one can derive the
permittivity of bound charges εb in a medium. But what about the presence of free
electrons? What happens to the net field in a metal where we have both bound and
free charges? We saw how the free carriers change the total permittivity of a system
and how this can be incorporated in the optical properties of solids, but we did not
look at the consequences for carrier-carrier and carrier-charge interactions. The free
carriers were given a classical Drude treatment which is adequate for optics, but we
did not investigate how the medium affects the net interaction between the charges
themselves. To answer this question, we have to start from a first principle point of
view and give the problem a quantum mechanical treatment. Let us examine these
questions from a fundamental point of view following closely the book by J. Ziman
(see references). We start by applying a general potential V(r, t) to a medium where:

V
�
�r; t

� ¼ V0e
ik0� r!eiωteαt ð14:1Þ

We have allowed the field to grow slowly to its full value with a time constant α in
order not to cause large deviations from equilibrium. Now we go back and use time-
dependent perturbation theory as we did before for bound electrons in the previous
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chapter and consider the first-order change in the wavefunction of a Bloch electron in
a solid that this potential introduces (Ziman 1964):

Ψ
k
!
�
r
!
; t
� ¼ k

!��� �
þ b

k
!
þk0

tð Þ k
!
þk0

��� �
ð14:2Þ

whereas in Eq. (10.42), we have from perturbation theory:

b
k
!
þk0

tð Þ ¼
k
!

V
�
k0
!
; r
!
; t
�����
���� k! þk0

� �
E

k
! � E

k
!
þk0

! þ hω� ihα
ð14:3Þ

b
k
!
þk0

! tð Þ ¼ V0eiωteαt

E
k
! � E

k
!
þk0

! þ hω� ihα
ð14:4Þ

The new wavefunction implies also a new charge distribution. Thus, we can
compute by considering the deviation from the unperturbed distribution:

δρ
�
r
!
; t
� ¼ q

X
�k

Ψ
k
! r; tð Þ

��� ���2 � 1

� �
ð14:5Þ

Substituting from Eq. (14.4) and keeping only terms in first order, we find:

δρ
�
�r; t

� ¼ q
X
k
!

b
k
!
þk0

! tð Þeik
!
: r
! þ b∗

k
!
þk0

! tð Þe�ik0
!
: r
!

� �
ð14:6Þ

In practice, it is more convenient to work with a real perturbation, so let us write
instead:

δV
�
r
!
; t
� ¼ V0e

ik0
!
: r
!
eiωteαt þ V∗

0 e
�ik0

!
: r
!
e�iωteαt ð14:7Þ

Then it follows by substituting Eq. (14.7) into Eq. (14.3) and then Eq. (14.5) that:

δρ ¼ q
X
k
!

V0

E
�
k
!�� E

�
k
!
þ k0

!�þ hω� ihα
þ V0

E
�
k
!�� E

�
k
!
�k0
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8<
:

9=
;

� eik
0!: r
!
eiωt þ cc

ð14:8Þ
The next step is to generalize this expression taking into account the fact that the

initial states must be occupied, and the final states, to which the electrons are moved
to by the perturbation, must be empty to find the charge density change:
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δρ ¼ qV0
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This is a new charge distribution caused by the application of the perturbation, so
it also produces a new potential, which must be a solution of the Poisson equation:

▽2 δΦð Þ ¼ �4πqδρ

δΦ ¼Φ0eik
0!: r
!
eiωt þ cc

ð14:10Þ

where we have assumed that the potential has the same time and spatial variation as
the perturbation. Now we substitute Eq. (14.10) and evaluate the— 2 operator to find:

�k02Φ ¼ �4πq2V0
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ð14:11Þ

So we see that the perturbation has produced a reaction, a new internal potential.
But this reaction is itself a similar perturbation, so the calculation should really be
self-consistent and take this internal response into account right from the start. In
other words, the total perturbation acting on the electrons is not just the external
potential but also the internal response that the external one has generated. We now
have the total perturbation:

δU
�
r
!
; t
� ¼ δV

�
r
!
; t
�þ δΦ

�
r
!
; t
� ð14:12Þ

And if we assume that the external potential has the form given by Eq. (14.7):

U ¼ V þ 4πq2
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or in other words:

U ¼ V

ε
�
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where:
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This important formula is known as Lindhard’s expression. The applied potential
is V

�
r
!
; t
�
, but the potential seen by the carriers is modified or screened by the

medium to give U
�
r
!
; t
�
where:

V
�
r
!
; t
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d k0
!

dωeik
0: r
!
eiωtV
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k0 ;ω
! � ð14:16Þ
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V
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�
ε
�
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!
;ω

� d k0! dωeik
0!: r
!
eiωt ð14:17Þ

14.2 Static Response

In order to appreciate the significance of this formula, consider the situation where
the applied field is time independent, so we need to study ε(k

0
, 0), i.e., at zero

frequency. To do that we look at the limit k0
!
! 0 in Eq. (14.15) where the denomi-

nator is largest and write:
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And in Eq. (14.15), we have:
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ð14:19Þ

ε
�
k0 ; 0
! � ¼ 1þ q2

ε0k
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Z
� ∂ f

∂E

	 

gV Eð ÞdE ð14:20Þ

ε
�
k0
!
; 0
� ¼ 1þ λ2s

k02
ð14:21Þ

where gV is the density of states per unit volume. If we remember that � ∂ f
∂E

� �
is at

low temperatures almost a delta function at the Fermi energy, then this gives us:
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λs ¼ q2gV EFð Þ
ε0

ð14:22Þ

But the general result at any temperature follows from Eq. (14.20) and
Eq. (14.21).

Now assume that the external potential is, for example, caused by an impurity
with a Coulomb potential:

V rð Þ ¼ q2

4πε0r
ð14:23Þ

In Fourier space the bare Coulomb potential gives:

V k0ð Þ ¼ q2

4πε0k
02 ð14:24Þ

so that the net potential seen by the other carriers in Fourier space is:

U ¼ q2

1þ λ2s
k02

8<
:

9=
; 1

4πε0k
02 ¼

q2

4πε0 λ2s þ k02
� � ð14:25Þ

And in real space this transforms back to:

U rð Þ ¼ q2

4πε0r
exp �λsr½ � ð14:26Þ

Now we understand that the quantity λs is an inverse screening length and
depends on the magnitude of the density of states at the Fermi level. The density
of states at the Fermi level is only finite when we have free carriers, i.e., when we
have a finite conductivity at T¼ 0. In a metal, the screening length can be as short as
1/λs~0.1 nm. In a doped semiconductor, the screening length can be 100 times
longer than that. Note that Eq. (14.21) is an approximation, and Eq. (14.26) is only
valid at longer distances than the screening length. The exact evaluation and spatial
dependence of the potential are quite a bit more complicated than that. For our
purposes, however, the simple exponential result which is valid at long distances
r � 1/λs is good enough.

14.3 Screening in a Semiconductor

Now let us consider how charges are screened in a medium such as a semiconductor,
where there are no free charges at low temperatures. For this purpose it is convenient
to now explicitly index the bands so we have:
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where g is the valence bands and m the conduction bands. The first allowed process

in the sum is from the valence band to the conduction band, so we have for small k
!0:

εm
�
k
!
þ k0

! �� εg
�
k
!� � Egap ð14:28Þ

In order to proceed further, we use the sum rule:
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2

¼ h2k2

2m
ð14:29Þ

which follows from the commutator [x, p] ¼ ih. Then we use the approximation
Eq. (14.28), assuming this is true for all k0 to find:
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which then gives when substituted back into Eq. (14.27):

ε k0; 0ð Þ ¼ 1þ q2

ε0k
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ε k0; 0ð Þ ¼ 1þ q2

ε0

nv
Egap

h2

m

1
Egap
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ε k0; 0ð Þ ¼ 1þ hωp

Egap

	 
2

ð14:33Þ

where nv is the density of electrons in the valence band and where we have defined
the plasma frequency in the valence band as:

ωp ¼ nvq2

mε0

� �1=2

ð14:34Þ

Going back to Eq.(13.14) again, and looking at the effective Coulomb potential,
transforming back to real space, we now have:
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V rð Þ ¼ q2

4πε0 1þ hωp

EG

� �2

 �

r
ð14:35Þ

which, in contrast to Eq. (14.21), gives us a constant permittivity and keeps the long
range nature of the Coulomb potential. The effective permittivity produced by the
polarization of the valence band in the absence of free carriers is therefore:

εs ¼ 1þ hωp

Eg

	 
2

ð14:36Þ

The presence of free charges has a drastic effect on the screening as can be seen
by comparing Eqs. (14.36) and (14.26). These results are some of the most important
in solid-state physics.

According to Eq. (14.36), we have for direct bandgap zinc-blende materials, a
valence band electron density which is the atom density, because we have four
valence electrons per atom and thus a scaling of the permittivity with the energy gap.
The smaller the gap, the larger the permittivity. Table 14.1 shows the experimental

Table 14.1 Table of
important semiconductor
parameters (see also
Appendix A.4)

Semiconductor

Bandgap energy (eV)

Band ε300 K 0 K

Element C 5.47 5.48 Indirect 5.7

Si 1.12 1.17 Indirect 11.9

Ge 0.66 0.74 Indirect 16.0

Sn 0.082 Direct

IV–IV α-SiC 2.996 3.03 Indirect 10.0

III–V BN ~7.5 Indirect 7.1

GaN 3.36 3.50 Direct 12.2

GaP 2.26 2.34 Indirect 11.1

BP 2.0

AlSb 1.58 1.68 Indirect 14.4

GaAs 1.42 1.52 Direct 13.1

InP 1.35 1.42 Direct 12.4

GaSb 0.72 0.81 Direct 15.7

InAs 0.36 0.42 Direct 14.6

InSb 0.17 0.23 Direct 17.7

II–VI ZnS 3.68 3.84 Direct 5.2

ZnO 3.35 3.42 Direct 9.0

CdS 2.42 2.56 Direct 5.4

CdSe 1.70 1.85 Direct 10.0

CdTe 1.56 Direct 10.2

IV–VI PbS 0.41 0.286 Indirect 17.0

PbTe 0.31 0.19 Indirect 30.0
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values for different semiconductors. Although there is a clear relationship, it is not as
pronounced as that given by Eq. (14.36). There are two main reasons: the first one is
that we have used quite a strong approximation in deriving Eq. (14.36). In particular
the nature of the variations in the Bloch functions and effective masses has not been
properly included in the evaluation of the permittivity and plasma frequencies. All
that is left to distinguish the materials is the energy gap and the plasma frequency
which itself also depends on the effective mass. The variations in the plasma
frequency should of course also be included. Within the Kane model of Chap. 5,
small m* implies small bandgap and from Eq. (14.34) large plasma frequency, so the
scaling with the energy gap is apparently even stronger. But the fact that this strong
dependence is not observed has to do with the strong approximation we used to
derive Eq. (14.33) which neglects the effect of the effective mass matrix elements.
The second reason is that we have neglected exchange and correlation effects in
discussing the electronic structure and assumed that one-body band theory is
enough. Deriving the energy gap of semiconductors without these corrections
turns out to be impossible. So it is not surprising that this simple scheme does not
fully reproduce the experimental trend.

14.4 Screening in a 2-Dimensional System

The Lindhard function Eq. (14.15) is sensitive to the dimensionality of the system.
For example, in a 2D free electron gas, Eq. (14.15) can be shown to become:

ε
�
k0 ; 0
! � ¼ 1þ q2d

k0
1� 1� 2kF

k0

	 
2
" #1=2

8<
:

9=
; ! k0 > 2kF ð14:37Þ

where:

q2d ¼
mq2

2πε0εbh2
¼ 2

aB,e
ð14:38Þ

aB,e ¼ πh2εbε0
mq2

ð14:39Þ

and where we have assumed that the bound electrons give a constant permittivity εb
or εs. This expression is actually very close to the classical 2D Thomas-Fermi
function:

εTF
�
k0
!
; 0
� ¼ 1þ q2d

k0
ð14:40Þ
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which gives us the screened Coulomb potential:

V2d
�
r
!�

TF ¼ q2

4πε0εb

q2d 1þ q2ddð Þ
rq2dð Þ3 ð14:41Þ

and thus a cubic power law distance dependence. The quantum mechanical form
Eq. (14.37) is more difficult to evaluate in real space, but at long distances, it has the
interesting oscillatory structure:

V2d rð ÞQM ¼ � q2

4πε0εb

4 k f

� �2
2kF þ q2dð Þ2

sin 2kFrð Þ
2kFr2

ð14:42Þ

We note that the quantum mechanical result depends explicitly on the magnitude
of the Fermi wave vector kF, but the classical Thomas-Fermi result does not. The
reader should also make a note of the very different screening properties of a 3D and
2D electron gases. This is very important in nanotechnology. The lower the
dimensionality, the more ineffective the screening becomes. In one dimension, the
Lindhard approximation is not accurate, so we have not discussed it here. One
consequence is that in nanostructures, the effect of electron-electron interactions
on the electronic transport and optical properties is much more significant than in the
bulk. This has implications for engineering because it implies that physicists and
engineers can use electron-electron interactions as an engineering design tool to find
novel device functionalities.

14.5 Plasmon Modes

Consider again the 3D permittivity Eq. (14.15), and this time the very high-
frequency limit:
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where Eq. (14.44) becomes after expanding for small k0
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giving:

ε ω; 0ð Þ ¼ 1� ω2
p

ω2
! ω2

p ¼
q2n

mε0
MKSð Þ ð14:46Þ

The reader should note that we have encountered this result before when we were
analyzing the permittivity of the electron gas in Drude theory; see Eq. (14.37).

If we do the same analysis in 2D, we obtain a different plasma dispersion. We
quote here the result which is (q ¼ electron charge):

ωp, 2D kp
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n2Dkp
2ε0εbm

s
ð14:47Þ

We note that the zero wavevector value of the 2D plasmon dispersion is zero in
contrast to the 3D result. Plasmon modes are very much geometry and system size
dependent. The general plasmon dispersion relation can be obtained from the
requirement that there be longitudinal mode solutions in the Maxwell equations
and thus that the wavevector and frequency-dependent permittivity be:

ε
�
k
!
;ω

� ¼ 0 ð14:48Þ

14.6 Surface Plasmons

Plasmon modes or, in other words, the collective oscillations of electron clouds in
bulk 2D systems and nanoparticles are the so-called surface plasmons. This is a field
of great current interest, and the reader is referred to the specialized literature on this
topic available from Internet searches. The point is that, normally, in solid-state
physics, we consider the properties and response behavior of single charges. But in
general and especially when we apply a time-dependent electric field, we also have
to take account of the fact that all the free electrons experience the same stimulation
and therefore produce internal and external responses which are the result of the
motion of many charges. This collective response can be very much larger than the
response of a single particle and enhance the total electric field seen by individual
charges. Thus if we place a charge near a small spherical metal particle and then
apply an oscillating field to the system, the charge sees not only the applied field but
also the field produced by the collective motion or response of the free electrons in
the metallic nanoparticle (see Pinchuk et al. 2004, in the references). This additional
field would not be very significant until the frequency of the applied stimulation
reaches the plasma frequency of the nanoparticle. When this happens, i.e., at
resonance, the collective response becomes very large and can be many orders of
magnitude bigger than the original stimulating field. Clearly these types of processes
imply many novel applications. One can, in this way, enhance local fields by using
surface plasmon amplifiers, by many orders of magnitude, and thus is a very topical
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field in modern solid-state engineering. The reader is referred to the specialized
literature on the subject.

14.7 Summary

In this chapter we have in some sense completed the work we started in Chap. 10 and
investigated how bound electrons and free electrons change the electric fields that
charges produce in solids. This gave rise to the concept of screening which we have
in part already encountered in elementary electromagnetic theory. We derived the
important Lindhard function. We noted how drastically a Coulomb potential is
modified at long range by the presence of free electrons. This is ultimately one of
the reasons which one-body approximations work so well in solids. Then we
discovered that the screening is strongly dimensionality dependent becoming less
and less effective the lower the dimensionality of the system. This has a strong
impact on “nanotechnology” and makes electron-electron interaction a serious
design tool. For example, a single trapped charge can block an entire current path
in a thin enough wire. Removing the charge will open the channel again. We also
briefly touched on the exciting new field of “surface plasmon” research and devel-
opment and urged the interested reader to consult the specialized literature.

Problems

1. Explain what is meant by screening of electrical potentials. Explain the difference
between the screening properties of metals and insulators. If in a solid the density
of states at the Fermi level gv(EF) is 10

26/m3eV, what is the screening length? If
we lower the temperature and the solid turns into an insulator or wide bandgap
semiconductor, what happens to the screening length?

2. What is a plasmon? What is the plasma frequency of a 3D metal for which the
electron density is nc¼ 1027/m3. If you were asked to choose materials or design a
system for which the plasmon frequency is in the regime of hωp~0.5 eV, what
would you choose? What is the free electron density needed to obtain such a
plasmon frequency?
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Semiconductor Heterostructures
and Low-Dimensional Quantum Structures 15

15.1 Introduction

In Chap. 4, we have introduced the basic concepts and formalism of quantum
mechanics. In Chap. 5, we have determined the energy spectrum, or energy-
momentum or E–k relations, for electrons in a crystal which governs their interaction
with external forces and fields. Moreover, we saw that the quantum behavior of
particles is best observed in small, typically nanometer scale (one billionth of a meter
or 10�9 m) dimension structures, as illustrated in the example of a particle in a
1D box.

In nanometer-scale structures in a crystal, the motion of an electron can be
confined in one or more directions in space. When only one dimension is restricted
while the other two remain free, we talk about a quantum well; when two dimensions
are restricted, we talk about a quantum wire; and when the motion in all three
dimensions is confined, we talk about a quantum dot. In solid-state engineering,
these are commonly called low-dimensional quantum structures.

In the past few decades, progress in semiconductor crystal growth technology, such
as liquid-phase epitaxy (LPE), molecular beam epitaxy (MBE), and metal-organic
chemical vapor deposition (MOCVD), has made it possible to control with atomic-
scale precision of the dimensions of semiconductor structures and thus to realize such
low-dimensional quantum structures through the formation of heterojunctions or
heterostructures. A semiconductor heterojunction is formed when two different
semiconducting materials are brought into direct contact with each other, while
heterostructures can be defined as materials that incorporate one or more
heterojunctions and can describe more complicated device architectures such as
multiple quantum wells, superlattices, and other low-dimensional quantum structures.

First proposed by Shockley in 1951 in a heterojunction bipolar transistor (HBT)
(Shockley 1951), heterojunctions have been used heavily in a variety of applications.
Many conventional devices take advantage of the special properties of
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heterostructures including semiconductor lasers, light-emitting diodes,
photodetectors, etc.

There exist several inherent design advantages to using heterojunctions as
opposed to standard homojunctions in semiconductor devices. Due to pairing
small- and wide-bandgap materials or by tailoring their lineup energy position,
charge carriers can be confined or redistributed. This offers the chance to control,
to considerable extent, the physical location of free electrons and holes within the
device as well as the wavefunction overlap between the carrier types. Furthermore,
by choosing the semiconducting materials and the doping level, important properties
of the heterostructure device can be designed. This includes the bandgap, the
effective mass, and the carrier transport. Finally, depending on the lattice mismatch
between the heterojunction materials, built-in strain fields can be engineered and
used to obtain enhanced electrical or optical properties.

This chapter will first review the concepts associated with semiconductor
heterostructures, including energy band offsets, types of alignment, and a few
models for heterojunction energy band alignment. Then, the properties of
low-dimensional quantum structures will be discussed in detail.

15.2 Energy Band Offsets

When a heterojunction is formed, the conduction and valence band alignment is
dependent upon the properties of the constituent materials such as their bandgap, the
doping, and the electron affinity. Heterostructures can be classified depending on the
band alignment formation between the two semiconductor materials. The possible
band alignment combinations include “type I,” “type II staggered,” and “type II
broken gap” and are described below.

15.2.1 Type I Alignment

When the valence and conduction band of one material “straddles” the bands of the
narrow-gap material, the heterojunction band alignment is termed type I. The heavily
investigated AlGaAs/GaAs heterojunction exhibits this band lineup with the
aluminum-containing material having its conduction band above and valence band
below the corresponding GaAs band energies. An example of type I band alignment
is shown in Fig. 15.1a. The schematic figure shows materials in electrical isolation
from one another. As we will see later in this chapter, direct interaction between
semiconductor materials results in space-charge redistribution, which leads to band
bending near the junction position.

474 15 Semiconductor Heterostructures and Low-Dimensional Quantum Structures



15.2.2 Type II Alignments

Semiconductor heterojunctions may also form where the conduction and valence
bands in one material are both slightly below the corresponding band energies in the
adjacent semiconductor. This band alignment is termed type II staggered and is
shown in Fig. 15.1b. One example of a heterojunction material system that can be
generally classified as type II staggered is InAs/AlSb.

The InAs/GaSb heterojunction is an example of a type II broken gap alignment.
This occurs when the conduction of one material is at a lower energy than the
valence band of the adjacent semiconductor. An example of broken-gap band
alignment is shown in Fig. 15.1c.

15.3 Application of Model Solid Theory

In the previous sections, we have introduced different types of band lineups. In order
to better understand the heterojunction properties, it is important to determine the
actual band lineups between two different materials. We introduce the application of
model solid theory for this type of calculation. For simplicity, we consider
unstrained junctions only. This is true for the GaAs/AlxGa1�xAs (0 < x < 0.4)
junction system.

We assume A and B in Fig. 15.2 represent two III–V semiconductors that have
the same lattice constant. The valence band position can be calculated as:

Ec Ec Ec

Ev

Ev Ev

a b cFig. 15.1 Heterojunction
band lineups for isolated
but adjacent semiconductors:
(a) type I, (b) type II
staggered, and (c) type II
broken gap alignments

A

B

ΔB/3

ΔA/3
V,avEA

gEBgEA

V,avEB

ΔEC

ΔEV

Fig. 15.2 Band alignment
diagram for calculation of
band offset
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EV ¼ EV,av þ Δ
3

ð15:1Þ

in which EV,av is the average valence band position which is obtained from theory
and is referred to as the absolute energy level, EV is the valence band position, and Δ
is the spin-orbit splitting energy. The values for different semiconductors are usually
tabulated in the literature.

The valence band offset between semiconductor A and B thus can be calculated
as:

ΔEV ¼ EA
V,av � EB

V,av

� �þ 1
3

ΔA � ΔBð Þ ð15:2Þ

The conduction band edge is obtained by adding the bandgap value to the valence
band position:

EC ¼ EV þ Eg ð15:3Þ
Therefore the conduction band offset can be calculated as:

ΔEC ¼ EA
V,av � EB

V,av

� �þ 1
3

ΔA � ΔBð Þ þ EA
g � EB

g

� �
ð15:4Þ

All these quantities are summarized in Fig. 15.2.

Example
Q: Determine the band offset of a GaAs/Al0.2Ga0.8As heterojunction. The material
parameters for GaAs and AlAs are listed in Table 15.1.
A: For GaAs, we have:

EGaAs
V ¼ EGaAs

V,av þ ΔGaAs

3
¼ �6:807eV

For Al0.2Ga0.8As, we use the arithmetic average of 20% AlAs and 80% of GaAs:

EAl0:2Ga0:8As
V ¼ 0:2� EAlAs

V,av þ
ΔAlAs

3

� �
þ 0:8� EGaAs

V,av þ ΔGaAs

3

� �
¼ �6:925eV

EAl0:2Ga0:8As
g ¼ 0:2� EAlAs

g þ 0:8� EGaAs
g ¼ 1:842eV

Table 15.1 Material
parameters for GaAs
and AlAs

EV,av (eV) Δ(eV) Eg(eV)

GaAs �6.92 0.34 1.52

AlAs �7.49 0.28 3.13
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Therefore, we obtain the band offset as follows:

ΔEV ¼ EGaAs
V � EAl0:2Ga0:8As

V ¼ �6:807ð Þ � �6:925ð Þ
¼ 0:118eV

ΔEC ¼ EAl0:2Ga0:8As
V þ EAl0:2Ga0:8As

g

� �
� EGaAs

V þ EGaAs
g

� �
¼ �5:287ð Þ � �5:555ð Þ
¼ 0:268eV

8>>>>>>>><
>>>>>>>>:

15.4 Anderson Model for Heterojunctions

When we bring two different semiconductors in contact with each other, due to their
difference of the Fermi level with respect to the vacuum level, there will be net
charge transfer from one material to the other. At equilibrium, the Fermi level lines
up on both sides of the junction. This will change the band diagram of the
heterojunction from straight lines to partially rounded curves. In this section, we
use the basic Anderson model to calculate the zero-bias band diagram for a p-n
junction made from a type I heterojunction, with NA representing the p-type doping
level of the narrower-gap material and ND the n-type doping level of the wider-gap
material. The other cases of p-n heterojunctions can be derived in a same manner and
will not be covered.

To simplify the calculations and emphasize the methodology that will be
introduced, we assume that both NA and ND are much larger than the intrinsic carrier
concentration and that all the dopants are ionized. Before contact, the Fermi level
on each side is represented as EFA and EFB . We use V0 to represent the potential
difference due to the energy difference between EFA and EFB , as shown in Fig. 15.2.
According to Fig. 15.2, we have:

V0 ¼ EA
g þ ΔEC � EFA � EA

V

� �� EB
C � EFB

� � ð15:5Þ

For nondegenerate semiconductors, we have:

EFA � EA
V ¼ �kbT ln

NA

N A
v

� �

EB
V � EFB ¼ �kbT ln

Nd

N B
c

� �
8>>><
>>>:

ð15:6Þ

where N A
v and N B

c are the valence band and conduction-band density of states for
semiconductor A and B, respectively. Substituting Eq. (15.6) into Eq. (15.5), we
obtain the expression for V0:
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V0 ¼ EA
g þ ΔEC þ kbT ln

NA � ND

N A
v � N B

c

� �
ð15:7Þ

After we bring semiconductor A and B together into contact, there will be a net
electron transfer from B to A (see Fig. 15.3c) until the Fermi levels on both sides
reach the same value, as shown in Fig. 15.3b.

The number of excess negative charges (ionized acceptors) on the p-side will be
exactly the same as that of the excess positive charges (ionized donors) on the n-side.
Na and Nd equal the charge densities on the p and n-sides of the junction within the
depletion region. Thus we have the charge conservation equation:

NAxp ¼ NDxn ð15:8Þ
We assume that the charge density is uniformly distributed on either side of the

junction over a certain distance. This is called the depletion approximation. Under
this approximation, we can calculate the electric field distribution and thus the
electrical potential profile.

Assume that εA and εB represent the relative permittivity for semiconductor A and
B. Using Gauss’ law, we can obtain the electric field within the depletion region as:

Ex ¼ � qNA xþ xp
� �
εAε0

, � xp � x < 0

Ex ¼ � qND xn � xð Þ
εBε0

, 0 < x � xn

8>><
>>: ð15:9Þ
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Fig. 15.3 Illustrations for (a) band diagram for the heterojunction before charge transfer, (b) band
diagram after charge transfer, (c) depletion approximation, (d) electric field distribution, and (e)
electrical potential distribution
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Outside the depletion region, the net charge density is zero, and there is no electric
field. We take the zero potential to be at the neutral region in the semiconductor
A. We integrate the electric field from the point of calculation toward the potential
zero point to obtain the electrical potential profile:

φx ¼
ð�xp

x
Exdx ð15:10Þ

Substituting Eq. (15.9) into Eq. (15.10), we have:

φx ¼ 0, x < �xp

φx ¼
qNA xþ xp

� �2
2εAε0

, � xp � x < 0

φx ¼
qNAx

2
p

2εAε0
þ qND 2xnx� x2ð Þ

2εBε0
, 0 � x � xn

φx ¼
qNAx

2
p

2εAε0
þ qNDx

2
n

2εBε0
, x > xn

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15:11Þ

We recall that the total potential drop is V0 as calculated before, i.e.,

qNAx
2
p

2εAε0
þ qNDx

2
n

2εBε0
¼ V0 ð15:12Þ

Combining Eq. (15.8) and Eq. (15.12), we obtain the values of xn and xp in terms
of V0:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA

ND

2ε0V0

q

εAεB
NAεA þ NDεB

r

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND

NA

2ε0V0

q

εAεB
NAεA þ NDεB

r
8>>><
>>>:

ð15:13Þ

We define the junction depletion width as xw ¼ xn + xp. Taking into account
Eq. (15.13), we can obtain:

xw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε0V0

qNDNA

εAεB
NAεA þ NDεB

s
� ND þ NAð Þ ð15:14Þ

Substituting Eq. (15.13) into Eq. (15.12), we will obtain the values for the
electrical potential φx. In order to update the electron energy band diagram, we
need to take into account that the electron charge is negative and the electron energy
profile will be inverted. Adding this energy profile to the flat band profile as shown in
Fig. 15.3a, we will obtain a calculated electron energy profile for the heterojunction
under equilibrium as illustrated in Fig. 15.3b.
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15.5 Multiple Quantum Wells and Superlattices

By “sandwiching” a low-bandgap material between two layers of wider bandgap
material, a device designer can fabricate a single quantum well, as discussed later in
this chapter. A layer of GaAs between two AlxGa1�xAs barriers acts as a potential
well for electrons and holes. By adjusting the well width and composition of the
barriers, one can engineer specific properties into the quantum well structure such as
the energy bandgap.

In a similar fashion, multiple quantum wells (MQWs) may be formed by epitaxy
of successive, periodic heterojunctions. Typically within MQWs, the carriers within
a quantum well do not interact with carriers in a neighboring well. In other words, the
electron and hole wavefunctions between adjacent wells do not overlap. Depending
on the band alignment type of the heterojunctions involved, electrons and holes can
be confined in similar or different spatial locations in the multiple quantum well
structure. Multiple quantum wells are used in devices like quantum well
intersubband photodetectors (QWIP) for enhanced absorption over a thicker active
region.

Superlattices are structures that also have periodic heterojunctions similar to
multiple quantum wells. However, the confined charge carriers within the individual
quantum wells actively interact with carriers in other wells. This can be achieved by
decreasing the quantum well barrier thickness in a multiple quantum well structure.
The electron is now delocalized and can move from well to well just as in a Kronig-
Penney lattice. Over an extended length span (many superlattice periods), electrons
in superlattices can therefore exhibit miniband behavior, similar to bulk crystals. By
controlling the layer structure, the superlattice band structure can be engineered. One
can enhance desired effects such as optical emission/absorption or reduce unwanted
effects such as Auger recombination. In addition, properties such as tunneling
transport can be modified. An example of an epitaxially grown InAs/GaSb
superlattice is shown in Fig. 15.4.

Fig. 15.4 Transmission electron microscope images of type II InAs/GaSb superlattice. The dark
regions correspond to the InSb interface between InAs and GaSb layers (by courtesy of G Brown)
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15.6 Two-Dimensional Structures: Quantum Wells

15.6.1 Energy Spectrum

As briefly mentioned previously, a quantum well is formed when the motion of
electrons is confined in one direction (e.g., x), while it remains free to move in the
other two directions (y, z). This situation is most easily achieved by sandwiching a
thin and flat film semiconductor crystal between two crystals of another other
semiconductor material in such a way that a potential step is produced, as shown
in Fig. 15.5. The electrons are confined in the region 0 < x < a. In the following
discussion, we chose U0, the potential step, to be finite.

This energy profile is in fact a potential that an electron experiences when moving
through the structure. This is in addition to the crystal periodic potential of Chap. 3,
which will not be brought into the discussion as it is already taken into account by
considering an effective mass for the electron.

The potential in the x-direction is analogous to the case of a particle in a finite
potential well as discussed in Sect. 4.4.4. The height of the potential barrier is now
the difference between the conduction band energies in the different semiconductors,
which is called the conduction band offset and denoted ΔEc. The contribution to
potential in the y- and z-directions is constant and is chosen to be zero, similar to the
case of a free particle, as discussed in Sect. 4.4.1. The total potential can therefore be
expressed as:
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Fig. 15.5 Potential energy
profile of a quantum well.
This profile can be obtained
by sandwiching a thin and flat
semiconductor film of
material 2 between two
semiconductor crystals of
another material 1
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U x; y; zð Þ ¼ 0 for 0 < x < a
U0 > 0 for x < 0 and x > a

	
, ð15:15Þ

and the time-independent Schrödinger equation becomes:

� h2

2m∗
∇2Ψ x; y; zð Þ � E � U x; y; zð Þ½ �Ψ x; y; zð Þ ¼ 0 ð15:16Þ

where m* is the electron effective mass. The shape of the potential in Eq. (15.15)
implies that the motion in the x-direction and that in the (y,z)-plane are independent.
It is a common practice to use the subscripts “⊥” and “//” to denote the motion and
energies for the x-direction and (y,z)-plane, respectively. For example, r

!
⊥
is used to

denote the position vector in the x-direction and r
!
== the position vector in the (y,z)-

plane. The total three-dimensional wavefunction can therefore be represented by the
product of two functions, one dependent on x alone and the other on (y,z) only,
Ψtotal x; y; zð Þ ¼ Ψ==

�
r
!
==

�
Ψ⊥
�
r
!
⊥
�
, and the total energy spectrum consists of the sum

of two independent contributions: E
�
r
!� ¼ E==

�
k
!
==

�þ E⊥

�
k
!

⊥

�
. Now let us con-

sider the wavefunctions and energy spectrum in more detail.

In-Plane Motion
In the (y,z)-plane, the motion of the electron is similar to that of a free particle
discussed in Sect. 4.4.1. The wavefunctionΨ==

�
r
!
==

�
can therefore be considered to be

a plane wave similar to Eq. (4.32) and can be expressed as:

Ψ==

�
r
!
==

� ¼ Aexp
�
i k
!

== � r!==

� ð15:17Þ
where A is a normalization constant. The energy spectrum in the (y,z) plane is given
by:

E==
�
k
!
==

� ¼ h2 k
!

2
==

2m∗
¼

h2 k2y þ k2z

� �
2m∗

ð15:18Þ

Note that these expressions are correct only for small values of the momentum

such that k
!
==




 


� K
!


 


, where K

!
is a reciprocal lattice vector. This restriction arises

from the fact that we are not considering a completely free particle but rather
an electron in a crystal. For a more precise discussion on what happens near a
reciprocal lattice vector, the reader may be referred to the Kronig-Penney model in
Chap. 5.

Motion Perpendicular to Well Plane
In the x-direction, the discussion is the same as that of a particle in a finite potential
well conducted in Sect. 4.4.4. Although no analytical solution was derived, the main
results can be summarized as follows.
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The set of equations from Eq. (4.57) to Eq. (4.59) yields the quantized allowed
energy levels E⊥n, momenta k⊥n, and decay coefficients αn for an electron in this
potential well, indexed by an integer n ¼ 0,1,. . ., and these quantities must satisfy
Eq. (4.50):

E⊥n ¼ h2 k⊥nð Þ2
2m∗

αn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗ U0 � E⊥nð Þ

h2

r
8>>><
>>>:

ð15:19Þ

Note that we are now using the effective mass of the electron, m*. The spacing
between consecutive energy levels is on the order of h2π2/m∗a2 from Eq. (4.43). For
En <U0, the wavefunctionΨ⊥

�
r
!
⊥

� ¼ Ψ⊥ xð Þ consists of an oscillatory function inside
the well (0 < x < a) and a decaying exponential outside the well. If needed, this
wavefunction can be calculated using Eq. (4.51), Eq. (4.53), and the values of E⊥n,
k⊥n, and αn as illustrated in Fig. 15.6.

For an electron in a perfect crystal, the quantization of the energy levels and
momenta is significant only when the dimensions of the confining structure (e.g., a)
become on the order of or less than the electron de Broglie wavelength (Eq. (4.1)).

In a real crystal, however, there are defects which introduce perturbations of the
potential periodicity. This results in the broadening of the initially discrete energy
levels, and the magnitude of this broadening can be estimated to be h/τ where τ is a
characteristic time between electron collisions, or electron lifetime, which can be

x=0 x=a

Ψ⊥(x)

Ψ⊥2(x)

Ψ⊥1(x)

Fig. 15.6 Shapes of the wavefunctions Ψ⊥(x) for the allowed energy levels of a quantum well. In
this example, there are only two allowed confined states. The wavefunctions of these have an
oscillatory behavior inside the well (0 < x < a) but vanish rapidly when outside the quantum well. A
third allowed state is shown which has an energy above the barrier of the well and therefore
corresponds to a non-confined state. Its wavefunction has an oscillatory behavior in the entire space
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understood as the average duration between two consecutive encounters with
defects. A detailed discussion on electron collisions is beyond the scope of this
textbook, and the reader is referred to the Further Reading section.

In such a situation, the quantization of the energy levels can be resolved only if
the energy spacing between consecutive levels (h2π2/m∗a2) is larger than the
broadening (h/τ). In other words, the inequality h2π2/m∗a2 � h/τ ensures that the
quantized behavior can be observed.

15.6.2 Density of States

The total energy spectrum for an electron in a quantum well is given by considering
Eq. (15.18) and Eq. (15.19):

E
�
k
!
==; n
� ¼ E==

�
k
!
==

�þ E⊥n ¼
h2 k

!
2

==

2m∗
þ h2 k⊥nð Þ2

2m∗
ð15:20Þ

where the values of k
!
== are continuous while k⊥n is quantized and indexed by an

integer n. Similar to Eq. (5.41) in Sect. 5.3.2, the density of states for quasi-two-
dimensional electrons in quantum well is the number of allowed electron energy
states (taking into account spin degeneracy) per unit energy interval around an
energy E and is given by:

g2D Eð Þ ¼ 2
X
n, k

!
==

δ E==
�
k
!
==

�þ E⊥n � E

� �
ð15:21Þ

where the factor 2 arises from the spin degeneracy. In this case, because one
dimension is quantized while the other two remain continuous, the summation in
Eq. (5.44) is performed on two coordinates only:

X
k
!
==

Y
�
k
!
==

� ¼ S

2πð Þ2
ð ð

Y
�
k
!
==

�
d k
!
== ¼ S

2πð Þ2
ð1

�1

ð1
1
Y ky; kz
� �

dkydkz ð15:22Þ

where S is the cross-sectional area of the crystal, in the (y,z)-plane, and Y
�
k
⇀

==

�
is an

arbitrary function. Equation (15.21) then becomes:

g2D Eð Þ ¼ 2S

2πð Þ2
X
n

ZZ
k==
!

δ E==

�
k
!
==

�þ E⊥n � E


 �
d k
!
== ð15:23Þ
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Now, we must determine the relation between d E==
�
k
!

==

�� �
as a function of d k==

!
in

order to perform the integration in Eq. (15.23). For this, we follow the same analysis
conducted in Eq. (5.35) to Eq. (5.39). Equation (15.23) yields:

d E==

�
k
!

==

�
 �
¼ h2

2m∗
: 2k==ð Þdk== ð15:24Þ

where k// is the norm or length of the vector k
!

==. On the other hand, in two
dimensions, Eq. (5.37) becomes:

d k
!
== ¼ d πk2

==

� � ¼ 2πk==dk== ð15:25Þ

Thus:

d E==

�
k
!

==

�
 �
¼ h2

2m∗

1
π
d k
!

==, ð15:26Þ

and Eq. (15.23) becomes:

g2D Eð Þ ¼ S

2π2
2m∗π

h2

� �X
n

ð1
0

δ E==

�
k
!

==

�þ E⊥n � E


 �
d E==

�
k
!

==

�
 �

g2D Eð Þ ¼ Sm∗

πh2
X
n

ð1
0

δ xþ E⊥n � E½ �dx

8>>>>>><
>>>>>>:

ð15:27Þ

The integral will be zero if the argument of the Dirac function, i.e., [x + E⊥n� E],
never reaches zero when the variable x is varied from 0 to +1. In other words:

ð1
0

δ xþ E⊥n � E½ �dx ¼ 0 if E⊥n � E½ � > 0

ð1
0

δ xþ E⊥n � E½ �dx ¼ 1 if E⊥n � E½ � < 0

8>>>>>><
>>>>>>:

ð15:28Þ

This can be best expressed by considering the step function which is defined as:

Θ Xð Þ ¼ 0 for x < 0
Θ Xð Þ ¼ 1 for x > 0

	
ð15:29Þ

Therefore, we can write:
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ð1
0

δ xþ E⊥n � E½ �dx ¼ Θ E � E⊥n½ �, ð15:30Þ

and Eq. (15.27) becomes:

g2D Eð Þ ¼ Sm∗

πh2
X
n

Θ E � E⊥n½ � ð15:31Þ

This relation expresses that, in a quantum well, the density of states of quasi-two-
dimensional electrons is a discontinuous function of energy and is incremented by
an amount of Sm∗/πh2 each time the energy E crosses an allowed value of E⊥n,
as shown in Fig. 15.7. At each consecutive value of E⊥n, a new two-dimensional
energy subband begins. The density of states of each new subband is constant so that
we obtain the staircase structure shown in Fig. 15.7.

The modification of the density of states in a quantum well (2D) from that in the
bulk case (3D), shown in Fig. 15.7, reflects the change in the motion of an electron.
The in-plane motion is two-dimensional, which makes the density of states indepen-
dent on the energy in a subband. For the motion perpendicular to the well plane, we
have a new quantum number n, introduced in Eq. (15.19), which replaces one

direction of k
!

of the three-dimensional case. The excitation of an electron in this
direction results in an increase of the quantum number n and thus a transition to the
next subband as illustrated by the staircase in Fig. 15.7.

It can be mathematically demonstrated that the density of states for
two-dimensional and three-dimensional electrons does coincide at values of E ¼
E⊥n, as illustrated in Fig. 15.7, although this is beyond the scope of this discussion.

This considerable dependence of the density of states on the dimensionality of the
structure is a key property of low-dimensional structures which opens new
possibilities in device applications.

E

g2D(E)

g3D(E)

E^1 E^2 E^3

Fig. 15.7 Density of states in
the conduction band in a
quantum well (2D). The
density of states is constant for
values of energy between two
consecutive quantized energy
levels. For comparison, the
density of states of a bulk
material (3D) is shown in
dashed lines
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Example
Q: Calculate the number of states between the first and the second energy levels in a
quantum well of thickness 25 Å and area of 1 mm2. Assume that the energy
difference between the first two energy levels is 0.3 eV and that the electron effective
mass in the quantum well is m* ¼ 0.067m0 where m0 is the free electron rest mass.
A: Similar to the three-dimensional case, the number of states is equal to:

N ¼
ðE2

E1

g2D Eð ÞdE, where E1 and E2 are the first and second energy levels in the

quantum well, respectively. Since the expression for g2D(E) is given by (we assume

k
!

== ¼0
!
):

g2D Eð Þ ¼ Sm∗

πh2
P
n
Θ E � E⊥n½ �, we obtain:

N ¼
ðE2

E1

g2D Eð ÞdE ¼ Sm∗

πh2
X
n

Θ E � E⊥n½ �

¼ Sm∗

πh2
E2 � E1ð Þ

¼ 10�3
� �2

0:067∗0:91095� 10�30
� �

π 1:05458� 10�34
� �2 0:3� 1:60218� 10�19

� �
	 8:40� 1010

15.6.3 The Influence of an Effective Mass

In the previous discussion, we have only considered one value for the electron mass
m* for the sake of simplicity. In reality, two effective masses must be considered for
the electron in each of the crystals depicted in Fig. 15.5. The effective mass of the
electron traveling across the structure thus depends on position, m*(x). Two
Schrödinger equations must then be considered:

� h2

2m1
∗
∇2Ψ x; y; zð Þ � E � U x; y; zð Þ½ �Ψ x; y; zð Þ ¼ 0

for x < 0 and x > a

� h2

2m2
∗
∇2Ψ x; y; zð Þ � E � U x; y; zð Þ½ �Ψ x; y; zð Þ ¼ 0

for 0 < x < a

8>>>>>>>><
>>>>>>>>:

ð15:32Þ

The other important change concerns the boundary conditions outlined in
Eq. (4.52). The continuity of the first derivative of the wavefunction ∂Ψ(x, y, z)/∂x
is no longer valid but must be replaced by the continuity of the product (1/m∗(x))
(∂Ψ(x, y, z)/∂x), which takes into account the spatial dependence of the electron
effective mass. As a result, the boundary conditions in Eq. (4.52) must be replaced
by:

15.6 Two-Dimensional Structures: Quantum Wells 487



1
m∗

1

∂Ψ�
∂x

0ð Þ ¼ 1
m∗

2

∂Ψ0

∂x
0ð Þ

and

1
m∗

2

∂Ψ0

∂x
að Þ ¼ 1

m∗
1

∂Ψþ
∂x

að Þ

8>>>>><
>>>>>:

ð15:33Þ

15.7 One-Dimensional Structures: Quantum Wires

15.7.1 Density of States

A quantum wire is formed when the motion of electrons in the conduction band is
confined in two directions (e.g., x and y), while it remains free to move in the
remaining direction (z). This can be physically achieved by surrounding a small
cross-section, rectangular semiconductor crystal with two crystals which have higher
bandgap energies.

One way to mathematically treat this situation is to start from the results of a
quantum well where the confinement in the x-direction has already been considered
and to introduce the confinement in one of the remaining directions (e.g., y). This is
not the only way to model quantum wires, and it does not lead to generalized
expressions of wavefunctions and energies, but it gives an idea of what is happening.
The results can be readily transposed from those of a quantum well and are as
follows.

The total wavefunction can be considered as the product of three components:

Ψtotal x; y; zð Þ ¼ Ψz zð ÞΨy yð ÞΨx xð Þ ð15:34Þ
Only the wavefunction in the z-direction can be easily expressed as a plane wave:

Ψz zð Þ ¼ Aexp ikz:zð Þ ð15:35Þ
where A is a normalization constant. The total energy is the sum of three
components:

E kz; n;mð Þ ¼ Ez kzð Þ þ Exð Þn þ Ey

� �
m

¼ h2k2z
2m∗

þ h2 kxð Þ2n
2m∗

þ h2 ky
� �2

m

2m∗

ð15:36Þ

where n and m are integers (1,2,. . .) used to index the quantized energy levels, (Ex)n
and (Ey)m, and quantized wavenumbers, (kx)n and (ky)m, which result from the
confinement of the electron motion in the x- and y-directions, respectively. The
values for (Ex)n and (Ey)m can be determined, for example, by solving the finite
potential well problem in Sect. 4.4.4.
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The most important characteristic of a quantum wire is its electron density of
states in the conduction band which is given by:

g1D Eð Þ ¼ 2
X

n,m, kz
δ Ez kzð Þ þ Exð Þn þ Ey

� �
m
� E

� � ð15:37Þ

In this one-dimensional case, we can make use of the quasi-continuous nature of
kz to write the identity for an arbitrary function Y(kz):

X
kz

Y kzð Þ 
 L

2π

ðþ1

�1
Y kzð Þdkz ð15:38Þ

which allows us to simplify Eq. (15.) into:

g1D Eð Þ ¼ 2L
2π

X
n,m

ðþ1

�1
δ Ez kzð Þ þ Exð Þn þ Ey

� �
m
� E

� �
dkz ð15:39Þ

where L is the length of the quantum wire. Moreover, in the one-dimensional case,
we have:

d Ez kzð Þ½ � ¼ h2

m∗
kzdkz ¼ h2

m∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗Ez kzð Þ

h2

r
dkz ð15:40Þ

Therefore, Eq. (15.39) becomes:

g1D Eð Þ ¼ L

π

ffiffiffiffiffiffiffi
m∗

2h2

s X
n,m

ðþ1

0

δ Ez kzð Þ þ Exð Þn þ Ey

� �
m
� E

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ez kzð Þp dEz

or

g1D Eð Þ ¼ L
ffiffiffiffiffiffiffi
m∗

p

hπ
ffiffiffi
2

p
X
n,m

ð1
0

δ xþ Exð Þn þ Ey

� �
m
� E

� � 1ffiffiffi
x

p dx

8>>>>>>><
>>>>>>>:

ð15:41Þ

Using Eq. (5.43) and the same argument as Eq. (15.), we obtain:

g1D Eð Þ ¼ L

πh

ffiffiffiffiffiffiffi
m∗

2

r X
m, n

Θ E � Exð Þn þ Ey

� �
m

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Exð Þn þ Ey

� �
m

� �q ð15:42Þ

This expression means that, in a quantum wire, the density of states depends on
the energy like 1=

ffiffiffiffi
E

p
in each of the subband defined by two consecutive energy

levels (Ex)n + (Ey)m, as shown in Fig. 15.8.
Equation (15.42) also reveals infinite divergences at points where the energy

E coincides with the bottoms of quasi-one-dimensional subbands at (Ex)n + (Ey)m.
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These discontinuities take place in an idealized model. In real structures, they are
smeared out by the electron collisions mentioned earlier, in Sect. 15.6.1. The
maximum values of g1D in Fig. 15.8 are not infinite but correspond to the value of
Eq. (15.42) when the denominator is equal to E � [(Ex)n + (Ey)m] 	 h/τ, where τ is
the electron lifetime discussed earlier.

15.7.2 Infinitely Deep Rectangular Wires

The simplest quantum-wire geometry would have a rectangular cross section
surrounded by infinite barriers. This is illustrated schematically in Fig. 15.9 and
can be considered to be the two-dimensional analogy to the one-dimensional con-
finement potential of the standard infinitely deep quantum well.

Within the quantum wires, the potential is zero, while outside the wire, it is
infinite. Thus the wavefunction outside the quantum wire should be zero. The form
of the potential is V(y, z) ¼ V( y) + V(z), and it is separable. Hence the Schrödinger
equation within the wires for the motion along the two directions of confinement
(y and z) is:

g1D(E)
g2D(E)

E^1 E^2 E^3

Fig. 15.8 Density of states in
the conduction band for a
quantum wire (1D). For
comparison, the density of
states of a quantum well
(2D) is shown in dashed lines

z

y x

0

Ly

Lz

V= 0

V= ∞

Fig. 15.9 The infinitely deep
rectangular cross-sectional
quantum wire

490 15 Semiconductor Heterostructures and Low-Dimensional Quantum Structures



� h2

2m∗

∂2Ψ y; zð Þ
∂y2

þ ∂2Ψ y; zð Þ
∂z2

" #
¼ Ey, zΨ y; zð Þ ð15:43Þ

The separation of the coordinates in the Schrödinger equation allows the motion
to be decoupled further and leads to:

Ψ y; zð Þ ¼ Ψ yð ÞΨ zð Þ, ð15:44Þ
and then the Schrödinger equation can be written as:

� h2

2m∗
Ψ zð Þ∂

2Ψ yð Þ
∂y2

� h2

2m∗
Ψ yð Þ∂

2Ψ zð Þ
∂z2

¼ Ey þ Ez

� �
Ψ yð ÞΨ zð Þ ð15:45Þ

Here the energy components can also be separated into Ey, z ¼ Ey + Ez.
The decoupling is completed with the following equations:

� h2

2m∗

∂2Ψ yð Þ
∂y2

¼ EyΨ yð Þ ð15:46Þ

� h2

2m∗

∂2Ψ zð Þ
∂z2

¼ EzΨ zð Þ ð15:47Þ

The above equations are exactly the same as the infinite quantum well problems
(see Sect. 4.4.3, Eq. (4.44) and Eq. (4.45)). The wavefunction solutions are:

Ψ yð Þ ¼
ffiffiffiffiffi
2
Ly

s
sin

πnyy

Ly

� �
ð15:48Þ

and

Ψ zð Þ ¼
ffiffiffiffiffi
2
Lz

s
sin

πnzz

Lz

� �
ð15:49Þ

which give the components of the energy as:

Ey ¼
h2π2n2y
2m∗L2y

ð15:50Þ

Ez ¼
h2π2n2z
2m∗L2z

ð15:51Þ
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Thus, the total energy of the particle due to the confinement is given by the sum of
the two discrete components:

Ey, z ¼ h2π2

2m∗

n2y
L2y

þ n2z
L2z

 !
ð15:52Þ

The confined states of a quantum wire are described by the two principal quantum
numbers ny and nz, and this is in contrast to the single number required for the
one-dimensional case discussed in Chap. 4.

15.8 Zero-Dimensional Structures: Quantum Dots

15.8.1 Density of States

An ideal quantum dot, also known as a quantum box, is a structure capable of
confining electrons in all three dimensions, thus allowing zero dimension (0D) in
their degrees of freedom. In quantum dots, there is thus no possibility for free
particle-like motion. The energy spectrum is completely discrete, similar to that in
an atom, as will be briefly derived below.

In a quantum dot of rectangular shape, the wavefunction of an electron does not
involve any plane wave component, in contrast to other low-dimensional quantum
structures. The total energy is the sum of three discrete components:

E n;m; lð Þ ¼ Exð Þn þ Ey

� �
m
þ Ezð Þl

¼ h2 kxð Þ2n
2m∗

þ h2 ky
� �2

m

2m∗
þ h2 kzð Þ2l

2m∗

ð15:53Þ

where n, m, and l are integers (1,2,. . .) used to index the quantized energy levels,
(Ex)n, (Ey)m, (Ez)l, and quantized wavenumbers, (kx)n, (ky)m, and (kz)l, which result
from the confinement of the electron motion in the x-, y-, and z-directions, respec-
tively. The values for (Ex)n, (Ey)m, and (Ez)l can be determined, for example, by
solving the finite potential well problem in Sect. 4.4.4 in all three directions.

As for the quantum wire, the most important characteristic of a quantum dot is its
electron density of states in the conduction band which is given by:

g0D Eð Þ ¼ 2
X
n,m, l

δ E n;m; lð Þ � E½ �

¼ 2
X
n,m, l

δ Exð Þn þ Ey

� �
m
þ Ezð Þl � E

� � ð15:54Þ

There is no further simplification of this expression. The density of states of zero-
dimensional electrons consists of Dirac functions, occurring at the discrete energy
levels E(n,m, l ), as shown in Fig. 15.10.
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Again, the divergences in the density of states shown in Fig. 15.10 are for
ideal electrons in a quantum dot and are smeared out in reality by a finite electron
lifetime τ.

Since quantum dots have a discrete, atom-like energy spectrum, they can be
visualized and described as “artificial atoms.” This discreteness is expected to render
the carrier dynamics very different from that in higher-dimensional structures where
the density of states is continuous over a range of values of energy. For example,
since all energy states are not allowed, changes in the electron configurations are
more restricted.

15.8.2 Infinite Spherical Quantum Dot

The similarity between quantum dots and isolated atoms is close when considering
the case of spherical quantum dots, i.e., when the confining potential has a spherical
symmetry. For example, nanocrystals in semiconductor-doped glasses and colloidal
solutions often have a spherical shape. When the passivation of the surface is made
in such a way that carriers are strongly confined in the nanocrystal, the system is
usually correctly described by an infinitely deep spherical well, where the confining
potential is zero inside and infinite outside a spherical quantum dot with the radius R.
The potential can therefore be expressed as:

V
�
r
!� ¼ 0 if r < R

V
�
r
!� ¼ 1 otherwise

(
ð15:55Þ

Due to the spherical symmetry of the potential, the Schrödinger-like equation for
the envelope function Ψ

�
r
!�

in spherical coordinates is given as:

E

g3D(E)

g0D(E)
Fig. 15.10 Density of states
in the conduction band for a
quantum dot (0D). For
comparison, the density of
states of a bulk crystal (3D) is
shown
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� h2

2m∗

1
r2

∂
∂r

r2
∂
∂r

� �
� L

!
2

r2

 !
þ V

�
r
!�" #

Ψ
�
r
!� ¼ EΨ

�
r
!� ð15:56Þ

where L
!
2 is the orbital momentum operator which commutes with the Hamiltonian.

The solution to Eq. (15.56) is the extension of the one-dimensional problem to the
three-dimensional one. The eigenstates are products of the spherical harmonics Ylm
and of radial parts given below. The energies and wavefunctions of an infinite
spherical quantum dot are:

Enl ¼ h2

2m∗

αnl
R

� �2
, n ¼ 1, 2, 3 . . . , l ¼ 0, 1, 2 . . .

Ψ r; θ;φð Þ ¼ Ajl
αnlr

R

� �
Ylm θ;φð Þ

ð15:57Þ

where A is a constant, jl is a spherical Bessel function, n is the positive integer, and
l is the angular momentum quantum number. The coefficients αnl are the zeros of the
spherical Bessel functions labeled by an integer in order of increasing energy. Some
values of αnl are given in Table 15.2 for the lowest levels defined by n and l. The
levels can be labeled with the usual atomic notation, e.g., 1s corresponds to l¼ 0 and
n ¼ 1. Their degeneracy is however not the same as in real atoms, and there is no
restriction on the values of l for a given n like in free atoms where l < n. This is due to
the different nature of the potential which in this case encapsulates the particle and its
orbit. The degeneracy is only in terms of the allowed “m” values which range from +l
to �l.

15.9 Optical Properties of Low-Dimensional Structures

Figure 15.11 illustrates the band diagram in a GaAs-AlGaAs quantum well with
several electron and hole subbands and the notations used in this section.

Table 15.2 Values of αnl
for the lowest states in a
spherical well

n,l Level αnl
10 1S 3.142

11 1P 4.493

12 1D 5.763

20 2S 6.283

13 1F 6.988

21 2P 7.725
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15.9.1 Interband Absorption Coefficients of Quantum

Wells
The absorption coefficient for a transition from a valence band state of energy E1 to a
conduction band state of energy E1 has been given earlier in Chap. 10 and can be
written as:

α hωð Þ ¼ πq2

cm2
0�nε0ωV

X
1, 2

p12j j2 f 1 � f 2ð Þδ E12 � hωð Þ ð15:58Þ

where:

p12 ¼ 1 exp
��i k

!

λ
� r!� e!

λ
� p!










2

� �
ð15:59Þ

and �n is refractive index of the medium and V is the volume. f1 and f2 are the Fermi
occupational probabilities for electrons in the respective states. We assume the

incoming photon with the wavevector k
!

λ
and the polarization vector e

!
λ
. In the present

situation, an electron in themth heavy-hole subband with 2D wavevector k
!

h
absorbs a

photon and enters a state with wavevector k
!
e
in the nth subband of the conduction

band. In terms of the 2D vector ρ
!
and the coordinate z normal to the quantum-well

layer plane, the wavefunctions are then written as:

1j i ¼ h;m; k
!

h






�

¼ Uh

�
ρ
!
; z
�
exp
�
i k
!

h
� ρ!�ϕhm zð Þ,

2j i ¼ c; n; k
!
e




 �
¼ Uc

�
ρ
!
; z
�
exp
�
i k
!
e
� ρ!�ϕcn zð Þ,

ð15:60Þ

ΔEC

ΔEV

E1

Fig. 15.11 Schematic of
band diagram of GaAs-
AlGaAs quantum well with
electron and hole subbands
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whereUh andUc are the cell-periodic parts of the Bloch function and ϕ
0
sare envelope

functions. We decompose the photon wavevector as k
!
λ ¼

�
k
!
λ==; kλz

�
and write

Eq. (15.29) as:

p12 ¼ c; n; k
!

e

� 


exp�i k!λ==� ρ! þikλzz
�
e
!
λ� p! h;m; k

!
h




 �








 ð15:61Þ

The matrix element can be evaluated by using Eq. (15.60) for the wavefunctions
and integrating over ρ and z. The photon wavevector is considered negligible in
comparison to the carrier wavevectors. Thus electron momentum is conserved
for the in-plane motion only. However, since the motion is quantized along
z-direction, there is no such selection rule for this direction. Using the k-conservation

rule and the relation k
!
e ¼ k

!
h þ k

!
λ== 	 k

!
h, the squared matrix element can be

written as:

p12j j2 ¼ pcvj j2
D E

QW
δ
k
!

e
, k
!
hCmn ð15:62Þ

with

Cmn ¼ ϕhmjϕcnh ij j2 ¼
ð
ϕ∗
hmϕcndz











2

ð15:63Þ

In the present case, h|pcv|2iQW is the polarization-dependent momentum matrix
element for transitions between conduction and valence subbands in a quantum
well. It is different from the momentum matrix element in bulk semiconductors. The
factor hϕhm|ϕcni denotes the overlap between the electron and the hole envelope
wavefunctions. For infinite potential barriers with parabolic band model, both ϕhm

and ϕcn are sinusoidal functions, and the overlap integral becomes zero unless n is
equal to m. Thus in this ideal situation, the optical selection rule is expressed as
Cmn ¼ δmn. However, in real situation the finiteness of the barriers ΔEc and ΔEv and
also the change in the effective masses of the barriers cause a deviation from the
above perfect selection rule.

We can write for the absorption coefficient:

α hωð Þ¼ πq2

cm2
0�nε0ωV

Cmn

X
k
!

e , k
!

h

pcvj j2
D E

QW
δ
k
!

e
, k
!
h f e� f hð Þδ Ee

�
k
!

e
��Eh

�
k
!
h
��hω

� �

ð15:64Þ

Using the parabolic E
�
k
!�

relation, the energies are expressed as:
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Ee
�
k
!
e
� ¼ Ecn þ h2k2e

2me

Eh
�
k
!
h
� ¼ �Eg � Ehm � h2k2h

2mh

8>><
>>: ð15:65Þ

The Fermi occupational probability can be written as:

f Eð Þ ¼ 1

1þ exp E � E f

� �
=kbT

� � ð15:66Þ

where Ef is the quasi-Fermi level. Using k
!
-conservation, the double summation in

Eq. (15.64) is reduced to a single summation over k
!
h. The argument of the energy-

conserving δ-function then becomes:

Ee
�
k
!
e
�� Eh

�
k
!
h
�� hω ¼ Eg þ Ecn þ Ehm

� �� h2k2h
2mr

� hω, ð15:67Þ

where mr is the reduced mass (Eq. 10.80). The remaining sum in Eq. (15.64)
becomes:

X
k
!

h

! 2S

2πð Þ2
ð
δ EgþEcnþEhm�h2k2h

2mr
�hω

� �
2πkhdkh f h khð Þ� f e khð Þ½ � ð15:68Þ

where S is the area of the quantum well and factor 2 is from spin degeneracy. The
integration in Eq. (15.68) is performed easily due to the presence of the δ-function,
so that we obtain:

α hωð Þ ¼
mrq2Cmn pcvj j2

D E
QW

ε0h2cm2
0�nωL

f e � f hð ÞH hω� Eg � Ecn � Ehm
� � ð15:69Þ

where L is the thickness of the quantum well and H(x) is the Heaviside step function.
Equation (15.69) may be compared with the expression for bulk. Remember from
Chap. 5 that |pvc|

2 can be expressed and estimated in terms of the Kane matrix
elements (Eq. (5.67) and Sect. 5.7). In both cases, the absorption coefficients are
proportional to the respective joint density of states function. The expected variation
of absorption coefficients are shown in Fig. 15.12. The experimental measurements
of absorption coefficient in GaAs/AlGaAs quantum wells and thick GaAs layer are
compared in Fig. 15.12.

When considering intersubband absorption, we immediately have the selection
rule that normal incident light with (x,y) polarization cannot be absorbed because the
z-confined wavefunctions are orthogonal. In order for light to be absorbed in an
intersubband transition, it is essential that there should also be a z-polarized compo-
nent giving an qzEz coupling term.
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15.9.2 Absorption Coefficient of Quantum Wires

The calculation of the absorption coefficient may be performed as usual by assuming

the k
!
-conservation condition to be valid along the direction of the free motion. The

absorption coefficient is written as:

α hωð Þ ¼ �B1

X
k
!

f e � f hð Þδ Eg þ h2k2=2mr � hω
� � ð15:70Þ

where B1 is a constant and Eg denotes the effective gap which is bulk bandgap plus

the electron and hole subband energies. The summation over k
!

may be converted
into an integral, and assuming fe � fh ¼ 1 the integration may be performed to yield:

α hω; að Þ ¼ �
q2C1D pcvj j2

D E
QWR

2mrð Þ1=2

2m2
0ε0�nωcS

hω� Eg
� ��1=2 ð15:71Þ

where the coefficient C1D is the overlap integral of a quantum wire and h|pcv|2iQWRis
the momentum matrix element for transitions between conduction and valence
subbands in a quantum wire. S is the cross-sectional area of the wire.

Equation (15.71) leads to the conclusion as noted before that the absorption
coefficient is proportional to the joint density of states function. Therefore the
absorption coefficient should show a singularity at hω ¼ Eg and fall with increasing
photon energy as shown in Fig. 15.8.
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Fig. 15.12 Absorption coefficient in GaAs/AlGaAs quantum wells and thick GaAs layers (upper
curve). The peaks correspond to quantum-confined subband n (Reprinted figure with permission
from Dingle R, Wiegmann W, and Henry CH, Phys Rev Lett (Vol. 33): p. 829, Fig. 2. Copyright
1974 by the American Physical Society)
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15.9.3 Absorption Coefficient of Quantum Dots

The absorption coefficient of a cubic QD system of side length a may be written as:

α hωð Þ ¼
2πq2 pcvj j2

D E
m2

0�nε0cωa
3

X
m

g m2
� �

δ hω� Eg � π2h2m2

2mra2

� �
ð15:72Þ

where g(m2) is the degeneracy of the energy level determined by m2. Only Δm ¼ 0
transitions are allowed. Equation (15.72) indicates that the interband absorption in a
QD will be a series of discrete lines, representing the reduced density of states
function of a 0D system. The discrete lines will occur at photon energies:

hω ¼ Eg þ π2h2m2

2mra2
ð15:73Þ

In practice the absorption spectra are not discrete lines but are broadened because
of the size distribution of quantum dots. We consider that the family of dots has a
fluctuation in side length described by the following Gaussian distribution:

P að Þ ¼ 1

2πð Þ1=2D
exp � a� a0ð Þ2

2D2

" #
ð15:74Þ

where a0 is the average value and D2 ¼ h(a � a0)
2i is the standard deviation.

Using Eq. (15.72) and Eq. (15.74), the absorption coefficient for a nonuniform
quantum dot system can be calculated as:

α ¼
ð1
0
P að Þα hω; að Þda ð15:75Þ

The line broadening also occurs due to phonon scattering processes in addition to
the size distribution of QDs.

15.10 Examples of Low-Dimensional Structures

The optical properties of low-dimensional quantum structures, arising from their
peculiar density of states, are often put to use in semiconductor optoelectronic
devices, such as semiconductor laser diodes and quantum-dot infrared
photodetectors. Such low-dimensional structures are fabricated in practice using a
succession of processes involving epitaxy, lithography, and etching. An illustration
of the principle of quantum wells, wires, and dots is shown in Fig. 15.13.

Low-dimensional quantum structures have, for example, been most beneficial for
semiconductor laser diodes, leading to low threshold current (minimum necessary
current for lasing), high power, and weak temperature-dependent devices. These

15.10 Examples of Low-Dimensional Structures 499



properties, in conjunction with their small size, have made laser diodes attractive for
applications involving densely packed laser arrays. This applies also to the mono-
lithic integration of lasers with low-power electronics such as computer optical
interconnects, optoelectronic signal processing, and optical computing.

An illustration of the effect of low-dimensional quantum structures on the
properties of optoelectronic devices is shown in Fig. 15.14 which illustrates the
theoretical predictions for threshold currents in semiconductor lasers based on active
regions with different low-dimensional structures. By using quantum dots instead of
a bulk layer, the threshold current may be reduced by more than 20 times. This is due
to the abrupt energy dependence of the density of states in low-dimensional quantum
structures which can enhance the light amplification mechanisms and thus allows
lasing to occur at lower currents.

a b c

Fig. 15.13 Illustration of a (a) 2D structure (quantum well), (b) 1D structure (quantum wires), and
(c) 0D structure (quantum dots), showing the various levels of spatial confinement

Fig. 15.14 Coefficient of
light amplification (gain) for
different structures. The
dashed lines show the
threshold current density
above which laser emission
starts (Reprinted with
permission from IEEE Journal
of Quantum Electronics Vol.
22, Asada M, Miyamoto Y,
and Suematsu Y, “Gain and
the threshold of 3-dimensional
quantum-box lasers,” p. 1918,
Fig. 6. Copyright 1986, IEEE)
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15.10.1 Quantum Wires

Figure 15.15 shows an example of a quantum wire, which has been etched in a thin
film of doped GaAs deposited on an undoped GaAs substrate. Inside the rectangular
stripe, there is a highly conductive channel where the electrons are confined and
which forms a quantum wire and whose width is narrower than that of the stripe. In
GaAs wires, the minimum diameter of the channels can be about 80 nm.

Fig. 15.15 Quantum wire formed by etching away all but a thin strip of doped semiconductor on
an undoped substrate: (a) schematic diagram; (b) practical example (“Fig. 11.1”, from
Low-Dimensional Semiconductors: Materials, Physics, Technology, and Devices by M.J. Kelly;
taken after Physica Scripta Vol. T45, Beaumont SP, “Quantum wires and dots: defect related
effects,” p. 196. Copyright 1992, Physica Scripta. Reprinted with permission of Oxford University
Press, Inc. and The Royal Swedish Academy of Sciences)
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Another example of quantum wire is shown in Fig. 15.16. The structure was
made by using etching a doped thin GaAs film, in such a way that it undercuts the
crystal from the surface, i.e., GaAs material is removed below the remaining stripe.

Fig. 15.16 Schematic diagram and image of quantum wires of doped GaAs on an insulating
substrate (Taken from Fig. 11.2 of “Low-Dimensional Semiconductors: Materials, Physics, Tech-
nology, and Devices” by MJ Kelly; taken after Journal of Vacuum Science and Technology B Vol.
6, Hasko DG, Potts A, Cleaver J.R.A., Smith CG, and Ahmed H, “Fabrication of submicrometer
freestanding single-crystal gallium arsenide and silicon structures for quantum transport studies,”
p. 1851. Copyright 1988, American Institute of Physics. Also taken after Physica Scripta Vol. T54
Kelly, et al.” Quasi-One-Dimensional Transport in Semiconductor Microstructures” p.201, Fig. 1
(a), Copyright 1992 Royal Swedish Academy. Reprinted with permission of Oxford University
Press, Inc., American Institute of Physics)
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The resulting structure thus has a triangular cross section, and a highly conductive
channel is present inside it which is where the electrons are confined and a quantum
wire is formed.

Quantum wires have novel optical absorption spectra which depend on the
polarization of the light. The optical properties can be computed with the methods
we discussed in Chap. 10. Again the key quantity and novelty will be mainly due to
the joint density of states. But more recently, scientists have discussed another
reason why the quantum wire may be of interest, and this is in the context of
electron-electron interactions having a stronger effect on carrier mobility. The
dense many-electron quantum wire is also called the Luttinger liquid (Bockrath
et al. 1999) and exhibits an exciting new science which has been studied only very
recently. When moving along a “line,” carriers are more likely to be affected by each
other’s Coulomb interaction. A carrier will find it difficult or even impossible in
some cases to pass another charge or to avoid the other charge, if for some reason this
charge is blocked on the way. One trapped carrier in the wire can stop the entire flow
of current, which is an example of the Coulomb blockade. The controlled blockage
and removal of the blockage is one of the targets of present-day nanotechnology
research. In this way, the presence or absence of a single charge in a trap can give rise
to a measurable quantity of electrical current. The quantum wire is especially
interesting if all the electron spins are pointing in one direction. This can be done
either because they have been aligned by a magnetic field or because they have been
injected into the wire by a magnet. Quantum wires can therefore be used as “spin
wires” which transport spin information from one area of a device to the other.

The fabrication of quantum pillars or vertical quantum wires, as shown in
Fig. 15.7, in doped (multilayer) semiconductors is more complicated. The
processing steps are shown in Fig. 15.17c and d which result in the structure
shown in Fig. 15.17b. A submicrometer-diameter metal dot is laid down onto the
film (step 2 in Fig. 15.17c), and the pillar structures are formed by an etching process
(step 3), through which parts of the material are selectively removed. The electrons
are thus confined laterally inside the pillars (4). This structure is then filled with
polyimide, a polymeric material, and etched back to expose the top of the metal dot
(steps 1 and 2 in Fig. 15.17d). The whole surface can then be coated with metal
(steps 3 and 4), making contact to the metal dots and thus the vertical quantum wire.
The fabrication methods can be refined so that any single pillar can be contacted.

15.10.2 Quantum Dots

The structures shown in Fig. 15.17 can also be used as a quantum dot if the carriers
can be confined vertically at the top and bottom of the pillars, in addition to being
confined laterally by the side walls of the pillars. This can be achieved by choosing
the two barrier layers (AlGaAs in Fig. 15.17a) that are sufficiently thick.

Another method of realizing semiconductor quantum dots consists of making use
of a strain-induced transformation that occurs naturally in the initial stages of growth
of lattice-mismatched materials. This type of growth usually starts atomic layer by
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atomic layer, and after a certain critical thickness is reached, nanometer-size islands
spontaneously form. This is known as the Stranski-Krastanov growth mode. These
islands show good size uniformity and large surface densities. In this method, the
growth has to be interrupted immediately after the island formation and before the
islands reach a size for which strain relaxation and defects occur. This spontaneous
island formation during growth precludes the interface quality problems often
associated with low-dimensional quantum structures achieved through etching.
This breakthrough has created some excitement in the physics community by
providing the opportunity for experimental verification of the effects of three-
dimensional quantum confinement in semiconductor structures.

Several reports worldwide show remarkable agreement on the optical properties
of these structures, finding that the delta function density of states expected from 0D
quantum structures manifested itself in ultrasharp light emission peaks. Compound
semiconductors that have been used until now for quantum dots include InAs and
InGaAs on GaAs, InAlAs on AlGaAs, InAs on InP, and InP on InGaP and GaP.

Fig. 15.17 A quantum pillar formed from resonant tunneling semiconductor multilayers showing
(a) a schematic diagram of the pillar, (b) the partially processed structure after the first etch, and (c)
and (d) the full processing route
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15.10.3 Effect of Electric and Magnetic Fields

In the confined direction of the quantum well or in nanopillars and quantum dots, the
electrons subjected to an electric field cannot wonder away to infinity, so the electric
field constitutes a relatively small perturbation and can be handled by methods of
quantum-mechanical perturbation theory. The same is true for nanopillars and
quantum dots in a magnetic field. The expansion of energy levels and wavefunctions
can be usually stopped in second order, giving us a powerful way of estimating field-
induced changes in energies and optical permittivities. In Chap.10, we showed how
permittivity can be related to the wavefunctions and energy spectrum (Eq. 10.53)). In
static fields, we can work with the time-independent Schrödinger equation and
perturbation theory. Following Sect. 4.3.1, we can calculate the new ground-state
wavefunction to first-order and energy to second-order perturbation theory using
Eq. (4.205) and Eq. (4.207). The perturbation caused by an electric field E0zapplied
in the z-direction is �qzE0z giving the second order (first order vanishes by symme-
try in a symmetric coordinate system):

E 2ð Þ
g ¼

X
l

aE0zð Þ2 zgl


 

2

Eg � El
ð15:76Þ

In a confined system, the electric field-induced shift of the energy of the free
subband eigenstates is called the Stark shift and is lowering of energy when we start
with box eigenstates. Figure 15.18 shows the absorption spectra of a quantum well in

Fig. 15.18 Electro-
absorption spectra of GaAs
quantum-well waveguide
device as a function of electric
field applied field
perpendicular to the plane of
the layers. (i) ¼ 1.6 � 104

V�cm�1; (ii) ¼ 105V�cm�1;
(iii) ¼ 1.4 � 105V�cm�1;
(iv) ¼ 1.8 � 105V�cm�1;
(v) ¼ 2.2 � 105V�cm�1

(Reprinted with permission
from Applied Physics Letters
Vol. 47, Weiner JS, Miller D.
A.B., Chemla DJ, Damen TC,
Burrus CA, Wood T H,
Gossard AC, Wiegmann W,
“Strong polarization sensitive
electro-absorption in GaAs/
AlGaAs quantum well
waveguides,” p. 1149.
Copyright 1985, American
Institute of Physics)
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an electric field applied perpendicular to the layers and also shows the Stark energy
shift of the exciton peak. The action of an electric field on an exciton can however in
some cases be more complex than just a Stark shift, especially when the exciton is
broken up by the field, and then the simple method might not suffice.

Figure 15.18 shows the effect of a magnetic field on the energy levels of a large
quantum dot in which electrons are confined by a three-dimensional parabolic
potential, with energy levels at ~2 meV interval (Fig. 15.19).

In this example the magnetic energy levels and the intrinsic confinement level
splittings are comparable at B¼ 1 T, so the effect of the B field is obviously large. In
smaller dots, one needs a correspondingly larger B field to see the same relative shifts
or a smaller effective mass. When the magnetic coupling is treated in perturbation,
both the first-order and the second-order terms contribute to the energy. In the
notation of Chap. 10 and from Eq. (10.113), the perturbation is of the form (m* is
the effective mass):

V ¼ qBxð Þ2 � 2qBx ih
∂
∂y

� �
 �
1

2m∗
ð15:77Þ

The first-order perturbation shift in energy is positive, and the second-order term
is necessarily negative. The B field will in general raise the energy of the electron
when it is in the ground state.

Finally Fig. 15.20 shows the drastic effect a magnetic field has on the longitudinal
and Hall resistance of a high-quality, high-mobility quantum well. The magnetic
field is applied perpendicular to the plane in which conduction takes place. We
explained in Chap. 10 how the magnetic field produces Landau levels and how the
degeneracy of the levels changed with B and that the Fermi energy in Landau levels

Fig. 15.19 The energy levels of a parabolically confined quantum dot with intrinsic energy level
splitting hω0 ¼ 2meV in a magnetic field (Davies JH, The Physics of Low Dimensional
Semiconductors: an Introduction, p. 237, Fig. 6.16.# Cambridge University Press 1998. Reprinted
with the permission of Cambridge University Press)
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moves with B field for a given electron concentration. Increasing the magnetic field
increases the Landau level splittings and the degeneracy of each band. This then
implies that the density of states at the Fermi level changes too. The Fermi level can
move from a region of finite to a region of zero density of states, i.e., sit in the gap
between two adjacent Landau levels. But this then according to Eq. (10.39) drasti-
cally changes the longitudinal resistance with B field exactly as shown in Fig. 15.20.
In contrast to the longitudinal resistance, we see that the Hall resistance does not
vanish when the Fermi level is in the Landau gaps but forms plateaus until the Fermi
level again crosses into the middle of the next Landau band, at which point the
resistance suddenly goes up again with B field. This fascinating phenomenon is
known as the quantum hall effect or QHE. The plateau signifies that in this interval
of level filling (B decreasing) or emptying (B increasing), the number of Hall carriers
is not changing. We see a plateau in the gap and not zero conductance because the
Hall voltage is not a Fermi level property. When the Fermi level crosses a region of
small density of states, i.e., from the maxima through the gaps, then it is passing
through energy levels which are spatially localized; the orbits of the localized states
form closed paths which do not intersect the sample edge. The energy levels which
are affected by the B field are the delocalized ones which sit in a narrow region in the
maxima and obey εn¼ (n + 1/2)hωc. Remember that in the semiclassical description,
the Hall voltage exists because the Lorentz force creates an asymmetric charge
redistribution for drifting carriers.

Fig. 15.20 Shubnikov-de Haas trace (ρxx) and quantum Hall effect (ρxy) as a function of magnetic
field normal to the plane at T ¼ 0.045 K in Ga0.47In0.53As-InP heterostructures (Reprinted with
permission from Applied Physics Letters Vol. 48, Razeghi M, Duchemin JP, Portal JC, Dmowski L,
Remeni G, Nicolas RJ, and Briggs A, “First observation of the Quantum Hall effect in a
Ga0.47In0.53As-InP heterostructure with three electric subbands,” p. 712. Copyright 1986, American
Institute of Physics)
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15.11 Summary

In this chapter, we have first reviewed topics associated with semiconductor
heterostructures. In particular, the concepts of type I and type II band alignments
were outlined. Furthermore, model solid theory and Anderson’s model for
heterojunction energy band alignment and diagram were described.

Subsequently, we showed that the motion of electrons in a crystal can be spatially
confined in one, two, or even three directions, by designing and fabricating an
adequate semiconductor structure, a quantum well, wire, or dot. When the amount
of confinement is sufficient, quantum-mechanical effects become important and lead
to the discretization of the energy spectrum, i.e., the quantization of allowed energy
levels becomes an important feature of the system. A rough criterion is as always
ΔEn, n + 1~kbT, i.e., the splitting has to be bigger or comparable to the thermal
energy.

The important new characteristic of a low-dimensional quantum structure is the
new density of states. This quantity shows a different dependence on energy,
especially for lower (wire and dot) dimensionality systems. The magnitude and
energy dependence of the density of states strongly correlates with many properties
of the solid and in particular with the optical properties of a semiconductor. This has
been shown here and in Chap. 10. We have shown how electric and magnetic fields
affect confined eigenstates and eigenenergies. Ironically it is often easier to estimate
the effect of external fields in confined systems than in infinite ones because energy
levels are discrete and wavefunctions normalized in a small volume. This means that
one can use standard second-order perturbation theory. Confinement can be
exploited in the design of the characteristics of optoelectronic devices. Having
evaluated changes to energies and wavefunctions, it is possible to compute the
electro-optic coefficients using the methods of Chap. 10 combined with the pertur-
bation expansion given here.

Problems

1. In this chapter, we used the effective mass of the electron in the Schrödinger
equation. Explain why it was necessary to do so, whereas it was not necessary in
the infinite and finite potential well in Chap. 4.

2. Give an expression (an integral) for the total number of electrons in the conduc-
tion band of a bulk three-dimensional semiconductor and then in the first
subband of a quantum well of width L in terms of the density of states and the
Fermi function (assume box eigenstates in the confined direction). If at T ¼ 0 K
we dope the first subband in the conduction band and we fill all the states in the
first subband, how many electrons do we need per unit area?

3. Consider a 50 Å GaAs and 300 Å Al0.6Ga0.4As layers forming a quantum well
structure.
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The electrons are all located at the first energy state (e), and holes are at (h). The
general expression of the first energy state is determined as E1 ¼ h2π2/2m∗a2,
where a is the width of the quantum well and m* is the effective mass of the
particle considered (for holes, consider the heavy-hole effective mass).

What is the photon energy of the light emitted when the electron and the hole
recombine as shown in the above figure?

4. Let us assume a quantum dot which is spherical. The electrons or holes are
confined at energy states with the following expression: Enl ¼ (h2/2m∗)(αnl/R)

2,
where m* is the effective mass of the electron or hole and the value of αnl is
given by α10 ¼ π, α11 ¼ 4.49, α12 ¼ 5.76, α20 ¼ 6.28, α21 ¼ 7.72, and
α22 ¼ 9.09. Now consider the very small GaAs quantum dots of radius 10 nm.
If the electron drops from the second state (α11) to the first state (α10), what is the
photon energy of the light emitted from this transition?

Draw the energy diagram for GaAs quantum dots with radius 5 nm, 10 nm,
and 15 nm. How does the first energy state change as a function of radius?

5. Density of States of an Ideal Two-Dimensional Electron Gas
Using the infinite barrier approximation, derive an expression for the density

of states for electrons in a quantum well in terms of the well width L and electron
effective mass m*.

6. Fermi Energy of an Ideal Two-Dimensional Electron Gas
Consider a structure consisting of two GaAs quantum wells that have been

grown far apart in AlxGa1-xAs with the same Al composition x (x� 0.3). In well
A the GaAs thickness is L, while in well B, it is 2L. Now, approximate the
conduction bands in wells A and B by ideal quantum wells between infinitely
high potential barriers. Suppose that the quantum wells contain electrons and
that both wells have the same Fermi energy,EF ¼ 3FA

1 where EA
1 is the lowest

quantized energy level in well A.

(a) How many subbands in each well contain electrons at zero temperature?
(b) What is the two-dimensional charge density NA and NB in each well?

Give the answer in terms of known physical quantities such as h and L.
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7. The Graphic of the Two-Dimensional Density of States
Figure 15 shows the density of states of a quantum well. The confinement
energy of the lowest level (E1) is 17 meV, and the first excited state (E2) has a
confinement energy of 30 meV. The Fermi level is located 50 meV above the
bottom of the conduction band. Determine the number of electrons contained in
the well.

8. The two-dimensional potential which confines the electrons in a quantum wire
made of GaAs is assumed to be parabolic, and the subband separation is given as
hω0 ¼ 12 meV. If the Fermi energy is EF ¼ 37 meV as measured from the
bottom of the lowest subband, calculate the number of electron per unit length at
0 K including spin degeneracy.

9. The Moss-Burstein Shift in Absorption Spectra
The “band filling” or Moss-Burstein shift effect occurs in all heavily doped
three-dimensional semiconductors. It is a consequence of the fact that electrons
are fermions, and therefore it is impossible (by the Pauli exclusion principle) to
optically excite an electron into a same spin k-state, which is already occupied.
In the case of strongly degenerate n+-doped sample, this has the effect of
prohibiting any interband transition into electron states below the Fermi energy
leading to an upward shift in the effective absorption edge,E0

g (see figure below).
The Moss-Burstein shift (ΔE) is defined as the difference between the effective
absorption edge and the energy gap (Eg) of the material, i.e., ΔE ¼ E0

g � Eg.

(a) Calculate the Burstein shift in the absorption edge of a direct semiconductor
with parabolic bands due to the heavy doping (n-type) at very low temper-
ature (T	 0 K). The carrier concentration is ne. Neglect excitons. Note that
the shift is not simply the Fermi energy of the electrons and involves the
mass of both conduction and valence bands.

(b) Calculate theMoss-Burstein shift for the GaAs material doped with 1 � 10
18 electrons/cm3. What should happen to the shape of the absorption edge?
Assume m∗

e ¼ 0:067 m0 and m∗
h ¼ 0:45 m0 where m0is the electron

rest mass.

a b

E'gEg
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Allowed optical transitions in direct-gap semiconductors: (a) undoped mate-
rial, absorption threshold of Eg; (b) n

+-doped material, absorption threshold blue
shifted to E0

g by the Moss-Burstein shift
10. Critical Radius of a Spherical Quantum Dot with Finite Barrier Height

Assume that a quantum dot has a spherical shape with radius R and is surrounded
by a medium of higher bandgap such as AlGaAs. The potential barrier at the
conduction band is ΔEc at all points in the surface of the sphere. The potential
well is a square well of height, ΔEc, for r > R and is 0 for r < R. Let us consider
the simplest case of zero angular momentum (l ¼ 0), and then it follows that the

wavefunctions Ψ
�
r
!�

depends only on the radial part. When l ¼ 0 and

Ψ
�
r
!� ¼ R rð Þ ¼ ϕ rð Þ=r, Eq. (15.56) reduces to:

� h2

2m∗

d2ϕ rð Þ
dr2

þ ΔEcϕ rð Þ ¼ Eϕ rð Þ r > Rð Þ

� h2

2m∗

d2ϕ rð Þ
dr2

¼ Eϕ rð Þ r < Rð Þ

8>>><
>>>:

The solution of the above equation is the same as the one with a one-dimensional
finite potential well. Find the critical radius below which there is no bound state of
one electron in the quantum dot.
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Quantum Transport 16

16.1 Quantum Transport

16.1.1 The Concept of Current in Quantum Mechanics

We have seen in Sect. 16.2.1 how we could define current in classical Drude theory
in terms of electrons or charges obeying Newton’s law with frictional forces giving
rise to resistance. In Chap. 4 we had introduced the methodology of quantum
mechanics and argued that classical physics was not really the right way of looking
at dynamics on a microscopic scale. In practice it turns out that the classical theory of
transport is very useful indeed, and one can go a long way in understanding transport
phenomena in solid-state physics and engineering using the classical method. But
there comes a point beyond which the classical description does not work well
anymore, and we have to consider the quantum mechanical aspects. This happens on
many occasion most of which we cannot discuss here, but we can consider a very
simple and common situation where quantum mechanics is needed. Consider a beam
of electrons injected, for example, in the conduction band of a semiconductor via an
electrode and traveling to the other electrode. Now we can ask what is the current? In
classical physics, the answer is obvious if we know the velocity of the carriers. Now
we can insert a potential barrier on the way, for example, a material with a higher
bandgap as in Fig. 16.1, and ask: what is the resistance produced by the potential
barrier on the electrons impinging on it? A classical Drude approach would obvi-
ously give us a totally oversimplified and misleading answer to this question. It
would require the definition of “frictional force” but which acts only in the form of
one obstacle and would not give a satisfactory picture of this well-defined and
concrete transport problem. So the right starting point in this case is the quantum
mechanical definition of the current (quantum current). To do this, and for simplic-
ity, we consider a one-dimensional situation and write down the continuity equation:

# Springer International Publishing AG, part of Springer Nature 2019
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_16
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∂ρ
∂t

þ ∂Jx
∂x

¼ 0 ð16:1Þ

This equation is generally valid and is an expression of particle conservation
where ρ is the density and Jx the current in x-direction. Now we rewrite the equation
using the quantum mechanical definition of density and the time-dependent
Schrödinger equation from Eq. (4.2). Recall that density in quantum mechanics is
ρ ¼ Ψ∗Ψ:

∂ Ψ∗Ψð Þ
∂t

¼ Ψ∗∂Ψ
∂t

þ Ψ
∂Ψ∗

∂t
¼ Ψ∗ �i H

_

h
Ψ

 !
þ Ψ

i H
_

h

 !
Ψ∗ ð16:2Þ

With the Hamiltonian:

H
_¼ p2

2m
þ V xð Þ ð16:3Þ

Substituting the Hamiltonian from Eq. (16.3) into Eq. (16.2), we note that the
potential energy term cancels and we have in one dimension:

∂ Ψ∗Ψð Þ
∂t

¼ ih
2m

Ψ∗ ▽2Ψ
� �� Ψ ▽2Ψ∗

� �� � ð16:4Þ

∂ Ψ∗Ψð Þ
∂t

þ ∂
∂x

h
2mi

Ψ∗ ∂
∂x

Ψ
� �

� Ψ
∂
∂x

Ψ∗

� �� �
¼ 0 ð16:5Þ

From which it follows with Eq. (16.1):

x

V

x = 0

E

−a a

Aeik1x Feik1xCeik2x

De−ik2xBe−ik1x

j
I

j
II

j
III

Fig. 16.1 Illustration of the three regions of particle motion

514 16 Quantum Transport



Jx ¼ h
2mi

Ψ∗∂Ψ
∂x

� Ψ
∂Ψ∗

∂x

� �
ð16:6Þ

This, Eq. (16.2), is the quantum mechanical definition of the current. It has some
very interesting features. We note that it immediately follows that to carry a current,
a wavefunction must be complex. In a closed system like a box, and in the absence of
a magnetic field, i.e., when we have time reversal invariance, the wavefunction can
always be chosen as real, and therefore the current is zero. This statement may not
seem surprising perhaps, but it is very important. A plane wave eikx, for example,
carries an electron current density of �qhkx/m in the positive x-direction. So a beam
of particles impinging from the left to right can be represented by such plane waves.
Now consider what happens when a barrier is inserted in the path of such a beam.
Clearly some will be reflected back, and some will go through the barrier. The
question is how many per second will make it through? Classically only charges with
sufficient energy to cross the barrier can go through. The quantum mechanical
picture is quite different. This is one situation where one can see that the classical
method does not work at all. So let us consider the quantum mechanical solution.

16.1.2 Transmission and Reflection Coefficients

Consider the diagram in Fig. 16.1 showing what happens to a beam of carriers
impinging on a potential barrier.

We let a beam of particles come in from the left with amplitude A, and because
some carriers will be reflected back again, there is a reflected beam with amplitude
R traveling in the opposite direction. To the right of the barrier, there are no particles
coming from the right, so there is a transmitted beam with amplitude F (Fig. 16.1).
The potential regions are divided as follows:

Region I : x < �a,V ¼ 0 ð16:7Þ

Region II : �a � x � þa,V > 0 ð16:8Þ

Region III : a < x,V ¼ 0 ð16:9Þ
We also assume that the processes take place without the particles changing their

energy. This is an example of “elastic scattering.” So the solution of the time-
dependent Schrödinger equation as defined in Chap. 4, Eq. (4.6), in each of the
three regions can be written as:

φI ¼ Aeik1x þ Be�ik1x ! E ¼ h2k21
2m

ð16:10Þ

16.1 Quantum Transport 515



φII ¼ Ceik2x þ De�ik2x ! E � V ¼ h2k22
2m

ð16:11Þ

φIII ¼ Feik1x ! E ¼ h2k21
2m

ð16:12Þ

The transmission and reflection coefficients are defined by the relations:

T ¼ F

A

���� ����2 ð16:13Þ

R ¼ B

A

���� ����2 ð16:14Þ

To solve the problem, we now use the boundary conditions, continuity of the
wavefunction, and its derivative, at x ¼ a and x ¼ �a, to determine the coefficients.
This gives four equations:

e�ik1a þ B

A
eika1 ¼ C

A
e�ik2a þ D

A
eik2a ð16:15Þ

k1 e�ik1a � B

A
eika1

� �
¼ k2

C

A
e�ik2a � D

A
eik2a

� �
ð16:16Þ

C

A
eik2a þ D

A
e�ik2a ¼ F

A
eik1a ð16:17Þ

k2
C

A
eik2a � D

A
e�ik2a

� �
¼ k1

F

A
eik1a ð16:18Þ

Solving these equations allows us to write:

F

A
¼ e�2ika1 cos 2k2að Þ � i

2
k21 þ k22
k1k2

� �
sin 2k2að Þ

� ��1

ð16:19Þ

2
B

A
¼ i

F

A

� �
k22 � k21
k1k2

sin 2k2að Þ ð16:20Þ

Using the relation:

F

A

���� ����2 þ B

A

���� ����2
 !

¼ T þ R ¼ 1 ð16:21Þ
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Which expresses the conservation of probability, we can find the transmission
coefficient:

T ¼ 1

1þ 1
4

k21�k22
k1k2

	 

sin 2 2k2að Þ

ð16:22Þ

Or in terms of the energy E of the particle we have in the region E > V:

T ¼ 1

1þ 1
4

V2

E E�Vð Þ sin
2 2k2að Þ ! E > V ð16:23Þ

where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E � Vð Þ=h2

q
. The solution is still valid when E < V. Since k2 is

now complex, it is convenient to redefine:

ik2 ¼ κ ! h2κ2

2m
¼ V � E > 0 ð16:24Þ

We can rewrite the transmission coefficient in this regime as:

T ¼ 1

1þ 1
4

V2

E V�Eð Þ sinh
2 2κað Þ ! E < V ð16:25Þ

The limit E ¼ V is of some interest. Taking this limit in Eq. (16.25) gives us:

T ¼ 1

1þ 2m að Þ2V
h2

! E ¼ V ð16:26Þ

which shows that even when the kinetic energy is exactly as large as the potential
energy, the transmission coefficient T < 1. Now consider a really interesting situa-
tion, namely, when E > V and when in Eq. (16.23), we have the condition:

sin 2 2k2að Þ ¼ 0 ð16:27Þ
This happens when:

2ak2 ¼ nπ ! n ¼ 1, 2, 3 . . . ð16:28Þ
With this condition it is equivalent to saying that when 2a ¼ n λ

2

� �
2, the transmis-

sion T¼ 1, i.e., we have a perfect transmission despite the fact that the particle has to
cross an obstacle, and space is no longer homogeneous. At these resonance the
particle does not see the scattering object. It behaves as if it were not there at all. The
same phenomenon happens in optics for light transmission through a Fabry-Perot
mirror at resonance. The requirement for perfect transmission can be rewritten as:
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E � V ¼ n2
π2h2

8a2m

� �
ð16:29Þ

The behavior is shown in Fig. 16.2. When we have more than one barrier, or well,
the above procedure is extended to allow reflected and transmitted waves in every
region in the regions between the obstacles in a very natural generalization of the
above example. In the two barrier case we have four unknown coefficients instead of
two, but we have an extra boundary with two conditions.

16.1.3 Discussion

When considering the Quantum mechanical problem of transmission of
particles through potential barriers, one can see a rich variety of behavior. This is
true even for the simple problem of the transmission through a constant barrier as
shown above. One of the most important results is the fact that one can transmit
through a barrier even if one does not have enough kinetic energy to surmount it
classically. This is a consequence of Heisenberg’s uncertainty relation in which the
delimitation of an obstacle in a specific region of space introduces indeterminance of
momentum and energy. As the beam of particles is used to “measure” the presence of
the object in a specific location, it no longer has a well-defined energy when it
crosses the obstacle.

The transmission coefficient is, as one would expect, also a measure of the
resistance or the conductance of the system. Let us examine what this implies for
conductivity.

Fig. 16.2 Transmission
coefficient for the single-
barrier problem as a function
of dimensionless energy
(Reprinted with permission of
Addison Wesley, R. Liboff
“Quantum Mechanics, 2nd
Edition” p. 231 Fig. 7.26,
copyright Addison Wesley,
1992)
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16.1.4 The Electrical Resistance Due to Potential Barriers
in Quantum Mechanics

We can consider this particle beam as being emitted from an electron reservoir in a
metal and collected in a similar reservoir at a lower Fermi energy or chemical
potential. So now we have the total current emitted from left to right which is
(A ¼ area, 2 W ¼ bandwidth, gV ¼ density of states per volume):

IR ¼ Ae

ðW
�W

f εkð ÞgV εkð ÞT εkð Þ hkx
m

� �
dεk ð16:30Þ

But from right to left, with carriers emitted from a reservoir held at a lower
chemical potential of magnitude eV (see the drawing of Fig. 16.3), the current is:

IL ¼ Aq

ðW
�W

f εk þ qVð ÞgV εkð ÞT εkð Þ hkx
m

� �
dεk ð16:31Þ

The net current is therefore the difference which is:

IR ¼ Aq

ðW
�W

f εkð Þ � f εk þ qVð Þf ggV εkð ÞT εkð Þ hkx
m

� �
dεk ð16:32Þ

For small voltages we can expand the Fermi function to order qV to obtain:

I ¼ Aq2V

ðW
�W

� ∂ f

∂εk

� �
gV εkð ÞT εkð Þ hkx

m

� �
dεk ð16:33Þ

This elegant result shows how the transmission coefficient determines and defines
the conductance G of the system which is:

eV

Fig. 16.3 Illustration showing the assumption that the charge reservoir on the right is shifted down
by eV and that the electric field is not affecting the band structure of the system
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G ¼ Aq2
ðW
�W

� ∂ f

∂εk

� �
gV εkð ÞT εkð Þ hkx

m

� �
dεk ð16:34Þ

And we should remember that at T ¼ 0, the derivative of the Fermi function is a
delta function at the Fermi level so that G ¼ Aq2gV(εF)T(εF)v(εF) where v(εF) is the
Fermi level velocity vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EF=m
p

.
This result is now easily generalized to multiples of barriers of various shapes and

sizes. In all cases, we need to calculate the new transmission coefficient using the
generalization of the same method.

The above derivation assumed free electrons. For band electrons the x-velocity
should be replaced by 1

h
∂εk
∂kx

, and the mass is the effective mass m*.

The reader will note that if Eq. (16.34) is compared to the classical Drude
result, then it is possible to define an effective Drude relaxation time via the relation
{σDrude ¼ nq2τ

m∗ , gV(εF)εF ¼ n}:

τ ¼ 2TL
v εFð Þ ð16:35Þ

Note that the Drude relaxation time scales as length times T(Ef). Indeed in a
macroscopic resistor T(L ) will depend on the number of obstacles and also change,
decreasing with L. If we assume that the wavefunction loses its coherence each time
after scattering from an obstacle, then every time it crosses an obstacle, it is like
starting again at the next one, then the resistance caused by each obstacle is additive,
and the scaling of T will be as 1/L, 1=T ¼P

n
1=Tn ¼ L

w < 1
Tn

> where w is the

average distance between the obstacles so that:

τ ¼ 2 < T�1
n >

� 
�1
w

v εFð Þ ð16:36Þ

Where < >¼ average denotes the average over the distribution of Tn. On the other
hand if the system is ordered, and the total transmission coefficient does not change
with L, and stays at T ¼ 1, we can see that the Drude relaxation time goes to infinity
with L, so that the resistivity of the macroscopic material tends to zero.

16.1.5 The Influence of the Applied Electric Field

We have up to now not mentioned the electric field. By drawing the transport path as
in Fig. 16.4, we have avoided the problem of having to mention the applied electric
field altogether. The only reason why there is a current is because the electrons in the
right reservoir have a lower Fermi level, so the number crossing from left to right for
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a given temperature is smaller. But in reality there is, of course, an electric field
gradient and electrons emitted to the right are subject to a field, and classically, they
are accelerated by this field and then they scatter and/or just reach the other electrode.
The quantum mechanical problem of a charge moving in an electric field was treated
in Chap. 10. The problematic is not as simple as in classical physics because we deal
with energy eigenstates not with acceleration and instantaneous velocities. So we
avoided this issue at this stage, and it is all right to do so provided the applied
potential is small, and we can work in the linear response or ohmic regime keeping
only terms in first order in the applied potential. From Eq. (16.33) we observe that to
linear order in V, the transmission coefficient and wavefunctions use to do derive it
can be assumed to be the zero field values. So here we have neglected the fact that the
field will change the energy levels, that these energy levels will have a spatial
structure as treated in Sect. 16.2.1, that consequently the electrons can also relax
their energy to the lattice as they move, and that there is energy dissipation or joule
heating in going from left to right. The energy relaxation steps do also lead to
resistance processes, but in many situations of interest in quantum devices, the
barrier reflections and tunneling processes where energy is conserved are by far
more important for resistance than the energy exchange with the lattice.

16.1.6 Resonant Tunneling Over a Double Barrier

Let us now consider the double barrier obstacle as shown in Fig. 16.5. In the zero-
bias limit, the diagram shows the position of the Fermi level of the reservoirs by the
dashed line and the two quantum well eigenstate E0 and E1. The application of a bias
field changes the potential profile. As shown, as soon as the bias is big enough for the
E0 level to line up with the injecting Fermi level, we have the phenomenon of
resonance. The incoming energy exactly matches the quantum well energy, and we
have an enhanced transmission. The modeling of the transmission coefficient using
the method outlined above is shown in Fig. 16.1 for two different values of well
widths. One can clearly see how the current rises with bias reaches a maximum at
resonance and when the injecting level and quantum well level move out alignment,
the current decreases again and we have the phenomenon known as negative
differential resistance (NDR). The phenomenon of transmission resonance can be
understood very easily using the perturbation method of Chap. 4.

Fig. 16.4 The diagram illustrates a two barrier path with different barrier heights. The methodol-
ogy of the solution is as before
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We consider the electron at the injector Fermi level uncoupled to the quantum
well to be in the state ϕI(εF) and regions I and II as defined above in Eq. (16.7) to
denote the left and right reservoirs; then we allow a coupling to the quantum well
level state E0, with strength tI0 similarly for E1. Now by perturbation theory to first
order in the coupling, the reservoir eigenstate will be admixed to the quantum well
eigenstates to give (E0, E1 > εF):

Ψ ¼ ϕI εFð Þ þ tI0
εF I½ � � E0

ϕ0 þ
tI1

εF I½ � � E1
ϕ1 ð16:37Þ

In the present of a bias, one can approximately assume that the couplings t and the
quantum well levels change so that E0, 1 ! E0, 1 � qFa where a is the first barrier
width and F the applied field so that:

ΨI ¼ ϕ0
I εFð Þ þ tI0 Fð Þ

εF � E0 þ qFa
ϕ0 þ

tI1 Fð Þ
εF � E1 þ qFa

ϕ1 ð16:38Þ

Now we see that when the levels aligns, the admixture diverges, the wavefunction
acquires a high probability of mixing with the quantum well state. Of course at
resonance one has to use the degenerate state perturbation method also explained in
Chap. 4. To evaluate the full transmission with this method, one has to allow the
coupling to the second reservoir as well and then obtain the amplitude of the initial
state in the final state. But this is straightforward. Experimentally one can observe
these negative differential resistance resonances, but it is not a trivial task, and a

E1

Ef

V= 0

V

Ec

E0

E1

Ef
Ec

E0

471/1

Fig. 16.5 The conduction-
band profile for a double
barrier resonant-tunneling
structure (Copyright 1989
from “The MOCVD
Challenge, Vol. 1: A Survey
of GaInAsP-InP for Photonic
and Electronic Applications,”
Razeghi, M., p. 114, Fig. 3.37.
Reproduced with permission
of Routledge/Taylor &
Francis Group,LLC)
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number of conditions have to be satisfied. The quantum well levels are in practice
not just sharp eigenstates but they are subject to broadening in the plane specially if
the semiconductor layers are highly doped. Note that the same perturbation proce-
dure can be applied to the second reservoir, and thus one can couple the initial
reservoir to the final reservoir by a simple extension of the above perturbation
theory, i.e., replacing ϕ0 with:

ϕ0 ¼ ϕ0
0 þ

X
εII

t w0ε Fð Þ
E0 � εII þ qFa

ϕII εð Þ ð16:39Þ

where εII is now any energy in the final reservoir and t w0εII is the admixture energy
from the zero energy state in the well w to the final energy in the right reservoir, or
electrode II, and not just the Fermi level. When the carrier has arrived in the second
reservoir, it still has the field energy which it has acquired on the way, and it can
deposit it in the electrode. Similarly for the upper energy level in the central well.
The scattering-induced broadening washes out some of the features as one might
expect. For example, from Eq. (16.38), the broadening can be represented as an
imaginary part contribution iΓ to the energy which gives the admixture probability:

aI0j j2 ¼ tI0j j2
εF � E0 þ qFað Þ2 þ Γ2

ð16:40Þ

Then there is also the thermal broadening effects which we can also include in the
broadening width, and the fact that off resonance, when the quantum inelastic
tunneling transport paths are improbable, the carrier can cross the obstacle by
using the thermal activation into the quantum well levels. The so-called phonon-
assisted pathways are important as we go up in temperature. Figure 16.6 shows the

3.0

2.0
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0 1.0 2.0

V,volt

3.0 4.0 5.0
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471/1

Fig. 16.6 Resonant-tunneling current/voltage simulations for 3- and 6-nm-wide wells (Copyright
1989 from “TheMOCVD Challenge, Vol. 1: A Survey of GaInAsP-InP for Photonic and Electronic
Applications,” Razeghi, M., p. 114, Fig. 3.38. Reproduced with permission of Routledge/Taylor &
Francis Group, LLC)
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calculated negative differential resistance in the device structure shown in Fig. 16.7.
In Fig. 16.8 one can see the negative differential resistance obtained by a voltage
pulsed technique at room temperature. The pulsing ensures that space charge and
thus internal field effects do not mask the quantum tunneling process.

It is also possible to see negative differential resistance (NDR) in the steady state
in some materials and especially if we go down to low temperatures where thermal

Fig. 16.7 The structure of
the device used by Razeghi
et al. in 1987 (Reprinted with
permission from Electronics
Letters Vol. 23, Razeghi, M.,
Tardella,A., Davis, R., Long,
A., and Kelly, M., “Negative
Differential Resistance at
room temperature from
resonant-tunneling GaInAS/
InP double barrier structures,”
p. 116. Copyright 1987,
IEEE)

Fig. 16.8 Pulsed current/voltage characteristic for a sample showing negative differential resis-
tance at 3 V bias (Reprinted with permission from Electronics Letters Vol. 23, Razeghi, M.,
Tardella, A., Davi, R., Long, A., and Kelly, M., “Negative Differential Resistance at room
temperature from resonant-tunneling GaInAS/InP double barrier structures,” p. 116. Copyright
1987, IEEE)
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broadening and pathways are suppressed. Figure 16.9 shows the NDR produced at
room temperature in a GaAs/AlAs double barrier system.

The reader is referred to the books by M. Kelley and C. Weisbuch and B. Vinter
for a more detailed review of negative differential resistance in quantum devices.

Fig. 16.9 Resonant tunneling through a double GaAs/AlAs superlattice barrier, single-quantum
well heterostructure (Reprinted with permission from Applied Physics Letters Vol. 49, Reed, M.,
Lee, J., Tsai, H., “Resonant tunneling through a double GaAs /AlAs superlattice barrier single
quantum well heterostructure,” p. 158. Copyright 1986, American Institute of Physics)
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16.1.7 The Superlattice Dispersion

One of the most interesting phenomena of quantum physics is produced when we
apply a strong electric field to narrow energy bands. The case of free electrons in an
electric field was treated in Chap. 11, and there we were interested in what happens
to the optical absorption in a semiconductor. Here we want to focus on what happens
in narrow energy bands and show that the physics is very novel and interesting. Let
us first recall the Kronig-Penney band structure of Chap. 5. This model is actually a
very good representation of the band structure of a semiconductor superlattice as
shown schematically in Fig. 16.10. A popular example considered in practically
every specialized book (see Razeghi 1989; Weisbuch and Vinter 1991, Davis 2000,
Kelly 2000) is the GaAs/AlAs superlattice.

With infinite barriers, the individual quantum wells would have confined
eigenstates as shown in Fig. 4.7 in Chap. 4. When the barriers are finite, the quantum
well confined levels can tunnel across and then overlap with each other thus forming
energy band whose width can be adjusted as was done in the Kronig-Penney model
in Sect. 16.2.1. In principle we can proceed as for the Kronig-Penney model here too.
But there is a quicker way to examine the band structure specially when there is an
electric field and that is to use the “tight binding model.” In the framework of the
tight-binding model discussed in Chaps. 1 and 5, the overlap or coupling between
the confined levels of subband “n” in two adjacent wells can be written as:

t nl, lþ1 ¼
Ð
dzΨ∗

n, lV zð ÞÞΨn, lþ1

tl, lþ1 ¼ t∗lþ1, l

ð16:41Þ

where Ψ is the confined quantum well state in well l, V(z) is the potential caused by
the adjacent well which starts at z ¼ a and finishes at z ¼ b, and the superlattice
distance is c ¼ aþb

2 (see Fig. 16.10). The coupled Bloch wavefunction of energy E in
one dimension can be written as a superposition of the individual quantum well
(n subband) state:

b

a0

Fig. 16.10 The schematic representation of a superlattice periodic potential in the growth direc-
tion. The vertical arrows denote the expected width of the so-called superlattice minibands formed
by the coupling of the quantum well wavefunctions as in the Kronig-Penney model of Sect. 16.2.1
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ϕE zð Þ ¼
X
l

C n
l Ψn, l ¼

X
l

C n
l n; lj i ð16:42Þ

Taking the expectation value of the Hamiltonian with the coupled states,
Eq. (16.42) gives by definition:

E ¼ ϕE H0 þ Vj jϕEh i ð16:43Þ
When substituting Eq. (16.42) into Eq. (16.43) and evaluating the right-hand

side, we encounter terms of the form:

n; l H0j jn; lh i ¼ E0
n ð16:44Þ

n; l H0j jn; l0h ie0 ! l 6¼ l0 ð16:45Þ

n; l H0j jn0; lh i ¼ 0 ! n 6¼ n0 ð16:46Þ

n; l V zð Þj jn; l� 1h i ¼ t ð16:47Þ

n; l V zð Þj jl0; n0h ie0 ! l0 6¼ l� 1, n 6¼ n0 ð16:48Þ
The above relations give the following relations for the coefficients:

ECn
l ¼ E0

nC
n
l þ tn C n

lþ1 þ Cn
l�1

� �
t nl, l�1 ¼ tn

ð16:49Þ

The equation can be solved by making use of the translational symmetry and
Bloch’s theorem which says that:

Cn
lþ1 ¼ Cn

l e
ikzc

C n
l�1 ¼ Cn

l e
�ikzc

ð16:50Þ

where c is the lattice repeat distance so Eq. (16.49) becomes:

E � E0
n � 2tn cos kzc

� �
Cn
l ¼ 0

En kzð Þ ¼ E0
n þ 2tn cos kzc

ð16:51Þ

This cosine dispersion is a good approximation to the superlattice band structure
in the growth direction. The wavefunctions in Eq. (16.49) are now labeled with the kz
vector as φn,kz.
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16.1.8 The Stark-Wannier States

Now consider the application of an electric field in the z-direction. This introduces an
extra term in the Hamiltonian, with F denoting the applied electric field:

HF ¼ H þ qFz ð16:52Þ
Now we can expand the new eigenstates in terms of the new Bloch states we have

just derived. For convenience, we only deal with z-component, the x,y directions
are free electron effective mass states, and the total energy is decomposed as
E ¼ Ez + ε(ky) + ε(kx)

Ψ zð Þ ¼
X
n, kz

An kzð Þϕn,kz zð Þ ð16:53Þ

With HFΨ(z) ¼ EzΨ(z), we have after multiplying the left with using the orthog-
onality of the wavefunctions:

Ez � En,kz

� �
An kzð Þ ¼ qF

X
k
0
z, j

Zn,kz;j,k
0
z
A j k

0
z

� � ð16:54Þ

where:

Zn,kz;j,k0z ¼
ð
dzϕ∗

n,kz zð Þzϕ j,k0z zð Þ ð16:55Þ

and the matrix elements Eq. (16.55) obey the rule:

Zn,kz;j,k0z ¼ iδn, jδkz,kz 0
∂
∂kz

ð16:56Þ

Substituting Eq. (16.56) back into Eq. (16.54) gives us a first-order differential
equation:

Ez � En,kz

� �
An kzð Þ ¼ iqF

∂An kzð Þ
∂kz

ð16:57Þ

which we can integrate straight away by first dividing throughout with An, to give
after substitution Eq. (16.53):

Ψν
n zð Þ ¼

ðπ=c
�π=c

c1=2
dkz
2π

exp ikz z� νcð Þ � itn
qFc

sin kzc

� �
ð16:58Þ

where we have used the relations:

528 16 Quantum Transport



Ez ¼ qFcνþ E0
n ð16:59Þ

X
kz

! L

2π

ð
dkz ð16:60Þ

En kzð Þ ¼ E0
n þ 2tn cos kzc ð16:61Þ

This defines the energy levels. The Bloch symmetry in the superlattice which
stipulates that the same functions must be reproduced if the origin is shifted to an
equivalent site forces the indices ν to be integers ranging from (�1,1). The
complete wavefunctions and energies are now given by:

ΨE x;y;zð Þ¼
ðπ=c

�π=c

c1=2
dkz
2π

exp ikz z�νcð Þ�2itn
qFc

sinkzc

� �
� 1

LxLy

� �1=2

exp ikxxþ ikyy
� �

ð16:62Þ

E ¼ qFcνþ E0
n þ

h2

2m∗
k2x þ k2y

	 

! �1 < ν < 1 ð16:63Þ

The wavefunction in the z-direction is a well-known function in mathematical
physics, and it is called the Bessel function of the first kind J and can be written in the
usual way as:

ðπ=c
�π=c

c
dkz
2π

exp ikz z� νcð Þ � itn
qFc

sin kzc

� �
¼ Jz

c�ν
2tn
qFc

� �
ð16:64Þ

The new physics is fascinating. The first thing we note is that the Bessel functions
are localized in the z-direction. Starting from an origin νc, the wavefunction decays
after a distance of Ln where

Ln ¼ 2tn
qF

ð16:65Þ

The stronger the electric field, the smaller the wavefunction. This is classically
completely counterintuitive. The eigenstates will form a so-called Stark-Wannier
(SW) ladder centered about the middle of every quantum well in the superlattice,
extending to about the distance Ln in the z-direction. Since the banding parameter tn
increases as we go up in the quantum well subband index n, because the confinement
is weaker at higher energies (see Chap. 4 Eq. (4.47)), the localization length of the
Stark-Wannier states increases for the higher energy bands in the superlattice.
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If an electron is put in any of the Stark-Wannier states, it is in an eigenstate and
will stay there forever and not transport charge unless it is allowed to couple with the
photon or phonon fields. And of course it is coupled to those fields, and thus it will
relax down the Stark-Wannier energy ladder emitting light or heat as it moves. The
current or drift velocity is then limited by the rate of energy relaxation. If we
calculate this rate (Movaghar 1987), then we can calculate the drift velocity. If the
energy relaxing coupling Hamiltonian is Hr(z) then by the Fermi golden rule (see
Chap. 10), we have the rate:

γνν0 ¼
2π
h

X
s

ð
dzΨ∗

ν zð ÞVr z;ωsð ÞΨν0

���� ����2δ qcFν0 � qcFνþ hωsð Þ 1þ n ωsð Þð Þ
! qcFν > qcFν0

Vr z; tð Þ ¼ Vr z;ωsð Þeiωst þ V∗
r z;ωsð Þe�iωst

ð16:66Þ
where the excitations ωs emitted can be phonons or photons and Vr is the relaxation
coupling. Even though the dominant relaxation channel is phononic, specially when
there is a resonant Stark-Wannier transition with an optic phonon mode, the photons
emission can be turned into a lasing emission in the so-called quantum cascade laser
(QCL) structure (see Faist et al. 1994 and Slivken et al. 2002, in the further
reading section for more information). In the process ν ! ν

0
the distance traveled

is d ¼ c(ν
0 � ν) which then defines a transfer velocity. Moving against the field is

also possible but will involve an absorption of the excitation involved. But the
excitation has to be available so the “up rate” involves an activation factor via the
phonon or photon occupation number n(ωs). Again from the Fermi golden rule for
absorption going up the energy ladder, we have:

γνν0 ¼
2π
h

X
s

ð
dzΨ∗

ν zð ÞVr z;ωsð ÞΨν0

���� ����2δ qcFν� qcFν0 þ hωsð Þ n ωsð Þð Þ

! qcFν0 > qcFν ð16:67Þ

n ωsð Þ ¼ 1

ehωs=kbT � 1ð Þ ð16:68Þ

We conclude that the motion of electrons in finite energy bands in quantum
mechanics gives rise to a very different physical picture than in classical physics.
What is happening here viewed in the semiclassical picture is that the carriers are
accelerated by the electric field to go up the Bloch band energy ladder (assume
tn < 0):

d k
!

dt
¼ �q F

! ð16:69Þ
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En kð Þ ¼ E0
n � 2 tnj j cos k tð Þc ð16:70Þ

Since the energy is periodic, in the absence of energy dissipation, the electron
accelerates and then slows down again when it reaches the top of the energy band
and then actually has to return in space to move against the field. It cannot go further
than a certain distance in space without losing energy, because its energy will have
reached the top of the allowed energy band which is E ¼ E0

n. Its motion in energy
space is periodic and so is its motion in real space. This motion is called Bloch
oscillations, and one can understand that the particle is being actually localized by
the applied field. In order to move a longer distance than the Stark-Wannier length,
the carrier has to emit energy, and in the quantum mechanics point of view, relax
down into the adjacent Stark-Wannier state or classically speaking, start a new
journey forward in field direction in space as soon as it has emitted energy, thus
avoiding to have to go back in space. The reason why the simple classical viewpoint
is valid in many situations is that the electron has in most cases plenty of opportunity
to relax its energy before it has reached the top of the band. In formal language, the
energy relaxation time (inverse of the rate) is short compared to the time it takes to
reach the top of the band via Eqs. (16.69) and (16.70). Under these circumstances it
is possible to think of the relaxation as a frictional force acting on a carrier which
remains in the effective mass regime staying in the small k region with
coskc~1 � (kc)2/2.

16.1.9 Quantum Transport in Two-Dimensional Channels

One of the most brilliant discoveries of quantum well physics is the idea of the
modulation-doped structure, shown on the right-hand side of Fig. 16.11 and more
explicitly in Fig. 16.13. The dopant is introduced in the barrier layer as, for example,
in Fig. 16.11 in the AlGaAs layer. In this way the carrier moves into the region of
low energy which is the conduction band of the GaAs layer and leaves its counterion
behind in the barrier. The counterion is now well separated in space from the
conducting channel formed in parallel and shown in Fig. 16.13. The physical
separation from the dopant means that the charge impurity scattering contribution
is considerably reduced compared to the normal case.

The scattering rate can be written as:

1
τimp

¼ N imp
m∗

2πh3k3F

q2

2ε0εb

� � ð2kF
0

e�2k dj j

k þ qIG kð Þ½ �2
b

bþ k

� �6 k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=2kFð Þ2

q dk

ð16:71Þ
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� �3

þ 3
b
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� �2

þ 3
b

bþ k

� �" #
ð16:72Þ

where b is defined below, Nimp and N2D are the 2D-impurity and the 2D electron
concentrations in the dopant layer, respectively, and d is the distance to the impurity
dopant layer as measured from the edge of the GaAs layer (see Fig. 16.12); the
remaining parameters are defined later (Fig. 16.13).

And the wavefunction in the channel (see Fig. 16.12) is plane wave like in (x,y)
plane and in confined z-direction-given by (Ando et al. 1982):

u zð Þ ¼ b3

2

� �1=2

zexp �bz=2½ � ð16:73Þ

b is the so-called Fang-Howard decay parameter given by:

b ¼ 33m∗q2N2d

8h2ε0εb

� �1=3

ð16:74Þ

We also have the definitions for Eq. (16.71):

Fig. 16.11 Mobility of various two-dimensional electron gases 2DEGs as a function of tempera-
ture (circles) showing how the peak mobility which is limited by impurity scattering has increased
over the 20 years shown. The mobility of bulk samples is shown for comparison (crosses) for older
material (bulk) and newer material (clean bulk). On the right we see a simplified structure of a wafer
grown in the sample of highest mobility (From J.H Davis “The physics of low dimensional
semiconductors” p. 360, Fig. 9.11a, copyright Cambridge University press 1998, redrawn from
Applied Physics Letters Vol. 55 “Electron mobilities exceeding 107 cm2/V�s in modulation-doped
GaAs,” pg. 1888, Fig. 1, copyright American Institute of Physics 1989. Reprinted with permission
of Cambridge University press and American Institute of Physics)
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qI ¼ 2=aBI

aBI ¼ 4πεε0
m∗q2

ð16:75Þ

where aBI is the effective radius around the hydrogenic dopant charge. To a
reasonably good approximation, the rate can be written in the very simple form:

1
τimp

¼ N imp
πh

8m∗ dj jkFð Þ3 ð16:76Þ

EF

Eg2

2DEG

Eg1

Fig. 16.12 Energy band diagram for a modulation-doped heterostructure (Copyright 1995 from
“The MOCVD Challenge Vol. 2, A survey of GaInAsP-GaAs for photonic and electronic device
applications,” Razeghi, M., p. 371, Fig. 9.2. Reproduced with permission of Routledge/Taylor &
Francis Group, LLC)
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Fig. 16.13 Typical cross
section of an AlGaAs/GaAs
MODFET (Copyright 1995
from “The MOCVD
Challenge Vol. 2, A survey of
GaInAsP-GaAs for photonic
and electronic device
applications,” Razeghi, M.,
p. 372, Fig. 9.3. Reproduced
with permission of Routledge/
Taylor & Francis Group,
LLC)
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For a concentration N2D~ 3.1015 m�2, d ¼ 30 nm and Nimp ¼ 1016 m�2, m ¼ m0

The exact result is μ~50m2/Vs and if this is the dominant source of scattering at low
temperatures, the mean-free path is lc ~ 5 μm.

In contrast, the acoustic phonon scattering rate, using the same wavefunctions,
can be shown to be using the electron-phonon coupling from Chap. 15:

1
τac

¼ 3m∗bkT Dacð Þ2
16ρdv2sh

3 ð16:77Þ

The LO optic phonon rates start at higher temperatures when such phonons can be
excited as expressed by the Bose distribution function and give:

1
τLO

¼ 2m∗ωLO

h

� �1=2 q2

8hε0

1
ε 1ð Þ �

1
ε 0ð Þ

� �
1

exp hωLO
kbT

	 

� 1

0@ 1A ð16:78Þ

In GaAs the LO-phonon scattering rate is ~ {1013 1
ehωLO=kbT�1

Hz} and therefore very

strong and dominant when T > 40 K. The temperature structure is very close to what
is shown in Figs. 16.11 and 16.14 as one crosses into the temperature region when
optic phonons are excited, i.e., T > 40 K. Figure 16.12 defines the two-dimensional
electron gas referred to as 2DEG, exhibits the difference between the mobility in the
bulk and in a 2DEG gas, and shows how the various theoretical scattering
mechanisms can explain the temperature behavior in the two systems.

16.1.10 Motion in the Plane: Magnetoresistance and Hall Effect
in Two-Dimensional Electron Gas

As a consequence of the high mobilities and long mean free paths, carrier dynamics
also exhibit beautiful quantum effects in the presence of an applied magnetic field.
We first recall what happens to the spectrum of a 2DEG in a magnetic field from
Chap. 4. As we recall from Fig. 4.14 and Eq. (4.174), the magnetic field enhances the
Landau level splitting and increases the density of states in each subband, so that as
we go up in magnetic field B, the Fermi level is pushed down until at very high
B field, only the first subband is occupied. As the Fermi level moves through the
Landau levels, one must remember that these have a finite broadening caused by
scattering from disorder, and they will typically look like Fig. 16.15 or Fig. 16.16.
The localization of eigenstates at the band edges produced by disorder and the
Shubnikov-de Haas oscillations in the conductivity and the quantum Hall conduc-
tivity derived from the Quantum hall effect (QHE) were discussed briefly and
qualitatively in Chap. 15. The objective in this chapter is to introduce the reader
also to the new mathematical physics.

Consider first the classical Drude magnetoresistance we derived in Sect. 10.8.
This formula was good enough for most optical applications, but it ceases to be
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useful at high magnetic fields in high mobility 2DEG systems, where Landau levels
appear. An improvement which takes the Landau quantization into account and
allows also for a lifetime broadening and impurity scattering was derived by Ando
et al. (1982). The conductivity becomes in the effective mass approximation:

r (E)

E
0 1Mobility

edge

Mobility

edge

Fig. 16.15 Density of states model of a single Landau level broadened by disorder and showing
the shaded region where the eigenstates are expected to be localized. As the Fermi level crosses the
density of states, it goes through extended and localized regions. The longitudinal conductivity is
zero when the Fermi level is in the localized region, and the Hall conductivity does not change until
the Fermi level is again in extended states
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Fig. 16.16 Longitudinal magnetoresistance ρxx of low-pressure MOCVD-grown GaInAs/InP
versus magnetic field for various angles at 4.2 K (Copyright 1989 from “The MOCVD Challenge,
Vol. 1: A Survey of GaInAsP-InP for Photonic and Electronic Applications,” Razeghi, M., p. 125,
Fig. 3.48. Reproduced with permission of Routledge/Taylor & Francis Group, LLC)
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σ2Dxx ω ¼ 0;Bð Þ ¼ q2N2Dτ

m∗

1

1þ ωcτð Þ2 1� 2 ωcτð Þ2
1þ ωcτð Þ2 S ωcð Þ

( )
ð16:79Þ

S ωð Þ ¼ 2π2kbT
hωc

cosech
2π2kbT
hωc

� �
cos

2πεF
hωc

� �
exp � π

ωcτ

� �
ð16:80Þ

when (ωcτ < 1), where τ is the scattering rate ωc the cyclotron frequency and N2D the
carrier density in 2D. The oscillatory structure of this function reproduces the
measured structure shown in Figs. 16.16 and 16.17, and indeed it is possible from
this comparison to deduce the effective mass and scattering rates (Weisbuch and
Vinter 1991).

Now consider the quantum Hall conductivity also shown in Fig. 16.17. In order to
fully appreciate the significance of this phenomenon, it is necessary to mentally get
rid of the scattering process altogether and consider the pure quantum state with
magnetic field B and in the presence of the applied electric field F. The full
Hamiltonian in the Landau gauge is:

HΨ ¼ 1
2m

py þ qxBz

� �2 þ p2x
2m∗

þ p2z
2m∗

þ qFxx

� �
Ψ ¼ EΨ ð16:81Þ

In a 2DEG formed by modulation doping or a quantum well confinement, the
motion in the z-direction is bounded, so that the wavefunctions and energies in the z-
direction are not free-electron like. But for the present purpose, this is immaterial.
We also drop the z-index on the B field. The new electric field-dependent term qFx
can be combined into the x-dependent B-terms. The solution is a straightforward
extension of the F ¼ 0 problem to give:
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Fig. 16.17 Resistivity data
ρxx and ρxy at 1.3 K for an
InGaAsInP heterostructure
(MOCVD) growth technique
(4.3 � 1011cm�2)
μ ¼ 60000 cm2/V/
s (Copyright 1989 from “The
MOCVD Challenge, Vol.1:A
Survey of GaInAsP-InP for
Photonic and Electronic
Applications,” Razeghi, M.,
p. 131, Fig. 3.53. Reproduced
with permission of Routledge/
Taylor & Francis Group,
LLC)
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Ψn py; pz
� � ¼ 1

LyLz

� �1=2
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i

h
py þ pz
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ϕn x� xpy

	 

ð16:82Þ

ϕn xð Þ ¼ 1
2nn!

ffiffiffi
π
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� �1=2 1ffiffiffiffiffi

a0
p exp �1

2
x=a0ð Þ2

� �
Hn x=a0ð Þ ð16:83Þ

a0 ¼ h
m∗ωc

� �1=2

ð16:84Þ

The energy levels are:

En py; pz
� � ¼ hωc nþ 1=2ð Þ þ qFxxpy þ p2z þ

m∗

2
Fx=Bð Þ2 ð16:85Þ

xpy ¼
1
qB

py þ m∗ Fx

B

� �� �
ð16:86Þ

2DEG confinement in the z-direction would replace p2z ! Ez,μ, and these would
correspond to the z-eigenvalues of the Fang-Howard model in Eq. (16.73), for
example. Note the interesting fact that the energy levels depend on the value of
the y-momentum and that the value is asymmetric with py, so that the negative pywill
have lower energy, and these eigenstates will be the first to be occupied at T ¼ 0.
Now consider the quantum current in the y-direction. Remember that the velocity in
a magnetic field is different so that the momentum becomes
mvy ¼ �ih ∂

∂y ! �ih ∂
∂y þ qBzx, now taking the matrix element of the new operator

and then giving a velocity which is remarkably independent of py:

Jy ¼ �q
X
py

f py
� �1

B
Fx ¼ �N2D

q

B
Fx ð16:87Þ

The sum over py at T¼ 0 just gives the total number of occupied electronic states.
Noting that the degeneracy of each Landau level is qB

h , so that for iL number of full
bands N2D ¼ iLqB/h, we obtain for the Hall conductivity of electrons:

σxy ¼ �q
X
py

f py
� �1

B
¼ �iL

q2

h
ð16:88Þ

The Hall conductivity is dependent only on the filling index of the Landau
subbands iL. The quantity one normally works with is the Hall resistivity defined as:
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ρxy ¼
σxy

σ2xy þ σ2xx
ð16:89Þ

and the magnetoresistivity is given by:

ρxx ¼
σxx

σ2xy þ σ2xx
ð16:90Þ

When the Fermi level is in a Landau gap, σxx ¼ 0 but σxy is not, so the magnitude
of the Hall resistance is:

ρxy ¼
1
iL

h

q2
ð16:91Þ

Now let us look at an experiment. We note that Fig. 16.17 is similar to Fig. 15.20
obtained in a more accurate measurement configuration. It shows that the measured
Hall conductivity has plateaus. Every time the Fermi level passes into the edge
region where the levels are localized as shown in Fig. 16.15, the Hall resistivity does
not change, because localized levels do not conduct. But as soon as we pass the edge
of the Landau levels, and reach the middle of the Landau bands where the levels are
delocalized, the Hall conductivity changes again, going “up or down” depending on
whether we are decreasing or increasing the magnetic field. The Hall resistivity
decreases rapidly as we cross the “free” region in the direction of increasing
magnetic field B. Now consider the longitudinal resistivity ρxx. Every time the
Fermi level passes through the Landau gaps, we know from Eq. (10.22) in Chap
10 that a null or a localized spectrum implies a zero conductivity and thus from
Eq. (16.91) a peak in the resistance. Since a minimum scattering rate finite relaxation
time is inevitable, the Ando formula (Eqs. (16.79) and (16.80)) is in practice a good
approximation. The remarkable feature of the Hall conductivity is that despite the
fact that there are regions of localized states and that electrons that occupy these
states do not conduct, the total Hall current behaves as if all the electrons have
transported normally as free carriers. The free carriers have acquired a higher
velocity which exactly compensates for the ones which are not moving (Prange
1981).

The important point is that the quantum Hall current flows even when the band is
full, and the Fermi level is in a mobility gap in the bulk of the sample. It is not a
Fermi level property as is ordinary conduction. Indeed when the Fermi level is in a
gap, by definition, all the {+py and �py} states from Eq. (16.85) are occupied, and
there is no free eigenstate until one goes up to the next Landau level which is a
distance hωc away in energy space. The Hall current in a full band is like a
diamagnetic current which is associated with an equilibrium state of the system in
magnetic field. If one introduced an obstacle in the path of the carriers, the current
would flow around the obstacle, and its total value would remain the same (Prange
1981). Carriers cannot be scattered back and redistributed in other locations of space
because all the eigenstates are full. If they could, then the eigenstates would be
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redistributed or mixed into higher Landau bands, and the Fermi level would not
remain in the mobility gap. The system creates new disturbed or scattered eigenstates

which are linear combinations of the plane wave states exp
ipyy
h

	 

considered above in

Eq. (16.82). Every time {+py and �py} current contributions are added in this
admixture, the net current is the same amount as for the undisturbed pairs. If the
disturbance is such as to seriously mix the Landau bands, the Landau levels lose their
identity, then the Fermi level no longer stays in a mobility gap, and the semiclassical
conditions and Hall current are recovered. The same is true if the electron-phonon
scattering destroys the quantum coherence of the Landau eigenstates making them so
broad that they overlap each other.

16.1.11 The Fractional Quantum Hall Effect

Going back to the Hall experiment reveals that more detail appears in the Hall
resistance structure as we go to higher and higher mobility and larger magnetic fields
as shown in Fig. 16.18. The additional substructures are believed to be caused by

Fig. 16.18 Longitudinal resistivity ρxx and transverse resistivity ρxy of a high mobility
two-dimensional electron ga at 150mK, showing the fractional quantum Hall effect filling factor
ν is indicated and ρxx is reduced by a factor of 2.5 at high fields. (Reprinted with permission from
Physical Review Letters Vol. 59, Willett, R., Eisenstein, H., Stoermer, H., Tsui, D., “Observation of
an even denominator quantum number in the Fractional Quantum Hall effect,” p. 1776, Fig. 1.
Copyright 1987, American Physical Society)
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electron-electron interactions. First we recall from Chap. 14 that in a 2DEG the
screening is not as effective as in 3D. This is further accentuated by the high
magnetic fields which produce gaps in the energy spectra and thus make it more
difficult for charges to move and respond to the presence of other charges. In the high
mobility 2DEG, we are dealing with mean-free paths of order 10 μm or more. The
most serious disturbance seen by an electron in its “magnetic orbit,” apart from the
edge of the sample, is the presence of other electrons. In the presence of a strong
magnetic field, the field caused by the other carrier constitutes a serious disturbance
and generates novel forms of many-electron organizations, similar but even more
complex than superconductivity. The charges and spins correlate their motion in
pairs, threes, and even in lattices. . ., etc., in such a way as to reduce the total potential
Coulomb energy. These coupled particles are also called quasi-particles and create
their own energy gaps and elementary excitations. The excitations across the many
body energy gaps can appear as particles with fractional charges, and this then
produces the fractional quantum Hall effect (FQHE) characteristics shown in
Fig. 16.18. One can see in this diagram that in addition to the usual Landau
bandgaps, the system now exhibits new zeros in its “longitudinal resistivity” as
defined by Eq. (16.90) and new plateaus in the “Hall resistivity” (Eq. (16.89)). At
low densities, Wigner (1934) has shown that an electron gas prefers to crystallize on
a lattice in order to minimize its potential energy. In a so-called Wigner crystal,
electronic motion is then similar to phononic vibrations, and the system becomes an
insulator. This trend is enhanced by a strong magnetic field which forces the
electrons to move in Landau orbits. Now it can happen that for various electron
densities or Landau band filling, “partial crystallization” takes place in a magnetic
field, which is to say that the electron motions become correlated as described by the
Laughlin wavefunction, yet they remain fluid and do not assume a rigid lattice-like
correlation of a classic Wigner crystal. Each electron is not shared at a group of sites,
and each site now appears to carry a fractional part of the charge. The new electronic
“self-organization” is such that at any time, a fraction of the charge builds a Wigner
type lattice to lower the Coulomb energy of the electron gas and is consequently
immobilized, while the remaining fraction can conduct through the gaps of the
Landau-Wigner lattice (fluid), giving the illusion of fractional charges (Laughlin
1983). Localized and mobile charges can exchange places in this highly correlated
Wigner-Landau fluid. As in superconductivity, electrons add at one end (input
electrode) into the many body collective state and leave at the other end (output)
leaving the “many body collective” more or less intact. The charge transfer is in
effect therefore the continual reorganization and exchange of particles with a many
body state. The detailed discussion of this fascinating topic is however far beyond
the scope of this book, and the reader is referred to the original literature on this
subject (see Tsui et al. 1983 and Laughlin 1983).
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16.1.12 Landau-Stark-Wannier States

The reader should note that we can also solve for the superlattice with an electric
field in the growth direction as we did in Sect. 16.1.5 and also now allow a magnetic
field in the growth direction (perpendicular to the plane). The combination of electric
and magnetic field in the growth direction then generates the so-called Landau-
Stark-Wannier bands. The wavefunctions are:

Ψn, l,ν py; x; y; z
� � ¼ 1

Ly

� �1=2

exp
i

h
pyyþ pzz
� �� �

ϕn x� xpy

	 
 1ffiffiffi
c

p Jz
c�v

2tl
qFc

� �
ð16:92Þ

ϕn xð Þ ¼ 1
2nn!

ffiffiffi
π

p
� �1=2 1ffiffiffiffiffi

a0
p exp �1

2
x=a0ð Þ2

� �
Hn x=a0ð Þ ð16:93Þ

The energies are py, independent as in the 2DEG, and have the same degeneracy
per Landau band:

En, l,v ¼ hωc nþ 1=2ð Þ þ qFcνþ E0
l ð16:94Þ

where ν is again an integer which ranges from [�1,1]. When the magnetic field is
applied in the plane of the superlattice, with an electric field in the growth direction
as above, the mathematics is somewhat more complicated but still tractable in terms
of the so-called Mathieu functions (Movaghar 1987). The electron moves in Landau
orbits which are interrupted by the SL potential. The Landau confinement now
competes with the Stark-Wannier localization, producing unusual electron dynam-

ics. Novel effects are expected when the cyclotron radius lc ¼
ffiffiffiffi
h
qB

q
(see

Eq. (10.119)) starts to compete with the Stark-Wannier localization length
(Eq. (16.65)). This configuration has not been studied much because of the com-
plexity of the experimental process involved. Applications could be envisaged in the
fine-tuning of energy levels and performances of the quantum cascade laser (QCL).
However fascinating the physics, applying a magnetic field of 5 T or more changes
the size and cost of the device to such an extent that it renders it normally impractical
as a “simple” laser system. But recently some workers have indeed made QCL
structures which operate in perpendicular to the plane magnetic fields and which
show promise as terahertz (THz) photodetectors and terahertz lasers (Scalari et al.
2006).

16.1.13 The Effective Mass of Carriers: Cyclotron Resonance

Using light it is possible to excite carriers from one Landau level to the other. The
difference in energy between two adjacent subbands is hν ¼ hqB

m∗ e10�4B m
m∗ eV

where B is measured in Tesla. So an absorption experiment in the far infrared and
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at low temperatures should reveal distinct inter-Landau subband absorption pro-
cesses, and the position of the energy resonance should allow us to deduce the
effective mass. This is indeed one of the standard ways of measuring the effective
mass, and an example is shown in Fig. 16.19. In materials with small effective mass,
it is also possible to use this method to study how the effective mass changes with
temperature and magnetic field. The way the change in the effective mass comes
about can be seen from the Kane formula for the effective mass as discussed in
Chap. 5. Temperature changes the bandgap; it reduces it in most semiconductors
because the lattice tends to expand. The change in bandgap is roughly ~γTkbT where
the constant γT is of order 1 and varies from material to material. The change in
bandgap will also according to Eq. (5.82) change the effective mass. However these
averaged Kane effective mass corrections are very small, and one has to consider
other corrections to the electronic energies as well. For example, one needs to
include effects such as electron-phonon scattering and the resulting energy shifts
which were briefly considered in Chap. 16. The excitation of phonons with temper-
ature causes disorder, which scatters the electrons, and this gives rise to energy shifts
which are corrections and appear as temperature-dependent energies, effective
masses, and lifetimes. Though interesting and important, these corrections are
second-order effects. They are important in low bandgap and small effective mass
materials, such as InSb, but they constitute a specialized subject which is beyond the
scope of this book.

16.1.14 Summary

In this chapter we introduced the reader to the way one would calculate electrical
conduction using quantum mechanical methods. We used a simple example of a
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Fig. 16.19 Experimental
recording of the transmission
of 337, 119, and 78 μm
radiation by Ga0.47In0.53As as
a function of magnetic field
μ¼ 60000cm2/V/s (Copyright
1989 from “The MOCVD
Challenge, Vol. 1: A Survey
of GaInAsP-InP for Photonic
and Electronic Applications,”
Razeghi, M., p. 145, Fig. 3.65.
Reproduced with permission
of Routledge/Taylor &
Francis Group, LLC)

16.1 Quantum Transport 543



structure one could engineer using modern growth techniques and worked it
through. The generalization to more complex systems is in principle then straight-
forward. We explained how one can, when appropriate, relate quantum transport to
the classical Drude method. We introduced also the double barrier system and
explained how one can have a negative resistance and engineer the so-called
negative differential resistance (NDR) device. The effect of a magnetic field perpen-
dicular to the plane of motion in a two-dimensional electron gas (2DEG) was also
considered. We showed how the Landau levels give rise to “Shubnikov de Haas”
oscillations in the conductivity and the quantum Hall effect. Finally we studied what
would happen to a carrier which is in a narrow band under the influence of an electric
field. We derived the Stark-Wannier (SW) states and introduced the student to the
fascinating new physics that this involves. This new physics is now realizable with
semiconductor molecular beam epitaxy (MBE) and metalorganic chemical vapor
deposition (MOCVD) growth techniques.

16.2 Electron-Phonon Interactions

16.2.1 Introduction

In Sect. 16.2.1 we treated electrical transport. There we made the observation that
one of the reasons why carriers scatter and lose momentum is because they interact
with the lattice vibrations, and this causes them to either gain or lose energy. Such
processes, during which energy is exchanged, are called “inelastic scattering”
processes. But electron-lattice interactions do much more than just cause resistance.
They are also at the origin of such phenomena as superconductivity where phonons
help two electrons (fermions) to bind together to form bosons (integer spin particles)
which can condense into superfluids. But we will not go as far as that in this book
and focus on some very elementary properties of electron-phonon coupling mainly
the ones which enter transport properties.

Let us now look at the structure of the electron-lattice interaction, this coupling is
also called the electron-phonon interaction. The reason for such a coupling is that
when atoms move around, vibrate, and oscillate, they no longer form perfectly
periodic arrays of potentials. But the electron Bloch functions were derived under
the assumption that the system is at T¼ 0 and that the lattice is perfectly periodic. So
these deviations from periodicity caused by thermal excitations cause a perturbation
on the electron motion in Bloch bands; this causes them to scatter from one Bloch
state k to another Bloch state k0, exchanging momentum and energy in the process.
The momentum difference is supplied by the lattice waves or, in quantized form, by
the “phonons.” One assumption which facilitates the analysis is the so-called Born-
Oppenheimer approximation. This approximation is based on the observation that
the electronic motion is very much faster than the lattice atom motion, the time scales
being ~ 1014 Hz (electron bandwidth) compared to 1012 Hz (lattice vibrational
frequency at the Debye value), respectively. This implies that in most solids of
interest to us, the electrons, when they move, see a more or less frozen lattice and
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have time to build new eigenstates before the atom configurations change substan-
tially. So the electrons form their new disturbed energy bands before the lattice has
had time to change; this happens at least after the unit of time for the lattice, which is
a lattice vibration. When the lattice configuration changes, the electrons respond by
transferring to the new energy states formed by the new lattice configuration while
conserving the total energy. This observation is also the basis for the methods used to
perform numerical simulations of electron-phonon coupling in solids. One starts
from a given lattice configuration, then solves for the electron energy levels, then
allows a new configuration to evolve which obeys the lattice dynamics which can be
assumed to obey Newton’s laws. Then one solves again for the electron states, under
the assumption that the new eigenstates obey trajectories which have the same total
energy, vibrational and electronic. Numerical solutions of coupled electron-lattice
systems are computationally very challenging and in their infancy. Fortunately,
exact solutions are easier in nanoparticles and nanostructures where they are also
more needed and much more relevant.

Now consider the formal derivation of the coupling with the help of which we can
study the scattering rates using perturbation theory. We write for the electron ion
interaction as usual:

Hel�ion ¼
X
l

Vel�ion
�
r
! �R

!
l

� ð16:95Þ

Allowing the atomic variables R
!
, where r

!
is the electron position, to deviate

slightly from their equilibrium positions permits us to write the Hamiltonian in terms
of one which describes the equilibrium periodic position and a nonperiodic term
which scatters the electrons:

Hel�ion ¼ H0
el�ion þ Hel�ph ð16:96Þ

Allowing the deviations from equilibrium of the αth atom in the nth Wigner-Seitz

cell to be called un,α
�
R
!�

, we can write:

V
�
r
! �R

!
nα � u

!
nα

� ¼ Vα

�
r
! �R

!
nα

�� u
!
nα� ▽

!
Vα

�
r
! �R

!
nα

� ð16:97Þ
Now we note that the atomic deviation from equilibrium can be expanded in

terms of the normal coordinates. The momentum index q
!
should not be confused

with the charge q:

u
!
α

�
R
!� ¼ 1ffiffiffiffiffiffiffiffiffiffi

NMα
p

X
q
!
Q

q
! e
!

α, q
! exp

�
i q
! � R!� ð16:98Þ

where e
!
α, q

! is the polarization of the vibrational motion of the αth atom in the qth
mode at the R site and Ms is the ionic masses. We can write the coupling as:
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Hel�ph ¼ �
X
α, n

1ffiffiffiffiffiffiffiffiffiffi
NMα

p
X
q
!
Q

q
! e
!

α, q
! exp

�
i q
! �R!n

�� ▽! Vα

�
r
! �R

!
nα

� ð16:99Þ

The adiabatic or Born-Oppenheimer approximation stipulates that one can write
the total wavefunction as a product of electron and phonon wavefunctions so that:

Ψtotal ¼ Ψ
�
r
!
; R
!�

Φ
�
R
!� ð16:100Þ

where Φ is the wavefunction of all the ions and Ψ
�
r
!
; R
!�

is the wavefunction of the
electrons in the instantaneous potential of the ions. When the ions move, the
potential changes as they move, and we have a time evolving Hamiltonian where
the electron potential at any time depends on the instantaneous position of the ions
and trajectories conserve total energy. The motion of the ions was treated in Sect.
16.2.1 using classical mechanics. In principle the ions obey also the Schrödinger
equation (see Eq. (4.8)) which can be written as:

Hions ¼
X
l

p2l
2Ml

þ
X
l,m

Kl,m
�
R
!
m � R

!
l

�
u
!

l u
!
m þ Hnonl ð16:101aÞ

where u
!

s are the displacements from equilibrium, pl is the ionic momentum operator,
Kl,m is the restoring force per unit displacement, and Hnonl is the nonlinear term
which is due to anharmonic forces (higher powers in u). It was shown in Chap. 6 that
in the harmonic approximation, the lattice waves propagate as harmonic plane waves
with solutions of the type:

u
! �

k
!
;ω
� ¼ u

!
0exp i

�
k
!
� r! �ωt

�� �
ð16:101bÞ

with acoustic and optic branch frequency dispersions ω
q
!
,b as shown in Chap. 6 and

where b denotes the branch. We then assumed that in quantum mechanics, the lattice
vibrations become quantized and can be thought of as particles with energies hω

q
!
,b,

the so-called phonons. In quantum mechanics, and in the harmonic approximation,
the solutions of Eq. (16.101) are the Bloch version of the localized harmonic
oscillator wavefunctions.

In quantum mechanics, we note that the total wavefunction which describes the
noninteracting unperturbed electron gas and the unperturbed phonon system, or
lattice vibrations system, can be written as a product of the two wavefunctions:

Ψ ¼ Ψ
nk
! ϕ

q
!

1
,bϕ

q
!

2
,b . . . . . .ϕ

q
!

N
,b

n o
ð16:102Þ

where ψnk is the electron state in the band index n and ϕ
q
!
,b

�
R
!

1; R
!
2; . . . R

!
N

�
the

wavefunction of a phonon with momentum index q
!
in the b-branch (acoustic or
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optic). We abbreviate the collective set of atomic displacements by the symbol Ω
!
so

that the matrix element between two states ϕ, ϕ
0
which differ by the occupation of

one phonon mode, abbreviated by n, becomes:

ð
dΩ

q
!
,bϕq

!00,b

�
Q
!�

Q
q
!
,b0ϕq

!0,b00
�
Q
!� ¼ h

2ω
q
!
,b

 !1=2

δ
q
!
, q
!0, q

!00δb,b0,b00

� nq,b ωq,b
� �� �� 1=2

δn0,n�1

þ 1þ nq,b ωq,b
� �� �1=2

δn0,nþ1 ð16:103Þ

where the n
k
!
,b
is the phonon occupation probability of the (k

!
,b) mode and for which

the thermodynamic average is:

< n
k
!
,b
>¼ 1

e
hω

k,b
! =kT � 1

ð16:104Þ

It is convenient to use the shorthand Dirac notation to denote the phonon
wavefunction (one branch only for simplicity):

Ψ
n, k

!Πϕq,b . . .ϕq,b ¼ Ψ
n, k

! nq1,b q
!
1; b; nq2,b q

!
2; b; . . . ; nqN ,b q

!
N ; b

��� E
ð16:105Þ

where there are nq, b phonons in the state (q,b). . ., etc. Of course one can use the

Dirac notation for electrons too by replacing Ψ
n, k

! ! �
n; k

!���� �
e

so that:

Ψ
n, k

!Πϕq,b . . .ϕq,b ¼ n; k
!��� �

e

nq1,b q
!

1; b; nq2,b q
!

2; b; . . . ; nqN ,b q
!
N ; b

��� E
ph

ð16:106Þ

Then one can write the normal coordinates as operators which act on the Dirac
state, and this is called the method of second quantization:

Q
q
!
,b ¼

h
ωq,b

� �1=2�
aþ�q

!
,b
þ a

q
!
,b

� ð16:107Þ

such that the operator a
q
!
,b removes a phonon from the state (q

!
,b) and aþ

q
!
,b
adds a

phonon (q
!
,b), for example:

aþqs,b nq1,b q
!
1; b; nq2,b q

!
2; b; . . . ; nqN ,b q

!
N ; b

��� E
¼ nq1,b q

!
1; b; nqs,b þ 1

� �
q
!
s; b; . . . ; nqN ,b q

!
N ; b

��� E ð16:108Þ
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aqs,b nq1,b q
!
1; b; nq2,b q

!
2; b; . . . ; nqN ,b q

!
N ; b

��� E
¼ nq1,b q

!
1; b; nqs,b � 1

� �
q
!
s; b; . . . ; nqN ,b q

!
N ; b

��� E ð16:109Þ

Now the electron-phonon interaction can be written in the much more elegant
form using the above creation and annihilation operators defined in Eq. (16.108) as:

Hel�ph¼�
X
α,n

1ffiffiffiffiffiffiffiffiffiffi
NMα

p
X
q
!

h
ωq,b

� �1=2�
aþ�q,bþa

q
!
,b

�
e
!

α, q
!
exp
�
i q
!�R!

n

� �▽Vα

�
r
!�R

!
nα

�
ð16:110Þ

When this operator acts on an electron-phonon basis state of the type
(Eq. (15.108)), it raises and lowers the corresponding phonon occupation, and the
r dependent terms act on the electron part of the wavefunction. The interaction with
the longitudinal optical modes in a semiconductor are most important and take on the
simple form (Note: q is charge):

Hel�ph,Lo¼ i q2hωLo

2ε0Ω1=2
1

ε 1ð Þ� 1
ε 0ð Þ

h in o1=2X
k
!

1
k

� �
�aþk exp

��i k
!
� r!�þakexp

�
i k
!
� r!�� �

ð16:111Þ
where ε(1), ε(0) are the high and zero frequency permittivities and ωLO the LO
optical phonon frequency andΩ is the volume. The coupling with the acoustic mode
gives:

Hel�ph, ac ¼
X
k
!

hk
2Ωρdvs

� �1=2

iDac �aþk exp
��i k

!
� r!�þ akexp

�
i k
!
� r!�� �
ð16:112Þ

where vs is the velocity of sound, ρd the density, and Dac is called the deformation
potential.

Alternatively one can avoid the use of creation and annihilation operators and
think of the electron-phonon interaction as a time-dependent perturbation of the
lattice vibrations on the electron system, so that Eq. (16.65) is also:

Hel�ph, ac ¼
X
k
!

hk
2Ωρdvs

� �1=2

iDac �e
iω

k
!
texp

��i k
!
� r!�þ e

�iω
k
!
texp

�
i k
!
� r!�� �

ð16:113Þ
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Consider the first-order scattering of Bloch electrons by acoustic phonons using
the Fermi golden rule (Eq. (10.65)). The result is for an electron scattering process
from k to k0 with phonon emission:

1

τac
�
k
!
; k
!0� ¼ 2π

h

X
k
!00

�
< n

k
!00, ac

> þ1
�

� hk00

2Ωρdvs
D2

acδk
!
�k

!00, k
!0δ ε

�
k
!
�k

!00�� ε
�
k
!�þ hωac

�
k
!00�� �
ð16:114Þ

Initial state was k
!��� �

el

nk00 . . .j iphon and final state k
!0
��� �

el

n
k00
! :þ 1; ::

��� E
phon

. And for

absorption we find:
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ð16:115Þ
Note that when evaluating the matrix elements, we have products and

answers of the form phon :n
k
!; k

!
:: aþ

k
!a

k
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��� ���: . . . :n
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¼ n
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The sum over q
!
can be transformed into an integral using:

X
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! Ω
2πð Þ3

ð
d q

! ð16:116Þ

At high temperatures we also have the approximation:

< n
k
!
,b
>¼ 1

e
hω

k
!
,b
=kT � 1

�< n
k
!
,b
> þ1ekT=hω

k
!
,b

ð16:117Þ

so that Eq. (16.105) reduce to the simple form:

1

τac
�
K
!� ¼ 2π

h
kBT

ρdv2s
D2

acgV ε
�
K
!�h i

k
!
�k

!0 ¼K
!

ð16:118Þ

where gV ε
�
K
!�	 


is the density of states per unit volume at energy ε
�
K
!�

. The

scattering rate is straightforward to evaluate for optic modes too, and the formulae
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can also be easily applied to allow for interband and intersubband scattering in
quantum wells.

If we wish to avoid dealing with the creation and annihilation operators and
phonon wavefunctions explicitly altogether and use the time-dependent perturbation
form (Eq. (16.20)) of the interaction, then we have to put in the phonon probability
factor by hand for phonon emission and absorption.

16.2.2 The Polaron Effective Mass and Energy

One of the novel feature introduced by the electron-phonon coupling is the polaron.
The polaron is the electron surrounded by its polarization cloud. This polarization
cloud is produced around it as a result of the coupling with the lattice. One can look
at it this way: the electron has an electric field. This electric field will pull the positive
ions toward the electron as it moves around. But moving the lattice ions generates a
polarization, and this has dipole moment which couples to the electric field of the
electron. The induced polarization couples with charge, and this produces a negative
energy shift called polaron energy. As it moves, the electron drags this polarization
cloud with itself, and this tends to make it look heavier. In other words, it acquires a
polaron effective mass. To calculate this effect, one has to evaluate the second-order
perturbation theory energy shift caused by, for example, the optic mode coupling
given by Eq. (16.18). This is quite straightforward using Eq. (4.60) from Chap. 4, but
it involves some integration. The result is that the electron acquires a new effective
mass given by:

m∗∗ ¼ m∗

1� αep=6
ð16:119Þ

where (q is the charge):

αep ¼ q2

8πε0hωoL

2m∗ωoL

h

� �1=2 1
ε 1ð Þ �

1
ε 0ð Þ

� �
ð16:120Þ

The constant entering Eq. (16.110) is tabulated in data banks for semiconductors.
Typically the value of αep is ~0.08 for InP and 0.015 for InSb but as high as ~2.4 and
6.6 for LiI and RbBr, respectively. In highly polar substances, the perturbation
method is no longer valid and Eq. (16.10) is not meaningful.

For weak coupling, the other lattice modes also give terms of similar structures,
so that the typical increase of the effective mass is never less than a few percent for
most semiconductors. There is, as we have observed, also a concomitant energy shift
(lowering) caused by the lattice polarization. The energy shift is of the form:

ΔEpolaron � �αephωoL ð16:121Þ

550 16 Quantum Transport



Thus, typically, GaAs polaron shifts are ~3 meV. The polaron energy shift
becomes more pronounced the more confined the electron eigenstate is. Thus in a
quantum well or quantum dot, the energy lowering will be bigger, reaching values
~20 meV in GaAs compounds. A more confined electron spends its time visiting on
average fewer sites and bonds, and thus has a greater effect on its environment than a
highly delocalized charge.

16.2.3 Summary

In this chapter, which concludes the description of transport in solids, we allowed the
lattice atoms to move and therefore to produce deviations from pure Bloch symme-
try. The self-motion of the lattice produced by temperature, in other words, thermal
excitation of phonons, then gives rise to electron-phonon interactions. We derived
the optic and acoustic coupling and gave a simple example on how to calculate the
electron-acoustic phonon scattering relaxation time. In most crystalline metals and
semiconductors, it is the e-phonon scattering which limits the resistance of the
material and is even invoked as an explanation of superconductivity. We also
introduced the reader to the concept of the polaron and showed how to estimate
energy and effective mass shifts in the presence of longitudinal optic mode coupling.
We have here given the reader only a very brief description of this very important
interaction mechanism and refer the reader to the specialized literature .

Problems for Quantum Transport

1. An electron beam is incident on a barrier where the barrier height is equal to the
electron energy and is 8 eV. The transmission coefficient is given by T ¼ 10�3,
what is the width of the barrier?

2. Calculate the transmission coefficient for the structure depicted in Fig. 16.1 but
this time for a well with potential energy {�V}.

3. Calculate the expectation value of the velocity in the y-direction for an electron in
a 2DEG (drop the z-part of the wavefunction) in the presence of a magnetic field
perpendicular to the pane and an electric field in the x-direction. (See Eq. (16.82)).
If the total number of electrons per unit area is Ns, what is the total current in the
y-direction as a function of electric field and magnetic field?

4. Describe the various mechanisms that reduce the mobility in a 2DEG and how
they affect the mobility in the different temperature regions. What would happen
if one could suppress the optic phonon scattering?
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Problems for Electron-Phonon Interactions

1. Why do lattice vibrations cause electrical resistance? In an electronic scattering
process, what is the difference between phonon emission and phonon absorption?
Using the electron-acoustic phonon interaction from Eq. (16.20) and the Fermi
golden rule from Chap. 10, derive the scattering rates given by Eqs. (16.21) and
(16.22).

2. Explain what is meant by the electron-phonon interaction. Taking the
one-dimensional diatomic chain treated in Chap. 6 as an example, illustrate
with a simple diagram the difference between the coupling of an electron to an
acoustic and an optic vibration of the chain. It is helpful to think of the electronic
bands as overlapping atomic wavefunctions, i.e., to think with the “tight-binding
model” of the electronic band structure.

3. In analogy to Eqs. (16.21) and (16.22), write down an expression for the “Fermi
golden rule” relaxation rate (see Sect. 16.2.1) of free electrons when they scatter
with optic phonons. Consider both phonon emission and absorption. Take the
electron wavefunctions to be plane waves.

4. What are the factors which influence the magnitude of the polaron energy shift in
a solid (look at Eqs. (16.110) and (16.111))? What materials would you use to
make strongly polaronic semiconductors?
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Compound Semiconductors and Crystal
Growth Techniques 17

17.1 Introduction

A key component in semiconductor microtechnology is the production and quality
control of the basic semiconductor materials from which devices and integrated
circuits are made. These semiconductor materials are usually composed of single
crystals of high perfection and high purity.

Today, silicon technology has reached the stage where complex integrated
circuits containing millions of transistors can be manufactured reproducibly and
reliably. This is not only a result of the development of device technology but also
the improvement of base material quality. For example, the silicon material that is
now used for devices has an impurity concentration less than one part in ten billion.
Unlike silicon, compound semiconductors consist of at least two different types of
atoms. Compound semiconductors are emerging as important materials suitable for
optoelectronic applications, which involve the optical and electrical properties of the
semiconductors. Gallium arsenide is an example of a compound semiconductor
material. Although its technology is not yet as mature as the one of silicon, there
is currently much effort being done in order to achieve a very high circuit operational
speed as a consequence of the high electron mobility in this material.

When improving the technology for a particular semiconductor material, a
specific range of issues must be resolved before high-performance devices can be
fabricated with a high degree of reproducibility and reliability. Only then can large-
scale production be contemplated. An important consideration in this process, which
will decide whether a material or technology will be commercially used, is the costs
of implementation and production. To establish a new material technology or
fabrication technique, it is essential to demonstrate that a significantly improved
performance, lower costs, and/or new device functionalities will result.

In this chapter, we will first review the properties of major III-V compound
semiconductors. We will then describe the current techniques used in the synthesis
of semiconductor crystals. These are divided into two categories: single crystal
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growth techniques and epitaxial growth techniques. The former is used to fabricate
semiconductor crystals of macroscopic size that will be processed into substrates,
while the latter is used to deposit thin films of a few micrometers (or less) onto one of
these substrates.

17.2 III-V Semiconductor Alloys

17.2.1 III-V Binary Compounds

III-V binary semiconductors are compounds which involve one element from the
group III and one from the group V columns of the periodic table. Table 17.1 lists
some of the fundamental physical parameters of common binary III-V compounds.
These binary compounds are the simplest III-V compounds and constitute the basis
for more complex ternary or quaternary compounds.

17.2.2 III-V Ternary Compounds

When one additional element from the group III or group V is present and is
distributed randomly in the crystal lattice, IIIx-III1�x-V or III-Vy-V1�y ternary alloys
can be achieved, where x and y are indices with values between 0 and 1. This allows
to modify the alloy bandgap energy and lattice parameter.

The bandgap energy Eg(x) of a ternary compound varies with the composition x as
follows:

Eg xð Þ ¼ Eg 0ð Þ þ bxþ cx2 ð17:1Þ
where Eg(0) is the bandgap energy of the binary compound corresponding to x ¼ 0
and c is called the bowing parameter. The compositional dependence of the bandgap
energy of various III-V ternary alloys at 300 K is given in Table 17.2 (Casey and
Panish 1978).

The bowing parameter c can be theoretically determined (Van Vechten and
Bergstresser 1970). It is especially helpful to estimate c when experimental data
are unavailable.

The lattice constant a of ternary compounds can be calculated using Vegard’s
law. According to Vegard’s law, the lattice constant of the ternary alloy AxB1�xC
can be expressed as follows:

aAxB1�xC ¼ xaAC þ 1� xð ÞaBC ð17:2Þ
where aAC and aBC are the lattice constants of the binary alloys AC and
BC. Vegard’s law is obeyed quite well in most of the III-V ternary alloys.
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17.2.3 III-V Quaternary Compounds

Similarly, quaternary compounds can be obtained when there is a total of four
different elements from the group III or group V columns distributed uniformly in
the crystal lattice. The interest in these quaternary compounds has centered on their
use in conjunction with binary and ternary alloys to form lattice-matched
heterojunction structures with different bandgaps. Indeed, by controlling the com-
position of a quaternary alloy, it is possible to change both its bandgap energy and its
lattice parameter. For example, the reduction of stress in AlxGa1�xAs layers grown
on GaAs substrates can be done by introducing small amounts of P to realize the
quaternary AlxGa1�xPyAs1�y. The InP/AlxGa1�xPyAs1�y heterojunction serves as a
successful example of a binary-quaternary lattice-matched system.

Ilegems and Panish (1974) calculated quaternary phase diagrams with the solid
decomposed into ternary alloys: ABC, ACD, ABD, and BCD (where A and B are
group III elements and C and D are group V elements). Jordan and Ilegems (1974)
obtained equivalent formulations considering the solid as a mixture of binary alloys:
AC, AD, BC, and BD. Assuming a linear dependence on composition of lattice
parameter aAC for the binary AC, and similarly for the other lattice parameters, the
lattice parameter of the alloy AxB1�xCyD1�y is:

aAxB1�xCyD1�y ¼ xyaAC þ x 1� yð ÞaAD þ 1� xð ÞyaBC þ 1� xð Þ 1� yð ÞaBD ð17:3Þ
The quaternary III-V alloys which can be used for multilayer heterostructures are

listed in Table 17.3 along with the binary compounds to which they are lattice-
matched.

The determination of the bandgap energy is more complicated. However, if the
bowing parameter c is neglected, the bandgap energy may be approximated from
that of the binaries, assuming a linear dependence:

Eg ¼ xyEAC þ x 1� yð ÞEAD þ 1� xð ÞyEBC þ 1� xð Þ 1� yð ÞEBD ð17:4Þ

Table17.2 Compositional
dependence of the bandgap
energy in some III-V
ternary compound
semiconductors at 300 K
(Casey and Panish 1978)

Ternary Direct bandgap energy Eg (eV)

AlxGa1�xAs Eg(x) ¼ 1.424 + 1.247x

AlxIn1�xAs Eg(x) ¼ 0.360 + 2.012x + 0.698x2

AlxGa1�xSb Eg(x) ¼ 0.726 + 1.139x + 0.368x2

AlxIn1�xSb Eg(x) ¼ 0.172 + 1.621x + 0.43x2

GaxIn1�xP Eg(x) ¼ 1.351 + 0.643x + 0.786x2

GaxIn1�xAs Eg(x) ¼ 0.360 + 1.064x

GaxIn1�xSb Eg(x) ¼ 0.172 + 0.139x + 0.145x2

GaPxAs1�x Eg(x) ¼ 1.424 + 1.15x + 0.176x2

GaAsxSb1�x Eg(x) ¼ 0.726 � 0.502x + 1.2x2

InPxAs1�x Eg(x) ¼ 0.36 + 0.891x + 0.101x2

InAsxSb1�x Eg(x) ¼ 0.18 � 0.41x + 0.58x2

558 17 Compound Semiconductors and Crystal Growth Techniques



By using advanced epitaxial growth techniques, such as the ones discussed in
Sect. 17.5, multilayer structures of compounds with different bandgap-associated
wavelengths can be synthesized.

Figure 17.1 is an illustration of the phase diagram for the GaInPAs-AlAs-AlP
system, providing the bandgap energy and lattice parameters of the common ternary
and quaternary III-V alloys. Each of the four corners of the central square
corresponds to a binary III-V semiconductor. Each side of the square represents a
III-III-V ternary alloy, such as GaxIn1�xP (bottom) and GaxIn1�xAs (top), or a III-V-
V ternary alloy, such as GaP1�yAsy (left) and InP1�yAsy (right). By selecting the
composition of the different materials, it is possible to change their bandgap and
therefore vary the optical properties of the semiconductor materials.

The inner part of the diagram corresponds to the quaternaryGaxIn1�xP1�yAsy
compound. The curved lines indicate compounds with equal bandgap energy, and
the solid lines represent those with equal lattice constants. By continuously varying
the concentration of gallium, indium, phosphorus, and arsenic, one can vary the
characteristics of GaxIn1�xP1�yAsy in the range between those of indium arsenide
(InAs), indium phosphide (InP), gallium arsenide (GaAs), and gallium phosphide
(GaP) as shown in Fig. 17.1. Such formation of ternary and quaternary compounds
enables the development of heterostructures, which have become essential for the
design of high-performance electronic and optoelectronic devices, especially in
semiconductor lasers.

For optoelectronic applications, two possible systems are of interest. One consists
of compounds which are lattice-matched to GaAs substrate and their bandgap energy
from 1.42 eV to 1.92 eV. These compounds are located on the thick solid line that
begins from the upper left-hand corner and extends to the bottom of the GaxIn1�xP
ternary edge. The second system consists of compounds lattice-matched to InP
substrate and their bandgap energy between 0.75 eV to 1.35 eV.

The bandgap energy and lattice parameter of common II-VI, III-V, and IV-IV
semiconductors can be easily represented in the diagram shown in Fig. 17.2. The

Table 17.3 Binary to quaternary III-V lattice-matched systems of multilayer heterostructures
(Casey and Panish 1978)

Quaternary Lattice-matched binary Wavelength, λ (μm)

AlxGa1�xPyAs1�y GaAs 0.8–0.9

AlxGa1�xAsySb1�y InP 1

AlxGa1�xAsySb1�y InAs 3

AlxGa1�xAsySb1�y GaSb 1.7

GaxIn1�xPyAs1�y GaAs, InP 1–1.7

GaxIn1�xPySb1�y InP, GaSb, AlSb 2

In(PxAs1�x)ySb1�y AlSb, GaSb, InAs 2–4

(AlxGa1�x)yIn1�yP GaAs, AlxGa1�xAs 0.57

(AlxGa1�x)yIn1�yAs InP 0.8–1.5

(AlxGa1�x)yIn1�ySb AlSb 1.1–2.1
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Fig. 17.1 The x-y-z
compositional plane for
quaternaries III-V alloys at
300 K. The solid lines in the
square center region represent
the x-y coordinates for which
the quaternary alloy has a
constant lattice parameter,
while the curved dashed lines
represent the x-y coordinates
for which the alloy has a
constant bandgap energy. The
bold straight solid line
represents the x-y coordinates
for the quaternary alloys with
the same lattice constant as
GaAs. The bold straight
dashed line represents the x-y-
z coordinates for the
quaternary alloys with the
same lattice constant as InP
(Copyright 1989 from The
MOCVD challenge vol, 1: a
survey of GaInAsP-InP for
photonic and electronic
applications. P. 4, Fig. 1.1
Reproduced by permission of
Routledge/Taylor & Francis
Group, LLC)

Fig. 17.2 Bandgap energy vs. lattice constant diagram of common semiconductors. A dashed line
indicates an indirect bandgap material. (The bandgap energy of pure InN has been found to be
0.7 eV which is much smaller than the previously reported value of 1.9 eV)



lines connecting two compounds in the diagram correspond to the bandgap energy
and lattice constant positions of ternary compounds involving the two binary
semiconductor endpoints.

17.3 II-VI Compound Semiconductors

Right after the limitations of the elemental group IV semiconductors were exposed
several decades ago, researchers started to study III-V and II-VI semiconductors
more vigorously. Although not as popular as III-V compounds, II-VI
semiconductors have been the focus of many intensive studies in the past few
decades. One of the interesting properties of II-VI compounds is their direct energy
gaps (with the exception of semi-metals: HgTe and HgSe), which is suitable for
optoelectronic device applications. Perhaps the most celebrated II-VI optoelectronic
devices are HgCdTe-based infrared photodetectors and focal plane arrays. Albeit
facing recent challenges from III-V-based structures, these photodetectors are still
the best choice especially in the near-infrared and mid-infrared range. In addition to
photodetectors, visible light-emitting devices based on ZnSSe/ZnCdSe
semiconductors have also been demonstrated in the II-VI material system.

As mentioned before, the II-VI family not only involves semiconductors but also
a couple of semi-metallic compounds. For instance, HgTe is a semi-metal, while
CdTe is a semiconductor with a bandgap energy of 1.6 eV. For the ternary HgCdTe
compound, the bandgap energy ranges from 0 to 1.6 eV, depending on the Hg
(or Cd) molar fraction. Table 17.4 lists some of the II-VI compound semiconductors
and their respective bandgap energies, their crystalline structures, and the rate of
change of their bandgap energy as a function of temperature (Ray 1969).

Table 17.4 Bandgap
energy, crystal structure
(W ¼ Wurtzite, ZB ¼ Zinc
blende), and temperature
coefficient (rate of change
of bandgap energy as a
function of temperature) for
a few II-VI compounds.
Ray (1969), Roberts and
Zallen (1971)

Compound Eg (eV)/Structure dEg/dT (10�4 eV/K)

ZnO 3.44/W �9.5

ZnS 3.91/W, 3.84/ZB �8.5, �4.6

CdS 2.58/W �5.2

HgS 2.10/ZB �9.0

ZnSe 2.80/W, 2.83/ZB �8.0 (ZB)

CdSe 1.84/W �4.6

HgSe �0.1/ZB –

ZnTe 2.39/ZB �5.0

CdTe 1.60/ZB �2.3

HgTe �0.1/ZB –
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17.4 Bulk Single Crystal Growth Techniques

The starting point for virtually all semiconductor devices is in the form of flat
template, known as the substrate which is made entirely of a single material. Its
crucial features are that it is one single crystal across its entirety with no grain
boundaries. The process of creating single crystal wafers is simpler if they are made
purely from a single element, such as silicon. Elemental silicon is obtained by
chemical decomposition of compounds such as SiCl4 and SiH4. Then the initial
purification processes are performed, and the material is melted and cast into ingots.
Upon cooling, careful control of the boundary between the molten material and solid
is required; otherwise the material will be polycrystalline. Today, three methods
have been developed to produce bulk single crystals for the epitaxial growth of most
semiconductors: the Czochralski, Bridgman, and float-zone methods. A fourth
technique, the Lely growth method, was also developed in order to produce
substrates when a melt was not available. All of these methods will be discussed
in the following subsections.

17.4.1 Czochralski Growth Method

The Czochralski (CZ) crystal growth method uses a quartz (SiO2) crucible of high
purity in which pieces of polycrystalline material, termed “charge,” are heated above
their melting point (e.g., 1415 �C for silicon). The crucible, shown in Fig. 17.3, is

crucible melt

growing crystal 

seed crystal 

encapsulant 

pull rod 

quartz tube 

heater coil

Fig. 17.3 Cross section of a
furnace used for the growth of
single crystal semiconductor
boules by the Czochralski
process, in which a tiny single
crystal is suspended in a pool
of hot molten material and is
slowly drawn upward as the
crystal grows from the melt.
The resulting boule can have a
diameter over 30 cm and a
length up to 2 m
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heated by either induction using radio-frequency (RF) energy or thermal resistance
methods. A “seed” crystal, which is about 0.5 cm in diameter and 10 cm long, with
the desired orientation is lowered into molten crystal, termed “melt,” and then drawn
up at a carefully controlled rate.

When the procedure is properly done, the material in the melt will make a
transition into a solid-phase crystal at the solid-liquid interface, so the newly created
material accurately replicates the crystal structure of the seed crystal (Fig. 17.3). The
resulting single crystal is called the boule. Modern boules of silicon can reach
diameters over 300 mm and lengths up to two meters. The Czochralski method is
by far the most popular method, accounting for between 80 and 90% of all silicon
crystals grown for the semiconductor industry.

Since both the molten semiconductor and the solid are at the same pressure and
have approximately the same composition, crystallization results due to a reduction
in temperature. As the melt is drawn up, it loses heat via radiation and convection to
the inert gas. This heat loss results in a substantial thermal gradient across the liquid
and solid interface. At this interface, additional energy must be lost to accommodate
the latent heat of fusion of the solid. A control volume one-dimensional (in the x-
axis) energy balance for the interface yields the following relation:

�klA
dT

dx

����
l

� �
� �ksA

dT

dx

����
s

� �
¼ L

dm

dt
ð17:5Þ

where kl and ks are the thermal conductivity of the liquid and solid silicon at the
melting point, respectively, A is the cross-sectional area of the boule, T the tempera-
ture, L the latent heat of fusion (~340 cal/g for silicon), and m is the mass of the
growing solid silicon. Under normal conditions used for CZ growth, the heat
diffusion from the liquid is small compared to the heat diffusion from the solid.
This allows the equation above to be simplified and yields the following expression
for the maximum velocity at which the solid can be pulled:

vmax ¼ kA

L

dT

dm
¼ k

MVL

dT

dx

����
s

ð17:6Þ

where MV is the solid density of the growing crystal. If the crystal is pulled with a
velocity v > vmax, then the solid cannot conduct enough heat away, and the material
will not solidify in a single crystal. In practice, the pull rate of the seed crystal varies
during the growth cycle. It is faster when growing the relatively narrow neck (5–12
inches per hour) so the generation of defects known as dislocations is minimized.
Once the neck has been formed, the pull rate is reduced to form the shoulder of the
crystal, finally approaching 2–4 inches per hour during the growth of the
crystal body.

During the entire growth, the crucible rotates in one direction at 12–14 rotations
per minute (rpm), while the seed holder rotates in the opposite direction at 6–8 rpm.
This constant stirring prevents the formation of local hot or cold regions. The crystal
diameter is monitored by an optical pyrometer which is focused at the interface

17.4 Bulk Single Crystal Growth Techniques 563



between the edge of the crystal and the melt. An automatic diameter control system
maintains the correct crystal diameter through a feedback loop control. Argon is
often used as the ambient gas during this crystal-pulling process. By carefully
controlling the pull rate, the temperature of the crucible, and the rotation speed of
both the crucible and the rod holding the seed, a precise control of the diameter of the
crystal is obtained.

During the Czochralski growth process, several impurities will incorporate into
the crystal. Since the crucibles are made of fused silica (SiO2) and the growth process
takes place at temperatures around 1500 �C, small amounts of oxygen will be
incorporated into the boule. In order to reduce the concentration of oxygen
impurities, the boule is usually grown under magnetic confinement. In this situation,
a large magnetic field is directed perpendicularly to the pull direction, generating a
Lorentz force. This force changes the motion of the ionized impurities in the melt so
as to keep them away from the liquid/solid interface and therefore decrease the
impurity concentration. Using this arrangement, the oxygen impurity concentration
can be reduced from about 20 parts per million (ppm) to as low as 2 ppm.

It is also common to introduce dopant atoms into the melt in order to tailor the
electrical properties of the final crystal, i.e., carrier type and concentration. Simply
weighing the melt and introducing a proportional amount of impurity atoms is all
that is theoretically required to control the carrier concentration. However, impurities
tend to segregate at the liquid/solid interface, rather than being uniformly distributed
inside the melt. This will in turn affect the amount of dopant incorporated into the
growing solid. This behavior can be quantitatively characterized by a dimensionless
parameter called the segregation constant k defined by:

k ¼ Cs

Cl
ð17:7Þ

where Cl and Cs are the impurity concentrations in the liquid and solid sides of the
liquid/solid interface, respectively. Table 17.5 lists the values of the segregation
constant for some common impurities in silicon.

Let us consider for example the case where k > 1. By definition, the concentration
of impurity in the solid is greater than that in the melt. Therefore the impurity
concentration in the melt decreases as the boule is pulled. The resulting crystal
impurity concentration, Cs, can be expressed mathematically as:

Table 17.5 Segregation
constants for a few common
impurities in silicon

Impurity k

Al 0.002

As 0.3

B 0.8

O 0.25

P 0.35

Sb 0.023
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Cs ¼ kCo 1� Xð Þk�1 ð17:8Þ
where C0 is the original impurity concentration and X is the fraction of the melt that
has solidified.

The growth of GaAs with the Czochralski method is far more difficult than for
silicon because of the vast difference between the vapor pressures of the constituents
at the growth temperature of ~1250 �C: 0.0001 atm for gallium and 10,000 atm for
arsenic. Liquid Encapsulated Czochralski (LEC) utilizes a tightly fitting disk and
sealant around the melt chamber to prevent the out-diffusion of arsenic from the
melt. The most commonly used sealant is boric oxide (B2O3). Additionally, pyro-
lytic boron nitride (pBN) crucibles are used instead of quartz (silicon oxide) in order
to avoid silicon doping of the GaAs boule. Once the charge is molten, the seed
crystal can be lowered through the boric oxide until it contacts the charge at which
point it may be pulled.

Since the thermal conductivity of GaAs is about one-third that of silicon, the
GaAs boule is not able to dissipate the latent heat of fusion as readily as silicon.
Furthermore, the shear stress required to generate a dislocation in GaAs at the
melting point is about one-fourth that in silicon. Consequently, the poorer thermal
and mechanical properties allow GaAs boules to be only about 8 inches in diameter,
and they contain many orders of magnitude larger defect densities than realized in
silicon.

17.4.2 Bridgman Growth Method

The Bridgman crystal growth method is similar to the CZ method except for the fact
that the material is completely kept inside the crucible during the entire heating and
cooling processes, as shown in Fig. 17.4.

(a) (b)

Furnace Tube

Pull

Seed

Crucible

Molten semiconductor

Heater Coils

PolycrystalCrystal

Pull

Crystal

Pull

Molten area

Fig. 17.4 Bridgman growth method in a crucible (a) solidification from one end of the melt (b)
melting and solidification in a moving heated zone
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A quartz crucible filled with material is pulled horizontally through a furnace
tube. As the crucible is drawn slowly from the heated region into a colder region, the
seed crystal induces single crystal growth. The shape of the resulting crystal is
determined by that of the crucible. In a variation of this procedure, the heater may
move instead of the crucible.

There are a couple of disadvantages associated with the Bridgman growth method
which result from the fact that the material is constantly in contact with the crucible.
First, the crucible wall introduces stresses in the solidifying semiconductor. These
stresses will result in deviations from the perfect crystal structure. Also, at the high
temperatures required for bulk crystal growth, silicon tends to adhere to the crucible.

In the case of compound semiconductors, the process is slightly different from
that for silicon. The basic process is shown in Fig. 17.5 for gallium arsenide. The
solid gallium and arsenic components are loaded into a fused silica ampoule which is
then sealed. The arsenic in the chamber provides the overpressure necessary to
maintain stoichiometry. A tube furnace is then slowly pulled past the charge. The
temperature of the furnace is set to melt the charge when it is completely inside. As
the furnace is pulled past the ampoule, the molten GaAs charge in the bottom of the
ampoule recrystallizes. A seed crystal may be mounted so as to contact the melt.

Typical compound semiconductor boules grown by the Bridgman method have
diameters of 2 inches. The growth of larger crystals requires very accurate control of
the stoichiometry and the radial and axial temperature gradients. Dislocation
densities of lower than 103 cm�2, compared to 104 cm�2 for boules grown by CZ,
are routinely achieved by using the Bridgman method. Roughly 75% of the com-
pound semiconductor boules are grown by the Bridgman growth method.

17.4.3 Float-Zone Crystal Growth Method

The float-zone (FZ) crystal growth proceeds directly from a rod of polycrystalline
material obtained from the purification process. A rod of an appropriate diameter is
held at the top and placed in the crystal-growing chamber. A single crystal seed is
clamped in contact at the other end of the rod. The rod and the seed are enclosed in a

Convection barrier

Solid As (T≈620 ºC) GaAs melt

Multi zone furnace

GaAs seedFig. 17.5 Schematic diagram
of the Bridgman growth
method for a compound
semiconductor such as
gallium arsenide
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vacuum chamber or inert atmosphere, and an induction-heating coil is placed around
the rod. The coil melts a small length of the rod, starting with part of the single seed
crystal. A “float-zone” of melt is formed between the seed crystal and the polysilicon
rod. The molten zone is slowly moved up along the length of the rotating rod by
moving the coil upward. It should be noted that no crucible is used in this method, as
shown in Fig. 17.6. For this reason, extremely high-purity silicon boules, with carrier
concentrations lower than 1011 cm�3, have been grown by the float-zone method. In
general, this method is not used for compound semiconductor growth.

The molten region that solidifies first remains in contact with the seed crystal and
assumes the same crystal structure as the seed. As the molten region is moved along
the length of the rod, the polycrystalline rod melts and then solidifies along its entire
length, becoming a single crystal rod of silicon in the process. The motion of the
heating coil controls the diameter of the crystal. Because of the difficulties in
preventing the collapse of the molten region, this method has been limited to
small-diameter crystals (less than 76 mm). However, since there is no crucible
involved in the FZ method, oxygen contamination that might arise from the quartz
(SiO2) crucible is eliminated. Wafers manufactured by this method find their use in
applications requiring low-oxygen content, high resistivity starting material for
devices such as power diodes and power transistors.

One disadvantage of the float-zone crystal growth is the difficulty in introducing a
uniform concentration of dopants. Currently, four techniques are used: core doping,
pill doping, gas doping, and finally neutron doping.

polycrystalline

rod

seed crystal 

quartz tube 

upward

moving 

heater coil
molten zone

single crystal

inert gas Fig. 17.6 Cross section of a
furnace used for the growth of
single crystal semiconductor
boules by the float-zone
process
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Core doping uses a doped polysilicon boule as the starting material and then
undoped material can be deposited on top of the doped boules until the desired
overall doping concentration is obtained. This process can be repeated several times
to increase the uniformity or the dopant distribution and, neglecting the first few melt
lengths, the dopant distribution is very good. The final dopant concentration of the
rod is given by:

C zð Þ ¼ Cc
rd
r f

� �
1� 1� kð Þe�kz=l
h i

ð17:9Þ

where Cc is the dopant concentration in the core rod, rd is the radius of the core rod, rf
is the radius of the final boule, l is the length of the floating zone, k is the effective
distribution coefficient for the dopant, and z is the distance from the start of the
boule. Several common distribution coefficients for float-zone growth are shown in
Table 17.6

Gas doping simply uses the injection of gases, such as AsCl3, PH3, or BCl3, into
the polycrystalline rod as it is being deposited or into the molten ring during float-
zone refining.

Pill doping is accomplished by inserting a small pill of dopant into a hole that is
bored at the top of the rod. If the dopant has a relatively low segregation coefficient,
most of it will diffuse into the rod as the melt passes over the rod. Gallium and
indium are commonly used as pill dopants.

Finally, light n-type doping of silicon can be achieved with neutron bombard-
ment. This is possible because approximately 3.1% of silicon mass is the mass
30 isotope.

17.4.4 Lely Growth Method

Although they account for nearly all bulk semiconductor boules grown commer-
cially, the previously described techniques all make use of the crystallization process
from a melt. This is not possible for a number of semiconductor materials, such as
silicon carbide (SiC) and the gallium nitride family (GaN and AlN), because they do
not have a stable liquid phase under reasonable thermodynamic conditions. SiC
melts can only exist under pressures higher than 105 atmospheres and temperatures
higher than 3200 �C. Furthermore, under these conditions, the stoichiometry and the
stability of the melt could no longer be ensured. At this time, two techniques are
being used for the growth of bulk SiC semiconductor boules: the Lely method and

Table 17.6 Distribution
coefficients for float-zone
growth

Impurity k

B 0.9

P 0.5

Sb 0.07
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the Modified Lely method. GaN and AlN substrates are usually grown via a hydride
vapor-phase epitaxy (HVPE) process.

The Lely growth method is carried out in a cylindrical crucible, schematically
depicted in Fig. 17.7. The growth process is basically driven by a temperature
gradient which is maintained between the outer and the inner areas of the crucible,
with a lower temperature at the center. At the same time, the system is kept under
near chemical equilibrium, with lower partial pressures of SiC precursors in the inner
colder region. The two areas are separated by porous graphite, which also provides
nucleation centers.

The chemical gradient results in a mass transport originating from the outer area
toward the inner region. Because the inner region is also colder, SiC will nucleate on
the graphite, and crystals will start to grow under their most energetically stable
form. Although of the highest quality in terms of possessing low-defect densities, the
size of the resulting crystals are somewhat limited and not particularly controllable
(typically smaller than 1 cm2). These crystals are nevertheless used as seed crystals
for the Modified Lely method.

The Modified Lely method is the historical name for the Seeded Sublimation
Growth or Physical Vapor Transport technique. Its principle is similar to the Lely
method with the exception that a SiC seed crystal is used to obtain a controlled
nucleation. This method is currently used for the growth of all commercial SiC
single crystal boules. A modern crucible for the Modified Lely technique is
schematically depicted in Fig. 17.8. The cooler seed is placed on the top to avoid
falling contaminants. A polycrystalline SiC source is heated up (up to 2600 �C) at the
bottom of the crucible and sublimes at low pressure. Mass transport occurs sponta-
neously and SiC recrystallizes naturally through supersaturation at the seed.

Although the Modified Lely method is more than 20 years old and has been able
to advance the growth of bulk SiC semiconductor crystals, there remain major issues
in its process. For instance, the polytype formation and the growth shape are poorly
controlled, the doping is nonuniform, and the resulting crystals still have high
density of defects, such as micropipes and dislocations.

Porous graphite

SiC source

crucible

SiC crystalsFig. 17.7 Schematic cross-
sectional diagram of a
cylindrical crucible used for
the Lely growth of SiC
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17.4.5 Crystal Wafer Fabrication

After the boule is grown, wafers must be made. Each boule is first characterized for
its crystal orientation, dislocation density, and resistivity. Then the seed and the tail
of the boule are removed, and the boule is trimmed to the proper diameter. Flats are
ground along the entire length of the boule to denote crystal orientation so that the
device array can be aligned with respect to the scribe and break directions of the
wafer. By convention, the largest or primary flat is ground perpendicular to the h110i
direction. Figure 17.9 shows some flat orientations for various types of semiconduc-
tor wafers. After grinding the flats, the boule is dipped into an etchant to remove the
damage caused by the grinding process. In the last stage, the semiconductor boule is

SiC seed

SiC source

(powder or lumps)

crucible

Fig. 17.8 Schematic cross-
sectional diagram of a
cylindrical crucible used for
the Lely growth of SiC

90º
180º

45º

90º

90º

<110>

(111) Si(100) Si

p-type n-type p-type n-type

<110>

(100) GaAs

option 1 option 2

Fig. 17.9 Standard flat orientations for various types of semiconductor wafers. The longer flat is
called the primary flat, whereas the shorter one is referred to as the secondary flat
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sliced into wafers using specialized steel or diamond saws. The wafers are then
polished to a flat mirror-like surface, chemically etched and cleaned to an atomic
cleanliness. All these steps are performed in a clean room with high-purity products
in order to avoid any contamination of the surface. Finally, each wafer is individually
packaged and sealed in a plastic bag under an inert atmosphere. It is upon such an
“epi-ready” (i.e., ready for epitaxy) single crystal that the series of layers needed for
a laser or other electronic devices will be deposited.

17.5 Epitaxial Growth Techniques

An overwhelming majority of semiconductor devices, including transistors or diode
lasers, require the deposition of a series of thin layers on top of one of the polished
wafer substrates previously described. This process of extending the crystal structure
of the underlying substrate material into the grown layer is called epitaxy. The term
“epitaxy” is a combination of two Greek words, “epi” (placed or resting on) and
“taxis” (arrangement or order), and refers to the formation of a single crystal film on
top a crystalline substrate. Epitaxy can be further qualified as a function of the nature
of the film and the substrate: homoepitaxy is employed when the film and the
substrate are made of the same material, and heteroepitaxy is used when the film
and the substrate are made of different materials. Homoepitaxy results in a film
which is totally lattice matched to the substrate, while heteroepitaxy generally results
in a strained or relaxed film depending on the difference of lattice parameters and
thermal expansion coefficients between the film and the substrate. An example of
homoepitaxy is the growth of a thick GaAs layer (called a buffer layer) on a GaAs
substrate in order to improve the quality and purity of the surface prior to the growth
of the structure of interest. Examples of heteroepitaxy are the deposition of
In0.47Ga0.53As on top of InP substrates (lattice-matched growth) and the growth of
GaN on sapphire substrates (lattice-mismatched growth).

The discovery of quantum wells and superlattices has revolutionized the area of
semiconductor technology in terms of new devices. These devices require precise
control and uniformity of thickness, excellent homogeneity, high purity, very sharp
interfaces between the substrate and epitaxial layers, and low misfit dislocations in
the epilayers. In the past few decades, epitaxial techniques have advanced to a level
where such requirements can be met by a variety of growth methods. These growth
techniques include liquid-phase epitaxy (LPE), vapor-phase epitaxy (VPE),
metalorganic chemical vapor deposition (MOCVD), and molecular beam epitaxy
(MBE), which will be reviewed in the following subsections.

17.5.1 Liquid-Phase Epitaxy

The LPE growth technique uses a system shown in Fig. 17.10 and involves the
precipitation of material from a supercooled solution onto an underlying substrate.
The LPE reactor includes a horizontal furnace system and a sliding graphite boat.
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The apparatus is quite simple, and excellent quality layers with high purity levels can
be achieved.

Liquid-phase epitaxy is a thermodynamic equilibrium growth process. The com-
position of the layers that are grown on the substrate depends mainly on the
equilibrium phase diagram and to a lesser extent on the orientation of the substrate.
The three parameters that can affect the growth are the melt composition, the growth
temperature, and the growth time.

The advantages of LPE are the simplicity of the equipment used, high deposition
rates, and the high purity that can be obtained. Background elemental impurities are
eliminated by using high-purity metals and the inherent purification process that
occurs during the liquid-to-solid phase transition. The disadvantages of the LPE
includes a poor thickness uniformity, high surface roughness, melt back effects, and
the high growth rates which prevent the growth of multilayer structures with abrupt
interfaces. Growing films as thin as a few atomic layers is therefore out of the
question using liquid-phase epitaxy, and is usually done using other techniques such
as molecular beam epitaxy.
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Command
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Fig. 17.10 Cross section of a liquid-phase epitaxy system. Inside the horizontal furnace, there is a
sliding graphite boat upon which a substrate is held (Copyright 1989 from The MOCVD challenge,
vol 1:a survey of GaInAsP-InP for photonic and electronic applications, Razeghi M. p. 6, Fig. 1.2.
Reproduced with permission of Routledge/Taylor & Francis Group, LLC)
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17.5.2 Vapor-Phase Epitaxy

Like LPE, vapor-phase epitaxy is also a thermodynamic equilibrium growth process.
However, unlike LPE, the VPE growth technique involves reactive compounds in
their gaseous form. A VPE reactor typically consists of a quartz chamber composed
of several zones set at different temperatures using a multi-element furnace, as
illustrated in Fig. 17.11.

The group III source materials consist of pure metal elements, such as gallium
(Ga) and indium (In), contained in a small vessel. In the first zone, called the group
III species synthesis zone, which is maintained at a temperature TS (~750–850 �C for
GaAs or InP growth), the metal is in the liquid phase and reacts with the incoming
flow of hydrogen chloride gas (HCl) in the following manner to form group
III-chloride vapor compounds which can be transported to the growth region:

Galiq þ HClg ! GaClg þ 1
2
H2g

Exhaust

H2+HCl

H2+HCl

H2, AsH3, PH3

gallium

indium

substratebaffle

d

T

TS

quartz chamber

group III

species

synthesis

zone

group V

species

pyrolysis

zone

growth

region

TG

Fig. 17.11 Cross-sectional schematics of a typical VPE reactor, showing the group III species
synthesis, group V species pyrolysis, and the growth zones with their respective temperature
profiles for the growth of a few selected semiconductors
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Inliq þ HClg ! InClg þ 1
2
H2g

The group V source materials are provided in the form of hydride gases, for
example, arsine (AsH3) and phosphine (PH3). In the second zone, also called the
group V species pyrolysis zone, which is maintained at a temperature T > TS, these
hydrides are decomposed into their elemental group V constituents, yielding
reactions like:

AsH3 ! u

4
As4 þ 1� u

2
As2 þ 3

2
H2

PH3 ! v

4
P4 þ 1� v

2
P2 þ 3

2
H2

where u and v represent the mole fraction of AsH3 or PH3 which is decomposed into
As4 or P4, respectively.

Finally, in the growth region, which is maintained at a temperature TG
(~680–750 �C for GaAs or InP growth), the group III-chloride and the elemental
group V compounds react to form the semiconductor crystal, such as GaAs or InP,
onto a substrate.

There are two types of chemical reactions taking place in vapor-phase epitaxy, as
illustrated in Fig. 17.12: heterogeneous reactions occur between a solid, liquid,
and/or vapor, while homogeneous reactions only occur in the gas phase.

During the growth of a semiconductor film in steady-state conditions, the overall
growth process is limited by the heterogeneous reactions. During changes in the
composition of the growing semiconductor, for example, when switching the growth
from InP to GaInAs, the process is limited by the mass transport in the gas phase.

VPE growth model A simple diffusion model can be developed to gain an under-
standing of the heterogeneous reactions occurring at the surface of the substrate.
Near that surface, there exists a thin stagnant layer, called the boundary layer, which
has a thickness δ and within which there is no flow but rather a diffusion of reactants,
as shown in Fig. 17.13. The concentration of reactants in the bulk gas phase is
denoted CG, while that at the surface of the substrate is denoted CS. Two fluxes are
considered.

liquid metal source substrate

heterogeneous

reactions

homogeneous

reactions

heterogeneous

reactions

mass transport in gas phase Fig. 17.12 Location of
heterogeneous and
homogeneous chemical
reactions taking place during
the vapor-phase epitaxy
growth process
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The first one is the flux of molecules from the bulk gas phase onto the sample
surface, called FG. This flux is proportional to the difference between the concentra-
tion of reactants CG and CS:

FG ¼ D

δ
CG � CSð Þ ¼ hG CG � CSð Þ ð17:10Þ

whereD is the effective diffusion coefficient of reactants through the boundary layer,
and δ is the distance over which the diffusion is taking place (thickness of the
boundary layer). We have also defined a coefficient hG which is called the vapor-
phase mass transfer coefficient.

The second flux, called FS, corresponds to the incorporation of reactants into the
growing crystal. This flux is proportional to the concentration CS of reactants at the
epilayer surface and is given by:

FS ¼ kSCS ð17:11Þ
where kS is the surface chemical reaction rate constant. Under steady-state
conditions, these fluxes must be equal, i.e., FG ¼ FS. This translates into the relation
between CS and CG:

CS ¼ hG
hG þ kS

CG ð17:12Þ

The growth rate can be calculated as:

dX

dt
¼ FS

C
¼ hGkS

hG þ kS

CG

C
ð17:13Þ

where we have denoted C the total number of reactants that can be incorporated in a
unit volume to form the semiconductor crystal. From this simple expression of the
growth rate, we can outline two important growth regimes.

If hG � kS, the growth rate can be approximated by:

boundary layer δ

CG

CS

FG

FS

substrate

C
epilayer

Fig. 17.13 Schematic
diagram of the boundary layer
near the epilayer/substrate
surface in vapor-phase
epitaxy. A plot of the
concentration of reactants in
the bulk gas phase and at the
surface as a function of the
distance to the substrate is
shown on the right
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dX

dt
� kS

CG

C
ð17:14Þ

which means that the surface chemical reaction rate is the limiting step as the growth
rate is determined by the surface chemical reaction rate constant kS.

If hG � kS, the growth rate can be approximated by:

dX

dt
� hG

CG

C
ð17:15Þ

which means that the mass transfer is the limiting step as the growth rate is
determined by the mass transfer coefficient hG.

The advantages of VPE include a high degree of flexibility in introducing dopants
into the material as well as the control of the composition gradients by accurate
control of the gas flows. Localized epitaxy can also be achieved using VPE. One of its
main disadvantages is the difficulty to achieve multi-quantum wells or superlattices
(periodic heterostructures with a large number of layers having a thickness of the
order of a few tens of Angstrom). Other disadvantages include the formation of
hillocks and haze, as well as interfacial decomposition during the preheat stage.

17.5.3 Metalorganic Chemical Vapor Deposition

Metalorganic chemical vapor deposition (MOCVD) is a deposition method for the
growth of semiconductor thin films. The MOCVD technology has established its
ability to produce high-quality epitaxial layers and sharp interfaces and to grow
multilayer structures with thicknesses as thin as a few atomic layers.

MOCVD Growth Systems The growth of epitaxial layers from III-V semiconductor
compounds is conducted by introducing controlled amounts of volatile compounds
of alkyls of group III elements and either alkyls or hydrides of group V elements into
a reaction chamber in which a semiconductor substrate is placed on a heated graphite
susceptor as depicted in Fig. 17.14. The heated susceptor has a catalytic effect on the
decomposition of the gaseous products, such that the semiconductor crystal growth
takes place in this hot region.

A typical MOCVD system consists of four major parts: the gas handling system,
the reactor chamber, the heating system, and the exhaust and safety apparatus.

The gas handling system includes the alkyl and hydride sources, the valves,
pumps, and other instruments necessary to control the gas flows and mixtures.
Hydrogen (H2), nitrogen (N2), argon (Ar), and helium (He) are the most common
inert carrier gases used in the MOCVD growth process. In order to minimize
contamination, the gas handling system has to be clean and leak tight. In addition,
the material it is made out of must be resistant to the potentially corrosive nature of
the sources.
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The purity of the sources is one of the most important issues in modern semicon-
ductor technology. Much effort is constantly devoted to purify every source material
used in order to avoid any kind of contamination. Gas purifiers are often used to
further purify hydride sources and carrier gases.

Alkyls sources are metalorganic or organometallic compounds, and they are
liquids or finely crushed solids usually contained in a stainless steel cylinder called
bubbler. The partial pressure of the source is regulated by precisely controlling the
temperature and the total pressure inside the bubbler. Electronic mass flow
controllers are used to accurately and reliably measure and/or control the mass
flow rate of hydride and carrier gases through the gas handling system. Thus, by
sending a controlled flow of carrier gas through the bubbler, a controlled mass flow
in the form of dilute vapors of the metalorganic compounds can be achieved.

The mixing of volatile compounds in the gas handling system is done in a
manifold which first stabilizes the flows and then mixes them and directs them either
to the reaction chamber or into the vent (waste). This manifold is designed to
uniformly mix metalorganic and hydride source materials prior to reaching the
growth zone.

Fig. 17.14 Schematic diagram of a typical low-pressure MOCVD reactor (Copyright 1989 from
The MOCVD challenge, vol 1: a survey of GaInAsP-InP for photonic and electronic applications,
Razeghi M. p. 13, Fig. 1.7. Reproduced with permission of Routledge/Taylor & Francis Group,
LLC)
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Inside the reaction chamber, the susceptor can be heated using any of the
following three methods: radio-frequency (RF) induction heating, radiative (lamp)
heating, and resistance heating. The temperature of the substrate is measured using a
thermocouple (chromel-alumel) and/or a pyrometer.

The exhaust system may include scrubbing systems, particulate filters, and
burnboxes and is aimed at physically or chemically treating the unreacted gases
and by-products from the reaction chamber which may still be toxic, pyrophoric, or
flammable.

The safety apparatus associated with semiconductor growth systems generally
consists of toxic gas monitors used to quantitatively detect the presence of toxic
gases such as arsine and phosphine or flammable gases such as hydrogen.

MOCVD Source Materials
A list of suitable metalorganic source materials commonly used in MOCVD, along
with their acronyms, some of their physical properties, and their associated safety
precautions are listed in Appendix A.10. Examples of suitable hydride precursors for
group V, IV, and VI elements, used either to grow the III-V host lattices or to dope
the crystals n- or p-type, are listed in Table 17.7.

For a thorough discussion of these source materials, the interested reader is
referred to other books (Razeghi 1989).

MOCVD Growth Process
There exist two types of fundamental processes occurring during crystal growth:
thermodynamic and kinetic. Thermodynamics determines the driving force for the
overall growth process, and kinetics defines the rates at which the various processes
occur. Hydrodynamics and mass transport, which take into account the gas velocities
and temperature gradients in the vicinity of the hot susceptor, control the rate of
transport of material to the growing solid/vapor interface. The rates of the chemical
reactions occurring during growth, either homogeneously in the gas phase or
heterogeneously at the growing interface, also play a role. Each of these factors
will dominate some aspect of the overall growth process. A study of the dependence

Table 17.7 Hydride
source materials for the
MOCVD growth and
doping of III-V
semiconductors. Group IV
and VI precursors are
generally used for the
n-type doping of III-V
semiconductors

Name of compound Acronym Purpose

Ammonia NH3 V element

Arsine AsH3 V element

Phosphine PH3 V element

Silane SiH4 IV element

Disilane Si2H6 IV element

Hydrogen selenide H2Se VI element

Hydrogen sulfide H2S VI element
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of a macroscopic quantity, such as growth rate, on external parameters, such as
substrate temperature and input precursor (source) flow rates, gives insight into the
overall growth mechanism.

Thermodynamic calculations are useful in obtaining information about the solid
composition of a multi-component system when vapor-phase compositions are
known. They are also useful in obtaining the phase diagram of a multi-component
system by calculating the compositions of the crystal for different temperatures and
pressures. However, the MOCVD process is by definition not an equilibrium
process. Thermodynamics can thus only define certain limits for the MOCVD
growth process and is unable to provide any information about the time required
to attain equilibrium, the actual steps involved in the pursuit of the lowest-energy
state, or the rates of the various processes occurring during the transition from the
initial input gases to the final semiconductor solid. These problems can only be
approached in terms of kinetics (Stringfellow 1989a).

A much-simplified description of the MOCVD growth process for III-V
compounds, such as the growth of GaAs by TMGa and AsH3, occurring near and
at the substrate surface is illustrated in Fig. 17.15. In the first step, both AsH3 and Ga
(CH3)3 are carried by diffusion through the boundary layer to reach the substrate.
The second step involves the surface reactions. The third step is the formation of
GaAs, and the final step is the removal of the reaction products.

The growth rate is an important parameter that can be determined from thermo-
dynamic calculations. But, in the MOCVD growth process, the actual growth rate is
much lower than that determined from thermodynamics because kinetics and hydro-
dynamic transport also play a role in determining the growth rate. This is illustrated
in Fig. 17.15 which shows the typical growth rate profile as a function of
temperature.

For a given flow of source materials, three regimes can be observed for the growth
rate. At low temperatures (Fig. 17.16a), chemical reactions at the solid/vapor

interface limit the growth rate as they follow an Arrhenius relation of the form exp

susceptor

GaAs substrate boundary layer

(1)
(2)

(3)

(4)

well-mixed gas ambient

diffusion
Ga(CH3)3

AsH3

Ga(CH3)3 + AsH3 GaAs + 3CH4

Fig. 17.15 A simplified schematic illustration of the GaAs growth process involving different
steps
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where EA is an activation energy which characterizes the chemical reactions

and is of the order of a few eV. For intermediate temperatures (Fig. 17.16b), the
growth rate is nearly constant over a wide temperature range. This corresponds to a
regime where the diffusion or mass transfer across the boundary layer limits the
growth rate. The growth rate is then directly proportional to the flow or partial
pressure of incoming source materials and to their diffusion coefficients. In order to
achieve a good growth rate control and minimize the sensitivity to temperature, it is
preferred to be in conditions which yield a diffusion-limited regime. When the
partial pressure of the source materials is increased, the temperature window over
which the growth rate is constant is reduced. At high temperatures (Fig. 17.16c), the
growth rate becomes independent of temperature and flow of source materials. In
this regime, the rate is limited by the decomposition of the growing crystal.

In Situ Characterization Techniques Although the MOCVD growth technique
cannot accommodate as many in situ characterization techniques as molecular
beam epitaxy (see Subsect. 17.5.4), recent advances in the design and manufacture
of MOCVD growth equipment have led to a few viable techniques. Nearly all of
them use a laser beam to probe the surface of the growing wafer. One of the
pioneering works in this area was done in the late 1980s and consisted of conducting
reflectance difference spectroscopy measurements during epitaxial growth (Razeghi
1995). Nowadays, by using a laser with a photon energy lower than the bandgap
energy of the growing semiconductor and measuring the intensity of the laser beam
reflection, it is possible to qualitatively assess the surface condition, as well as
determine the instantaneous thickness of the growing layer.
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Fig. 17.16 Typical growth rate profile as a function of temperature
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The MOCVD growth technique has proved to be advantageous in producing
some of the highest-quality compound semiconductor materials to date and
providing a very high degree of control over the process. MOCVD is also one of
the major techniques used in industry, since its process can be fully automated and is
capable of yielding the high industrial throughput needed. This has in turn led to the
realization of an increasingly large number of high-performance devices, both in
electronics and optoelectronics. However, MOCVD still suffers from the large
quantity and high toxicity of some of the source materials used, such as arsine and
phosphine.

17.5.4 Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) (Cho 1985) is an advanced technique for the growth
of thin epitaxial layers of semiconductors, metals, or insulators. A photograph of
such a system is shown in Fig. 17.17.

In this technique, the precursor sources are either solids which are sublimated or
heated above their melting points in effusion cells or gases which are connected
through an injector and cracker. The sources are evaporated in the form of beams of
atoms or molecules at a controlled rate onto a crystalline substrate surface held at a
suitable temperature under ultrahigh vacuum conditions, as illustrated in Fig. 17.17.
The epitaxial layers crystallize through a reaction between the beams originating
from the sources and the heated substrate surface. The thickness, composition, and
doping level of the epilayer can be very precisely controlled via an accurate control
of the beam fluxes. The substrate is mounted on a block and rotated continuously to
promote uniform crystal growth on its surface. The beam flux of the source materials
is a function of their vapor pressure which can be precisely controlled by their
temperature (Fig. 17.18).

Fig. 17.17 Photograph of a
molecular beam epitaxy
reactor
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The thickness, composition, and other properties of the epitaxial layers and
heterostructures are directly controlled by the interruption of the unwanted atomic
beams with specially designed shutters. An ultrahigh vacuum (UHV) level will
ensure the beam nature of the mass flow toward the substrate. This means that the
atoms will not interact with each other before reaching the substrate because they
have a mean free path longer than the distance between the cells and the substrate.
The mean free path Λ of an atom or molecule is expressed as:

Λ ¼ 1ffiffiffi
2

p
πnd2

ð17:16Þ

in which d is the diameter of the atom or molecule and n is its concentration in the
growth chamber given by:

n ¼ P

kbT
ð17:17Þ

where kb is the Boltzmann constant and P and T are the pressure and absolute
temperature in the MBE growth chamber. The usual distance between the orifice of
the cells and the substrate in MBE reactors is about 0.2 m which is two orders of
magnitude shorter than the mean free path of atoms or molecules (several tens of
meters) at the usual operating pressures in MBE (10�5 Pa).

The major difference between MBE and other epitaxial growth techniques stems
from the fact that the growth is carried out in an ultrahigh vacuum environment.
Therefore, the growth is expected to occur far from thermodynamic equilibrium and
is mainly governed by the kinetics of the surface processes. This is in contrast to the
other growth techniques, such as liquid-phase epitaxy, where the growth conditions
are near the thermodynamic equilibrium and are mostly controlled by diffusion
processes near the surface of the substrate. The most important processes in MBE
growth occur at the atomic level in the crystallization zone and can be summarized
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Fig. 17.18 Schematic
diagram of an MBE growth
system showing a few solid
effusion cells, a gas injector/
cracker, shutters controlling
which sources are used at one
time, the path of the beams,
and a substrate mounted on a
heated block that can be
rotated
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into four fundamental steps illustrated in Fig. 17.19: (1) adsorption of the constituent
atoms or molecules impinging on the substrate surface; (2) surface migration and
dissociation of the absorbed species; (3) incorporation of the constituent atoms into
the crystal lattice of the substrate or the epilayer, at a site where sufficiently strong
bonding exists (that site is usually at the edge of a spreading atomic layer of the
growing epitaxial crystal); (4) and thermal desorption of the species that were not
incorporated into the crystal lattice.

The atoms and molecules impinging on the substrate are bonded to the surface by
weak van der Waals forces and can thus have a high surface mobility when the
substrate is adequately heated. However, the growth rate cannot be very high
(around one micrometer per hour) because the atoms must be allowed sufficient
time to reach their proper position at the step edge before an entire new layer comes
down and buries them. Otherwise, we would get a very rough surface with
mountain-like and valley-like features on it. Worse yet, the crystal could actually
end up with defects, such as missing atoms at sites in the crystal structure that would
result in undesirable electrical properties.

Originally, molecular beam epitaxy was a UHV growth technique developed
exclusively for solid materials where the cells consisted of a resistively heated
crucible in which a piece of solid element was loaded. However, due to the long
down time periods necessary to reload the cells and recover the UHV conditions of
the system as well as the low growth rates of MBE, some attempts were made to
substitute some (if not all) of the solid sources by gas sources that could be changed
externally without venting the growth chamber. Nowadays, when all the sources
consist of conventional effusion cells containing solid charges of material, the
technique is called solid-source MBE (SSMBE). On the other hand, when hydrides

(4) desorption

(3) lattice

incorporation

(1) impinging

atom from beam

(2) surface diffusion

interdiffusion

Fig. 17.19 Schematic illustration of the surface processes during MBE epitaxial growth, including
(1) the adsorption of the constituent atoms or molecules impinging on the substrate surface, (2) the
surface migration and dissociation of the absorbed species, (3) the incorporation of the constituent
atoms into the crystal lattice of the substrate or the epilayer, and (4) the thermal desorption of the
species not incorporated into the crystal lattice
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are used instead of solid sources (for group elements, for instance), the name
gas-source MBE (GSMBE) is used. When organometallics substitute the solid
materials (for group III elements, for instance), the term metalorganic MBE
(MOMBE) is employed. But when all the sources are in the gaseous form, the
technique is called chemical beam epitaxy (CBE). The main differences between this
last technique and MOCVD are the UHV growth conditions and the much smaller
quantity of toxic gas which is used during growth, leading to a better acceptance of
the technique.

The UHV conditions present in all the MBE techniques also allow the use of in
situ diagnostic techniques in order to monitor the growth and substrate surface, such
as reflection high-energy electron diffraction (RHEED), Auger electron spectros-
copy (AES), X-ray photoelectron spectroscopy (XPS), low-energy electron diffrac-
tion (LEED), secondary-ion mass spectroscopy (SIMS), and ellipsometry.

In a RHEED system, a beam of electrons with energies in the range 5–50 keV is
directed on the substrate at a grazing angle ϕ (1–2�) as shown in Fig. 17.20. Part of
the electrons is directly reflected by the surface, whereas the rest of them are
diffracted by the crystalline structure of the epitaxial film. A diffraction pattern,
called RHEED pattern, is then formed on a fluorescent screen located on the opposite
side of the growth chamber and consists of a bright spot (reflected beam) superposed
with intensity-modulated streaks. Since ϕ is very small, the electrons only penetrate
into the first atomic layers of the crystal and therefore can only probe a
two-dimensional lattice. Therefore, a streaky diffraction pattern is formed instead
of the usual spotty pattern which is typical of electron diffraction through a three-
dimensional lattice. Since the electrons only penetrate into the first atomic layers of
the sample, the RHEED technique is very sensitive to any surface phenomena and
can provide useful information about adsorption and desorption of species, rough-
ness, surface reconstruction, substrate miscut, and lattice parameter, in addition to

φ

electron

beam

wafer

fluorescent screen

(a)

(b)

Fig. 17.20 Geometry of RHEED technique. A beam of electrons with an energy in the range
5–50 keV is directed on the substrate surface at an angle ϕ. The electrons are then partially reflected
and diffracted by the wafer surface, which leads to the appearance of a bright spot and intensity-
modulated streaks on a fluorescent screen, as is schematically shown in (a). An actual RHEED
pattern is shown in (b)
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the general growth parameters such as growth rate and alloy composition. There are
two types of RHEED characterization: static and dynamic.

In the first type, the miscut of the substrate, the lattice parameter, and the
reconstruction of the surface can be determined from the RHEED diffraction pattern
when no growth is occurring. Such information is of particular interest since these
parameters directly influence the quality of the growth and also provides useful
information about the sample temperature and the strain of the epilayer.

Dynamic RHEED is based on the change of the intensity of the specular beam as
a function of the wafer surface roughness, as illustrated in Fig. 17.21. Indeed, during

Fig. 17.21 Schematic
diagram illustrating the
dynamic RHEED process.
The sketches on the left show
the various stages of the
surface morphology during
epitaxial growth, while the
right plots show the intensity
of the RHEED signal from the
specular beam as a function of
time (Reprinted permission
from Elsevier. Surf Sci, vol
168, Joyce BA, Dobson PJ,
Neave JH, Woodbridge K,
Zhang J, Larsen PK, Bôlger B
RHEED studies of
heterojunction and quantum
well formation during MBE
growth-from multiple
scattering to band offsets,
p. 426, Fig. 2, Copyright
1986)
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the epitaxial growth process, starting from an atomically flat surface (i.e., coverage:
θ ¼ 0), the roughness increases as a new crystal layer nucleates, thus decreasing the
intensity of the reflected beam which is scattered by the increasing number of small
islands nucleated on the surface. Once the coverage reaches 50% (θ ¼ 0.5), the
roughness is maximal (the intensity of the reflected beam is minimum) after which it
will start to decrease as the growing layer is filled, leading to an increase of the
intensity of the reflected beam. Once the new layer is completed (θ ¼ 1), the
roughness is minimal. The intensity of the specular beam follows this periodic
behavior during the growth, with the maximal intensity corresponding to the mini-
mal roughness. The time separation between two adjacent peaks yields the time
required for the growth of a single monolayer of the crystal. This is a powerful
method which provides an accurate thickness calibration technique that is sensitive
to within one single atomic layer.

In spite of its technological advantages over other epitaxial growth techniques,
MBE suffers from the high cost to maintain the ultrahigh vacuum environment. In
addition, there remain technological challenges, such as increasing the growth rate
which remains rather slow and alleviating the difficulty to grow alloys containing
phosphorus, such as InP and InGaAsP.

17.5.5 Other Epitaxial Growth Techniques

In general, epitaxial growth is referred to a process in which atoms are randomly
deposited on the surface of a substrate and are then properly arranged according to
the equilibrium atomic configuration on the surface. Defects are formed when there
is a departure from this perfect atomic arrangement. Thus, lateral migration of atoms
on the surface aimed at rearranging the surface properly is important in obtaining
high-quality epilayers, which is the principle of a special growth technique called
migration-enhanced epitaxy (MEE) (Horikoshi 1993).

In the conventional MBE and MOCVD growth of GaAs for instance, Ga and As
precursors are introduced onto the substrate surface simultaneously. This leads to the
formation of small GaAs islands. In this case, there is an equilibrium density of Ga
atoms on the surface. These Ga atoms are very mobile and can migrate on the surface
to find more stable sites, before they react with re-evaporated As atoms. However,
this process requires high substrate temperatures to guarantee re-evaporation of As
atoms. In the absence of As, Ga atoms are even more mobile, and they can migrate
even at reduced substrate temperatures. Therefore, high-quality GaAs can be grown
after the succeeding As4 deposition, even at very low substrate temperatures.

Atomic layer epitaxy (ALE) is another peculiar growth technique and is mostly
implemented during the MOCVD process (Razeghi 1989). Its main advantage is that
it allows for the digital control of the growth rate at a monolayer scale. During an
ALE process, the precursors are alternatively injected onto the substrate in the
chamber. As a result, gas phase mixing and homogeneous chemical reactions of
source materials, commonly found in MOCVD, are suppressed as the growth
reaction occurs only on the substrate surface. Therefore, the film thickness can be
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controlled with a single atomic layer accuracy. Furthermore, the ALE process
exhibits self-limitation, that is, the layer thickness per cycle is independent of subtle
variations of growth parameters. The growth rate is only dependent on the number of
growth cycles and the lattice constant of the deposited material.

Atomic layer epitaxy is a particular case of self-limiting processes that take place
in the gas phase. There exist other types of self-limiting growth processes but using
ionic species reactants in solution, in which case the methods are known as succes-
sive ionic layer adsorption and reaction (SILAR) or electrochemical ALE (ECALE).

17.5.6 Ex Situ Characterization of Epitaxial Thin Films

Following the epitaxial growth, the semiconductor thin films and structures are
removed from the growth system, and their properties are assessed using various
ex situ characterization techniques. This is an important quality control step in the
development of semiconductor devices, as the quality of the semiconductor material
will directly determine the performance of the devices fabricated from it.

Several techniques are commonly employed, such as X-ray diffraction (XRD),
scanning and transmission electron microscopy (SEM, TEM), atomic force micros-
copy (AFM), scanning tunneling microscopy (STM), deep-level transient spectros-
copy (DLTS), electrochemical capacitance-voltage measurements (CV), resistivity
and Hall measurement, Auger electron spectroscopy (AES), secondary-ion mass
spectroscopy (SIMS), photoluminescence (PL), and photoluminescence excitation
(PLE). The use of some of them for semiconductor epitaxial thin films has been
discussed in detail in Chap. 16.

17.6 Thermodynamics and Kinetics of Growth

In Sect. 17.5.3, thermodynamics and kinetics of MOCVDwere briefly introduced. In
this section, these two very important topics will be discussed further. Recalling
from the MOCVD section, thermodynamics deals with equilibrium conditions and
tells us whether or not a chemical reaction is possible. Kinetics, on the other hand,
tells us about the rate at which reactions occur. In the following subsections, we will
touch upon some of the essential topics involved in the growth of compound
semiconductors. These topics include thermodynamics, feasibility of chemical
reactions, phase diagrams, and kinetics.

17.6.1 Thermodynamics

In this subsection a brief overview of the thermodynamics of materials will be given.
Thermodynamics tells us whether or not a reaction is possible. It can also determine,
to some extent, the feasibility of a chemical reaction. In order to get such informa-
tion, the Gibbs free-energy function, G, is often used:
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G ¼ H � TS ð17:18Þ
where H is the enthalpy, S is the entropy, and T is the absolute temperature. H can be
written in terms of the internal energy (E), the volume (V ), and the pressure (P) as:

H ¼ E þ PV ð17:19Þ
Now suppose that the initial state of the system (i) changes to a final state ( f ) due

to a chemical reaction, while the temperature is kept constant. The free-energy
change can be written as:

ΔG ¼ Gf � Gi ¼ ΔH � TΔS ð17:20Þ
The Second Law of thermodynamics states: “In all energy exchanges, if no

energy enters or leaves the system, the potential energy of the final state will always
be less than that of the initial state (ΔG < 0).” This implies that systems tend to
minimize the free energy to a lower value than the initial value. After the system has
achieved the equilibrium, ΔG equals 0. For a process that cannot occur, ΔG > 0.
Therefore, the possibility of occurrence of a particular reaction can be determined via
the sign of ΔG.

17.6.2 Feasibility of Chemical Reactions

For a typical chemical reaction involving materials X, Y, and Z in equilibrium with x,
y, and z as the stoichiometric coefficients:

xX þ yY ! zZ ð17:21Þ
The free-energy change of the reaction is given by:

ΔG ¼ zGZ � xGX � yGY ð17:22Þ
The free energy of individual reactants is often written as:

Gi ¼ G0
i þ RT ln ai ð17:23Þ

whereG0
i is the free energy of the species in their standard state and ai is a term called

activity which reflects the change in the free energy when the material is not in its
standard state. The standard state is typically 1 atmosphere partial pressure for a gas
at 25 �C. A pure liquid or solid is the standard state of the relevant substance.
Table 17.8 lists the standard values of the change of enthalpy and entropy for the
formation of various substances. Substitution of Eq. (17. 23) into Eq. (17.22) and
letting ΔG ¼ 0 yields:
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�ΔG0 ¼ RT lnK ð17:24Þ
where

K ¼
az
Z eqð Þ

ax
X eqð Þa

y
Y eqð Þ

ð17:25Þ

Let us see how thermodynamics can help us find out about feasibility of a
chemical reaction. Table 17.8 includes several CVD reactions with different values
for the free-energy change term (ΔG). This table shows that oxidation and
nitridation of silane are favorable reactions and cannot be reversed, since ΔG is a
strongly negative value. Decomposition of silane, however, can be reversible as the
reaction has a small value of free-energy change, and, in fact, by adding small
amounts of chlorine, the reaction will go the other way. Deposition of TiN is not
thermodynamically favorable at room temperature. However, the reaction can take
place at slightly higher temperatures (ΔG is a small positive value). As for the
deposition of Ti metal, the value of free-energy change is very high. Therefore, much
higher temperatures (in excess of 1000 �C) are required for the deposition of Ti.

Table 17.8 Standard values of the change of enthalpy and entropy for the formation of some select
species at 25 �C and 100 kPa (s ¼ solid, g ¼ gas, l ¼ liquid, aq ¼ aqueous, i.e., dissolved in water)

Species State ΔHf (kJ�mol�1) S (J�mol�1�K�1)

H2O 17.6.2.1.1.1.1.1.1. l �286 70

H2O 17.6.2.1.1.1.1.1.2. g �242 190

CO2 17.6.2.1.1.1.1.1.3. g �394 214

O2 17.6.2.1.1.1.1.1.4. g 0 205

HCl 17.6.2.1.1.1.1.1.5. g �92 190

HCl 17.6.2.1.1.1.1.1.6. aq �167 57

H 17.6.2.1.1.1.1.1.7. g 218 115

Cl2 17.6.2.1.1.1.1.1.8. g 0 220

NaCl 17.6.2.1.1.1.1.1.9. s �411 72

Table 17.9 Free-energy change and classification of some select reactions

Reactants Products ΔG (kJ�mol�1) Classification

SiH4 + 2O2 SiO2 + 2H2O �1307 Highly favorable, highly irreversible

2SiH4 + 4NH3 Si3N4 + 12H2 �742 Favorable, irreversible

SiH4 Si + 2H2 �57 Moderately favorable, can be reversible

TiCl4 + 2NH3 TiN+4HCl + H2 +92 Not favorable, possible at elevated
temperatures

TiCl4 + 2H2 Ti + 4HCl +287 Not favorable, possible only at very
high temperatures
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17.6.3 Phase Diagrams

Phase diagrams allow us to predict and interpret the changes of composition of a
material from phase to phase by visual means, i.e., graphs. As a result, phase
diagrams have been proven to provide an immense understanding of how a material
forms microstructures within itself, leading to an understanding of its chemical and
physical properties. Using phase diagrams will allow one to determine which phase
or phases are present in a particular system at a given temperature and pressure.

There are a few simple rules associated with phase diagrams with the most
important of them being the Gibbs Phase Rule. The Gibbs Phase Rule describes
the possible number of degrees of freedom in a (closed) system at equilibrium in
terms of the number of separate phases and the number of chemical constituents in
the system and can simply be written as:

f ¼ C � Pþ 2 ð17:26Þ
where C is the number of components, P is the number of phases, and f is the number
of degrees of freedom in the system. The number of degrees of freedom ( f ) is the
number of independent intensive variables (i.e., those that are independent of the
quantity of material present) that need to be specified in value to fully determine the
state of the system. Typically such variables might be temperature, pressure, or
concentration. This rule states that, for a one-component one-phase system, there are
two degrees of freedom. For example, on a P–T diagram, pressure and temperature
can be chosen independently. On the other hand, for a two-phase system, there is
only one degree of freedom, and there is only one pressure possible for each
temperature. Finally, for a three-phase system, there exists only one point with
fixed pressure and temperature (Fig. 17.22).

17.6.4 Kinetics

As mentioned earlier, thermodynamics deals with the equilibrium processes. It is
only concerned with the free energy of the system at its initial and final stages. Only
certain limits of the growth process can be defined using thermodynamics: the
driving force, maximum growth rate, and the number and compositions of the
equilibrium phases. In order to obtain other useful information such as the real
growth rate, the actual steps in search of the lowest energy state, or the rate at which
various processes occur during the transition from the initial atomic or molecular
species to the final solid form, kinetics needs to be considered.

The rate of chemical reactions is usually treated using the theory of absolute
reaction rates (Eyring et al. 1941). This theory suggests that, in any chemical
reaction, the reactants proceed to products through the formation of an activated
complex. For exothermic reactions, the products will have a lower energy than the
reactants (Fig. 17.22). The rates of the forward and reverse reactions can be
described as:
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Rate ¼ nk ð17:27Þ
where n is the concentration of reactants/products and k is the rate constant usually
expressed in terms of the Arrhenius equation:

k ¼ Ae�E∗=RT ð17:28Þ
In this equation, A is a pre-exponential factor, and E* is the activation energy of

the process. R is the gas constant.
From Fig. 17.23, we find the thermodynamic enthalpy difference from the initial

to the final state, ΔH, to be:

ΔH ¼ E∗
1 � E∗

�1 ð17:29Þ
At equilibrium, the rates of the forward and reverse reactions are equal:

nik1 ¼ n f k�1 ð17:30Þ
where subscripts i and f denote the initial and the final state, respectively. The ratio of
the concentrations in the final and initial states can be expressed as:

Gas+Liquid
(P=2,f =1)

Solid+Gas+Liquid
(P=3,f =0)

Liquid+Solid
(P=2,f =1)

Gas+Solid
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(P=1,f =2)
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Fig. 17.22 P–T diagram of a one-component system showing degrees of freedom for different
number of phases
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n f

ni
¼ k1

k�1
¼ K1 ¼ exp

�ΔG0
1

RT

� �
ð17:31Þ

In Eq. (17.31), K1 is the equilibrium constant andΔG0
1 is the standard Gibbs free-

energy change for the chemical reaction. The standard free-energy change is basi-
cally the free energy term (ΔG) under standard conditions, which includes a
pressure of 1 atmosphere, a temperature of25 �C (298 K), and reactants and products
at concentration of 1 mole.

17.7 Growth Modes

Usually growth modes are classified into three categories: the layer-by-layer or
Frank-van der Merwe growth mode, the island or Volmer-Weber growth mode,
and the layer-plus-island or Stranski-Krastanov growth mode. In lattice-matched
systems, the growth mode is determined by the relation between the energies of two
surfaces and the interface energy. If the sum of the surface energy (γf) of the epitaxial
layer and the energy of the interface (γi) is lower than the substrate surface energy
(γs), i.e., γf + γi < γs, upon deposition the top material will wet the substrate, leading
to the Frank-van der Merwe growth mode (Fig. 17.24a). In other words, in a layer-
by-layer growth mode, the deposited atoms are more strongly attracted to the
substrate than they are to one another. Most epitaxial techniques take advantage of
the Frank-van der Merwe growth mode. Changing the value of γf + γi may result in a
transition from this growth mode to the Volmer-Weber growth mode where 3D
islands are formed (Fig. 17.24b). In this growth mode, the deposited atoms are more
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strongly bound to each other than they are to the substrate. A typical example is
when a metal is deposited on top of a semiconductor.

In a lattice-mismatched material system, such as GaAs/InAs heterostructures with
7% lattice mismatch, only the first few deposited monolayers form strained epitaxial
layers with the lateral lattice constant equal to that of the substrate. When a critical
thickness is exceeded, the significant strain occurring in the top layers leads to the
spontaneous formation of randomly distributed islands which contribute to relax the
elastic energy stored in the system. The phase transition from the two-dimensional
epitaxial structure to the random arrangement of three-dimensional islands is called
the Stranski-Krastanov transition (Fig. 17.24c). This growth mode is a combination
of the other two growth modes and is widely used nowadays to obtain self-
assembled quantum dots in lattice-mismatched systems that provide a three-
dimensional confinement potential for the carriers.

17.8 Summary

In this chapter, we first reviewed the properties of modern major III-V and II-VI
compound semiconductors. By uniformly mixing the various group III and group V
elements in the crystal lattice, the lattice parameter and the bandgap energy of the
resulting ternary and quaternary alloys can be controlled over a wide range. This is a
fundamental property when designing heterostructure compound semiconductor
devices. Bulk crystal growth techniques used to synthesize single crystals for today’s
semiconductor industry were then described. These included the Czochralski, the
Bridgman, the float-zone, and the Lely growth methods. We then briefly reviewed
the major modern epitaxial growth techniques, such as liquid-phase epitaxy, vapor-
phase epitaxy, metalorganic chemical vapor deposition, and molecular beam epi-
taxy. The advantages and disadvantages of each one have been discussed. These
techniques are employed to synthesize semiconductor thin film structures for use in
electronic devices. A short overview of thermodynamics and kinetics was given in
Sect. 17.6. Finally, the various growth modes were discussed, covering both lattice-
matched and lattice-mismatched systems.

(a) (b) (c)

substrate substrate substrate

Fig. 17.24 Schematic presentation of the (a) Frank-van der Merwe, (b) Volmer-Weber, and (c)
Stranski-Krastanov growth modes
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Problems

1. From the expressions of the bandgap energy of ternary alloys given in Table 17.2
and using Vegard’s law to calculate their lattice parameters, plot the energy
bandgap of the following ternary alloys as a function of their lattice parameter:

AlxGa1�xAs, AlxIn1�xAs, GaxIn1�xP, GaxIn1�xAs, GaPxAs1�x, and InPxAs1�x.
2. Derive the relation given in Eq. (17.3):

aAxB1�xCyD1�y ¼ xyaAC þ x 1� yð ÞaAD þ 1� xð ÞyaBC þ 1� xð Þ 1� yð ÞaBD

3. (a) What is the relationship between the Al mole fraction (x) and the In mole
fraction ( y) of quaternary AlxInyGa1�x�yN if it is to be lattice-matched to GaN?
The lattice parameter of AlxInyGa1�x�yN is given as:

a(AlxInyGa1 � x � yN) ¼ (1 � x � y)aGaN + xaAIN + yaInN.

The lattice parameters of GaN, AlN, and InN are 3.189, 3.112, and 3.545 Å,
respectively.

(b) Using a similar expression as above to calculate the bandgap energy of the
quaternary AlxInyGa1�x�yN in terms of its constituent binary compounds, find the
chemical formula of the quaternary material of part (a) if the wavelength of the
emitted light is to be 300 nm. The bandgap energies of the binary compounds are
given as: Eg(GaN) ¼ 3.4 eV,

Eg(AlN) ¼ 6.0 eV, and Eg(InN) ¼ 0.7 eV

Eg AlxInyGa1�x�yN

 � ¼ 1� x� yð ÞEg GaNð Þ þ xEg AlNð Þ þ yEg InNð Þ

4. Using the diagram in Fig. 17.1, graphically determine the compositions x and y of
the quaternary alloy GaxIn1�xP1�yAsy which would yield a bandgap energy
corresponding to the following wavelengths while being lattice matched to either
InP or GaAs: 808 nm, 980 nm, 1.3 μm, 1.55 μm.

5. Compare the MBE and MOCVD growth techniques, using a table that shows
some of the advantages and disadvantages of each method.

6. Derive Eq. (17.8): Cs ¼ kC0(1 � X)k � 1, where:

Cs ¼ impurity concentration in the solid
C0 ¼ original impurity concentration in the melt
k ¼ segregation coefficient
X ¼ fraction of the melt that has solidified

7. Plot the dopant concentration profile of a 2000 long silicon rod grown by the float-
zone technique using P as a dopant in a core doping scheme for various lengths of
the floating zone. Assume the dopant concentration in the core to be 1019 cm�3

and the radius of the core to be four times smaller than that of the final rod. Which
one results in a more uniform doping profile: a long float-zone or a short one?

8. Determine the growth rate of a layer grown by MOCVD using the following
parameters:
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Diffusion coefficient (D) ¼ 5 � 10�6 cm2�s�1

Thickness of the boundary layer (d ) ¼ 5 mm
Surface reaction chemical rate constant (ks) ¼ 10�3 cm�s�1

Concentration of reactants in gas phase (CG) ¼ 1018 cm�3

Maximum number of reactants incorporating into the crystal (C) ¼ 1020 cm�3

9. The figure represents the RHEED oscillation during homoepitaxy of GaAs in an
MBE system.

(a) At what moment did the growth start and stop?
(b) What is the total thickness of GaAs material deposited?
(c) Give an estimation of the growth rate, in monolayer per second and in

micrometer per hour.
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10. (a) Why does the amplitude of the oscillation slowly decrease with time in the
figure of last problem?
(b) Why does the RHEED intensity increase at the end of the curve?

11. In MBE, the deposition of AlxGa1�xAs is performed by opening simultaneously
the Ga, Al, and As shutters.

(a) Since, in normal growth conditions, the incorporation of Al and Ga
atoms is unity, find an expression for the Al composition as a function
of the growth rate of GaAs, AlAs, and AlGaAs.

(b) How would you determine the Al fraction with the RHEED system?
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Semiconductor Characterization
Techniques 18

18.1 Introduction

Semiconductor characterization techniques are used in order to gain knowledge on
the physical properties of a semiconductor crystal. The process is similar to decoding
the DNA sequence of a living organism as it involves understanding the nanoscale
structure of the crystal, i.e., its atoms, electrons, structures, and interactions with the
surrounding environment. The knowledge gained from the characterization process
is essential in determining whether the semiconductor crystal probed is suitable for a
particular device component with certain functionalities.

Semiconductor characterization is generally initiated immediately after the syn-
thesis of a crystal. We can distinguish three types of characterization techniques:
structural, optical, and electrical. In this chapter, we will briefly review the most
common of these semiconductor characterization techniques. The discussion and
examples will be primarily directed toward semiconductor thin films, although most
of the same techniques can be readily used for bulk crystals as well.

18.2 Structural Characterization Techniques

18.2.1 X-ray Diffraction

X-ray diffraction employs electromagnetic waves with a wavelength on the order of
one angstrom. Since wave diffraction occurs when the dimensions of the diffracting
object are of the same order of magnitude as the wavelength of the incident wave,
X-rays are ideally suited to probe crystal lattice structures.

X-ray diffraction of semiconductor thin films is generally carried out in a diffrac-
tometer. The source of the X-rays is called an X-ray tube (Fig. 18.1) and consists of a
water-cooled copper target onto which an accelerated electron beam (up to a few
10’s of keV) is impinging inside a vacuum tube. Because of the bremsstrahlung
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effect, X-rays are emitted with wavelengths that are characteristic of the copper
element. Bremsstrahlung is the original German name for the effect of generation of
X-rays via electron deceleration through its interaction with the Coulomb field of the
nucleus (of copper, in this case). Through these inelastic interactions, X-rays are
emitted which can have energies as high as the beam energy. These X-rays are then
filtered and collimated into a beam through the use of a monochromator consisting of
nearly perfect silicon crystals placed at specifically chosen angles to permit reflection
of the X-rays.

Diffracted waves from different atoms can interfere with each other, and the
resultant intensity distribution is strongly modulated by this interaction. If the atoms
are arranged in a periodic fashion, as in crystals, the diffracted waves will consist of
sharp interference maxima (peaks) with the same symmetry as in the distribution of
atoms. Measuring the diffraction pattern therefore allows us to deduce the distribu-
tion of atoms in a material.

The peaks in an X-ray diffraction pattern are directly related to the atomic
distances. For a given set of lattice planes with an interplane distance d, the condition
for a diffraction (peak) to occur can be found using Bragg’s law:

2d sin θ ¼ nλ ð18:1Þ
where θ is the incident angle, λ is the wavelength of the X-ray, and n is an integer
representing the order of the diffraction peak. This process is shown schematically in
Fig. 18.2.

Water cooled anode

X-rays
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Vacuum
Electron beam
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Glass insulator

20-50 kV potential

Internal electric
contacts 

Fig. 18.1 Schematic diagram of an X-ray tube
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Figure 18.3 shows an X-ray diffraction curve of an Al0.2Ga0.8N/GaN superlattice
structure grown on a GaN template layer. X-ray diffraction measurements on
semiconductors can yield useful information such as:

• Lattice constants: The mismatch between the epilayer and the substrate perpen-
dicular to the growth plane can be determined, which is also indicative of strain
and stress.

• Rocking curve: The width of the X-ray rocking curve, also called full width at
half maximum (FWHM) in units of arcsec or arcmin, is inversely related to the
number of dislocations in the epilayer. Therefore this measurement can be used as
a measure of the film quality.

• Thickness and quality of superlattices: Thickness of the various layers in multi-
layer structures like superlattices can be determined by the distance between the
satellite peaks appearing on the sides of the main peak. Also the intensity and
number of satellite peaks are measures of the film quality.

d
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Fig. 18.2 Schematic of
diffraction of X-rays by a
crystal
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Fig. 18.3 X-ray curve of an Al0.2Ga0.8N/GaN superlattice grown on GaN/AlN buffer layer. The
individual Al0.2Ga0.8N, GaN, and AlN peaks as well as the superlattice satellite peaks are clearly
discernible on the graph
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18.2.2 Electron Microscopy

Scanning Electron Microscopy
A scanning electron microscope (SEM) is probably the most widely used semicon-
ductor characterization instrument. A schematic of a typical SEM system is shown in
Fig. 18.4. Electrons are emitted from a tungsten cathode either thermionically or via
field emission and are focused by two successive condenser lenses into a very
narrow beam. Two pairs of coils deflect the beam over a rectangular area of the
specimen surface. Upon impinging on the specimen, the primary electrons transfer
their energy inelastically to other atomic electrons and to the lattice. Through many
random scattering processes, some electrons manage to leave the surface to be
collected by a detector facing the specimen. Usually these are the secondary
electrons, originated from a depth of no larger than several angstroms, that are
collected by the detector. A photomultiplier tube (PMT) amplifier is used to amplify
the signal, and the output serves to modulate the intensity of a cathode ray tube
(CRT). Research-quality SEMs are generally able to produce images with a resolu-
tion of ~50 Å.
SEM not only can provide images of the surface but also, by rotating the sample, one
can obtain information about the thickness of various layers in the structure (cross-
sectional SEM). Figure 18.5a illustrates a bird’s eye view image of a surface of a
“nanopillar” sample, while Fig. 18.5b displays the cross section of a multilayer
semiconductor structure.
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Stigmator
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Condenser 
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Double Deflection Coil
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Electron
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Fig. 18.4 Schematic of a scanning electron microscope
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Transmission Electron Microscopy
Transmission electron microscopy (TEM) is a complex characterization technique
that takes advantage of electron diffraction to give the user valuable information
regarding the crystallography of the films and, in the image mode, provide high-
resolution images of both plain-view and cross-sectional view of the films. A variety
of useful information, such as defect structures, structure of grain boundaries, phase
identification, crystallographic orientation, quality of the interfaces, etc., can be
obtained using this technique.

Figure 18.6 shows the two basic modes of operation of TEM, image mode and
diffraction mode. Electrons are thermionically emitted from the gun and are
accelerated to high voltages (in excess of 100 keV). A condenser lens section
projects the electron beam onto the specimen. Two types of scattering can occur
when electrons hit the specimen: elastic scattering results in no loss of energy, while
inelastic scattering involves some energy loss. Diffraction patterns can be obtained
from elastically scattered electrons, while inelastically scattered electrons give rise to
a spatial variation in the intensity of the transmitted beam. Inelastic interactions
between the electron beam and the specimen at grain boundaries, dislocations, defect
sites, density variations, etc. are the cause of inelastic scattering. Figure 18.5 shows a
high-resolution lattice image of the AlN/Al2O3 interface. Dislocations can be
identified when any of the atomic planes terminates (Fig. 18.7).

TEM is capable of producing high magnifications, due to the small effective
wavelengths that are used. Recalling de Broglie’s relation from (Eq. 3.3):

λ ¼ h

p
ð18:2Þ

As mentioned above, electrons are accelerated to very high energies. If we let this
potential energy, eV, equal the kinetic energy of the electrons:

eV ¼ m0v2

2
ð18:3Þ

the momentum of an electron can be written as:

Fig. 18.5 (a) Bird’s eye view of the surface of a nanopillar sample and (b) cross-sectional SEM
image of a multilayer semiconductor structure
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p ¼ m0v ð18:4Þ
Therefore, the wavelength of the electrons, from the above three equations, can be
expressed as:

Fig. 18.7 High-resolution
TEM image of the interface of
AlN and sapphire (Al2O3).
One misfit dislocation
generates when an atomic
plane ends

Fig. 18.6 Schematic of the
TEM in imaging and
diffraction modes. (Reprinted
from Thomas G, Goringe MJ
Transmission electron
microscopy of materials,
Fig. 6.10. Copyright 1979 by
John Wiley and Sons.
Reprinted with permission of
CBLS)
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λ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0eV

p ð18:5Þ

For instance, if the acceleration energy of 100 keV is applied, the wavelength will
be as small as 0.0386 Å. It should be noted that at such high energies, the velocity of
the electrons becomes comparable with the velocity of light. Therefore, in order to
have a more accurate evaluation of the wavelength, relativistic effects have to be
considered. The modified expression is:

λ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0eV 1þ eV

2m0c2

� �r ð18:6Þ

For example, with an acceleration voltage of 1 MV, the nonrelativistic wave-
length is 0.0122 Å, while the relativistic value is only 0.0087 Å (Williams and Carter
1996).

18.2.3 Energy Dispersive Analysis Using X-rays (EDX)

In EDX an electron from an outer shell of an atom (e.g., the 2s shell) lowers its
energy to fill the hole in a lower shell (e.g., the 1s shell) which results in the emission
of an X-ray. These emitted X-rays are characteristic of the particular atom
undergoing emission. Therefore, by looking at the X-ray spectral lines of an atom,
one could identify that specific atom.

Majority of EDX systems are interfaced to SEM, where they use the same
electron beam source to excite X-rays from the specimen under study. A cooled Si
(Li) detector (lithium drifted silicon detector) is used to detect X-rays. An emitted
X-ray from a specimen generates a photoelectron upon interception by the detector.
This photoelectron in turn generates an electron-hole pair. The number of electron-
hole pairs, or equivalently the amplitude of the generated voltage pulse, is propor-
tional to the incident photon energy. After amplifying, sorting, counting, and storing
the pulses within a range of voltages (energies), the final spectrum will be plotted.
Figure 18.8 shows an example of an EDX plot.

18.2.4 Auger Electron Spectroscopy (AES)

The AES technique takes advantage of the Auger transitions that were introduced in
Chap. 8. In an Auger process, three electron levels are involved: an electron from an
outer level lowers its energy to fill a hole. Instead of generating a photon, this process
can result in the ejection of an electron from a third level. The electron that leaves the
atom is called the Auger electron. Similar to EDX, the particular atom under test can
be identified by looking at the Auger spectral lines.
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A typical Auger spectrometer is kept under ultrahigh vacuum (10�10 Torr level)
to avoid contaminations. A focused electron beam source of ~2 keV in energy is
scanned over the sample area under test. The emitted Auger electrons are then
analyzed by an analyzer. The Auger peaks are barely distinguishable above the
background signal; therefore, in order to accentuate the energy and magnitude of
these peaks, the differentiated signal is generally plotted, as shown in Fig. 18.9.

18.2.5 X-ray Photoelectron Spectroscopy (XPS)

In the XPS technique, low-energy X-rays are used as a source rather than electrons in
the case of EDX and AES. Electrons are ejected when the photon is absorbed via the
photoelectric effect. In this case the energy of the ejected electron can be written as:

EKE ¼ hυ� EBE ð18:7Þ
where EKE is the energy of the ejected electron, hυ is the energy of the incident
photon, and EBE is the energy of the involved bound electron state. By measuring the
photoelectron energy, it will be possible to identify the particular atom, since the
values of binding energy are element specific. An example of an XPS spectrum (for
silver (Ag)) is shown in Fig. 18.10. It should be noted that for multicomponent
samples the intensities of the peaks are proportional to the concentration of the
element within the sampled region.

Fig. 18.8 An example of an EDX measurement. Multiple lines of Ge emission correspond to the
various electron energy transitions. (Reprinted with permission of Springer Science and Business
Media. Williams DB, Carter CB Transmission electron microscopy, p. 557, Fig. 32.2. Copyright
1996 Plenum Press, New York)
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Fig. 18.9 Auger electron spectra of various elements

Fig. 18.10 An XPS spectrum from a silver sample (Reproduced with permission. Briggs D, Seah
MP Practical surface analysis: by Auger and X-ray photoelectron spectroscopy, p. 112, Fig. 3.16.
Copyright 1983 John Wiley & Sons Limited)
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18.2.6 Secondary-Ion Mass Spectroscopy (SIMS)

SIMS is a technique used to identify and quantify various types of atoms on the
surface or inside a solid sample. In SIMS the material is bombarded by a beam of
high-energy ions (1~30 keV) resulting in the ejection or sputtering of atoms from the
material. A small percentage of these ejected atoms leave as either positively or
negatively charged ions, which are referred to as “secondary ions.”

These sputtered secondary ions are then collected and analyzed by a mass-to-
charge spectrometer. Elements are identified through their atomic mass values, while
their concentration is determined by counting the number of corresponding
secondary ions.

The sensitivity of a SIMS measurement is dependent upon the yield of secondary-
ion sputtering, which in turn depends on the material under study, the specimen’s
crystallographic orientation, and the nature, energy, and incidence angle of the
primary beam of ions. The proper choice of primary ion beam is therefore important
in enhancing the sensitivity of SIMS. O�

2 atoms are usually used for sputtering
electropositive elements or those with low ionization potentials such as Na, B, and
Al. On the other hand, Cs+ atoms are better at sputtering negative ions from
electronegative elements such as C, O, and As. The detection limit of SIMS is
severely reduced with improper selection of the ion beam. Liquid metal ion sources
are used for high-resolution measurements, since they can provide smaller beam
diameters.

Two types of SIMS are usually considered: “static” SIMS works with low-energy
ion sources (0.5–3 keV) which result in low sputter rates (in units of monolayers per
second). This mode of operation is suitable for surface analysis, since it will take a
long time for the surface to be modified by ion bombardment. “Dynamic” SIMS, on
the other hand, uses high-energy ion beams (higher than 3 keV) which results in high
sputter rates. This mode of operation is suited for depth profile analysis of the sample
under test. Figure 18.11 shows a SIMS depth profile of a GaN sample showing its
concentration of impurities (oxygen, carbon, silicon) using Cs+ bombardment.

18.2.7 Rutherford Backscattering (RBS)

In the RBS technique, very high-energy beams (in the MeV range) of low mass ions
(He, C, N, etc.) are accelerated, collimated, and focused upon the sample under test.
These high-energy beams have the ability to penetrate deep into the sample (several
microns). Such beams cause little sputtering of the surface atoms. Sometimes they
penetrate the atomic electron cloud shield and collide with the nuclei of the target
atoms. The result is an elastic scattering from the Coulomb repulsion between ion
and nucleus, known as Rutherford scattering.

From energy and momentum conservation laws, we know that if an incident ion
of mass M0 and energy E0 hits a surface atom of mass M, the elastic collision will
cause the ion to have an energy E1 afterward given by Ohring (1992):
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E1 ¼
M2 �M2

0 sin
2θ

� �1=2 þM0 cos θ

M0 þM

8<
:

9=
;

2

E0 ð18:8Þ

where θ is the scattering angle. At a fixed value ofM0 and θ, E1 depends only on the
atomic weight of the target atom. Therefore, E1 will be different for different targets,
and by detecting this energy, one can distinguish between different atoms. This
technique can be applied to multilayer samples as well. In this case not only the
energy of the scattered beam but its intensity will also be affected by numerous
scatterings inside the sample. In this case, top layers will have higher intensity
scattered beams than the underlying layers.
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Fig. 18.11 A SIMS depth profile showing the concentration of impurities in a GaN sample. The
impact energy was 15.5 keV at oblique incidence and the detected area was 33 μm in diameter
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18.2.8 Scanning Probe Microscopy (SPM)

Scanning probe microscopy (SPM) is a useful method for the study of the surface
morphology. This method employs the concept of scanning an extremely sharp tip
(3~50 nm radius of curvature) across the object surface. The tip is mounted on a
flexible cantilever, allowing the tip to follow the surface profile (Fig. 18.12). When
the tip moves in the proximity of the object under investigation, forces of interaction
between the tip and the surface influence the movement of the cantilever. These
movements are detected by selective sensors.

There are three major types of SPM:

• Atomic force microscopy (AFM) measures the interaction force between the tip
and the surface. The tip may be dragged across the surface or may vibrate as it
moves. The interaction force will depend on the nature of the sample, the probe
tip, and the distance between them.

• Scanning tunneling microscopy (STM) measures a weak electrical current
flowing between tip and sample as they are held a very short distance apart.

• Near-field scanning optical microscopy (NSOM) scans a very small light source
very close to the sample. Detection of this light energy forms the image. NSOM
can provide resolution below that of the conventional light microscope.

Essential to the system is a piezoelectric tube (Fig. 18.13). It consists of a piezo
material inserted inside a hollow tube. Pairs of electrodes on the inner and outer
walls are placed on either side of the tube. When suitable voltage differences are

probe

tip

cantilever

sample

Fig. 18.12 Schematic of an
AFM tip scanning over the
surface of a sample

0 V
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electrodes
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Fig. 18.13 Reaction of a piezo material to applied bias
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applied to these electrodes, one side of the tube expands, and the other side
contracts. This results in a bending of the tube; hence if one end is fixed, the
other end moves, resulting in the scanning motion. Two sets of electrodes,
90 degrees apart, allow motion in the x-y plane. A further pair of electrodes
extending around the entire circumference of the tube cause an entire section of
the tube to expand or contract, resulting in the free end of the tube moving parallel
to the tube axis (the z-axis). The combination of all three sets of electrodes allows
movement of the free end of the tube to be controlled very precisely in all three
axes. For surface mapping applications, the feedback provided by the probe and
detector is used to keep the probe at a constant distance from the surface (z-
direction), while it is free to move across the surface (x- and y-directions). This is
accomplished by applying a voltage to the piezoelectric tube. This voltage is
proportional to the probe’s movement in z-direction which is then used to generate
the surface topology.

The AFM is capable of reconstructing the surface morphology of the materials
with atomic scale precision. An example of a three-dimensional image of the surface
of InAs quantum dots grown on GaAs/InP is shown in Fig. 18.14.

Fig. 18.14 A 3DAFM image of the surface of a sample consisting of InAs quantum dots grown on
top of a GaAs/InP substrate
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18.3 Optical Characterization Techniques

18.3.1 Photoluminescence Spectroscopy

Photoluminescence (PL) spectroscopy is a nondestructive method of probing the
electrical properties of materials. Light is focused onto the sample where it is
absorbed in a process called “photoexcitation.” As a result of the excess energy
caused by photoexcitation, electrons jump to permissible excited states. When these
electrons move back to their equilibrium states, the excess energy is released through
emission of light with energy equal to the energy difference between the equilibrium
and excited states. This emitted light is then focused and collected by a photon
detector through a spectrometer. A PL spectrum for an AlGaN sample is shown in
Fig. 18.15. Many useful information can be extracted out of PL spectra:

• Bandgap determination: The most common radiative transition in semiconductors
is between the states in the conduction and valence bands, which equals to the
energy gap of the semiconductor.

• Impurity levels and defect detection: Radiative transitions in semiconductors
involve localized defect levels. The photoluminescence energy associated with
these levels can be used to identify specific defects.

• Recombination mechanisms: When the electrons return to their equilibrium
states, also known as “recombination,” both radiative and nonradiative processes
can occur. The intensity of the PL peak and its dependence on the level of
photoexcitation and temperature is directly related to the dominant recombination
process.
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Fig. 18.15 Photoluminescence spectrum of an AlGaN sample. Shown on the graph are the near-
band-edge emission peak and a defect-related emission peak
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• Material quality: The intensity and the line width (FWHM) of a PL spectrum are
representative of the quality of the material. Additionally, the presence of defect-
related peaks is indicative of imperfections in the epitaxial layer.

18.3.2 Cathodoluminescence Spectroscopy

Cathodoluminescence (CL) spectroscopy is similar to PL in almost every aspect,
except for the radiation source. In CL, electrons are used to excite the sample instead
of photons in the PL case. The electron source can be the focused beam used in
SEMs. Similar to PL spectra, CL spectra contain many useful information such as
the ones listed in the previous subsection.

18.3.3 Reflectance Measurement

Any light incident upon any medium undergoes partial transmission, absorption, and
reflection. The reflected part of the light can be collected and measured against a
reference sample, typically a near-ideal mirror, to obtain the reflectivity. Reflectance
is defined as the ratio of the reflected to incident light, given by Fresnel equations
Eq. (10.22) as:

R ¼ Er

Ei

����
����
2

¼ �n� 1
�nþ 1

� 	2

ð18:9Þ

where Er and Ei are the energy of the reflected and incident light, respectively, and �n
is the refractive index of the medium.

18.3.4 Absorbance Measurement

A visible/UV light beam is incident upon the sample under study and a reference
sample simultaneously. The transmitted light out of the other face of the sample is
collected by a photodetector through a spectrometer, and its intensity relative to the
reference sample is plotted as a function of wavelength. This way one can determine
the transmittance or absorbance of the sample under study as a function of wave-
length. This method is especially useful for obtaining the absorption edge (cutoff
wavelength) associated with the material. The band-to-band absorption in a semi-
conductor (see Chap. 10) gives the following relationship between the absorption
coefficient α (see Eq. 10.81), the light energy E, and the bandgap energy Eg:

α / ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Eg

p ð18:10Þ
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18.3.5 Ellipsometry

Ellipsometry measures the change in the polarization state of light reflected from the
surface of a sample. The measured parameters are the amplitude ratio (tan Ψ) and the
phase difference (Δ) of the two components of reflected light. These values are
related to the ratio of Fresnel reflection coefficients, Rp and Rs, for p- and s-polarized
light, respectively:

tan Ψð ÞeiΔ ¼ Rp

Rs
ð18:11Þ

This simple fundamental equation of ellipsometry relates refractive indices of the
film, and the substrate, film thickness, and phase changes during reflection at the film
interfaces.

In Fig. 18.16, a linearly polarized input beam is converted to an elliptically
polarized reflected beam. For any angle of incidence greater than 0� and less than
90�, p-polarized and s-polarized lights will be reflected differently.

The ellipsometry apparatus can also be used to measure transmission and reflec-
tion of samples. In this mode, the transmission (T ) and reflection (R) values are
determined via:

T ¼ I t
I i

and R ¼ Ir
I i

ð18:12Þ

where Ii, It, and Ir are the intensities of the incident, transmitted, and reflected lights,
respectively.

p-plane

s-plane

p-plane

s-plane

E E

qi

Fig. 18.16 Schematic of the geometry of an ellipsometry measurement. The coordinate system
used to describe the ellipse of polarization is the p-s coordinate system. The s-direction is taken to be
perpendicular to the direction of propagation and parallel to the sample surface. The p-direction is
taken to be perpendicular to the direction of propagation and contained in the plane of incidence
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18.3.6 Raman Spectroscopy

When photons are incident upon a medium, they get scattered either elastically
(Rayleigh scattering) or inelastically (Raman scattering). In Rayleigh scattering,
the energy of the emitted photon is the same as the incident photon. On the other
hand, in Raman scattering, the energies of the scattered and incident photons are
different. The energy change is depicted in Fig. 18.17, where an incoming photon
either creates a phonon and is remitted at a lower energy (anti-Stokes scattering) or
annihilates a phonon and is remitted at a higher energy (Stokes scattering). The
inelastically scattered light can be collected, and information about the energy levels
within the medium can be deduced from the energy change in the light.

A monochromatic light source, usually an argon ion laser, is used to excite the
sample, and a spectrometer/PMT set is used to detect the scattered light. An example
of a Raman spectrum is schematically shown in Fig. 18.18.

18.3.7 Fourier Transform Spectroscopy

A Fourier transform spectrometer is a Michelson interferometer with a movable
mirror. By scanning the movable mirror over some distance, an interference pattern
is produced that encodes the spectrum of the source (in fact, it turns out to be its
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Fig. 18.17 Schematic
depiction of various scattering
processes within a medium.
The incident photon energies
are marked by the right-hand-
side arrows
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Fig. 18.18 An example of a Raman spectrum representing Rayleigh, Stokes, and anti-Stokes
Raman peaks
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Fourier transform). The Michelson interferometer consists of a beam splitter, a fixed
mirror, and a mirror that moves back and forth as shown in Fig. 18.19. The input
signal is split into two different optical paths, after which they add into the output
signal. When the two mirrors are equidistant from the beam splitter, there is
constructive interference for a given wavelength, and the output signal is very
high. However, when the translating mirror is moving, its separation from the
beam splitter varies, and the difference in distance that the two split beams of light
have to flow through is called the optical path difference (OPD).

For incident light with a single wavelength, λ, on the input to the beam splitter, the
output will have sinusoidal behavior with minima occurring when the OPD is an odd
multiple of λ/2 (destructive interference). For a broadband incident light source, such
as the luminescence from a semiconductor, the output intensity is more complicated
as shown in Fig. 18.20. When the OPD is equal to zero, all spectral components
interfere constructively; therefore, the absolute maximum of the interferogram, also
called the center burst, is generated at that position. As the OPD increases, two
different wavelengths will not reach a maximum output at the same time, giving us a
complex looking oscillatory signal with decreasing amplitude, called the interfero-
gram. It should be noted that when the wavelength of incident light is in the infrared
region, this technique is called Fourier transform infrared (FTIR) spectroscopy.

The analog signal of the detector is digitized during the scan using A/D conver-
sion running typically at frequencies up to 120 KHz with a numerical depth of
16 bits. In order to enhance the signal-to-noise ratio, some hundred scans are added

fixed mirror

translating mirroroutput

input

Beam 
splitter

Fig. 18.19 Schematic cross
section of a Michelson
interferometer

Fig. 18.20 A typical interferogram
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coherently to build up the final interferogram. Once an interferogram is collected, it
needs to be translated into an emission spectrum. The process of conversion is
through the fast Fourier transform algorithm, which converts the time domain back
into the frequency (or wavelength) domain. A typical example of an FTIR spectrum
is shown in Fig. 18.21 illustrating the absorption of a semiconductor photodetector
structure as a function of energy.

Normally, interferometric spectra are in units of wavenumber. The relationship
between wavenumber and wavelength is:

υ cm�1
� � ¼ 10000

λ μmð Þ ð18:13Þ

Therefore, it would be easy to convert wavenumber to other useful units such as
wavelength or energy, as is the case in Fig. 18.21.

18.4 Electrical Characterization Techniques

18.4.1 Resistivity

Using sheet resistivity measurement techniques (i.e., the four-point probe technique
or the van der Pauw method), one can determine the sheet resistivity, ρs (and if the
layer thickness is known, the resistivity, ρ), of a semiconductor layer. The
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Fig. 18.21 Absorption spectrum for a semiconductor photodetector structure taken by a Fourier
transform infrared (FTIR) system
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concentration of dopants can also be obtained from sheet resistivity measurements if
the value of mobility is known (Eq. 8.8). Usually the carrier mobilities of some of the
more established semiconductors, such as silicon, are known, and one can use those
values to determine the carrier concentration from resistivity values. However, the
type of doping (n-type or p-type) cannot be deduced from resistivity measurements.
This technique is also useful when the carrier concentration varies as a function of
depth. In this case, the resistivity will be:

ρ zð Þ ¼ N zð Þeμ Nð Þ½ ��1 ð18:14Þ
where N(z) is the carrier concentration as a function of depth and μ(N ) is the carrier
mobility as a function of carrier concentration. The measured sheet resistivity will be
the weighted average given by:

ρs ¼
Z t

0
N zð Þeμ Nð Þdz


 ��1

ð18:15Þ

where t is the thickness of the layer.

18.4.2 Hall Effect

With Hall effect measurements, one can determine the concentration as well as the
type of the dopants. In addition, the Hall mobility can be deduced from these
measurements. Generally Hall effect measurement systems are capable of measuring
low carrier concentrations, as low as 1014 cm�3. The problems with Hall effect
measurements are the rather difficult sample preparation (including contact prepara-
tion) and the errors that occur when the substrate is conductive. The reader is referred
to Chap. 8 for a complete discussion on the Hall effect.

18.4.3 Capacitance Techniques

In capacitance techniques the charge storage capacity, or capacitance, is measured
across a rectifying junction.

Capacitance-voltage (C-V ) measurements use a time-varying voltage of variable
frequency to determine the majority carrier concentration in the bulk of the device
and/or energy levels of interface states that often exist between the surfaces of
dissimilar materials. In order to determine the carrier concentration, usually a
Schottky diode is built. The diode is then reverse biased and the value of capacitance
is measured at each bias point. The carrier concentration can then be calculated as
(refer to Chap. 9 for more discussion on junction capacitance):
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N ¼ 2

εε0A
2

1

d C�2
� �

=dV r

 !
ð18:16Þ

where N is the carrier concentration (NA for p-type, ND for n-type), ε is the dielectric
constant, A is the area of the diode, C is the capacitance, and Vr is the reverse bias.
Figure 18.22 shows the plot of 1

C2 as a function of reverse bias for a p-type GaN
sample. From the slope of the curve and the values of the dielectric constant and the
diode area, the majority carrier concentration can be calculated.

Deep-level transient spectroscopy (DLTS) is another capacitance technique that
examines the time-dependent flow of charge into and out of localized energy states
associated with defects in the semiconductor. DLTS can thus determine many
important defect-related properties, such as the nature of defects and their activation
energies.

18.4.4 Electrochemical Capacitance-Voltage Profiling

Electrochemical capacitance-voltage (ECV) profiling is a measurement technique
that allows one to determine doping level at various depths within a semiconductor
structure.

Originally this technique was simply an extension of the CV measurement
technique that calculates the average carrier concentration by measuring the capaci-
tance across a Schottky barrier depletion region. In the modified approach, the
sample is located inside an electrolyte that produces a well-defined electrochemical
dissolution with the semiconductor material. This approach has led to the develop-
ment of automated ECV profiling systems with nanometer etch depth resolution.
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2 
 (F

–2
)

Reverse Bias (V)

Fig. 18.22 Plot of C�2 vs. reverse bias for a p-type GaN sample. The measurements were taken at
a frequency of 10 kHz
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With the ECV profiling, it is not only possible to determine the type of
doping (n-type, p-type) but also the concentration of the dopants in the range of
1013–1021 cm�3. An example of an ECV profile is shown in Fig. 18.23

18.5 Summary

In this chapter we discussed several important semiconductor characterization
techniques, covering structural, optical, and electrical properties of semiconductors.
X-ray diffraction, electron microscopy (SEM and TEM), energy dispersive analysis
using X-rays (EDX), Auger electron spectroscopy (AES), secondary-ion mass
spectroscopy (SIMS), Rutherford backscattering (RBS), and scanning probe micros-
copy (SPM) were covered under structural characterization techniques. Optical
characterization techniques included photoluminescence spectroscopy (PL),
cathodoluminescence spectroscopy (CL), reflectance and absorbance measurements,
ellipsometry, Raman spectroscopy, and Fourier transform spectroscopy. Finally, we
briefly discussed some of the electrical characterization techniques such as resistivity
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Fig. 18.23 A representative ECV profile showing the concentration of n-type and p-type dopants
as a function of depth for a 980 nm laser diode structure

618 18 Semiconductor Characterization Techniques



measurement, Hall effect measurement, capacitance techniques, and electrochemical
capacitance-voltage (ECV) profiling. These characterization techniques are instru-
mental in understanding the most important properties of various semiconductors as
building blocks of many useful electronic and optoelectronic devices.

Problems

1. The incident ion in an RBS measurement setup is 4He+ at E0 ¼ 3 MeV. The
angular position of the ion detector, θ, is chosen to be 170�. The backscattered
beam from the surface of the sample under test has an energy of 2.5886 MeV.
Determine which element of the periodic table the sample under test is made of.

2. In an RBS measurement setup, 4He+ at E0 ¼ 2 MeV is used as incident ions. The
scattering angle, θ, is 170 �. The incident ions impinge on a 100 nm thick silicon
sample (atomic mass of Si equals 28.08). The majority of He ions penetrate below
the surface where they lose their energy at a linear rate of 2 keV/nm. Determine
the range of the backscattered energies from the sample (ΔE ¼ E4 � E1).

E0 =2 MeV
E2

E1
E4

E3

Si

q

3. Estimate the acceptor concentration of the p-type GaN of Fig. 18.22. assuming a
diode area of 400 μm � 150 μm and a dielectric constant of ε ¼ 10ε0.

4. Based on the SIMS spectrum of Fig. 18.11:
(a) Estimate the thickness of the oxide layer that has formed on the surface.
(b) Si is an n-type dopant in the GaN material system. What is the doping

concentration away from the surface?
5. Based on the photoluminescence spectrum of Fig. 18.15:

(a) Estimate the Al mole fraction (x) in the AlxGa1�xN layer. Assume that
Vegard’s law holds for the calculation of the bandgap energy of the
ternary AlxGa1�xN from the binary compounds GaN (Eg ¼ 3.4 eV) and
AlN (Eg ¼ 6 eV).

(b) Assuming that the defect-related emission peak arises from the
transitions from the valence band to a deep level, estimate how deep
into the bandgap this deep level rests with respect to the conduction band
edge (ΔE ¼ EC � ED).
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Band 
edge 
emission

Defect-
related 
emission

Conduction 
band (EC)

Valence 
band (EV)

Defect 
level (ED)

ΔE

6. In this chapter we introduced four measurement techniques that yield the impurity
concentration in semiconductor layers, namely, SIMS, sheet resistivity
(SR) measurements, Hall effect measurements, and ECV profiling. Complete
the following table to compare these four techniques with respect to the stated
application requirements.

Thickness of the layer may be 
unknown

Non-destructive measurement

Determination of dopant
concentration as a function of depth 

Easy sample preparation

Determination of the concentration
of electrically activated dopants 

Determination of doping type
(n-type or p-type) 

Determination of doping
concentration

ECVHallSRSIMSApplication requirement

7. From the discussion of Rayleigh scattering, we recall that Rayleigh scattering is
the elastic scattering of light off molecules that are smaller than the wavelength
of that light. The intensity of the scattered light as a function of wavelength is
given by:

I ¼ Io
8π4Nα2

λ4R2


 �
1þ cos 2θ
� �

Based on this formula, justify why the sky appears blue.
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8. Do you think SEM and AFM are competing techniques or complementary
techniques? Explain why.

9. Based on the TEM image provided in Fig. 18.7, estimate the lattice mismatch
between AlN and sapphire.

10. When an X-ray beam impinges upon a sample, it gets partially transmitted,
partially absorbed, and partially scattered (diffracted). The ratio of the intensity
of the transmitted beam to that of the incident beam can be expressed as:
IT
I0
¼ e�αx where α is a constant and x is the thickness of the sample. We know

that if the thickness of a sample is doubled, it means that the number of
crystallographic planes that cause diffraction from a transmitted beam has
been doubled. Based on this, propose a formula that describes the intensity of
the diffracted beam versus the incident beam. At what thickness is this intensity
maximum? What percentage of light will be transmitted at this optimum
thickness?
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Defects 19

19.1 Introduction

An ideal crystalline solid has a periodic structure that is based on the chemical
properties of its constituent atoms (see Chap. 3). However, real crystals are not
perfect. They always have imperfections such as extra/missing atoms or impurities,
which are called defects.

The periodicity characterizes the crystals as we learned in previous chapters. For
example, the periodic potential of the lattice modulates the wavefunction, and we can
establish relationships between the energy and wavevector using the Bloch theorem
as shown by the Kronig-Penney model (Chap. 5). The existence of defects perturbs
the potential of the lattice, and this modifies the band diagram in the crystals.

While many properties of crystalline systems depend upon the periodic lattice
arrangement, many additional properties can be manipulated by adding defects or
dopants to the crystal. These properties enable us to fabricate various devices in the
modern world of semiconductor technology. On the other hand, unintentionally
introduced defects can also have a profound impact on the properties of materials
or on the performance of these devices. Therefore, it is a challenging goal to have
precise control of defects in crystals.

The defects can determine the color of the crystal and its electric conductivity,
and they can also introduce modifications in the lattice vibrations. For example,
silicon becomes p-type with boron doping. Al2O3 has red color as a ruby when a
small amount of Cr3+ substitutes Al3+, but Al2O3 has blue color as a sapphire when a
small amount of Ti3+ is substituted for Al3+.

In this chapter, we will discuss how defects are introduced in crystals and the
possible reasons or sources of such imperfections, which may be roughly
summarized as follows:

# Springer International Publishing AG, part of Springer Nature 2019
M. Razeghi, Fundamentals of Solid State Engineering,
https://doi.org/10.1007/978-3-319-75708-7_19

623

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75708-7_19&domain=pdf


(i) Defects from fundamental physical laws
There are defects that must exist due to fundamental physical laws. One
example is a vacancy. At any finite temperature, the atoms undergo a degree
of vibrational displacements. As the temperature is raised, the displacements
may become so large that atoms are permanently moved from their normal
sites. These atoms leave their sites and vacancies are formed.

(ii) Defects from natural minerals
Materials are never 100% pure. Therefore, all crystals have certain foreign
atoms; impurities as defects. Silicon wafers used in modern semiconductor
technology are purified to a very high degree (better than 99.999999%).

(iii) Defects from crystal growth (see Chap. 17 for details)
Intrinsic defects can be introduced during crystal growth. For example, typical
concentrations of intrinsic defects in Si are on the order of 1013–1014 cm�3.
Extrinsic defects (impurities) can also be introduced in the crystallization
process. The species of the impurities depends on the growth method and on
the constituent materials of the growth system.

(iv) Defects from strain
Deformation of metals or any strain added to crystals generates defects (mainly
dislocations). Especially in semiconductor technology, the defects caused by
strain are of great interest for heteroepitaxial thin film growth. For example,
semiconductor lasers and integrated-optics devices are usually designed from
multilayer structures which have similar lattice constant because the mismatch
of lattice parameters accumulates strain and results in the creation of undesir-
able defects. The defects caused by lattice mismatch are efficient non-radiative
recombination channels and therefore should be avoided since they degrade the
performance of optical devices. However, the recent increasing demand for
wide bandgap materials such as GaN has confronted the growers with exactly
this difficulty. Since GaN has no readily available native lattice matched
substrate, and the lattice mismatch depends on the substrate, these materials
cannot be obtained without lattice mismatch. In addition, there also exist
devices which positively make use of the effect of strain, such as high-electron-
mobility transistors (HEMT) and self-organized strain-relaxed islands (quan-
tum dots) made in the Stranski-Krastanov growth mode (Chap. 17). For these
applications, the defects caused by strain constitute the active layer.

There are several categorizations of defects. One of the common classifications is
based on the dimension of the defect structure. Defects may be classified into four
groups: point defects (0D), line defects (1D), planar defects (2D), and volume
defects (3D). Table 19.1 displays examples of these four types of defects.
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19.2 Point Defects

Point defects, or 0-dimensional defects, refer to missing, additional, or misplaced
atoms within the crystalline lattice. Figure 19.1 shows examples of substitutional,
interstitial, and vacancy point defects, each of which will be discussed in more detail
in the following sections.

19.2.1 Intrinsic Point Defects

The presence of intrinsic point defects is related to the nature of the atom. Atoms in a
solid are subject to thermal vibrations at any temperature. The average amplitude of
the atomic displacements increases with increasing temperature. Therefore, it is easy
to imagine a localized area within the crystal where the vibrations are intense enough
to cause a single atom to jump to a different location, either to the surface of the
crystal or to an intermediate or interstitial position within the crystal. If the atom
moves to the surface of the crystal, a Schottky defect is said to have formed, leaving
a vacancy as the defect. However, if the atom jumps to an interstitial position within
the crystal lattice, it is said to have formed a Frenkel defect, creating both a vacancy
and a self-interstitial. A vacancy is a missing atom within the crystal lattice. A self-
interstitial is an atom of the same type as the bulk material that is located at a
non-lattice site. A Schottky defect is shown schematically in Fig. 19.2a, while a
Frenkel defect is shown schematically in Fig. 19.2b.

It has been shown experimentally that at thermal equilibrium, all crystals contain
intrinsic point defects. This leads to the conclusion that the imperfect crystal has a
lower free energy than a perfect crystal. From thermodynamics, we know that the
change in the free energy of a system, ΔG, is related to the changes in enthalpy, ΔH,
and entropy, ΔS, as shown in Eq. (19.1), where T is absolute temperature:

ΔG ¼ ΔH � TΔS ð19:1Þ
The energy to form a defect,ED, is a positive contribution to the enthalpy term, thus

increasing the free energy of the system. However, the creation of the defect increases

Table 19.1 Table of dislocation dimension classifications

Dimension Examples

0D: Point defects Vacancies, self-interstitials, impurities

1D: Line defects Edge dislocations, screw dislocations, mixed dislocations

2D: Planar defects Stacking faults, grain boundaries, twin boundaries, interphase
boundaries, external surfaces

3D: Volume defects Precipitates, voids
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the disorder of the crystal, thus increasing the entropy of the system and causing a
decrease in the free energy of the system. The balance of these two factors leads to an
equilibrium number of defects naturally occurring within the crystalline lattice.
Through calculating the minimum free energy condition as a function of temperature,
Boltzmann determined that the equilibrium number of defects, ne, can be written
according to Eq. (19.2), where N is the number of atoms in the crystal, A is a constant
often taken as unity, T is the absolute temperature, and kb is the Boltzmann constant.
By dividing ne by N, the equilibrium concentration of defects, ne, may be found.

ne ¼ NAexp
�ED

kbT

� �
ð19:2Þ

One key process that affects both semiconductor device performance and some
fabrication techniques is chemical diffusion. Chemical diffusion occurs when atoms
of the same type or a different type are able to move through the crystalline lattice
over time. The presence of vacancies in a solid enhances the rate at which chemical

Fig. 19.2 Schematic diagrams of a: (a) Schottky defect and (b) Frenkel defect

Fig. 19.1 Examples of point defects
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diffusion takes place. It is easy to imagine, for example, oxygen atoms diffusing
from the surface of silicon into the silicon crystalline lattice through vacancies, as
shown in Fig. 19.3.

Furthermore, it is also expected that at higher temperatures, when there are more
vacancies in the network, the diffusion through the vacancy sites of the lattice takes place
at a higher rate. The oxygen atom reaches a deeper site within the crystal more rapidly.

Another type of intrinsic point defect is an anti-site defect, shown in Fig. 19.3. An
anti-site defect can occur when the crystalline lattice contains at least two kinds of
atoms. Given enough energy, it is possible for two atoms to trade positions in the
lattice. This is another diffusion mechanism, termed rotation about a midpoint.

19.2.2 Extrinsic Point Defects

Extrinsic point defects, shown schematically in Fig. 19.4, are caused by an outside
source, such as growth conditions or processing factors. They are created when a
foreign atom embeds itself within the crystal. If the atom is located on a lattice site,
i.e., replacing the native atom, then it is called a substitutional impurity. The foreign
atom may also be located at an interstitial site and is thus termed an interstitial
impurity.

It is virtually impossible to control all environmental factors in order to have a
100% pure material, although for some applications this is highly desirable. The type

Fig. 19.3 Schematic of chemical diffusion showing how a foreign atom may diffuse into a crystal
with time assisted by the presence of voids (increasing time from (a) to (d))
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of the impurity depends on each growth method and the materials used in the system.
For example, one of the major contaminations in MOCVD growth is carbon from
group III sources. With respect to silicon technology, from the many possible
impurities, it is the incorporation of metallic impurities that must be reduced to
extremely low levels. This is because most metals have low solubility in silicon, and
this results in metal silicides forming near the surface during device processing.
Furthermore, many metals form deep traps in the energy bandgap of semiconductor
materials, and this shortens the minority carrier lifetime considerably (Fig. 19.5).

There are also cases where impurities are desirable. In those cases, the challenge
is the control of the type of impurity to be incorporated at well- defined lattice sites or
specific regions within the crystal with precise concentration.

The most important application of extrinsic defects, especially with respect to
semiconductors, is doping.While inmany cases it is undesirable to have foreign atoms
located within a crystal, doping purposely creates substitutional impurities in order to
give the crystal certain properties. For example, GaN is dopedwithmagnesium ions in
order to create p-type GaN. Without achieving controlled doping, semiconductor
devices would not exist. For more detailed information on doping, see Chap. 9.

Fig. 19.4 Schematic diagram
of an anti-site defect

Fig. 19.5 Diagram of
extrinsic point defects of
substitutional impurities and
an interstitial impurity
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For doping to add carrier concentration or change the carrier type, impurities with
shallow activation or ionization energies are used. For p-type silicon, boron is usually
the preferred dopant, while phosphorus, arsenic, and antimony are used for n-type.
Some of the activation energies are listed below in Table 19.2 (note: data about the
most common dopants in Si, Ge, and GaAs was already listed in Table 19.1).

19.3 Line Defects

Line defects, or one-dimensional defects, refer exclusively to dislocations. Although
there are two main types of dislocations, edge or screw, these two types typically
combine to form several complicated mixed dislocations.

Edge dislocations may be described as an extra plane of atoms inserted into the
crystalline lattice, causing a localized strain to be introduced into the lattice, as
shown in Fig. 19.6.

Screw dislocations are formed when one side of the crystal undergoes a shear
stress and is displaced at least one lattice plane, while the other side is held fixed.
A schematic diagram of a screw dislocation is shown in Fig. 19.7.

Mixed dislocations are any combination of edge and screw dislocations and are
the most typical ones that one finds in bulk crystals. An example of a simple mixed
dislocation is shown in Fig. 19.8.

Burgers’ vectors are used to classify and describe dislocations. In order to construct
a Burgers’ vector, a closed loop should be drawn around the dislocation by traveling
the same amount of lattice points in all directions. If the loop does not close, it is
surrounding a dislocation, and the vector that would close the circuit is the Burgers’
vector. The starting point, the circuit direction, and the size of the loop are arbitrary.
Independent of these factors, the Burgers’ vector will always be perpendicular to the

Table 19.2 Impurity ionization energy (in meV) for several semiconductors (Wolfe et al. 1989)

Si Ge GaAs GaP

Li+ 32.81 Li+ 9.89 Si+ 5.854 Si+ 82.1

P+ 45.31 P+ 12.76 Ge+ 5.908 Ge+ 201.5

As+ 53.51 As+ 14.04 Sn+ 5.817 Sn+ 65.5

Sb+ 42.51 Sb+ 10.19 S+ 5.89 S+ 104.2

Bi+ 70.47 Bi+ 12.68 Se+ 5.808 Se+ 102.6

B� 45 B� 10.47 Te+ 5.892 Te+ 89.5

Al� 57 Al� 10.80 Be� 30 Be� 48.7

Ga� 65 Ga� 10.97 Mg� 30 Mg� 53.5

In� 160 In� 11.61 Zn� 31.4 Zn� 64

Ti� 13.10 Cd� 35.4 Cd� 96.5

C� 26.7 C� 48

Si� 35.2 Si� 203

Ge� 41.2 Ge� 257

Sn� 171
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Fig. 19.6 Illustration of an
edge dislocation

Dislocation
line

Burgers vector b

A

D

C

Fig. 19.7 Illustration of a screw dislocation. (Materials science and engineering: an introduction,
Callister WD, p. 76, Fig. 4.4(a) Copyright # 2000 by John Wiley & Sons, Inc. Reprinted with
permission of Wiley-Liss Inc., a subsidiary of John Wiley & Sons, Inc.)
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line of an edge dislocation and parallel to the line of a screw dislocation. It is often very
complicated to find the Burgers’ vector for a mixed dislocation.

Example

Q: Draw the Burgers’ circuit to show that the Burgers’ vector for an edge
dislocation is perpendicular to the line of the dislocation.

A: Choose a starting point, a direction, and a side length that will be sure to
enclose the edge dislocation. In the figure below, a clockwise direction and a
side length of three were chosen. Then draw a vector from the end point of your
circuit to the starting point of your circuit. This is the Burgers’ vector.
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19.4 Planar Defects

Planar defects, or two-dimensional defects, refer to irregularities in the crystalline
lattice that occur across a planar surface of the crystal. These may be due to an
internal error in the crystal structure, or interfaces between two different materials,
including interfaces with different phases of matter. Internal planar defects include
stacking faults, twin boundaries, grain boundaries, and interphase boundaries, while
external planar defects refer to surface defects caused by an interaction of the crystal
with a gas or liquid environment.

Stacking faults occur when a single plane of atoms within the crystalline lattice
is misoriented or out of order. For example, the cubic close-packed structure
follows an ABCABC stacking order; however, an error in this order such as a
stacking of ABCABABC produces a stacking fault. Figure 19.9 shows an example
of a stacking fault.

Twin boundaries occur when a stacking fault reorients the rest of the crystal,
forming a mirror plane within the crystal. For example, in the ABCABC stacking
order of the cubic close-packed structure, a new stacking order of ABCABACBA
would cause a twin boundary, where the center “B” plane would be a mirror plane. A
schematic of a twin boundary is shown in Fig. 19.10 .

Fig. 19.8 Illustration of a mixed dislocation comprised of one edge dislocation and one screw
dislocation. (Materials science and engineering: an introduction, Callister WD, p. 77, Fig. 4.5
(a) Copyright# 2000 by John Wiley & Sons, Inc. Reprinted with permission of Wiley-Liss Inc., a
subsidiary of John Wiley & Sons, Inc.)
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When two or more single crystals of different orientation meet, grain boundaries
are formed. Two types of grain boundaries are pure tilt boundaries and pure twist
boundaries. Pure tilt boundaries occur when the axis of rotation is parallel to the
plane of the grain boundary, as shown in Fig. 19.10.

Pure twist boundaries, on the other hand, occur when the axis of rotation is
perpendicular to the plane of the grain boundary, as shown in Figs. 19.11 and 19.12.

If the angle of rotation is small enough for these two cases, usually less than 10�–
15�, the grain boundary is referred to as small angle. A small angle pure tilt boundary
can be viewed as a series of parallel edge dislocations, while a small angle pure twist
boundary may be viewed as an array of screw dislocations. The spacing between the
dislocations, D, of low-angle grain boundaries is given in Eq. (19.3), where b is the
magnitude of the Burgers’ vector, which measures the degree of the misalignment
introduced into the lattice due to one dislocation, and θ is the rotation angle.

Fig. 19.9 Schematic diagram of a stacking fault

Fig. 19.10 Schematic
diagram of a twin boundary
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D ¼ b

sin θ
� b

θ
ð19:3Þ

Large-angle grain boundaries and combinations of twist and tilt boundaries lead
to much more complicated structures for grain boundaries. Polycrystalline materials
generally contain many grains of single crystalline material of random orientations
with their neighbors. The size of the grains and the orientation between neighboring
grains have an effect on properties of the polycrystalline material. For instance, a
material with large grains and only a small misorientation between grains would
have properties closer to a single crystalline material than a material with small,
highly disordered grains.

Fig. 19.11 Schematic
diagram of a tilt boundary

Fig. 19.12 Schematic diagram of a twist boundary
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Interphase boundaries occur when one crystalline material shares an interface
with another crystalline material. Depending on the properties of each material, the
interface will be either coherent, semi-coherent, or incoherent.

Coherent interphase boundaries will form when the two materials have similar
geometries and a layer thickness less than the critical thickness for that material
interface. The critical thickness, dcrit, is approximated by Eq. (19.4) where b is the
magnitude of the Burgers’ vector for a dislocation and f is the lattice mismatch
between the two materials. Since the critical thickness is indirectly proportional to
the lattice mismatch of the two materials, in order to have a coherent interface, it is
necessary to have a small enough lattice mismatch in order to have a reasonable
critical thickness (thicker than a few monolayers):

dcrit ¼ b

10 � f ð19:4Þ

While a small amount of strain may be introduced at a coherent boundary, no
defects will be introduced due to the material change. A coherent boundary is shown
in Fig. 19.13.

Semi-coherent interphase boundaries will form when the two materials have
similar geometries but a larger lattice mismatch or the layer thickness exceeds the
critical thickness. In this case, edge dislocations tend to form due to increased strain
within the material. A semi-coherent boundary is shown in Fig. 19.14.

Incoherent interphase boundaries have a highly disordered structure that lack
orientation relationships and have high energies. Little is known about the detailed
structure of this type of interface.

External planar defects occur when the crystal periodicity is interrupted and
bonds are broken, leading to dangling bonds. This occurs at the surface of the crystal
and affects the outermost atomic layers or surface region. When this occurs, the
atoms on the surface have a smaller coordination number, or number of nearest
neighbors, than the atoms in the bulk crystal, and therefore have significantly
different properties than the bulk crystal. The dangling bonds cause the surface to
be more chemically and electrically active.

Fig. 19.13 Schematic of a coherent interphase boundary
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Since it takes energy to break the bonds, creating a surface takes energy, referred
to as surface energy, which is always a positive amount. The surface wants to
minimize its energy by reducing the number of dangling bonds, which it may do
through surface relaxation or surface reconstruction. Surface relaxation is achieved
by a change in the distance between the first and second layers of atoms at the
surface. Typically, the distance is reduced, but there are a few cases where it is
increased. Surface reconstruction occurs when the surface forms a different structure
than the bulk structure. The silicon (001) surface relies on surface reconstruction in
order to minimize its surface energy.

19.5 Volume Defects

Volume defects, also known as bulk defects, are clusters of point defects. Clusters of
defects are produced when the crystal become supersaturated.

Each point defect introduced into a crystal has a certain level of solubility, which
defines the maximum concentration of the impurity in the host crystal. In general,
solubility is temperature dependent and decreases as the crystal is cooled down.
When the concentrations of defects exceed their solubility limit or the crystal is
cooled down after it gets saturated, it becomes supersaturated with that defect. The
crystal under a supersaturated condition tries to achieve an equilibrium condition by
condensing the excess defects into clusters with different phase regions.

Clusters of vacancies forming small regions where there are no atoms are called
voids. High concentration of point defects in semiconductors results in formation of
microvoids. The aggregation of vacancies is increasingly harmful to device perfor-
mance as the size shrinking of devices continues in Si wafers Fig. 19.15 shows an
SEM image of voids in AlGaN.

Clusters of foreign atoms forming small regions of different phase are often called
precipitates. For example, Zn in InP at a doping level exceeding 1 � 1018 cm�3

Fig. 19.14 Schematic of a semi-coherent interphase boundary

636 19 Defects



forms precipitates. Another example is precipitates in silicon which occurs during
the processing of wafers into integrated circuits. There are two foreign particle
formation mechanisms: precipitates and inclusion incorporation. Precipitates are
formed due to the retrograde solubility of native point defects. When the grown
crystal is cooling down, the solidus line is crossed, and nucleation of the second
phase takes place. In contrast to precipitates, inclusions are formed by capturing melt
solution droplet from the diffusion boundary layer adjacent to the growing interface
and enriched by the rejected excess component.

19.6 Defect Characterization

Characterization and analysis of defects is one of the biggest experimental
challenges. There are conventional characterization methods to examine the overall
quality or electrical features of the material such as Hall measurement and x-ray
measurement (see Chap. 18). However, observing and identifying the type of each
defect and the status in the material or devices is not easy because the defects are
usually of atomic size unless they aggregate and form clusters.

When the defects are revealed by special etching techniques, they can be
observed by optical microscopy. This method is called preferential etching. The
basic idea of the method is to make defects visible in a microscope by marking the
surface with small pits or grooves. This happens due to the differing physical and
chemical properties near the defects. The surface is polished and etched with proper
etching solutions that dissolve the material much more quickly around defects than
in perfect regions.

Scanning electron microscope (SEM) has been used for observing large defects in
devices in research and industry. For smaller features, transmission electron micro-
scope (TEM) is now a better choice. Scanning probe microscope (SPM) and atomic
force microscope (AFM) are capable of imaging single atoms. There are also several
analytical methods for detecting impurities such as atomic absorption spectroscopy

Fig. 19.15 SEM image of voids in AlGaN
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(AAS), spark source mass spectrometry (SSMS), secondary ion mass spectrometry,
and local mode infrared absorption.

19.7 Defects Generated During Semiconductor Crystal Growth

As previously mentioned, intrinsic defects will always exist at temperatures above
the absolute zero. In reality, however, the actual defect concentrations in crystals are
much higher than the equilibrium values at room temperature. This is because the
finite defect diffusion rate leads to the freezing-in of a large fraction of the high-
temperature defects produced as the crystal cools down. Therefore, pulling rate and
cooling rate from the melting point are important parameters for crystal growth.

The development of crystal growth technology has been motivated by two major
goals: achieve higher quality of bulk crystals and larger wafer diameters. Higher
quality is necessary because as device sizes continue to shrink, the presence of
defects in crystals becomes more significant. In particular, the aggregation of
vacancies which results in the formation of microvoids is increasingly harmful to
device performance. Large-diameter wafer development is driven by the demand of
cost reduction in the device industry, since larger wafer diameter leads to higher
throughput.

The growth of compound semiconductor single crystals is more complicated and
less studied compared to Si, for instance. In III-V and II-VI semiconductors, the
intrinsic point defect concentration is even greater than the intrinsic carrier concen-
tration and can therefore influence the position of the Fermi level. The details of
crystal growth were discussed in Chap. 17.

19.8 Summary

In this chapter, we discussed defects as imperfections that disturb the periodic
structure of the crystal. The defects were classified into four groups according to
their structural dimension. Point defects (0D), line defects (1D), planar defects (2D),
and volume defects (3D) were explained. Several characterization techniques were
introduced, and some issues regarding semiconductor single crystal growth were
also discussed.

Problems

1. Give some examples of physical properties that defects can change.
2. Identify the types of point defects shown in Fig. 19.1. Please re-sketch the

figure.
3. Calculate the number of vacancies per cubic meter in iron at 750 �C. The energy

for vacancy formation is 1.08 eV/atom. Also, the density and atomic weight for
Fe are 7.65 g�cm�3 and 55.85 g�mol�1, respectively. Assume A is unity.
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4. Find the equilibrium concentration of defects for T ¼ 0, 200, 400, 600, 800,
1000, and 1200 K if the energy to form a defect is 1 eV/atom. Assume A is unity.
Graph your results. For T ¼ 1200 K, how many atoms per single vacancy are
present?

5. The formation energies of vacancy clusters in Si are listed below. Calculate the
formation energy of (i) system a (30 single vacancies), (ii) system B (five
6-vacancy clusters), and (iii) system C (three 10-vacancy clusters). Which
system has the lowest formation energy? Why?

(Cluster shapes reprinted with permission from Europhys Lett Vol. 43, p. 697,
Fig. 1, Bongiorno A, Colombo L, and Diaz de la Rubia T, “Structural and
binding properties of vacancy clusters in silicon,” p. 697. Copyright 1998, EPD
Sciences.)

Size 1 6 10

Energy (eV) 3.4 11.4 15.6

6. Briefly describe the difference between an edge dislocation and a screw
dislocation.

7. Show how to find the Burgers’ vector for a screw dislocation.
8. GaAs/InAs have a 7.2% lattice mismatch. How many monolayers of InAs may be

grown on GaAs before a semi-coherent boundary is formed? (aGaAs ¼ 0.565 nm
aInAs ¼ 0.606 nm, assume b ¼ aInAs=

ffiffiffi
2

p
).

9. What is preferential etching?
10. What have been the goals of the semiconductor industry in silicon crystal

growth technology? Why?
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Appendices

A.1 Physical Constants

Angstrom unit Å 10�10 m ¼ 10�8 cm ¼ 10�4 μm
Avogadro constant N A 6.02204 � 1023 mol�1

Bohr radius a0 0.52917 Å
Boltzmann constant kb 1.38066 � 10�23 J�K�1 (¼ R/N A)

8.61738 � 10�5 eV�K�1

Calorie cal 4.184 J
Elementary charge q 1.60218 � 10�19 C
Electron rest mass m0 0.91095 � 10�30 kg
Electron Volt eV 1.60218 � 10�19 J

23.053 kcal�mol�1

Gravitational constant g 9.81 m�s�2

Gas constant R 1.98719 cal�mol�1�K�1

8.31440 J�mol�1�K�1

Permeability in vacuum μ0 4π10�9 ¼ 1.25633 � 10�6 H�m�1

Permittivity in vacuum ε0 8.85418 � 10�12 F�m�1 (¼1/μ0c2)
Planck’s constant h 6.62617 � 10�34 J�s
Reduced Planck’s constant h 1.05458 � 10�34 J�s (¼ h/2π)
Proton rest mass Mp 1.67264 � 10�27 kg
Standard atmosphere atm 1.01325 � 105 N�m�2

Thermal voltage at 300 K kbT/q 0.0259 V
Velocity of light in vacuum c 2.99792 � 108 m�s�1

Wavelength of 1-eV quantum λ 1.23977 μm

# Springer International Publishing AG, part of Springer Nature 2019
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https://doi.org/10.1007/978-3-319-75708-7
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A.2 International System of Units (SI Units)

Base units

Quantity Unit name Unit symbol

Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Prefixes

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10�1 deci d
1021 zetta Z 10�2 centi c
1018 exa E 10�3 milli m
1015 peta P 10�6 micro μ
1012 tera T 10�9 nano n
109 giga G 10�12 pico p
106 mega M 10�15 femto f
103 kilo k 10�18 atto a
102 hecto h 10�21 zepto z
101 deka da 10�24 yocto y

Derived units

Quantity Special name Unit
symbol

Dimension

Angle radian – rad
Solid angle steradian – sr
Speed, velocity – – m�s�1

Acceleration – – m�s�2

Angular velocity,
frequency

– rad�s�1

Angular acceleration – – rad�s�2

Frequency hertz Hz s�1

Force newton N kg�m�s�2

Pressure, stress pascal Pa N�m�2

Work, energy, heat joule J N�m, kg�m2�s�2

Power watt W J�s
Electric charge coulomb C A�s
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Electric potential volt V J�C�1, W�A�1

Resistance ohm Ω V�A�1

Conductance siemens S A�V�1, Ω�1

Magnetic flux weber Wb V�s
Inductance henry H Wb�A�1

Capacitance farad F C�V�1

Electric field strength – – V�m�1, N�C�1

Magnetic induction tesla T Wb�m�2, N�A�1�m�1

Electric displacement – – C�m�2

Magnetic field strength – – A�m�1

Celsius temperature degrees
Celsius

�C K

Luminous flux lumen lm cd�sr
Illuminance lux lx lm�m�2

Radioactivity becquerel Bq s�1

Catalytic activity katal kat mol�s�1

A.3 Physical Properties of Elements in the Periodic Table

The following figures summarize the general physical properties of most elements in
the periodic table. These include their natural forms (Fig. A.1) with the structure in
which they crystallize, their density of mass (Fig. A.2), boiling point (Fig. A.3),
melting point (Fig. A.4), thermal conductivity (Fig. A.5), molar volume (Fig. A.6),
specific heat (Fig. A.7), atomic radius (Fig. A.8), oxidation states (Fig. A.9), ionic
radius (Fig. A.10), electronegativity (Fig. A.11), and electron affinity (Fig. A.12).

A.3.1 Chapter 2: Atomic Orbital

Generalities and Description
Since the discovery of the Schrödinger equation in 1925, it is well known that
quantum particles such as electrons can be described as both particles (in the
classical approach) and as wave. The wave description of an electron states implies
that position cannot be fully known; instead, a wavefunction is required to describe
the probability of finding any electron in a given region.

When electrons are linked to the nucleus of an atom, they cannot occupy all the
available positions around the nucleus, and their position is quantified in confined
regions called atomic orbital. An atomic orbital is a mathematical function describ-
ing the wave behavior of electrons in one of these confined regions (Fig. A.13).

Each atomic orbital is distinguished by three quantum numbers: n, l, and m.
n is a positive integer called the principal quantum number, l is an integer

between 0 and n � 1 called the azimuthal or angular quantum number, and m is
an integer between �l and l called the magnetic quantum number.
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Any given (n, l, m) corresponds to one atomic orbital and can hold two electrons
because of the Pauli principle. These two electrons thus have opposite spin.

The principal quantum number n refers to one shell of electrons around the
nucleus and describes the size of orbitals. The higher this number, the farther is
the shell from the nucleus. The completion of this layer with electrons describes the
number of covalent bond which can be formed, and thus the n shell of an atom is
primordial I the description of its properties.

For a given n, the azimuthal number l refers to one particular orbital atomic in the
n shell and describes the shape of the orbital.

l ¼ 0 corresponds to an s orbital (sharp)
l ¼ 1 corresponds to a p orbital (principal)
l ¼ 2 corresponds to a d orbital (diffuse)
l ¼ 3 corresponds to an f orbital (fundamental)

The magnetic quantum number m describes the orientation of orbitals in space.
For a given atom of known atomic number, the atomic electrons occupy orbitals

from the lower shells with low-energy to the highest-energy shells.
The Aufbau principle (or Pauli rule) states which orbital are occupied by electrons

for a given atom:

In this representation, the number corresponds to the principal quantum number
n, while the letter (s, p, d, or f) gives the azimuthal quantum number l. The magnetic

z
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z z

y yx x
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n = 1
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Fig. A.13 Sketch of 1s, 2s, and 2p atomic orbital wavefunctions
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quantum number is not represented and is suggested by the value of l since m is
between �l and l. The red arrow gives the order in which the atomic orbital is filled.
This order is the same for all atoms.

Example 1 Helium (He), two electrons.
First, the 1s orbital is filled. This orbital corresponds to n ¼ 1, l ¼ 0. Since m is

between �l and l, the only value possible for m is 0. Thus the 1s orbital corresponds
to (n, l, m) ¼ (1, 0, 0). The Pauli principle states that this orbital can hold two
electrons. Thus for helium, the electronic configuration is 1s2.

Example 2 Carbon (C), 6 electrons.
First the 1s orbital is filled and can hold two electrons, similarly to the

helium atom.

Then the 2s orbital is filled. This orbital corresponds to n¼ 2, l¼ 0, which forces
m ¼ 0. Thus, the 2s orbital corresponds to the (n, l, m) ¼ (2, 0, 0) configuration and
can hold two electrons.

Then the 2p orbital is filled. This orbital corresponds to n ¼ 2 and l ¼ 1. Since
l ¼ 1, the values possible for m are �1, 0, and 1. Thus the 2p orbital contains the
three configurations (2, 1, �1), (2, 1, 0), and (2, 1, 1) and can hold a total of six
electrons. The last two electrons of carbon can thus be contained in the 2p orbital.
This 2p is not completely filled for the carbon atom and can hold four more electrons.

This explains why the carbon atom can be involved in four covalent bonds.
The electronic configuration of carbon is written 1s2 2s2 2p2 or [He] 2s2 2p2.
A question remains unanswered: There are three p orbitals (px, py, pz) in the 2p

subshell, and these orbitals of same energy levels, called degenerate levels, are
equivalent. Does the second electron go into the same orbital as the first, or does it
go to another p orbital? To answer this question, we can use Hund’s rule. This rule
states that when filling the orbitals, one electron is added to each degenerate orbital
before two electrons are added to the same orbital. Moreover, all the first electrons
added to the degenerate orbitals have the same spin orientation.

As a result, the electrons in the 2p orbitals for carbon can be represented as
follows:

A.3.2 Tight-Binding Method

For being one the most fundamental theoretical calculation tool in crystalline
structure band energy modeling, multiple books concerning tight-binding method
can be found in the literature, such as in Razeghi (1989). It is similar to the LCAO
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(linear combination of atomic orbital) used in chemistry: Both models are approxi-
mation and rely on the periodicity of crystalline structures in order to model the
interactions between atoms.

Understanding the tight-binding method is primordial, and this textbook assumes
that its basic concepts are known. Yet, this appendix offers an overview of the
method based on the example of a one-dimensional periodic structure composed of
one type of atom. The similarity between the results obtained here and the equations
found in the chapter can be easily noticed.

Bloch’s Theorem
Let’s consider a crystalline structure in which the atoms are assumed to be perfectly
arranged, so that they introduce a periodic, infinite potential. This potential V has the
same periodicity as the crystalline structure.

Without loss of generalities, the Schrödinger equation for an electron inside the
crystalline structure can be written:

bHψ
�
r
!� ¼ � h2

2m
Δþ V

�
r
!�� �

ψ rð Þ ¼ Eψ
�
r
!� ð1Þ

where E is the energy eigenvalue of the Hamiltonian operator.
The Bloch’s theorem states that given a periodic potential V, the eigenstates ψ of

the one-electron Hamiltonian (1) with periodic potential can be written as the
product of a plane wave with a periodic function in the Bravais lattice of the solid.
In other words:

ψ
nk
!
�
r
!� ¼ eik

!
r
!
u
nk
!
�
r
!� ð2Þ

where u
nk
!
�
r
! þ R

!� ¼ u
nk
!
�
r
! þ R

!�
for any R

!
of the Bravais lattice.From Bloch’s

theorem (2), we get the following result: Any wavefunction which is eigenstate of a
Hamiltonian with periodic potential verifies:

ψ
nk
!
�
r
! þ R

!� ¼ eik
!
R
!
ψ
nk
!
�
r
!� ð3Þ

This means that when the physical space in real space is shifted of a vector from the

Bravais lattice R
!
, only the phase of the wavefunction is affected.

The Tight-Binding Method: Generalities
Let’s define the ϕn

�
r
!�

atomic orbitals, which are eigenstates of the Hamiltonian Hat

of a single atom. When this atom is placed inside a crystalline structure, the electrons
inside the structure can no longer be considered as a collection of isolated electrons,
since the low distance between atoms makes valence electrons interact with each
other. In other words, the atomic orbitals overlap adjacent atomic sites and thus are
no longer eigenstates of the new Hamiltonian of the crystal. One of the assumptions
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of the tight-binding model is that the Hamiltonian of the crystal can be still described
as the sum of Hamiltonian of each single atom with a small perturbation:

bH�
r
!� ¼ X

Rn

!

bHat

�
r
! �R

!
n

�þ ΔU
�
r
!� ð4Þ

where R
!
n
locates all the atomic sites inside the crystal and ΔU

�
r
!�

is the potential

energy of interaction between atomic sites and is considered as a perturbation.
Since the effect of interaction between atoms is considered small, in the tight-

binding method, one writes the solution of the Hamiltonian crystal as combination of
atomic orbitals described above. In other words, we write any eigenstate of the
Hamiltonian (3) in this form:

ψ k

�
r
!� ¼ X

Rn

!

X
m

cm
�
Rn

! �
ϕm

�
r
! � Rn

! � ð5Þ

where the first sum is over each atom of the crystalline structure and the second sum

is over the different atomic orbitals of a single isolated atom. The cm
�
Rn

! �
are

constants that need to be solved. The two following steps are dedicated to finding the
value of these constants.

First of all, the Bloch’s theorem states that ψ k

�
r
!�

has the same period as the
crystalline structure, so that we can write:

ψ k

�
r
! þ Rn

! � ¼ eik
!
Rn

!
ψ k

�
r
!� ð6Þ

The reader can easily verify that this equation leads to the following result:

bm
�
Rn

! � ¼ eik
!
Rn

!
bm

�
0
! � ð7Þ

Then, the normalization of wavefunction to unity can be written:

ð
ψ k

∗
�
r
!�

ψ k

�
r
!�

d3r ¼ 1 ð8Þ

which after simplifications and neglecting atomic overlap integrals gives the follow-
ing result:

bm
�
0
! � ’ 1ffiffiffiffiffi

N:
p ð9Þ

Using (4), (5), and (6) that the actual form of any eigenstate is:
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ψ k

�
r
!� ’ 1ffiffiffiffi

N
p

X
Rn

!

X
m

eik
!
Rn

!
ϕm

�
r
! � Rn

! � ð10Þ

In this equation, the first sum is labeled over the position Rn

!
of every atom in the

crystalline structure, and the second sum is labeled over the different valence orbitals
of a given isolated atom.

Example
Let’s give an example of use of the tight-binding method for a one-dimensional
crystalline structure composed of one type of atom. Moreover, we assume that this
atom only has one valence atomic orbital.

As seen in the previous section, any eigenstate of the Hamiltonian can be written

ψ k

�
r
!� ’ 1ffiffiffiffi

N
p

X
Rn

!

X
m

eik
!
Rn

!
ϕm

�
r
! � Rn

! �
. For this example, m ¼ 1, since the atom

only has one valence orbital. Let N be the total number of atoms in the structure, and

let’s use a more condensed formalism where j k >¼ ψ k

�
r
!�

and j n >¼ ϕ
�
r
! � Rn

! �
,

so that:

j k >¼ 1ffiffiffiffi
N

p
XN
n¼1

einka j n >

where a is the distance between atoms.
We then assume that the orbital wavefunctions of only closest atoms overlap so

that in the Hamiltonian matrix, all components <i|H|j > ¼ Hi, j are equal to zero,
except the tridiagonal values.

In other words:

< i Hj jj >¼ 0 if j i� j j> 1
< i Hj ji >¼ E0

< i� 1 Hj ji >¼ �Δ

8<
:

where –Δ can be interpreted as the bonding energy between atoms. In addition, we
write the normalization equation between atoms wavefunction as:

< i i >¼ 1 and < i� 1j ji >¼ S < 1

Since jk> is eigenstate of the Hamiltonian, we can determine its corresponding
eigenvalue by writing:

bH k >¼ Ej jk >¼ 1ffiffiffiffi
N

p
XN
n¼1

einka bH j n >

which, after multiplying on the left by <kj, leads to:
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< k j bH k >¼< kjEkj jk >¼ Ek ¼ 1
N

XN
n¼1

XN
m¼1

ei n�mð Þka < m Hj jn >

And:

Ek ¼ 1
N

XN
n¼1

< n Hj jn > þ1
N

XN
n¼1

< n� 1 Hj jn > eþika

þ1
N

XN
n¼1

< n� 1 Hj jn > e�ika

Thus the dispersion relation inside the crystal can is:

Ek ¼ E kð Þ ¼ E0 � 2Δcos kað Þ

5.0

4.0

3.0

E [eV]

2.0

1.0

0.0
0.0 0.5 1.0 1.5

ka
2.0 2.5 3.0

The result obtained here can be reproduced for different crystal structures and
atomic orbitals.

A.4 Physical Properties of Important Semiconductors

Semiconductor

Bandgap energy (eV) Band

ε300 K 0 K

Element C 5.47 5.48 Indirect 5.7

Si 1.12 1.17 Indirect 11.9

Ge 0.66 0.74 Indirect 16.0

Sn 0.082 Direct

IV-IV α-SiC 2.996 3.03 Indirect 10.0

(continued)
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Semiconductor

Bandgap energy (eV) Band

ε300 K 0 K

III-V BN ~7.5 Indirect 7.1

GaN 3.36 3.50 Direct 12.2

GaP 2.26 2.34 Indirect 11.1

BP 2.0

AlSb 1.58 1.68 Indirect 14.4

GaAs 1.42 1.52 Direct 13.1

InP 1.35 1.42 Direct 12.4

GaSb 0.72 0.81 Direct 15.7

InAs 0.36 0.42 Direct 14.6

InSb 0.17 0.23 Direct 17.7

II-VI ZnS 3.68 3.84 Direct 5.2

ZnO 3.35 3.42 Direct 9.0

CdS 2.42 2.56 Direct 5.4

CdSe 1.70 1.85 Direct 10.0

CdTe 1.56 Direct 10.2

IV-VI PbS 0.41 0.286 Indirect 17.0

PbTe 0.31 0.19 Indirect 30.0

Semiconductor Intrinsic carrier concentration at 300 K (cm�3)

Ge 2.4 � 1013

Si 1.45 � 1010

GaAs 2.15 � 106

Semiconductor

Mobility at 300 K (cm2/Vs)
Effective masses
(in units of m0)

Electrons Holes
Electrons
me

Holes
mh

Element C 1800 1200 0.2 0.25

Si 1500 450 0.98a

0.19b
0.16c

0.49d

Ge 3900 1900 1.64a

0.082b
0.04c

0.28d

Sn 1400 1200

IV-IV α-SiC 400 50 0.60 1.00

III-V BN

GaN 380 0.19 0.60

GaP 100 75 0.82 0.60

BP

AlSb 200 420 0.12 0.98

GaAs 8500 400 0.067 0.082c

0.45d

InP 4600 150 0.077 0.64

(continued)
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Semiconductor

Mobility at 300 K (cm2/Vs)
Effective masses
(in units of m0)

Electrons Holes
Electrons
me

Holes
mh

GaSb 5000 850 0.42 0.04c

0.4d

InAs 33,000 460 0.023 0.40

InSb 80,000 1250 0.0145 0.40

II-VI ZnS 165 5 0.40

ZnO 200 180 0.27

CdS 340 50 0.21 0.80

CdSe 800 0.13 0.45

CdTe 1050 100

IV-VI PbS 600 700 0.25 0.25

PbTe 6000 4000 0.17 0.20
aLongitudinal effective mass
bTransverse effective mass
cLight-hole effective mass
dHeavy-hole effective mass

A.5 The Taylor Expansion

The Taylor expansion is a powerful mathematical method which yields a simple
polynomial approximation for any mathematical function near a given point.

Let us consider a function f which can be differentiated at least (n + 1) times at
x ¼ x0. The Taylor expansion is such that the value of f at any point x can be
determined from its value and that of its n consecutive derivatives at x0 through:

f xð Þ ¼ f x0ð Þ þ f 0 x0ð Þ x� x0ð Þ þ f 00 x0ð Þ
2!

x� x0ð Þ2 þ . . .

. . .þ f nð Þ x0ð Þ
n!

x� x0ð Þn þ Rn

ðA:1Þ

where Rn is called the remainder and is equal to:

Rn ¼ f nþ1ð Þ ξð Þ
nþ 1ð Þ! x� x0ð Þnþ1 ðA:2Þ

for an appropriate value ξ such that |ξ � x0| � |x � x0|.
As a result of this expansion, an approximate value of the function f near the point

x¼ x0 is obtained by neglecting the remainder Rn in Eq. (A.2). In principle, the more
terms one chooses to keep in the expansion, the more accurate result one will get. Rn

is used to evaluate the magnitude of the calculation error. It is often useful to carry
the Taylor expansion near an extremum of the function f because some of its
derivatives are then equal to zero, and a simplified expression is obtained.

Appendices 663



A few examples of Taylor expansion for commonly used functions are given
below:

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � � ¼

X1
n¼0

xn

n!
ðA:3Þ

sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
þ�� � � ¼

X1
n¼0

�1ð Þnx2nþ1

2nþ 1ð Þ! ðA:4Þ

cos x ¼ 1� x2

2!
þ x3

3!
� x5

5!
þ�� � � ¼

X1
n¼0

�1ð Þnx2n
2nð Þ! ðA:5Þ

ln 1þ xð Þ ¼ x� x2

2
þ x3

3
�þ� � � ¼

X1
n¼0

�1ð Þnþ1xn

n
ðA:6Þ

There exist convergence ranges in evaluating the infinite sums inEq. (A.6) to
Eq. (A.5). This means that the Taylor expansion will no longer be valid when trying
to evaluate the sums for a value of x outside the convergence range. For example, the
convergence range for ex, sin(x), and cos(x) is (�1, +1), whereas the convergence
range for Ln(1 � x) is (�1, 1].

A.6 Fourier Series and the Fourier Transform

Fourier Series
A function f(t) is periodic with a period Twhen it satisfies f(t + T )¼ f(t) for any value
of t. If such a periodic function is also piecewise continuous, then it can be written as
the sum of trigonometric functions such that:

f tð Þ ¼ a0
2
þ
X1
n¼1

an cos nwtð Þ þ bn sin nwtð Þð Þ ðA:7Þ

where we have denoted w ¼ 2π
T , and:

a0 ¼ 2
T

ðT2
�T

2

f tð Þdt ðA:8Þ

an ¼ 2
T

ðT2
�T

2

f tð Þ cos nwtð Þdt ðA:9Þ
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bn ¼ 2
T

ðT2
�T

2

f tð Þ sin nwtð Þdt ðA:10Þ

Such a sum of trigonometric functions is called the Fourier series of f(t), and the
coefficients an and bn are called its Fourier coefficients. The usefulness of such a
mathematical expansion lies in its physical interpretation. Indeed, one can see that a
periodic function of time can be decomposed into individual sine-like and cosine-
like components, each periodic with a frequency nw where n is an integer. The
magnitude of each component is given by the Fourier coefficients an and bn. One can
therefore obtain a “spectrum of frequencies” for the original function, which finds a
number of applications in physics phenomena.

For example, the Fourier expansion of the function shown in Fig. A.14 is:

f tð Þ ¼ τ

T
þ
X1
n¼1

1
nπ

sin nw τ cos nwt þ 1� cos nwτð Þ sin nwt½ � ðA:11Þ

Fourier Transformation
The Fourier transformation is a mathematical operation which consists of associating
to a given function f a second function, called its Fourier transform F. The functions
f and F do not operate on the same variables. The Fourier transform is similar to a
Fourier series but can be applied to a general function f(t) as long as it is pulse-like

and
ð1
�1

f tð Þj jdt < 1. Its Fourier transform F is then defined by:

F wð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1

�1
f tð Þe�iwtdt ðA:12Þ

Note that the Fourier transform F operates on frequencies w, whereas the original
function f operates on time t. The Fourier transform plays the same role as the Fourier
coefficients in Eq. (A.12), except that the summations on frequencies are now
continuous rather than discrete. The original function f can be expressed in terms
of its Fourier transform F through:

t

1

f(t)

Tt0

Fig. A.14 Example of
periodic function used to
illustrate the concept of
Fourier series
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f tð Þ ¼ 1ffiffiffiffiffi
2π

p
ð1

�1
F wð Þeiwtdw ðA:13Þ

For example, the Fourier transform of the function shown in Fig. A.15 is:

F wð Þ ¼ 1� e�iwT

iw
ffiffiffiffiffi
2π

p ðA:14Þ

A.7 The Pseudopotential Approach

When we want to calculate the band structure of a solid from first principles and
write down the exact Hamiltonian of the system, we are confronted with a very
difficult problem because not only do we have the Coulomb potential of the nuclear
charges, but we also have the electron-electron interaction of the other electrons in
the system to deal with. The way to avoid it is to make some simplifications, which
keep the essence of the problem and make the solution tractable. We use the insight
that we have and argue that, surely, it is possible to assume that the strongly bound
full shells around the atom are not participating in the banding of the solid and they
can be separated out, i.e., excluded from the banding electrons. The valence
electrons can be treated separately and do not see the full potential of the nucleus.
We know already from Chap. 4 that the outer shell electrons see a screened potential
because the core electrons screen out the full nuclear attraction. But this is not all, we
do not want to just take into account the screening, which is a many body effect, but
go further and not allow the valence states to be mixed in the core states at all. So
there are two effects to be considered. One is the screening, which can be considered
to give rise to an effective nuclear charge and can be treated using the self-consistent
“Hartree-Fock method”. The other is projecting out the core eigenstates out of the
solutions altogether. The latter is the pseudopotential method. In the pseudopotential
method, one first decides which core states must be projected out. One does this by
making the sought after Bloch wavefunctions orthogonal to these core states. Then
one derives the effective potential for which these new Bloch states are the
eigenfunction solution of the Schrödinger equation.

t

1

f(t)

T0

Fig. A.15 Example of an
arbitrarily chosen function
used to illustrate the concept
of Fourier transform
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This procedure then makes the envelope wavefunction of the Bloch wave u
k
! in:

Ψ
k
!
�
r
!� ¼ u

k
!
�
r
!�

eik
!
: r
! ðA:15Þ

a much more smooth function than it would be if it were subject to the full or even
screened Coulomb potential of the lattice ions. How do we find an approximation for
this effective potential? In a naïve way, we have done this already in the Kronig-
Penney model in Chap. 5. The Kronig-Penney model is indeed a truncated
pseudopotential approximation to the true potential, but it is constructed in an ad
hoc manner, without a well-defined prescription. The pseudopotentials used to
calculate the band structure of solids are however derived using well-defined
prescriptions.

One of the assumptions is that the basis states of all the electrons in the solid are
constituted by core electron wavefunctions ϕj and valence electron wavefunctions χk
and that these can be made orthogonal to each other. One then constructs the
eigenstates of interest, namely, for the higher valence energy level states. These
are built to avoid the core regions occupied by the core electrons. An example is as
follows. Assuming b

nk
! ¼

X
s
!

ei
�k:sbn

�
r
! � s

!�
is a core function solution of the

Schrödinger equation with energy En, we construct a more extended valence state
which is made orthogonal to the core states and is of the form:

Ψ
k
! ¼

X
g
!

α
k
!
�g

!χ
k
!
�g

! ðA:16Þ

χ
k
! ¼ eik

!
: r
! �

X
j

a jb
j k
! ðA:17Þ

The aj are selected to make the valence wavefunctions orthogonal to the core
states. This new wavefunction has the core states projected out of it and is forced to
also satisfy the Schrödinger equation. The projected states however introduce a new
term in the SE which plays the role of a potential. The new term due to the core
states, when combined with the old, gives us now an effective potential, which repels
the valence electrons out of the core region, making the effective potential much
more smooth than the original one. The pseudopotential method is a way of
projecting out the core functions, out of what would normally be the total
wavefunction, so that the more loosely bound valence functions avoid the region,
which is normally filled by the core states. They do not see the strong Coulomb field
anymore because they are forced to adopt a higher orbital or what is in effect a more
loosely bound character near the core.

The two methods, Hartree-Fock self-consistent field or “HFT” method, which
takes care of the potential of the other electrons and the Pauli principle, and the
pseudopotential method, which forces the higher levels to avoid being core-like, can
in principle be combined to produce an accurate band structure calculation. The HFT
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method assumes that the Coulomb potential of the other electrons can be treated as
an average potential, which can be evaluated self-consistently. It also assumes that
the many particle wavefunctions are Slater determinants of Bloch functions so that
they automatically satisfy the Pauli principle. The details of the “Pseudopotential and
HFT” are beyond the scope of this book, and the reader is referred to the specialized
works in the books by Ziman (1998), Callaway (1964), and Harrison (1966).

Further Reading

Callaway J (1964) Energy Band Theory. Academic Press, New York

Chuang SL (1995) Physics of Optoelectronic Devices. Wiley, New York

Harrison WA (1966) Pseudopotentials in the Theory of Metals. W.A. Benjamin, New York

Ziman JM (1998) Principles of the Theory of Solids. Cambridge University Press, Cambridge

A.8 The Monte-Carlo Method

Scattering in a Crystal
Electrons in a crystal with a given band structure can be considered as a collection of

free particles. In the six-dimensional phase space of momentum k
!
and space r

!
, we

can represent each electron by a point of coordinates
�
r
!
; k
!�

. As we have seen in
Sect. 5.2.6, the motion of the electron is described by:

h
d k

!

dt
¼ q

�
E
! þ v

! � B
!� ðA:18Þ

where k
!
is the wavevector of the electron, q the electric charge, E

!
the electric field, v

!

the velocity, and B
!
the magnetic field. In this appendix, we are going to study only

the action of an electric field on the electron, so we putB
!¼0

!
. Under these conditions,

the electrons start their journey by following a ballistic trajectory (they are freely
accelerated). However, this motion is interrupted by collisions with atoms,
impurities, etc., which we will consider as scattering events. As a result, the
movement of the particles is far more complex, and it is useful to describe the

motion of the electrons by a distribution function f
�
k
!
; r
!
; t
�
, which is the average

occupancy of a point in the above phase space.
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The time evolution of this function is described by the Boltzmann equation:

∂ f

∂t
þ v

! �∇
!

r
!f þ d k

!

dt
�∇
!

k
!f ¼ ∂ f

∂t

� �
coll

ðA:19Þ

where, together with Eq. (A.18), the LHS describes all the ways the function evolves
in phase space when subject to an electric and magnetic field.

If ∂ f
∂t

� �
coll

dt describes the variation of the distribution during dt due to the

collisions, the global variation can be written:

f
�
r
! þd r

!
; k
!
þd k

!
; t þ dt

� ¼ f
�
r
!
; k
!
; t
�þ ∂ f

∂t

� �
coll

dt ðA:20Þ

to first order:

f
�
r
!
; k
!
; t
�þ ∂ f

∂t
dt þ∇

!
r
!f � d r

! þ∇
!

k
!f � d k

!
¼ f

�
r
!
; k
!
; t
�þ ∂ f

∂t

� �
coll

dt ðA:21Þ

∂ f

∂t
þ∇

!
r
!f � d r

!

dt
þ∇

!
k
!f � d k

!

dt
¼ ∂ f

∂t

� �
coll

ðA:22Þ

Using F
!¼ h

d k
!

dt
¼ q

�
E
! þ v

! � B
!�

, we get:

∂ f

∂t
þ∇

!
r
!f � v! þ∇

!
k
!f � F

!

h
¼ ∂ f

∂t

� �
coll

ðA:23Þ

This equation states that the changes of the distribution function with time
(represented by the first term on the LHS of this equation) are determined by the
flow of electrons in real space (the second term in the LHS of the equation) and by

the flow of electrons in k
!
-space (the last term in the LHS of the equation) and the

collisions (right-hand side of the equation). The right-hand side describes the effects
of the many different types of scattering mechanisms, which are active, including
optical phonon scattering, acoustic scattering, impurity scattering, etc., so that it is

often very difficult to solve for f
�
k
!
; r
!
; t
�
analytically. However, given the scattering

rates, a numerical solution or simulation of this equation, which is called the Monte-
Carlo simulation, is always possible. This so-called Monte-Carlo method is a
powerful tool and is becoming more and more popular.

Monte-Carlo Simulation
The idea of this method, introduced in the 1960s (see Shur 1990), is to simulate the

motion of the particle in k
!
-space while keeping track of it in real space. In this model,
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we consider that the motion of the electron is well described by Eq. (A.18) between
two scattering events. But this free flight is interrupted by scattering processes that
occur with a rate λi (i stands for the scattering process that we are considering). These
processes are instantaneous events and change only the wavevector of the electron.
They can be visualized as the particle disappearing and reappearing instantaneously
at a different point of phase space (see Fig. A.16). If we observe a single electron for
a sufficiently long time, the distribution of the times that the electron spends in the

vicinity of different points in k
!
-space will reproduce the shape of f

�
k
!
; r
!
; t
�
.

The Monte-Carlo simulation can be divided into three different parts. First, we
generate randomly with a computer the time remaining before the next scattering
event. Then, between the two scattering events, we determine the motion of the
electron using Eq. (A.22). Finally, we generate randomly the new direction of the
wavevector.

• For the purpose of this simulation, we introduce a scattering rate Γ ¼
Xn
i¼1

λi
�
k
!�

þλ0 where we have introduced an artificial scattering mechanism, with a rate λ0,
so that Г is a constant (finite). This self-scattering process interrupts the motion
but does not change the momentum in any way. It can be described by the

probability W0
�
k
!
; k
!0� ¼ λ∘

�
k
!�

δ
�
k
!
�k

!0�. This rate is simply a mathematical
tool used to make the global rate of the scattering events constant. In order not to
change the rate too much, we choose λ0 as small as possible. Thus, the probability
of a scattering event between t and t + dt can be described by P(t)dt ¼ e�Γtdt. We

e– after scattering

e–

E

e– before scattering
Defect

e– after scattering
qi

qf

kx

x

Scattering

Fig. A.16 On the left, sketch of the scattering of an electron by an impurity. On the right,
illustration of the disappearance and the appearance of the electron in the phase space
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use this distribution of probabilities to generate random times ts between one
collision and the following one (ts ¼ � 1/Γ ln (1 � r), with r a random number
between 0 and 1, follows this distribution).

• During these times ts, the motion of the electron is well described by Eq. (A.18)

with B
!¼0

!
so that k

!
tð Þ ¼ k

!

0
þ q E

!

h
t, where k

!

0
is the wavevector just after the

previous collision, and r
!

tð Þ � r
!
0
¼

ð t

t0

v
!
g
t0ð Þdt0 ¼

ð t

t0

1
h
∇

k
!Edt0, where r

!
0
is the

position of the particle in real space after the previous collision.
• The next step is to generate randomly the wavevector after each scattering event.

But, before that, we need to determine which mechanism is responsible for the
scattering. In order to find out which law we have to apply to generate the new
wavevector, we assume that the probability of occurrence of one given process is
proportional to its rate. To choose a mechanism, we generate randomly a number
A, distributed with equal probability between 0 and Г, and we test the inequalityXm

i¼0
λi
�
k
!�

> A. The first value of m satisfying this inequality is the scattering

process we are going to use. We use the distribution function of probabilities of
this mechanism to generate randomly the wavevector after the scattering event.

We repeat these three steps as long as we need to get a good approximation of

f
�
k
!
; r
!
; t
�
. A criterion to stop our stimulation is to repeat the scenario until the

differences in the drift velocity, for example, converge to a small enough number.
Thanks to this procedure, we are able to simulate the movement of the electron in

the crystal. Then, we represent in a histogram the time that the electron spent in each
cell of the phase space. It has been demonstrated that this histogram is proportional

to the distribution function f
�
k
!
; r
!
; t
�
when t tends to infinity.

Applications
The Monte-Carlo simulation is a useful tool to calculate quantities like the time spent
in the valleys of a semiconductor or the diffusion coefficients of a material. It shows
a good agreement with experiment as you can see in Fig. A.17. It can also be used to
investigate the electron transport in small semiconductor devices. But this method
only allows us to study a relatively small number of free electrons in the semicon-
ductor: Typically 1 million electrons. The idea is that, for example, 1 million is
enough to reproduce the behavior of all the particles. An example of a real space
trajectory is shown in Fig. A.18.
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A.9 The Thermionic Emission

The thermionic emission theory is a semiclassical approach developed by Bethe
(1942), which accurately describes the transport of electrons through a
semiconductor-metal junction. The parameters taken into account are the tempera-
ture T, the energy barrier height qΦB, and the bias voltage V between the far ends of
the semiconductor and the metal. These quantities are illustrated in Fig. A.19.

Fig. A.17 Measured and
calculated drift velocity
(Reprinted from Solid State
Electronics Vol. 23, Pozhela,
J., & Reklaitis, A., “Electron
transport properties in GaAs at
high electric fields,” Fig. 7,
p. 931, Copyright 2005, with
permission from Elsevier)

Fig. A.18 Simulation of the
motion of an electron under an
electric field E in the
x-direction (ten collisions are
simulated). The motion of the
electron starts at the origin and
evolves randomly. This figure
represents the trajectory of the
electron in real space
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The theory is based on the following three assumptions: (i) The energy barrier
height qΦB at the interface is much higher than kbT, (ii) the junction plane is at
thermal equilibrium, and (iii) this equilibrium is not affected by the presence of an
electrical current. By assuming these, the thermionic emission current only depends
on the energy barrier height and not its spatial profile. Furthermore, the total current
is therefore the sum of the current from the semiconductor into the metal, denoted
Js ! m, and that of the metal into the semiconductor, denoted Jm ! s.

To calculate the first current, Js ! m, the theory assumes that the energy of the
electrons in the conduction band is purely kinetic and that their velocity is distributed
isotropically. The current density from the semiconductor into the metal can be
calculated by summing the current contribution from all the electrons that have an
energy higher than the barrier qΦB and that have a velocity component from the
semiconductor toward the metal. This results in the following expression:

Js!m ¼ 4πqm∗k2b
h3

� �
T2e�

qΦB
kbT e

qV
kbT ðA:24Þ

or:

Js!m ¼ A∗T2e�
qΦB
kbT e

qV
kbT ðA:25Þ

where kb is the Boltzmann constant, V is the bias voltage, ΦB is the barrier height,
T is the temperature in degrees Kelvin, h is Planck’s constant, and m* is
the electron effective mass in the direction perpendicular to the junction plane, and
A∗ ¼ 4πqm∗k2b=h

3 is called the effective Richardson constant for thermionic emis-
sion. This quantity can be related to the Richardson constant for free electrons,
A ¼ 120 A�cm�2�K�2, as discussed below.

CE

Φm

VE

FsEFmE

χ

Metal
n-type

Semiconductor

Vacuum
level

Vacuum
level

Eg

qΦB

a b

CE
Φm

VE

FsE
FmE

Metal
n-type

Semiconductor

qV

msJ →

smJ →

Fig. A.19 Energy band diagram of a Schottky metal-(n-type) semiconductor junction: (a) At
equilibrium and (b) under forward bias (V > 0), showing the transport of electrons over the potential
barrier as the main transport process under forward bias
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For n-type semiconductors with an isotropic electron effective mass m* in the
minimum of the conduction band, we have A∗/A ¼ m∗/m0, where m0 is the electron
rest mass.

For n-type semiconductors with a multiple-valley conduction band, the effective
Richardson constant A* associated with each local energy minimum is given by

A∗=A ¼ l2xm
∗
y m

∗
z þ l2ym

∗
z m

∗
x þ l2zm

∗
x m

∗
y

� �1=2
=m0, where lx, ly, and lz are the direc-

tion cosines corresponding to this energy minimum in the first Brillouin zone.
In the case of a p-type semiconductor, we need to consider the heavy-hole and the

light-hole bands in the valence band, both of which have their maximum at the
center of the Brillouin zone. The effective Richardson constant is then given by the
following expression A∗=A ¼ m∗

lh þ m∗
hh

� �
=m0, where m∗

hh and m∗
lh are the

heavy-hole and light-hole effective masses, respectively. A few examples of values
for A∗/A are given in Table A.1.

The second current contribution to the thermionic emission current is the current
flowing from the metal into the semiconductor, Jm ! s. As the barrier height for the
transport of electrons in this direction is independent of the applied bias voltage
V (Fig. A.19b), Jm ! s is also independent of the bias voltage. Jm ! s is therefore
equal to the opposite of Js ! m when V ¼ 0, because no net current exists at
equilibrium. Using Eq. (A.25), we obtain:

Jm!s ¼ �A∗T2e�
qΦB
kbT ðA:26Þ

The total current density is therefore:

J ¼ Js!m þ Jm!s ¼ A∗T2e
� qΦB

kbT e
qV
kbT � 1

h i
¼ JST e

qV
kbT � 1

h i ðA:27Þ

This expression shows that the thermionic emission current resembles the diode
equation obtained in Eq. 9.52. The difference lies in the saturation current density
which is now given by:

JST ¼ A∗T2e�
qΦB
kbT ðA:28Þ

Table A.1 Examples of
values for A∗/A in a few
semiconductors (Sze 1981)

Semiconductor Si Ge GaAs

n-type <111> 2.2 1.11 0.068 (low field)
1.2 (high field)

n-type <100> 2.1 1.19 0.068 (low field)
1.2 (high field)

p-type 0.66 0.34 0.62
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A.10 Physical Properties and Safety Information
of Metalorganics

Table A.2 and Table A.3 summarize some of the basic thermodynamic properties of
metalorganic sources commonly used in MOCVD, including their chemical formula
and abbreviation, boiling point, melting point, and the expression of their vapor
pressure as a function of temperature.

Additional information on their other important physical properties is also
provided for a number of important metalorganic sources, including diethylzinc
(Table A.4), trimethylindium (Table A.5), triethylindium(Table A.6),
trimethylgallium (Table A.7), and triethylgallium (Table A.8).

In the rest of this Appendix, general information about the safety of metalorganic
compounds will be given. This will be helpful in developing safety and health
procedures during their handling.

Chemical Reactivity
Metalorganics catch fire if exposed to air, react violently with water and any
compound containing active hydrogen, and may react vigorously with compounds
containing oxygen or organic halide.

Stability
Metalorganics are stable when stored under a dry, inert atmosphere and away
from heat.

Fire Hazard
Metalorganics are spontaneously flammable in air, and the products of combustion
may be toxic. Metalorganics are pyrophoric by the paper char test used to gauge
pyrophoricity for transportation classification purposes (Mudry 1975).

Firefighting Technique
Protect against fire by strict adherence to safe operating procedures and proper
equipment design. In case of fire, immediate action should be taken to confine
it. All lines and equipment which could contribute to the fire should be shut off.
As in any fire, prevent human exposure to fire, smoke, or products of combustion.
Evacuate nonessential personnel from the fire area.

The most effective fire extinguishing agent is dry chemical powder pressurized
with nitrogen. Sand, vermiculite, or carbon dioxide may be used. Caution:
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Re-ignition may occur. Do not use water, foam, carbon tetrachloride, or
chlorobromomethane extinguishing agents, as these materials react violently
and/or liberate toxic fumes on contact with metalorganics.

When there is a potential for exposure to smoke, fumes, or products of combus-
tion, firefighters should wear full-face positive-pressure self-contained breathing
apparatus or a positive-pressure supplied-air respirator with escape pack and imper-
vious clothing including gloves, hoods, aluminized suits, and rubber boots.

Table A.4 Chemical properties of diethylzinc (Razeghi 1989)

Acronym DEZn

Formula (C2H5)2Zn

Formula weight 123.49

Metallic purity 99.9999 wt% (min) zinc

Appearance Clear, colorless liquid

Density 1.198 g�ml�1 at 30 �C
Melting point �30 �C
Vapor pressure 3.6 mmHg at 0 �C

16 mmHg at 25 �C
760 mmHg at 117.6 �C

Behavior toward
organic solvents

Completely miscible, without reaction, with aromatic and saturated
aliphatic and alicyclic hydrocarbons. Forms relatively unstable
complexes with simple ethers, thioethers, phosphines, and arsines but
more stable complexes with tertiary amines and cyclic ethers

Stability in air Ignites on exposure (pyrophoric)

Stability in water Reacts violently, evolving gaseous hydrocarbons, carbon dioxide,
and water

Storage stability Stable indefinitely at ambient temperatures when stored in an inert
atmosphere

Table A.5 Chemical properties of trimethylindium (Razeghi 1989)

Acronym TMIn

Formula (CH3)3In

Formula weight 159.85

Metallic purity 99.999 wt% (min) indium

Appearance White, crystalline solid

Density 1.586 g�ml�1 at 19 �C
Melting point 89 �C
Boiling point 135.8 �C at 760 mmHg

67 �C at 12 mmHg

Vapor pressure 15 mmHg at 41.7 �C
Stability in air Pyrophoric, ignites spontaneously in air

Solubility Completely miscible with most common solvents

Storage stability Stable indefinitely when stored in an inert atmosphere
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Human Health
Metalorganics cause severe burns and should not get in the eyes and on the skin or
clothing.

Ingestion and inhalation. Because of the highly reactive nature of metalorganics
with air and moisture, ingestion is unlikely.

Skin and eye contact. Metalorganics react immediately with moisture on the skin
or in the eye to produce severe thermal and chemical burns.

Table A.6 Chemical properties of triethylindium (Razeghi 1989)

Acronym TEIn

Formula (C2H5)3In

Formula weight 202.01

Metallic purity 99.9999 wt% (min) indium

Appearance Clear, colorless liquid

Density 1.260 g�ml�1 at 20 �C
Melting point �32 �C
Vapor pressure 1.18 mmHg at 40 �C

4.05 mmHg at 60 �C
12.0 mmHg at 80 �C

Behavior toward
organic solvents

Completely miscible, without reaction, with aromatic and saturated
aliphatic and alicyclic hydrocarbons. Forms complexes with ethers,
thioethers, tertiary amines, phosphines, arsines, and other Lewis bases

Stability in air Ignites on exposure (pyrophoric)

Stability in water Partially hydrolyzed, loses one ethyl group with cold water

Storage stability Stable indefinitely at ambient temperatures when stored in an inert
atmosphere

Table A.7 Chemical properties of trimethylgallium (Razeghi 1989)

Acronym TMGa

Formula (CH3)3In

Formula weight 114.82

Metallic purity 99.9999 wt% (min) gallium

Appearance Clear, colorless liquid

Density 1.151 g�ml�1 at 15 �C
Melting point �15.8 �C
Vapor pressure 64.5 mmHg at 0 �C

226.5 mmHg at 25 �C
760 mmHg at 55.8 �C

Behavior toward organic
solvents

Completely miscible, without reaction, with aromatic and saturated
aliphatic and alicyclic hydrocarbons. Forms complexes with ethers,
thioethers, tertiary amines, tertiary phosphines, tertiary arsines, and
other Lewis bases

Stability in air Ignites on exposure (pyrophoric)

Stability in water Reacts violently, forming methane and Me2GaOH or [(Me2Ga)2O]x
Storage stability Stable indefinitely at ambient temperatures when stored in an inert

atmosphere
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First Aid
If contact with metalorganics occurs, immediately initiate the recommended
procedures below. Simultaneously contact a poison center, a physician, or the
nearest hospital. Inform the person contacted of the type and extent of exposure,
describe the victim’s symptoms, and follow the advice given.

Ingestion. Should metalorganics be swallowed, immediately give several glasses
of water but do not induce vomiting. If vomiting does occur, give fluids again. Have
a physician determine if condition of patient will permit induction of vomiting or
evacuation of the stomach. Do not give anything by the mouth to an unconscious or
convulsing person.

Skin contact. Under a safety shower, immediately flush all affected areas with
large amounts of running water for at least 15 min. Remove contaminated clothing
and shoes. Do not attempt to neutralize with chemical agents. Get medical attention
immediately. Wash clothing before reuse.

Eye contact. Immediately flush the eyes with large quantities of running water for
a minimum of 15 min. Hold the eyelids apart during the flushing to ensure rinsing of
the entire surface of the eyes and lids with water. Do not attempt to neutralize with
chemical agents. Obtain medical attention as soon as possible. Oils or ointments
should not be used at this time. Continue the flushing for an additional 15 min if a
physician is not immediately available.

Inhalation. Exposure to combustion products of this material may cause respira-
tory irritation or difficulty with breathing. If inhaled, remove to fresh air. If not
breathing, clear the victim’s airway and start mouth-to-mouth artificial respiration
which may be supplemented by the use of a bag-mask respirator or manually
triggered oxygen supply capable of delivering 1 liter per second or more. If the

Table A.8 Chemical properties of triethylgallium (Razeghi 1989)

Acronym TEGa

Formula (C2H5)3Ga

Formula weight 156.91

Metallic purity 99.9999 wt% (min) gallium

Appearance Clear, colorless liquid

Density 1.0586 g�ml�1 at 20 �C
Melting point �82.3 �C
Vapor pressure 16 mmHg at 43 �C

62 mmHg at 72 �C
760 mmHg at 143 �C

Behavior toward organic
solvents

Completely miscible, without reaction, with aromatic and saturated
aliphatic and alicyclic hydrocarbons. Forms complexes with ethers,
thioethers, tertiary amines, tertiary phosphines, tertiary arsines, and
other Lewis bases

Stability in air Ignites on exposure (pyrophoric)

Stability in water Reacts vigorously, forming ethane and Et2GaOH or [(Et2Ga)2O]x
Storage stability Stable indefinitely at room temperatures in an inert atmosphere
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victim is breathing, oxygen may be delivered from a demand-type or continuous-
flow inhaler, preferably with a physician’s advice. Get medical attention
immediately.

Industrial Hygiene
Ingestion. As a matter of good industrial hygiene practice, food should be kept in a
separate area away from the storage/use location. Smoking should be avoided in
storage/use locations. Before eating, hands and face should be washed.

Skin contact. Skin contact must be prevented through the use of fire-retardant
protective clothing during sampling or when disconnecting lines or opening
connections. Recommended protection includes a full-face shield, impervious
gloves, aluminized polyamide coat, hood, and rubber boots. Safety showers – with
quick-opening valves which that stay open – should be readily available in all areas
where the material is handled or stored. Water should be supplied through insulated
and heat-traced lines to prevent freeze-ups in cold weather.

Eye contact. Eye contact with liquid or aerosol must be prevented through the use
of a full-face shield selected with regard for use-condition exposure potential.
Eyewash fountains, or other means of washing the eyes with a gentle flow of tap
water, should be readily available in all areas where this material is handled or
stored. Water should be supplied through insulated and heat-traced lines to prevent
freeze-ups in cold weather.

Inhalation. Metalorganics should be used in a tightly closed system. Use in an
open (e.g., outdoor) or well-ventilated area to minimize exposure to the products of
combustion if a leak should occur. In the event of a leak, inhalation of fumes or
reaction products must be prevented through the use of an approved organic vapor
respirator with dust, mist, and fume filter. Where exposure potential necessitates a
higher level of protection, use a positive-pressure, supplied-air respirator.

Spill Handling
Make sure all personnel involved in spill handling follow proper firefighting
techniques and good industrial hygiene practices. Any person entering an area
with either a significant spill or an unknown concentration of fumes or combustion
products should wear a positive-pressure, supplied-air respirator with escape pack.
Block off the source of spill, and extinguish fire with extinguishing agent.
Re-ignition may occur. If the fire cannot be controlled with the extinguishing
agent, keep a safe distance, protect adjacent property, and allow product to burn
until consumed.

Corrosivity to Materials of Construction
This material is not corrosive to steel, aluminum, brass, nickel, or other common
metals when blanketed with a dry inert gas. Some plastics and elastomers may be
attacked.
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Storage Requirements
Containers should be stored in a cool, dry, well-ventilated area. Store away from
flammable materials and sources of heat and flame. Exercise due caution to prevent
damage to or leakage from the container.
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Auger recombination lifetime, 307
Avalanche breakdown, 353–354

B
Balmer series, 2
Band alignment, 474
Band bending, 330, 474
Band diagram, 154
Bandgap, 24, 164
Band offset, 474–475

Band structure, 154
bcc lattice, 177
Beer Lambert law, 368
Bessel function, 529
Binding energy, 386
Blackbody, 5, 85
Bloch electron, 462
Bloch oscillations, 531
Bloch theorem, 149–151
Bohr magneton, 122, 128, 398
Bohr, N., 3
Bohr orbit, 6
Bohr radius, 6, 7, 385
Bohr Sommerfeld condition, 136
Boltzmann equation, 312, 669
Bond energy, 13
Bond length, 13
Born-Oppenheimer approximation,
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Born-von Karman, 166, 208, 226
Bose-Einstein, 222, 225
Bosons, 244
Boule, 563, 564
Boundary conditions, 86, 106, 166, 208
Boundary layer, 574, 579
Bowing parameter, 556
Bragg’s law, 598
Bravais lattice, 58
Bra vector, 98
Breakdown voltage, 352
Bremsstrahlung effect, 597
Bridgman, 565
Brillouin Wigner expansion, 140
Brillouin zone, 82, 156, 175, 177
Bubbler, 577
Built-in electric field, 321
Built-in potential, 326
Bulk modulus, 225
Burger’s vector, 629
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C
Calorie, 231
Capacitance of a p-n junction, 339
Capacitance techniques, 616–617
Capacitance-voltage measurements, 616
Capture cross-section, 300
Capture rate, 300
Carrier concentration, 270–272
Cathode ray tube, 600
Cathodoluminescence, 611
Ceramics, 17
Cesium chloride, 75
Charge control approximation, 346
Charge neutrality, 266, 272
Chemical diffusion, 626
Chemical potential, 165
Coherent interphase boundary, 635
Cohesive energy, 13
Commutator, 99
Compensated semiconductor, 286
Compensation, 264
Compound semiconductors, 555
Conduction band, 24, 164, 254–258
Conduction band offset, 481
Conductivity, 275–280
Continuity equation, 513
Coulomb attraction, 16
Coulomb blockage, 503
Covalent bonds, 15–16
Creation and annihilation operators, 548
Critical electric field, 352
Crystal, 623
Crystallography, 51
Crystal momentum, 157
Crystal systems, 56
Curie field, 197
Current density, 276
Current, quantum Hall, 539
Current, quantum mechanics, 515
Cyclotron frequency, 132, 398
Cyclotron resonance, 402
Czochralski, 562, 564

D
Davisson-Germer experiment, 90–91
de Broglie, L., 90
Debye frequency, 227
Debye model, 226, 229
Debye temperature, 227, 236
Debye wavenumber, 226
Deep-level transient spectroscopy (DLTS), 617
Defect characterization, 637

Defects, 623
Deformation potential, 548
Degeneracy, 102, 252
Degenerate semiconductor, 257, 259
Density of states, 166, 228, 251, 486, 492
Depletion approximation, 320–324, 340
Depletion layer width, 350
Depletion region, 339
Depletion width, 322, 328, 339, 356
Diamond, 74
Diffusion, 287
Diffusion coefficient, 288, 575
Diffusion current, 288, 334, 343
Diffusion length, 293
Diffusivity, 288
Diode equation, 340, 345
Dipole, 19
Dirac delta function, 170, 379
Dirac equation pair, 125
Dirac notation, 377, 547
Dirac, P.A.M., 123, 124
Direct bandgap, 387
Direct-gap, 180
Dislocation, 566, 629
Dispersion relation, 213
Displacement, 366
Donor, 262
Dopants, 262
Doping, 191, 262
Drift current, 275, 334, 335
Drift velocity, 277
Drude model, 275, 371
Drude relaxation time, 520
Drude theory, 310, 371–374, 380, 513
Dulong and Petit, 233

E
Edge dislocation, 629
Effective charge, 10
Effective conduction band density of states, 255
Effective distribution coefficient, 568
Effective mass, 162, 173, 481, 487
Effective Richardson constant, 673
Effective valence band density of states, 259
Effusion cells, 581
Eigenfunction, 95
Eigenstate, 95
Einstein relations, 289–290
Elastic scattering, 280, 281
Electric field, 366
Electrochemical capacitance-voltage profiling,
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Electron, 173
Electron affinity, 23
Electron density function, 7
Electronegativity, 23
Electron gas, 165
Electronic structure, 1
Electron lifetime, 483
Electron microscopy, 600–603
Electron-phonon interaction, 281, 544
Electron recombination lifetime, 291
Electron spin, 122
Electron thermal velocity, 300
Electro-optic, 404
Ellipsometry, 612
Emission lines, 2–5
Emission probability, 300
Energy bands, 24, 154–157
Energy dispersive analysis using x-rays

(EDX), 603
Energy spectrum, 154, 162, 481–484
Enthalpy, 588
Entropy, 588
Epitaxy, 571
Equilibrium state, 294
Excess generation rate, 294
Exchange corrections, 130
Exciton, 385, 386
Expectation value, 96
Extended-zone representation, 156, 158
External planar defects, 632, 635
Extrinsic, 251
Extrinsic point defects, 627–629
Extrinsic semiconductor, 262

F
Fabry Perot, 517
Fang Howard, 532
fcc lattice, 58, 175
Fermi-Dirac, 165, 173, 254
Fermi-Dirac distribution, 172, 237
Fermi energy, 163–165, 267
Fermi golden rule, 380, 387
Fermi level, 164
Fermi temperature, 237
Fick’s first law, 288
Flat, wafer, 72
Float-zone, 566
Forward biased p-n junction, 332
Fourier coefficients, 665
Fourier series, 665
Fourier transform, 665
Fourier transform infrared (FTIR), 614

Fourier transform spectroscopy, 613–615
Four-point probe, 615
Fowler-Nordheim tunneling, 137
Fractional Quantum Hall effect, 541
Frank-van der Merwe, 592
Franz-Keldysh effect, 393–396
Franz-Keldysh oscillations, 396
Free particle, 101
Frenkel defect, 625
Frequency dependent conductivity, 366, 367
Full Width at Half Maximum, 599

G
Gas, 51, 52
Gauss gamma-function, 119
Gaussian distribution, 499
Gauss’s law, 324
Generalized Ohm’s law, 278
Generation rate, 296, 349
Gibbs free-energy, 587
Gibbs Phase Rule, 590
Grain boundary, 632, 633
Group velocity, 161, 222, 223
Growth rate, 579

H
Hall constant, 284
Hall effect, 282–287, 616
Hall effect, fractional quantum, 541
Hall factor, 284
Hall mobility, 284
Hall resistance, 506
Hall voltage, 507
Hamiltonian, 92
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Harmonic oscillator, 110
Hartree-Fock, 666
Hartree-Fock self consistent field, 667
Heat capacity, 231, 234, 236
Heavy-hole, 179
Heavy-hole effective mass, 254
Heisenberg uncertainty principle, 97, 380
Hermite polynomials, 111, 398
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Heterojunction, 473, 477
Heterojunction bipolar transistor, 473
Heterostructure, 473
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Hilbert space, 96
Hole effective mass, 254
Hole recombination lifetime, 293
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Hund’s rule, 8, 9
Hybridization, 15
Hydrogen atom, 10, 111, 121
Hydrogen bond, 20
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Ideality factor, 351, 361
Ideal p-n junction diode, 319
Impact ionization, 353
Incoherent interphase boundary, 635
Indirect bandgap, 387
Indirect-gap, 180
Inelastic scattering, 280
Infrared photodetectors, 561
Internal planar defects, 632
Interphase boundary, 632
Interstitial, 625
Interstitial defect, 625
Interstitial impurity, 627
Intrinsic, 251
Intrinsic carrier concentration, 260
Intrinsic contribution, 270
Intrinsic point defects, 625–627
Intrinsic semiconductor, 260, 261, 268
Inversion symmetry, 64
Ionic bonds, 13–15
Ionic radii, 22
Ionization energy, 22, 263, 264, 629
Ionized acceptor, 264
Ionized donor, 262
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J
Joint density of states, 384

K
Kane effective mass, 543
Kane parameter, 193, 382
Kane’s method, 191
Kane theory, 382, 384
Ket vector, 98
Kinetic theory of gases, 243, 275
Klein-Gordon equation, 123, 125
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Kronig-Penney model, 151

L
Laguerre’s differential equation, 119
Landau gauge, 397, 537
Landau levels, 132, 399, 402, 506

Landau-Stark-Wannier, 542
Lande factor, 398
Laplacian, 92
Lattice, 55
Lattice constant, 599
Lattice wave, 221
Legendre polynomials, 116
Legendre’s equation, 116
Lely method, 568
Lifetime, 380
Light-hole, 179
Light-hole effective mass, 254
Lindhard’s expression, 464
Line defect, 624, 629
Linear response, 403
Liquid, 51, 52
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Liquid phase epitaxy (LPE), 571, 572
Local density of states, 395
Longitudinal, 218, 226
Longitudinal electron effective mass, 253
Longitudinal optical modes, 548
Lorentz force, 131, 282, 401, 507, 564
Lorentz invariance, 123
Lorentz transformation, 123
Low-dimensional quantum structures, 499
Luttinger Kohn model, 197
Luttinger liquid, 503
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M
Magnetic field, 366
Magnetic flux, 366
Magnetic induction, 282
Magnetic length, 398
Magneto-optic, 404
Magnetoresistance, 534
Majority carriers, 334
Manifold, 577
Mass action law, 260
Mass flow controller, 577
Mass transfer coefficient, 575
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Maxwell-Boltzmann, 241
Maxwell’s equations (ME), 123, 366
Mean free path, 244, 245, 582
Metal contact, 356
Metallic bond, 17–18
Metallurgic junction, 356
Metalorganic, 577
Metalorganic chemical vapor deposition
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Metal-semiconductor junction, 319, 356, 358
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Migration enhanced epitaxy, 586
Miller indices, 67, 69, 70
Miniband, 480
Minority carrier extraction, 341
Minority carrier injection, 341
Minority carriers, 334, 335
Mixed bonds, 16–17
Mixed dislocation, 629
Mobility, 277
Model solid theory, 475
Modified Lely method, 569
Modulation doping, 531
Molecular beam epitaxy (MBE), 571, 581
Momentum space, 83
Monte-Carlo simulation, 669
Moss-Burstein shift, 510
Multiple quantum wells (MQWs), 480
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Nanopillar, 505
Near-field scanning optical microscopy, 608
Nearly free electron approximation, 157–158
Negative differential resistance, 522, 524, 544
Negative effective mass, 163
n-fold symmetry, 61
Non-degenerate semiconductor, 255, 257, 259
Nonlinear optical susceptibility, 403–404
Non-radiative recombination, 298
Normalization, 92
Normal processes, 244
n-type doping, 262
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Ohmic contact, 358
Ohm’s law, 278
Operator, 93, 95
Optical phonon, 213
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Organometallic, 577
Oscillator strength, 377, 381
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Packing factor, 78
Particle momentum, 102
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Pauli principle, 129
Pauli spin matrices, 128
Perfect reflectance, 373
Periodic boundary conditions, 151
Periodic potential, 158
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Permeability, 366
Permittivity, 366, 381, 389
Perturbation theory, 137, 375–379, 505
Phase diagram, 559, 590
Phase velocity, 223
Phonon, 203, 204, 210, 221, 243
Phonon dispersion, 209–210
Phonon dispersion relation, 209
Phonon polariton, 393
Phonon spectrum, 213
Photoelectric effect, 88
Photoluminescence, 610–611
Photomultiplier tube, 600
Photon, 89
Piezoelectric tube, 608
Planar defect, 632
Plasma frequency, 372, 374
Plasmon modes, 470
p-n junctions, 319
Point defect, 624, 625
Point groups, 60, 67
Point symmetry, 60
Poisson Bracket, 100
Polar bond, 17
Polariton, 392–393
Polarizability, 372, 377
Polarization vector, 366
Polaron, 550
Polaron effective mass, 550
Polycrystalline, 54
Poynting vector, 369
Precipitates, 636
Preferential etching, 637
Primitive unit cell, 56
Projection operator, 98
Pseudopotential method, 666
p-type doping, 263
Pyrometer, 578

Q
Quantum box, 492
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Quantum chromodynamics, 127
Quantum current, 513
Quantum dot, 473, 493, 503, 609
Quantum efficiency, 143
Quantum Hall conductivity, 534
Quantum Hall effect, 507
Quantum well, 102, 104–109, 399, 473, 480,
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Quantum well intersubband photodetectors
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Quasi-momentum, 157
Quasi-particles, 221, 541
Quaternary compounds, 558, 559
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Raman scattering, 613
Raman spectroscopy, 613
Rayleigh-Jeans law, 5, 86
Rayleigh scattering, 613
Reciprocal lattice, 79–82
Reciprocal lattice vector, 81, 158
Recombination, 290, 294
Recombination center, 298
Recombination coefficient, 295, 297
Recombination current, 351
Recombination lifetime, 297
Recombination rate, 303
Rectifying contact, 358
Reduced effective mass, 384
Reduced Planck’s constant, 86
Reduced-zone representation, 156, 158
Reflectance, 611
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Reflection high-energy electron diffraction
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Reflectivity, 370, 371
Refractive index, 367, 369, 382
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Relaxation process, 296, 307
Relaxation time, 277
Resistance, 279
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Reverse biased p-n junction, 335
Reverse breakdown, 352
Richardson constant, 360, 673
Riemann zeta function, 234
Rutherford backscattering, 606–607
Rydberg, 2
Rydberg constant, 2, 5
Rydberg energy, 385
Rydberg unit, 114

S
Saturation current, 345, 349, 674
Scanning electron microscope (SEM), 600
Scanning probe microscopy, 608–609
Scanning tunneling microscopy, 608
Scattering, 243
Schottky contact, 358

Schottky defect, 625
Schottky potential barrier height, 360
Schrödinger equation, 92, 94
Screening length, 465
Screw dislocation, 629
Second Law of thermodynamics, 588
Secondary bond, 18–20
Secondary ion mass spectroscopy (SIMS), 606
Seed, 563
Segregation constant, 564
Self-interstitial, 625
Semi-coherent interphase boundary, 635
Sheet resistivity, 615
Shockley-Read-Hall recombination, 298,

305, 308
Shubnikov de-Haas effect, 400
Shubnikov de Haas oscillations, 534
Single crystal, 52
Slater determinant, 129, 668
Sodium chloride, 75
Solid, 51, 52
Sound velocity, 223
Space charge region, 321, 337
Space groups, 67
Specific heat, 231
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Spherical harmonics, 494
Spin degeneracy, 167
Spin Hall effect, 197
Spin operators, 127
Spin orbit coupling, 194
Spin-orbit interaction, 193
Spin-orbit splitting, 476
Split-off, 179
Stacking fault, 632
Stark shift, 505
Stark-Wannier, 529
Stationary states, 94
Steady state, 294
Step function, 485
Step junction, 319
Stern and Gerlach, 122
Stokes scattering, 613
Stranski-Krastanow, 504, 592, 624
String theory, 127
Substitutional, 262
Substitutional defect, 625
Substitutional impurity, 627
Substrate, 562
Superconductivity, 544
Superfluids, 544
Superlattice, 480
Superlattice dispersion, 526–527
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Surface plasmon, 373, 470
Surface recombination, 308
Surface recombination velocity, 308
Susceptibility tensor, 403
Susceptor, 576
Symmetry directions, 175
Symmetry operations, 58
Symmetry points, 175

T
Taylor expansion, 205, 663
Thermal conductivity, 242
Thermal conductivity coefficient, 242
Thermal current density, 242
Thermal expansion, 238
Thermal expansion coefficient, 238
Thermal generation rate, 294
Thermocouple, 578
Thomas-Fermi function, 468
Threshold current, 500
Tight-binding approximation, 159
Tight-binding model, 526
Translation, 58
Transmission, 612
Transmission and reflection coefficients, 516
Transmission electron microscopy, 601
Transmission resonance, 521
Transmissivity, 370
Transversal, 218, 226
Transverse electron effective mass, 253
Traveling wave, 207
Traveling wave formalism, 206–208
Tunneling, 109
Twin boundary, 632, 633
Two-dimensional electrons, 484
Type I band alignment, 474
Type II band alignment, 475

U
Umklapp processes, 244
Unit cell, 56, 57

V
Vacancy, 625, 626
Valence band, 24, 164, 258

Valence electrons, 11
van der Pauw, 615
van der Waals, 18, 20
Vapor phase epitaxy (VPE), 571, 573
Vapor pressure, 565
Vector potential, 397
Vegard’s law, 556
Vibrational mode, 221
Voids, 636
Volmer-Weber, 592
Volume defect, 624, 636

W
Wafer flat, 72
Wave equation, 92
Wavefunction, 103
Wavenumber, 101, 103, 207
Wave-particle duality, 90
Wavevector, 150
Wentzel Kramer Brillouin (WKB)

method, 134
Wigner crystal, 541
Wigner-Landau fluid, 541
Wigner-Seitz cell, 58
Work function, 88, 357
Wurtzite, 77

X
X-ray diffraction, 597
X-ray photoelectron spectroscopy, 604

Y
Young’s modulus, 247

Z
Zeeman coupling, 128
Zeeman energy, 399
Zeeman splitting, 398
Zener breakdown, 355
Zener tunneling, 355
Zero point energy, 204
Zero point motion, 204
Zero point vibrational energy, 111
Zinc blende, 74
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